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[1] The Peregrine soliton, which is commonly considered to be a prototype of a rogue
wave in deep water, is observed and measured in a wave tank. Using the measured data of
water elevation, we calculated the spectra of the Peregrine soliton and confirmed that
they have triangular shapes, in accordance with the theory.
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[2] Today, the existence of oceanic rogue waves is no
longer doubted or considered to be a myth. Buoy, platform
and satellite measurements as well as possible occurrence
mechanisms are widely discussed in the literature [Kharif
et al., 2009; Garret and Gemmrich, 2009; Osborne, 2010;
Müller et al., 2005; Onorato et al., 2001; Ten and Tomita,
2006]. (see also the proceedings of the MaxWave Final
Meeting, World Meteorological Organization, Geneva,
Switzerland, 8–10 October 2003). The direct measurements
of the wave profiles or their reconstruction from the space
photos are essential modern experimental techniques. They
allow us to see the presence of rogue waves in a chaotic
wavefield. Due to the nature of rogue waves that “appear
from nowhere,” more sophisticated techniques are needed if
we want to predict the potential growth of rogue waves at
earlier stages of their evolution. In optics, the spectral data
are one of the main sets of measurements in experiments that
allow us to reveal the presence of rogue waves in fibers
[Hammani et al., 2011a, 2011b]. The spectral approach in
the case of ocean waves is also highly informative. The
Hilbert spectrum analysis has been suggested as one of the
ways to study the nonlinear evolution processes of Stokes
waves [Huang et al., 1999]. It was shown that this method
provides a more precise definition of particular events in
time-frequency space than wavelet analysis. It also provides
more physically meaningful interpretations of the underlying
dynamic processes. The direct spectral measurements for
ocean waves have also been proposed as one of these
promising methods [Akhmediev et al., 2011a]. When these
measurements are done progressively on patch by patch
basis, the results may provide valuable information about
raising amplitudes of rogue waves in certain region of the
sea [Akhmediev et al., 2011b]. Although, basic techniques
have been described earlier, presenting them to the oceano-
graphic community is one of the important aspects of

research activity. We base our present spectral analysis on
the water tank experiment published earlier [Chabchoub
et al., 2011].
[3] The Peregrine soliton is presently considered to be one

of the possible candidates for description of rogue waves in
deep waters [Shrira and Geogjaev, 2010]. It is the lowest-
order rational solution of the nonlinear Schrödinger equation
(NLS) and in contrast to other types of localized solutions it
grows according to a power law rather than exponentially.
This means that it takes significantly longer time for its
amplification than for other breathers [Dysthe and Trulsen,
1999]. If this growth could be anticipated at early stages of
the rogue wave formation, we may have more time to react.
The main idea is that spectral measurements may separate
the rogue wave component from others in the chaotic
wavefield [Akhmediev et al., 2011b] thus making the process
of its growth to be visible in advance.
[4] In this work, we measure the spectral content of the

Peregrine soliton that we observed in a water wave tank
earlier [Chabchoub et al., 2011]. We perform such mea-
surements processing the amplitude data and transforming
them into spectra. This technique provides us with the proof
of principle. This way, we confirmed that the spectra of the
Peregrine soliton have specific triangular shape as predicted
theoretically. In order to see the spectra directly, special
spectral equipment must be developed which presently does
not exist. However, our technique may become promising
and such equipment could be developed later and used for
early warning in the oceanic conditions.
[5] Mathematical models which describe the formation of

the extreme waves due to modulation instability [Benjamin
and Feir, 1967] are based on nonlinear equations. The
simplest one is the nonlinear Schrödinger equation (NLS)
first derived by Zakharov [1968]:
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where k0 and w0 = w(k0) denote the wave number and the
frequency of the carrier wave, respectively. w0 and k0 are
connected through the dispersion relation of linear deep
water wave theory w0 =
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gravitational acceleration. Envelope soliton solutions of the
NLS interact with the background wave and propagate with
the group velocity cg:=

w0
2k0

. The surface elevation h(x, t) of
the sea surface is then given by:

hðx; tÞ ¼ Re aðx; tÞ � exp i k0x� w0t þ fð Þ½ �ð Þ: ð2Þ

where f is the carrier envelope phase.
[6] One of the prototypes of oceanic rogue waves

described by the NLS (1) is the Peregrine solution [Shrira
and Geogjaev, 2010; Peregrine, 1983]:
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where a0 is the amplitude of the carrier wave. Its special
feature is that it is localized both in space and in time, thus
being dubbed as a “wave that appears from nowhere and
disappears without a trace” [Akhmediev et al., 2009].This
feature of the solution is clearly seen in Figure 1. It is worthy
to mention that the Peregrine soliton is the limiting case of the
space periodic Akhmediev breather [Shrira and Geogjaev,
2010; Dysthe and Trulsen, 1999; Akhmediev and Korneev,
1986; Akhmediev et al., 1987] assuming the period to be
infinite. In this limit, the amplitude of the breather occurred
to be the highest while its amplification length being the
longest. The latter fact is essential if we hope to base our early
warning systems on these early stages of the rogue wave
development.
[7] Despite the Peregrine soliton being one of the candi-

dates [Shrira and Geogjaev, 2010] for description of rogue
waves in the ocean the question will always remain to what
extent this simplest solution of the NLS is close to the
measured extreme waves. In this regard, we used the data of

the Yura wave recorded in the Sea of Japan [Liu and Mori,
2001] and compared these data with the wave envelope
given by the suitably normalized Peregrine soliton.
[8] Using the measured time series, we determined the

characteristic frequency and amplitude of the Yura wave
and used them for normalization of the theoretical curve.
The comparison is shown in Figure 2. Although other
explanations can be suggested, for chaotic ocean waves, the
similarity is clearly visible. We do realize that a single plot
cannot prove the case. However, this similarity justifies our
efforts in studying the Peregrine soliton in the laboratory.
Spectra of this solution is our next important step in such
exploration.
[9] The first experimental observation of the Peregrine

soliton in a water wave tank was recently documented by
Chabchoub et al. [2011] while in optics it has been observed
by Kibler et al. [2010]. In optics, the spectra can be mea-
sured directly. Such measurements have shown that they do
have triangular shape in accordance with the theory. How-
ever, for water waves, the measurements are not trivial and
require special efforts. In the present work, we use the
measurements of water elevation and transform them into
the spectral data.
[10] The experiments are performed in a 15 m � 1.6 m �

1.5 m water wave tank with 1 m water depth which is
described by Chabchoub et al. [2011]. A single-flap paddle
activated by a hydraulic cylinder is located at one end of the
tank. A wave absorbing beach at the opposite end of the tank
is installed to inhibit wave reflections. We excited the carrier
wave with the angular frequency w0 and the amplitude a0
that were chosen to best fit the size of the tank and selected
to be w0 = 2pf0, where f0 = 1.7 Hz, and a0 = 0.01 m, respec-
tively. The surface elevation at many points along the tank
was measured by a capacitance gauges with a sampling fre-
quency of fs = 0.5 kHz.
[11] In order to obtain the spectra of the experimentally

measured Peregrine breathers, we can proceed in various
ways. One of them is to calculate the spectra of the water
elevation that includes the carrier wave. Such spectra usually
consist of the triangular spectra of the Peregrine soliton plus
the central peak attributed to the harmonic background wave
which ideally would be a delta function [Akhmediev et al.,
2011a].
[12] Another way is to first identify the envelope of each

measurement. This way, we can avoid the presence of the
delta function and obtain purely the triangular spectra. When
chosen this technique, the complex envelope of each signal
can be computed by the use of the Hilbert transform H [see
Osborne, 2010]. Figure 3 shows the results of measurements
which capture the carrier wave as well as the envelope
evolution along the water tank. Hilbert transform allows us
to eliminate the fast oscillations of the carrier wave and deal
with the complex envelope [Huang et al., 1999; Thrane
et al., 2011]. As we found previously [Chabchoub et al.,
2011], the latter represents the Peregrine soliton evolution
along the x axis.
[13] Each time series provides the complex envelope

approximated by the Hilbert transform applied on each
signal. We rearranged the discrete signals from x* =
0.10 m to the maximum amplitude amplification position
at x* = 9.10 m by ignoring the group velocity, that is, by
aligning the envelope modulations in time. Due to the

Figure 1. Peregrine breather solution qP(X, T) = exp(2iT) ⋅
(1 � 4 1þ4iTð Þ

1þ4X 2þ16T2 ) of the focusing and rescaled (dimension-
less) NLS: iqT + qXX + 2∣q∣2q = 0. Modified from
Chabchoub et al. [2011], copyright 2011 by the American
Physical Society.
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Figure 2. Yura wave data (solid blue curve) [Liu and Mori, 2001] compared with the normalized
Peregrine breather solution combined with the carrier wave (dashed red line). The inset shows the
spectrum of the Yura wave in the logarithmic scale calculated using the data of the present window.
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symmetry of the Peregrine solution, the envelopes are then
mirrored to catch the growth and decay process, as shown
in Figure 4. This way, the length of evolution is doubled
to 18 m. The plot has noise content as a result of the noise in
the elevation data and the finite length of the carrier wave.
Otherwise, the main features of the reconstructed Peregrine
soliton are well presented. Having the envelope, we can
calculate its spectrum.
[14] We use the discrete Fourier transform to calculate

the spectrum of the Hilbert envelope over the 20 equidis-
tant signals from position x* = �9.10 m to x* = 9.10 m as
follows:

Fðk; x∗Þ ¼
XN
n¼1

∣H hðx∗; tÞ� �
∣e

�2piðn�1Þðk�1Þ
N ; ð4Þ

where N labels the length of the time series h(x*, t). Then, in
order to obtain the correct frequency scale, F(k, x*) is
mapped onto a frequency vector f (k, x*) = fsk

N . Finally, the
frequency spectrum is estimated by:

Sðf ; x∗Þ ¼ 2∣Fðf ; x∗Þ∣2: ð5Þ

[15] Figure 5 shows the frequency spectrum of the recon-
structed Peregrine soliton on a log scale evaluated at the 20
discrete space positions. Figure 5 clearly shows that the
shape of the central part of the spectrum is triangular at any
x. This feature was also experimentally observed in fibre
optics [Kibler et al., 2010]. Our water wave experiments
confirm qualitatively the analytical results described by
Akhmediev et al. [2011a]. These results demonstrate clearly

the possibility of a rogue wave early warning through
spectral measurements.
[16] In another set of calculations, we obtained the shape

of the spectra directly from the measurements. Again, we
used the discrete Fourier transform to calculate the spectra
over the 20 equidistant signals, that is, from the point at the
position x* = �9.10 m to the point x* = 9.10 m by com-
puting the discrete Fourier transform:

Fðk; x∗Þ ¼
XN
n¼1

hðx∗; tÞe�2piðn�1Þðk�1Þ
N ; ð6Þ

Next, the function F(k, x*) is mapped onto a frequency
vector f(k, x*) = fsk

N . Last, the frequency spectrum is esti-
mated by:

Sðf ; x∗Þ ¼ 2∣Fðf ; x∗Þ∣2: ð7Þ

The results of these calculations are presented in Figure 6.
We can see, from Figure 6, that for each x, the peak of the
spectrum on a log scale is exactly located at 1.7 Hz which is
the frequency of the background wave. The noise is also
significantly lower. The latter is attributed to the direct way
of calculations.
[17] For the sake of comparison, we also calculated the

spectrum of Yura wave. It is presented in the inset of
Figure 2. The spectrum is shown in the logarithmic scale and
calculated in the same window as in Figure 2. Unfortunately,
the number of data points in the experimental series is
insufficient to make definitive conclusion. Nevertheless, the
triangular shape of the spectrum can be seen even in this plot
with limited number of data points.
[18] Spectra of water waves often involve components that

correspond to bounded waves [Huang et al., 1999; Plant
et al., 2004]. In our case, the second harmonic of the car-
rier frequency is located at 3.4 Hz = 2 � 1.7 Hz. The small
peak at this frequency does exist but can be ignored for the
wave amplitudes and wavelengths we are dealing with. The

Figure 4. Reconstructed Peregrine breather from the Hil-
bert transform applied on each time series. The ripples are
caused by the unavoidable noise in the experimental time
series.

Figure 3. Evolution of the carrier in a water wave tank
modeled by the Peregrine soliton (solid blue lines) and the
envelope approximated by the modulus of the Hilbert trans-
form ∣H[h(x*, t)]∣ at a set of discrete positions along x axis
(dashed red lines). Modified from Chabchoub et al.
[2011], copyright 2011 by the American Physical Society.
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peak at the second harmonics becomes noticeable in case of
wave amplitudes and wavelengths larger than 0.01 m and
0.54 m, respectively. However, our tank size cannot allow
this as the deep water conditions then would not be satisfied.
[19] Finally, we should comment that in the geophysical

applications, the nonlinear Schrödinger equation and the
Peregrine breather, in particular, are valid for weakly non-
linear waves. Improved envelope models (Dysthe’s [1979]
equation and other extensions [Sedletskii, 2003; Slunyaev,
2005]) and strongly nonlinear Euler equations are presently
also employed to predict characteristics of oceanic rogue
waves and their statistics. The higher-order corrections may

add to the modifications of spectra. Nevertheless, the lowest-
order approach that we confirmed to be the case in our
experiment is important and has to be studied in the first
place before considering complicated modifications.
Clearly, such modifications would not be possible without
having the basic effect in place.
[20] In conclusion, we observed the Peregrine soliton in a

water wave tank and using the surface elevation data cal-
culated the spectra. The calculations revealed the spectra of
triangular shape that are in qualitative agreement with the-
oretical predictions. We expect that direct spectral mea-
surements may reveal the Peregrine soliton on a water

Figure 6. Spectrum on a log scale computed directly from the measurements.

Figure 5. Spectrum on a log scale of the reconstructed Peregrine breather.
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surface before the main peak appears thus making an early
warning possible from an experimental point of view.
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