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Optical necklaces generated by the diffraction on a stack of dielectric wedges
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Abstract

We demonstrate that the regular ring-shaped arrays of Gaussian beams, or optical necklaces, can be generated using diffraction on a stack
of dielectric wedges. A condition for self-similarity and structural stability of the beams has been derived and shows good comparison with
experimental data.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

During recent decade an increasing attention has been given
to the problems of the formation and transport of optical vor-
tices in linear [1,2] and nonlinear [3,4] optical media. Opti-
cal vortices appear in coherent fields as the isolated points
of total destructive interference with amplitude vanishing and
phase undefined or singular [1]. A challenging task here is
to achieve structural stability of complex beams, in particu-
lar the rotating beams carrying multiple phase singularities.
Theoretical analysis of these so-called “spiraling” beams was
developed for linear media (free propagation) [5] and the con-
dition of their structural stability was recently derived [6].
In nonlinear media, however, most of the studies were fo-
cused on one particular class of spiralling beams, namely a
ring-like array of simple bell-shaped (Gaussian) beams in the
form of optical necklaces [7], soliton clusters [8], and az-
imuthons [9]. Thus, the problem of efficient experimental gen-
eration of structurally stable optical necklaces remains par-
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ticularly important for applications in nonlinear singular op-
tics.

The straightforward way to construct optical necklaces is to
consider superposition of the off-axis Gaussian beams arranged
into a ring-shaped array and tilted along the generatrix of the
hyperboloid of rotation [6,10], similar to the cluster of funda-
mental solitons in nonlinear media [8]. In this approach each
beam in the array must be aligned precisely as the small de-
viations from self-similar shape of the whole cluster may lead
to unstable propagation. Therefore, for large number of beams
(“pearls” in the necklace), the method is not efficient. An-
other approach is to use holographic methods [11,12], such as
computer-generated holograms on the spatial light modulator.
However, with this approach it is difficult to control simultane-
ously the spatial modulation of the amplitude and phase and
again only relatively simple (lowest order) optical necklaces
can be generated efficiently.

In this Letter we demonstrate, both theoretically and exper-
imentally, that the diffraction on the stack of optical wedges
can be tailored to generate structurally stable optical necklaces
equivalent to the arrays of Gaussian beams carrying optical vor-
tices. Moreover, by changing the stack parameters it is possible
to achieve fine tuning of the necklace profile. In the rest of
the Letter we revisit the problem of the diffraction on a single
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Fig. 1. (a) Sketch of a Gaussian beam diffracting on the edge of a single optical
wedge with γ = 9 × 10−4. (b), (c) Experimental results of the diffraction of
two different beams [13], with the waist parameter equal (b) w0 = 5 mm (chain
of vortices) and (c) w0 = 1 mm (single vortex).

dielectric wedge and on the stack of wedges, obtain the tar-
get structurally stable profile of the array of Gaussian beams,
and derive a simple condition allowing to optimize the diffrac-
tion pattern and fulfill stability requirements. In the last section
before concluding the Letter we compare theoretical and exper-
imental data for the optical necklaces with four, six, and eight
pearls.

2. Diffraction on a wedge

First we recall the results of Refs. [13–15] on the diffraction
on a single dielectric wedge. We assume that a Gaussian beam

with the envelope Ψ0(x, y, z) = 1
ξ

exp(− x2+y2

w2
0ξ

− ikz) is pass-

ing through the optical wedge as shown in Fig. 1. Here w0 is
the beam waist in the plane z = 0, ξ = 1 − iz/z0, z0 = kw2

0/2
is the Rayleigh length, k = 2π/λ is the wave number and λ is
the wavelength of incident laser beam. The wave function of the
beam passed through the wedge can be calculated using Kirch-
hoff diffraction integral

Ψ1(x, y, z) = Ψ0(x, y, z)

× {
exp

(
ik(nw − 1)(y γ /ξ + h)

)
erfc(X)

(1)+ erfc(−X)
}

here X = x
√

ik/2zξ and the wedge is characterized by the ver-
tex angle γ , the refractive index nw , and the thickness h in the
plane y = 0.

The process of vortex formation can be explained if we con-
sider two beams 1 and 2 in Fig. 1(a), one is passing through
the wedge and another propagating in free space. Optical vor-
tex will be formed when two beams will interfere destructively,
i.e., when the phase difference between both waves is

(2)θm = (2m + 1)π, m = 1,2, . . .
Fig. 2. The sketch of a symmetric double-wedge system and the diffraction
pattern from a broad Gaussian beam.

In other words, the optical path difference h(nw − 1) = θm/k,
entering Eq. (1), must equal half-integer number of wavelengths
with the wedge thickness satisfying

h = hm = λ(2m + 1)/2(nw − 1).

It follows that, for sufficiently broad input beam, we ob-
tain chain of vortices enumerated with m (vortex street, see
Fig. 1(b)) and positioned in the plane x = 0 of the wedge-air
interface at

(3)ym = 2πm

γ k(nw − 1)

√
1 + z2

z2
0

.

Tailoring the diffraction means choosing the input beam waist
w0 appropriately, for example, to isolate a single vortex as in
Fig. 1(c), we put the diameter to be equal the distance between
two neighboring vortices 2w0 = ym − ym−1 at z = 0, i.e., w0 =
π/γ k(nw − 1).

The structure of Eq. (1) readily suggests that two terms in
the sum are related to the two beams, one passing through the
wedge and another in free space, but they enter into the solu-
tion non-symmetrically. The asymmetry appears because of the
twist of wave front of the refracted beam. Thus the axis of the
refracted beam is also inclined in space behind the wedge at an
angle

(4)α = γ (nw − 1)

with respect to the axis of the incident beam.
In the following we will consider a stack of optical wedges

and the disadvantage of a single wedge is the lack of an axis of
symmetry for two beams after the wedge. Though the tilt an-
gle α is small for thin wedges γ � 1, it will accumulate in the
stack of wedges and distort the desired symmetry. To compen-
sate this asymmetry and preserve the initial beam propagation
direction z, we consider a system of two wedges superimposed
as shown in Fig. 2. The second dielectric wedge has the same
vertex angle γ as the first one but directed in the opposite way,
thus the refracted beams in both will have the same tilt in oppo-
site directions. Calculation of the diffraction integral lead to the
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solution similar to Eq. (1) but symmetric with respect to propa-
gation axis z

Ψ2(x, y, z) = Ψ0(x, y, z)

× {
exp(iY + iθ1) erfc(X)

(5)+ exp(−iY + iθ2) erfc(−X)
}

where Y = ykα/ξ and θ1,2 = knwh1,2 are the phases of the
beams passed distances h1,2 in the wedge 1 and 2, respectively.
Similar to the previous case of a single wedge, an optical vor-
tex is formed when two beams are out of phase, θ1 − θ2 =
(2m + 1)π , and, therefore, nw	hm = (2m + 1)λ/2, here and
in Fig. 2 we denote 	hm = h1 − h2.

Eq. (5) represents the superposition of two Gaussian beams
propagating at an angle 2α to each other. Calculating the posi-
tion of vortices (zeros of the field) we obtain ym/2, half the
values given by Eq. (3). It means that the chain of vortices
in Fig. 2 is similar to Fig. 1(b) but with twice the number of
vortices per unit length [16,17]. A single vortex from the thin
diffracting Gaussian beam has the same profile as in Fig. 1(c)
but with the waist parameter twice smaller.

3. Ring arrays of Gaussian beams

We aim to employ the condition of the structural stability of
the ring arrays of Gaussian beams, obtained in Ref. [6], to the
necklace beams generated by the optical wedges. To do that,
we recall here the wave function of an array ΨG of N off-axis
Gaussian beams [18] Ψn, n = 1,2, . . . ,N ,

(6)ΨG =
N∑

n=1

Ψn = Ψ0

N∑
n=1

exp(Φn),

where the expression for common Gaussian envelope Ψ0(r,

ϕ, z) was given above and

Φn = − r2
0 + 2r0r cos(ϕ − ϕn) − α2z2

0

w2ξ

(7)− i
αkr

ξ
sin(ϕ − ϕn) + iθn.

Each Gaussian beam is positioned at azimuthal coordinate ϕn =
2πn/N on the ring of radius r0 in the waist at z = 0, and each is
assigned a phase value θn = lϕn, here integer l is the topological
charge (orbital index) of the ring array. Each beam is tilted by
α with respect to the optical axis z so that the beam axes lie on
the surface of a hyperboloid of revolution.

The key result derived recently [6] is the condition of the
structural stability for ring arrays, distinguishing self-similar
beams from the general superpositions in Eqs. (6) and (7)

(8)r0 = αz0.

We apply this constrain to the simplest configuration, which
will be analogous to the considered above diffraction on two
wedges, namely the case of just two Gaussian beams, N = 2.
It is convenient for the following to present Eq. (6) in explicit
form utilizing the coordinate system used above in Eq. (5)
ΨG(x, y, z) = Ψ0(x, y, z)

× {
exp(iY − αkx/ξ + iθ1)

(9)+ exp(−iY + αkx/ξ + iθ2)
}
.

Now we are in a position to apply the stability criteria to the
beams diffracted on wedges. We compare Eq. (5) for a pair of
wedges with Eq. (9) for a pair of Gaussian beams. First, for
a single vortex after the wedges (m = 0 in Eq. (2)) the phase
difference θ2 − θ1 = π in Eq. (5). Similarly, for the unit topo-
logical charge l = 1 of the two-beams array in Eq. (9) we have
θ2 − θ1 = ϕ2 − ϕ1 = π . Therefore, the only essential difference
between two expressions comes with the factors erfc(±X) in
Eq. (5) versus the factors exp(∓αkx/ξ) in Eq. (9).

Let us analyze these expressions in the far-field z � z0. We
approximate ξ � −iz/z0 thus X � ixkw0/2z and

erfc(±X) � 1 ∓ ikxw0/
√

πz,

exp(∓αkx/ξ) � 1 ∓ iαkxz0/z.

It is clear that two expressions are equivalent if w0 = √
παz0

so that, finally,

(10)w0 = λ

π3/2γ (nw − 1)
.

In short, the diffraction of a Gaussian beam on a pair of
optical wedges can be used to generate a structurally stable
spiraling pair of Gaussian beams carrying optical vortex if the
waist parameter of the incoming beam is given by Eq. (10).

4. Structurally stable optical necklaces

The results above can be expanded to a system with an arbi-
trary number of symmetrically arranged pairs of wedges. Tak-
ing into account that each pair, according to Eq. (5), splits the
incoming Gaussian beam into two shifted off-axis beams, by
superimposing M pairs we can generate optical necklaces with
2M pearls.

As it was done in Ref. [19], we assume that the mth pair
of wedges in the vertical stack is twisted around z axis by an
angle πm/M , m = 1,2, . . . ,M . Then the superposition of M

fields given by Eq. (5) can be represented as

(11)ΨM = Ψ0

2M∑
n=1

exp(−iαkyn + iπn) erfcXn,

here {xn, yn} = r{cos(ϕ − ϕn), sin(ϕ − ϕn)} with ϕn = πn/M

and Xn = xn

√
ik/2zξ . On the other hand, the array of N beams

in Eqs. (6) and (7), with the condition of structural stability
Eq. (8) satisfied, takes the form

(12)ΨG = Ψ0

N∑
n=1

exp(−iαkyn + ilϕn) exp

(
−αkxn

ξ

)
.

It follows that, in the far-field z � z0 and with Eq. (10) satis-
fied, the two expressions above describe the same envelope if
l(ϕn+1 − ϕn) = π and we derive

N = 2M = 2l,
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Fig. 3. The intensity distributions of the spiraling optical necklaces calculated
(a)–(c) for the superposition of N = 2l Gaussian beams, and calculated (d)–(f)
and experimentally recorded (g)–(i) for the diffraction on a stack of M pairs
of glass wedges. Parameters are w0 = 1.5 mm, λ = 633 nm, γ = 9 × 10−4,
nw = 1.5, and z = 5 m.

i.e., the number of pearls in the necklace N is twice the number
of pairs of wedges M , the later defines the topological charge l

of the necklace.
Note that so far we used the limit of the far-field z � z0 to

establish an exact equivalence between fields constructed as the
superposition of simple Gaussian beams and those from the dif-
fraction on optical wedges. However, for practical applications
it is more convenient to operate fields in the intermediate zone
z � z0. Therefore, we compare in Fig. 3 two types of the neck-
lace envelopes for different numbers of topological charge l at
the propagation distance z � 0.45z0.

Calculated images of the Gaussian array in Fig. 3(a)–(c)
have less pronounced structure of “pearls” than those calculated
using Kirchhoff diffraction integral in Fig. 3(d)–(f). This indi-
cates that the phase gradients along the ring between pearls are
stronger in the diffraction pattern as should be expected because
of the presence of higher harmonics. Still, the differences are
subtle and they are definitely below the usual level of deforma-
tion of the fields in experiments, cf. Fig. 3(g)–(i). We conclude
that the validity of our approximation to the necklace profile can
be practically extended from the far to the intermediate field.

We stress here the difference of the optical necklaces carry-
ing optical vortex from the simple superposition of Laguerre–
Gaussian modal beams, such as

Ψ = Ψ0r
|l|{exp(ilϕ) + exp(−ilϕ)

}
/2 = Ψ0r

|l| cos(lϕ).

The later beam has an intensity distribution very similar to
optical necklaces with the same number of intensity maxima
along the ring N = 2l. However, the simple superposition of
two vortex modal beams above, or the multipole beam, is a de-
generate case of the optical necklace when all “pearl-beams” in
the ring are parallel (i.e., α = 0) and out-of-phase, so that the
orbital angular momentum is zero and there is no spatial rota-
tion during propagation. In contrast, varying the parameters of
the wedges γ and nw we are able to modify the angle α and
thus modify phase profile of the necklace. This fine tuning of
the necklace opens possibilities to construct different types of
azimuthons [9] for the applications in nonlinear singular optics.

5. Conclusion

We have analyzed the process of beam diffraction on a stack
of dielectric wedges and demonstrated that such a stack can be
employed for generation of structurally stable spiraling optical
necklaces. Comparison with experimental data in the interme-
diate diffraction zone shows a good agreement with theoretical
results and supports conclusions derived for asymptotes in the
far-field.

Our method is limited to the optical necklaces with even
number of pearls double the topological charge, and thus it
does not cover all the variety of states predicted in nonlinear
media. However, its obvious advantage is simplicity and tun-
ability. In addition, optical wedges do not limit operating power
as do the spatial light modulators and, therefore, we expect that
the method described here will be useful in the ongoing exper-
iments on generation of nonlinear spiraling beams.
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