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Abstract— We consider nonlinear Mach-Zehnder-Fano inter-
ferometer in which supports the nonlinear Fano resonances.
Based on the introduced figure of merit, we demonstrate that
the nonlinear Mach-Zehnder-Fano interferometer could enhance
the nonlinear response up to two orders of magnitude and
produce the nearly perfect dynamical bistable response compared
to standard Fano resonance geometry. The enhanced resonance
excitation in the nonlinear Fano defect and the step-function like
linear transmission suggest that the Mach-Zehnder-Fano inter-
ferometer could be a suitable candidate involving in nonlinear
manipulation of the Fano resonance. We confirm the significant
enhancement of the nonlinear sensitivity both in stationary and
dynamic manners. We further suggest a nonlinear photonic
crystal circuit as one of the possibilities to realize our results.

I. INTRODUCTION

Mach-Zehnder interferometer (MZI) is a key component in

many branches of physics due to its capacity of manipulating

the coherent signal [1]. By coupling a cavity to the MZI

may further facilitates the engineering of the coherent phase

sensitivity. Enhanced all-optical switching and bistability had

been demonstrated in a ring-resonator-coupled Mach-Zehnder

interferometer which exactly shows the potential for effective

and coherent control of the nonlinear resonator. Recently,

we have introduced the concept of Mach-Zehnder-Fano in-

terferometer (MZFI) [4] which offers the opportunity to ma-

nipulate the interaction of Fano resonances. The MZFI has

unique physical properties which can not been found in the

macroscopic resonator enhanced MZI. Furthermore, due to the

small defect volume compared with the macroscopic resonator,

the counterpart of the ring-resonator-coupled Mach-Zehnder

interferometer in the microscopic scale, i.e. MZFI constructed

by PhCs seems to be more promising for future application.

As one of the key features of the nonlinear Fano resonance,

bistability received increasing attention especially in the op-

tical society. With the advantage of compact in size and the

state-of-the-art fabrication technology [5], Photonic crystals

(PhCs) based bistable type optical switching received tremen-

dous research attention these years [6], [7], [8], [9], [10],

[11], [12], [13], [14], [15], [16], [17]. The manifest optical

bistable state can be treated based on the simple model of the

nonlinear Fano resonance [19], [20]. By suitable engineering

the asymmetric degree of the linear Fano resonance one has

the opportunity to access the high extinction ration, large

modulation depth and low power nonlinear switching [21],

[22].

The aim of this paper is to explore the nonlinear physical

Fig. 1. (a) and (b) are the generic discrete models for the system exhibiting
Fano resonance. Note that in the calculation, Ed = 0,M = 4, L = 1 and
N = −7.

properties of the MZFI which can be outlined by the enhanced

nonlinear response and the dynamic bistability. The nonlinear

MZFI involves nonlinear Fano defect which would in turn act

as a nonlinear scttering potential in the arms of the MZI. We

study both the stationary and transient response of the system

based on the modified Fano-Anderson model [19]. To check

the validity of our results, we consider a nonlinear PhCs circuit

to support our theoretical proposal.

II. MODEL

We consider a generic discrete model [23] which can

describe the dynamic of MZFI. The sketch map of two

particular geometries are shown by Fig. 1 (a) and (b). By using

the modified Fano-Anderson model, the equations of motion

describing the system of Fig. 1 (b) are read as coupled discrete

nonlinear equations:

iψ̇n =
∑

k ψk + δn,MV ϕd

iϕ̇d = Edϕd + λ|ϕd|2ϕd + V ψM ,

(1)

where ψn represents the linear chain with complex field

amplitude, ϕd stands for the Fano defect, M gives the location

of the Fano defect in the arm, k is the total number of the

neighbour sites in the chain, λ is the cubic nonlinear parameter,

V is the coupling strength between the chain and the Fano

defect, Ed is the eigenfrequency of the Fano defect and we

assume the coupling between neighbouring sites C equal to

unity.

For a specified case, the cavity-waveguide system supported

by PhCs can be mapped to a similar discrete model [13]. The

coupled nonlinear set of equations describes the dynamics of

the PhCs based nonlinear MZFI.

The transmission properties of the system in the linear

region can be found by solving a set of linear equations.
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Fig. 2 (a) are the transmissions of the MZFI with two coupling

symmetries, respectively. The detail parameters can be found

in the caption. The standard Fano resonance case (Fig. 1 (a))

is shown by dotted line as a reference. It can be seen from the

figures that the excitation of the Fano defects is distinct with

different coupling symmetry. When the Fano defect locates

at M = 4 in the arm, the transmission in the band centre

looks like a step function. At the same time, the hybrid

resonances have the highest defect excitation among these

resonances because they are induced by the interaction of two

Fano resonances. Intuitively, the high contrast step function

like transmission as well as high resonant excitation in the

nonlinear defect are positive factors for enhancing nonlinear

response. We thus look into the nonlinear response of the

system (2) at these specified resonances.

The stationary nonlinear switching is shown by the lines

in Fig. 2 (c). We compare four kind of resonances marked

ωa−d at Fig. 2 (a). In order to compare the nonlinear response

of the resonances, all of them start exactly at each of the

completed transmission dip. As can be seen from the figures,

the resonances with higher nonlinear defect excitation and

more asymmetric linear transmission are corresponding to

faster raising of transmission. It should be pointed out that the

maximum of the defect excitation is in between the transmis-

sion dip and tip of such sharp and asymmetric lineshape. The

excitation of resonance ωd is mediated by the highly excitation

of the site coupled with the Fano defect and it is not the

eigenfrequency of the Fano defect. The resonance ωd obtains

nonlienar feedback only from its host (i.e. the nonlinear Fano

defect). Therefore, ωa involving with the eigen-frequency of

the Fano defect would be more sensitive to the nonlinearity

as shown by Fig. 2 (c). At the same time, the nonlinear

response of ωa is greatly reduced by the step function like

linear transmission compared to resonance ωb and ωc. If we

define a figure of merit(FOM) as Tmax/Pin, where Tmax

refers to the nearest transmission maximum and Pin represents

the necessary input power to pull the response of the system

up to 90% of the Tmax. The FOM of resonance ωa, which

describes both the enhanced transmission contrast in the linear

case and the reduction of the switching power, can be enhanced

as much as 67 times comparing to a given defect supporting

standard Fano resonance ωb [20]. The raising properties of the

resonance ωb and ωc are similar because they are originated

from the eigen-frequency of the Fano defect and are excited

almost the same.

The dynamic nonlinear responses of the system at specified

resonances are obtained by a pulse with I = I0exp(−(T −
T0)

2/W 2) sin(ωt), where W is the pulse width, ω is set at

the same frequencies with ωa−d. Compared to the stationary

one, the dynamic solution predicts similar nonlinear response

except for the case of ωa. We can see a unique properties

that the transmission of resonance ωa defuses above certain

threshold of the input power as is indicated by the pink shaded

region. This is caused by the dynamic and instability of the

Fano resonance [24]. It should be noted that the width of the

instability area and the transmission value is depended on the

Fig. 2. (a) and (b) are the transmission and the excitation of the linear
MZFI, respectively. (c) nonlinear response of different resonances marked
ωa−d at Fig. 2 (a). Lines present the stationary result of the system. Pink
solid line stands for the hybrid Fano resonance marked ωa in Fig. 2 (a), red
dotted line presents the resonance of the MZI’s loop marked ωd while green
dashed line and blue dashed-dotted lines represent the cases of eigen-Fano
resonance of the Fano defect coupling to the MZI(marked ωc) and coupling to
a chain(marked ωb), respectively. The pink shaded region represents the area
of the dynamic modulational instability initialled by a pulse of T0 = 1.3 ×
104, W = 5× 103 and I0 = 0.25. (d) A typical bistability at the frequency
ω = −0.21 with respect to ωa′ . Here, T0 = 1.3× 104, W = 5× 103 and
I0 = 0.025. Red line and the blue line stand for the upward and downward
nonlinear Fano bistable states.

properties of the excited pulse. The transmission is not well

defined in the pink shaded region. We also notice that there is

similar properties with the generic instability in the localized

nonlinear system where the dynamic nonlinear process suffers

from modulational instability. As had been pointed out by one

of the authors A. E. Miroshnichenko that the continuum wave

(CW) feeding to such system would induce time dependent

exponential growing of the Fano defect’s excitation at the

vicinity of the nonlinear Fano resonance [24]. Such kind

of divergence in time would make the system transfer to

a transparent state rather than the resonant blocking when

one intends to access the nonlinear Fano resonance by CW.

Therefore the bistable operation would be strongly affected.

Please note that all of the resonances have similar dynamic

instabilities. Only the instability of ωa appearing in Fig. 2 (c)

is also an evidence of enhanced nonlinear response.

III. PHOTONIC CRYSTAL BASED NONLINEAR

MACH-ZEHNDER-FANO INTERFEROMETER

Using the modified Fano-Anderson model, we have proved

that the nonlinear MZFI pronounces itself as a suitable

candidate to realize the enhanced nonlinear response and

the enhanced dynamic bistability. We thus suggest a PhCs

platform as a specified possibility to realize the idea while the

upper result can be applied to other kinds of similar discrete

system. The PhCs structure is outlined by Fig. 3 (b). The

PhCs is consisted by square dielectric rods suspending in

air with the radius r = 0.19a,a is the lattice constant and
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Fig. 3. (color online)(a) Bistable operation obtain by pulse excitation in
nonlinear FDTD experiment. (b)electric field distribution (|E|2) at the upward
dynamic switching point.

the refractive index n is 3.14. A complete bandgap within

the frequency range 0.316 − 0.445 2πa/c is supplied by the

infinite PhCs. The arms of the MZFI is created by removing

certain rods while the side couple nonlinear Fano defect is

made by replacing one rod with a polymer rod(n = 1.59)

which supports a quadrupole mode at f ≈ 0.3723 2πc/a. The

third-order nonlinearity susceptibility of the polymer is 1.14×
10−12cm2/W . We use the nonlinear Finite Difference Time

Domain (FDTD) method which exactly solves the Maxwell

equations to fully model the realistic problem. The bistable

state shown in Fig. 3 (a) is obtain by the pulse with input

frequency f = 0.373 2πc/a and duration 30 picoseconds. The

profile is similar with the theory except for the transmission

of the on-state. Fig. 3 (b) shows the transient electric field

distribution (|E|2) at exactly the downward dynamic switching

point(from on to off-state). Nearly perfect blocking of the

input pulse demonstrates the dynamic shutting down operation

by a pulse and successfully suppression of the modulation

instability. The high excitation both in the Fano defect and the

loop is also the signature of the hybrid Fano resonance in the

MZFI. The reduction of the on-state transmission is caused by

the reduction in the linear transmission and the transient shift

of the defect mode [25]. Increasing the linear transmission can

be done by careful designing which locates the interaction

between the eigen-Fano resonance and the loop’s resonance

exactly at the band center. It should be pointed out that the

discrete nonlinear MZFI is not limited to the PhCs case which

presents a schematic example of nonlinear MZFI. And it can

be generalized to fully describe the dynamics of other similar

nonlinear system.

IV. CONCLUSION

In conclusion, we have discussed the nonlinear concept of

the Mach-Zehnder-Fano interferometer. Both stationary and

dynamic solutions convince the superiority of the enhanced

nonlinear response and bistability in MZFI. The enhanced

excitation in the nonlinear Fano defect and the asymmetry

and high contrast linear transmission are the key reason that

the MZFI would be benefited from the nonlinearity. Direct

numerical simulations in two-dimensional PhCs confirm the

theoretical prediction of the dynamic characteristics. The ef-

fective discrete model is general and can be applied to other

branches of discrete physical system.
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