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Lower Bounds for the Empirical Minimization Algorithm

Shahar Mendelson

Abstract—In this correspondence, we present a simple argument that
proves that under mild geometric assumptions on the class F and the set
of target functions T , the empirical minimization algorithm cannot yield a
uniform error rate that is faster than 1=

p
k in the function learning setup.

This result holds for various loss functionals and the target functions from
T that cause the slow uniform error rate are clearly exhibited.

Index Terms—Empirical minimization, function learning, lower bounds,
statistical learning theory.

I. INTRODUCTION

The aim of this correspondence is to present a relatively simple proof
of a lower bound on the error rate of the empirical minimization algo-
rithm in function learning problems.

Let us describe the question at hand. Let F be a class of functions on
the probability space (
; �) and consider an unknown target function
T that one wishes to approximate in the following sense. The learner
is given a random sample (Xi)

k

i=1
, (T (Xi))

k

i=1
, where X1; . . . ; Xk

are independent points selected according to (the unknown) proba-
bility measure �. The goal of the learner is to use this data to find a
function f 2 F that approximates T with respect to some loss func-
tion `; in other words, to find f 2 F such that the expected loss
`(f(X); T (X)) is close to the best possible in the class. A typical

choice of a loss function ` is the squared loss jx� yj2, or more gener-
ally, the p-loss jx � yjp for 1 � p < 1. There are, of course, many
other choices of ` that are used.

The function learning problem has a more general counterpart, the
agnostic learning problem, in which the unknown target function T is
replaced by a random variable Y . The data received by the learner is
an independent identically distributed (i.i.d.) sample (Xi; Yi)

k

i=1
given

according to the joint probability distribution of X and Y . Again, the
goal is to find some f 2 F for which `(f(X); Y ) is as small as
possible.

An algorithm frequently used in such prediction problems is empir-
ical minimization. For every sample, the algorithm produces a func-
tion f̂ 2 F that minimizes the empirical loss k

i=1
` (f(Xi); T (Xi))

[ k

i=1
` (f(Xi); Yi) in the agnostic case]. The hope is to obtain a high

probability estimate on the way the risk of f̂ , defined as the conditional
expectation

`(f̂ ; T )jX1; . . . ; Xk � inf
f2F

`(f; T );

decreases as a function of the sample size k. The expectation of this
quantity is usually called the error rate of the problem and measures
“how far” the algorithm is from choosing the best function in the class.
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If `(T; �) has a unique minimizer in F , which we denote by f�,
one can define the excess loss L(f) = `(f; T ) � `(f�; T ). Then, the
excess loss (risk) of the empirical minimizer is

L(f̂)jX1; . . . ; Xk :

There are numerous results on the performance of the empirical min-
imization algorithm but we will not present any sort of survey of those
results here. Roughly speaking, it turns out that the “richness” of the
function class F as captured by the empirical process indexed by it
determines how well the empirical minimization behaves in the two
learning problems we mentioned above, and, in order to obtain an error
rate that tends to 0 asymptotically faster than 1=

p
k, not only does the

class have to be small, but additional information on the loss is needed;
for example, a Bernstein-type condition that for every f 2 F

L2(f) � c ( L(f))� (1.1)

for some constants c and 0 < � � 1 would do.
For more details on richness parameters of classes and the way in

which those, combined with conditions similar to (1.1), govern the error
rate, we refer the reader to [17], [2], and [3] and to the surveys [7], [1],
[21], [5], [14], [18], and [4]. For general facts concerning empirical
processes, see, for example, [22] and [9].

Our main interest is in a lower bound on the performance of the em-
pirical minimization algorithm in function learning problems. There
are many lower bounds that are independent of the algorithm used
(see, for example, [12] and references therein), but usually, these lower
bounds deal with specific classes and are very different in nature from
what we have in mind. The starting point of our discussion is the sur-
prising result established in [15]: a lower bound on the performance of
any learning algorithm in the agnostic case.

To formulate this result, we need the following definitions. We say
that A is a learning algorithm if for every integer k and any sample
s = (Xi; T (Xi))

k
i=1 (resp., (Xi; Yi)

k
i=1 in the agnostic case) it assigns

a function As 2 F . For a random variable Y , we denote by � the joint
probability measure endowed by (X;Y ).

Theorem 1.1 [15]: Let F � L2(�) be a compact class of functions
bounded by 1 and set `(x; y) = (x�y)2. Assume that there is a random
variable Y bounded by � for which (f(X) � Y )2 has more than a
unique minimizer in F . Then, there are constants c and k0 depending
only on F , �, and � for which the following holds. If A is a learning
algorithm and Y = fY : kY k1 � �g, then for every k � k0,

sup
Y

`(Â; Y )jsk � inf
f2F

`(f; Y ) � cp
k

where the supremum is with respect to all random variables Y taking
values in Y , sk = (Xi; Yi)

k
i=1 is an i.i.d sample according to the joint

distribution of (X;Y ), and Â = As .

In other words, there will be a range [��; �] for which no matter
what learning algorithm is chosen by the learner to approximate targets
taking values in that range, the best uniform error rate it can guarantee
with respect to all these targets cannot be asymptotically better than
1=
p
k.

It is important to mention that this is not the exact formulation of
the result from [15]. In the original formulation, it was assumed that
F is compact and nonconvex. A part of the proof was to show that
under these assumptions there is some � and a random variable Y
bounded by � for which (f(X) � Y )2 has multiple minimizers in
F , in the following sense: there are f1; f2 2 F such that (f1(X) �
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Y )2 6= (f2(X) � Y )2 on a set of positive measure and f1; f2 min-
imize (f(X) � Y )2 in F . Unfortunately, that part of the proof is
incorrect (see also [16]).

The surprising point in Theorem 1.1 is that the lower bound of 1=
p
k

does not depend on the richness of the class. The slow rate is the best
possible uniform rate regardless of how “statistically small” the class
F is. Somehow, the bad geometry of F is the reason for the slow rate
and understanding the geometric reasons causing the bad rates is one
of our goals.

A rather delicate point in Theorem 1.1 is that it does not imply that
there is a single random variable Y taking values in Y for which the
error rate is bounded from below by c=

p
k. What it does say is that

for any fixed algorithm and any integer k � k0 there will be some
random variable Y –depending on F , �, and k and the chosen algo-
rithm, on which the algorithm performs poorly after being given k data
points—but even for a fixed algorithm, the “bad target”Y might change
with k.

Because the proof in [15] is based on a “probabilistic method” type
of construction, it is indirect. For each k, the fact that a “bad” Yk exists
is exhibited (based on the existence of a target Y with multiple mini-
mizers), but what Yk is and how it is related to the geometry of F is not
revealed by the proof. Of course, this is the best that could be expected
in such a general solution since the algorithm used is not specified and
can be arbitrary. The proof also uses the fact that one is allowed to se-
lect an arbitrary random variable Y as a target rather than a noiseless
target function T (X). Thus, the agnostic argument from [15] does not
extend to the function learning setup.

We present a simple argument that proves the same lower bound
in the function learning scenario for the empirical minimization algo-
rithm. The argument requires minor assumptions on the loss functional,
rather than assuming that ` is the squared loss. Moreover, it enables one
to pin-point a “bad” target for every sample size k. Our feeling is that
this proof sheds some light on the reasons why the bad geometry of F
leads to poor statistical properties.

Our starting point is similar to [15] (though the proofs take very dif-
ferent paths). Assume thatE is a reasonable normed space of functions
on (
; �) with a norm that is naturally connected to the loss (for ex-
ample, the p-loss is connected to the Lp norm). Assume further that
F � E is “small” in an appropriate sense and that T has more than
a unique best approximation in F . Fix one such best approximation
f� 2 F . We will show that for every k � k0 and � � 1=

p
k, the func-

tion (1� �)T + �f� is a “bad” target function for a typical k-sample,
that is, for every k � k0

X ;...;X `(f̂ ; T� )jX1; . . . ; Xk � inf
f2F

`(f; T� ) � cp
k

where f̂ is the empirical minimizer and c is a constant that depends
only on F , `, and properties of the space E.

A corollary of this general result is Theorem 1.2. Recall that
�-Donsker classes are sets F � L2(�) that satisfy some kind of a
uniform central limit theorem (see [9] and [22] for detailed surveys on
this topic).

Let E be a normed space of functions on (
; �) and let N(F;E) be
the set of functions in E that have more than a unique best approxima-
tion in F .

Theorem 1.2: Let 2 � p < 1 and set E = Lp(�). Assume that
F � E is a �-Donsker class of functions bounded by 1, let R > 0,
and assume that T � E \ BL (0;R) is convex and contains F . If `
is the p-loss function and T \N(F;E) 6= ;, then for k � k0

sup
T2T

X ;...;X `(f̂ ; T )jX1; . . . ; Xk � inf
f2F

`(f; T ) � cp
k

where c and k0 depend only on p, F , and R.

Let us note that the assumption that F and T are bounded in L1
is only there to ensure that Lipschitz images of these functions satisfy
some technical integrability properties we require and is not essential
for the proof. Also, the convexity assumption on T is only there to
ensure that if T 2 N(F;E) and f� 2 F then for any � 2 [0; 1] the
convex combination (1 � �)T + �f� 2 T , and thus, a “legal” target
function.

It turns out that the reverse direction of Theorem 1.2 is also true [19].
Indeed, one can show that if the set T is “far away” from N(F;E)
then the class F satisfies a Bernstein condition. Thus, if F is “small,”
the uniform error rate with respect to functions in T decays faster than
1=
p
k.

To formulate this reverse direction, we need the following definition.

Definition 1.3: Let E be a Banach space, set F � E to be compact,
and assume that T 62 N(F;E). If f� is the best approximation of T in
F , let

��(T ) = sup � � 1 : �f� + (1� �)T 62 N(F;E) :

In other words, if T 62 N(F;E) and if one considers the ray originating
in f� that passes through T , ��(T ) measures how far “up” this ray
one can move while still remaining at a positive distance from the set
N(F;E). Clearly, if d(T;N(F;E)) > 0 then ��(T ) > 1.

Theorem 1.4 [19]: Let 1 < p < 1 and set F � Lp(�) to be a
compact set of functions that are bounded by 1. Let T be a function
bounded by 1 for which d(T;N(F;E)) > 0. Then, for every f 2 F

L2

f � B( Lf )�

where Lf = jf �T jp�jf��T jp is the p-excess loss associated with
f and T , �p = minfp=2; 2=pg, and

B = c(p)
��(T )

��(T )� 1
:

In particular, for p = 2, the combination of Theorems 1.2 and 1.4
gives an almost characterization of the uniform error rate associated
with a set of targets T . Indeed, if a target is “far away” from the
set N(F;E), the excess loss class satisfies a Bernstein condition,
implying that the error rate of the empirical minimizer depends only on
the statistical complexity of F and not on its geometry. In particular,
if d(T ; N(F;E)) > 0 and F is small enough, one has very fast error
rates—uniformly in T . On the other hand, T is closed and convex and
d(T ; N(F;E)) = 0, and there is some T 2 T \N(F;E). Hence, by
Theorem 1.2, the best possible error rate is � 1=

p
k.

Finally, we have a word about notation. Throughout this correspon-
dence, all constants will be denoted by c, c1, etc. Their vales may
change from line to line. We will also emphasize when a constant is
absolute (that is, a fixed positive number) and when it depends on other
parameters of the problem (for example, the diameter of the set F with
respect to the norm). Constants that will remain fixed throughout this
correspondence will be denoted by C1, C2, etc.

Let Pkg = k�1 k

i=1
g(Xi) where X1; . . . ; Xk are inde-

pendent, distributed according to �, and set kPk � PkG to be
the supremum of the empirical process indexed by G, that is,
supg2G jk�1 k

i=1
g(Xi)� gj. If E is a normed space, let B(x; r)

be the closed ball centered at x and of radius r and set BE to be the
closed unit ball.

II. PRELIMINARIES

Let (E; k k) be a normed space of functions on the probability space
(
; �). We need to assume thatE has a nice structure, namely, that it is
smooth and uniformly convex (defined below). For more information
on these geometric notions, we refer the reader to [8], [6], and [10].
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Fig. 1. Illustration of T .

We say that a normed space is smooth if the norm is Gâteaux differ-
entiable in any x 6= 0. There is an equivalent geometric formulation of
this notion that for every x on the unit sphere of E there is a unique,
norm one linear functional that supports the unit ball in x [that is, a
unique functional x�, such that kx�k = 1 and x�(x) = 1].

Uniform convexity measures how far “inside” the unit ball (x+y)=2
is, where x and y are distant points on the unit sphere.

Definition 2.1: E is called uniformly convex if there is a positive
function �E(") satisfying that for every 0 < " < 2 and every x; y 2
BE for which kx� yk � ", kx+ yk � 2� 2�("). In other words

�E(") = inf 1� 1

2
kx+ yk : kxk; kyk � 1; kx� yk � " :

The function �(") is called the modulus of convexity of E.

A fact we will use later is that �E(") is an increasing function of "
and that if 0 < "1 � "2 � 2 then �E("1)="1 � �E("2)="2 (see, e.g.,
[8, Ch. 8]).

Next, let us turn to some of the properties of the learning problem
we study. Consider the sets F and T that are closed subsets of E.
The aim of the learner is to approximate an unknown target function
T 2 T using functions from F , and the notion of approximation is
via the loss functional `(x; y). The assumptions on the loss ` are that
it is a Lipschitz function from 2 to and that the expected loss is
compatible with the norm.

Assumption 2.1: Assume that ` : 2 ! is a nonnegative Lips-
chitz function with constant k`klip. Assume further that there is some
function � : + ! + that is differentiable, strictly increasing, and
convex, such that for every f; g 2 E, `(f; g) = �(kf � gk).

This assumption is natural in the context of function learning. For
example, the p loss function `p(x; y) = jx� yjp satisfies Assumption
2.1 when E = Lp(�) and �(t) = tp.

In our construction, we consider the excess loss functional that mea-
sures how far f is from being the best in the class. To that end, set
F�;T = ff 2 F : `(f; T ) = infg2F `(g; T )g. It is well known
(see, e.g., [15], [17], and [18]) that under various assumptions on the

class and on the loss functional, F�;T is a singleton, which we denote
by f�. In such a case, one can define the excess loss functional

LT (f) = `(f; T )� `(f�; T )

and the excess loss classLT (F ) = fLT (f) : f 2 Fg. IfF�;T contains
more than one element, the excess loss class is not well defined, but we
will not have to tackle this issue here.

A. An Outline of the Proof

Let T be a convex set containing F and put N(F; `) to be the set
of functions T 2 E for which `(T; �) has multiple minimizers in
f`(f; T ) : f 2 Fg. Assume that T \ N(F; `) 6= ; and let T 2
T \ N(F; `). Thus, there is a set F�;T � F of cardinality strictly
larger than 1 with the following properties.

1) If f1; f2 2 F�;T and f1 6= f2, then `(f1; T ) 6= `(f2; T ) on a set
of positive �-probability.

2) For every g 2 F�;T , `(g; T ) = minf2F `(f; T ) � R.
Therefore, as `(f; T ) = �(kf�Tk) and since� is strictly increasing,
then F�;T � F \B(T; �) where � = ��1(R). Fix any f� 2 F�;T and
for every � 2 (0; 1] define T� = (1� �)T + �f�.

Our construction has three components. First, one has to show that
T� 62 N(F; `), and that the unique minimizer of `(T�; �) is f�. This
follows from the fact that T� has a unique nearest point in F with
respect to the norm. In particular, the excess loss functional with respect
to the target T� (denoted by L�) is well defined and is given by

L�(f) = `(f; T�)� `(f�; T�):

Note that T� is a convex combination of points in T and thus T� 2
T . Therefore, if the empirical minimization algorithm is to give fast
rates, it must produce with high probability functions for which the
conditional expectation satisfies

lim
k!1

p
k L�(f̂)jX1; . . . ; Xk = 0:
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On the other hand, take any other (fixed) f1 2 F�;T . It is clear that
j`(f1; T ) � `(f�; T )j � � > 0, otherwise `(f; T ) = `(f�; T ) al-

most surely, contradicting our assumption that those are distinct points
in F�;T .

Observe that var (L�(f1)) tends to var (`(f1; T )� `(f�; T )) as
�! 0. Thus, there is a constant �0 such that for � � �0, L�(f1) has
a “large” variance �2 satisfying � � �=2. On the other hand, a rather
simple calculation shows that the expectation of L�(f1) is at most c�.

Because typical values of PkL�(f1) are

1

k

k

i=1

(L�(f1)) (Xi) � (L�(f1))� �=
p
k

then by a quantitative version of the central limit theorem, there is an
integer k0 (that depends only on T , f1, and `) such that for every k �
k0 there is a set of samples (Xi)

k
i=1, denoted by Sk , with the following

properties:
1) the measure �k(Sk) � 1=4;
2) for every sample in Sk

PkL�(f1) � �c1 �p
k
+ c2� � �c3 �p

k

if one takes � � minfc4(�)=
p
k; �0g.

Hence, for such a choice of �, if f is a potential empirical minimizer
for L� with respect to a sample (Xi)

k
i=1 2 Sk , then its empirical error

must be smaller than �c3�=
p
k.

On the other hand, by the uniform law of large numbers, for every
r > 0, the empirical process indexed by L�;r(F ) = fL�(f) :
L�(f) � rg satisfies that with high �k-probability (say, at least 5/6)

kPk � PkL (F ) � c kPk � PkL (F ) �W�(r)

where c is an absolute constant. In other words, if g 2 F satisfies that
L�(g) � r, then

jPkL�(g)j �W�(r) + r:

It remain to show that if we select � � 1=
p
k and r � 1=

p
k, then

W�(r) + r � c3�=(2
p
k). Thus, if L�(f) has small expectation, its

empirical expectation is not negative enough to defeat the empirical
error generated by f1 and the empirical minimizer f̂ must have a rela-
tively large risk.

We will show that one can find such choices of � and r if the
Gaussian processes indexed by random coordinate projections of F
are continuous in some sense with respect to the norm on E, and this
continuity assumption is satisfied, for example, if F is a �-Donsker
class and ` is the squared loss.

This analysis shows that for �k � 1=
p
k, the target T� causes

the risk of the empirical minimizer to be larger than c=
p
k for typical

samples of size k. However, as we mentioned in the introduction, it was
proved in [19] that for each 0 < � < 1, the error rate associated with
the fixed target T�, that is, the rate at which

X ;...;X L�(f̂)jX1; . . . ; Xk

tends to 0 as a function of k, will be significantly better than 1=
p
k

if F is small enough. Thus, the slow uniform error rate is not caused
by a single target function, and the guilty party truly changes with the
sample size k.

III. DETAILED PROOF

In this section, we will present the details of the construction leading
to the promised lower bound.

Consider L�(F ) and W�(r) as above and set F�;r = ff :
L�(f) � rg. The first part of the proof will be to show that with

high probability, if � � 1=
p
k, then functions L�(f) with expectation

smaller than c=
p
k have an empirical error that is close to 0, and

in particular, not “very negative.” This, of course, requires some
assumption on the richness of F , which will be captured by a variant
of the notion of asymptotic equicontinuity (see, e.g., [13] and [9]).

Definition 3.1: We say that F is compatible with the norm k k if the
following holds. For every u > 0, there is some integer k0 and q > 0
for which

sup
k�k

1p
k

sup
ff;h2F :kf�hk�qg

k

i=1

gi(f � h)(Xi) � u:

In other words, the oscillation of the Gaussian process indexed by a
“typical” coordinate projection of F is well behaved with respect to
the norm on E.

A fundamental fact due to Giné and Zinn (see, e.g., [13, Th. 14.6]
and [9]) is that a �-Donsker class is compatible with the L2 norm, and
therefore, it is compatible with any Lp norm for 2 � p <1.

Theorem 3.2: Let F be a class of functions that is compatible with
the norm on E and set F�;r = ff : L�(f) � rg. For every �; u >,
there is an integer k0 and 0 < � � u such that for k � k0, with
probability 5=6

sup
f2F

jPkL�=pk(f)j �
2up
k
:

The first step in the proof of Theorem 3.2 is the following standard
lemma.

Lemma 3.3: There exists an absolute constant c such that for every
r; � > 0

sup
f2F

1

k

k

i=1

(L�(f)) (Xi)� L�(f)

� ck`klip
k

sup
f;h2F

k

i=1

gi (f � h) (Xi) (3.1)

where (gi)ki=1 are independent, standard Gaussian variables.
Proof: Fix r; � > 0. By the Giné–Zinn symmetrization argument

[11] and the fact that the expectation of the supremum of a Rademacher
processes is dominated by the expectation of the supremum of the
Gaussian process indexed by the same set (see, for example, [13, Ch.
4])

supf2F
1

k

k

i=1

(L�(f)) (Xi)� L�(f)

� 2 X " sup
f2F

1

k

k

i=1

"i(L�(f))(Xi)

� c X g sup
f2F

1

k

k

i=1

gi(L�(f))(Xi)

where c is an absolute constant.
Clearly, for every k-sample (Xi)

k
i=1 and every h; f 2 F�;r

g

k

i=1

gi(L�(f))(Xi)�
k

i=1

gi(L�(h))(Xi)

2

� k`k2lip
k

i=1

((f � f�)� (f� � h))2 (Xi)

= k`k2lip g

k

i=1

gi (f � f�)�
k

i=1

gi (f� � h) (Xi)

2

:
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Fig. 2. Illustration of Lemma 3.4.

Therefore, by Slepian’s lemma [9], for every k-sample

g sup
f2F

1

k

k

i=1

gi(L�(f))(Xi)

� g sup
f;h2F

1

k

k

i=1

gi(f � h)(Xi)

and the claim follows by taking the expectation with respect to
X1; . . . ; Xk .

The next step is to show that the set F�;r is contained in a relatively
small ball (with respect to the norm) around f�. The main point in the
proof of this fact is the following geometric lemma.

Lemma 3.4: LetE be a uniformly convex, smooth normed space and
consider x; y 2 E and � 2 + such that ky� xk = �. Let 0 < � < 1
and set x� = (1� �)x+ �y. If z satisfies that kz � xk � �, then

kx� � zk � (1� �)� � 2�kz � xk�E
kz � yk

kz � xk
:

Proof: Without loss of generality, we can assume that x = 0. Fix
z 6= y and by our assumption, kzk � kyk. Define the function

H(�) =
kx� � zk

kzk
=
k�y � zk

kzk

and observe that H is a convex function and H(0) = 1. Also, since
E is smooth, H is differentiable in � = 0. Thus, H(�) � H(0) =
H(�) � 1 � H 0(0)�. Therefore

H(�)� (1� �) � H 0(0) + 1 �

and to complete the proof one has to bound H 0(0) from below.

Applying the chain rule,H 0(0) = u� y
kzk

, where u� is the unique

functional of norm one supporting the unit sphere in�z=kzk � u. Let
v = y=kzk and since ku�k = 1, then

u�(u�v)�ku� vk�2� 2�E(ku+vk)=2�2�E
ky�zk

kzk
:

Because u�(u) = 1, �u�(v) � 1� 2�E
ky�zk
kzk

, implying that

H(�)� (1� �) � H 0(0) + 1 � � 2��E
ky � zk

kzk
:

Therefore

kx� � zk � (1� �)� �kx� � zk � (1� �)kzk

� 2�kzk�E
ky � zk

kzk
:

The first application of Lemma 3.4 is that L� has a unique mini-
mizer in F for any 0 < � � 1, if the underlying spaceE is smooth and
uniformly convex and `(f; g) = �(kf � gk), as in Assumption 2.1.

Corollary 3.5: Consider the excess loss L�(f) = `(f; T�) �
`(f�; T�); set D = supf2F kT � fk and � = kT � f�k. Then, for
every 0 < � � 1 and every f 2 F

L�(f) � �0((1� �)�) � 2�D�E
kf � f�k

D
:

In particular, for every 0 < � � 1, f� is the unique minimizer of
`(�; T�) in F .

Proof: Using Assumption 2.1 and applying Lemma 3.4 for x =
T , y = f�, and z = f

L�(f) =� (kT� � fk)� � (kT� � f�k)

��0 (kT� � f�k) � (kT� � fk � kT� � f�k)

� 2�kf � Tk�E
kf � f�k

kf � Tk
� �0 (kT� � f�k)

� 2�D�E
kf � f�k

D
� �0 (kT� � f�k)

where the first inequality follows from the convexity of �, the second
one is Lemma 3.4, and the last one is the monotonicity property of �E .
Indeed, let "2 = kf � f�k=kf � Tk � "1 = kf � f�k=D. Thus

D

kf � f�k
� �E

kf � f�k

D
�
kf � Tk

kf � f�k
� �E

kf � f�k

kf � Tk

as claimed.

Let us clarify the meaning of Corollary 3.5. First, we will be inter-
ested in “small” values of �. With this in mind, �0(kT� � f�k) =
�0((1 � �)�) is a positive constant (when � ! 0, it tends to the
derivative of � at �, which is a fixed, positive number) and the term
D�E

kf�f k
D

also does not depend on �, but rather on properties of
E,F , and T , and the distance between f and f�. In particular, the min-
imizer of L� in F is unique, and moreover, for � sufficiently small

L�(f1) � c�

where c depends only on properties of E, F , �, and kf1 � f�k.
The second outcome is that functions with risk L�(f) � r are

contained in a small ball around f�. Since this is a straightforward ap-
plication of Corollary 3.5, we omit its proof.

Corollary 3.6: Assume that �E(") � �"p for some fixed �. Then,
for every 0 < � < 1 and r > 0

F�;r � B f�; C0
r

�

1=p

where C0 depends only on �, �, D, and �.
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Set B = B f�; C0
r
�

1=p
. Combining Corollary 3.6 with (3.1)

shows that there is a constant C1 such that for every k, with �k-prob-
ability of at least 5=6

sup
ff: L (f)�rg

jPk (L�(f)) (Xi)j

� r +
C1k`klip

k
sup

f;h2F\B

k

i=1

gi (f � h) (Xi) (3.2)

where the expectation is with respect to both (gi)ki=1 and (Xi)
k
i=1.

Proof of Theorem 3.2: Fix �; u > 0, let � > 0 to be named
later, and set C1 as in (3.2). Applying the compatibility assumption for
u0 = u=C1k`klip, there is some k0 and q > 0 such that for k � k0

C1k`klip
k

sup
ff;h2F :kf�hk�qg

k

i=1

gi (f � h) (Xi) � up
k
:

Set � to satisfy that q = 2C0
�
�

1=p
and since q can be made smaller

if we wish, we can assume that � � u.
By Corollary 3.6, taking � = �=

p
k and r = �=

p
k, it is evident

that

F�=
p
k;�=

p
k � B f�; C0

�

�

1=p

\ F:

Thus, with probability at least 5=6

sup
f2L

jPkF�=pk(f)j

� �p
k

+
C1k`klip

k
sup

ff;h2F :kf�hk�qg

k

i=1

gi(f�h) (Xi)

� 2up
k
:

A. Constructing “Bad” Functions

So far, we showed that with high �k-probability, if � � 1=
p
k, then

functions L�(f) with an expectation smaller than � 1=
p
k have an

empirical expectation that is not very negative. To complete the proof
of the lower bound, one has to construct functions with a very negative
empirical excess loss PkL�(f).

To make things even more difficult, recall that for every f 2 F ,
L�(f) � 0, and by the central limit theorem k�1=2 k

i=1(L�(f)�
L�(f)) converges to a centered Gaussian variable. Thus, the hope

of generating some excess loss function L�(g) with a relatively large
expectation but with a negative empirical loss on a typical sample of
cardinality k is realistic only if L�(g) � c1�=

p
k, where �2 is the

variance of L�(g), because typical values of PkL�(g) are L�(g) �
c1�=

p
k. Thus, it seems natural to expect that the bad behavior, if in-

deed exists, is generated by a family of functions, each one for a dif-
ferent value of k.

We will show that L� (f1) is such a family of functions for the
choice of �k � 1=

p
k.

Our starting point is the Berry–Esséen theorem (see, e.g., [20])

Theorem 3.7: There exists an absolute constant c for which the
following holds. Let (�)ki=1 be independent, identically distributed

random variables, with mean 0 and variance �2 and denote by Fk(x)
the distribution function of 1

�
p
k

k
i=1 �i: Then

sup
x2

jFk(x)� �(x)j � c
j�1j3

�3
p
k

where � is the distribution function of a standard Gaussian variable.

Applying the Berry–Esséen theorem to the random variable � =
g(X)� g, we obtain the following.

Corollary 3.8: Let g be a function with variance � and a finite third
moment. Then, there is some constant k1 that depends only on � and
jgj3 and an absolute constant C2, such that for every k � k1, with

probability at least 1=4

1

k

k

i=1

g(Xi) � g � C2
�p
k
:

In what follows, we abuse notation and write L(f) = `(T; f) �
`(T; f�).

Lemma 3.9: There exist constants C3; C4 and �0; k1 that depend
only on � = kT � f�k, k�klip, k`klip, D3 = supf2F kT � fkL (�),
and � = jL(f1)j for which the following hold. For every 0 � � �
�0:

1) L�(f1) � 2��k�klip;
2) var (L�(f1)) � �2=4;
3) for every k � k1 and �k � minf�0; C3=

p
kg, with probability

at least 1=4, k�1 k
i=1 (L�(f1)) (Xi) � �C4=

p
k.

Proof: For the first part, since kT � f1k = kT � f�k and � is
Lipschitz, then

L�(f1) =� (kT� � f1k)� � (kT� � f�k)
= (� (kT� � f1k)� � (kT � f1k))
+ (� (kT � f�k)� � (kT� � f�k))

� 2k�klipkT � T�k = 2�k�klipkT � f�k
=2��k�klip:

Turning to the second part, recall that jL(f1)j = � > 0. Since
L�(f1) tends to L(f1) in L2 as � ! 0, then by the first part and
standard calculations, there is some �0 such that for any 0 < � � �0

var (L�(f1))��2� jL2(f1)�L2
�(f1)j�( L�(f1))2��2

4
:

Finally, let k1 as in Corollary 3.8 and set 0 < � < �0. Since�2=4 �
var (L� (f1)) and

j`(T�; f1)� `(T�; f�)j3 � k`k3lip jf1 � f�j3

this choice of k1 does not depend on � as long as � � �0. Therefore,
by Corollary 3.8, with probability at least 1=4

1

k

k

i=1

(L� (f1)) (Xi) � L�(f1)�C2
�

2
p
k
� 2��k�klip�C2

�

2
p
k
:

Setting C3 = C2�=(8�k�klip), it is evident that if one takes

� � minf�0; C3=
p
kg

the claim follows.

Now, let us formulate and prove our main result. To make the for-
mulation simpler, we will refer to the space E, � = kT � f�k, � =
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jL(f1)j, D = supf2F kT � fk, and D3 = supf2F kT � fkL (�),
the functions � and `, and the asymptotic equicontinuity properties of
F (see Definition 3.1) as “the parameters of the problem.” The con-
stants in the formulation and the proof of the main result depend on
these parameters.

Theorem 3.10: Assume that E is a smooth, uniformly convex
normed space with a modulus of convexity �E(") � �"p for some
2 � p <1 and � > 0. Let �, `, T , T�, and L� as above and consider
F � E that is compatible with the norm. There are constants �0 and
k0 and c1, c2 depending on the parameters of the problem for which
the following holds. Let k � k0 and set �k = minf�0; c1=

p
kg.

Then, with probability at least 1=12, the empirical minimizer f̂ of
k
i=1 `(f; T� )(Xi) satisfies

(`(f; T� )jX1; . . . ; Xk) � inf
f2F

`(f; T� ) +
c2p
k
:

Proof: Let f1 be the function constructed in Lemma 3.9 and set
k1, �0, C3, C4, and �k as in the formulation of the lemma. Let �0 =
�0 and k > k1. Clearly, by increasing k1 if needed, one can assume
�k = C3=

p
k. Therefore, by Lemma 3.9, with �k-probability 1=4,

PkL�(f1) � �C4=
p
k. Hence, for each k > k1 with that probability,

the empirical minimizer with respect to the target TC =
p
k must have

an empirical error smaller than �C4=
p
k.

We now apply Theorem 3.2 for � = C3 and u = C4=4. Let � > 0
and k0 be as in the assertion of that theorem for those values of � and
u, and put k0 = maxfk0; k1g. Hence, if k > k0 and rk = �=

p
k, then

with �k-probability 5=6

sup
f2F

jPkL� (f)j = sup
f2F

PkLC =
p
k(f) � 2up

k

=
C4

2
p
k
:

Therefore, with �k-probability of at least 1=12, the empirical mini-
mizer with respect to the target TC =

p
k is outside F� ;r and thus its

risk satisfies

L� (f̂)jX1; . . . ; Xk � �p
k
:

As we mentioned before, it is well known that �-Donsker classes
are compatible with the L2(�) norm and thus are compatible with any
Lp(�) norm for 2 � p < 1. Because the Lp norms are uniformly
convex (with a polynomial modulus of convexity) and smooth for 1 <
p < 1, Theorem 1.2 follows from Theorem 3.10.
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