
Computer Physics Communications 184 (2013) 201–208
Contents lists available at SciVerse ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

XMDS2: Fast, scalable simulation of coupled stochastic partial
differential equations✩

Graham R. Dennis ∗, Joseph J. Hope, Mattias T. Johnsson
Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200, Australia

a r t i c l e i n f o

Article history:
Received 19 April 2012
Received in revised form
17 July 2012
Accepted 21 August 2012
Available online 25 August 2012

Keywords:
Initial value problems
Differential equations
Numerical integration
Stochastic partial differential equations

a b s t r a c t

XMDS2 is a cross-platform, GPL-licensed, open source package for numerically integrating initial value
problems that range from a single ordinary differential equation up to systems of coupled stochastic
partial differential equations. The equations are described in a high-level XML-based script, and the
package generates low-level optionally parallelised C++ code for the efficient solution of those equations.
It combines the advantages of high-level simulations, namely fast and low-error development, with the
speed, portability and scalability of hand-written code. XMDS2 is a complete redesign of the XMDS
package, and features support for a much wider problem space while also producing faster code.

Program summary

Program title: XMDS2
Catalogue identifier: AENK_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AENK_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: GNU General Public License, version 2
No. of lines in distributed program, including test data, etc.: 872490
No. of bytes in distributed program, including test data, etc.: 45522370
Distribution format: tar.gz
Programming language: Python and C++.
Computer: Any computer with a Unix-like system, a C++ compiler and Python.
Operating system: Any Unix-like system; developed under Mac OS X and GNU/Linux.
RAM: Problem dependent (roughly 50 bytes per grid point)
Classification: 4.3, 6.5.
External routines: The external libraries required are problem-dependent. Uses FFTW3 Fourier transforms
(used only for FFT-based spectral methods), dSFMT random number generation (used only for stochastic
problems), MPI message-passing interface (used only for distributed problems), HDF5, GNU Scientific
Library (used only for Bessel-based spectral methods) and a BLAS implementation (used only for non-
FFT-based spectral methods).
Nature of problem: General coupled initial-value stochastic partial differential equations.
Solution method: Spectral method with method-of-lines integration
Running time: Determined by the size of the problem

© 2012 Elsevier B.V. All rights reserved.
✩ This paper and its associated computer program are available via the Computer
Physics Communication homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).
∗ Corresponding author.

E-mail address: graham.dennis@anu.edu.au (G.R. Dennis).

0010-4655/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2012.08.016

http://dx.doi.org/10.1016/j.cpc.2012.08.016
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://cpc.cs.qub.ac.uk/summaries/AENK_v1_0.html
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:graham.dennis@anu.edu.au
http://dx.doi.org/10.1016/j.cpc.2012.08.016

202 G.R. Dennis et al. / Computer Physics Communications 184 (2013) 201–208
1. Introduction

The integration of a system of variables from a set of
initial conditions is one of the most widely performed tasks
in quantitative simulation. Numerical integration is typically
performed in one of two different styles: high-level methods using
general software tools, or low-level methods using bespoke hand-
tuned source code. The high-level approach requires much less
code, and is therefore fast to develop and comparatively free
of coding errors. However, the low-level approach can provide
dramatic and necessary performance improvements, can utilise
the full capacity of the computing platform for which it is
developed, and ismore customisable. XMDS2 is a software package
whose aim is to provide the key benefits of both approaches [1].

The purpose of XMDS2 is to simplify the process of creating
simulations that solve systems of initial-value partial and ordinary
differential equations. Instead of going through the error-prone
process of hand-writing thousands of lines of code, XMDS2 enables
problems to be described in a simple XML format. From this XML
description XMDS2 generates a C++ simulation that solves the
problem using fast algorithms. The code generated by XMDS2 is
typically as fast as, or faster than, hand-written code, but by using
XMDS2 the time taken to produce the simulation is significantly
reduced.

XMDS2 can be used to simulate almost any set of (coupled)
(partial) (stochastic) differential equations in any number of
dimensions. It can input and output data in a range of data formats,
produce programs that can take command-line arguments, and
produce parallelised code suitable for either modern computer
architectures or distributed clusters.

Aside from innumerable low-level libraries and high-level
packages for numerical integration, there have also been multiple
previous attempts to automate or semi-automate the process
of coding low-level numerical simulations, such as [2,3]. Rather
than provide ‘shell code’ that can be edited, an XMDS2 script is
effectively a self-contained language written in XML which is used
to generate a fast C++ simulation.

The first version of XMDS was released in 1997 as an open-
source software package written in C++ which could simulate a
class of stochastic partial differential equations [4]. Over the next
decade, it was then expanded in scope and features by a growing
group of developers. While most of these developers came from
the fields of quantum optics and atom optics, where its ability
to integrate stochastic equations is particularly pertinent, the
package slowly gained wider popularity. In 2008, the decision was
taken to completely rewrite the package in Python (although still
generating low-level C++ code), with a re-engineered structure
that would allow it to address a much wider problem space.
XMDS2 was released in 2010, and has recently received its first
major update, along with extensive documentation, installers, and
an examples library.

Citing only a fewexamples, XMDSand increasinglyXMDS2have
been used in the fields of quantum atom optics [5,6], quantum op-
tics [7,8], quantum control [9], predator–prey dynamics [10] and
ecology [11–13].

2. Problem class

XMDS2 solves systems of initial-value differential equations.
Each differential equation can:

1. Have an arbitrary number of dimensions,whichmay differ from
that of other differential equations in the system.

2. Involve integrals of quantities in the differential system, or
3. Include stochastic elements either in initial conditions and

filters, or in the dynamical equations themselves.
Fig. 1. An example of a tensor product lattice. The specific unequal lattice spacing
in the x direction is due to the fact that the basis functions in that dimension have
been chosen to be Hermite–Gauss.

As an example, property 1 means that XMDS2 can solve
systems in which a partial differential equation is coupled to an
ordinary differential equation. Property 2 allows the evolution of
the ordinary differential equation to depend upon moments of
the partial differential equation. Property 2 also allows partial
differential equations to depend non-locally on system quantities.
Property 3 permits the integration of systems of stochastic (partial)
differential equations, which are typically written using either
Gaussian noise (via a Wiener process), or a Poissonian noise in
which the system changes state in a discontinuous way.

XMDS2 uses spectral methods [14], which induce two restric-
tions on the problem space. The first is that the geometry of the
simulation domain must be a tensor product of lattices in each
dimension (see Fig. 1). The second restriction is that the bound-
ary conditions must be compatible with the spectral method used.
XMDS2 currently supports periodic, even, odd and zero boundary
conditions. Spectral methods allow the approximation of spatial
derivatives with ‘exponential’ accuracy (see Section 3.1). In addi-
tion, the restriction to tensor product lattices affords significant
computational savingswhichwill be discussed later. The disadvan-
tage is that XMDS2 cannot be used to solve problems on arbitrary-
shapeddomains as is possible using finite-elementmethods. This is
not a significant limitation for a wide class of problems, as the sys-
tem is often constrained to evolvewithin a finite domain. Quantum
atom optics problems, for example, have trapping terms in the dif-
ferential equation that cause the solution to be non-negligible over
a finite domain.

The use of spectral methods means that XMDS2 represents
the solution as a linear combination of global basis functions that
extend over the entire domain. This is an accurate representation
for solutions which are smooth. Problems which contain shocks or
other spatial discontinuities (including discontinuous derivatives)
are better served by localmethods such as finite difference or finite
element methods.

Subject to these caveats, XMDS2 is applicable to a broad
problem class and employs efficient and accurate algorithms for
the solution of these problems.

3. Algorithms employed

XMDS2 employs efficient algorithms in its generated simula-
tions. These include:

1. Spectral methods for computing spatial derivatives.
2. Fast spatial-to-spectral transforms, including FFTs and parity-

exploiting matrix transforms.

G.R. Dennis et al. / Computer Physics Communications 184 (2013) 201–208 203
3. Distributed memory parallelism.
4. Gaussian quadrature for spatial integration.
5. Method-of-lines explicit temporal integration schemes, and
6. Interaction picture methods for exactly solving linear parts of

the problem.

3.1. The spectral method

XMDS2 spatially discretises the problem by applying the
spectral method [14]. This method decomposes the solution as a
weighted sum of a finite set of orthonormal basis functions. For
example, the quantity f (x, y) is represented as

f (x, y) =


n,m

Fn,mXn(x)Ym(y), (1)

where Fn,m is amatrix of coefficients, Xn(x) is the nth basis function
for the x dimension, and Ym(y) is the mth basis function for the
y dimension. The coefficients Fn,m fully describe the solution and
are the spectral representation of the solution. Typically in XMDS2,
the number of basis functions is equal to the number of grid
points in each dimension. In this case, the spectral representation
is equivalent to the spatial representation f (xi, yj), the values of the
solution at the grid points. The two representations are linked by
the linear transformation (1) and its inverse.

Spectral methods approximate spatial derivatives using the de-
composition (1) and using analytic expressions for the derivatives
of the basis functions,

∂p

∂xp
∂q

∂yq
f (x, y) =


n,m

Fn,m
dpXn(x)
dxp

dqYm(y)
dyq

. (2)

Spatial derivatives approximated in this manner are ‘exponen-
tially’ accurate. In general, an optimalM-pointmethod to calculate
a k-order derivative of a function will have error O(hM−k), where
h is the grid-point spacing. As h ∝ 1/N , where N is the number
of grid points, such a method will converge like O(1/NM−k) for a
k-order derivative. In spectral methods the value of the solution at
all grid points is used when computing spatial derivatives, hence
M = N . In this case M increases as the number of grid points N
increases, resulting in a method whose order effectively increases
as the number of grid points increases. The asymptotic error of a
spectral method is O(1/NN−k), which converges exponentially.

The basis functions are typically chosen to make part of the dif-
ferential equation diagonal in the spectral basis. XMDS2 supports
the following spectral methods for each dimension:
• Fourier modes (complex exponentials),

Xn(x) = eiknx.

This method imposes periodic boundary conditions. The basis
functions are eigenfunctions of the Cartesian spatial derivative
operator. This is a general purpose method.

• Cosine/sine functions,

Xn(x) = cos(knx) or Xn = sin(knx).

These methods impose even and odd boundary conditions
respectively at the ends of the domain. The basis functions are
eigenfunctions of the Laplacian in Cartesian coordinates. This
method is useful when the problem has even or odd reflection
symmetry about a plane.

• ‘Cylindrical’ Bessel functions,

Rn(r) = Jm(knr),

where Jm(r) is the order-m Bessel function of the first kind. This
method imposes analytic boundary conditions at the origin and
zero Dirichlet boundary conditions at the outer boundary. The
basis functions are eigenfunctions of the radial component of
the Laplacian in cylindrical coordinates. This method is useful
for problems with rotational symmetry. See [15] for more
details.
• ‘Spherical’ Bessel functions,

Rn(r) =


π

2r
Jl+ 1

2
(knr).

Thismethod imposes analytic boundary conditions at the origin
and zero Dirichlet boundary conditions at the outer boundary.
The basis functions are eigenfunctions of the radial component
of the Laplacian in spherical coordinates. This method is useful
for problems with spherical symmetry.

• Hermite–Gauss functions,

ψn(x) = (2nn!σ
√
π)−1/2e−x2/2σ 2

Hn(σ x), where :

Hn(x) = (−1)nex
2 dn

dxn


e−x2


.

This method requires that the solution decay as e−x2/2σ 2
in the

limit x → ±∞. The basis functions are eigenfunctions of the
Schrödinger equation for the harmonic oscillator:

−
h̄2

2m
∂2ψn

∂x2
+

1
2
mω2x2ψn(x) = h̄ω


n +

1
2


ψn(x), (3)

with σ =
√
h̄/(mω). Thismethod is useful for solving problems

similar to (3) with nonlinear terms.

XMDS2 permits the use of different spectral methods in each
dimension. Fig. 1 is an example of a lattice using a Hermite–Gauss
decomposition in the x dimension and a Fourier decomposition in
the y dimension. As discussed in Section 3.4, the grid spacing is
determined by the choice of spectral method. Full documentation
of the spectral methods supported by XMDS2 and their uses is
available from the XMDS2 website [1].

3.2. Fast spatial-to-spectral transforms

In any nonlinear simulation, both the spatial and spectral
representations of the solution will be required, as the problem
will not be diagonal in either representation. Typically, the spatial
representation is used for calculating the nonlinear terms, and
the spectral representation for calculating derivatives. The two
are linked by a linear transformation, which can in general
be performed with a matrix multiplication. The computational
complexity of this operation is O(N2) for a single dimension.
In higher dimensions, the use of a tensor product lattice (see
Fig. 1) enables the matrix multiplication to be factorised for each
dimension. In two dimensions for example, the computational
complexity of a general spatial-to-spectral transformation is
O(N2

1N2 + N1N2
2). Without the use of a tensor product lattice, this

cost would be O(N2
1N

2
2).

There are two cases in which we can reduce this computational
cost: when we can use the Fast Fourier Transform (FFT) algorithm,
or when the basis functions alternate in parity.

Spectral methods using complex exponentials, cosines or
sines enable the use of the FFT algorithm and its variants for
transformations between spatial and spectral representations.
These cost only O(N logN) in one dimension or O(N2N1 logN1 +

N1N2 logN2) in two dimensions.
If the basis functions have explicit, alternating parity Xn(−x) =

(−1)nXn(x) like the Hermite–Gauss functions, the Parity Matrix
Multiplication Transform (PMMT) [14] can be used, which is faster
than a directmatrixmultiplication in each dimension. The idea is to
separately transform the even and odd components of the solution,
each of which costsO


(N/2)2


, giving a total cost ofO(N2/2). This

factor of two reduction does not improve the overall scaling but
can be a significant improvement for simulations dominated by the
cost of the spatial-to-spectral transforms.

204 G.R. Dennis et al. / Computer Physics Communications 184 (2013) 201–208
a

b

Fig. 2. An example of problem parallelisation on a tensor product lattice. The
problem is distributed across the (a) x or (b) y dimensions. These two problem
decompositions are linked by a distributed transpose operation.

3.3. Distributed memory parallelism

The use of a tensor product lattice permits the problem to
be parallelised by distributing a single dimension across the
available processes (see Fig. 2). The advantage of this method is
that as the spatial-to-spectral transform can be factorised across
different dimensions, when the problem is decomposed across the
x dimension (as in Fig. 2(a)), the transform over the y dimension
can be performed as a purely local operation to each process.

To perform the spatial-to-spectral transform over the x di-
mension, the problem must instead be decomposed across in the
y dimension (as in Fig. 2(b)). As simulations typically require
spatial-to-spectral transforms to be performed over all dimen-
sions, a distributed transpose operation is used to link different
problem decompositions (see Fig. 2). This enables transforms to be
performed over any dimension in a distributed simulation.

3.4. Gaussian quadrature

Gaussian quadrature is an exponentially accurate method for
integrating functions. The key idea is to approximate

f (x) dx ≈


i

f (xi) wi, (4)

where xi are the interpolation points and wi are weight factors.
Gaussian quadrature takes advantage of the fact that the interpola-
tion points xi do not need to be equally spaced. This means the 2N
degrees of freedom {xi, wi} can be chosen to exactly integrate 2N
functions f (x), while it would only be possible to exactly integrate
N functions if thewi were the only degrees of freedom. Further de-
tails about Gaussian quadrature are available from [14,16].

3.5. Method-of-lines explicit temporal integration

In method-of-lines integration, each grid point is considered
to have its own ODE and the problem is integrated as a system
of coupled ODEs. XMDS2 employs a range of explicit integration
schemes for deterministic and stochastic problems:

• semi-implicit method (deterministic order 2, stochastic order
1) [17],

• fourth-order Runge–Kutta (deterministic order 4, stochastic
order 1/2) [18, Section 3.7(v)],

• ninth-order Runge–Kutta (deterministic order 9, stochastic
order 1/2) [19],

• adaptive fourth–fifth order Runge–Kutta (deterministic only),
[20] and

• adaptive eighth-ninth order Runge–Kutta (deterministic only)
[19].

XMDS2’s fixed-step method-of-lines integration methods sup-
port integrating stochastic differential equations that depend on
Wiener (Gaussian) or jump (counting) processes. These stochas-
tic differential equations must be entered in Stratonovich, not Itô
form [21].

Although the fourth-order Runge–Kutta and ninth-order
Runge–Kutta algorithms have lower order stochastic convergence
than the semi-implicit method, we find that they can be useful for
problems where the noise terms are a perturbation on the ‘deter-
ministic’ dynamics.

XMDS2 can runmultiple paths (possibly distributed acrossmul-
tiple processors) to compute moments of the stochastic process.
XMDS2 can also test the effect on the strong convergence [22] of
the discretisation error of the propagation dimension. This requires
sampling the same stochastic trajectory with timesteps of multiple
sizes.

3.6. Interaction picture method

The method-of-lines integration schemes are supported by the
interaction picture method [23,24], which exactly solves a linear
part of the differential equation.

The idea is very similar to the interaction picture in quantum
mechanics. The differential equation is split into twoparts: a linear,
exactly solvable component, and the remaining possibly nonlinear
components. The differential equation is then transformed to
remove the exactly solvable component.

For a PDE of the form

∂ f
∂t

= L[f] + g(x, y, f), (5)

where L is a linear operator that does not depend on time, the
differential equation is transformed by defining the new quantity
f̃ = e−Lt f , which evolves as

∂ f̃
∂t

= e−Ltg(x, y, eLt f̃). (6)

The new quantity f̃ essentially has the simple dynamics due to L
removed.

The interactionpicturemethod is advantageouswhen the linear
operatorL has a faster characteristic timescale than the remainder
of the differential system, which means that the function f̃ varies
more slowly in time than the original f . This means that by solving

G.R. Dennis et al. / Computer Physics Communications 184 (2013) 201–208 205
the faster component separately, and exactly, larger time-steps
may be used on the remaining part of the differential equation
while achieving the same solution accuracy.

For example, for the nonlinear Schrödinger equation,

ih̄
∂ψ

∂t
= −

h̄2

2m
∂2ψ

∂x2
+ V (x)ψ + U |ψ |

2 ψ, (7)

the spatial derivative term can have a faster characteristic
timescale than the remainder of the system for high spatial
resolutions, corresponding to high-momentumcomponents. In the
Fourier basis, the spatial derivative term in Eq. (7) becomes

h̄2 k2x
2m

ψ(kx, t). (8)

If we do not use the interaction picture, the maximum value of kx
increases linearlywith the number of grid points, and the time step
usedmust decrease as1t ∝ 1/N2 in order to be able to resolve the
evolution of those terms. The interaction picturemethod alleviates
this problem by solving the spatial derivative term exactly. Using
the interaction picture method to solve for the evolution of the
spatial derivative term enables (7) to be solved with a time-step
which is independent of the spatial resolution.

The effect of the interaction picture method can be seen by
solving (7) with an adaptive temporal integration method and
comparing the number of time steps needed to achieve a given
accuracy to that neededwhen calculating the derivatives explicitly
(but still using a spectralmethod). The results in Fig. 3 demonstrate
that the number of steps needed to solve the PDE using the
interaction picturemethod is essentially independent of the spatial
resolution, while for the explicit method, the number of steps
needed increases quadratically.

The computational cost of the interaction picture method is
small if the linear operatorL is local in either the spatial or spectral
basis. In this case, the application of e±Lt to the quantity f can be
calculated by transforming f to the appropriate basis (spatial or
spectral), performing a local multiplication, and transforming back
to the original basis. For fixed time-step algorithms, calculating
the exponential function at every time step can be avoided by
essentially redefining f̃ at each time step so that only the quantities
e±L1t are needed.

To make best use of the interaction picture method, the basis
functions should be chosen tomake all derivative terms local in the
spectral basis. This ensures optimal scaling of the computational
effort with spatial resolution.

Although the interaction picture method can be used with any
integration software by applying the transformation manually,
XMDS2 makes its use particularly easy by allowing the differential
equation to be entered in a form equivalent to (5) with
XMDS2 automatically making the transformation to (6). This also
enables easy comparisons to be made between the interaction
picture and explicit methods.

4. Examples

In order to show the syntax of an XMDS2 script, as well as to
demonstrate the ease with which simulations can be extended, we
consider the behaviour of a Bose–Einstein condensate (BEC) in a
harmonic magnetic trap.

4.1. Example 1: nonlinear Schrödinger equation (examples/
cpc_example1.xmds)

Under a semiclassical approximation, the dynamics of the BEC
will be governed by the nonlinear Schrödinger equation with a
101 102
102

104

106

108

103 104

Number of grid points

N
um

be
r

of
 s

te
ps

Fig. 3. Comparison of the scaling of the interaction picture and ‘explicit’ methods
with grid resolution for computing the evolution due to spatial derivative terms.
Both methods were used to integrate the PDE (9) with a fixed accuracy using
an adaptive integrator. As the resolution is increased, the number of steps
remains approximately steady for the interaction picturemethod,while it increases
quadratically (due to the second order spatial derivatives in (9)) for the ‘explicit’
method. As the computational cost of each time step for both methods increases
with resolution as O(N logN), due to the use of Fourier transforms, the overall
running time for the interaction picture method scales as O(N logN) compared
to O(N3 logN) for the ‘explicit’ method. The XMDS2 scripts used can be found in
examples/cpc_ip_scaling.xmds andexample/cpc_ex_scaling.xmds in
the XMDS2 distribution.

harmonic trapping potential. In dimensionless units this equation
is written

i
∂ψ

∂ t̄
= −

1
2
∂2ψ

∂ x̄2
+

1
2
x̄2ψ + U |ψ |

2 ψ, (9)

where x̄ =
√
mω/h̄ x, t̄ = ωt,m is the atomic mass, ω is the

trapping frequency and U is the nonlinear energy in units of h̄ω.
XMDS2 is capable of solvingmuchmore complicated (sets) of PDEs,
but this serves as a illustrative example.

Our initial conditionwill specify thewavefunction at t = 0, and
we choose

ψ(x̄, 0) =
√
N π−1/4 exp(−x̄2/2) (10)

which is the ground state solution to Eq. (9) in the absence of the
nonlinearity, normalized to N atoms in total.

We initially solve in one dimension, using a fourth–fifth order
adaptive Runge–Kutta algorithm, evolving the system for a time
t̄ = 2π/ω (one trap period), sampling 50 times and outputting the
real and imaginary parts of the wavefunction in position space at
every grid point. An XMDS2 script to solve this problem is shown
in Fig. 4.

When XMDS2 is run on this script, it produces an optimized
binary nonlinear_SE which is run to carry out the simulation.
The result is shown in Fig. 6.

Changing parameters such as the domain or number of grid
points, the number of sample points, integration interval, output
moments, algorithm and precision used and so on is simply a
matter of changing the contents of an XML tag, then re-running
XMDS2 on the script to produce the new executable. While it is
trivial to change such parameters, it is also easy to extend the
simulation in more complex ways.

4.2. Example 2: higher dimensions (examples/cpc_example2.
xmds)

If one wished to run the simulation in two dimensions rather
than one, all that is required is adding the element

<dimension name="y" lattice="512"
domain="(-7, 7)" />

206 G.R. Dennis et al. / Computer Physics Communications 184 (2013) 201–208
Fig. 4. Annotated example XMDS2 script for integrating Eq. (9). This script can be found in examples/cpc_example1.xmds in the XMDS2 distribution.
to thetransverse_dimensions element, changing thebasis=
''x'' attribute of the sampling_group element to basis=''x
y'', adding a ''0.5*y*y'' term to the potential ''V'' and initial
condition, and adding a ''-i*0.5*ky*ky'' term to the kinetic
energy operator ''T''.

4.3. Example 3: different transforms (examples/cpc_example3.
xmds)

This problem is obviously symmetric about x = 0, so it is
a waste of computational resources to simulate the problem on
both sides of the origin. Since the differential equation and the
boundary conditions are symmetric, by using the discrete cosine
transform rather than the default exponential Fourier transform,
we need only carry out the simulation on half the interval, and
use only half the number of grid points for the same accuracy.
This is accomplished simply by changing the content of the
transverse_dimensions element to be

<dimension name="x" lattice="256"
domain="(0, 7)" transform = "dct"/>

4.4. Example 4: easy parallelization with MPI (examples/
cpc_example4.xmds)

As this is a deterministic simulation, if it has two or more
dimensions, one can parallelize the simulation simply by adding
the<driver name=''distributed-mpi''/ > tag to the script.
This would result in a binary that could be run across, for example,

G.R. Dennis et al. / Computer Physics Communications 184 (2013) 201–208 207
a

b

Fig. 5. Example runtime scaling using MPI on (a) a single computer, and (b) a su-
percomputer. Figure (a) demonstrates the simulation examples/cpc_example4
.xmds run on a Linux computer with two Xeon 5675 CPUs running at
3.07 GHz. Each CPU has 6 execution cores. Figure (b) demonstrates the simulation
examples/cpc_example4_3D.xmds run on the NCI National Facility supercom-
puter, ‘vayu’. The modified simulation is extended to three dimensions with 256
points in each to demonstrate performance on larger problems. Note that optimal
parallelisation for these problems is achieved when the number of grid points in
the first dimension (256) is divisible by the number of processes.

four CPUs with the command
mpirun -n 4 nonlinear_SE

The fact that two- or higher-dimensional deterministic simula-
tions, as well as stochastic simulations of any dimension, can be
trivially parallelized using a single line in a script, without spend-
ing days (or weeks) writing and debugging bespoke code, is one of
XMDS2’s most powerful features. The runtime scaling of this sim-
ulation with the number of processes is illustrated in Fig. 5.

4.5. Example 5: non-local terms (examples/cpc_example5.
xmds)

Many problemswill involve non-local interactions that occur in
the form of a convolution


f (r − r ′)g(r ′) dr ′. For example, within

the context of the current problem, if the BEC were charged there
would be an additional potential of the form

V (x) =
e2Z2

4πϵ0


1

|x − x′|
|ψ(x′)|2 dx′ (11)

where eZ is the charge associated with each particle. While this
term could be explicitly integrated within XMDS2 it is more
efficient to make use of convolutions and the speed of fast Fourier
transforms. This is done using <computed_vector> elements,
which are described in detail on our website [1].
Fig. 6. Solution to the nonlinear Schrödinger equation given by Eq. (9). The density
|ψ(x, t)|2 is shown evolving over one trap period.

4.6. Example 6: stochastics (examples/cpc_example6.xmds)

As a final tweak to this example, we will make use of XMDS2’s
stochastic features to add noise. XMDS2 has a number of fast ran-
dom number generators built in, which are capable of produc-
ing Gaussian, Poissonian and uniform probability distributions,
and applying them as Wiener or jump processes during stochas-
tic integration. This enables the simulation of stochastic differen-
tial equations, which are useful in fields such quantum field theory,
mathematical finance, and many others. For this example we will
simply use noise tomodel perturbations of themagnetic trap—that
is, the trapping potential will be slightly noisy, due to it moving
around. To do this we define a noise vector

<noise_vector name="trapNoise" kind="wiener"
type="real" method="dsfmt">

<components> noise_x </components>
</noise_vector>

change the potential term in the equation ofmotion in the script to

- i * (V + g * mod2(psi) + alpha*noise_x) * psi

where alpha is a constant governing the magnitude of the noise,
and add a <dependencies>trapNoise< /dependencies>
tag to the<initialisation> block of the potential vector.
This would add a time-dependent Gaussian-distributed noise
to the potential. If we wished to average over many different
realisations of this noise, we could add the tag

<driver name="mpi-multi-path" paths="100" />

to the script, which would run the simulation 100 times, and
average over whichever results were requested in <output>
section. Such a simulation could be trivially run over any number
of CPU cores with near perfect scaling.

Note that the mpi-multi-path driver should only be
used for stochastic simulations where individual realisations
are independent, in contrast, the distributed-mpi driver
parallelises a single deterministic simulation. As the different
components of a deterministic simulation will in general be
coupled, the distributed-mpi driver necessarily incurs a larger
communication overhead than the mpi-multi-path driver. In
general, the distributed-mpi driver can be used to parallelise
a single realisation of a stochastic simulation, but if many paths are
needed, the mpi-multi-path driver will be preferable.

5. Software used

XMDS2 makes use of the following external libraries in its
generated C++ simulations:

208 G.R. Dennis et al. / Computer Physics Communications 184 (2013) 201–208
• FFTW3 [25] for FFTs and MPI distributed transpose operations,
• dSFMT [26] for random number generation,
• MPI for inter-process communication,
• HDF5 for data input and output, and
• GNU Scientific Library for special function evaluation.

XMDS2 itself also uses the following Python libraries when
generating simulations: Cheetah, pyparsing, lxml, h5py, mpmath,
and numpy.

6. Conclusion

Using XMDS2 for simulations accelerates development time,
produces code that executes extremely quickly, and also produces
a self-documenting workflow, as output data is wrapped with the
compact XML code used to produce it.

XMDS2 particularly excels at providing a smooth transition
from a low-dimensional simulation to a higher-dimensional one,
from a deterministic simulation to a stochastic one, or from a
single-processor simulation to a distributed simulation running
in parallel across multiple computers (or on a supercomputer). In
hand-written codes, unless they were initially written with such
a potential future extension in mind, each such change would
require significant effort in rewriting the code. In XMDS2 such
changes require only minimal change to the input script. This en-
courages users to create test simulations of a simpler system (e.g.
reduced dimensionality), which makes the code run faster, allow-
ing problems in the input script to be found and fixedmore quickly.
Later, the simulation can be scaled up to the full problem. Funda-
mentally, the ease with which codes can be generated encourages
experimentation with different types of simulations, as the time
taken to create the code is no longer the rate-limiting factor.

The installers, documentation and examples for XMDS2 can be
found at the website [1]. This same documentation is available in
the documentation/ directory of the XMDS2 distribution.

Acknowledgments

We would like to thank B. Blakie for assistance with the
Hermite–Gauss basis, M. Hush, R. Stevenson, and S. Szigeti for
testing early versions of XMDS2, and the XMDS2 community for
testing and ideas. We also acknowledge support from the NCI
National Supercomputing Facility.

References

[1] J.J. Hope, G.R. Dennis, M.T. Johnsson, XMDS website and documentation.
http://www.xmds.org.
[2] L. DeRose, K. Gallivan, E. Gallopoulos, B. Marsolf, D. Padua, An environment
for the rapid prototyping and development of numerical programs and
libraries for scientific computation, in: Proc. DAGS’94 Symposium on Parallel
Computing and Problem Solving Environments, 1994, pp. 11–25.

[3] R. Marsa, The RNPL User’s guide and Reference are available online at:
http://godel.ph.utexas.edu/Members/marsa/rnpl/.

[4] G. Collecutt, P.D. Drummond, XMDS: extensible multi-dimensional simulator,
Comput. Phys. Comm. 142 (1–3) (2001) 219–223.

[5] R.G. Dall, L.J. Byron, A.G. Truscott, G.R. Dennis, M. Jeppesen, M.T. Johnsson, J.J.
Hope, Observation of interference fringes on an atom laser beam, Opt. Express
15 (26) (2007) 17673.

[6] R.G. Dall, L.J. Byron, A.G. Truscott, G.R. Dennis, M.T. Johnsson, J.J. Hope, Paired-
atom laser beams created via four-wave mixing, Phys. Rev. A 79 (2009)
011601(R).

[7] M.T.L. Hsu, G. Hétet, A. Peng, C.C. Harb, H.A. Bachor, M.T. Johnsson, J.J. Hope,
P.K. Lam, A. Dantan, J. Cviklinski, A. Bramati, M. Pinard, Effect of atomic noise
on optical squeezing via polarization self-rotation in a thermal vapor cell, Phys.
Rev. A 73 (2006) 023806.

[8] G. Hétet, A. Peng, M.T. Johnsson, J.J. Hope, P.K. Lam, Characterization of
electromagnetically-induced-transparency-based continuous-variable quan-
tum memories, Phys. Rev. A 77 (2008) 012323.

[9] S.S. Szigeti, M.R. Hush, J.J. Carvalho, A.R.R. Hope, Feedback control of an
interacting Bose–Einstein condensate using phase-contrast imaging, Phys.
Rev. A 82 (2010) 043632.

[10] L. Li, Z. Jin, Pattern dynamics of a spatial predator–prey model with noise,
Nonlinear Dynam. 67 (3) (2012) 1737.

[11] T. Reichenbach, M. Mobilia, E. Frey, Noise and correlations in a spatial
population model with cyclic competition, Phys. Rev. Lett. 99 (2007) 238105.

[12] T. Reichenbach, M. Mobilia, E. Frey, Mobility promotes and jeopardizes
biodiversity in rock-paper-scissors games, Nature 448 (2007) 06095.

[13] T. Reichenbach, E. Frey, Instability of spatial patterns and its ambiguous impact
on species diversity, Phys. Rev. Lett. 101 (2008) 058102.

[14] J.P. Boyd, Chebyshev and Fourier Spectral Methods, second ed., Dover, 2000.
[15] S. Ronen, D.C.E. Bortolotti, J.L. Bohn, Bogoliubovmodes of a dipolar condensate

in a cylindrical trap, Phys. Rev. A 74 (1) (2006) 013623.
[16] A.H. Stroud, Numerical Quadrature and Solution of Ordinary Differential

Equations, Springer-Verlag, 1974.
[17] M.J. Werner, P.D. Drummond, Robust algorithms for solving stochastic partial

differential equations, J. Comput. Phys. 132 (2) (1997) 312–326.
[18] M. Abramowitz, I.A. Stegun (Eds.), Handbook of Mathematical Functions with

Formulas, Graphs, and Mathematical Tables, tenth ed., Dover Publications,
1972.

[19] C. Tsitouras, Optimized explicit Runge–Kutta pair of orders 9 (8), Appl. Numer.
Math. 38 (1–2) (2001) 123–134.

[20] J.R. Cash, A.H. Karp, A variable order Runge–Kutta method for initial value
problems with rapidly varying right-hand sides, ACM Trans. Math. Software
16 (3) (1990) 201–222.

[21] C.W. Gardiner, Handbook of Stochastic Methods, third ed., in: Springer Series
in Synergetics, Springer, Berlin, 2004.

[22] P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations,
Springer, 1992.

[23] R.J. Ballagh, Partial differential equation algorithm: conceptual, Unpublished
Personal Papers, 1995.

[24] B.M. Caradoc-Davies, Vortex dynamics in Bose–Einstein condensates, Ph.D.
Thesis, University of Otago, July 2000.

[25] M. Frigo, S.G. Johnson, The design and implementation of FFTW3, Proc. IEEE 93
(2) (2005) 216–231.

[26] M. Saito, M. Matsumoto, SIMD-oriented fast Mersenne twister: a 128-bit
pseudorandom number generator, in: A. Keller, S. Heinrich, H. Niederreiter
(Eds.), Monte Carlo and Quasi-Monte Carlo Methods 2006, Springer, Berlin,
Heidelberg, 2008, pp. 607–622.

http://www.xmds.org
http://godel.ph.utexas.edu/Members/marsa/rnpl/

	XMDS2: Fast, scalable simulation of coupled stochastic partial differential equations
	Introduction
	Problem class
	Algorithms employed
	The spectral method
	Fast spatial-to-spectral transforms
	Distributed memory parallelism
	Gaussian quadrature
	Method-of-lines explicit temporal integration
	Interaction picture method

	Examples
	Example 1: nonlinear Schrödinger equation (examples/cpc_example1.xmds)
	Example 2: higher dimensions (examples/cpc_example2.xmds)
	Example 3: different transforms (examples/cpc_example3.xmds)
	Example 4: easy parallelization with MPI (examples/cpc_example4.xmds)
	Example 5: non-local terms (examples/cpc_example5.xmds)
	Example 6: stochastics (examples/cpc_example6.xmds)

	Software used
	Conclusion
	Acknowledgments
	References

