
Abstract

We present a novel method for computing increasing lower
bounds on the cost of solving planning problems, based on
repeatedly solving and strengthening the delete relaxation of
the problem. Strengthening is done by compiling select con
junctions into new atoms, similar to the Pm

� construction. Be
cause it does not rely on search in the state space, this method
does not suffer some of the weaknesses of admissible search
algorithms and therefore is able to prove higher lower bounds
for many problems that are too hard for optimal planners to
solve, thus narrowing the gap between lower bound and cost
of the best known plan, providing better assurances of plan
quality.

Introduction
Many potential applications of planning require planners to
produce plans of high quality, according to a metric like cost,
makespan, net benefit, or other. Even when generating guar-
anteed optimal plans is not computationally feasible, there
is a need to be able to measure, in absolute terms, how good
the plans found by non-optimal planners are. Current plan-
ning technology does not offer many tools suitable for this
purpose. A lower bound function (i.e., an admissible heuris-
tic) gives an absolute assessment, since the optimal cost is
known to lie between the lower bound and the cost of the
best known plan. But if this gap is too large to give con-
fidence in the quality of the solution, and further search
fails to turn up a better plan, there is not much that can
be done. What is needed in this situation is an incremen-
tal lower bound: a function that can produce increasingly
higher admissible estimates, given more time and memory.
Given any admissible heuristic h (including the “blind”

heuristic h = 0) such an incremental lower bound can be
obtained by running A�, IDA�, or any search algorithm that
approaches the optimum from below, with h for a limited
time, taking the highest proven f -value. However, recent
theoretical and empirical analysis (Helmert and Röger 2008;
Cushing, Benton, and Kambhampati 2010; Wilt and Ruml
2011) has demonstrated that for many kinds of planning
problems using search (with a less-than-perfect admissible
heuristic) to prove lower bounds is not effective.
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We present a new approach to incremental lower bound
computation, by repeatedly finding optimal solutions to re-
laxations of the planning problem, which are increasingly
less and less relaxed. If a relaxed plan is found to be a
valid plan also for the original, unrelaxed, problem, it is
optimal. If not, clues from the failure of the relaxed plan
are used to construct the next relaxation, in such a way that
the same relaxed plan will not be found again. The relax-
ation considered is the standard delete relaxation, in which
negative effects of actions are ignored. The delete relax-
ation has the property that a plan achieving atoms p and q
also achieves the conjunction {p, q}. The way in which it is
made less relaxed is by constructing a modified problem, in
which certain conjunctions are made explicit, in the form of
new atoms. This carries information about negative interac-
tions between subgoals (achievement of conjuncts) into the
delete relaxation of the modified problem. The conjunctions
to encode are chosen by analysing the failure of the current
relaxed plan to be valid for the real problem. This incremen-
tal lower bound function is tentatively named h++.
We compare the lower bounds proven by h++ (within

bounded time and memory) with those by A� search using a
variety of admissible heuristics, including the optimal delete
relaxation heuristic h+, computed by the same method as in
h++, and identify some problem sets where h++ is clearly
more effective. Although primarily intended as a method of
computing lower bounds, h++ can also be used as a cost-
optimal planner, since when it finds a plan that plan is guar-
anteed to be optimal. In most cases, even most of those
where h++ proves stronger lower bounds, search is still bet-
ter at finding optimal plans, but there are a few exceptions.

Related Work
The idea of incrementally refining relaxations is by no
means new. It is widely used in optimisation algorithms,
for example in the form of incremental generation of valid
cuts in integer-linear programming (e.g. Cornuéjols 2008).
An instance that is closer to planning is counterexample-
guided abstraction refinement, in which the relaxation is an
abstraction of the problem. An optimal solution (plan) for
the abstract problem is checked for failures w.r.t. the parts of
the original problem ignored by the current abstraction, and
those parts that cause it to fail are candidates for inclusion
in the next abstraction. This idea has been applied in model
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checking, and to planning in adversarial, probabilistic do-
mains (Chatterjee et al. 2005), but not to lower-bounding
plan cost. The bisimilar merge-and-shrink construction, de-
scribed by Nissim et al. (2011), computes a perfect abstrac-
tion by iteratively merging together single-variable projec-
tions. Although this abstraction is typically too big to be
built, every intermediate abstraction created in the merge-
and-shrink process also yields a lower bound. It is, however,
not an incremental refinement method, since the choice of
the next variable to merge is not informed by flaws in the
current abstraction. Yet, we can imagine incremental refine-
ment schemes based on merge-and-shrink, either by making
the merge strategy counterexample-guided, or by iterating
the construction, starting with a more aggressive shrinking
strategy (e.g., the greedy bisimulation proposed by Nissim et
al.) and refining the shrinking strategy for the next iteration
based on the failures of the current abstract plan.
The most closely related example of the idea is perhaps

in the work of van den Briel et al. (2007), who formulate a
relaxation of planning problems as an integer programming
model of a flow problem. (The problem is further simplified
by solving the LP relaxation of the IP.) It is a relaxation be-
cause certain ordering constraints, due to non-deleted action
preconditions, are ignored. They use composition of state
variables to refine the relaxation, though not incrementally
and not guided by the current relaxations flaws.1

The Delete Relaxation
We adopt the standard definition of a propositional STRIPS
planning problem, without negation in action preconditions
or the goal (see, e.g., Ghallab, Nau, and Traverso 2004,
chapter 2). To simplify the presentation, we assume that
del(a) ∩ add(a) = pre(a) ∩ add(a) = ∅ for each action
a. (This makes no difference for sequential planning.) As
usual, a sequence of actions (or plan) achieves condition c
from state s iff the sequence is executable in s and leads to a
state where c holds. We consider the additive cost objective,
where each action a has a non-negative cost, cost(a), and
the cost of a plan is the sum of the cost of actions in it. The
initial state is denoted by sI and the goal by G.
The delete relaxation of a planning problem P , denoted

P+, is a problem exactly like P except that del(a) = ∅ for
each a, i.e., no action makes any atom false. The delete re-
laxation heuristic, h+(s, c), is defined as the minimum cost
of any plan achieving c from s in the delete relaxed problem.
Let A be any set of actions in P . We denote by R+(A)

the set of all atoms that are reachable in P+, starting from
the initial state, using only actions in A. We say a set of
actions A is a relaxed plan iff the goal is relaxed reachable
using only the actions in A, i.e., iff G ⊆ R+(A). An actual
plan for the delete relaxed problem is of course a sequence
of actions. That G ⊆ R+(A) means there is at least one
sequencing of the the actions in A that reaches a goal state.
When we need to distinguish a particular sequence of ac-
tions, that is valid a plan for P+, we will call it a sequenced

1An incremental refinement method based on this relaxation has
recently been developed, and used to create a quite effective cost
optimal planner. (Menkes van den Briel, pers. comm.)

relaxed plan, or a (relaxed) valid sequencing of A.
We assume throughout that G ⊆ R+(A) for some set

of actions A (which may be the set of all actions in P+),
i.e., that the goal is relaxed reachable. If not, the problem is
unsolvable and∞ is the highest possible lower bound.

Computing Minimum-Cost Relaxed Plans
The h++ lower bound procedure depends on being able
to compute a minimum-cost relaxed plan, but not on how
this is done. There are several methods: Recent work has
shown how cost-optimal planning and search techniques can
be specialised to the delete-free case (Pommerening and
Helmert 2012; Gefen and Brafman 2012). Robinson et
al. (2010) encode cost-optimal relaxed planning as a par-
tial weighted MaxSAT problem. Betz and Helmert (2009)
present polynomial-time algorithms for a few domains.
We have used an algorithm based on the correspondance

between relaxed plans and disjunctive action landmarks, es-
tablished by Bonet and Helmert (2010), and inspired by
Slaney and Thiébaux’s (2001) optimal planning algorithm
for the Blocksworld domain. It is described in detail else-
where in these proceedings (Haslum, Slaney, and Thiébaux
2012). A similar algorithm was recently proposed by Bonet
& Castillo (2011). An important advantage of this algorithm
is that it maintains at all times a lower bound on h+, so that
even if it is interrupted before finding an optimal relaxed
plan, it still gives a lower bound.

The Relaxed Plan Dependency Graph
Although we have defined a relaxed plan as an unordered
set of actions, there are some necessary ordering relations
between actions in this set. These are captured by the re-
laxed plan dependency graph, defined below. This graph is
central to the identification of flaws in a failed relaxed plan.
Let S be relaxed plan, i.e., a set of actions such that

G ⊆ R+(S). We say that S is non-redundant if no strict
subset of S is a relaxed plan. A relaxed plan can be checked
for redundancy by simply testing for each action a in turn
whether G ⊆ R+(S − {a}), and made non-redundant
(though not necessarily in a unique way) by greedily re-
moving actions found to be redundant. The landmark-based
algorithm can produce optimal plans containing redundant
actions, although naturally only when those actions have a
cost of zero. From now on, we assume all relaxed plans are
non-redundant.

Definition 1 Let S be a non-redundant relaxed plan. Con-
struct a graph G≺(S) with nodes {na | a ∈ S} ∪ {nG}, i.e.,
the nodes of G≺(S) correspond to actions in S plus an ad-
ditional node which represents the goal. With some abuse
of notation, we write pre(n) for the precondition of node n,
which is pre(a) for a node na and G for node nG. G≺(S)
has an edge from na to n′ iff pre(n′) �⊆ R+(S − {a}). This
edge is labelled with pre(n′)−R+(S − {a}).
The relaxed plan dependency graph, RPDG(S), is the

transitive reduction2 of G≺(S).

2The transitive reduction of a graph is the smallest edge
subgraph that has the same transitive closure.
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As will be shown shortly, the graph G≺(S) is acyclic, and
therefore its transitive reduction is unique. (It is also com-
putable in polynomial time; cf. Aho, Garey, and Ullman
1972.) Thus, the RPDG is well-defined.
Intuitively, a path from node n to node n′ in the RPDG

means that the action associated with n is, directly or indi-
rectly, necessary for pre(n′) to be relaxed reachable. The
label of an edge documents the reason for the dependency,
i.e., which atoms in pre(n′) become unreachable if an action
is left out. However, the RPDG does not capture disjunctive
dependencies: if several (unordered) actions in S add atom
p, there may not be an edge with p in its label, and the fact
that at least one of those actions is necessary to reach p will
then not be visible in the graph.
If there is a path from node n to node n′ inRPDG(S), we

say that the nodes are ordered. Conversely, if there is no path
from n to n′, nor from n′ to n, we say they are unordered.
This terminology is justified by properties (2) and (3) in the
theorem below.

Example We illustrate concepts with a small Blocksworld
example, with initial state and goal as shown below:

sI :
A

B C
G:

A

B

C

An optimal delete relaxed plan for this problem is (move A
B Tb), (move B Tb C). The RPDG is:

(move A B Tb) (move B Tb C)
(clear B)

nG
(on B C)

Theorem 2
(1) The graphG≺(S) in definition 1 is acyclic, and hence so
is RPDG(S).
(2) If there is a path from na to nb in RPDG(S), a appears
before b in every valid sequencing of S.
(3) If there is no path from nb to na in RPDG(S), there ex-
ists a valid sequencing of S in which a appears before b.
(4) Any two unordered nodes n and n′ in RPDG(S) have a
common descendant, n′′.
(5) Let na be a node in RPDG(S) with an outgoing edge
whose label includes p, and b an action, distinct from a, with
p ∈ add(b). Then nb is ordered after na.
Proof (sketch): (1) follows from (2) and non-redundancy.
(2) An edge from na to nb means that pre(b) �⊆ R+(S −
{a}). Thus, in any relaxed valid sequence b cannot be appli-
cable unless a has been applied before. The transitive case
follows by induction on path length.
(3) Let S′ be all of S except a, b and their descendants. Ap-
ply all actions in S′, in any valid order, then a, b, and remain-
ing actions (in any valid order). Suppose there is p ∈ pre(a)
that does not hold when a is applied. Since p cannot be
initially true, there must be at least one action in S with
p ∈ add(a), that is not in S′ and not a descendant of a.
Thus, it must be b or a descendant of b, which implies a path
from nb to na.
(4) By non-redundancy, every node has a path to nG.
(5) If nb is not ordered after na, there is a valid sequencing
in which b appears before a. Since p is added by b, removing

only a from S cannot then make p unreachable, contradict-
ing the existence of the edge. �

Note that property (3) holds only for pairs of nodes. The
reason is that the RPDG does not capture disjunctive prece-
dences. For an example, suppose action a1 adds precondi-
tions of a2 and a3, which both add q, and q is a precondition
of a4. (a2 and a3 must also add some other relevant atoms,
as otherwise at least one of them would be redundant.) The
resulting RPDG is:

n1

n2p

n3p′

n4

q
nG

There are valid sequencings with a4 before a2 (if a4 is pre-
ceded by a3) and with a4 before a3 (if preceded by a2), but
not with a4 before both a2 and a3. Thus, every valid se-
quencing of S is a topological sort ofRPDG(S), but it is not
necessarily the case that every topological sort ofRPDG(S)
is a valid sequencing of S. Note also that q labels an edge
from n1, even though a1 does not add q, because q becomes
relaxed unreachable without a1.

Strengthening the Relaxation
The idea behind the incremental lower bound function h++

is as follows: Given a minimal-cost sequenced relaxed plan
S, if it is valid also for the non-relaxed problem P , then the
optimal plan cost for P equals the cost of S (and S is an
optimal plan). If not, then we identify a set of “flaws”, C,
which are conjunctive conditions that are required but fail to
hold at some point in the execution of the plan. We construct
a new problem, called PC , in which these conjunctions are
explicitly represented by new atoms. This is essentially the
Pm
∗ construction (Haslum 2009), but applied to a specific
set of conjunctive conditions instead of all of size m. The
new problem has the property that S is not a relaxed plan for
it (or, to be precise, no sequence of representatives of each
action in S is a relaxed plan). The minimum cost of a relaxed
plan for the new problem is a lower bound also on the cost
of solving P . There is no guarantee that it will be higher
than h+(P ), but since the set of non-redundant minimal-cost
sequenced relaxed plans is finite, repeated application of the
procedure will eventually result in a higher lower bound. In
the limit it will even result in an optimal plan, unless time or
memory limits halt the process.

The PC Construction
Let C = {c1, . . . , cn} be a set of (non-unit) conjunctions
over the atoms in P . We construct a problem PC , in which
each of these distinguished conjunctions ci is explicitly rep-
resented by a new atom, πci . Actions in P

C are also mod-
ified, so that the truth of the new atoms reflects the truth of
the conjunctions they represent. Each action, αa,X , in PC

is derived from an action a from the original problem P and
a set X ⊆ C. Intuitively, αa,X corresponds to applying a in
a state where it will make true the subset X of conjunctions
in C (in addition to those it necessarily makes true).
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Before stating the definition of PC , we introduce some
notation. Let a be an action in P and partition C into:

Ct(a) ={c ∈ C | c ⊆ ((pre(a)− del(a)) ∪ add(a)) and
c ∩ add(a) �= ∅}

Cf (a)={c ∈ C | c ∩ del(a) �= ∅}
Cn(a)={c ∈ C | c ∩ del(a) = c ∩ add(a) = ∅}
Cp(a) ={c ∈ C | c ∩ del(a) = ∅, c ∩ add(a) �= ∅ and

c �⊆ ((pre(a)− del(a)) ∪ add(a))}

(It is easy to verify that this is a partitioning of C.) This di-
vides conjunctions in C into those that are necessarily made
true (Ct(a)) and false (Cf (a)) by a, those on which a has
no effect (Cn(a)), and those that a may or may not make
true, depending on what holds in the state where a is ap-
plied (Cp(a)). LetX ⊆ Cp(a): we say thatX is downward
closed iff for all c ∈ X and c′ ∈ Cp(a) such that c′ ⊆ c,
c′ ∈ X .

Definition 3 PC has all atoms of P , and for each c ∈ C an
atom πc. πc is initially true iff c holds in the initial state of
P , and is a goal iff c ⊆ G in P . For any set of atoms x in P ,
let xC = x ∪ {πc | c ∈ C, c ⊆ x}.
For each action a in P and for each subset X of Cp(a)

that is downward closed, PC has an action αa,X with

pre(αa,X)=

(
pre(a) ∪

⋃
c∈X

(c− add(a))

)C

add(αa,X)=add(a) ∪ {πc | c ∈ Ct(a) ∪X}

del(αa,X)=del(a) ∪ {πc | c ∈ Cf (a)}

and cost(αa,X) = cost(a).

We call a the original action for αa,X , and the actions in PC

whose original action is a the representatives of a. Note that
PC always has at least one representative of each action a,
namely αa,∅. The size of PC is (potentially) exponential in
|C|, i.e., the number of conditions, but not in their size.

Theorem 4 Given any plan for P , there is a plan for PC

made up of a representative of each action in the plan for P
(and hence of equal cost).
Proof (sketch): We choose, by induction, a representative
of each action in the plan such that in each state reached
when executing the plan for PC , πc is true whenever c is
true. It is then easy to see that each action in this plan will
be executable, since the precondition of an action in PC in-
cludes πc if and only if it includes all of c, and that the goal
condition will hold at the end.
The correspondence between πc and c holds in the initial

state by definition. Assume it holds in state s and consider
the state s′ that results from applying the next action a in
s: choose the representative of a that adds πc for c ∈ C
that hold in s′ but not in s. That such a representative exists
follows from the construction of PC . �

Theorem 4 shows admissibility: any lower bound on the cost
of solving PC is also a lower bound on the cost of any plan
for P . Compared to P , PC contains no additional infor-
mation. The reason why it is nevertheless useful is that the

delete relaxation of PC may be more informative than the
delete relaxation of P . In fact, if C contains a sufficient
set of conjunctions, the delete relaxation of PC captures all
information about P .

Theorem 5 There exists a set of conditions C such that
h+(PC) = h�(P ).
Proof (sketch): Consider the tree of all possible regressions
from the goal G in P , and let C include any condition that
appears in it. PC will then have a critical path along the
corresponding πc atoms, meaning that even hmax(PC) =
h�(P ), and hmax is a lower bound on h+. �

If we have any additional source of information about un-
reachability in P , such as static mutexes or invariants, it
can be used to reduce the size of PC , and further strengthen
(PC)+, by removing any action that has in its precondition
or add effects an atom πc for any condition c ∈ C that is
known to be unreachable, in P . (The correspondance shown
in theorem 4 holds also with this modification, since the cho-
sen representatives only add atoms for conditions made true
by the plan.) The current implementation uses static mu-
texes found by h2 (Haslum and Geffner 2000).

Flaw Extraction for a Sequenced Relaxed Plan
Consider a sequenced relaxed plan S. Deciding if it is a
valid plan for the real problem, P , is easily done by simulat-
ing its execution. If the sequence is not a valid plan, then it
will at some point fail, meaning that the precondition of the
next action to be applied does not hold in the current state.
Call this the failed condition, and let nf be the correspond-
ing node in RPDG(S). Note that the failed condition may
also be the goal. Let p be some unsatisfied atom in the failed
condition. Since the sequence is valid in the relaxed sense,
p was either true initially or added by some action preceding
the point of failure. Thus, p was true in some earlier state
also in the real execution of the plan, but deleted by some
action taking place between that point and the point of fail-
ure. Call that action the deleter, and let nd be its node in
RPDG(S). We call the triplet (nf , nd, p) a conflict.
A conflict gives rise to a set of flaws, C, which are con-

junctions of atoms in P . To define the set of flaws, we need
the concept of a dependency closure: Let n and n′ be nodes
in RPDG(S), where n′ is ordered after n. A simple depen-
dency path is a path n

q1
→ n1

q2
→ . . .

qm
→ n′ from n to n′ in

RPDG(S), where each edge is labelled by one atom, cho-
sen arbitrarily, from the edge label in RPDG(S). (Note that
whenever n′ is ordered after n, a simple dependency path
from n to n′ exists.) A dependency closure from n to n′ is
a minimal, w.r.t. subset, union of paths, such that (1) it con-
tains a simple dependency path from n to n′, and (2) if q is
the atom that labels an edge from a node n′′ in the closure,
and a is an action with q ∈ add(a), where a is not the action
associated with n′′, then the closure contains a simple de-
pendency path from n to the node corresponding to a. (By
property (5) of theorem 2, a is ordered after n′′, so such a
path exists.)
Now we return to how a set of flaws is derived from a

conflict. This depends on how nd and nf are related in the
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Case 1:
nd n1q1

· · ·
q2

nm−1
qm−1

nf

qm

p

Case 2:

nd n1q1
· · ·

q2
nm−1

qm−1

nf
p

n′
1

q′1
· · ·

q′2
n′
l−1

nc

qm

q′l

Figure 1: Illustration of flaw extraction.

RPDG. We distinguish two cases:

Case 1: There is a path from nd to nf in RPDG(S). In this
case, choose a dependency closure from nd to nf , and let L
be the set of atoms that label edges in the closure. The flaw
set is {{p, q} | q ∈ L}.

Case 2: There is no path from nd to nf in RPDG(S). There
cannot be a path from nf to nd, since nd appeared before
nf in the sequence, which means the nodes are unordered.
Let nc be the first of their common descendants to appear
in the sequence. Choose dependency closures from nd and
nf to nc, and let Ld and Lf be the sets of atoms that label
edges in each closure. The flaw set is {{q, q′} | q ∈ Ld, q

′ ∈
Lf ∪ {p}, q �= q′}.

The two cases are illustrated in figure 1. In the picture, each
dependency closure consists of only one simple dependency
path. This is normally the case: the conditions that force
the inclusion of additional branches (“side paths”) are quite
peculiar, and do not arise in most planning problems. For
an example of where it happens, see the RPDG pictured on
page 3: there, a dependency closure from n1 to n4 must in-
clude paths to n2 and n3. Note that case 1 may be seen as a
special case of case 2, where nf itself is the first common de-
scendant. (The similarity is apparent in the proof of theorem
6 below.) Atom p cannot label any edge in the dependency
closure from nd or nf : any action in either closure appears
after nd in the sequence and p, by choice of the conflict, was
true before nd, so removing an action that comes after nd

cannot make p relaxed unreachable. Hence, each flaw also
in the first case consists of two distinct atoms.
The reason for constructing the set of flaws C this way is

that it is sufficient to ensure that the same sequence of ac-
tions (or, more precisely, a sequence of representatives of
those actions) is not a relaxed plan for PC . (We conjec-
ture that it is also necessary.) This ensures progress, in the
sense that each iteration of flaw extraction generates some
new conjunctions, and adding these to the problem elimi-
nates at least one relaxed plan that is not a real plan.3

Example Continuing the Blocksworld example, the relaxed
plan fails because (move A B Tb) deletes (on A B) which is
initially true and required by the goal. This is a case 1 con-
flict, with nG as the failed node, which generates the flaw set

3Note that the procedure described here is slightly different
from the one described in the equititled 2011 workshop paper,
which was incorrect in that it did not ensure this.

C = {c1 :{(on A B), (clear B)}, c2 :{(on A B), (on B C)}}.
The same plan relaxed will not work for PC : πc2 is a goal,

but the representative of (move B Tb C) that adds πc2 has (on
A B), and therefore πc1 , in its precondition. No representa-
tive of (move A B Tb) adds πc1 since the action deletes (on A
B) which is part of c1.

Theorem 6 Let S = a1, . . . , an be a non-redundant se-
quenced relaxed plan for P that is not a real plan for P ,
and let C be a set of flaws extracted as described above. No
sequence S′ = α1, . . . , αn, where each αi is a representa-
tive of ai, is a relaxed plan for PC .
Proof: In the execution of S, we have the two nodes nd and
nf , as described above. We examine the two cases:
Case 1 (nf is ordered after nd): The flaw set consists

of pairs of atoms {p, q}, where p is the precondition of nf

deleted by nd, and q belongs to a dependency closure from
nd to nf . We show, by induction, that none of the new atoms
π{p,q} can be made true by any choice of the sequence of
representatives S′ before the point where nf appears. Since
pre(nf ) contains both p and an atom qm from the depen-
dency closure, the precondition of any representative of the
action associated with nf (or the goal, if nf is the goal node)
includes π{p,qm}, so S′ cannot be relaxed valid.
By construction, the dependency closure is a (directed)

tree with nd at the root. This follows from the requirement
that the closure is minimal w.r.t. subset of edges: if there
are multiple paths from some node ni to another node nj ,
one of those paths can be removed without breaking the clo-
sure. For any atom q that labels an edge in the tree, the
closure contains (the node corresponding to) any action that
adds q. Therefore, any such action has some precondition,
q′, that labels an edge into the node corresponding to the
action, and this edge is also in the closure. The induction
is on the depth of an edge in the tree. No representative of
the action corresponding to nd can make π{p,q1} true, since
the action deletes p. Consider an atom qi that labels some
edge in the closure, and an action a that adds qi, such that a
appears before nf in the sequenced relaxed plan S. By the
choice of nd, nf and p, a does not add p. Therefore, any
representative of a that makes π{p,qi} true must have p as a
precondition. By the construction of the closure, a also has
some precondition, q, that labels an edge into the node na

corresponding to a, that is in the closure. (If na is node ni−1

on the path from nd to nf , this will be qi−1. If na lies on
one of the “side paths”, it can be some other atom.) There-
fore, any representative of a that makes π{p,qi} true must
also have as precondition π{p,q}. By inductive assumption,
π{p,q} is not made true by any choice of representatives of
the actions that precede a in S.
Case 2 (nd and nf are unordered): Let nc be the first

common descendant of nd and nf . The precondition of nc

includes atoms qm and q′l, where qm is in the dependency
closure from nd to nc and q′l is in the closure from nf to
nc, and hence any representative of the associated action (or
the goal, if nc is the goal node) includes π{qm,q′

l
}. Similar

to case 1, we show that no choice of representatives of the
actions preceding nc in S will make any of the atoms corre-
sponding to the flaws, including π{qm,q′

l
}, true, but the proof
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now requires a nested induction.
First, note that no action that appears before nc in S in

one closure adds any atom that labels an edge in the other.
Suppose ni is a node in one closure, with an outgoing edge
labelled by qi, and that na is node in the other closure, such
that a adds qi. By construction, the closure containing ni

must then also include a simple dependency path to na,
meaning that na is common to both closures. This contra-
dicts the choice of nc as the first, in S, common descendant
of nd and nf .
Consider node nf , and let q be an atom that labels one of

its outgoing edges (this may be q′1, if it is the edge to n
′
1, or

some other atom if there is a side path from nf ). As argued
above, the action associated with nf does not add any atom
qi belonging to the closure from nd to nc, so any represen-
tative of this action that makes π{q,qi} true must have qi as a
precondition, and therefore also π{p,qi}. By the choice of the
conflict, no action that appears between nd and nf in S adds
p. Thus, by an induction like that in the proof for case 1, we
can show that no choice of representatives of those actions
will make π{p,qi} true, so no representative of the action as-
sociated with nf that makes π{q,qi} true will be relaxed ap-
plicable. This establishes the base case. The induction step
is again similar to that in the proof of case 1. Consider an
atom q′j that labels some edge in the closure from nf to nc,
and an action a that adds q′j (such that a appears before nc).
Any representative of a that makes π{qi,q′j}

for some qi in
the closure from nd to nc must have qi as a precondition.
Action a also has some precondition, q, that labels an edge
into node na that is in the closure from nf to nc. Thus, any
representative of a that makes π{qi,q′j}

true must also have
π{qi,q} as a precondition, which by inductive assumption is
not made true by any choice of representatives of the actions
that precede a in S. �

Flaw Extraction for Non-sequenced Plans

A non-sequenced relaxed plan is valid for the real prob-
lem iff there exists a sequencing of it that is a valid real
plan. Enumerating the sequencings of a relaxed plan is
straightforward: starting with an empty sequence, non-
deterministically choose the next action to apply from those
whose preconditions are initially true or added by pre-
viously applied actions, never applying an action more
than once. Backtracking systematically over the non-
deterministic choices yields all sequencings. For the pur-
pose of determining real validity, it is only necessary to con-
struct a (relaxed valid) sequence up to the point where it
fails. Note also that since changing the order of commuta-
tive actions adjacent in a sequence will not change its re-
laxed or real validity, it is not necessary to backtrack over
those orderings.
Extending the flaw extraction described above to non-

sequenced relaxed plans is also simple, in principle: if we
pick a conflict from each sequencing of the plan, the union
of their sets of flaws is sufficient to rule out the same relaxed
plan. In practice, it is more complicated: Each sequencing
of the relaxed plan can exhibit several conflicts, each giving
rise to a different set of flaws. If the choice of conflict is

made carelessly, we can end up with a very large combined
set of flaws, resulting in a new problem of unmanageable
size. (Recall that the size of PC may be exponential in |C|.)
On the other hand, a conflict depends only on the relative
order of a few actions in the relaxed plan, and thus often ap-
pears in many sequencings, which can all be eliminated by
the same set of flaws. However, enumerating every combi-
nation of conflicts from each sequencing, and in some cases
even just enumerating all sequencings, can be prohibitively
computationally expensive. Thus, there is trade-off between
the effort spent on analysing the relaxed plan and selecting
conflicts, and the size of the resulting set of flaws and new
problem.
We use a strategy that balances these objectives by search-

ing for a small flaw set, but (over-)approximating the set of
sequencings with the topological sorts of the RPDG. A po-
tential conflict is a pair of nodes nd and nf , such that the ac-
tion associated with nd deletes some part of pre(nf ) and nf

is not ordered before nd (by the RPDG). The number of po-
tential conflicts is bounded by the squared size of the relaxed
plan. A potential conflict can be avoided by either ordering
nf before nd or placing between nd and nf some action that
adds the deleted part of pre(nf ), if there is any such action in
the plan. (Note that these are essentially the classical POCL
threat resolutions “demotion” and “white knight”.) In either
case, the number of ordering constraints increases. To cover
all sequencings, we pick a potential conflict, add the flaws
it generates to the result, and for each way of avoiding the
conflict repeat this with the additional ordering constraints
created by avoiding it (taking at the end the union of the re-
sults). In each branch, the process ends when we choose
a conflict that is unavoidable, i.e., where nd is ordered be-
fore nf and no “white knight” action can be placed between
them. Each conflict is given a weight, equal to the size of
the flaw set it generates, which is used as an estimate of how
much it will add to the union. (This simplifies the problem
by ignoring potential overlap between the flaw sets gener-
ated by different conflicts.) We use a backtracking search
over the choice of potential conflicts, with bounding and a
heuristic ordering, to minimise the total weight of the final
flaw set.

Incremental Strengthening
h++ iterates finding a relaxed plan, extracting a set of flaws,
and adding new atoms representing them to the problem, un-
til the relaxed plan is also a real plan (or we run out of pa-
tience or memory). In the process, we construct a sequence
of problems, P , PC1 , (PC1)C2 , etc. Flaw extraction as de-
scribed above generates only binary conjunctions, but from
the second iteration on, the atoms in such a pair may them-
selves represent conjunctions, and the pair thus represent a
larger conjunction.
Constructing the problem naively according to defin-

tion 3, however, leads to a loss of information, because
the fact that conjunctions in C1 ∪ . . . ∪ Ck−1 are al-
ready represented by atoms is not taken into account when
building (· · · (PC1)···)Ck . To see how, consider the fol-
lowing example: Suppose P contains an action a with
pre(a) = ∅ and add(a) = {p}. Let C1 = {{p, q}, {q, r}}:
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PC1 will have two representatives of a, αa,∅ (identical
to a) and αa,{{p,q}}, with pre(αa,{{p,q}}) = {q} and
add(αa,{{p,q}}) = {p, π{p,q}}. Now let C2 = {{p, r}}, and
construct (PC1)C2 . In this problem, αa,{{p,q}} will have a
representative that adds π{p,r}, and its precondition will in-
clude atoms q and r both, but not π{q,r}, since {q, r} belongs
to C1 and not C2.
To overcome this problem, we modify the construction

slightly, parameterising it with two sets of conjunctions: one
set E that is already represented by existing atoms in P ,
and one set C for which new atoms are to be created. The
definition of PE,C is identical to definition 3 except that

pre(αa,X) =

(
pre(a) ∪

⋃
c∈X

(c− add(a))

)E∪C

,

i.e., the atoms for all conjunctions in E ∪ C are considered
for the preconditions of new action representatives. With
this in hand, each problem created by iterating the process
of flaw extraction and remedy is constructed as PEk,Ck−Ek ,
where Ek = C1 ∪ . . . ∪ Ck−1. In other words, all conjunc-
tions added in previous iterations are used to form action
preconditions, while new atoms are added only for the new
flaws. It is easy to show that this preserves admissibility:

Theorem 7 Let C1, . . . , Ck be sets of conjunctions, Ei =
C1 ∪ . . . ∪ Ci, and define the series of problems Pi+1 =

P
Ei,Ci+1

i (with P0 = P ). Given any plan for P , there is a
plan for Pk of equal cost.
Proof (sketch): By induction on i. From a plan for Pi, a
plan for Pi+1 that consists of one representative of each ac-
tion in the plan for Pi is constructed in exactly the same way
as in the proof of theorem 4. �

Evaluation
We compare the lower bounds proven by h++ (within 1h
CPU time and 3Gb memory limits) with those proven by A�,
using the four admissible heuristics that make up the (opti-
mal) FastDownward StoneSoup portfolio planner (Helmert
et al. 2011) and the optimal delete relaxation heuristic h+,
computed by the same method as in h++. Note that we do
not use the portfolio planner itself: search with each of the
four heuristics is run to the full 1h CPU limit, and we take as
the result the highest lower bound proven (resp. any solution
found) by any one of them.
The comparison is made across problem sets from IPC

1998 2011, the 3-operators version of Blocksworld, and two
domains encoding applications of discrete event diagnosis as
planning problems (Haslum and Grastien 2011). The Logis-
tics (2000) and Blocksworld problem sets include the larger
instances intended for planners with hand-crafted control
knowledge. The IPC 2008 and 2011 problem sets are from
the sequential satisificing track.
Table 1 summarises the results. For each domain, it shows

the number of problems solved (optimally), and the number
of problems on which each method proves a lower bound
matching (=) or strictly greater than (>) the best of the oth-
ers. Column “A�” represents the best, per instance, of four

Unit Cost Domains
# Solved Max Lower Bound

h++ A� A�
/h+ h++ A� A�

/h+

= > = > = >

Airport 50 24 27 25 50 13 35 0 37 0
Blocksworld
3 ops 101 14 27 20 70 15 55 29 60 2
4 ops 101 8 28 25 8 8 101 93 26 0
Depots 22 1 7 5 17 11 9 5 7 0
Driverlog 20 6 14 8 9 2 18 11 8 0
Freecell 60 5 45 6 29 0 60 31 14 0
Gripper 20 1 19 4 1 0 20 19 4 0
Logistics (’00) 80 15 20 15 52 32 47 28 16 0
Logistics (’98) 35 4 6 4 17 8 25 18 7 0
Miconic 150 17 142 58 144 0 150 6 121 0
MPrime 35 21 19 17 34 5 24 1 25 0
Mystery 30 13 17 12 19 2 28 11 14 0
Pathways 30 4 5 4 30 21 5 0 8 0
PSR 50 22 50 48 23 0 50 27 48 0
Rovers (’06) 40 4 8 5 19 10 29 21 8 0
Satellite (’04) 36 3 7 5 8 0 35 28 6 0
Schedule 500 53 48 40 488 376 119 12 69 0
Storage 30 6 15 12 7 0 30 23 13 0
TPP 30 6 7 6 23 13 15 5 9 2

Action Cost Domains
# Solved Max Lower Bound

h++ A� A�
/h+ h++ A� A�

/h+

= > = > = >

Barman 20 0 0 0 9 0 13 11 8 0
Cybersec 30 3 4 3 28 9 19 1 18 0
Elevators 30 0 2 2 24 19 4 1 9 3
Floortile 20 0 6 0 0 0 20 20 0 0
Openstacks 30 0 12 8 0 0 30 22 8 0
ParcPrinter 30 27 18 20 30 8 18 0 20 0
PegSol 30 3 29 26 4 0 30 4 26 0
Scanalyzer 30 6 17 5 21 6 20 9 10 0
Sokoban 30 1 26 8 2 0 30 22 8 0
Transport 30 3 6 3 5 2 28 25 3 0
Visitall 20 0 0 0 5 1 19 15 4 0
Woodworking 30 9 7 8 25 15 12 4 10 1
APPN 35 33 13 20 35 12 22 0 23 0
WITAS 196 22 132 95 55 0 185 55 141 11

Table 1: Summary of results.
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Figure 2: Left: Distribution of h++/h+ ratio to h++ it-
erations, over problems where at least one iteration com-
pleted. Right: 3-ops Blocksworld problems, size vs. relative
strength of h++ and A� lower bounds. Lines show axis me-
dians.
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A� runs with different heuristics, and column “A�
/h+” is the

result for A� search using the h+ heuristic. Where the com-
putation of a first relaxed plan did not finish within the time
limit, the result of h++ and A�

/h+ is the highest lower bound
proven by the h+ solver.
For finding plans, A� search is clearly better most of the

time, with ParcPrinter the only stand-out exception. How-
ever, at proving lower bounds on problems that cannot be
solved optimally by any method, h++ is better in many
cases. The relative strength of lower bounds computed by
h++ and A� search for a given problem depends on several
factors: the discrepancy between the optimal delete relaxed
and real plans, and howmuch of that discrepancy is removed
by each flaw repair; the efficiency of the h+ solver; and how
easy or hard the problem is for A� search. The part that each
of these factors plays varies between domains, but also with
characteristics of the problem instances.
Comparing the results of A� and A�

/h+ in the problem
domains where h++ outperforms A� shows that this is not
because the four admissible heuristics used are too weak.
(The LM-Cut heuristic is often very close to h+, averaging
only 3.5% relative error across the initial states of unit-cost
problems where both are known.) Thus, it is using search to
raise the lower bound above that given by the initial heuristic
value that is not effective on these problems.
Across all problems, there is a statistically significant pos-

itive correlation between the number of iterations (after the
first) and the improvement that h++ makes over h+ (66%
of problems with a higher-than-median number of iterations
also show an above-median h++/h+ ratio), even slightly
stronger (68%) across problems not solved by h++. How-
ever, there is no easily discernible relationship between the
two (see left half of figure 2). It also varies greatly between
domains, since the number of iterations required to raise the
lower bound grows with the number of distinct minimum-
cost relaxed plans. A problem feature that can lead to many
alternative relaxed plans is functionally equivalent objects
(e.g., multiple vehicles with the same roadmap in trans-
portation problems). This partly explains the performance
difference between the Logistics 1998 and 2000 problem
sets, which scale up differently in this respect, though the
negative impact this has on the h+ solver plays a bigger
part. There is also a positive correlation between iterations
and the difference between h++ and A� lower bounds over
problems without zero-cost actions, but which does not hold
across the set of problems with zero-cost actions.
Since an optimal relaxed plan is computed in each itera-

tion, the time consumed by the h+ solver strongly influences
the effectiveness of h++: in 93.8% of instances where h++

does not find a plan, it runs out of time computing relaxed
plans; only in 6.2% it runs out of memory by generating too
large flaw sets. The time for flaw extraction never exceeds a
second.
The right half of figure 2 plots the difference between

lower bounds by h++ and A� against the number of blocks
in Blocksworld (3-ops) problems. Here, there is a clear pos-
itive correlation, i.e., the larger the problem, the greater the
advantage of h++. A similar correlation with the number of
(semi-independent) goals can be found in, e.g. the Logistics

and Elevators domains.

Conclusions
Strong lower bounds are essential for proving the quality of
plans, and thus for inspiring confidence in planners, which is
important for the acceptance of automated planning in many
applications. Cushing et al. (2010) observe that finding
plans and proving their optimality (or near-optimality) are
fundamentally different problems. The logical conclusion is
that they should be approached by different methods. Search
is often a very effective means for finding plans, but not al-
ways as effective at proving lower bounds on their cost.
Solving increasingly less and less relaxed problem relax-

ations is an attractive approach to constructing incremental
lower bound functions, but has not been much explored in
planning. We presented one realisation of this idea, based on
the common delete relaxation, and showed that it is in many
cases able to prove stronger lower bounds than A� search,
even A� search using h+, the optimal cost of the delete re-
laxed problem, as the heuristic.
To characterise more precisely the effectiveness of h++

as a means of computing lower bounds, compared to that
of A� search, is difficult, since both are influenced by many
factors. A conclusion from the experiments is that it is in-
timately linked with the efficiency of the method used to
compute relaxed plans. The h+ solver we have used is par-
ticularly weak in some domains. Fortunately, there now ex-
ist several other methods for optimal delete relaxed plan-
ning (Pommerening and Helmert 2012; Gefen and Brafman
2012), and any one of them can be used within h++.
In fact, the process of iterative flaw extraction and remedy

does not even depend on the relaxed plan having minimal
cost; that serves only to ensure that the cost of the relaxed
plan is a lower bound on real plan cost. Thus, the same
approach may conceivably be taken also to deriving an in-
cremental lower bound function for a different cost measure,
such as makespan. Interestingly, finding a relaxed plan with
minimum makespan is tractable (as it is given by hmax).
The ultimate aim is of course to produce plans of assured

high quality. In many cases, even with the higher lower
bounds we obtain with h++, the remaining gap to the best
known plan remains large. Thus, an important question is
how to make effective use of an incremental lower bound
function like h++ in bounded suboptimal search algorithms,
which normally rely on node expansion to improve lower
bounds above initial heuristic estimates (e.g. Thayer and
Ruml 2011), and thus suffer the same weaknesses as A� in
this respect.
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