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Abstract The moduli space of smooth curves admits a beautiful compactifi-
cation Mg,n ⊂ Mg,n by the moduli space of stable curves. In this paper, we
undertake a systematic classification of alternate modular compactifications
of Mg,n. Let Ug,n be the (non-separated) moduli stack of all n-pointed re-
duced, connected, complete, one-dimensional schemes of arithmetic genus g.
When g = 0, U0,n is irreducible and we classify all open proper substacks
of U0,n. When g ≥ 1, Ug,n may not be irreducible, but there is a unique ir-
reducible component Vg,n ⊂ Ug,n containing Mg,n. We classify open proper
substacks of Vg,n satisfying a certain stability condition.
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1 Introduction

Notation An n-pointed curve (C, {pi}ni=1) is a reduced, connected, com-
plete, one-dimensional scheme of finite-type over an algebraically closed
field, together with a collection of n points p1, . . . , pn ∈ C. The marked
points need not be smooth nor distinct. A morphism of n-pointed curves al-
ways sends marked points to marked points. An n-pointed curve (C, {pi}ni=1)

is smooth if C is smooth and the points {pi}ni=1 are distinct. An n-pointed
curve (C, {pi}ni=1) is nodal if the only singularities of C are ordinary nodes
and the points {pi}ni=1 are smooth and distinct. We say that a point on C is
distinguished if it is marked or singular, and that a point on the normalization
C̃ is distinguished if it lies above a distinguished point of C. An n-pointed
curve (C, {pi}ni=1) is prestable (resp. presemistable) if every rational compo-
nent of the normalization C̃ has at least three (resp. two) distinguished points,
and every elliptic component of the normalization C̃ has at least one (resp.
one) distinguished point. A curve (C, {pi}ni=1) is stable (resp. semistable) if
(C, {pi}ni=1) is nodal and prestable (resp. presemistable). All these definitions
extend to general bases in the standard way. Finally, Δ will always denote the
spectrum of a discrete valuation ring with generic point η and closed point 0.

1.1 Statement of main result

One of the most beautiful and influential theorems in modern algebraic geom-
etry is the construction of a modular compactification Mg,n ⊂ Mg,n for the
moduli space of smooth curves [7]. The key point in this construction is the
identification of a suitable class of singular curves, namely Deligne-Mumford
stable curves, with the property that every incomplete one-parameter family
of smooth curves has a unique limit contained in this class. While the class of
stable curves gives a natural modular compactification of the space of smooth
curves, it is not unique in this respect. There exist two alternate compactifica-
tions in the literature, the moduli space of pseudostable curves [24], in which
cusps arise, and the moduli space of weighted pointed curves, in which sec-
tions with small weight are allowed to collide [12]. In light of these construc-
tions, it is natural to ask
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Problem Can we classify all possible stability conditions for curves, i.e.
classes of singular marked curves which are deformation-open and satisfy the
property that any one-parameter family of smooth curves contains a unique
limit contained in that class?

Stable, pseudostable, and weighted stable curves all have the property that
every rational component of the normalization has at least three distinguished
points, and every elliptic component of the normalization has at least one dis-
tinguished point. In general, we say that an n-pointed curve with this prop-
erty is prestable. The main result of this paper classifies stability conditions
on prestable curves, i.e. we give a simple combinatorial description of all
deformation-open classes of prestable curves with the unique limit property.

Stability conditions on curves correspond to open proper substacks of the
moduli stack of all curves. To make this precise, let Ug,n be the functor from
schemes to groupoids defined by

Ug,n(T ) :=
⎧
⎨

⎩

flat, proper, finitely-presented morphisms C → T ,
with n sections {σi}ni=1, and connected, reduced,
one-dimensional geometric fibers

⎫
⎬

⎭
.

Note that we always allow the total space C of a family to be an algebraic
space. In Appendix B, it is shown that Ug,n is an algebraic stack, locally of
finite-type over Spec Z. Let Mg,n ⊂ Ug,n denote the open irreducible sub-
stack corresponding to smooth curves, and let Vg,n be the unique irreducible
component of Ug,n containing Mg,n. Note that the points of Vg,n correspond
to smoothable curves. As we are interested in irreducible compactifications
of Mg,n, we work exclusively in Vg,n.

Definition 1.1 A modular compactification of Mg,n is an open substack
X ⊂ Vg,n, such that X is proper over Spec Z.

The long-term goal of this project is to classify all modular compactifica-
tions of Mg,n. This paper takes the first step by classifying all stable modular
compactifications of Mg,n.

Definition 1.2 A modular compactification X ⊂ Vg,n is stable (resp. semi-
stable) if every geometric point [C, {pi}ni=1] ∈ X is prestable (resp. pre-
semistable).

Remark 1.3 It is by no means obvious that there should exist strictly
semistable modular compactifications of Mg,n. After all, if a nodal curve
(C, {pi}ni=1) contains a smooth rational subcurve with only two distinguished
points, then Aut(C, {pi}ni=1) is not proper; in particular, (C, {pi}ni=1) can-
not be contained in any proper substack of Ug,n. A similar argument (see
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Sect. 1.2.3) shows that every modular compactification of M0,n is stable, so
the methods of this paper give a classification of all modular compactifica-
tions of M0,n. By contrast, the author has constructed a sequence of strictly
semistable modular compactifications of M1,n [25, 26]. Thus, for g ≥ 1, our
classification of stable compactifications does not tell the whole story.

Remark 1.4 If (C, {pi}ni=1) is a prestable curve over an algebraically closed
field k, then the group scheme Autk(C, {pi}ni=1) has finitely many k-points.
It follows that a stable modular compactification X has quasi-finite diagonal
and therefore admits an irreducible coarse moduli space X, which gives a
proper (though not necessarily projective) birational model of Mg,n [17].

Now let us describe the combinatorial data that goes into the construction
of a stable modular compactification. If (C, {pi}ni=1) is a Deligne-Mumford
stable curve, we may associate to (C, {pi}ni=1) its dual graph G. The vertices
of G correspond to the irreducible components of C, the edges correspond to
the nodes of C, and each vertex is labeled by the arithmetic genus of the cor-
responding component as well as the marked points supported on that compo-
nent. The dual graph encodes the topological type of (C, {pi}ni=1), and for any
fixed g,n, there are only finitely many isomorphism classes of dual graphs of
n-pointed stable curves of genus g.

We write G � G′ if there exists a stable curve (C → Δ, {σi}ni=1) over the
spectrum of a discrete valuation ring with algebraically closed residue field,
such that the geometric generic fiber has dual graph G and the special fiber
has dual graph G′. If v is a vertex of G, and we have G � G′, we say that
G � G′ induces v � v′

1 ∪ · · · ∪ v′
k to indicate that the limit of the irreducible

component corresponding to v is the union of the irreducible components cor-
responding to v′

1, . . . , v
′
k (see Fig. 1). More precisely, if (C → Δ, {σi}ni=1) is

a one-parameter family witnessing the specialization G � G′, then (possibly
after a finite base-change) we may identify the irreducible components of the
geometric generic fiber with the irreducible components of C . In particular, v

corresponds to an irreducible component C1 ⊂ C , and the limit of v is simply
the collection of irreducible components in the special fiber of C1. Now we
come to the key definition of this paper.

Definition 1.5 (Extremal assignment over Mg,n) Let G1, . . . ,GN be an enu-
meration of dual graphs of n-pointed stable curves of genus g, up to isomor-
phism, and consider an assignment

Gi → Z(Gi) ⊂ Gi, for each i = 1, . . . ,N,

where Z(Gi) is a subset of the vertices of Gi . We say that Z is an extremal
assignment over Mg,n if it satisfies the following three axioms.
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Fig. 1 The specialization of
dual graphs induced by a
one-parameter specialization
of stable curves. Note that
v1 � v′

1 ∪ v′
2 and

v2 � v′
3 ∪ v′

4

(1) For any dual graph G, Z(G) �= G.
(2) For any dual graph G, Z(G) is invariant under Aut(G).
(3) For every specialization G � G′, inducing v � v′

1 ∪ · · · ∪ v′
k , we have

v ∈ Z(G) ⇐⇒ v′
1, . . . , v

′
k ∈ Z

(
G′).

Remark 1.6 Axiom 2 in Definition 1.5 implies that an extremal assignment Z
determines, for each stable curve (C, {pi}ni=1), a certain subcurve Z(C) ⊂ C.
Indeed, we may chose an isomorphism of the dual graph of (C, {pi}ni=1) with
Gi for some i, and then define Z(C) to be the collection of irreducible com-
ponents of C corresponding to Z(Gi) under this isomorphism. By Axiom 2,
Z(C) does not depend on the choice of isomorphism.

Given an extremal assignment Z , we say that a curve is Z -stable if it can
be obtained from a Deligne-Mumford stable curve (C, {pi}ni=1) by replacing
each connected component of Z(C) ⊂ C by an isolated curve singularity
whose contribution to the arithmetic genus is the same as the subcurve it
replaces. We make this precise in Definitions 1.7 and 1.8 below. Note that if
C is any curve and Z ⊂ C is a proper subcurve, we let Zc := C\Z denote the
complement of Z.

Definition 1.7 (Genus of a curve singularity) Let p ∈ C be a point on a curve,
and let π : C̃ → C denote the normalization of C at p. The δ-invariant δ(p)

and the number of branches m(p) are defined by following formulae:

δ(p) := dimk(π∗OC̃
/OC),

m(p) := ∣
∣π−1(p)

∣
∣,
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and we define the genus g(p) by

g(p) := δ(p) − m(p) + 1.

We say that a point p ∈ C has type (g,m) if g(p) = g and m(p) = m.

Definition 1.8 (Z -stability) A smoothable n-pointed curve (C, {pi}ni=1) is
Z -stable if there exists a stable curve (Cs, {ps

i }ni=1) and a morphism φ :
(Cs, {ps

i }ni=1) → (C, {pi}ni=1) satisfying

(1) φ is surjective with connected fibers.
(2) φ maps Cs − Z(Cs) isomorphically onto its image.
(3) If Z1, . . . ,Zk are the connected components of Z(Cs), then φ(Zi) ∈ C is

a single point satisfying g(φ(Zi)) = pa(Zi) and m(φ(Zi)) = |Zi ∩ Zc
i |.

For any extremal assignment Z , we define Mg,n(Z) ⊂ Vg,n to be the set of
points corresponding to Z -stable curves. The following theorem is our main
result.

Theorem 1.9 (Classification of stable modular compactifications)

(1) If Z is an extremal assignment over Mg,n, then Mg,n(Z) ⊂ Vg,n is a
stable modular compactification of Mg,n.

(2) If X ⊂ Vg,n is a stable modular compactification, then X = Mg,n(Z) for
some extremal assignment Z .

Proof See Theorems 3.2 and 4.1. �

Since the definition of an extremal assignment is purely combinatorial, one
can (in principal) write down all extremal assignments over Mg,n for any
fixed g and n. Thus, we obtain a complete classification of the collection of
stable modular compactifications of Mg,n. Before proceeding, let us consider
some examples of extremal assignments, and describe the corresponding sta-
bility conditions.

Example 1.10 (Destabilizing elliptic tails) Consider the assignment defined
by

Z
(
C, {pi}ni=1

) = {
Z ⊂ C |pa(Z) = 1,

∣
∣Z ∩ Zc

∣
∣ = 1,Z is unmarked

}
.

If we call an subcurve Z ⊂ C satisfying pa(Z) = 1 and |Z ∩ Zc| = 1 an
elliptic tail, we may say that the assignment Z is defined by picking out all
unmarked elliptic tails of (C, {pi}ni=1). This defines an extremal assignment
over Mg,n provided that g > 2 or n > 1. The case (g, n) = (2,0) is forbidden
because an unmarked genus two curve may be the union of two elliptic tails.
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Assuming (g, n) �= (2,0), Axioms 1 and 2 are obvious. For Axiom 3, simply
note that if v ∈ G corresponds to an elliptic tail, then any specialization of
dual graphs G � G′ necessarily induces a specialization v � v′, where v′ is
also an elliptic tail. Thus, v ∈ Z(G) ⇐⇒ v′ ∈ Z(G′) as required.

Now let us consider the associated Z -stability condition. By definition, an
n-pointed curve (C, {pi}ni=1) is Z -stable if there exists a map from a stable
curve (Cs, {ps

i }ni=1) → (C, {pi}ni=1) which is an isomorphism away from the
locus of elliptic tails, and contracts each elliptic tail of Cs to a singularity of
type (1,1). It is elementary to check that the unique curve singularity of type
(1,1) is the cusp (y2 −x3). Thus, an n-pointed curve (C, {pi}ni=1) is Z -stable
for this assignment iff it satisfies:

(1) C has only nodes and cusps as singularities.
(2) The marked points {pi}ni=1 are smooth and distinct.
(3) Each rational component of C̃ has at least three distinguished points.
(4) If E ⊂ C is an unmarked arithmetic genus one subcurve, |E ∩ Ec| ≥ 2.

When n = 0, this is precisely the definition of pseudostability introduced in
[24] and further studied in [13].

Example 1.11 (Destabilizing rational tails) Consider the assignment defined
by

Z(C) = {
Z ⊂ C |pa(Z) = 0,

∣
∣Z ∩ Zc

∣
∣ = 1,

∣
∣{pi ∈ Z}∣∣ ≤ k

}
.

If we call a subcurve Z ⊂ C satisfying pa(Z) = 0 and |Z ∩Zc| = 1 a rational
tail, we may say that the assignment Z is defined by picking out all rational
tails of (C, {pi}ni=1) with ≤ k marked points. This defines an extremal assign-
ment over Mg,n provided that g > 0 or n > 2k. The case g = 0 and n ≤ 2k

is forbidden because such stable curves may be the union of two rational
tails with ≤ k marked points. If g > 0 or n > 2k, Axioms 1 and 2 are easily
verified. Axiom 3 is also obvious, bearing in mind that we do not require a
rational tail Z ⊂ C to be irreducible.

Now let us consider the associated Z -stability condition. An n-pointed
curve (C, {pi}ni=1) is Z -stable if there exists a map from a stable curve
(Cs, {ps

i }ni=1) → (C, {pi}ni=1) which is an isomorphism away from the lo-
cus of rational tails with ≤ k points, and contracts each such rational tail to
a point of type (0,1) on C. It follows directly from the definition that the
unique ‘singularity’ of type (0,1) is a smooth point. Thus, an n-pointed curve
(C, {pi}ni=1) is Z -stable for this assignment iff it satisfies:

(1) C has only nodes as singularities.
(2) The marked points {pi}ni=1 are smooth, and up to k points may coincide.
(3) Each rational component of C̃ has at least three distinguished points.
(4) If Z ⊂ C is a rational tail, then |{pi : pi ∈ Z}| > k.
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This is equivalent to the definition of A-stability introduced in [12] with sym-
metric weights A = {1/k, . . . ,1/k}.
Example 1.12 (Destabilizing all unmarked components) Consider the assign-
ment defined by

Z
(
C, {pi}ni=1

) = {Z ⊂ C |Z is unmarked}.
As long as n ≥ 1, this assignment clearly satisfies Axioms 1–3 of Defini-
tion 1.5. The corresponding Z -stable curves have all manner of exotic sin-
gularities. In fact, for any pair of integers (h,m), there exists g � 0 such
that n-pointed stable curves of genus g contain unmarked subcurves Z ⊂ C

satisfying pa(Z) = h and |Z ∩ Zc| = m. It follows that every smoothable
curve singularity of type (h,m) appears on a Z -stable curve for g � 0. The
corresponding moduli spaces Mg,n(Z) have no counterpart in the existing
literature.

1.2 Consequences of main result

In this section, we describe several significant consequences of Theorem 1.9.
First, we will show that the number of extremal assignments over Mg,n is
an increasing function of both g and n by explaining how π -nef line-bundles
on the universal curve π : C → Mg,n induce extremal assignments. We de-
duce the existence of many new stability conditions which have never been
described in the literature. Next, we explain why Z -stability nevertheless fails
to give an entirely satisfactory theory of stability conditions for curves. We
will see, for example, that there is no Z -stability condition picking out only
curves with nodes (y2 = x2), cusps (y2 = x3), and tacnodes (y2 = x4), and
indicate how a systematic study of semistable compactifications might rem-
edy this deficiency. Finally, we will show that Z -stability does give a satis-
factory theory of stability conditions in the case g = 0. We will see that every
modular compactification of M0,n must be stable, so our result actually gives
a complete classification of modular compactifications of M0,n.

1.2.1 Extremal assignments from π -nef line-bundles

Let Mg,n denote the moduli stack of stable curves over an algebraically
closed field of characteristic zero, and let π : C → Mg,n denote the universal
curve. The following lemma shows that numerically-nontrivial π -nef line-
bundles on C induce extremal assignments. (In this context, to say that L is
π -nef and numerically-nontrivial simply means that L has non-negative de-
gree on every irreducible component of every fiber of π and positive degree
on the generic fiber.)
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Lemma 1.13 Let L be a π -nef, numerically non-trivial line-bundle on C .
Then L induces an extremal assignment by setting:

Z
(
C, {pi}ni=1

) := {
Z ⊂ C| deg(L |Z) = 0

}
,

for each stable curve [C, {pi}ni=1] ∈ Mg,n.

Proof We must check that the assignment Z satisfies Axioms 1–3 in Defini-
tion 1.5. For Axiom 1, observe that since L is π -nef and numerically non-
trivial, L must have positive degree on some irreducible component of each
geometric fiber of π . For Axiom 2, recall that PicQ(C/Mg,n) is generated
by line-bundles whose degree on any irreducible component of a fiber of π

depends only on the dual graph of the fiber [1]. For Axiom 3, consider any
specialization G � G′ induced by a one-parameter family of stable curves
(Cs → Δ, {σi}ni=1). We have a Cartesian diagram

Cs
f

C

Δ Mg,n,

and after a finite base-change, we may assume that the irreducible compo-
nents of Cs are in bijective correspondence with the irreducible components of
the geometric generic fiber, i.e. we have Cs � C1 ∪ · · · ∪ Ck with each Ci → Δ

having smooth generic fiber. Now f ∗L has degree zero on the generic fiber
of Ci → Δ iff it has degree zero on every irreducible component of the special
fiber. This is precisely the statement of Axiom 3. �

Translated into the language of higher-dimensional geometry, this lemma
says that every face of the relative cone of curves N

+
1 (C/Mg,n) gives rise to a

stable modular compactification of Mg,n. In Appendix A, we give an explicit

definition of N
+
1 (C/Mg,n) as a closed polyhedral cone in PicQ(C/Mg,n),

and describe the stability conditions corresponding to each extremal face in
the cases (g, n) = (2,0), (3,0), (2,1). In general, since N

+
1 (C/Mg,n) is a full

polyhedral cone in a vector space of dimension ρ(C/Mg,n), it is clear that the

number of extremal faces of N
+
1 (C/Mg,n) (and hence the number of extremal

assignments over Mg,n) is a strictly increasing function of both g and n.

1.2.2 Singularities arising in stable compactifications

While Lemma 1.13 shows that there exist many stability conditions for
curves, it does not provide much insight into the following natural question:
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Given a deformation-open class of curve singularities, is there a stability con-
dition which picks out curves with precisely this class of singularities? We
have already seen that the answer is yes if the class consists of nodes or nodes
and cusps. In general, however, one cannot always expect an affirmative an-
swer using only stability conditions on prestable curves. Indeed, Corollar-
ies 1.14 and 1.15 below show that the collection of stable modular compact-
ifications of Mg,n is severely constrained by two features: the necessity of
compactifyng the moduli of attaching data of a singularity (a local obstruc-
tion) and the presence of symmetry in dual graphs of stable curves (a global
obstruction).

Let us say that a given curve singularity arises in a modular compactifica-
tion X if X contains a geometric point [C, {pi}ni=1] ∈ X such that C possesses
this singularity.

Corollary 1.14 Let X be a stable modular compactification of Mg,n. If one
singularity of type (h,m) arises in X , then every smoothable singularity of
type (h,m) arises in X .

Proof We have X = Mg,n(Z) for some extremal assignment Z . If a singular-
ity of type (h,m) appears on some Z -stable curve, there exists a stable curve
(Cs, {ps

i }ni=1) and a connected component Z ⊂ Z(Cs) such that pa(Z) = h

and |Z ∩ Zc| = m. Since the definition of Z -stability allows Z to be replaced
by any smoothable singularity of type (h,m), it follows that all smoothable
singularities of type (h,m) arise in X . �

This corollary precludes the existence of a stability condition on prestable
curves picking out precisely nodes, cusps, and tacnodes. Indeed, one easily
checks that the spatial singularity obtained by passing a smooth branch trans-
versely through the tangent plane of a cusp, i.e.

ÔC,p � k�x, y, z�/
(
(x, y) ∩ (

z, y2 − x3)),

has the same genus (1) and number of branches (2) as the tacnode. Thus, any
stability condition on prestable curves which allows tacnodes must allow this
spatial singularity as well.

The geometric phenomenon responsible for this implication is the exis-
tence of moduli of ‘attaching data’ for a tacnode. Unlike nodes or cusps,
the isomorphism class of a tacnodal curve C is not uniquely determined
by its pointed normalization (C̃, q1, q2); one must also specify an element
λ ∈ Isom(Tq1C̃, Tq2C̃) � k∗. As λ → 0 or ∞, the tacnodal curve degener-
ates into a cusp with a transverse branch (see Fig. 2). Note, however, that
in a semistable compactification, one may compactify moduli of attaching
data by sprouting additional rational components (see Fig. 2). Indeed, this
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Fig. 2 Two methods for compactifying the k∗-moduli of attaching data of the tacnode. In a
stable modular compactification, one must compactify by degenerating to a cusp with a trans-
verse branch. In a semistable modular compactification, one may compactify by allowing the
normalization to sprout additional rational components

alternate method of compactification is used in [25, 26] to construct strictly
semistable modular compactifications of M1,n for every deformation-open
class of genus-one Gorenstein singularities.

Since one cannot use stability conditions on prestable curves to pick out
arbitrary deformation-open classes of singularities, let us consider the weaker
question: Does every curve singularity appear on some stable modular com-
pactification of Mg,n for suitable g and n? Surprisingly, the answer is ‘yes’ if
n = 1, but ‘no’ if n = 0. In fact, the following corollary shows that a ramphoid
cusp (y2 = x5) can never arise in a stable modular compactification of Mg .

Corollary 1.15

(1) Every smoothable curve singularity arises in some stable modular com-
pactification of Mg,1 for g � 0.

(2) No singularity of genus ≥ 2 arises in any stable modular compactification
of Mg .

Proof For (1), see Example 1.12. For (2), it suffices to prove that an extremal
assignment Z over Mg can never pick out a genus two subcurve. If Cs is an
unmarked stable curve and Z ⊂ Z(Cs) is a connected component of genus
two, we obtain a contradiction as follows: first, specialize Cs so that Z splits
off an elliptic bridge, i.e. an arithmetic genus one component meeting the rest
of the curve at two points. Second, smooth all nodes external to the elliptic
bridge. Finally, specialize to a ring of elliptic bridges (see Fig. 3). Applying
Axiom 3 of Definition 1.5 to this sequence of specializations, we conclude
that if Ds is a ring of g − 1 elliptic bridges, then Z(Ds) ⊂ Ds is non-empty.
If G is the dual graph of Ds , then Aut(G) acts transitively on the vertices
of G, so Axiom 2 implies that Z(Cs) = Cs . But this contradicts Axiom 1.
We conclude that an extremal assignment over Mg can never pick out a genus
two subcurve. �
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Fig. 3 Sequence of specializations showing that any extremal assignment which picks out a
genus two tail must also pick out an elliptic bridge within a ring of elliptic bridges

1.2.3 Modular compactifications of M0,n

In the previous section, we saw that Z -stability does not give an entirely sat-
isfactory theory of stability conditions for curves. In this section, we will see
that Z -stability does give a satisfactory theory of stability conditions when
g = 0. In particular, we will see that every modular compactification of M0,n

is automatically stable, so Theorem 1.9 actually classifies all modular com-
pactifications of M0,n.

The starting point of our analysis is the following classification of genus
zero singularities. It turns out that any genus zero singularity with m branches
is analytically isomorphic to the union of m coordinate axes in A

m, and we
call such singularities rational m-fold points.

Definition 1.16 (Rational m-fold point) Let C be a curve over an alge-
braically closed field k. We say that p ∈ C is a rational m-fold point if

ÔC,p � k�x1, . . . , xm�/(xixj : 1 ≤ i < j ≤ m).

Lemma 1.17

(1) If p ∈ C is a singularity with genus zero and m branches, then p is a
rational m-fold point.

(2) The rational m-fold point is smoothable.

Proof (1) is elementary. For (2), one can realize a smoothing of the rational
m-fold point by taking a pencil of hyperplane sections of the cone over the
rational normal curve of degree m. Both statements are proved in [27]. �

Corollary 1.18 Every reduced connected curve of arithmetic genus zero is
smoothable, i.e. U0,n = V0,n.
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Proof A complete reduced curve is smoothable iff its singularities are
smoothable (I.6.10, [18]). The only singularities on a reduced curve of arith-
metic genus zero curve are rational m-fold points, so all such curves are
smoothable. �

Next, we study automorphisms of genus zero singular curves. If (C, {pi}ni=1)

is an n-pointed curve of arithmetic genus zero over an algebraically closed
field k, it is convenient to define

Aut0k
(
C, {pi}ni=1

) ⊂ Autk
(
C, {pi}ni=1

)

to be the subgroup of the automorphisms which fix each component and each
singular point of C. Then we have

Lemma 1.19 Let (C, {pi}ni=1) be an n-pointed curve of arithmetic genus
zero, and let π : C̃ → C be the normalization of C. Let {p̃i}ni=1 be the points
of C̃ lying above {pi}ni=1, and let {q̃i}mi=1 be the points lying above the singu-
lar locus of C, and consider (C̃, {p̃i}ni=1, {q̃i}mi=1) as an n + m pointed curve.
Then the natural map

Aut0k
(
C, {pi}ni=1

)
↪→ Aut0k

(
C̃, {p̃i}ni=1, {q̃i}mi=1

)

is an isomorphism.

Proof Clearly, an automorphism φ ∈ Aut0k(C, {pi}ni=1) induces an auto-
morphism φ̃ ∈ Aut0k(C̃, {p̃i}ni=1, {q̃i}mi=1). Conversely, an automorphism
φ̃ ∈ Aut0k(C̃, {p̃i}ni=1, {q̃i}mi=1) descends to an automorphism of (C, {pi}ni=1)

iff the natural map

φ̃∗ : O
C̃

� O
C̃

preserves the subsheaf of functions pulled-back from C, i.e. if φ∗(π∗OC) =
π∗OC . Since the only singularities of C are rational m-fold points, π∗OC ⊂
O

C̃
is simply the k-subalgebra generated by all functions vanishing at {q̃i}mi=1,

and this is clearly preserved. �

Corollary 1.20 Every modular compactification of M0,n is stable.

Proof Let X be a modular compactification of M0,n, and let [C, {pi}ni=1] ∈ X
be a geometric point over an algebraically closed field k. Since X is proper
over Spec Z, the automorphism group Autk(C, {pi}ni=1) must be proper
over k.

If C̃ contains an irreducible component with one or two distinguished
points, then Lemma 1.19 implies Aut0k(C, {pi}ni=1) contains a factor which
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is isomorphic to Autk(P1,∞) or Autk(P1,0,∞), neither of which is proper.
We conclude that each irreducible component of C̃ must have at least three
distinguished points. �

In light of these remarks, we obtain the following corollary of our main
result.

Theorem 1.21

(1) If X ⊂ U0,n is any open proper substack, then X = M0,n(Z) for some
extremal assignment Z .

(2) X is an algebraic space.

Proof (1) follows from Corollary 1.20, Corollary 1.18, and Theorem 1.9.
For (2), it suffices to show that if [C, {pi}ni=1] ∈ M0,n(Z) is any geometric
point, then Autk(C, {pi}ni=1) is trivial. Since every component of C̃ has at
least three distinguished points, we have Aut0k(C, {pi}ni=1) = {0}, so we only
need to see that every automorphism of a prestable genus zero curve fixes
the irreducible components and singular points. This is an elementary combi-
natorial consequence of the fact that every component of (C, {pi}ni=1) has at
least three distinguished points. �

1.3 Outline of proof

In this section, we give a detailed outline of the proof of Theorem 1.9, which
occupies Sects. 2–4 of this paper.

In Sect. 2, we establish several fundamental lemmas, which are used re-
peatedly throughout. In Sect. 2.1, we prove that a birational map between two
generically-smooth families of curves over a normal base is automatically
Stein (Lemma 2.1). We also prove that, after an alteration of the base, one
can birationally dominate any family of prestable curves by a family of stable
curves (Lemma 2.2). Taken together, these lemmas allow us to analyze defor-
mations and specializations of prestable curves by studying the deformations
and specializations of the stable curves lying over them.

In Sect. 2.2, we define a contraction morphism of curves to be a surjective
morphism with connected fibers, which contracts subcurves of genus g to sin-
gularities of genus g. The motivation for this definition is Lemma 2.7, which
says that a birational contraction C1 → C2 between two irreducible families of
generically smooth curves induces a contraction of curves on each geometric
fiber. Finally, in Sect. 2.3, we define the stability condition associated to an
extremal assignment Z : An n-pointed curve is Z -stable if there exists a stable
curve (Cs, {ps

i }ni=1) and a contraction φ : (Cs, {ps
i }ni=1) → (C, {pi}ni=1) with

Exc(φ) = Z(Cs). An important consequence of the axioms for an extremal
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assignment is that the existence of a single contraction φ : (Cs, {ps
i }ni=1) →

(C, {pi}ni=1) with Exc(φ) = Z(Cs) implies that Exc(φ) = Z(Cs) for any con-
traction from a stable curve (Corollary 2.10).

In Sect. 3.1, we prove that the locus of Z -stable curves is open in Vg,n,
the main component of the moduli stack of all curves. Given a generically-
smooth family of curves (C → T , {σi}ni=1) over an irreducible base T , we
must show that the set

S := {
t ∈ T | (Ct ,

{
σi(t)

}n

i=1

)
is Z -stable

}

is open in T . It is sufficient to prove that i−1(S) is open after any proper
surjective base-change i : T̃ → T . Thus, using the results of Sect. 2.1, we
may assume there exists a stable curve over T birationally dominating C , i.e.
we have a diagram

Cs
φ

πs

C
π

T{σ s
i }ni=1 {σi}ni=1

By Sect. 2.2, the fibers of φ are contractions of curves. Thus, the fiber π−1(t)

is Z -stable if and only if Exc(φt ) = Z(Cs
t ). Thus, it suffices to prove that

{
t ∈ T | Exc(φt ) = Z(Ct )

}

is open in T . This is an immediate consequence of Axiom 3 in the definition
of an extremal assignment.

In Sect. 3.2, we prove that Z -stable curves satisfy the unique limit prop-
erty. To prove that Z -stable limits exist, we use the classical stable reduction
theorem and Artin’s criterion for the contractibility of 1-cycles on a surface.
Given a family of smooth curves over the function field of a discrete valuation
ring, we may complete it to a stable curve Cs → Δ. Using Artin’s criterion,
we construct a birational morphism φ : Cs → C with Exc(φ) = Z(Cs), where
Cs ⊂ Cs is the special fiber. The restriction of φ to the special fiber induces
a contraction of curves φ0 : Cs → C with Exc(φ0) = Z(Cs). Thus, C is the
desired Z -stable limit.

To prove that Z -stable limits are unique, we show that if C1 → Δ and
C2 → Δ are two Z -stable families with smooth isomorphic generic fiber, then
there exists (after a finite base change) a stable curve Cs → Δ and birational
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maps

Cs

φ2φ1

C1 C2

Since φ1 and φ2 induce contraction morphisms on the special fiber, the hy-
pothesis that C1 and C2 are Z -stable implies that Exc(φ1) = Z(Cs) and
Exc(φ2) = Z(Cs). In particular, Exc(φ1) = Exc(φ2). Since φ1 and φ2 are
Stein morphisms, we conclude that the rational map C1 ��� C2 extends to an
isomorphism.

Section 4 is devoted to the proof that any stable modular compactification
X ⊂ Vg,n takes the form X = Mg,n(Z) for some extremal assignment Z over
Mg,n. Given a stable modular compactification X ⊂ Mg,n(Z), Lemma 4.2
produces a diagram

Cs

πs

φ

C
π

T
p q

{σi}ni=1{σ s
i }ni=1

Mg,n U X

satisfying

(0) U ⊂ Mg,n is an open dense substack,
(1) T is a normal scheme,
(2) p and q are proper, dominant, generically étale morphisms,
(3) πs and π are the families induced by p and q respectively,
(4) φ is a birational morphism.

For any graph G, let TG be the locally-closed subscheme over which the
fibers of πs have dual graph isomorphic to G. In addition, for any t ∈ T , let
Gt denote the dual graph of the fiber (πs)−1(t). We wish to associate to X an
extremal assignment Z by setting

Z(G) := i
(
Exc(φt )

) ⊂ G,

for some choice of t ∈ TG and some choice of isomorphism i : Gt � G.
The key point is to show that the subgraph Z(G) ⊂ G does not depend on
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these choices (Proposition 4.3). We then show that Z satisfies Axioms 1–3
in Definition 1.5. Axiom 1 is an immediate consequence of the fact that φ

cannot contract an entire fiber of πs . Axiom 2 is forced by the separated-
ness of X . For Axiom 3, consider a one-parameter family of stable curves
(Cs → Δ, {σ s

i }ni=1) inducing a specialization of dual graphs G � G′. Since
T → Mg,n is proper, we may lift the natural map Δ → Mg,n to T , and con-
sider the induced birational morphism of families over Δ:

Cs ×T Δ
φ̃

C ×T Δ

Δ

After a finite base-change, we may assume that Cs ×T Δ = C1 ∪ · · · ∪ Cm,
where each Ci → Δ is a flat family of curves with smooth generic fiber, and
Axiom 3 follows from the fact that (Ci )η̄ ∈ Exc(φ̃η) ⇐⇒ (Ci )0 ∈ Exc(φ̃0).

Once we have established that Z is a well-defined extremal assignment, the
fact that φ induces a contraction of curves over each geometric point t ∈ T

implies that each fiber π−1(t) is Z -stable for this assignment. Since T → X
is surjective, we conclude that each geometric point of X corresponds to a Z -
stable curve. Thus, the open immersion X ↪→ Vg,n factors through Mg,n(Z).
The induced map X ↪→ Mg,n(Z) is proper and dominant, so X = Mg,n(Z)

as desired.

2 Preliminaries on Z-stability

2.1 Extending families of prestable curves

In this section, we present two key lemmas, which will be used repeatedly.
Lemma 2.1 says that a birational map between two generically-smooth fam-
ilies of curves over a normal base is automatically Stein. Lemma 2.2 says
that, after an alteration of the base, one can dominate any family of prestable
curves by a family of stable curves. (Recall that an alteration is proper, sur-
jective, generically-étale morphism.) Taken together, these two lemmas allow
us to reduce questions about families of prestable curves to questions about
stable curves.

Lemma 2.1 (Normality of generically-smooth families of curves)

(1) Suppose that S is an irreducible, normal, noetherian scheme, and that
C → S is a curve over S with smooth generic fiber. Then C is normal.
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(2) Suppose that S is an irreducible, normal, noetherian scheme, and that
C1 → S and C2 → S are curves over S with smooth generic fiber. If φ :
C1 → C2 is a birational morphism over S, then φ∗OC1 = OC2 .

Proof For (1), first observe that since C → S is smooth in the generic fiber
and has isolated singularities in every fiber, C must be regular in codimension
one. Furthermore, since C → S is a flat morphism with both base and fibers
satisfying Serre’s condition S2, C satisfies S2 as well [9, 6.4.2]. By Serre’s
criterion, C is normal.

For (2), φ : C1 → C2 is a proper birational morphism of normal noethe-
rian algebraic spaces. Since a finite birational morphism of normal algebraic
spaces is an isomorphism [19, 4.7], φ is equal to its own Stein factorization,
i.e. φ∗OC1 = OC2 . �

Lemma 2.2 (Extending prestable curves to stable curves)

(1) Let T be an integral noetherian scheme, and (C → T , {σi}ni=1) an n-
pointed curve over T with smooth generic fiber. There exists an alteration
T̃ → T , and a diagram

Cs
φ

C̃

T̃
{σ s

i }ni=1 {σ̃i}ni=1

where (Cs → T̃ , {σ s
i }ni=1) is a stable curve, (C̃ → T̃ , {σ̃i}ni=1) is the n-

pointed curve induced by base-change, and φ is a birational map over T̃ .
(2) We may choose the alteration T̃ → T so that T̃ is normal, and the open

subset S ⊂ T̃ defined by

S := {
t ∈ T̃ |φ is regular in a neighborhood of the fiber Cs

t

}

contains every geometric point t ∈ T̃ such that the fiber (C̃t , {σ̃i(t)}ni=1)

is prestable.

Proof The moduli stack Mg,n admits a finite generically-étale cover by a
scheme, say M → Mg,n ([5], 2.24). Let

U := {
t ∈ T | (

Cs
t ,

{
σi(t)

}n

i=1

)
is stable

}
,
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and consider the Cartesian diagram

U ×Mg,n
M M

U Mg,n

Let Ũ be any irreducible component of U ×Mg,n
M dominating U , and define

T̃ to be the closure of the image of Ũ in T ×Spec Z M . Then T̃ → T is an
alteration satisfying the conclusion of (1).

Next, we claim that we may choose the alteration T̃ → T , so that there
exists a diagram

Cn

φ2φ1

Cs
φ

π1

C̃
π2

T̃
{σ s

i }ni=1 {σ̃i}ni=1

satisfying

(1) T̃ is a normal noetherian scheme,
(2) (Cn → S, {τi}ni=1) is a nodal curve,
(3) φ1 and φ2 are regular birational maps over T̃ .

To see this, start by taking T̃ → T as in (1). After blowing-up T̃ further,
we may assume that there exists a flat projective morphism X → T̃ of rel-
ative dimension one, admitting regular birational maps to both Cs and C̃ .
(Apply Chow’s lemma and the flattening results of [22] to the graph of φ.)
Let Z ⊂ X denote the pure codimension-one subscheme obtained by tak-
ing the strict transform of the sections {σ̃i}ni=1 on X. By a theorem of de
Jong ([4], 2.4), we may alter (X → T̃ ,Z) to a nodal curve, i.e. there exists
an alteration T̃ ′ → T̃ with T̃ ′ a normal noetherian scheme, a nodal curve
(Cn → T̃ ′, {τi}ni=1), and a commutative diagram

Cn X

T̃ ′ T̃
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such that the induced map (Cn,
⋃n

i=1 τi) → (X×
T̃

T̃ ′,Z×
T̃

T̃ ′) is an isomor-
phism over the generic point of T̃ ′. In particular, Cn admits regular birational
maps to both (Cs ×

T̃
T̃ ′) and C̃ ×

T̃
T̃ ′, so T̃ ′ → T gives the desired alteration.

Now fix an alteration T̃ → T and a diagram satisfying (1)–(3) above. Since
π1 is proper, the set

S := {
t ∈ T̃

∣
∣ φ is regular in a neighborhood of the fiber Cs

t

}

is open in T̃ . We must show that if t ∈ T̃ is any point such that the fiber
(C̃t , {σ̃i(t)}ni=1) is prestable, then t ∈ S. By Lemma 2.1, we have (φ1)∗OCn =
OCs and (φ2)∗OCn = OC̃ . Thus, it suffices to show that if E ⊂ Cn

t is any irre-
ducible component contracted by φ1, then E is also contracted by φ2. By the
uniqueness of stable reduction, we have

Exc(φ1)t = {
E ⊂ Cn

t | E is smooth rational with one or two distinguished

points
}
.

Thus, if E ⊂ Exc(φ1)t is not contracted by φ2, its image is a rational compo-
nent of (C̃t , {σ̃i(t)}ni=1) with fewer than three distinguished points. This is a
contradiction, since (C̃t , {σ̃i(t)}ni=1) is prestable. �

2.2 Contractions of curves

In Lemma 2.7, we will see that birational contractions between generically-
smooth families of curves have the effect of replacing arithmetic genus g

subcurves by isolated singularities of genus g. This motivates the following
definition.

Definition 2.3 (Contraction of curves) If φ : C → D is a morphism of curves,
let Exc(φ) denote the union of the irreducible components of C which are
contracted to a point in D. We say that φ is a contraction if it satisfies

(1) φ is surjective with connected fibers,
(2) φ is an isomorphism on C − Exc(φ),
(3) If Z is any connected component of Exc(φ), then the point p := φ(Z) ∈

D satisfies g(p) = pa(Z) and m(p) = |Z ∩ Zc|, where g(p) and m(p)

are the genus and number of branches of p, as in Definition 1.7.

Remark 2.4 If C is a nodal curve and C → D is a contraction, then we have
a decomposition

C = D̃ ∪ Z1 ∪ · · · ∪ Zk,

where Z1, . . . ,Zk are the connected components of Exc(φ), and D̃ is the
normalization of D at φ(Z1), . . . , φ(Zk) ∈ C. This is immediate from the
fact that if C is nodal, the points of C\Zi lying above φ(Zi) ∈ D are smooth.
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Fig. 4 Two contractions of
curves, each contracting an
elliptic bridge

Example 2.5 (Contraction morphisms contracting an elliptic bridge) Let

C = C1 ∪ E ∪ C2

be a nodal curve with an elliptic bridge (see Fig. 4). Then there exist contrac-
tion morphisms contracting E to a tacnode (y2 − x4) or to a planar cusp with
a smooth transverse branch (xz, yz, y2 − x3), since both these singularities
have two branches and genus one. By contrast, the map contracting E to an
ordinary node is not a contraction because the genus of an ordinary node is
zero. In fact, the map contracting E to a node is the Stein factorization of the
given contractions.

Proposition 2.6 (Existence of contractions) Let Cn → Δ a generically
smooth, nodal curve over the spectrum of a discrete valuation ring. If Z � Cn

is a proper subcurve of the special fiber, then there exists a diagram

Cn
φ

C

Δ

such that

(1) φ is proper, birational, φ∗OCn = OC , and Exc(φ) = Z.
(2) C → Δ is a flat family of geometrically reduced connected curves.
(3) The restriction of φ to the special fiber induces a contraction of curves.

Proof Since there exists a minimal resolution of singularities p : C̃n → Cn

such that C̃n → Δ is still a nodal curve [20], we may assume that the total
space Cn is regular to begin with. For a regular algebraic space over an excel-
lent Dedekind ring, there is a necessary and sufficient condition for the exis-
tence of a contraction φ : Cn → C with Exc(φ) = Z, namely if Z1 ∪ · · · ∪ Zk

are the irreducible components of Z, the intersection matrix ‖(Zi.Zj )‖ must
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be negative-definite [2, 6.17]. But using the fact that F.T = 0, where F is the
class of a fiber and T is any cycle supported on a fiber, it is easy to see that
this condition holds for any proper subcurve Z � Cn.

After taking the Stein factorization, we may assume that φ satisfies (1). By
Lemma 2.1, Cn is normal, so C is as well. In particular, the special fiber C is
Cohen-Macaulay and therefore has no embedded points. Since each compo-
nent of C is the birational image of an irreducible component of Cs , no com-
ponent of C can be generically non-reduced, and it follows that the special
fiber is reduced and connected. In addition, C → Δ is flat since the generic
point of C maps to the generic point of Δ. This shows that C → Δ satis-
fies (2). Finally, (3) is a consequence of the more general statement proved in
Lemma 2.7 below. �

Lemma 2.7 Let S be an irreducible, normal, noetherian scheme, and let π1 :
X → S and π2 : Y → S be two curves over S. Suppose that π1 is nodal, and
that π1 and π2 are generically smooth. If we are given a birational morphism
over S

X
φ

π1

Y

π2

S

then the induced map φs : Xs → Ys is a contraction, for each geometric point
s ∈ S.

Proof By Lemma 2.1, we have φ∗OX = OY . Using this, we will show that
φs satisfies conditions (1)–(3) of Definition 2.3. By Zariski’s main theorem,
φ has geometrically connected fibers, so φs satisfies (1). Furthermore, φ is an
isomorphism when restricted to the complement of the positive-dimensional
fibers of φ, so φs satisfies (2). It remains to verify that φs satisfies (3).

Without loss of generality, we may assume that Z := Exc(φs) is connected,
and we must show that p := φs(Z) ∈ Ys is a singularity of genus g. Since the
number of branches of p ∈ Ys is, by definition, the number of points lying
above p in the normalization, we have

m(p) = ∣
∣Xs\Z ∩ Z

∣
∣.

To obtain δ(p) = pa(Z) + m(p) − 1, note that

δ = χ(Xs,OXs\Z) − χ(Ys,OYs )

= χ(Xs,OXs\Z) − χ(Xs,OXs )
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= −χ(Xs, IXs\Z).

The first equality is just the definition of δ since Xs\Z is the normalization
of Ys at p. The second equality follows from the fact that Xs and Ys occur
in flat families with the same generic fiber, and the third equality is just the
additivity of Euler characteristic on exact sequences. Since IXs\Z is supported
on Z, we have

χ(Xs, IXs\Z) = χ(Z, IXs\Z|Z) = χ
(
Z,OZ

(−Z ∩ Xs\Z
))

= 1 − m(p) − pa(Z),

which gives the desired equality. �

2.3 Z -stability

In this section, we define the stability condition associated to a fixed extremal
assignment Z . Using the definition of a contraction (Definition 2.3), we can
recast our original definition of Z -stability (Definition 1.8) as follows:

Definition 2.8 (Z -stable curve) A smoothable n-pointed curve (C, {pi}ni=1)

is Z -stable if there exists a stable curve (Cs, {ps
i }ni=1) and a contraction φ :

(Cs, {ps
i }ni=1) → (C, {pi}ni=1) such that Exc(φ) = Z(Cs).

We will make frequent use of the following observation: If (C, {pi}ni=1)

is Z -stable, and φ : (Cs, {ps
i }ni=1) → (C, {pi}ni=1) is any contraction from a

stable curve, then Exc(φ) = Z(Cs). (The definition of Z -stability asserts the
existence only of a single contraction with this property.) In order to prove
this, we need the following lemma which gives an explicit description of the
set of stable curves admitting contractions to a fixed prestable curve.

Lemma 2.9 Let (C, {pi}ni=1) be an n-pointed prestable curve, and let
z1, . . . , zk ∈ C be the set of points which satisfy one of the following con-
ditions:

(1) zi is non-nodal singularity,
(2) zi is a node, and at least one marked point is supported at zi ,
(3) zi is a smooth point, and at least two marked points are supported at zi .

As in Definition 1.7, set mi = m(zi), gi = g(zi), and let li denote the number
of marked points supported at zi . There exists a map

h :
k∏

i=1

Mgi ,mi+li → Mg,n
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with the property that a stable curve (Cs, {ps
i }ni=1) admits a contraction to

(C, {pi}ni=1) iff it lies in the image of h.

Proof In order to define h, relabel the marked points of C:

{pi}ni=1 = {pj }rj=1 ∪ {p1j }l1j=1 ∪ · · · ∪ {pkj }lkj=1,

where {pij }lij=i is the set of marked points supported at zi , and the points

{pj }rj=1 are distinct smooth points of C. Let C̃ → C denote the normaliza-

tion of C at {zi}ki=1, and let {q̃ij }mi

j=1 denote the points of C̃ lying above zi .
The assumption that (C, {pi}ni=1) is prestable implies that each connected
component of (C̃, {pj }rj=1, {q̃1j }m1

j=1, . . . , {q̃kj }mk

j=1) is stable. Thus, we may
define h by sending

k∐

i=1

(
Zi, {pij }lij=1, {qij }mi

j=1

)

→ (
C̃ ∪ Z1 ∪ · · · ∪ Zk, {pj }rj=1, {pij }l1j=1, . . . , {pij }lkj=1

)
,

where C̃ and
∐k

i=1 Zi are glued by identifying q̃ij ∼ qij . It is trivial to check
that this map has the stated property. �

Corollary 2.10 Let (C, {pi}ni=1) be a Z -stable curve, and suppose that

φ : (Cs,
{
ps

i

}n

i=1

) → (
C, {pi}ni=1

)

is any contraction from a stable curve (Cs, {ps
i }ni=1). Then Exc(φ) = Z(Cs).

Proof By Lemma 2.9, there exists a map h : ∏k
i=1 Mgi ,mi+li → Mg,n, such

that (Cs, {ps
i }ni=1) admits a contraction to (C, {pi}ni=1) iff (Cs, {ps

i }ni=1) ∈
Image(h). Given x ∈ ∏k

i=1 Mgi,mi+li , let Cx denote the fiber of the universal
curve over h(x). We have Cx = C̃ ∪ (C1)x ∪ · · · ∪ (Ck)x , where Ci is the pull-
back of the universal curve over Mgi,mi+li .

The hypothesis that (C, {pi}ni=1) is Z -stable implies that there exists

a geometric point y ∈ ∏k
i=1 Mgi,mi+li such that Z(Cy) = ⋃k

i=1(Ci )y . To
prove the corollary, we must show Z(Cx) = ⋃k

i=1(Ci )x for every geomet-
ric point x ∈ ∏k

i=1 Mgi ,mi+li . This follows easily from two applications of
the one-parameter specialization property for extremal assignments: First,
let ζ ∈ ∏k

i=1 Mgi ,mi+li be the generic point, and consider a map Δ →
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∏k
i=1 Mgi ,mi+li sending η → ζ , 0 → y. Applying Definition 1.5(3) to the

induced family over Δ, we conclude

Z(Cy) = (C1)y ∪ · · · ∪ (Ck)y =⇒ Z(Cζ ) = (C1)ζ ∪ · · · ∪ (Ck)ζ .

Next, let x ∈ ∏k
i=1 Mgi ,mi+li be an arbitrary geometric point, and con-

sider a map Δ → ∏k
i=1 Mgi ,mi+li sending η → ζ,0 → x. Applying Defi-

nition 1.5(3) to the induced family over Δ, we see that

Z(Cζ ) = (C1)ζ ∪ · · · ∪ (Ck)ζ =⇒ Z(Cx) = (C1)x ∪ · · · ∪ (Ck)x. �

3 Construction of Mg,n(Z)

Throughout this section, we fix an extremal assignment Z over Mg,n.

Definition 3.1 (The moduli stack of Z -stable curves) Let C → Vg,n be the
universal curve over Vg,n, the main component in the stack of all curves
(Sect. 1.1). We define Mg,n(Z) ⊂ Vg,n as the collection of points Speck →
Vg,n such that the geometric fiber C ×Vg,n k is Z -stable.

The first main theorem of this paper is

Theorem 3.2 Mg,n(Z) ⊂ Vg,n is a stable modular compactification of
Mg,n.

In Sect. 3.1, we will show that Mg,n(Z) ⊂ Vg,n is Zariski-open. Thus,
Mg,n(Z) inherits the structure of an algebraic stack, locally of finite-type
over Spec Z. Since a Z -stable curve has no more irreducible components
than an n-pointed stable curve of arithmetic genus g, the moduli problem
of Z -stable curves is bounded (see Corollary B.6). Thus, Mg,n(Z) inherits
the structure of an algebraic stack of finite-type over Spec Z, and we may use
the valuative criterion to check that Mg,n(Z) is proper over Spec Z. This is
accomplished in Sect. 3.2. It follows that Mg,n(Z) is a modular compactifi-
cation of Mg,n. To see that Mg,n(Z) is a stable modular compactification,
simply observe that any Z -stable curve is obviously prestable, since it is ob-
tained as a contraction from a stable curve.
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3.1 Mg,n(Z) is open in Vg,n

Lemma 3.3 Suppose we have a diagram

Cs
φ

C

T{σ s
i }ni=1 {σi}ni=1

satisfying:

(1) T is a noetherian scheme.
(2) (Cs → T , {σ s

i }ni=1) is a stable curve, and (C → T , {σi}ni=1) an arbitrary
curve.

(3) φ : Cs → C is a birational morphism.

Then the set

S := {
t ∈ T | Exc(φt ) = Z(Ct )

}

is open in T .

Proof Since T is noetherian, it suffices to prove that S is constructible and
stable under generalization. First, we show that S is constructible. There ex-
ists a finite stratification of T into locally-closed subschemes over which the
dual graph of the fibers of π are constant, say T = ∐

G TG. We will prove that
S is a finite union of the subschemes TG by showing that

Exc(φt ) = Z(Ct ) for one point t ∈ TG

=⇒ Exc(φt ) = Z(Ct ) for all points t ∈ TG.

Let T̃G → TG be a finite surjective map, such that Cs ×TG
T̃G = Cs

1 ∪ · · · ∪ Cs
k ,

where each Cs
i → T̃G is smooth, and let φ̃ : Cs ×T T̃G → C ×T T̃G be the

morphism induced by φ. It is sufficient to prove that

Exc(φ̃t ) = Z(Ct ) for one point t ∈ T̃G

=⇒ Exc(φ̃t ) = Z(Ct ) for all points t ∈ T̃G.

The rigidity lemma [3, Proposition 1.14] implies that (Cs
i )t ⊂ Exc(φ̃t ) for one

point t ∈ T̃G =⇒ (Cs
i )t ⊂ Exc(φ̃t ) for all points t ∈ T̃G. On the other hand,

since the dual graph of the fibers of Cs ×T T̃G → T̃G is constant, we have
(Cs

i )t ⊂ Z(Ct ) for one point t ∈ T̃G =⇒ (Cs
i )t ⊂ Z(Ct ) for all points t ∈ T̃G.

It follows that Exc(φt ) = Z(Ct ) for one point t ∈ T̃G =⇒ Exc(φt ) = Z(Ct )

for all points t ∈ T̃G, as desired.
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Next, we show that S is stable under generization. If s, t ∈ T satisfy s ∈ {t},
there exists a map Δ → T , sending η → t , 0 → s, inducing a diagram

Cs ×T Δ
φ

C ×T Δ

Δ

We wish to show that

Exc(φ0) = Z
(
Cs

0

) =⇒ Exc(φη) = Z
(
Cs

η

)
.

This is again an elementary consequence of the rigidity lemma. After a finite
base-change, we may assume that the irreducible components of Cs ×T Δ, say
Cs

1 ∪· · ·∪ Cs
k , are in bijective correspondence with the irreducible components

of Cs
η. By Axiom 3 of Definition 1.5, we have (Cs

i )0 ⊂ Z(Cs
0) ⇐⇒ (Cs

i )η ⊂
Z(Cs

η). On the other hand, since each Ci → Δ is flat and proper with irre-
ducible generic fiber, the rigidity lemma implies that (Cs

i )0 ⊂ Exc(φ0) ⇐⇒
(Cs

i )η ⊂ Exc(φη). We conclude that Exc(φ0) = Z(Cs
0) =⇒ Exc(φη) = Z(Cs

η)

as desired. �

Theorem 3.4 Mg,n(Z) ⊂ Vg,n is an open substack.

Proof Since Vg,n is an algebraic stack, irreducible and locally of finite-type
over Spec Z, there exists a smooth atlas T → Vg,n, where T is a scheme,
irreducible and locally of finite-type over Spec Z. If (C → T , {σi}ni=1) denotes
the corresponding n-pointed curve over T , then the required statement is that

S := {
t ∈ T | (Ct ,

{
σi(t)

}n

i=1

)
is Z -stable

}

is open in T . Since this is local on T , we may assume that T is irreducible
and of finite-type over Spec Z.

Note that if p : T̃ → T is any proper surjective morphism of schemes, and
(C̃ → T̃ , {σ̃i}ni=1) is the family obtained by pull-back, then it is sufficient to
show that

S̃ := {
t ∈ T̃

∣
∣
(

C̃t ,
{
σ̃i(t)

}n

i=1

)
is Z -stable

}
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is open in T̃ . By Lemma 2.2, there exists an alteration T̃ → T , and a diagram

Cs
φ

C̃

T̃
{σ s

i }ni=1 {σ̃i}ni=1

satisfying

(1) T̃ is a normal noetherian scheme.
(2) (Cs, {σ s

i }ni=1) is a stable curve.
(3) φ is regular over the locus {t ∈ T̃ | (C̃t , {σ̃i(t)}ni=1) is prestable}.

In particular, since every Z -stable curve is prestable, S̃ is contained in the
open set

U := {
t ∈ T̃

∣
∣ φ is regular in a neighborhood of the fiber Cs

t

}
.

Thus, we may replace T̃ by U and assume that φ is regular. By Lemma 2.7,
the restriction of φ to each fiber is a contraction of curves. Thus, by Corol-
lary 2.10,

S̃ = {
t ∈ T̃

∣
∣ Exc(φt ) = Z

(
Cs

t

)}
.

By Lemma 3.3, this set is open. �

3.2 Mg,n(Z) is proper over Spec Z

To show that Mg,n(Z) is proper, it suffices to verify the valuative criterion for
discrete valuation rings with algebraically closed residue field, whose generic
point maps into the open dense substack Mg,n ⊂ Mg,n(Z) ([21], Chap. 7).

Theorem 3.5 (Valuative criterion for properness of Mg,n(Z)) Let Δ be the
spectrum of a discrete valuation ring with algebraically closed residue field.

(1) (Existence of Z -stable limits) If (C, {σi}ni=1)|η is a smooth n-pointed
curve over the generic point η ∈ Δ, there exists a finite base-change
Δ′ → Δ, and a Z -stable curve (C′ → Δ′, {σ ′

i }ni=1), such that

(
C′,

{
σ ′

i

}n

i=1

)∣
∣
η′ �

(
C, {σi}ni=1

)∣
∣
η
×η η′.

(2) (Uniqueness of Z -stable limits) Suppose that (C → Δ, {σi}ni=1) and
(C′ → Δ, {σ ′

i }ni=1) are Z -stable curves with smooth generic fiber. Then
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any isomorphism over the generic fiber

(
C, {σi}ni=1

)∣
∣
η
� (

C′,
{
σ ′

i

}n

i=1

)∣
∣
η

extends to an isomorphism over Δ:
(

C, {σi}ni=1

) � (
C′,

{
σ ′

i

}n

i=1

)
.

Proof To prove existence of limits, start by applying the stable reduction
theorem to (C, {σi}ni=1)|η. There exists a finite base-change Δ′ → Δ, and a
Deligne-Mumford stable curve (π : Cs → Δ′, {σ ′

i }ni=1) such that

(
Cs,

{
σ s

i

}n

i=1

)∣
∣
η′ �

(
C, {σi}ni=1

) ×η η′.

For notational simplicity, we will continue to denote our base by Δ. By Propo-
sition 2.6, there exists a birational morphism φ : Cs → C over Δ such that

(1) (C → Δ, {σi}ni=1) is a flat family of n-pointed curves,
(2) φ is proper birational with Exc(φ) = Z(Cs

0),
(3) φ0 : Cs

0 → C0 is a contraction of curves.

Properties (2) and (3) imply that the special fiber (C0, {σi(0)}ni=1) is Z -stable,
so (C → Δ, {σi}ni=1) is the desired Z -stable family.

To prove uniqueness of limits, we must show that a rational isomorphism
(

C, {σi}ni=1

)∣
∣
η
� (

C′,
{
σ ′

i

}n

i=1

)∣
∣
η

between two families of Z -stable curves extends to an isomorphism over Δ.
It suffices to check that the rational map C ��� C′ extends to an isomor-
phism after a finite base-change. Thus, applying semistable reduction to
the graph of this rational map, we may assume there exists a nodal curve
(Cn → Δ, {τi}ni=1) and a diagram

(
Cn, {τi}ni=1

)

φ′φ

(
C, {σi}ni=1

) (
C′,

{
σ ′

i

}n

i=1

)

where φ and φ′ are proper birational morphisms over Δ. In fact, we may
further assume that (Cn → Δ, {τi}ni=1) is stable. Indeed, any rational compo-
nent E ⊂ Cn

0 with only one or two distinguished points must be contracted by
both φ and φ′ since C0 and C′

0 are both prestable. Thus, φ and φ′ both factor
through the stable reduction Cn → Cs , and we may replace by Cn by Cs .
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Now consider the restriction of φ and φ′ to the special fiber. By Lemma 2.7,
φ0 : Cs

0 → C0 and φ′
0 : Cs

0 → C′
0 are both contractions of curves. Fur-

thermore, since C0 and C′
0 are both Z -stable, Corollary 2.10 implies that

Exc(φ) = Exc(φ′) = Z(Cs
0). Since C and C′ are normal (Lemma 2.1), C � C′

as desired. �

4 Classification of stable modular compactifications of Mg,n

In this section, we prove the following theorem.

Theorem 4.1 (Classification of stable modular compactifications) Suppose
X ⊂ Vg,n is a stable modular compactification of Mg,n. Then there exists an
extremal assignment Z over Mg,n, such that X = Mg,n(Z).

Our starting point is the following lemma, which allows us to compare an
arbitrary stable modular compactification to Mg,n by regularizing the rational
map between their respective universal curves.

Lemma 4.2 Suppose that X ⊂ Vg,n is a stable modular compactification of
Mg,n. Then there exists a diagram

Cs

πs

φ

C
π

T
p q

{σi}ni=1{σ s
i }ni=1

M

i

U X

j

Mg,n U X

satisfying

(1) X, U , M , and T are irreducible normal schemes of finite-type over
Spec Z.

(2) p and q are proper birational morphisms, i and j are generically-étale
finite morphisms, πs : Cs → T and π : C → T are the families induced
by i ◦ p and j ◦ q respectively.

(3) U := Mg,n ∩ X is an open dense substack of X and Mg,n. The lower
squares are Cartesian, and the unlabeled arrows are open immersions.



Towards a classification of modular compactifications of Mg,n 489

(4) The rational map φ, induced by the natural isomorphism between Cs and
C over the generic point of T , is regular.

Proof Since X ∪ Mg,n is a (non-separated) algebraic stack of finite-type over
Spec Z with quasi-finite diagonal, there exists a finite, generically-étale, sur-
jective morphism S → X ∪ Mg,n, where S is a (non-separated) scheme [10,
Theorem 2.7]. We may assume that S is irreducible since X ∪ Mg,n is. The
fiber products S ×X ∪Mg,n

X , S ×X ∪Mg,n
Mg,n, and S ×X ∪Mg,n

U are sep-

arated and irreducible, and we define X, M , and U as their respective nor-
malizations. Finally, define T to be the normalization of the closure of the
image of the diagonal immersion U ↪→ X ×Spec Z M . This gives a diagram
satisfying (1), (2), and (3), but not necessarily (4), i.e. the induced rational
map φ : Cs ��� C may not be regular.

Since the geometric fibers of (C → T , {σi}ni=1) are prestable, Lemma 2.2
gives an alteration T ′ → T such that the rational map Cs ×T T ′ ��� C ×T T ′
is regular. Now define X′ → X and M

′ → M to be the finite morphisms
appearing in the Stein factorizations of T ′ → X and T ′ → M respectively.
Replacing X, M , T by X′, M

′
, T ′, and U by U ×M T ′ = U ×X T ′ gives the

desired diagram. �

For the remainder of this section, we fix a stable modular compactifica-
tion X , and a diagram as in Lemma 4.2. We also use the following nota-
tion: For any geometric point t ∈ T , let Gt be the dual graph of the fiber
(Cs

t , {σ s
i (t)}ni=1), so that Exc(φt ) determines a subgraph Exc(φt ) ⊂ Gt . Also,

we let MG ⊂ Mg,n denote the locally closed substack of stable curves with
dual graph G, and set TG := MG ×Mg,n

T .
We wish to associate to X an extremal assignment Z by setting

Z(G) := i
(
Exc(φt )

) ⊂ G,

for some choice of t ∈ TG and some choice of isomorphism i : Gt � G. The
key point is to show that the subgraph Z(G) ⊂ G does not depend on these
choices. More precisely, we will show:

Proposition 4.3

(a) For any two geometric points t1, t2 ∈ TG, there exists an isomorphism
i : Gt1 � Gt2 such that i(Exc(φt1)) = Exc(φt2).

(b) For any geometric point t ∈ TG, and any automorphism i : Gt � Gt , we
have i(Exc(φt )) = Exc(φt ), i.e. Exc(φt ) is Aut(Gt)-invariant.

Before proving this proposition, let us use it to prove Theorem 4.1.
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Proof of Theorem 4.1, assuming Proposition 4.3. If G is any dual graph of
an n-pointed stable curve of genus g, we define a subgraph Z(G) ⊂ G by the
recipe

Z(G) := i
(
Exc(φt )

) ⊂ G,

for any choice of t ∈ TG and isomorphism i : Gt � G. By Proposition 4.3,
the subgraph of Z(G) ⊂ G does not depend on the choice of t ∈ TG or the
choice of isomorphism i : Gt � G. We claim that the assignment G → Z(G)

defines an extremal assignment over Mg,n, and that X = Mg,n(Z).
To prove that Z is an extremal assignment, we must show that it satisfies

Axioms 1–3 of Definition 1.5. For Axiom 1, suppose that Z(G) = G for
some dual graph G. Then there exists a point t ∈ T such that Exc(φt ) =
Cs

t . But since T is connected, we must have Exc(φt ) = Cs
t for every t ∈ T ,

which is impossible since φ is an isomorphism over the generic point of T .
Axiom 2 is immediate from Proposition 4.3(b). Finally, for Axiom 3, suppose
that G � G′ is an arbitrary specialization of dual graphs, witnessed by a
map u : Δ → Mg,n. Since T is proper, surjective, generically-étale, we may
lift u (possibly after a finite base-change) to a map ũ : Δ → T , and we let
φ̃ : Cs ×T Δ → C ×T Δ be the pullback of φ along ũ.

Since our definition of Z does not depend on the choice of t ∈ T , we have
Z(G) = Exc(φ̃η) and Z(G′) = Exc(φ̃0). After a finite base-change, we may
assume that Cs = C1 ∪ · · · ∪ Cm, where each Ci → Δ is a flat family of curves
with smooth generic fiber, and we must have (Ci )η̄ ∈ Exc(φ̃η) ⇐⇒ (Ci )0 ∈
Exc(φ̃0). This precisely says that Z satisfies Axiom 3.

Since Z is an extremal assignment, Theorem 3.2 gives a stable modular
compactification Mg,n(Z) ⊂ Vg,n, and we wish to show that X = Mg,n(Z).
By Lemma 2.7, the map φt : Cs

t → Ct is a contraction for any geometric point
t ∈ T . Since Exc(φt ) = Z(Cs

t ) by the definition of Z , every geometric fiber
of (C → T , {σi}ni=1) is Z -stable. Since T → X is surjective, we conclude
that every geometric point of X is contained in Mg,n(Z). Since Mg,n(Z)

and X are open in Vg,n, the natural inclusion X ⊂ Mg,n(Z) is an open im-
mersion. Furthermore, this inclusion is proper over Spec Z, since both X and
Mg,n(Z) are. A proper dominant morphism is surjective, so X = Mg,n(Z)

as desired. �

It remains to prove Proposition 4.3.

Proof of Proposition 4.3(a) We will prove the statement in two steps. First,
we show that if a pair of points t1, t2 is contained in a single connected
component of TG, then there exists an isomorphism i : Gt1 � Gt2 such that
i(Exc(φt1)) = Exc(φt2). Second, we will show that if a pair of points t1, t2 ∈ T

is contained in the fiber Tx over a geometric point x ∈ Mg,n, then there exists
an isomorphism i : Gt1 � Gt2 such that i(Exc(φt1)) = Exc(φt2).
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It is easy to see that these two statements suffice: Indeed, given two ar-
bitrary geometric points t1, t2 ∈ TG mapping to x1, x2 ∈ Mg,n, let T ′

G be an
irreducible component of TG dominating MG, and let u1, u2 ∈ T ′

G be two ge-
ometric points lying above x1 and x2 respectively. By the second claim, there
exist isomorphisms

i1 : Gt1 � Gu1 satisfying i1
(
Exc(φt1)

) = Exc(φu1),

i2 : Gt2 � Gu2 satisfying i2
(
Exc(φt2)

) = Exc(φu2).

By the first claim, there exists an isomorphism

i : Gu1 � Gu2 satisfying i
(
Exc(φu1)

) = Exc(φu2).

Thus, j := i−1
2 ◦ i ◦ i1 : Gt1 � Gt2 satisfies j (Exc(φt1)) = Exc(φt2), as desired.

To prove the first claim, let S be any connected component of TG and
consider the induced morphism Cs ×T S → C ×T S of families over S. After
a finite surjective base-change, we may assume that

Cs ×T S � Cs
1 ∪ · · · ∪ Cs

m,

where each Cs
i → S is proper and smooth. Note that this isomorphism induces

an obvious identification of dual graphs i : Gs1 � Gs2 for any two geometric
points s1, s2 ∈ S. Furthermore, since one geometric fiber of Cs

i → S is con-
tracted by φ if and only if every geometric fiber of Ci → S is contracted by
φ, we have i(Exc(φs1)) = Exc(φs2).

To prove the second claim, let x ∈ Mg,n be any geometric point and let
T1, . . . , Tk be the connected components of Tx . Given the first claim, it suf-
fices to prove that there exist points ti ∈ Ti for each i = 1, . . . , k, and iso-
morphisms Gt1 � Gt2 � · · · � Gtk , identifying Exc(φt1) � Exc(φt2) � · · · �
Exc(φtk ).

We claim that there exists a commutative diagram

T

Δ
u

{ũi}ki=1

Mg,n

satisfying

(1) u(η) = ηMg,n , u(0) = x.
(2) ũi(0) ∈ Ti for each i = 1, . . . , k.

To see this, let {x1, . . . , xk} be the fiber of M → Mg,n over x, so T1, . . . , Tk

are simply the fibers of T → M over x1, . . . , xk . Let u : Δ → Mg,n be
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any map satisfying (1), and consider the fiber product M ×Mg,n
Δ. Since

M ×Mg,n
Δ → Δ is generically étale, we may assume, after a finite base-

change, that the generic fiber is contained in a union of sections {σi}di=1. Fur-
thermore, since the generic fiber of M ×Mg,n

Δ → Δ is dense, each point of
the special fiber is equal to σi(0) for some section σi . Reordering if neces-
sary, we may assume that the projection M ×Mg,n

Δ → M takes σi(0) → xi

for i = 1, . . . , k. The sections {σi}ki=1 induces lifts ui : Δ → M , and since
T → M is proper birational, the maps {ui}ki=1 lift to maps {ũi}ki=1 satisfy-
ing (2).

Now set ti := ũi(0) for each i = 1, . . . , k, and let φi : Cs
i → Ci be the pull-

back of φ along ũi : Δ → T . Since the compositions Δ → T → Mg,n are
identical when restricted to the generic point η ∈ Δ, we obtain a commutative
diagram of isomorphisms over η:

(Cs
1)η

�

(φ1)η

(Cs
2)η

�

(φ2)η

· · · �
(Cs

k)η

(φk)η

(C1)η
�

(C2)η
� · · · �

(Ck)η

Since Mg,n is proper over Spec Z, each isomorphism (Cs
i )η � (Cs

j )η ex-
tends uniquely to an isomorphism Cs

i � Cs
j . Similarly, since X is proper over

Spec Z, each isomorphism (Ci )η � (Cj )η extends uniquely to an isomorphism
Ci � Cj . Thus, we obtain a commutative diagram over Δ:

Cs
1

�

φ1

Cs
2

�

φ2

· · · �
Cs

k

φk

C1
�

C2
� · · · �

Ck

Restricting the top row of isomorphisms to the special fiber, we obtain iso-
morphisms

Cs
t1

� Cs
t2

� · · · � Cs
tk
,

identifying Exc(φt1) � · · · � Exc(φtk ), as desired. �

It remains to prove Proposition 4.3(b). From Proposition 4.3(a), it already
follows that every curve in X is obtained by contracting some subcurve Z

of a stable curve Cs , and that this subcurve depends only on the dual graph
of Cs . We will show that the separatedness of X forces the subcurve Z to be
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invariant under automorphisms of the dual graph. The idea is simple: if i is an
automorphism of the dual graph of Cs such that Z �= i(Z), then contracting
Z or i(Z) in a one-parameter smoothing of Cs gives two distinct limits in X .

Proof of Proposition 4.3(b) Suppose there exists a dual graph G and a geo-
metric point t ∈ TG such that Exc(φt ) fails to be Aut(G)-invariant. By Propo-
sition 4.3(a), every geometric point t ∈ TG has the property that Exc(φt ) fails
to be Aut(G)-invariant. In particular, since TG → MG is surjective, we may
choose a geometric point t ∈ TG with the property that the induced map

Aut
(
Cs

t ,
{
σi(t)

}n

i=1

) → Aut(G)

is surjective. (Simply choose a curve [Cs, {pi}ni=1] ∈ MG with the property
that each of its components have identical moduli, and take t ∈ TG to be a
point lying over [Cs, {pi}ni=1].) Now we will derive a contradiction to the
separatedness of X .

Let (Cs → Δ, {σi}ni=1) be a generic smoothing of the curve (Cs
t , {σi(t)}ni=1).

By our choice of (Cs
t , {σi(t)}ni=1), there exist two distinct subcurves of

the special fiber Z1,Z2 ⊂ Cs and isomorphisms i1, i2 : Cs � Cs
t satisfying

i1(Z1) = Exc(φt ), i2(Z2) = Exc(φt ). By Proposition 2.6, there exist bira-
tional contractions

Cs

φ2φ1

C1 C2

Δ

with Exc(φ1) = Z1, Exc(φ2) = Z2. We claim that the fibers of C1 and C2 lie
in X . If this is true then the maps Δ → Vg,n induced by C1 and C2 both factor
through X . But since Z1 �= Z2, the rational morphism C1 ��� C2 does not
extend to an isomorphism, so X is not separated—a contradiction.

Let u : Δ → Mg,n be the map induced by (Cs → Δ, {σi}ni=1). The isomor-
phism i1 induces a map 0 → T ×Mg,n

Δ, so we have a commutative diagram

T ×Mg,n
Δ T

0

i1

Δ
u

Mg,n
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We claim that there exists a lift ũ : Δ → T . Since T ×Mg,n
Δ → Δ is gener-

ically étale, we may assume (after a finite base change) that the generic
fiber is a union of sections. Since the smoothing is generic (i.e. u sends
η → ηMg,n), the generic fiber of T ×Mg,n

Δ → Δ is dense, and there exists
a section σ such that σ(0) = i1(0). By construction, the birational morphism
Cs ×T Δ → C ×T Δ obtained from φ by pullback along σ has the same ex-
ceptional locus as φ1, so there is an induced isomorphism C ×T Δ � C1. It
follows immediately that the fibers of C1 lie in X . The argument for C2 is
symmetric, replacing i1 by i2. �
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Appendix A: Stable modular compactifications of M2,M3,M2,1

In this appendix, we give an explicit definition of the relative nef cone

N
1
+(C/Mg,n) and cone of curves N

+
1 (C/Mg,n) as rational closed con-

vex polyhedral cones in PicQ(C/Mg,n) and PicQ(C/Mg,n)
∨. In the spe-

cial cases (g, n) = (2,0), (3,0), (2,1), we enumerate the extremal faces of
N

+
1 (C/Mg,n) and describe the corresponding Z -stability conditions, as guar-

anteed by Lemma 1.13. Note that these relative cones are much simpler than

the standard cones N
1
+(Mg,n), which are analyzed for these low values of

(g, n) in [23].
To begin, let π : C → Mg,n denote the universal curve over the mod-

uli stack of stable curves over an algebraically closed field of characteristic
zero. In this setting, the Q-Picard group of Mg,n is well-known: we have
natural line-bundles λ, {ψi}, {δi,S} ∈ Pic(Mg,n), where λ = det(π∗ωC/Mg,n

),
ψi := σ ∗

i ωC/Mg,n
, and δi,S is the line-bundle corresponding to the reduced

irreducible Cartier divisor Δi,S ⊂ Mg,n. Of course, if i = 0 (resp. g), then
we must have |S| ≥ 2 (resp. |S| ≤ n − 2). Since we have a natural identifi-
cation C � Mg,n+1, we may define elements ωπ, {σi}, {Ei,S} ∈ Pic(C) by the
formulae:

ωπ := ψn+1,

σi := δ0,i∪{n+1}, i ∈ [1, n],
Ei,S := δi,S∪{n+1}, i ∈ [0, g], S ⊂ [1, n].

One should think of ωπ as the relative dualizing sheaf of π , σi as the line-
bundle corresponding to the divisor σi(Mg,n) ⊂ C , and Ei,S as the line-
bundle corresponding to the irreducible component of π−1(Δi,S) whose
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fibers over Δi,S are curves of genus i, marked by the points of S. Whenever
we write {σi}, we consider the index i to run between 1 and n, and whenever
we write {Ei,S} we consider (i, S) to run over a set of indices representing
each irreducible component of the boundary of Mg,n once, excluding Δirr

and Δg/2,∅.

Lemma A.1 The classes ωπ , {σi}, and {Ei,S} generate PicQ(C/Mg,n).
Moreover, we have

1. If g ≥ 2, these classes freely generate, i.e.

PicQ(C/Mg,n) = Q
{
ωπ, {σi}, {Ei,S}}

2. If g = 1, then the classes {σi} and {Ei,S} freely generate, i.e.

PicQ(C/M1,n) = Q
{{σi}, {Ei,S}}

3. If g = 0, then the classes ωπ and {Ei,S} freely generate, i.e.

PicQ(C/M0,n) = Q
{
ωπ, {Ei,S}}.

Proof This follows from the generators and relations for Pic(Mg,n) ⊗ Q de-
scribed in [1]. �

Now let us recall how these generators intersect irreducible components
of fibers of π (see, for example, [14]). Let (Cs, {ps

i }ni=1) be a fiber of the
universal curve π : C → Mg,n, and let G be the dual graph of (Cs, {ps

i }ni=1).
If Z ⊂ Cs is an irreducible component, corresponding to the vertex v ∈ G,
then we have

ωπ.Z = 2g(v) − 2 + |v|,

σi.Z =
{

1 if v is labeled by pi,

0 otherwise,

Ei,S.Z =

⎧
⎪⎨

⎪⎩

1 if v has an edge of type-(i, S),

−1 if v has an edge of type-(i, S)c,

0 otherwise,

where we say that v has an edge of type-(i, S) if v meets an edge corre-
sponding to a node that disconnects the curve into pieces of type (i, S) and
(g − i, S), and v lies on the piece of type (g − i, S). Given a Q-line bundle

L := aωπ +
∑

i

biσi +
∑

i,S

ciEi,S, where a, {bi}, {ci,S} ∈ Q,
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Fig. 5 The zero-strata of
M2, M3, and M2,1

L is nef iff, for every dual graph G and every vertex v ∈ G, we have

a(ωπ .v) + bi(σi.v) + ci,S(Ei,S.v) ≥ 0,

where ωπ.v, σi.v, Ei,S.v are defined by the expressions above. We then de-

fine the relative nef cone N
1
+(C/Mg,n) ⊂ PicQ(C/Mg,n) to be the intersec-

tion of this finite collection of half-spaces. The fact that ωπ is positive on
every stable curve implies that these half-spaces have non-empty intersec-
tion, hence determine a piecewise-linear closed convex cone. Of course, the
relative cone of curves is simply defined to be the dual cone N

+
1 (C/Mg,n) :=

N
1
+(C/Mg,n)

∨ ⊂ PicQ(C/Mg,n)
∨.

Let us see how this works in practice by computing the relative cone of
curves for M2, M3, and M2,1, and describe the stability condition corre-
sponding to each face: already, in these low-genus examples, one sees many
new stability conditions that have no counterpart in the existing literature.
Throughout the following examples, we will make repeated use of the obser-
vation that to determine whether a line-bundle is π -nef, it is sufficient to in-
tersect it against those fibers of π which are maximally-degenerate, i.e. those
which correspond to zero strata in Mg,n.

Example A.2 (M2) By Lemma A.1, the relative Q-Picard group of the uni-
versal curve C → M2 is given by

PicQ(C/M2) = Q{ωπ }.
Thus, any numerically non-trivial π -nef line bundle on C is ample, and in-
duces the trivial extremal assignment Z(G) = ∅.

In fact, it is easy to verify that there are no non-trivial extremal assignments
over M2 directly from the axioms. Let G1, G2 be dual graphs corresponding
to the two zero-strata pictured in Fig. 5. By Axiom 2, any extremal assign-
ment which picks out one vertex from G1 (or G2) must pick out both vertices,
which contradicts Axiom 1. We conclude that Z(G1) = Z(G2) = ∅. By Ax-
iom 3, Z must be the trivial extremal assignment. In sum, M2 is the unique
stable modular compactification of M2.
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Example A.3 (M3) By Lemma A.1, the relative Q-Picard group of the uni-
versal curve C → M3 is given by

PicQ

(
C/M3

) = Q{ωπ,E},
where E := E1 is the divisor of elliptic tails in the universal curve. Intersect-
ing the divisor aωπ + bE (a, b ∈ Q) with the irreducible components of vital
stratum (1) in Fig. 5, we deduce the inequalities a + 3b ≥ 0 and a − b ≥ 0.
One easily checks that any divisor whose coefficients satisfy these two in-
equalities automatically satisfies the inequalities arising from the irreducible

components in strata (2)–(5). Thus, the nef cone N
1
+(C/M3) ⊂ PicQ(C/M3)

is defined by

N
1
+
(

C/M3
) = Q≥0

{
ωπ(E),ωπ(−E/3)

}
.

Thus, the relative cone of curves has two extremal faces, namely ωπ(−E/3)⊥
and ωπ(E)⊥. One easily checks that the nef divisor ωπ(E) has degree zero
on an irreducible component of a fiber of the universal curve C → M3 iff this
component is contained in the divisor E (i.e. if it is an elliptic tail). Thus, the
extremal assignment induced by this divisor coincides with Example 1.10(2),
and the corresponding moduli space replaces elliptic tails by cusps.

On the other hand, one easily checks that ωπ(−E/3) has degree zero on a
fiber of C → M3 iff it has the form R ∪ E1 ∪ E2 ∪ E3, where R is a smooth
rational curve attached to three distinct elliptic tails E1, E2, and E3. Since the
unique singularity of type (0,3) is the rational triple point (i.e. the union of
the 3 coordinate axes in A

3), such curves are replaced in M3(Z) by curves
of the form E1 ∪E2 ∪E3 where the three elliptic tails meet in a rational triple
point.

Example A.4 (M2,1) By Lemma A.1, the relative Q-Picard group of the uni-
versal curve C → M2,1 is given by

PicQ

(
C/M2,1

) = Q{ωπ,σ,E},
where σ := σ1 is the universal section, and E := E1,∅ is the divisor
of unmarked elliptic tails in the universal curve. Intersecting the divisor
aωπ + bσ + cE (a, b, c ∈ Q) with the three irreducible components of vi-
tal strata (1)–(3) in Fig. 5, we deduce the following inequalities for the nef
cone:

Stratum 1: Stratum 2: Stratum 3:

b ≥ 0 a − b ≥ 0 b ≥ 0

a + c ≥ 0 b + 2c ≥ 0 a ≥ 0

a − c ≥ 0 b + 2c ≥ 0 a ≥ 0
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Fig. 6 Faces of the relative cone of curves N+
1 (C/M2,1)

One easily checks that this intersection of half-spaces is simply the polyhedral
cone generated by the vectors {(1,0,0), (1,0,1), (0,1,0), (1,2,−1)}. Thus,

the nef cone N
1
+(C/M2,1) ⊂ PicQ(C/M2,1) is defined by

N
1
+
(

C/M2,1
) = Q≥0

{
ωπ, ωπ(E), σ, ωπ(2σ − E)

}
.

It follows that the cone of curves N
+
1 (C/M2,1) has eight extremal faces: the

codimension-one faces are given by ω⊥
π , ωπ(E)⊥, σ⊥, ωπ(2σ −E)⊥, while

the codimension-two faces are given by ω⊥
π ∩ωπ(E)⊥, ωπ(E)⊥ ∩ σ⊥, σ⊥ ∩

ωπ(2σ − E)⊥, ωπ(2σ − E)⊥ ∩ ω⊥
π .

The irreducible components of the vital strata (1)–(3) contained in these
faces are displayed in Fig. 6. In addition, we have indicated the singular
curves that arise in the alternate moduli functors associated to these faces: For
example, associated to ω⊥

π , we see only nodal curves, but the marked point
is allowed to pass through the node. Associated to ωπ(E)⊥, we see the same
phenomenon as well as elliptic tails replaced by cusps. Associated to σ⊥,
we see genus-one bridges being replaced by the two isomorphism classes of
singularities of type (1,2), namely tacnodes and a planar cusp with a smooth
transverse branch. Finally, associated to ωπ(2σ − E)⊥, we see both an un-
marked rational curve replaced by a rational triple point and a marked rational
curve replaced by a marked node.
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Appendix B: The moduli stack of (all) curves (by Jack Hall)

The purpose of this appendix is twofold. First, to give an elementary proof
that the moduli stack of all curves is algebraic. Second, to prove a bounded-
ness result which is used in the main body of the paper and does not appear
elsewhere in the literature. Let U be the functor from schemes to groupoids
defined by:

U (T ) :=
{

flat, proper, finitely-presented morphisms of algebraic
spaces C → T , with one-dimensional geometric fibers

}

.

U is obviously a stack over the category of schemes in the étale topology.
The following theorem is well-known to experts and a proof depending on
a variant of Artin’s criterion appears in [6, Proposition 2.3]. Here, we give a
very elementary argument, using Hilbert schemes to explicitly construct an
atlas for U .

Theorem B.1 U is an algebraic stack, locally of finite type over Spec Z, with
quasicompact and separated diagonal.

Proof For any integer m ≥ 1, let Hm denote the Hilbert scheme of P
m
Z

over
Spec Z. Let Hm

U ⊂ Hm be the subfunctor corresponding to those closed im-
mersions (ı : C ↪→ P

m
T ) satisfying:

(a) the induced morphism C → T is an object of U (T ),
(b) for all t ∈ T , H 1(Ct ,OCt (1)) = 0.

By Cohomology and Base Change [15, Theorem 12.11], the inclusion
Hm

U ⊂ Hm is representable by open immersions. Thus, Hm
U is represented

by a scheme, locally of finite type over Spec Z. Set U = ⊔
m≥1 Hm

U , then
there is an induced 1-morphism U → U . By [21, Proposition 4.3.2] it suffices
to show:

(1) R = U ×U U is representable by a scheme, locally of finite type over
Spec Z;

(2) the two projections R ⇒ U are smooth;
(3) the map U → U is surjective on geometric points;
(4) the morphism R → U × U is quasicompact and separated.

For (1), note that R = ⊔
r,m≥0 Hr

U ×U Hm
U . For any integers r , m ≥ 0, the

2-fiber product Ir,m := Hr
U ×U Hm

U is the sheaf of isomorphisms between
the associated projective families of curves. Thus, Ir,m is representable by
a scheme, locally of finite type over Spec Z [18, Theorem 1.10]. Claim (4)
follows from [6, Proof of Proposition 3.3], and (3) is a consequence of [19,
Theorem V.4.9] and [15, Example III.5.8]. It remains to prove (2).
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Fix m ≥ 1 and a square zero closed immersion of local Artinian schemes
S ↪→ S′ such that ker(OS′ → OS) ∼= κ(s), where κ(s) is the residue field of
the closed point s of S, fitting into a 2-commutative diagram:

S Hm
U

S′ U .

By [9, 17.14.2], (2) will be proved if there is always an arrow making the pre-
ceding diagram 2-commute. Equivalently, the following diagram may always
be completed:

C

π

ı

C′

π ′P
m
S

P
m
S′

S S′,

where π,π ′ ∈ U , ı : C → P
m
S is a closed immersion satisfying H 1(Cs,OCs (1))

= 0, and all squares are Cartesian. By [16, III.2.2.4] there is an element of the
group:

Ext1OC

(
ı∗ΩP

m
S /S,π∗κ(s)

) ∼= H 1(C,H omOC
(
ı∗ΩP

m
S /S,π∗κ(s)

))

∼= H 1(Cs, ı
∗
s TP

m
κ(s)

/κ(s)

)
,

which is zero if and only if the preceding diagram may be completed. The
Euler exact sequence [15, Theorem II.8.13] shows that this group vanishes,
giving us the claim. �

The following Corollary is an immediate consequence of the proof of The-
orem B.1.

Corollary B.2 Fix a proper, flat, and finitely presented morphism of alge-
braic spaces π : C → T with one-dimensional geometric fibers. Then, étale
locally on T , π is a projective morphism.

Remark B.3 D. Fulghesu has given an example [11, Example 2.3] of a proper,
flat, and finitely presented morphism of algebraic spaces π : C → T with one-
dimensional fibers, which is not representable by schemes. In particular, the
morphism π is not Zariski locally projective.
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Let Ug,n be the stack of n-pointed reduced connected curves of arithmetic
genus g.

Corollary B.4 Ug,n is an algebraic stack, locally of finite type over Spec Z,
with quasicompact and separated diagonal.

Proof Let Un denote the stack of n-pointed curves. The 1-morphism U1 → U
is representable by finitely presented algebraic spaces (it is the universal
curve). Combining Corollary B.2 with [8, 7.9.4] and [9, 12.2.1(viii)] shows
that the 1-morphism Ug,0 → U is representable by open immersions. For
n ≥ 1 we have that Ug,n = U1 ×U Ug,n−1, so by Theorem B.1 the claim fol-
lows. �

The following boundedness lemma is needed to show that the substack of
curves with a bounded number of irreducible components is of finite type.

Lemma B.5 There exists an integer Dg,e, depending only on g and e, such
that any reduced curve of arithmetic genus g with no more than e irreducible
components admits a degree d embedding into P

Dg,e for some d ≤ Dg,e.

Proof It is sufficient to show that there exists an integer Dg,e such that
any reduced curve of arithmetic genus g with no more than e irreducible
components admits a very ample line bundle L with degree d ≤ Dg,e and
H 1(C,L ) = 0.

Given a curve C satisfying the hypotheses of the Lemma, let Z ⊂ C be
an effective Cartier divisor whose support meets the smooth locus of every
irreducible component of C. Since C has no more than e irreducible compo-
nents, we may assume that degZ ≤ e. Let L := O(Z). It suffices to exhibit
an integer m := m(g, e), depending only on g and e, such that L m is very
ample and H 1(C,L m) = 0. Indeed, we may take Dg,e = me.

To show that L m separates points and tangent vectors, it is sufficient to
show that, for any p ∈ C:

H 1(C,L m ⊗ mp

) = H 1(C,L m ⊗ m2
p

) = 0.

Clearly, the latter vanishing implies the former. The former vanishing also
implies that H 1(C,L m) = 0. Given p ∈ C, let π−1(p) = p1 + · · · + pr ,
where π : C̃ → C is the normalization of C. Let δ(p) denote the δ-invariant
of p. We have an exact sequence:

0 −→ π∗OC̃

(−2δ(p)(p1 + · · · + pr)
) −→ m2

p −→ E −→ 0,
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where E is a coherent sheaf supported at p. Twisting by L m and taking
cohomology, we obtain another exact sequence:

H 1(C,L m ⊗π∗OC̃

(−2δ(p)(p1 +· · ·+pr)
)) −→ H 1(C,L m ⊗m2

p

) −→ 0.

By the projection formula:

H 1(C,L m ⊗ π∗OC̃

(−2δ(p)(p1 + · · · + pr)
))

= H 1(C̃,
(
π∗L

)m(−2δ(p)(p1 + · · · + pr)
))

,

which vanishes for m > 2g − 2 + 2δ(p)r . Since δ(p) ≤ g + e − 1 and r ≤
δ(p) + 1, we may take m(g, e) := 2g − 2 + 2(g + e)(g + e − 1). �

Denote by Ug,n,e the substack of Ug,n having objects those (π, {σi}ni=1) ∈
Ug,n such that the geometric fibers of π have no more than e irreducible
components.

Corollary B.6 Ug,n,e is an algebraic stack, of finite type over Spec Z, with
quasicompact and separated diagonal.

Proof Ug,n,e is an open substack of Ug,n by [9, 12.2.1(xi)]. By Lemma B.5,
there is an open subscheme of the Hilbert scheme of genus g curves in P

Dg,e

with degree ≤Dg,e, mapping surjectively onto Ug,n,e. Thus, Ug,n,e is of finite
type. �
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