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Abstract

Over the last few decades, researchers have worked to improve deep learning models’
specificity on a target domain, striving to achieve human-level performance. To reach
such a level, the development of deep learning has relied on the joint confluence of
the model (i.e., algorithms) and data. Noticeably, the optimization of data has received
relatively little attention in comparison to the optimization of the model. This thesis
aims to strengthen deep learning models’ specificity from a data-centric perspective.
We highlight that the training data, i.e., the data which deep learning models learned
from, has significant potential for improvement. Specifically, we analyzed the train-
ing set quality, and designed algorithms to perform training set optimization, under
various scenarios.

We first aim to understand the training set quality, which is critical to the success
of the resulting model trained on it, and forms the foundation of this thesis. In this
thesis, we verify that data diversity and domain gap are two pivotal aspects describ-
ing training data quality. The former encodes the extent to which training samples
differ, and the latter characterizes the distribution difference between training and
testing. We argue that the two factors are intrinsically correlated and should be jointly
considered. We formulate training data quality as a function of both data diversity
and domain gap, and quantitatively analyze it on 872 different training sets created
by geometric image transformations and neural rendering. We verify that a joint ob-
jective of high diversity and low domain gap characterize high-quality training data,
and apply this idea in composing better training sets.

We then focus on an application called training set search, in which we aim to
construct a competent training set under certain scenarios. We first consider a sce-
nario where we have access to the target domain, but cannot afford on-the-fly training
data annotation, and instead would like to construct an alternative training set from
a large-scale data pool such that a competitive model can be obtained. We propose a
search and pruning (SnP) solution to this training data search problem, tailored to ob-
ject re-identification (re-ID), an application aiming to match the same object captured
by different cameras. The SnP solution provides us with training sets 80% smaller
than the source pool while achieving a similar or even higher re-ID accuracy.

We further consider a training set optimization scenario where we have access to
the target domain, and instead would like to use synthetic data to construct an alter-
native training set. To address the content-level misalignment between synthetic and
real, we propose an attribute descent approach that automatically optimizes engine
attributes to enable synthetic data to approximate real-world data. Extensive exper-
iments on image classification and object re-ID confirm that adapted synthetic data
with attribute descent can be effectively used in three scenarios: training with syn-
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thetic data only, training data augmentation and numerically understanding dataset
content. The scenario of training with synthetic data only relates to data privacy and
security at the corporate level, as the expensive and confidential private data can be
protected while a model is trained on synthetic data only.

Apart from studying training set quality on training a high accuracy model, we
also consider building a privacy-preserved training set which leads to privacy-preserving
models for people data. We studied the feature fusion problem in data, and proposed
a new strategy to filter out unwanted features from data based on our feature ex-
tractor, tailored to the application of brain-computer interface, which its input signal
electroencephalography (EEG) is known as feature fused and rich in all kinds of in-
formation from our brain. Our experimental results on an alcoholism dataset show
that our novel model can filter out over 90% of alcoholism information on average
from EEG signals, with an average of only 4.2% useful feature accuracy lost, showing
effectiveness for our proposed task.
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Chapter 1

Introduction

1.1 Motivation

At its core, constructing a task-specific deep learning (DL) system involves two pil-
lars: the model (i.e., algorithm and code) and data it trained on. To explain, the DL
system solves problems by using a model to learn prototypical features from vast
amounts of data. Given such a pipeline, there are two main approaches to improving
the performance of DL systems: model-centric and data-centric. Shown in Fig. 1.1
left, in model-centric DL, developers of a DL system focus on upgrading the model
(algorithm/code) while keeping the amount and type of data collected fixed. This
approach involves tweaking the model’s architecture and optimizing its hyperparam-
eters, etc. [4, 5]. Conversely, in data-centric DL, shown in Fig. 1.1 right, practitioners
focus on keeping the model fixed, but working on improving the quality of data. This
approach involves identifying and adapting bias in the target data [6], augmenting the
data with new samples or features [7], and collecting additional data (e.g., synthetic
data) [8] to increase the diversity and coverage of the dataset.

Model-centric DL focuses on iterating model building to develop strong DL mod-
els. This approach involves designing and fine-tuning neural network architectures
to achieve the desired level of accuracy. Such a process usually requires the usage
of a benchmark, which means a fixed, standard dataset for evaluating deep learning
models’ performance and selecting competent models for deployment [9]. For exam-
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Training set

Model Modeling

Evaluation on Validation set

Test /
Deployment

Training
Constructing 
Training set

Model 
Modeling

Evaluation

Test /
DeploymentTraining

Model-centric improvement for strong DL models 

Evaluation

Data-centric improvement for strong DL models 

Figure 1.1: The difference between model-centric DL and data-centric DL. The model-
centric DL aims to have strong DL models by iterating model building. In comparison,
the data-centric DL aims to have strong DL models by iterating training set construc-
tion.

1
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ple, ImageNet [10] is one of the most famous benchmarks for evaluating and selecting
image classification models. The usage of benchmarks successfully results in lead-
ing deep learning models. For example, the usage of the ImageNet benchmark has
successfully introduced computer vision models including VGG [11], GoogleNet [12],
ResNet [13], etc. However, despite its dominance over the past decades, model-centric
AI has been recently criticized for problems like the requirement of a large amount of
computational resources, difficulty in hyperparameter tuning, weak generalization
ability, saturation in existing benchmarks and bias [9].

In contrast to model-centric deep learning (DL), which focuses on improving the
architecture of DL models, data-centric DL places greater emphasis on the construc-
tion of a high-quality training set through iterative selection and preprocessing of
data. As depicted in Fig 1.1, this approach involves selecting or generating represen-
tative data to create a training set that accurately reflects the problem being addressed.
Similar to the benchmarks set to evaluate deep learning models, we establish bench-
marks for evaluating training set quality, i.e., evaluating the ability to train competent
deep learning models. Specifically, we imitate the model benchmark setting, where
we have access to a target validation set and test set.

In early papers, benchmarking training sets typically require multiple iterations
of real training processes to assess the model’s accuracy on the validation set, which
can be time-consuming and computationally expensive. For instance, Cubuk et al.
employed real training processes to enhance the data augmentation policy on Ima-
geNet [14]. But such a process requires 15,000 GPU hours with the NVIDIA P100
GPU, showing that using the validation accuracy for constructing good training sets
is very time-consuming.

In this thesis, we are among the first to overcome the need for real training pro-
cesses by developing a method for identifying and constructing a good training set.
We examine the essential composition factors of a high-quality training set and apply
our findings to a novel task known as training set search. Specifically, we have the
following objectives.

1.2 Objectives

The first objective of this work is to provide evaluation metrics to evaluate the quality
of the training set, a factor that is crucial to the effectiveness of the resulting models
and is the cornerstone of this thesis. The conventional approach involves undertaking
actual training to gauge quality, but this method is time-consuming, making qual-
ity assessment challenging. In this thesis, we aim to evaluate the training set quality
prior to actual training. We emphasize that data diversity and the domain gap are
two critical factors that define training data. Data diversity pertains to the degree
of variance among training samples, whereas the domain gap signifies the disparity
in distribution between training and testing data. Insufficient diversity can lead to
model overfitting, and data augmentation is commonly employed to mitigate this is-
sue. A significant domain gap between training and testing can hinder learning. In
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our study, we found target domain usually exhibits data bias like distinct modes in
filming scenes, if the training set does not contain these target modes (thus a large
domain gap), the model performance would be compromised. Current literature ad-
dresses this problem with techniques such as pixel-level alignment (image transla-
tion) and content-level alignment (image content manipulation). There is a dearth
of research that concurrently considers diversity and domain gaps in understanding
training set quality. In this research, we posit that these two factors are inherently re-
lated and should be evaluated collectively. We define training data quality as a func-
tion of both data diversity and the domain gap, and conduct a quantitative analysis
on 872 diverse training sets, formulated by two distinct methods: geometric image
transformations and neural rendering. Through comprehensive experiments, we of-
fer profound insights into measuring and ensuring the quality of training data. We
confirm that an integrated goal of high diversity and minimal domain gap signifies
high-quality training data and employ this concept to create improved training sets.

Our next area of focus is an application we have named training set search, which
seeks to build an efficient training set suitable for a specific target. Initially, we look
at a situation where we have access to the target domain but lack the resources for
immediate training data annotation. Instead, we aim to create a substitute training set
from a substantial data pool to generate a competitive model. We introduce a search
and pruning (SnP) strategy to address this training data search issue, specifically for
object re-identification (re-ID), a task designed to match the same object captured by
various cameras. More precisely, the search phase identifies and combines clusters
of source identities displaying similar distributions (i.e., a small domain gap) with
the target domain. The subsequent stage, within a specified budget, selects identities
and their images from the results of the first stage to manage the size of the resulting
training set for efficient training. These two stages produce training sets that are 80%
smaller than the source pool, while maintaining or even enhancing re-ID accuracy.
These training sets also outperform several existing search methods such as random
sampling and greedy sampling, given the same budget for training data size. If the
budget constraint is lifted, training sets generated from the first stage alone can deliver
even greater re-ID accuracy.

We also explore a training set search scenario in which we have access to the tar-
get domain and wish to use synthetic data to build an alternate training set. Two
distinct levels of domain gaps are present between synthetic and real data, namely,
content level and appearance level. While the appearance level pertains to the style
of appearance, the content level results from differences in aspects like camera view-
point, object positioning, and lighting conditions. The content-level discrepancy, un-
like the widely researched appearance-level gap, has not received much attention. To
tackle this content-level misalignment, we suggest an attribute descent method that
automatically refines engine attributes, allowing synthetic data to closely mirror real-
world data. We test our approach on object-centric tasks where an object occupies a
significant portion of an image. In such tasks, the search space is fairly limited, and
optimizing each attribute provides distinct supervisory signals. We assemble a new
synthetic asset named VehicleX and reconfigure and repurpose existing synthetic as-
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sets ObjectX and PersonX. Comprehensive experiments on image classification and
object re-identification affirm that adapted synthetic data can be effectively applied in
three scenarios: solely training with synthetic data, training data augmentation, and
numerically understanding dataset content. The ability to train with synthetic data
only is important for data privacy and security for organizations, as the expensive or
confidential private data can be protected while a model is trained on synthetic data
only.

In addition to exploring the quality of the training set for generating high-accuracy
models, we also examine the creation of privacy-preserving training sets that result in
privacy-conscious models. We delved into the issue of feature fusion in data and intro-
duced a new approach to eliminate undesired features from data utilizing our feature
extractor. This is designed specifically for the brain-computer interface, with its input
signal, electroencephalography (EEG), known for its feature fusion and the rich array
of information sourced from our brain. The process of filtering out signals associated
with one aspect of the EEG signal while keeping another mirrors our ability to focus
on a single voice in a crowded party, a phenomenon known in the machine learn-
ing field as the cocktail party problem. Our feature filter is an end-to-end framework
that is trained to transform EEG signals replete with undesired features directly into
EEG signals devoid of those features. The experimental outcomes using an alcoholism
dataset demonstrate that our innovative model can filter out over 90% of alcoholism
information on average from EEG signals, with an average loss of only 4.2% in useful
feature accuracy, thereby proving its efficacy for our proposed task.

1.3 Contributions

Targeting these objectives outlined above, this thesis presents new contributions that
are itemized as follows:

• We have analyzed the intent composition of a good training set. We verify that
a joint objective of high diversity and low domain gap characterize high-quality
training data, and apply this idea in composing better training sets.

• We propose a search and pruning (SnP) solution to the training data search prob-
lem in the large source pool. The two steps provide us with training sets 80%
smaller than the source pool while achieving a similar or even higher task accu-
racy.

• We propose an attribute descent approach that helps to use synthetic data to
construct training sets for model training. The proposed approach automatically
optimizes engine attributes to enable synthetic data to approximate real-world
data.

• We studied the feature fusion problem in data, and proposed a feature filter
to filter out unwanted features, for the purpose of building privacy-preserving
training data.
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1.4 Thesis Outline

This dissertation is organized as follows:

• In this chapter, we have briefly introduced our motivations, objectives as well as
significant contributions.

• Chapter 2 establishes essential foundations for the training set search by analyz-
ing how to compose a good quality training set.

• Chapter 3 describes training data search from a source pool.

• Chapter 4 presents training data optimization from synthetic to real.

• Chapter 5 shows approaches that can be used to filter out unwanted features in
the training set.

• Finally, in chapter 6, we conclude our thesis and discuss several future directions
for data-centric optimization.
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Chapter 2

Training Set Quality Analysis

2.1 Introduction

As a pillar in machine learning, a high-quality training set helps to achieve good ac-
curacy on the test set. According to textbook definitions, an ideal training set should
have exactly the same distribution as the test set, which is very difficult to achieve in
real-world scenarios. In practice, such an assumption is rarely satisfied, and we often
find limited diversity in the training data; or a large domain gap between training and
testing data.

Data diversity reflects how training samples differ from each other. Limited train-
ing data diversity can cause overfitting or performance degradation of models. In
order to improve data diversity, existing work [14, 15, 16] usually apply data aug-
mentation on the training data (Fig. 2.1 (B)), e.g., flipping, cropping, brightness ad-
justments, and cutout [17, 18]. This leads to a higher diversity of training data, which
increases training data quality in the sense that it results in more robust models.

Domain gap characterizes the distribution difference between training and test-
ing. A large domain gap indicates severe distribution drift and creates difficulties
for learning. Many existing works in domain adaptation try to generate training
sets with reduced domain gaps. Some achieve this by neural renderings with image
translation [19] so that the training images share similar artistic styles to the testing
images (Fig. 2.1 (C)). Others adopt content-level adaptation by directly manipulat-
ing the image contents such as object class, identity, characteristics, and scene lay-
out [20, 21, 22, 23], and create a training set that has similar contents as the test set.
Both pixel-level and content-level help to bridge the domain gap between training
and testing, and create higher-quality training data that allows for better performance
of the model.

Both data diversity and domain gap characterize the training data quality in that
different levels lead to different model accuracies on the test set. In the literature, very
few works consider both of them when mentioning training data quality. In this thesis,
we jointly consider these two concepts for training data quality assessment, and find
that diversity and domain gap are correlated. We quantitatively analyze training data
quality as a function of both data diversity and domain gaps based on our proposed
measurements. Specifically, we measure the training data quality as the test accuracy.

7
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Training set

Test set

Test accuracy as 
Training data 

quality

Classifier 

Training set: 
Limited diversity

Test set

Training set: 
geometric transformation 

to increase diversity

Training set:
large domain gap

Test set

Training set: 
neural rendering

to minimize Domain Gap

Figure 2.1: The definition of training data quality and operations that influence it.
(Left): We evaluate the training data quality as the test accuracy from a trained model.
Rather than the ideal situation where the training data follows the same distribution
as the testing data, in real-world applications, oftentimes the training data suffers
from (Middle): limited diversity or (Right): a large domain gap between training and
testing. Many methods are proposed to address these problems, e.g., geometric image
transformations to increase diversity, and neural rendering to bridge the domain gap.

For diversity and domain gap, we use both unsupervised measurements that only
focus on the image distributions, and supervised measurements that jointly consider
both images and labels.

To enable our analysis, we design and conduct extensive experiments to show-
case the influence of domain gaps and data diversity on the training data quality. For
these experiments, we create 872 different training sets with 53 million images on 6
different settings using two types of methods: geometric transformations and neural
rendering. We train models on these 872 datasets for quality evaluation, and consider
each dataset with its quality, diversity measurement, and domain gap measurement
as a “data point”. We then scatter plot these “data points”, and examine the plot-
ted results for further study. Based on these experiments, we have some interesting
findings. To name a few,

• Diversity and domain gap are correlated. A change in one of them often affects
the other.

• Neither diversity nor domain gap can determine training data quality by itself.

• Diversity and domain gap together measure the quality of a training set. A
training set with high diversity and low domain gap performs better on testing.

• There often exists a trade-off between diversity and domain gap. An increase in
diversity is often accompanied by an unwanted increase in domain gap.

Our findings not only provide insights into the scientific problem of training set as-
sessments, but also have real-world applications such as searching for a training dataset
with the highest performance. To be shown in the following chapters, we consider cre-
ating a substitute training set from a substantial data pool, or generating alternative
training set from synthetic data, to generate competitive models. In the coming chap-
ters, we show that with an objective function that describes the domain gap only, the
searched training sets are well enough to result in competitive models.
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2.2 Related Work

Distribution Analysis. Recently, generative adversarial networks (GANs) achieve
outstanding results in generating realistic images [24, 25]. The objective of GANs is to
generate images that follow real-data distribution. In general, distribution similarity
and diversity are used to measure quality. For example, inception score (IS) [26], ker-
nel inception distance (KID) [27] and Fréchet inception distance (FID) [28] are usually
used to measure distribution similarity. and structural similarity index (SSIM) [29], and
learned perceptual image patch similarity (LPIPS) [30] is used to measure diversity.
We extend these metrics to measure the quality of a training set. Different from dis-
tribution analysis on GANs which only consider the quality of data, the quality of a
training set should be determined by the joint distribution of data and its labels.

Data augmentation is widely used in training a deep neural network. The aim is to
enlarge the training set using various transformations, such as random crop, random
erasing, rotation, flipping, and so on [7, 18], thereby improving model generalization
ability. A large number of data augmentation policies are proposed in the past, which
results in many combinations of methods. [14] shows that these policies can also be
learned automatically. Earlier works mainly focus on increasing diversity and then
increasing the training difficulty as shown in Fig. 2.1. But as some transformations
bring changes that are unlikely to happen in the real world. In those cases, it will
inevitably change the original data distributions and thus enlarge the domain gap.
We also use data augmentation as a part of the training set quality analysis from a
joint perspective of domain gap and diversity, and study how these two parameters
influence the quality of a training set.

Domain adaptation has attracted more attention in the recent progress of deep
learning. Existing approaches attempt to eliminate the domain gap between the source
and target distributions [31, 32, 33]; also, multiple matrices are introduced to measure
such domain gaps. For example, at the feature level, [34] and [32] utilize the maximum
mean discrepancy (MMD) [35] to learn robust features across domains. At the style
level, an end-to-end mapping with autoencoder structure is often used to transfer im-
age style [19, 36]. Recent work also aims to learn a mapping from the content level
using graphic engines [21, 20, 22, 37]. As shown in Fig. 2.1, existing work on domain
adaptation mainly focuses on reducing the domain gap. Our work indicates reducing
the domain gap is usually not enough and increasing diversity is also necessary.

Dataset bias and assessment. People collect datasets with the purpose, that they
can reflect real-world distributions with no known bias. However, such a purpose is
hard to meet and the reality is that different datasets have different biases. For exam-
ple, Torralba et al. study dataset bias by training a classifier to determine which dataset
a given image comes from, and get 39% accuracy which is significantly above the ran-
dom chance of 8% [38]. Similar bias has been found in other applications like action
recognition [39] and object re-identification (re-ID) [40, 41]. This thesis acknowledges
that datasets (i.e., both training and test set) inevitably have bias and define a new
framework. We have a reference test set that defines cases in test scenarios includ-
ing preference and bias. With this and fixed neural network, we study how we can
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formulate a training set with the best quality.

2.3 Problem Formulation

Without loss of generality, we consider a machine learning task that learns a model
mθ (·) with parameters θ to estimate labels for images x. We use a loss function L (·, ·)
between estimated labels mθ (x) and the ground truth labels y to optimize this model
mθ (·),

θ∗Dtrain
= arg min

θ
∑

⟨x,y⟩∈Dtrain

L (mθ (x) , y), (2.1)

where Dtrain = ⟨Xtrain, Ytrain⟩ denotes the training set (Xtrain denotes the set of training
images and Ytrain denotes the set of corresponding ground truth labels), and θ∗Dtrain

denotes the best parameters for the model learned from the training set. We further
denote the learned model as mDtrain (·).

In this thesis, we aim to understand the quality of a training set Dtrain for machine
learning tasks. A training set of high quality should be able to train neural network
models that can perform well on the test set. We use the test set Dtest = ⟨Xtest, Ytest⟩
accuracy of the trained model to represent the quality of that training set. We un-
derstand a training set from two perspective: data diversity and domain gap. We
formulate the training set quality Q (Dtrain) as a function of diversity and domain
gap,

Q (Dtrain)

→ Q (div (Dtrain) , gap (Dtrain, Dval))

→ acc (mDtrain , Dtest) ,

(2.2)

where div (·) and gap (·, ·) denote the measurements of diversity and domain gap, re-
spectively. To avoid using the test set other than evaluation, we use the validation set
Dval = ⟨Xval, Yval⟩ for diversity and domain gap measurements. Also, acc (mDtrain , Dtest)
denotes the test set Dtest accuracy of the model mDtrain .

2.3.1 Pipeline

In the search for the training set quality as a function of diversity and domain gap
(Eq. 2.2), it is vital that we have proper measurements of these two concepts. Existing
measurements are usually unsupervised, which means that data diversity and domain
gap are estimated based on images only, and can be formulated as functions of the
images div (Xtrain) and gap (Xtrain, Xval).

We aim to understand training data quality for machine learning, and machine
learning usually relies on both images and labels. As such, measurements of diversity
and domain gap should be formulated as functions of both images and their labels,
div (Dtrain) = div (⟨Xtrain, Ytrain⟩), gap (Dtrain, Dval) = gap (⟨Xtrain, Ytrain⟩ , ⟨Xval, Yval⟩),
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Figure 2.2: The proposed method for investigating training set quality. To analyze the
training data quality as a function of both diversity and domain gap, first, through
controllable attributes, we create N different training sets {Dn} , n ∈ {1, ..., N}. Then,
we can measure the diversity {divn} and domain gap {gapn} of these datasets, and get
their quality as the evaluation results from trained models {accn}. Finally, we can plot
figures to show the training data quality as a function of diversity and domain gap,
by interpreting diversity and domain gap as the x-axis and the y-axis, respectively.

rather than functions of images only. In what follows, we refer to these as supervised
measurements, which means not only images but also their labels are considered. In
the next sections, we also investigate unsupervised measurements of data diversity and
domain gap to enable our investigation of training data quality Q (Dtrain).

2.3.2 Measurement of Diversity

Diversity encodes the averaged difference between training samples. However, to the
best of our knowledge, there is no evaluation protocol for diagnosing the overall diver-
sity of a dataset. Existing work has used statistics over image samples like Structural
SIMilarity (SSIM) [29] and Learned Perceptual Image Patch Similarity (LPIPS) [30] to
define the difference between two images. Both SSIM and LPIPS are unsupervised, as
their calculation does not require labels. To accurately measure the overall difference
of samples in the feature space, we define the matrix W as,

W =


f (X1, X1) f (X1, X2) · · · f (X1, XN)
f (X2, X1) f (X2, X2) · · · f (X2, XN)

...
...

...
f (XN , X1) f (XN , X2) · · · f (XN , XN)

 , (2.3)

where f (·) denotes the difference between two images in the feature space, e.g., SSIM [29]
and LPIPS [30]. Given W , we define unsupervised metric to denote the overall diver-
sity:

div (Dtrain) =
∑

N
i=1 ∑

N
j=1 f (Xi, X j)

N2 − N
, i ̸= j. (2.4)

In this chapter, we propose a supervised diversity measurement using the loss func-
tion L (·, ·). Since higher diversity increases the difficulties of fitting a model (and pre-
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vents overfitting), we can use the training difficulty to represent its diversity. Given
a model with fixed architecture, higher difficulties of the training set can be indicated
by higher overall loss value given by a trained model. We thus define the diversity
measurement as,

div (Dtrain) = ∑
⟨x,y⟩∈Dtrain

L (mDtrain (x) , y). (2.5)

This measurement comes from a dataset point-of-view as its calculation uses both
images and labels. In Fig. 2.3, we experimentally show that increased diversity caused
by a higher level of data augmentation leads to an increase of the proposed diversity
measurement in Eq. 2.5.

2.3.3 Measurement of Domain Gap

Domain gap refers to the distribution difference between the training and test sets.
Currently, unsupervised distribution measurements like Fréchet distance (FD) [28]
and kernel distance (KD) [42] are widely adopted for measuring the domain gap. Sim-
ilar to SSIM and LPIPS mentioned above for diversity measurement, FD and KD are
also unsupervised measurements, as their calculations only use images. For example,
the FD is defined as

FD(Dtrain, Dval) = ∥µt −µv∥2
2 +

Tr(Σt + Σr − 2(ΣtΣr)
1
2 ),

(2.6)

where µt ∈ Rd and Σt ∈ Rd×d denote the mean and covariance matrix of the features
extracted from a pre-trained model, respectively.

For measuring the domain gap in a supervised manner, we use the model accuracy
difference (affinity) between the training set and the validation set to represent the
domain gap, which is proposed by Lopes et al. [43]. Given a model trained in one
domain, when tested in another domain, the larger the domain gap, the more difficult
it is for the model to generalize well. As such, we measure the domain gap as,

gap (Dtrain, Dval) = acc (mDval , Dval)− acc (mDval , Dtrain) , (2.7)

where mDval denotes a model trained on the validation set. This approach has a low
calculation cost as only one model needs to be trained for the measurement. It is also
noteworthy that the model trained on the validation set mDval (·) is used and only used
for the calculation of the domain gap measurement, and we still train all other models
normally on the training set to evaluate the training data.

As the proposed domain gap measurement is calculated using labels, it is also su-
pervised. In Fig. 2.3, we show that the proposed domain gap measurement increases
as we deliberately increase the domain gap by rotating the training images. In Sec-
tion 2.5 Fig. 2.5, we further show that neither of the proposed measurements alone
determines the training data quality.
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Figure 2.3: Geometric image transformations influence both diversity and domain
gap. Left: As more transformations are applied to the training data or the distortion
levels (degree of the transformations) increase, the diversity increases, and the pro-
posed measurement of diversity (y-axis) also increases. Right: In the rotating and
translating MNIST experiment, as we increase the rotation angle of the training im-
ages, we create a larger domain gap between training and testing, and we witness an
increase in the proposed measurement of the domain gap (y-axis).

2.4 Experiment

In order to understand the training data quality, we design and conduct extensive
experiments. In the following sections, we first introduce how we design these ex-
periments attempting to show that the training data quality is a function of both data
diversity and domain gap (Eq. 2.2). Then, we detail the methods we adopted in these
experiments.

2.4.1 Experiment Design

In our experimental study, to understand training data quality, we first generate dif-
ferent training sets. As shown in Fig. 2.2, we use controllable attributes to gener-
ate N different training sets {Dn} , n ∈ {1, ..., N}. These N training sets have di-
versity measurements of {divn} = {div (Dn)} and domain gap measurements of
{gapn} = {gap (Dn, Dval)}. Next, we train models on these training sets and evaluate
the training set qualities using these trained models {mDn (·)}. Once we have N train-
ing sets and their corresponding quality evaluations {accn} = {acc (mDn , Dval)}, we
represent each created dataset as a “data point” using a three-tuple ⟨accn, gapn, divn⟩.
As shown in Fig. 2.2, we then interpret domain gap and diversity as the x-axis and the
y-axis, respectively, so that we can show the data quality (color) as a function of both
of them.

2.4.2 Training Sets Creation

In order to create different training sets in a controllable manner, we first explore a toy
experiment on rotating and translating MNIST. We explore toy examples of rotating
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and translating MNIST and further use two methods: geometric image transforma-
tion, and neural rendering.

Rotating and translating MNIST is our toy preliminary experiment, which mod-
ifies controllable attributes in a graphic engine or other rendering methods to directly
change the appearance of image contents [21, 20, 22]. Different combinations of at-
tribute changes lead to various derived datasets.

Following the setting from Kar et al. [21], given MNIST images that are either ro-
tated or rotated and translated as test sets, we create training sets by directly ma-
nipulating the rotation angles and the translation biases. Specifically, we model the
rotation angle and the translation bias as Gaussian distributions, and control the mean
and variance to generate different training sets. For both settings on MNIST rotation
and MNIST rotation+translation, we create 200 training sets. Similar to the neural ren-
dering experiments, we also use the LeNet [44] classifier and train it with AdaDelta
optimizer [45] for 15 epochs.

Geometric image transformation is commonly used in data augmentation and
is widely used to increase dataset diversity using methods like flipping, cropping,
brightness adjustment, and cutout [17, 18]. Different numbers of applied transfor-
mations and different distortion levels will produce derived datasets with different
diversity levels (Fig. 2.3).

We use geometric image transformation to create different versions of CIFAR-
10 [46] and SVHN [47] datasets. Specifically, we use 14 types of data augmentation
methods following randAugmentation [48]. To generate different training sets in a
controllable manner, we select different numbers of transformations and different dis-
tortion levels (similar to the experiment in Fig. 2.3). For both CIFAR-10 and SVHN, for
each setting, we create 196 different training sets using different data augmentations.
On the created datasets, we train a WideResNet [49] classifier using SGD optimizer
for 200 epochs.

Neural rendering uses neural networks to transfer image style to another do-
main. Different losses and hyperparameters result in various transformation results
and thus create different derived datasets.

We use the neural rendering method CyCADA [19] to create different training sets
for the domain adaptation task MNIST→USPS and SVHN→MNIST. CyCADA trains
a generator to transfer training data to the testing style. We use a generator trained
for different numbers of epochs to create different training sets. We create 40 different
training sets for both MNIST→USPS and SVHN→MNIST. On the created datasets,
we train a LeNet [44] classifier using AdaDelta optimizer [45] for 15 epochs.

These three methods are usually linked with either diversity or domain gap (Fig. 2.3),
and we believe these methods all bring changes to both of them. In our experiment,
we use these methods separately to create modified training sets {Dn}.

Summary. In total, we experiment under 6 settings (2 for each training set cre-
ation method) and generated 872 different datasets, which translates into a total of 53
million training images and labels. In each setting, each training set represents a data
point, and we scatter these data points on a xy coordinate system with domain gap as
x-axis value and diversity as y-axis value.
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Figure 2.4: Relationship between domain gap, diversity and training set quality on
experiments (A) rotating and translating MNIST, (B) geometric image transformation
and (C) neural rendering. Each point in the scatter plot represents a training set. The
color of each point shows the training set quality (i.e., test accuracy). These six exper-
iments show that a relatively low domain gap and high diversity are desired.

2.5 Results and Findings

We show our results on the influence of diversity and domain gap on the training data
quality in Fig. 2.4 and Fig. 2.5 using the supervised measurements. We also examine the
training data quality using unsupervised measurements of domain gap and diversity.
In some scenarios, we have similar findings using unsupervised measurements when
compared to supervised measurements (Fig. 2.6), whereas there are cases that unsu-
pervised measurements cannot interpret the concepts correctly (Fig. 2.7). From these
figures, we have the following findings:

Diversity and domain gap are correlated. Changes in either diversity or domain
gap oftentimes affect the other. In data augmentation experiments (Fig. 2.4 top) and
neural rendering experiments (Fig. 2.4 middle), created datasets change both diver-
sity and domain gap at the same time. For rotating and translating (Fig. 2.4 bottom),
although there are multiple “data points” under the same diversity or domain gap, it
is still difficult to directly manipulate the means and variances for the Gaussian dis-
tribution so that it only influences either domain gap or diversity. All of these indicate
the domain gap and diversity are correlated and will be simultaneously influenced by
operations.

Neither diversity nor domain gap alone determines the quality of training sets.
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Figure 2.5: Neither diversity nor domain gap alone determines the quality of training
sets. Left: Relationship between domain gap and training set quality in the MNIST
rotation experiment. For a specific value of domain gap, the training set quality can
be different in a large range. Right: Relationship between diversity and training set
quality in the MNIST rotation and translation experiment. Similarly, for a specific
value of diversity, the training set quality can be different in a large range.

Many existing works intend to reduce domain gap by a domain adaptation proce-
dure. However, a dataset with the lowest domain gap is not necessarily the best.
Similarly, data augmentation is often used to increase the diversity. But a dataset with
the highest diversity is also not usually the best. We explain this by making the fol-
lowing statements based on our results. First, from Fig. 2.4, all the top-most points
(i.e., training sets with the largest diversity) do not achieve the best results. Similarly,
except for MNIST→USPS experiment, all left-most points (i.e., training sets with the
lowest domain gap) also do not achieve the best results. Second, from Fig. 2.5, one
specific value of domain gap or diversity corresponds to multiple values of training
set quality. This indicates that we cannot formulate training data quality as a function
of either of these two alone. Instead, a formulation with both concepts included is
needed.

A joint objective of high diversity and low domain gap characterizes high-quality
training data. In the subfigures of Fig. 2.4 and Fig. 2.6, for fixed values of domain gap,
test accuracy generally increases with higher values of diversity. Similarly, for fixed
values of diversity, test accuracy generally increases with smaller values of domain
gap. As such, we argue that the top left corner (i.e., high diversity and low domain
gap) can potentially create the best quality training data.

There exists a trade-off between domain gap and diversity. As discussed above,
a low domain gap and high diversity dataset should be the best. This situation is
not easy to meet in practice. As mentioned, domain gap and diversity are correlated
with each other. For example, in the experiment of geometric image transformation,
we find a trade-off between diversity and domain gap: an increase in diversity is
often accompanied by an unwanted increase in domain gap. For example, when we
increase the transformation scale, diversity and domain gap increase together. In this
case, a trade-off between the two values is needed to balance the two objectives and
achieve the best result.
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Figure 2.6: Comparison between different unsupervised measurements in the MNIST
rotation experiment. (A) supervised measurements of both domain gap and diversity.
(B) unsupervised diversity measurements with SSIM, LPIPS and LPIPS Task. (C) un-
supervised domain gap measurements with FID, KID and FD Task. (D) unsupervised
measurements of both domain gap and diversity with FID and SSIM.

Unsupervised measurements work well on rotating and translating MNIST. In
practice, it is time-consuming to use supervised measurements as they require trained
models. In this case, we test the unsupervised measurements and find they work well
in rotation and translation experiments. Fig. 2.6 shows the experiment of MNIST
rotation. In this figure, most unsupervised measurements have the same trend as su-
pervised measurements (i.e., datasets with high diversity and low domain gap achieve
good results). One exception here is LPIPS. It seems to consider some datasets with
low diversity as high diversity by mistake. We believe the reason is that the model
for evaluating LPIPS is trained from human perception [50]. Such human-level un-
derstanding is different from model-level understanding. When we switch the model
to a task model which is trained on the validation set for the measurements “LPIPS
Task”, the new “LPIPS Task” seems stable in measuring diversity. Also, unsupervised
measurements on domain gap seem to consider some datasets with low domain gap
as high domain gap. But the trend with domain gap remains the same. We also use
“FD Task” which uses a task model to measure distance instead of the Inception-V3
network [51] for FID. We observe a similar trend using FID, KID, and “FD Task”.

Unsupervised measurements fail to describe training set quality on neural ren-
dering. Fig. 2.7 shows failure cases. For neural rendering, we observe that the training
dataset with a lower domain gap should have better quality (enables higher test per-
formance), which corresponds with our experiments in Fig. 2.4 and Fig. 2.6. However,
when using the unsupervised measurement for domain gap, e.g., FID, we find there
lacks a clear relationship between FID and the quality, indicating the FID measure-
ment might not be suitable. One possible explanation is that the unsupervised mea-
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Figure 2.7: Failure cases of unsupervised measurements. Content drift situation in neu-
ral rendering. Left: content drift examples of a style transfer model. For example, the
neural rendering is likely to change the image content, making a mismatch between
the image and its labels. Right: lack of a clear relationship pattern between domain
gap and test accuracy.

surement cannot deal with content drift introduced by style transfer (e.g., numbers 4
and 5 are changed into numbers 6 and 9 in Fig. 2.7 (B)).

2.6 Conclusion

Domain gap and diversity are two pillars in describing training set quality. However,
they are often separately considered in different situations. This chapter considers
training set quality as a function of both domain gap and diversity. We conduct quan-
titative experiments on sampling datasets with a large range of domain gaps and di-
versity, for the purpose of searching out their relationships. Mainstream training set
creation methods are explored like data augmentation and neural rendering. On these
training set creation methods, our findings suggest that a relatively low domain gap
and high diversity are desired for good outcomes. As applications of our findings, we
proposed the task of the training set search in the next chapter.



Chapter 3

Training Set Search from a Source
Pool

3.1 Introduction

The success of a deep learning-based object re-ID solution relies on one of its critical
prerequisites: the labeled training data. To achieve high accuracy, typically a massive
amount of data needs to be used to train deep learning models. However, creating
large-scale object re-ID training data with manual labels is expensive. Furthermore,
collecting training data that then contributes to the high test accuracy of the trained
model is even more challenging. Recent years have seen a large number of datasets
proposed and a significant increase in the data size of any single dataset. For example,
the RandPerson [1] dataset has 8,000 identities, which is more than 6× larger than the
previous PersonX [1] dataset.

However, these datasets generally have their own dataset bias, making the model
trained on one dataset unable to generalize well to another. For example, depend-
ing on the filming scenario, different person re-ID datasets generally have biases on
camera positions, race, and clothing style. Such dataset biases usually lead to model
bias, which results in the model’s difficulty performing well in an unseen filming sce-
nario. To address this, many try to improve learning algorithms, including domain
adaptation and domain generalization methods [56, 57, 58, 59, 60, 61]. Whereas these
algorithms are well-studied and have proven successful in many re-ID applications,
deciding what kind of data to use for training the re-ID model is still an open research
problem, and has received relatively little attention in the community. We argue that
this is a crucial problem to be answered in light of the ever-increasing scale of the
available datasets.

In this chapter, we introduce SnP, a search and pruning solution for sampling an
efficient re-ID training set to a target domain. SnP is designed for the scenario in that
we have a target dataset that does not have labeled training data. Our collected source
pool, instead, provides suitable labeled data to train a competitive model. Specifically,
given a user-specified budget (e.g., maximum desired data size), we sample a subset
of the source pool, which satisfies the budget requirement and desirably has high-
quality data to train deep learning models. This scenario is especially helpful for

19
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Figure 3.1: We present a search and pruning (SnP) solution to the training data search
problem in object re-ID. The source data pool is an order of magnitude larger than
existing re-ID training sets in terms of the number of images and the number of iden-
tities. When the target is AlicePerson [52], from the source pool, our method (SnP)
results in a training set 80% smaller than the source pool while achieving a similar
or even higher re-ID accuracy. The searched training set is also superior to existing
individual training sets such as Market-1501 [53], Duke [54], and MSMT [55].

deploying a re-ID system for unknown test environments, as it is difficult to manually
label a training set for these new environments. We note that due to the absence of an
in-distribution training set, the searched data are directly used for training the re-ID
model rather than pre-training.

In particular, we combine several popular re-ID datasets into a source pool, and
represent each image in the pool with features. Those features are extracted from an
Imagenet-pretrained model [51]. The images with features are stored on the dataserver
to serve as a gallery. When there is a query from the target, we extract the feature of the
query image, and search in the gallery for similar images on a feature level. Specif-
ically, in the search stage, we calculate feature-level distance, i.e., Fréchet Inception
Distance (FID) [28]. Given the constraint of a budget, we select the most representa-
tive samples in the pruning stage, based on the outputs from the search stage. This
limits the size of the constructed training set and enables efficient training.

Combining search and pruning, we construct a training dataset that empirically
shows significant accuracy improvements on several object re-ID targets, compared to
the baselines. Without budget constraints, our searched training sets allow higher re-
ID accuracy than the complete source pool, due to its target-specificity. With budget
constraints, the pruned training set still achieves comparable or better performance
than the source pool. The proposed SnP is demonstrated to be superior to random or
greedy sampling. We show in Fig. 3.1 that the training set constructed by SnP leads
to the best performance on the target compared to the others. We provide discussions
on the specificity of our method and its role in bridging the re-ID domain gap.
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3.2 Related Work

Active learning gradually searches over unlabeled data to find samples to be labeled
by the oracle [62]. It is an iterative training process, where data search is performed
at each iteration to train a task model. Our task is different from active learning.
First, active learning is designed to acquire a training set and train models gradually.
This requires multiple real training processes which are computationally expensive.
In comparison, we directly search the whole training set once. Then the searched
training set is used for model training. Second, many active learning methods require
access to the target task model to provide selection metrics, e.g., uncertainty-based
metrics [63, 64, 65, 66]. Our task does not require task model information, in other
words, it is a real training process, during the process of the training set search. Thus
enabling a fast process of getting training data.

Neural data server is the closest inspiring work [67, 62]. They also aim to search
training data all at once from a large database. However, compared with us, firstly, [67]
and [62] are designed for searching pretraining data rather than direct training data.
Such a design is understandable as they are mainly for the classification task. Search-
ing directly for training data requires careful class alignment. In comparison, We are
targeting the re-ID task, where its training set can have a different class from the tar-
get, and then be directly used for training models. Furthermore, [67] and [62] require
unsupervised pretrained experts to measure the domain gap. Meanwhile we do not
require this, which saves extraction time and simplifies the solution.

Transfer learning is a long-standing problem for re-ID tasks, and many attempts at
learning algorithms have been made to reduce the effect of domain gap [38, 68, 69, 36,
70]. Common strategies contain feature-level [34] and pseudo-label based [56, 57, 58]
domain adaptation, and domain generalization [59, 60, 61]. In this chapter, we focus
on training data that is orthogonal to existing training algorithms. As will be shown
in experiments, together with some domain adaptation (i.e., pseudo-label) methods,
SnP can achieve higher re-ID accuracy.

Learning to generate synthetic training data. Data simulation is an inexpensive
alternative to increasing training set scale while providing accurate image labels [2,
71, 1, 72, 73]. These methods aim to lower the domain gap between synthetic data and
real data by searching a set of parameters that control the 3D rendering process [2, 71].
In comparison, our search is not conducted on predefined parameters but on data
directly. This enables more direct research on how to form a good training set.

Object re-ID has received increasing attention in the past few years, and many
effective systems have been proposed [74, 75, 76, 77]. In this thesis, we study object
re-ID datasets rather than algorithms. Depending on the camera conditions, location
and environment, existing object re-ID datasets usually have their own distinct char-
acteristics or bias [1, 71, 78]. We show details in §3.3.
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(A) Viewpoint bias. (B) Human races & clothing style bias. (C) Vehicle model bias. (D) Background bias.
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Figure 3.2: Dataset bias in existing object re-ID datasets. (A) Viewpoint distribution
of different re-ID datasets. Each blue dot indicates a sample filmed from a specific
viewpoint. Compared with the bi-modal viewpoint distribution in Market camera 1,
Duke camera 4 has more diverse viewpoints. (B) Different races and clothing styles
of different person re-ID datasets. (C) Different vehicle makes in different datasets.
For example, taxis in VeRi are unlikely to be found in CityFlow. (D) Different back-
grounds in different datasets. We show a city background in AliceVehicle versus an
urban background in CityFlow. To tackle such bias in the target domain, we design
an automatic way to generate a training set with similar distribution or bias.

3.3 Motivation: Tackling Target Bias

Data bias commonly exists in the re-ID datasets (for examples see below) [72, 79, 80,
81], and it becomes problematic when the training and testing have different biases.
Given a target domain with a certain bias, we aim to find a target-specific training set
that has similar distribution or bias. Depending on the filming scenario, there are four
major types of data biases in existing re-ID datasets. We show examples of each type
in Fig. 3.2.

Viewpoint. Viewpoint bias applies to generic objects, including persons and ve-
hicles. We visualize the viewpoint distributions of two representative person re-ID
datasets in Fig. 3.2(A), i.e., Market-1501 [53] (denoted as Market) and Duke-reID [54]
(denoted as Duke)1.

Race and clothing style. Subject to the places where the data is collected, identities
in the person re-ID datasets can have distinctive patterns. We show in Fig. 3.2(B) that
the humans in Market and Duke datasets evince distinct races and clothing styles.

Vehicle model. Similar to the identity bias (i.e., race and clothing style) in person
re-ID, the vehicle identities in vehicle re-ID also hold distinct patterns across different
datasets. We show examples in Fig. 3.2(C) using the VeRi [82] (denoted as VeRi) and
the CityFlow [83].

Background. Background bias exists in both person and vehicle re-ID datasets,
which is similar to viewpoint bias. Fig. 3.2(D) compares the background difference of
images from two different vehicle re-ID datasets.

1We understand that it is no longer encouraged to use the Duke dataset. In fact, we are not using it
for algorithm design, but moving forward to find solutions to replace such specific dataset use.
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3.4 Method

Given a target unlabeled dataset, we aim to construct a source labeled dataset that has
minimal data bias inconsistencies with the target, under certain budget constraints. It
induces the model trained on the source to show good performance on the target. To
achieve the construction of the source (training) dataset, we propose the search and
pruning (SnP) framework.

3.4.1 Overview

We denote the target set as DT = {(xi, yi)}i∈[mt] where mt indicates the number of
image-label pairs in the target and [mt] = {1, 2, . . . , mt}. It follows the distribution
pT, i.e., DT ∼ pT. Let DS be the source set to be constructed under a budget b. The
budget is specified by the number of identities n and the number of images m allowed
in DS, denoted as b = (n, m). A high budget can lead to an unwanted increase in the
training cost, in terms of either training time or model size.

To construct the training set DS, we create a source pool S , which is a collection of
multiple object re-ID datasets. It is represented as S = D1

S
⋃D2

S · · ·
⋃DK

S . Here each
Dk

S, k ∈ [K], indicates the k-th source re-ID dataset. Given the source pool, we firstly
build a subset S∗ of S regardless of the budget constraint. Let hS be a model h trained
on an arbitrary dataset S. The prediction risk of hS on the test sample x with ground
truth label y is computed as ℓ(hS(x), y). We build S∗ by ensuring that the model hS∗

has minimized risk on DT, i.e.,

S∗ = arg min
S∈2S

Ex,y∼pT [ℓ(hS(x), y)]. (3.1)

We apply target-specific search in §3.4.3 to construct S∗.
It can be seen that the construction of S∗ does not take the budget constraint b =

(n, m) into consideration, which is otherwise important in reality. Therefore, we build
the training set DS by pruning S∗ to comprise no more than n identities and no more
than m images. Details of the budgeted pruning process are introduced in §3.4.4.

3.4.2 Correlation Study

In order to know how to obtain S∗, we conduct the correlation study to learn the rela-
tionships between the dataset bias differences (i.e., domain gap measured in FID [28]),
the number of IDs and the training set quality (i.e., rank-1 test accuracy with the model
trained on such training set). Shown in Fig. 3.3, in each subfigure, each point repre-
sents a training set, which is clustered from the source pool. For each training set, we
calculate its domain gap to the target domain, count its number of IDs, and evaluate
the rank-1 accuracy. We use the Pearson correlation coefficient (γ) [84] to measure the
correlation between them. The Pearson correlation coefficients range from [−1, 1]. A
value closer to −1 or 1 indicates a stronger negative or positive correlation, respec-
tively, and 0 implies no correlation.



24 Training Set Search from a Source Pool
R

an
k-

1 
ac

cu
ra

cy
 (

%
)

FID Number of ID
R

an
k-

1 
ac

cu
ra

cy
 (

%
)

Number of ID

F
ID

FID

N
um

be
r 

of
 I

D

R
ank-1 accuracy (%

)

(A) (B) (C) (D)

R
an

k-
1 

ac
cu

ra
cy

 (
%

)

FID Number of ID

R
an

k-
1 

ac
cu

ra
cy

 (
%

)

Number of ID

F
ID

FID

N
um

be
r 

of
 I

D

R
ank-1 accuracy (%

)

Figure 3.3: Relationships between the domain gap (measured using FID), the number
of ID and the rank-1 accuracy on the target. Top: correlations when AlicePerson [52]
is targeted. Bottom: correlations when AliceVehicle [52] is targeted. The Pearson
correlation is used to measure the relationship between them. (A) FID vs. the rank-
1 accuracy. They have a relatively strong negative correlation (≤ −0.636). (B) The
number of ID vs. the rank-1 accuracy. There exists a positive correlation but such a
correlation is not stable. (C) FID vs. number of ID. The correlation is weak between
them. (D) The joint influence of FID and the number of ID on rank-1 accuracy. The
top left corner, i.e., training sets that have low FID scores and a large number of IDs
have high rank-1 accuracy on the target.

From this Fig. 3.3(A), we observe a relatively strong negative correlation between
domain gap and rank-1 accuracy. This indicates minimizing the domain gap between
the source and target is highly likely to improve training set quality, i.e., test set rank-1
accuracy. From this Fig. 3.3(B), we observe a positive but unstable correlation between
the number of ID and the rank-1 accuracy. For example, when AlicePerson is targeted,
they have a relatively strong positive correlation (0.720). However, such correlation
is only 0.383 when AliceVehicle is targeted. Fig. 3.3(C) shows the correlation between
FID and the number of ID is weak. They are independent factors that influence train-
ing set quality. Fig. 3.3(D) shows the joint influence of FID and the number of ID on
the training set quality. The top left corner in Fig. 3.3(D), i.e., training sets that have a
low domain gap to the target and a large number of IDs are of high quality, thereby
can train a model that has higher rank-1 accuracy on the target.

3.4.3 Target-specific Subset Search

The theory of domain adaptation [85] states that:

εT(h) < εS(h) +
1
2

dH∆H(S,DT). (3.2)

Here h ∈ H represents the hypothesis function (i.e., the model). εT(h) is the risk of
model h on the target set DT, while εS(h) is its risk on the source set S. dH∆H(S,DT) is
the unlabelled H∆H divergence [85] between S and DT. Equation 3.2 shows that the
target risk εT(h) is upper bounded by dH∆H(S,DT).
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In the common practice of feature-level domain adaptation, the source training set
S is fixed while the joint feature extraction model is used to minimize dH∆H(S,DT) [34].
In our design, the feature extraction model is fixed instead. To minimize εT(h), the
problem is reformulated as

S∗ = arg min
S∈2S

dH∆H(S,DT). (3.3)

Generally, dH∆H(S∗,DT) is difficult to compute, but many alternatives exist in the
literature [34]. We use Fréchet Inception Distance (FID) [28], which is defined as:

FID(S∗,DT) = ∥µs −µt∥2
2 + Tr(Σs + Σt − 2(ΣsΣt)

1
2 ). (3.4)

In Eq. 4.4, µs ∈ Rd and Σs ∈ Rd×d are the mean and covariance matrix of the image
descriptors of S∗, respectively. µt and Σt are those of DT. Tr(.) represents the trace
of a square matrix. d is the dimension of the image descriptors. Consequently, the
objective function is reduced as,

S∗ = arg min
S∈2S

FID(S,DT). (3.5)

We build S∗ with the greedy algorithm below.
Firstly, we divide the entire dataset S into J clusters {S1, · · · , SJ}, as shown in

Fig. 3.4 (A). Specifically, we average all image descriptors that belong to the same
identity, and use this ID-averaged descriptor to represent all corresponding images.
Afterwards, we cluster the ID-averaged features into J groups using the k-means
method [86]. Each subset S j, j ∈ [J], is composed of all images with the corresponding
IDs in that group. Secondly, we calculate the FID between each subset S j and the tar-
get DT, and sort {FID(S j,DT)} j∈[J] in ascending order. To build S∗, we keep adding
the subsets with lower FID to S∗ until FID(S∗,DT) stops to decrease. This indicates
that the constructed S∗ holds the minimum FID to the target set. Algorithm 1 summa-
rizes the above procedures. We empirically demonstrate in Fig. 3.5 that, the subset S∗

with the minimum FID(S∗,DT) results in the model to produce highest accuracy on
the target dataset.

3.4.4 Budget-constrained Pruning

Using the target-specific subset search, we construct a candidate training set S∗. For
now, it can violate the budget constraint of b = (n, m), which prefers the training
set to include no more than n identities and no more than m images. Let Y(S∗) =
{y1, y2, . . . , ya}, be the set of unique identities in S∗, and s(yi), i ∈ [a] be the set of all
images with identity yi. Generally, we have a ≥ n. To get the training set DS under
budget b, we randomly sample a subset y of n identities from Y . All images with
identities in y are combined to form a subset ŝ = {s(yi)|yi ∈ y}. We also initialize
DS by random sampling a seed image from each s(yi), yi ∈ y. This guarantees DS to
cover all the identities in the subset ŝ.
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Figure 3.4: Workflow of the proposed SnP method. We are given sources composed
of K existing datasets. From these sources, we aim to construct a training set, which
satisfies the budget of no more than n IDs and m images. To achieve this, we perform
(A) target-specific subset search to obtain a subset S∗ with similar distributions to
the target, then perform (B) budgeted pruning to select n IDs and m representative
images, forming the final training set.

Suppose the number of images in ŝ is larger than m. We construct DS by sampling
images iteratively from ŝ until |DS| = m. To ensure similar performance between the
model trained on DS and the model trained on ŝ, we minimize the risk differences
between them,

DS = arg min
DS∈2ŝ

∣∣L(hŝ(x), y)− L(hDS(x), y)
∣∣. (3.6)

L(hŝ(x), y) and L(hDS(x), y) are the respective risks of model h on the dataset ŝ and
DS. For explicity, we define the risk of model h on an arbitrary dataset S as

L(hS(x), y) =
1
|S| ∑

(xi ,yi)∈S
ℓ(hS(xi), yi). (3.7)

As in Eq. 3.1, ℓ(hS(xi), yi) is the risk on individual samples.

From the theory of core set [87], if DS is the δs cover of the set ŝ and shares the same
number of classes with ŝ, the risk difference between model hŝ and hDS is bounded by

∣∣L(hŝ(x), y)− L(hDS(x), y)
∣∣ ≤ O(δs) +O(

1√
|DS|

). (3.8)

δs is the radius of the cover, and O(δs) is a polynomial function over δs. The prob-
lem can be reduced as a K-center problem [88] by optimizing O(δs). We apply a 2-
approximation algorithm [89] to iteratively find optimal samples in ŝ and add to DS.
Specifically, each optimal sample z∗ is computed as

z∗ = arg max
zi∈ŝ\DS

min
z j∈DS

∥ f (xi)− f (x j)∥2, (3.9)

where z = (x, y), and f (x) represents the descriptor of an image x. Equation 3.9
relates to the furthest point sampling method [90], which enables the most represen-
tative samples from a dataset to be selected. We summarize the prunning process in
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Figure 3.5: Performance of constructed training set at different iterations on the tar-
get set. We greedily add clustered subsets to form S∗ which has the smallest domain
gap to the target DT. During this process, we have relatively high FID and low accu-
racy at (A). Gradually, we reach situation (B) of the smallest domain gap and highest
accuracy. After (B), adding subsets leads to an increase in the domain gap, and the
accuracy drops, e.g., (C). To study the correlation between FID and mAP during the
search process, we hope to eliminate the impact of dataset size. Thus we use the same
number of IDs from the searched set (i.e., 2% ID).

Algorithm 2.

3.4.5 Discussion

What to prune first, ID or image? In our design, we select the IDs first and then im-
ages, aiming to build a dataset that has a small domain gap to target and is meanwhile
small in scale. Selecting the images first and then IDs is possible. However, it leads to
a significant increase in the time complexity. As shown in Algorithm 2, the most time-
consuming part of our algorithm is the FPS for finding image core sets, which takes
O(m|ŝ|). If we select images first, the time complexity becomes O(m|S∗|), which is
significantly higher than O(m|ŝ|) as |S∗| ≫ |ŝ|.

Is SnP applicable to tasks beyond object re-ID? It is possible to apply our search
and pruning (SnP) framework to other tasks, e.g., classification. Yet, achieving this
requires the SnP algorithm to be partially redesigned. This is because in object re-
ID, the major domain gap comes from the class difference, i.e., IDs. However, such
a gap does not exist in classification tasks as the train/val/test datasets always share
the same classes. Therefore, our current design of selecting similar IDs for similar
distributions is not directly applicable, and has to be adapted.
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Algorithm 1 Target-specific Subset Search

1: Input: Source pool S , target set DT, and the number of clusters J.
2: Begin:
3: Cluster (S , J) −→ {S1, · · · , SJ}
4: s = ∅,ϵ = ∞, S∗ = ∅
5: J = argsort

(
{FID(S j,DT)} j∈[J]

)
▷ Ascending

6: for j in J do
7: s = s∪ S j

8: if FID(s, T) < ϵ then
9: ϵ = FID(s,DT)

10: S∗ = s
11: end if
12: end for
13: return S∗

3.5 Experiment

We evaluate the effectiveness of SnP on person re-ID and vehicle re-ID. In both tasks,
given target data, we use the SnP pipeline to find a training set that has a similar
distribution to the target and simultaneously meets a budget.

3.5.1 Source and Target Datasets

Person re-ID. We create the source pool for person re-ID using 10 public datasets,
including Market [53], Duke [54], MSMT17 [55] (denoted as MSMT), CUHK03 [91],
RAiD [92], PersonX [1], UnrealPerson [72], RandPerson [79], PKU-Reid [93] and VIPeR [94].
Those datasets cover both synthetic and real-world data. Ten re-ID datasets constitute
a source pool that contains in total of 15,060 IDs and 399,715 images.

We use two real-world datasets as targets: AlicePerson [52] and Market [53]. Specif-
ically, AlicePerson is specially designed for domain adaptation as it contains unla-
beled training images. Thus it is only used for targets and not included in the source
pool Note that in Market, the label for its training set is not be used. When Market is
the target, Market training set is excluded from the source pool.

Vehicle re-ID. For vehicle re-ID, we create the source pool by combining 8 datasets,
which are VeRi [82], CityFlow [83], VehicleID [3], VeRi-Wild [81], VehicleX [2], Stan-
ford Cars [95], PKU-vd1 [80] and PKU-vd2 [80]. It totally has 156,512 IDs and 1,284,272
images.

AliceVehicle [52] and VeRi [82] are separately used as the target domains. Similar
to AlicePerson, AliceVehicle is also designed for domain adaptation, and used as the
target only. When VeRi is the target, the VeRi training set is excluded from the source
pool.

Evaluation protocol. For object re-ID, we use mean average precision (mAP) and
cumulative match curve (CMC) scores to measure system accuracy, e.g., “rank-1” and
“rank-5”. “rank-1” denotes the success rate of finding the true match in the first rank,
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Algorithm 2 Budgeted Pruning

1: Input: Initial source set S∗, budget b = (n, m).
2: Begin:
3: y = U (Y(S∗), n) ▷ Sample n IDs
4: ŝ = {s(yi)|yi ∈ y}
5: DS = {U (s(yi), 1)|yi ∈ y}
6: if |ŝ| > m then ▷ Sample m images
7: repeat
8: z∗ = arg max

zi∈ŝ\DS

min
z j∈DS

∥xi − x j∥2

9: DS = DS ∪ {z∗}
10: until |DS| = m
11: else
12: DS = ŝ
13: end if
14: return DS

and “rank-5” means the success rate of ranking at least one true match within top-5
matches.

3.5.2 Experimental Details

SnP settings. For a dataset denoted as a target domain (e.g., Market and VeRi), their
unlabeled training sets are used as the search target. For image feature extraction, we
use IncepetionV3 [51] pretrained on ImageNet [10].

Task model configuration. We have two types of models: direct transfer mod-
els and pseudo-label based models. For direct transfer, we use multiple task mod-
els, including ID-discriminative embedding (IDE) [96], the part-based convolution
(PCB) [97], and TransReid [98]. For IDE, we adopt the strategy from [99] which uses
ResNet-50 [13], adds batch normalization and removes ReLU after the final feature
layer. For PCB, we use the ResNet-50 backbone and vertically partition an image
into six equal horizontal parts. For pseudo-label methods, we use UDA [100] and
MMT [101]. The unlabeled target training set (e.g., AlicePerson training set) is used
for pseudo-label model training. Note that when implementing these task models,
we use their official implementation with default hyperparameters including learn-
ing rate and training epochs.

Computation Resources. We run experiments on an 8-GPU machine and an oracle
cloud machine. The 8-GPU machine has 8 NVIDIA 3090 GPUs and its CPU is AMD
EPYC 7343 Processor. For the oracle cloud machine, it has 2 NVIDIA A10 GPUs and
its CPU is Intel Platinum 8358 Processor. For both the 3090 machine and the oracle
cloud machine, we use PyTorch version 1.12.1+cu116.
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Table 3.1: Comparing different methods in training data search: SnP, random sam-
pling, and greedy sampling. We set the budget as 2%, 5%, and 20% of the total source
IDs. We use four targets: AlicePerson, Market, AliceVehicle and VeRi. The task model
is IDE [96]. FID, rank-1 accuracy (%), and mAP (%) are reported.

Training data
Person re-ID targets Vehicle re-ID targets

AlicePerson Market AliceVehicle VeRi
FID↓ R1↑ mAP↑ FID↓ R1↑ mAP↑ FID↓ R1↑ mAP↑ FID↓ R1↑ mAP↑

Source pool 81.67 38.96 17.62 37.53 55.55 30.62 43.95 30.47 14.64 24.39 55.90 25.03
Searched 60.95 48.19 25.51 30.42 61.49 34.40 23.44 46.78 25.46 17.92 74.13 41.71

Pr
un

ed

Random 80.06 23.67 9.80 39.03 40.77 19.54 45.97 31.35 12.87 24.68 67.16 26.48
2% IDs Greedy [67] 61.78 33.22 15.10 34.43 42.19 19.35 38.51 31.82 12.91 29.53 66.57 26.24

SnP 60.42 38.23 18.17 31.29 44.80 21.65 23.48 38.48 17.79 17.70 69.96 31.10
Random 81.41 33.16 14.49 39.65 47.39 23.97 44.52 36.36 14.17 25.27 70.38 30.44

5% IDs Greedy [67] 61.01 44.63 22.81 31.63 49.17 24.77 32.48 41.32 17.77 26.06 71.23 32.53
SnP 60.64 47.26 25.45 30.37 51.96 26.56 23.92 44.58 21.79 18.09 72.05 36.01
Random 79.33 38.10 17.79 38.63 53.15 28.39 43.90 40.89 18.13 24.43 68.71 34.10

20% IDs Greedy [67] 63.15 46.74 22.65 32.42 53.53 28.19 24.15 44.58 22.82 18.74 71.04 38.07
SnP 61.87 47.20 25.36 30.58 57.14 33.09 23.47 46.07 25.24 17.93 73.48 40.75

Table 3.2: The effectiveness of the target-specific subset search. mAP (%) and CMC
scores are reported. “R1” and “R5” denote rank-1 accuracy (%) and rank-5 accuracy
(%), respectively.

AlicePerson AliceVehicle
Training data R1 R5 mAP Training data R1 R5 mAP
Market [53] 32.89 52.54 16.06 VeRi [82] 30.69 43.66 11.05
Duke [54] 23.27 41.13 8.59 CityFlow [83] 23.95 36.00 7.45
MSMT [55] 31.29 52.79 15.08 VehicleID [3] 16.3 29.13 4.73
PersonX [1] 16.08 27.42 6.41 VehicleX [2] 18.85 32.18 8.89
Source pool 38.96 57.48 17.62 Source pool 30.47 48.33 14.64
Searched 48.19 67.57 25.51 Searched 46.78 64.41 25.46

3.5.3 Results

SnP framework vs. random sampling and greedy sampling. Given a target domain,
the SnP framework allows us to construct a budgeted dataset with a similar distribu-
tion. We show the superiority of SnP framework in Table 3.1. After sampling target-
specific data with SnP, we train the subsequent re-ID model with the sampled target-
specific data only. In Table 3.1, we compare the sampled dataset with those created
by greedy sampling and random sampling. Random sampling means we randomly
select IDs according to a uniform distribution. For greedy sampling, we reproduce
[67]. Specifically, We assign each ID a score, which is calculated using FID. IDs will
then be selected greedily from the lowest FID value to the highest FID value.

From the results shown in Table 3.1 and Table 3.3, we observe that training sets se-
lected using SnP achieve consistently lower domain gap to the target and higher re-ID
accuracy than those found by random sampling and greedy sampling. For example,
when creating a training set with only 2% source IDs for AlicePerson as the target,
SnP results in -19.64 and -1.36 improvement in FID value, and +14.56% and +5.01%
improvement in rank-1 accuracy over using random sampling and greedy sampling,
respectively. When sampling training set with 2% (301 out of 15,060 IDs in the source
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Table 3.3: The superiority of SnP over random sampling and greedy sampling, when
different direct transfer and pseudu-label re-ID models are used. We report accuracy
when 2% IDs are selected for target AlicerPerson. Notations and evaluation metrics
are the same as those in the previous table.

Type Model Training data R1 R5 mAP

Direct
Transfer

IDE [96]
Random 23.67 42.32 9.80
Greedy [67] 33.22 54.45 15.10
SnP 38.23 58.40 18.17

PCB [97]
Random 24.79 41.60 9.91
Greedy [67] 29.07 46.01 12.59
SnP 32.43 49.90 15.18

TransReid [98]
Random 52.04 69.73 28.47
Greedy [67] 63.73 80.24 41.88
SnP 64.31 80.46 42.74

Pseudo
-labeling

UDA [100]
Random 32.17 54.67 15.32
Greedy [67] 36.47 52.06 17.34
SnP 41.41 55.74 20.47

MMT [101]
Random 35.94 51.91 17.25
Greedy [67] 38.64 56.48 21.18
SnP 43.36 60.38 23.34

pool) of the source IDs for AliceVehicle as the target, the rank-1 accuracy improvement
is +7.13% and +6.66%, respectively.

Effectiveness of the search step. We analyze this step in Table 3.1 and Table 3.2.
In this search process that poses no limit on the number of IDs and images, we aim to
identify and merge clusters of source identities that exhibit similar distributions with
the target. We show the searched datasets contribute to improved accuracy over the
entire data pool. For example, for AlicePerson, we observe a +9.23% improvement
in rank-1 accuracy over the entire data pool. We further show the searched data is
superior to individual training sets in Table 3.2. For example, when AliceVehicle is our
target, we show our searched dataset results in +16.09%, +22.83%, +30.48%, +27.93%
higher rank-1 accuracy than VeRi, CityFlow, VehicleID, and VehicleX, respectively.

Of note, accuracy under this application scenario is usually lower than that pro-
duced by in-distribution training sets. This difference is understandable, because
searched data have a relatively lower resemblance to the target data compared with
in-distribution training sets. That said, annotating in-distribution training sets is usu-
ally expensive, especially considering the complex, specific and ever-changing target
environments, where creating a training set on-the-fly with good performance is of
practical value.

Effectiveness of the pruning step is analyzed in Table 3.1 and Fig. 3.7. Pruning
aims to find a subset that has no more than n IDs and m images. From Table 3.1 and
Fig. 3.7, admittedly, the pruning of both IDs and images will lead to an accuracy de-
crease. For example, when the target is AlicePerson, if we select 2% IDs, there is a
-9.23% decrease in rank-1 accuracy. From Fig. 3.7, when the target is AlicePerson, if
we further select 40% images, there is a -9.96% decrease in rank-1 accuracy. However,
even though only 2% IDs are used, rank-1 accuracy obtained from the pruned train-
ing data is still competitive over the source pool, which is just -0.73% lower than the
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Figure 3.6: Composition statistics and images samples of searched training sets. For
each subfigure (A), (B), (C) and (D), the columns on the left present unlabeled target
samples; the middle columns provide samples of the searched training set; the pie
chart on the right shows composition statistics of the searched training set.
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Figure 3.7: Comparing FPS with random sampling. The search step provides us with
2% of the source IDs. We further select various ratios of images from these IDs. Four
different targets are used, and rank-1 accuracy is the evaluation metric. Score is aver-
aged over three runs.

source pool. It shows the pruning method significantly reduces the training set scale
while being able to train a model of reasonable accuracy.

Composition of searched training sets. We visualize four examples in in Fig. 3.6.
It is clear that searched training sets have different compositions under different tar-
gets. If we use AlicePerson as the target, in the searched training set, images from
Market and Duke take up 68% and 26%, respectively. In comparison, when using
Market as the target, the resulting training set contains, 43% images from UnrealPer-
son, and 34% from MSMT. An interesting observation is that synthetic data (Unre-
alPerson) has a major role under Market as the target. It demonstrates the value of the
use of synthetic data for real-world target domains.

Comparison between FPS and random sampling. Both can be used for sampling
images resulting from the search step. In Fig. 3.7, we sample different ratios of the
images resulting from the search step. We observe FPS is consistently superior to ran-
dom sampling, under different selection ratios and targets. Improvement of FPS over
random sampling first increase and then decreases, with peak improvement happen-
ing at the 30-60% ratio.
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Table 3.4: Generalization comparison of various training sets: those generated by ran-
dom sampling, greedy sampling, and SnP, as well as the source data pool. AlicePerson
is used as the target. We directly test the trained models on Market, Duke, MSMT and
report the individual and the average rank-1 accuracy (%) and mAP (%).

Training set Market Duke MSMT Average AlicePerson
R1 mAP R1 mAP R1 mAP R1 mAP R1 mAP

Source pool 67.36 43.16 62.39 41.15 35.72 15.40 55.16 33.23 38.96 17.62
Random 6.44 1.92 38.29 18.75 19.90 6.42 21.54 9.03 23.67 9.80
Greedy 74.11 51.98 26.08 13.27 7.32 2.13 35.83 22.46 33.22 15.10
SnP 74.32 51.03 27.06 13.43 8.19 2.28 36.52 22.24 38.23 18.17

Table 3.5: Comparison of different source pools. A: Market + Duke + MSMT. B: A
+ UnrealPerson. C: B + RandPerson + PersonX. All: C + CUHK03 + RAiD + VIPeR
+ PKU-Reid. SnP is consistently effective for different pools. 2% IDs are selected
from the source pool. Notations and evaluation metrics are the same as those in the
previous table.

Search
method

Pool A Pool B Pool C All
R1 mAP R1 mAP R1 mAP R1 mAP

Random 11.47 4.01 21.56 8.61 23.60 9.39 23.67 9.80
Greedy 8.04 2.81 18.66 7.63 24.26 9.56 33.22 15.10
SnP 14.17 4.47 25.44 10.16 36.32 17.22 38.23 18.17

3.5.4 Further Analysis

Generalization analysis of the training set generated by SnP. In Table 3.4, we directly
apply the re-ID model obtained from the AlicePerson-specific training set to various
test sets, such as Market, Duke, and MSMT. Compared with the model trained on
the source pool, our model trained with the searched training set with SnP has high
accuracy on the target it trained on (i.e., AlicePerson). However, the model trained
with the searched training set has relatively low accuracy on domains other than its
search target (MSMT for example shown in Table 3.4). This demonstrates the gen-
erated training set is target-specific, improving re-ID accuracy on the given domain,
while its generalization ability is weakened. Still, its application is promising given
its target-specificity strength. And in this chapter, our SnP framework can construct
training data for any target data distribution, then generalization ability is less de-
sired.

Analysis of different source pools. We compare various source pools when Al-
icerPerson is the target domain. From Table 3.5, we observe that our method gives
very stable accuracy when using different source pools. In comparison, the compared
methods, i.e., random sampling and greedy sampling, as much less stable. For exam-
ple, random sampling performs well under Pool A which only contains real-world
images and might be similar to the target domain. But it is much poorer under Pool C
which has more synthetic data, meaning a larger domain gap from the target.

Analysis of hyperparameter J. In Fig. 3.8, we show the increase of the number
of clusters J lowers the domain gap between the target and searched training set and
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Figure 3.8: Impact of the number of clusters J to the domain gap (FID) between
searched and target (left), and re-ID accuracy (right). AlicePerson is targeted, and
the IDE [96] model is trained.

generally increases the task accuracy. It reaches saturation after J = 20. In this chapter,
we use J = 50 in all setups.

Correlation between the number of images and training set quality. While the
correlation between the number of IDs and training set quality has been shown in
Fig. 3.3. We show that when the number of IDs is fixed, there is a correlation between
the number of images and the rank-1 accuracy in Fig. 3.7. When we increase the
number of images, it brings a significant increase in rank-1 accuracy.

3.6 Conclusion

This thesis studies the training data set search problem for object re-ID applications.
Under a certain budget, we aim to find a target-specific training set that gives a com-
petitive re-ID model. We show our method is overall superior to existing strategies
such as random sampling and greedy sampling in terms of accuracy on the target do-
main. We analyze various components in the SnP system and find them to be stable
under various source pools and targets. We also point out the correlation between
domain gap, dataset size, and training set quality, and would like to further study the
data-centric problems in the community.

3.7 Source Pool Details

We show the composition (tree map) of the source pool for the training set search in
Fig. 3.9. On the left of Fig. 3.9, for person re-ID, we summarize the details of each
dataset in rectangles and show some examples. The size of each rectangle refers to the
number of images in the dataset, while the color of the rectangle indicates the domain
gap of that dataset to the target set. Regarding the target set in person re-ID, we use
AlicePerson [52] for calculating the FID.

We summarize the details of vehicle re-ID datasets in the right of Fig. 3.9. The size
and color of each rectangle carry the same meanings as those on the left of Fig. 3.9.
The AliceVehicle [52] is used as the target set for calculating FID.

The datasets we use for the source pool are standard benchmarks, which are pub-
licly available. We list their open-source as follows. For person re-ID:
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Figure 3.9: The composition (tree map) of the source pool for the training set search.
(Left:) Person re-ID datasets were collected for constructing the source pool. (Right:)
Vehicle re-ID datasets. For both person re-ID and vehicle re-ID, we use synthetic data
and real data. Each innermost rectangle represents a publicly available object re-ID
dataset. The relative size of rectangles denotes the relative image size of datasets. The
relative color shows the domain gap (measured in FID) value to the target test set. In
person re-ID, the target for calculating the domain gap is AlicePerson [52]. In vehicle
re-ID, the target for calculating the domain gap is AliceVehicle [52].

Market [53] https://zheng-lab.cecs.anu.edu.au/Project/project_reid.
html;
Duke [54] https://exposing.ai/duke_mtmc/;
MSMT17 [55] http://www.pkuvmc.com/publications/msmt17.html;
CUHK03 [91] https://www.ee.cuhk.edu.hk/˜xgwang/CUHK_identification.
html;
RAiD [92] https://cs-people.bu.edu/dasabir/raid.php;
PersonX [1] https://github.com/sxzrt/Instructions-of-the-PersonX-dataset;
UnrealPerson [72] https://github.com/FlyHighest/UnrealPerson;
RandPerson [79] https://github.com/VideoObjectSearch/RandPerson;
PKU-Reid [93] https://github.com/charliememory/PKU-Reid-Dataset;
VIPeR [94] https://vision.soe.ucsc.edu/node/178.
For vehicle re-ID, we also list their open-source:
VeRi [82] https://github.com/JDAI-CV/VeRidataset;
CityFlow [83] https://www.aicitychallenge.org/;
VehicleID [3] https://www.pkuml.org/resources/pku-vehicleid.html;
VeRi-Wild [81] https://github.com/PKU-IMRE/VERI-Wild;
VehicleX [2] https://github.com/yorkeyao/VehicleX;
Stanford Cars [95] http://ai.stanford.edu/˜jkrause/cars/car_dataset.
html;
PKU-vd1 [80] https://www.pkuml.org/resources/pku-vds.html;
PKU-vd2 [80] https://www.pkuml.org/resources/pku-vds.html.

https://zheng-lab.cecs.anu.edu.au/Project/project_reid.html
https://zheng-lab.cecs.anu.edu.au/Project/project_reid.html
https://exposing.ai/duke_mtmc/
http://www.pkuvmc.com/publications/msmt17.html
https://www.ee.cuhk.edu.hk/~xgwang/CUHK_identification.html
https://www.ee.cuhk.edu.hk/~xgwang/CUHK_identification.html
https://cs-people.bu.edu/dasabir/raid.php
https://github.com/sxzrt/Instructions-of-the-PersonX-dataset
https://github.com/FlyHighest/UnrealPerson
https://github.com/VideoObjectSearch/RandPerson
https://github.com/charliememory/PKU-Reid-Dataset
https://vision.soe.ucsc.edu/node/178
https://github.com/JDAI-CV/VeRidataset
https://www.aicitychallenge.org/
https://www.pkuml.org/resources/pku-vehicleid.html
https://github.com/PKU-IMRE/VERI-Wild
https://github.com/yorkeyao/VehicleX
http://ai.stanford.edu/~jkrause/cars/car_dataset.html
http://ai.stanford.edu/~jkrause/cars/car_dataset.html
https://www.pkuml.org/resources/pku-vds.html
https://www.pkuml.org/resources/pku-vds.html
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Chapter 4

Training Set Optimization from
Synthetic to Real

Data synthesis that can be conveniently performed in graphic engines provides in-
valuable convenience and flexibility for the computer vision community [50, 102, 103,
104, 1]. A large amount of training data can be synthesized under different com-
binations of environmental factors from a small number of 3D object models. De-
spite this convenience, a large domain gap generally exists between synthetic data
and real-world data, as discussed in chapter 2, which can substantially decrease ac-
curacy when a model trained on synthetic data is tested with real data [21, 103]. The
domain gap problem can be addressed from the appearance level [21] or the content
level (Fig. 4.1). The former often translates image style by using a neural network [19],
whereas the latter modifies the image content via manipulating editable attributes di-
rectly in graphic engines. We are motivated by the following considerations. First,
collecting large-scale real-world datasets with manual labels is expensive. For exam-
ple, in a multi-camera system like object re-identification (re-ID), an object must be
associated across multiple different cameras to obtain ground truth labels: this pro-
cess is extremely difficult and laborious because objects usually vary in appearance
under different cameras. Privacy and data security concerns further add overheads to
this process.

Second, the domain gap between datasets exists not only on the appearance level [19],
but also on the content level [21]. Take vehicle re-ID as an example. Images in the Vehi-
cleID dataset [3] mainly exhibit car rears and fronts, whereas the VeRi-776 dataset [82]
covers more diverse viewpoints. This difference in viewpoints is considered an ex-
ample of content-level discrepancy between datasets. As a result, models trained on
VehicleID [3] have a significant accuracy drop when tested on VeRi-776 [82]. Existing
domain adaptation methods on the appearance level can alleviate this problem and
improve accuracy, but are essentially incapable of handling the content differences.

Given these considerations, this chapter proposes an attribute descent algorithm
to generate synthetic training data 1) in a large scale and inexpensive manner, 2) with a
reduced content domain gap with real-world data. In a nutshell, as shown in Fig. 4.1
A, the proposed attribute descent algorithm can automatically configure simulator
attributes, such as camera viewpoint, lighting direction, and object placement, so that
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Figure 4.1: Domain adaptation on the content level (A) and appearance level (B). With
real data as a target, content-level domain adaptation optimizes image content at-
tributes such as camera viewpoint and illumination. In comparison, appearance-level
and feature-level domain adaptation typically use image style transfer (shown) or fea-
ture alignment (not shown). Specifically, given a list of attributes and their values, we
use the renderer Unity for training data synthesis. Afterward, we compute the FID
between the synthetic and real images to reflect their distribution difference. By up-
dating the values of attributes using the proposed attribute descent algorithm, we can
minimize the FID along the training iterations. We use the optimized attributes to
generate synthetic data, which can be used to replace or scale up real-world training
data.

the synthesized data are close to real-world data as measured by the Fréchet Inception
Distance (FID) [28]. These optimized attributes are subsequently used for training set
generation or augmentation, where style-level image translation can be leveraged to
further reduce domain discrepancy. To make the above process happen, we define a
controllable simulation environment in the graphic engine with editable object and
environment attributes, allowing us to generate large training sets by varying these
attributes.

We evaluate the effectiveness of synthetic data generated by attribute descent on
object-centric tasks: image classification, person re-ID and vehicle re-ID. In these tasks,
an image usually contains a single object of interest which is placed approximately
in the image center (through either automatic detection or manual cropping). Specif-
ically, image classification aims to distinguish different classes for an input object of
interest, while object re-ID targets at differentiating object (person, vehicle) identi-
ties. For each of the tasks, we build a synthetic object-centric filming scenario, which
contains an object of interest, a camera and a direct lighting source. Compared with
complex-scene applications such as semantic segmentation, object-centric tasks re-
quire fewer 3D object assets and have simpler layout relationships between assets,
smaller environments and fewer attributes to be controlled. These favorable prop-
erties simplify the problem addressed and enable in-depth method analysis. More
discussions of the application scope of our method are provided in Section 4.5.
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We identify three scenarios in which data synthesized by attribute descent can be
effectively applied: training with adapted synthetic data only, augmenting real train-
ing data with synthetic data, and visualizing content-level dataset bias. First, after op-
timizing synthetic data to approximate target distribution (real world), we directly use
synthetic data to train object-centric task models for recognition or re-ID. Second, we
add the optimized synthetic data to real-world data to enlarge the training set, which
is used for training the task model and improving accuracy. In both applications,
we demonstrate that optimized synthetic data are superior to those randomly gen-
erated and that the inclusion of the former consistently enhances real-world training
data. Furthermore, the two applications suggest the existence of content bias in object-
centric datasets, and a third and interesting application is understanding dataset con-
tent by using obtained attribute value distributions. For example, we visualize that
vehicle orientations on a normal two-way road are usually bi-modal, exhibiting two
major angles, whereas those in an intersection are more diverse.

Experimentally we show that attribute descent is superior to using random at-
tributes for training set synthesis, when the training is either with synthetic data only
or has both synthetic and real data. Moreover, we compare attribute descent with
existing gradient-free optimization techniques, namely Bayesian optimization, rein-
forcement learning, evolutionary algorithm, and random search. We observe that
attribute descent leads to a consistently lower domain gap between the generated
training set and target set, consequently yielding the model higher accuracy than the
competing methods. Additionally, we report that attribute descent promotes more
stable convergence than the competing methods. The above indicates the effective-
ness of attribute descent for syn2real content-level domain adaptation.

This chapter is an extension of our conference publication [2]. Three major differ-
ences are presented. First, while only vehicle re-ID is studied in [2], our current system
is capable of additionally improving person re-ID and image classification tasks. For
these new tasks, we collect/extend new/existing 3D assets in the person and generic
object domains and customize them into our pipeline. Second, comprehensive geo-
metric modeling of object-camera placement. This introduces an additional in-plane
rotation attribute that allows us to model object orientation more flexibly, particularly
for generic objects. Third, by approximating real-world datasets with synthetic coun-
terparts, we show that certain aspects of dataset content in real-world data can be nu-
merically understood and visualized by this synthetic proxy. Interesting experimental
observations are presented and discussed.

4.1 Related Work

Realistic appearance generation and domain adaptation. Domain adaptation is of-
ten achieved by reducing the domain gaps between distributions. To date, a majority
of works in this field has focused on discrepancies in appearance or feature level.
For the former, a considerable body of research use the cycle generative adversarial
network (CycleGAN) [105] and its variants to reduce the appearance gap [19, 106,
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Table 4.1: Statistics of synthetic datasets used in this chapter and their comparison
with several existing synthetic datasets. Note that ObjectX and VehicleX are newly
introduced. “Attr” denotes whether a dataset has attribute labels (e.g., orientation).
The number of synthetic images here is not compared, because a potentially unlim-
ited number of images can be created by these engines. Of note, for object re-ID, the
number of models is equal to the number of IDs.

Task Dataset #Models #Classes (IDs) Attr.

Image cla. VisDA Source [112] 1,907 12 ✗
ObjectX 1,400 7 ✓

Person re-ID
RandPerson [79] 8,000 8,000 ✗
UnrealPerson [72] 3,000 3,000 ✗
PersonX [1] 1,266 1,266 ✓

Vehicle re-ID PAMTRI [76] 402 402 ✓
VehicleX 1,362 1,362 ✓

36, 107, 108]. The latter models the dependence between two domains by means of
feature-level statistics [109], and many moment matching schemes are studied to learn
a shared feature representation [31, 34, 32, 110, 33, 111]. Although these works are
shown to be effective in reducing the appearance or feature domain gap, a fundamen-
tal problem remains to be solved, i.e., the content difference.

Learning from simulated 3D data. Data simulation is an inexpensive way of
increasing a training set scale while providing accurate image labels, flexibility in
content generation and high resolution. Learning from simulated data finds it ap-
plications in image recognition [112], re-identification [1, 76], semantic segmenta-
tion [19, 113, 114], navigation [115] and detection [21, 116]. Existing knowledge or es-
timation of data distribution is usually required during data synthesis in the graphic
engine. Some applications directly take what is presented in existing video games
such as GTA5, which have pre-defined scenes and objects [50, 117, 118, 119, 112, 120].
Others manually create their own simulation environments and objects [121, 113, 115,
122, 123], and find it is beneficial to use random attribute within a reasonable range
to create random content [104, 124, 125]. However, despite being called “random”,
the range of random variables still must be specified manually according to experi-
ence. Instead, we aim to learn attribute distributions more automatically or with less
human experience.

Automatic 3D content creation. Many works aim to automatically create realistic
3D models [126, 127], focusing on intrinsic properties of 3D models such as back-
bones, geometry and surface. The studied object models include faces [128], per-
sons [129, 130], vehicles [127] and furniture [126]. Departing from these works that
mainly study object synthesis, we aim to use the optimized 3D models for down-
stream task training.

Content creation for task model training. Several recent studies have attempted
to automatically generate 3D content for training task models [21, 22, 114, 103]. They are
closest to our work. For example, Kar et al. and Devaranjan et al. simulate traffic for
training vehicle detection networks [21, 22]. Xue et al. and Ruiz et al. construct street
scenes for semantic segmentation model training [114, 103]. Many of these works use
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VehicleXObjectX PersonX

Figure 4.2: Sample 3D models for ObjectX, PersonX [1], and VehicleX [2], which are
used for synthesizing images for image classification, person re-ID, and vehicle re-ID,
respectively.

reinforcement learning (RL) based algorithms to optimize attributes [21, 22, 114, 103].
In this chapter, we find RL less effective in object-centric tasks, in which a relatively
small number of attributes needed to be optimized. In this sense, our method is an
alternative to existing ones and particularly effective in object-centric tasks (see com-
parisons in Table 4.8).

In object-centric vision tasks, a single object of interest usually appears in an im-
age, because manual cropping or detection is used to place the object approximately
in the image center. Specifically, the basic image classification problem aims to dis-
tinguish different classes for an input image [10, 131, 13, 11]. Another task that we
consider is object re-ID [53, 132, 82], which has many robust systems proposed re-
cently [74, 75, 76, 77]. When experimenting on these object-centric tasks, we adopt
existing architectures and loss functions with no bells and whistles.

Dataset bias is a critical reason for compromised model performance [38]. For ex-
ample, many classification datasets [10, 131, 133] are collected from public user repos-
itories, such as Flickr, which may have content bias in terms of object placement, back-
ground, rotation, occlusion, lighting conditions etc. The bias may explain why models
exhibit lower accuracy on test sets that have a different content bias from the train-
ing set [134]. There are some existing approaches for dataset bias visualization. For
example, t-distributed stochastic neighbor embedding (t-SNE) can exhibit feature-level
data distributions [135]. In comparison, we aim to visualize bias through attributes,
i.e., obtaining attribute distributions numerically and drawing them in graphs.

Similarly, depending on the camera condition, location and environment, existing
object re-ID datasets usually have their own distinct characteristics or bias [1]. For
example, vehicle images in the VehicleID dataset [3] are either captured from car front
or back, whereas the VeRi dataset [82] includes a much wider range of viewpoints.
Beyond dataset-dataset differences, large differences also exist between cameras in a
single dataset [136]. For example, a camera filming a cross road naturally has more
vehicles orientation than a camera on a straight road. In this chapter, we leverage
such characteristics to learn attributes for each camera and simultaneously visualize
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the attribute distributions.

4.2 Simulation Environment

Overall, we aim to build a simulation environment with editable attributes for build-
ing large-scale synthetic datasets that are close to the real world. To achieve this,
we collect a large number of 3D objects (Section 4.2.1), build a camera model in the
graphic engine, define a set of editable attributes (Section 4.2.2), and acquire synthetic
images by varying these attributes (Section 4.2.4).

4.2.1 3D Asset Acquisition

For object-centric tasks, we use 3D assets from three sources. Their details are pro-
vided below as well as in Table A.1, and sample assets are shown in Fig. 4.2.

We reformat ObjectX from ShapeNet-V2 [137] to simulate classification data. Sim-
ilarly to ImageNet [10], ShapeNet organizes 3D shapes according to the WordNet
hierarchy [138]. From ShapeNet, we select the classes that are also included in the
VisDA target dataset (containing real-world images) [112], which are used as our tar-
get data. This amounts to 7 classes and 200 models which are randomly selected for
each class. During pre-possessing, models in each class are aligned in the same di-
rection and scaled to a uniform size. Table A.1 shows the statistics of ObjectX, and
Fig. 4.2 visualizes some 3D shapes we collected for categories airplane, bus, skateboard,
train, motorcycle, and knife.

We use PersonX to simulate person re-ID data. This asset is introduced by Sun
et al. [1] and has 1,266 different manually constructed person models (identities), in-
cluding 547 females and 719 males. PersonX models are hand-crafted by professional
3D modelers, with a special focus on appearance diversity. To explain, the backbone
models of PersonX have various ages, hairstyles, and skin colors. For each backbone
model, the clothes are also chosen from a diverse range including T-shirts, skirts,
jeans, shorts, pants, slacks, etc. With real-world-like textures, these clothes have good
visual authenticity. Furthermore, a person can take various actions (e.g. walking, run-
ning) when being filmed. Viewpoint alignment and scaling are performed for 3D
objects in PersonX.

VehicleX, introduced in our conference paper [2], is used to simulate data for the
vehicle re-ID task. It has a wide range of simulated backbone models and textures and
adapts well to the variance of real-world datasets. Specifically, it has 272 backbones
which are hand-crafted by professional 3D modelers. The backbones include 11 main-
stream vehicle types including sedan, SUV, van, hatchback, MPV, pickup, bus, truck,
estate, sportscar and RV. On the basis of these backbones, we obtain 1,362 vehicle
identities by adding various colored textures or accessories. A comparison of Vehi-
cleX with an existing vehicle re-ID dataset (i.e., PAMIRI [76]) is presented in Table A.1.
VehicleX is three times larger than the synthetic dataset PAMTRI in the number of
identities, and, similar to ObjectX and PersonX, can potentially render an unlimited
number of images by varying the attributes. In VehicleX, similarly to PersonX, vehicle
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Figure 4.3: The camera model in our simulation environment. Given fixed focal length
and resolution, the transformation matrix between the world coordinate system O and
camera coordinate system C is determined by the azimuth, camera height, camera
distance, and in-plane rotation.

models are aligned to their frontal views and properly scaled. Note that for object
(person and vehicle) re-ID, the testing procedure is retrieval; therefore, synthetic data
need not to have the same classes with real-world target data. VehicleX has been used
as training data in the AI city challenge in CVPR 2020 and CVPR 20211.

4.2.2 Camera Model

To capture 2D images of the 3D objects, we create a camera model, as illustrated in
Fig. 4.3. Let the world coordinate system be O(x, y, z), in which the origin is the center
of the 3D object, and the y axis points toward a certain direction of each class of objects
(e.g., the frontal view of airplanes). The camera coordinate system C is denoted by
(x′, y′, z′). To ensure that the target is filmed and to simplify the camera model, we
hold a prior that the camera is always facing the 3D object, i.e., towards the center of
the world coordinate system (or object center). Thus, we define the z′ axis as pointing
away from the center of the object.

We proceed to consider extrinsic and intrinsic parameters that transform the world
coordinate system into the camera coordinate system. Extrinsic parameters are deter-
mined by the rotation matrix R and translation vector T. R includes object rotation
and camera rotation. Object rotation includes the azimuthα and elevation, which can
be represented by the function of camera height h and camera distance d. Camera
rotation involves only in-plane rotation, because we assume that our camera always
faces the object. Thus, the rotation matrix R is a function of α, h, d and θ, and can
be written as R(α, h, d,θ). The translation vector T is determined directly by camera
height h and camera distance d, and thus can be written as T(h, d). For intrinsic pa-
rameters, we use a fixed focus length f and image resolution γ. For example, we set
the world coordinate system to a resolution of 1, 920 × 1, 080 pixels when capturing
vehicle images. Given the above extrinsic parameters and intrinsic parameters, the

1https://www.aicitychallenge.org/
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azimuth: 0° 359°

light direction: East (0°) West (180°) light intensity: dark (0) bright (100)

camera height: low (0) high (100) camera distance: near (0) far (100)

add rand. background & distractorin-plane rotation: 0° 359°

Figure 4.4: (Left and Middle:) Illustration of editable attributes. We can rotate the
object (azimuth) and camera (in-plane rotation), edit light direction and intensity, and
change the camera height and distance. Value and range are shown for each attribute.
(Right:) After attribute optimization, we further add random backgrounds and occlu-
sions to images when synthesizing the final training dataset.

projection matrix can be written as,

P =

γ f 0 0
0 γ f 0
0 0 1


︸ ︷︷ ︸

intrinsic parameters

[
R(α, h, d,θ)3×3 T(h, d)3×1

01×3 1

]
︸ ︷︷ ︸

extrinsic parameters

.
(4.1)

Thus, given focal length f and resolution γ, the camera model has 4 remaining at-
tributes to be configured: azimuthα, camera height h, camera distance d and in-plane
rotationθ. These left 4 attributes determine the diverse object-camera placement, thus
allowing us to film a variety of images. This camera model is an improved version
from our conference paper [2]. The additionally introduced attribute “in-plane ro-
tation” allows us to more flexibly model objects that do not usually “stand” on the
ground plane.

4.2.3 Configurable Attributes

Our system has a total of 6 editable attributes, which are considered to be influential
on the training set quality and the subsequent testing accuracy. They include azimuth,
camera height, camera distance and in-plane rotation, as mentioned in Section 4.2.2,
plus two lighting attributes: light direction and light intensity. Several details regard-
ing these attributes are provided below.

• Azimuth represents the horizontal viewpoint of an object and takes a value be-
tween 0◦ and 359◦.

• In-plane rotation controls camera rotation on the z′ axis. Its value is also between
0◦ and 359◦.

• Camera height describes the vertical distance of the camera from the ground,
from near (numerical value 0) to far (numerical value 100).

• Camera distance determines the horizontal distance between the camera and
the object center. This factor, taking values from low (0) to high (100), strongly
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affects on the imaging resolution (the resolution of the entire camera view is set
to 1920×1080). Imaging viewpoint is impacted by the joint effects of camera
height and distance.

• Light direction is part of the environment settings. We assume directional par-
allel light, and the light direction is modeled from east (0◦) to west (180◦).

• Light intensity is another a critical attribute influencing task performance by
creating reflections and shadows. We manually define a reasonable range for
intensity, from dark (0) to light (100).

Note that the pre-defined ranges are broad and involves little human assumption.
For example, light intensity ranges from fully light to dark. From the ranges, we aim to
find their optimal values for effective training dataset construction. Moreover, these 6
attributes (examples shown in Fig. 4.4) are found important for the three object-centric
tasks. For other tasks such as semantic segmentation and object detection, which in-
volve complex environments and multiple objects, other influential attributes, such
as object (relative) locations, are influential. In this chapter, we try to keep our in-
vestigation focused and in depth and leave the more complex applications for future
work.

4.2.4 Image Capturing Process

In this section, we describe how to film the 3D objects after varying these editable
attributes. To establish controllability, we build a Unity-Python interface by using the
Unity ML-Agents toolkit [139], which creates a data transmission path between Unity
and Python. Specifically, given a list of parameters from Python, Unity accordingly
sets up the camera and environment, then takes the picture and obtains the bounding
box precisely according to the object size. The bounding box is then sent back to
Python for further processing. Our API allows users to easily obtain rendered images
without expert knowledge of Unity. The source code of this API has been released2.

We also consider background and occlusion setups in our system. Specifically,
during the attribute distribution optimization process with attribute descent, we ren-
der images with black backgrounds and no occlusions. After the optimization is com-
plete, we generate synthetic training data using the optimized attributes while adding
random background images and occlusions. For example, when synthesizing vehi-
cle re-ID training data, we add background images from the CityFlow dataset [83],
and occluders such as lamp posts, billboards and trash cans. Our preliminary ex-
periments show this strategy increases the diversity of the synthesized training data,
consequently enabling robust training of the task model. For example, when using
synthetic data only and targeting vehicleID, training on synthetic images with black
backgrounds and attribute descent produces 24.12% mAP. The further incorporation
of random backgrounds and occlusions yields a notable increase of +11.21% mAP
over the training dataset that uses black backgrounds. This strategy allows us to train
models that are more robust to various backgrounds and occlusions.

2https://github.com/yorkeyao/VehicleX
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Figure 4.5: Visualization of the attribute descent process on the VehicleID [3] dataset.
(A:) FID and task accuracy mean average precision (mAP) (%) vs. training iterations.
We observe that the FID between synthetic data and target real data (C) successively
decreases and that mAP on the target domain gradually increases (higher is better).
“In-pl. rot.” denotes in-plane rotation, “lighting” represents light direction and in-
tensity, and “cam.” means camera height and distance. (B:) we show the synthetic
vehicles after optimizing each attribute in a certain epoch. We initialize attributes by
setting the in-plane rotation to 90◦, orientation to the left (0), light intensity to dark (0),
light direction to east (0), camera height to the same level as the vehicle center (0), and
camera distance to medium (50). Along the iterations, the content of these synthetic
images becomes increasingly similar to (C) the target real-world images.

4.3 Proposed Method

4.3.1 Attribute Distribution Modeling

We model the distribution of the 6 attributes (Section 4.2.3) using Gaussian Mixture
Models (GMM). The primary rationale is that for real-world datasets, these attributes
usually follow specific patterns. In the image recognition task, patterns often exist with
regard to specific categories. For example, photographs of the category clock are usu-
ally taken from the front, not the side or back, where the Gaussian distribution would
be helpful. Likewise, in the re-ID task, the camera position is usually fixed, so that
the camera height and distance of images captured by a certain camera are generally
uni-modal. Moreover, pedestrians and vehicles usually move along predefined tra-
jectories, e.g. footpaths for pedestrians and traffic lanes for vehicles. Because multiple
moving directions exist on a single path, the object orientations (i.e., the azimuth) of
these re-ID data exhibit multi-modal distributions. Of note, this modeling strategy
has also been adopted by Ruiz et al. [140]. In addition, using Gaussians and their
mixtures to model the distribution of attributes allows us to conveniently analyze and
visualize datasets.

Although a GMM is parameterized by its mean and covariance, our preliminary
shows that the change in covariance produces a less prominent supervision signal,
i.e., has a weaker effect on task accuracy than the mean. This finding is understand-
able because the mean parameters encode how the majority of images appear and
more directly reflect the dataset distribution gap. Although our method can optimize
covariance, doing so would significantly increase the search space without notable
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accuracy gain. Based on the above considerations, we simplify the covariance matrix
into a diagonal matrix whose diagonal elements are pre-defined.

Formally, let A = [A1, A2, ..., AK]
T ∈ RK represent attributes discussed in Section

4.2.3, where K stands for the total number of attributes. Ai ∈ R, i = 1, ..., K is the
random variable representing the ith attribute. As discussed in Section 4.2.3, we have
K = 6, where A1, A2, A3, A4, A5, and A6 denote azimuth, in-plane rotation, camera
height, camera distance, light direction, and light intensity, respectively.

Let θ = [θ1,θ2, ...,θM]T represent all the learnable parameters, where M is the
number of these learnable parameters, and θi ∈ R, i = 1, ..., M, is a single learnable
parameter (i.e., mean, as variance is fixed) of one mixture component. Thus, the θ

can be viewed as a concatenated vector of parameters of all GMMs. Subsequently, we
use G(θ) to denote the overall distribution parameterized by θ, which consists of K
GMMs. For example, we define the distribution of in-plane rotation attribute A1 using
a GMM consisting of three components. For each component, it has a mean value as
a learnable parameter. Formally, they are denoted as θ1, θ2, and θ3. For attributes that
empirically have simpler distributions, we use GMM with fewer components. For
example, we define the camera distance attribute A2 to follow a single-component
Gaussian, which has only one learnable parameter θ4.

Furthermore, to make things easier for optimization, we let S = [S1, S2, ..., SM ]T

represent a collection of search spaces for learnable parameters θ = [θ1,θ2, ...,θM]T,
where Si ∈ Rdi , i = 1, ..., M, is the search space of parameter θi. The dimension di of
Si is dependant on the attribute θi. For example, we have θ1, θ2, and θ3 are learnable
parameters of attribute A1 (in-plane rotation), and their search spaces S1 = S2 =
S3 = [30l | l = 0, 1, . . . , 11]T, which is a 12-dim vector including angles between 0◦

and 330◦ with an increment of 30◦. A complete attribute distribution and search space
description of all the learnable parameters is provided in Section 4.4.2.

4.3.2 Optimization

To describe the attribute descent optimization process, we introduce the objective
function, detail the proposed attribute descent algorithm and then analyze its con-
vergence property.

Objective function. Given real-world target data, we aim to synthesize a dataset
that has a minimal (content) distribution difference with it. Formally, we denote the
sets of synthetic images and real images as Ds and Dr, respectively, where the syn-
thetic dataset is simulated following the distribution of vector A. We further write Ds

as {R(an)}N
n=1, where N is the number of images in Ds. R(·) is the underlying ren-

dering function of Unity using attribute vector an as input and producing a synthetic
image R(an). Each attribute vector an is sampled from distribution parameterized
by θ, i.e., an ∼ G(θ). We aim to optimize θ to minimize the distribution difference
measure Fréchet Inception Distance (FID) [28] between Ds and Dr. Correspondingly,
our objective function is written as:

θ∗ = arg min
θ

FID(Ds, Dr), (4.2)
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where

Ds = {R(an)}N
n=1, an ∼ G(θ), (4.3)

and

FID(Ds, Dr) = ∥µs −µr∥2
2 +

Tr(Σs + Σr − 2(ΣsΣr)
1
2 ).

(4.4)

In Eq. 4.4, µs ∈ Rd and Σs ∈ Rd×d denote the mean and covariance matrix, respec-
tively, of the image descriptors of the synthetic dataset Ds, and µr and Σr are those
of the real-world dataset Dr, respectively. d is the dimension of the image descrip-
tors, which are extracted by the InceptionV3 model [51] pre-trained on the ImageNet
dataset [10].

The benefit of using FID as the loss function is two-fold. First, it does not require
ground truths of the target real-world dataset Dr and instead can be computed using
target images only. This obviously saves human labeling efforts. Second, because
the FID loss is computed between two sets of images, it is much faster to compute
than existing methods using the task loss [23, 21]. The latter requires training the
task model (e.g. object detection [141]) with the generated training set and uses the
obtained model task performance as loss, which is time-consuming.

It is important to note that the objective function (Eq. 4.2, Eq. 4.3 and Eq. 4.4) is
non-differentiable with respect toθ, primarily because the rendering function (through
the 3D engine Unity) is not differentiable. As such, we cannot perform optimization
by directly using gradient descent.

Attribute descent algorithm. We are motivated by coordinate descent, a classical
optimization method that can work under derivative-free scenarios [142]. To find a
local minimum, it selects a coordinate direction to perform a step-by-step search and
iterates among coordinate directions. Compared with grid search that considers the
entire search space, coordinate descent has significantly reduced search space and
thus running time.

Our loss function is parameterized by θ which encodes the distribution of the
configurable attributes. Following coordinate descent, we propose attribute descent
(Alg. 3) to iteratively optimize each parameter. Specifically, we view each parameter
as a coordinate in coordinate descent. In each iteration, we successively vary the value
of a parameter so as to move toward a local minimum of the objective function.

Formally, to iteratively optimize the objective function (Eq. 4.2) with respect to θ,
we first initializeθ at epoch 0:

θ0 = [θ0
1 , · · · ,θ0

M]T . (4.5)

Then at the jth epoch, we get θ j from θ j−1 by iteratively solving the single variable
optimization problems. Specifically, at ith iteration in epoch j, we optimize a single
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Algorithm 3 Attribute Descent

1: Input: Initialized learnable parameters θ =
[
θ0

1 , · · · ,θ0
M
]T, search space S =

[S1, S2, ..., SM ]T, rendering function R(·) and target dataset Dr.
2: Hyperparameteters: J epochs for attribute descent and synthetic dataset size N.
3: Begin:
4: Optimal = ∞; ▷ Initialize the optimal FID value
5: for j = 1 to J do ▷ Number of epoch J
6: for i = 1 to M do ▷ Enumerate parameters
7: for z ∈ Si do ▷ Traverse search space
8: Ds = {R(an)|an ∼ G([θ

j
1, · · · ,θ j

i−1,

9: z,θ j−1
i+1 , · · · ,θ j−1

M ]T)}N
n=1.

10: ▷ Generate synthetic dataset
11: Score = FID(Ds, Dr) ▷ FID calculation
12: if Score < Optimal then
13: Optimal = Score ▷ Update FID
14: θ

j
i = z ▷ Update parameters

15: end if
16: end for
17: end for
18: end for

parameter θ j
i inθ j, to its best value z in the search space Si:

θ
j
i = arg min

z∈Si

FID(Ds, Dr), (4.6)

where

Ds = {R(an)|an ∼ G([θ
j
1, · · · ,θ j

i−1,

z,θ j−1
i+1 , · · · ,θ j−1

M ]T)}N
n=1.

(4.7)

In Eq. 4.6 and Eq. 4.7, an iteration is defined as the duration for which a single pa-
rameter θ j

i , i = 1, ..., M undergoes an optimization process (from Step 7 to Step 14 in
Alg. 3). An epoch is defined as the duration for which all parameters undergo one
attribute descent round.

In attribute descent, each iteration performs a greedy search for a single parameter
while values of the other parameters are fixed. Therefore, each iteration finds the best
value for a single parameter, and an epoch gives values for the entire parameter vector
θ. In our experiments, the entire optimization process usually converges in 2 epochs.

Convergence characteristics. Attribute descent has the following properties in
regarding model convergence.

Fast conditional updates. The problem configuration allows us to individually op-
timize parameters quickly. As stated in Section 4.3, we can update each attribute by
using discrete values within a range. For example, the search space for azimuth is
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Figure 4.6: Examples of synthesized images for person re-ID (left) and vehicle re-ID
(right) . A1 and A2: images simulated by random attributes. B1 and B2: image simu-
lated by attributes optimized through attribute descent, to approximate the distribu-
tion of real-world target data E1 and E2, respectively. C1 and C2: we apply SPGAN
[143] to translate images in A1 and A2, respectively into the style of the target domain.
D1 and D2: SPGAN is applied to images in B1 and B2, respectively. We can observe
that attribute descent changes the image content such as camera viewpoint and object
orientation, while SPGAN amends image styles. The two forces are complementary
to each other, as shown in our experiment.

between 0◦ and 330◦ with a 30◦ interval. Therefore, only 12 iterations are necessary,
thus greatly decreasing the computational time. Note that, using attribute descent
for complex tasks such as semantic segmentation would be result in a much slower
overall procedure because these tasks have many more attributes to optimize.

Strong stability. Attribute descent can steadily converge because of its “one-at-a-
time” optimization characteristics. That is, it gradually and greedily updates each
parameter if and only if this update can improve the objective function. Compared
with “all-at-once” algorithms like gradient descent which requires expert-level train-
ing skills to converge, attribute descent is easier to train and more stable in conver-
gence.

Analysis and visualization of the attribute descent process. In Fig. 4.5, we
present how task performance (re-ID accuracy) and domain discrepancy metric (FID)
change during the attribute descent process. We observe that attributes are succes-
sively optimized when the FID value decreases and the re-ID accuracy mAP increases.
Specifically, from the slope of the curves in Fig. 4.5 A, when optimizing attributes in
the order of “orientation → lighting → camera pose”, we observe that after orientation
attributes (i.e., in-plane rotation and azimuth) are optimized, a large decrease in FID
occurs from 147.85 to 91.14 and a large mAP increase occurs from 12.1% to 21.94%.
Subsequently, after lighting attributes are optimized, we have -7.2 FID and +10.7%
mAP. The optimization of the camera attributes leads to -4.11 FID and +2.4% mAP.
These observations illustrate that all the attributes are useful for improving the train-
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ing data quality. In addition, in Fig. 4.5 B, the content of generated images becomes
increasingly similar to the target real images through the optimization procedure, thus
suggesting the effectiveness of attribute descent.

4.3.3 Application Scenarios

4.3.3.1 Training with Synthetic Data Only

Setting. In the first application, we use generated synthetic data to replace real-world
data for task model training. Specifically, we perform attribute descent to optimize
synthetic data toward target data without labels, train task model on the adapted
synthetic data, and then test the models on target test sets.

Obtaining target class or camera labels. As stated in Section 4.3.1, attribute de-
scent requires known class or camera labels, because we observe different attribute
distributions for different categories or cameras; examples are shown in Section 4.4.4.

In mining class or camera labels from the unlabeled target domain, we leverage
pseudo labels for classification. Specifically, we use the model trained on synthetic
data (i.e., ObjectX) for pseudo label assignment with random attributes. Table 4.2
shows that the classification model trained on ObjectX achieves 65.0% average top-
1 accuracy on the VisDA test set; therefore, the pseudo labels are relatively reliable.
After we obtain the pseudo labels for the target domain, we perform attribute descent
for each class by following Alg. 3. Because ObjectX includes 7 classes, we optimize 7
attribute lists for the classification task.

For object re-ID, we simply perform attribute descent against each camera in the
target domain, in order to simulate images with similar content to those from each
camera. For example, we optimize 6 and 20 attribute lists for the Market and VeRi
(both are target domains) training sets which have 6 and 20 cameras, respectively.
Note that assuming knowledge of the camera label is a common practice in unsuper-
vised domain adaptive re-ID [144].

4.3.3.2 Augmenting Target Training Data

Setting. For this application, we use synthetic data to augment real-world training
data. Specifically, labels of the target data are provided in both attribute descent and
task model training. We combine the adapted synthetic data and real-world data and
perform two-stage joint training [145] to obtain task models.For the classification task,
when labels of the target training set are given, we optimize attributes for each cate-
gory directly. Likewise, for the re-ID task, when labels for each camera are given, we
optimize attributes for each camera.

Two-stage training [145] is conducted in training data augmentation wherein syn-
thetic and real-world data are both used in training. We mix synthetic data and real-
world data in the first stage and finetune with real-world data only in the second
stage. In CityFlow, for example, in the first stage, we train on both real and synthetic
data, where we classify vehicle images into one of the 1,695 (333 real + 1,362 synthetic)
identities. In the second stage, we replace the classification layer with a new classifier



52 Training Set Optimization from Synthetic to Real

fine-tuned on the real dataset (333 classes). When conducting the second stage train-
ing, we have a lower learning rate than that in the first stage, with details following
[145].

4.3.3.3 Understanding Dataset Content Numerically

Attribute descent provides a numerical way to understand (and sometimes visualize)
the content of datasets. Specifically, given a certain category (or camera), we use at-
tribute descent and synthetic models to build a proxy set, which has similar content
distribution. After optimization, we can obtain the values of an attribute of interest for
each image, and collectively obtain the value distribution for a dataset. We can then
use either statistics or visualization tools to understand a certain aspect of the content
of a dataset through the attribute. For example, we can visualize the viewpoint dis-
tribution in a 3D sphere (as shown in Section 4.4.4). We can also use histograms to
present the distribution of lighting intensity of a dataset.

4.4 Experiment

We evaluate the effectiveness of attribute descent on image classification, person re-
ID and vehicle re-ID. In all tasks, given target data (Section 4.4.1), we use attribute
descent to synthesize a training set that has similar attribute distributions.

4.4.1 Source and Target Datasets

Image classification. We use ObjectX (described in Section 4.2.1) as the source and
the VisDA [112] target set as the target domain. The original VisDA target set has 12
classes of real-world images. Among the 12 classes, we select 7 that are also included
in ShapeNet V2 [137] and thus ObjectX. A total of 33,125 images are present in the 7
classes. For each class, the ratio of the number of training images to that of testing
images is 1:7 or 1:1.

Person re-ID. We use PersonX as a source, and use two real-world datasets as tar-
get: Market-1501 (denoted as Market) [53] and DukeMTMC-reID (denoted as Duke) [132].
Market has 1,501 IDs, 12,936 training images and 19,732 gallery images filmed by 6
cameras. A totoal of 751 out of 1,501 IDs are used for training and the remaining 750
are used for testing. The query set includes 3,368 bounding boxes from 750 identities.
Duke contains 1,404 IDs and 36,441 images captured by 8 cameras. There are 16,522
images from 702 identities for training, 2,228 query images from another 702 identities
and 17,661 gallery images for testing.

Vehicle re-ID. Apart from the synthetic VehicleX dataset, we use three real-world
vehicle re-ID datasets as target domain data. VehicleID [3] contains 222,629 images
of 26,328 identities. Half the identities are used for training, and the other half are
used for testing. Three test splits exists: “Small”, “Medium” and “Large”, represent-
ing the number of vehicles in the test set. Specifically, “Small” has 800 vehicles and
7,332 images, “Medium” has 1,600 vehicles and 12,995 images, and “Large” has 2,400
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Table 4.2: Comparing various training sets in object classification under synthetic
training and data augmentation. We use VisDA Target as the target domain (real-
world), and ObjectX (“OX”) as the source. In terms of data composition, “S” repre-
sents synthetic data only, “R” denotes real-world data only, and “R+S” means both
synthetic data and real-world data are used. Two validation-test splits are used for
data augmentation, i.e., 1:1 and 1:7.

Appli.Training data TypeVal-test splitModel plane bus car knifemcyclsktbrd train per-class

Syn.
Tra.

VisDA Source S 1:7 ResNet-50 72.13 38.57 72.40 5.20 90.41 28.67 84.51 56.0

OX (Ran. Attr.) S 1:7

ResNet-50 77.96 48.06 62.33 40.88 92.11 57.99 75.63 65.0
DAN [34] 81.54 47.40 64.98 53.33 80.16 63.36 79.38 67.2
ADDA [146]83.01 51.01 60.11 55.6569.63 71.03 71.91 66.0
SHOT [147] 88.43 64.98 67.24 66.2385.35 78.05 75.66 72.4

OX (Attr. Desc.) S 1:7

ResNet50 83.82 68.88 62.20 64.9086.57 38.65 92.96 71.1
DAN [34] 86.93 67.68 69.02 46.5084.50 56.39 92.66 72.0
ADDA [146]91.88 69.00 70.26 34.3883.67 64.81 90.69 72.1
SHOT [147] 93.92 78.2675.09 42.2091.13 78.35 88.83 78.3

Data
Aug.

VisDA Tar. R
1:7 ResNet-50

96.24 85.69 91.47 94.33 92.61 90.88 90.31 91.6
VisDA Tar.+OX (Ran. Attr.) R+S 94.89 87.18 93.55 93.39 93.77 91.03 88.69 91.8
VisDA Tar.+OX (Attr. Desc.) R+S 96.90 89.86 94.33 95.04 94.28 92.38 92.07 93.6
VisDA Tar. R

1:1 ResNet-50
98.13 89.38 95.96 96.82 95.34 95.44 93.39 94.9

VisDA Tar.+OX (Ran. Attr.) R+S 96.02 86.74 94.24 93.83 93.47 90.53 89.07 92.0
VisDA Tar.+OX (Attr. Desc.) R+S 98.08 91.56 95.90 96.24 96.00 96.00 94.48 95.5

vehicles and 20,038 images. The VeRi-776 dataset [82] contains 49,357 images of 776
vehicles captured by 20 cameras. The vehicle viewpoints and illumination cover a
diverse range. The training set has 37,778 images, corresponding to 576 identities;
the test set has 11,579 images of 200 identities. There are 1,678 query images. The
train / test sets share the same 20 cameras. We use “VeRi” for short in what follows.
CityFlow-reID [83] has more complex environments and has 40 cameras in a diverse
environment where 34 of them are used in the training set. The dataset has in total
666 IDs where half are used for training and the rest for testing. We use “CityFlow”
for short in the following context.

Evaluation protocol. For image classification, we report the top-1 accuracy aver-
aged over all the categories. For object re-ID, we use mean average precision (mAP)
and cumulative match curve (CMC) scores to measure system accuracy, e.g. “Rank-1”
and “Rank-5”. “Rank-1” denotes the success rate of finding the true match in the first
rank, and “Rank-5” means the success rate of ranking at least one true match within
the top 5.

4.4.2 Experimental Details

Attribute descent settings. As discussed in Section 4.3.1, we model the distribution
of the 6 attributes using GMM. Specifically, When using GMM, we set the number of
Gaussian components to 3, 6, 1, 1, 1, and 1 for in-plane rotation, azimuth, light in-
tensity, light direction, camera height, and camera distance, respectively. Meanwhile,
as mentioned in Section 4.3.1, only means of the Gaussians are optimized, and ini-
tialized from the lowest value in the search space. For each learnable mean value
θi, i = 1, ..., M in θ, the search space is specified in the range defined in Section 4.2.3,



54 Training Set Optimization from Synthetic to Real

Table 4.3: Comparison of various training sets in person reID under synthetic training
and data augmentation. We use Market as the target and use PersonX (“PX”) as the
source. A few state-of-the-art re-ID models are used. Data type notations are the same
as those in Table 4.2. mAP (%) and CMC scores (%) are reported.

Appl. Training data Type Model Rank-1 Rank-5 mAP

Syn.
Training

ImageNet
R IDE [96]

6.38 14.55 1.92
Duke 42.31 61.88 18.07
MSMT 41.98 61.67 20.46
PX (Ran. Attr.) S IDE [96] 17.01 33.49 6.30
PX (Attr. Desc.) 34.71 51.60 15.01

Data
Aug.

Market R

IDE [96] 85.30 93.82 67.84
PCB [97] 92.49 96.85 76.67

CBN [148] 94.35 97.91 83.63
TransReid [98] 94.72 98.47 88.03

Mar.+PX (Ran. Attr.)

R+S

IDE [96] 84.62 94.30 67.56
Mar.+PX (Attr. Desc.) IDE [96] 87.23 94.60 71.17
Mar.+PX (Attr. Desc.) PCB [97] 92.58 97.24 79.99
Mar.+PX (Attr. Desc.) TransReid [98] 95.24 98.57 88.76

Table 4.4: Comparison of various training set when using Duke as the target domain.
Other setting and evaluation metrics are identical to Table 4.3.

Appl. Training data Type Model Rank-1 Rank-5 mAP
ImageNet

R IDE [96]
4.76 11.09 1.63

Syn.
Training

Market 32.63 47.94 17.39
MSMT 46.50 64.59 28.04
PX (Ran. Attr.) S IDE [96] 22.17 38.96 10.09
PX (Attr. Desc.) 30.83 47.80 15.91

Data
Aug.

Duke R

IDE [96] 78.14 88.29 58.93
PCB [97] 82.99 90.53 67.47

CBN [148] 84.82 92.51 70.13
TransReid [98] 89.90 95.74 81.23

Duke+PX (Ran. Attr.)

R+S

IDE [96] 75.99 87.70 55.77
Duke+PX (Attr. Desc.) IDE [96] 78.28 89.27 59.10
Duke+PX (Attr. Desc.) PCB [97] 84.25 92.15 70.71
Duke+PX (Attr. Desc.) TransReid [98] 90.41 96.03 81.43

and their search steps are 12, 12, 10, 6, 10, and 5 for in-plane rotation, azimuth, light
intensity, light direction, camera height, and camera distance, respectively.

The covariance matrices are diagonal matrices with pre-defined diagonal elements.
Specifically, the diagonal elements are (10, 10, 10), (20, 20, 20, 20, 20, 20), (0.63), (7.07),
(0.4) and (0.6) for in-plane rotation, azimuth, light intensity, light direction, camera
height, and camera distance, respectively. In attribute descent, the number of epochs
of attribute descent is 2, which usually leads to convergence.

Image style transformation. After obtaining content-adapted data, we apply ap-
pearance level style transformation. For object re-ID (both person and vehicle), we use
SPGAN [36] to transfer the appearance of synthetic data to that of the target domain.
For image classification, we do not use style transformation.

Task model configuration. For the classification task, we use ResNet-50 [13] to
classify the 7 classes. For person re-ID, we use multiple task models, including ID-
discriminative embedding (IDE) [96], the part-based convolution (PCB) [97], and Tran-
sReid [98]. Note that when implementing these task models, we use their official
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Table 4.5: Comparison of various training sets when VehicleX is the source domain
and VehicleID is the target domain. We examine the use case of training data aug-
mentation. Data type notations and evaluation metrics are the same as those in Ta-
ble 4.3. “Small”, “Medium” and “Large” refer to the three test splits of the VehicleID
test set [3]. “VX” denotes the VehicleX dataset. “VID” means the VehicleID dataset.

Training data Type Model Small Medium Large
Rank-1 Rank-5 mAP Rank-1 Rank-5 mAP Rank-1 Rank-5 mAP

VID R
RAM [149] 75.2 91.5 - 72.3 87.0 - 67.7 84.5 -
AAVER [74] 74.69 93.82 - 68.62 89.95 - 63.54 85.64 -
GSTE [150] 75.9 84.2 75.4 74.8 83.6 74.3 74.0 82.7 72.4

VID R
IDE [96]

77.35 90.28 83.10 75.24 87.45 80.73 72.78 85.56 78.51
VID+VX (Ran. Attr.) R+S 80.2 93.98 85.95 76.94 90.84 82.67 73.45 88.66 80.55
VID+VX (Attr. Desc.) R+S 81.50 94.85 87.33 77.62 92.20 83.88 74.87 89.90 81.35

Table 4.6: Comparison of various training sets when VeRi is the target domain. Data
type annotations and evaluation metrics are the same as those in previous tables. The
IDE and PCB baseline models are evaluated.

Appl. Training data Type Model Rank-1 Rank-5 mAP

Syn.
Training

ImageNet
R IDE

30.57 47.85 8.19
VehicleID [3] 59.24 71.16 20.32
Cityflow [83] 69.96 81.35 26.71
VX (Ran. Attr.) S IDE [96] 43.56 61.98 18.36
VX (Attr. Desc.) 51.25 67.70 21.29

Data
Aug.

VeRi R

IDE [96] 92.73 95.99 66.54
VANet [151] 89.78 95.99 66.34
AAVER [74] 90.17 94.34 66.35
PCB [97] 94.04 98.21 72.04

VeRi+PAMTRI [76]

R+S

PAMTRI [76] 92.86 96.97 71.88
VeRi+VX (Ran. Attr.) IDE [96] 93.21 96.20 69.28
VeRi+VX (Attr. Desc.) IDE [96] 93.44 97.26 70.62
VeRi+VX (Attr. Desc.) PCB [97] 94.34 97.91 74.51

implementations with default hyperparameters including learning rate and training
epochs. For IDE, we adopt the strategy from [99] which uses ResNet-50 [13] and adds
batch normalization and removes ReLU after the final feature layer. For PCB, we use
the ResNet-50 backbone and vertically partitions an image into six equal horizontal
parts. For vehicle re-ID, we also use IDE and PCB. For IDE, we also use the ResNet-50
backbone. For PCB, we use the ResNet-50 backbone and horizontally divide an image
into six parts.

4.4.3 Quantitative Evaluation of Attribute Descent

Given a target set, attribute descent allows us to synthesize a dataset that has a simi-
lar distribution on the content (attribute) level. In this section, we demonstrate three
application scenarios of the synthesized data in object-centric tasks: training with syn-
thetic data only, real-synthetic data augmentation, and dataset bias visualization. In
each application scenario, we compare attribute descent with several existing meth-
ods.

Effectiveness of attribute descent for synthetic-data-only training. After gener-



56 Training Set Optimization from Synthetic to Real

Table 4.7: Comparison of various training sets when CityFlow is the target domain.
Data type annotations and evaluation metrics are the same as those in previous tables.
We use IDE [96] as the task model with both the cross-entropy (CE) loss and triplet
loss.

Training data Type Model Rank-1 Rank-20 mAP

CityFlow R
BA 49.62 80.04 25.61
BS 49.05 78.80 25.57
IDE (CE+Tri.) 56.75 72.24 30.21

CityFlow+PAMTRI [76]
R+S

PAMTRI [76] 59.7 80.13 33.81
CityFlow+VX (Ran. Attr.) IDE (CE+Tri.) [96] 63.59 82.60 35.96
CityFlow+VX (Attr. Desc.) IDE (CE+Tri.) [96] 64.07 83.27 37.16

ating content-adapted synthetic data with attribute descent (visual examples in Fig.
4.6), we train the subsequent classification / re-ID models with generated synthetic
data only. We mainly compare the optimized synthetic dataset with those generated
with random attributes, a commonly used baseline in the community [104, 23]. Here,
“random” means that attributes follow the uniform distribution, where their value
ranges are the same as the search space of learned attributes. Experimental results on
the VisDA target set, Market, Duke, VehicleID, VeRi and CityFlow are shown in Table
4.2, Table 4.3, Table 4.4, Table 4.8, Table 4.6 and Table 4.7, respectively.

From these results, we observe that when using only synthetic data for training,
the data generated from learned attributes achieve much higher task accuracy than
those generated from random attributes. For example, when adapting ObjectX to
VisDA, attribute descent results in a +6.1% improvement in per-class accuracy over
using random attributes. When adapting PersonX to Market, attribute descent yields
a +7.69% improvement in Rank-1 accuracy over using random attributes. From Vehi-
cleX to VeRi, attribute descent again contributes to a +7.69% improvement in Rank-1
accuracy.

Of note, accuracy under this application scenario is usually lower than that of the
state of the art or that produced by in-distribution training sets. This difference is un-
derstandable, because synthetic data have a relatively low resemblance with respect
to the target data in terms of appearance.

Effectiveness of optimized synthetic data in augmenting the target training data.
After optimizing attributes to mimic the target domain, we mix the generated syn-
thetic data with the target training data (with labels) to train the recognition / re-ID
models. Apart from the two-stage training strategy (see Section 4.3.3.2), no additional
training skills are employed. We again compare attribute descent with random at-
tributes. Experimental results for the three object-centric tasks are summarized across
Table 4.2, Table 4.3, Table 4.4, Table 4.5, Table 4.6 and Table 4.7. Under this application,
we also observe consistent improvement brought by the additional synthetic data. For
example, from ObjectX to VisDA, the improvement in learned attributes over random
attributes is +1.8% in top-1 recognition accuracy. From PersonX to Market and from
VehicleX to VeRi, the improvements in mAP are +2.61% and +1.23%, respectively. The
improvements appear numerically smaller than those in the “training with synthetic
only” setting, because the latter sits on a relatively low baseline due to its appearance
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Figure 4.7: Comparison of training sets synthesized from learned attributes and ran-
dom attributes. Experiments are conducted on image classification (VisDA), person
re-ID (Market and Duke), and vehicle re-ID (VeRi and VehicleID). Top-1 recognition
accuracy (%) and mAP (%) are used. Two application scenarios are evaluated: training
with synthetic data only (“S”) and training data augmentation (“R+S”). We clearly ob-
serve that learned attributes contribute to better training sets. Statistical significance
analysis is performed, where ∗ means statistically significant (i.e., 0.01 < p-value
< 0.05) and ∗∗ denotes statistically very significant (i.e., p-value < 0.01).

discrepancy between source the target data. To summarize, the superiority of attribute
descent over random attributes is also shown in Fig. 4.7.

In image classification, we evaluate two ratios (i.e., 1:1 and 1:7) of the number of
training data to that of test data. Table 4.2 indicates that our method brings consistent
superiority to training with target data only and augmentation with randomly synthe-
sized data under both ratios. When using a 1:1 ratio, the improvement is smaller in
magnitude, a finding that is understandable because using more training data would
lead to higher baseline accuracy.

In object re-ID, we also demonstrate the benefit of synthetic data augmentation to
a few existing models. For example, in Table 4.3, when using IDE, PCB and TransReid
architectures, augmenting the training set with optimized synthetic data is consis-
tently beneficial compared with using real data only. Similar observations are made
on the PersonX to Duke setting (Table 4.4) and the VehicleX to VeRi setting (Table 4.6).

Comparison with existing gradient-free methods. We compared the proposed at-
tribute descent with random search, evolutionary algorithm (i.e., genetic algorithm),
Bayesian optimization, and reinforcement learning (i.e., LTS). These methods have
been used as a strong baseline in hyper-parameter search and neural architecture
search [4], and only reinforcement learning has been previously used for content-level
domain adaptation [103].

Specifically, for the random search, we randomly sample attribute values 200 times
and choose the attribute list with the best FID score. For the evolutionary algorithm,
we use a generic algorithm with a fitness function equal to FID [152]. For Bayesian
optimization, we use the pipeline stated in [153]. For reinforcement learning, we re-
produce the LTS structure [103] and replace the task loss with the FID score. When
comparing these methods, we use the same distribution definition and initialization as
attribute descent. For a fair comparison, we report the best results after 200 iterations
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Figure 4.8: Convergence comparison between at-
tribute descent and existing gradient-free methods
including Bayesian optimization, evolutionary al-
gorithm and LTS. Gray regions show the error bar
for loss curves.

of training (i.e., computing the FID score 200 times and taking the lowest FID score).
Comparison results are shown in Fig. 4.8 and Table 4.8, from which four observations
are made.

First, under the same task network IDE [96], learned attributes (regardless of which
optimization method is used) outperform random attributes in both FID and mAP,
demonstrating the benefit of attribute learning for alleviating content differences. Sec-
ond, random search does not perform well in a limited search time. In fact, it is shown
that random search is more effective when many unimportant parameters exist [4].
But in our search space, all the attributes significantly contribute to the distribution
differences as shown in Fig. 4.5 and Fig. 4.11. Third, the evolutionary algorithm,
Bayesian optimization, and LTS appear to fall into an inferior local optimum and thus
do not produce a lower FID score than attribute descent. To empirically understand
such difference, we find that synthetic data optimized by LTS in mimicking the Vehi-
cleID dataset exhibit either the car front or rear, whereas VehicleID actually contains
both car front and rear. In comparison, our method can sense both directions as it
can iterate the entire search space. Fourth, shown in Fig. 4.8, compared with existing
gradient-free methods, attribute descent has the benefit of stable convergence due to
its greedy search nature. Given these benefits, attribute descent presents itself as a
straightforward yet effective baseline for syn2real content-level domain adaptation.

Positioning among state-of-the-art systems. This chapter aims to demonstrate the
consistent improvement gained through the use of optimized synthetic data, instead
of focusing on achieving a new state of the art. Nevertheless, the system augmented
with learned synthetic data has very competitive accuracy. Comparisons with several
representative state-of-the-art methods are summarized in Table 4.3, Table 4.4, Table
4.5, Table 4.6 and Table 4.7. For example, when Market is jointly trained with personX,
our system outperforms TransReID [98] with real data only by +0.52% in Rank-1 ac-
curacy. Similarly, on Duke and VehicleID (small), our system exceeds TransReID [98]
and GSTE [150] by +0.51% and +5.6% in Rank-1 accuracy. On the VeRi-776 dataset,
the mAP of our system using the PCB backbone is 74.51%, which is +2.63% higher
than that using PAMTRI [76].

Impact of attribute order in attribute descent. In Fig. 4.10, we investigate the
dependency among attributes by testing whether the order of attributes matters in
attribute descent. Using different attribute orders in attribute descent optimization
and comparing the FID scores between generated data and target data at epoch I and
epoch II, yields two observations. First, after the first epoch, some orders generate
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Table 4.8: Comparison of attribute descent and existing gradient-free methods. The
training set comparison when VehicleX is the source domain and VehicleID is the
target domain, under training with synthetic data only. The IDE [96] model and the
“Large” train-test split is used. Lower FID indicates lower domain discrepancy with
VehicleID.

Training data Type FID↓ Rank-1↑ Rank-5↑ mAP↑
VeRi R 45.39 28.00 41.11 38.59
Cityflow 75.36 38.23 53.70 45.57
VX (Ran. Attr.)

S

134.75 18.76 30.11 22.00
VX (Ran. Sear.) 109.94 21.84 35.29 26.35
VX (Evo. Algo.) 105.14 21.97 35.78 27.12
VX (Bay. Opti.) 99.64 22.57 38.15 30.05
VX (LTS) 95.27 24.03 38.62 32.21
VX (Attr. Desc.) 77.96 28.04 41.85 35.33

lower FIDs than others. For example, the order “orientation → lighting → camera
pose” results in lower FID than “lighting → camera pose → orientation”. This differ-
ence is because orientation accounts more for the discrepancy between synthetic data
and real data than camera pose and lighting. Second, although different orders may
give different FID values after epoch I, their FID values (and accuracy, not shown in
this figure) become similar after epoch II. This property is associated with the coordi-
nate descent algorithm, wherein the order of coordinates in the optimization does not
affect final performance.

Impact of different attributes. We perform ablation studies on each group of at-
tributes: object orientation, camera pose and lighting. Results on the application of
training with synthetic data only, and tasks of classification, person re-ID, and vehicle
re-ID are summarized in Fig. 4.11. The results provide us with interesting insights re-
garding the importance of different attributes in these tasks. First, we observe that all
three groups of attributes are necessary for good optimization results, where omitting
any of them would decrease the accuracy. For example, when we use random values
for orientation attributes, task accuracy drops by 15.7% and 9.95% in top-1 recogni-
tion rate and mAP on classification and person re-ID task, respectively. Second, we
find that attributes have different importance. Specifically, orientation attributes are
the most important. For example, in the vehicle re-ID task, not optimizing vehicle
orientation leads to a -10.52% drop in mAP, while is much more than the drop caused
by omitting camera pose (-3.54%) and lighting (-1.6%).

4.4.4 Numerically Understanding Dataset Content

This section uses viewpoint as an example to showcase the application of attribute
descent in numerically understanding dataset content. As shown in Fig. 4.9 and Fig.
4.12, after performing attribute descent on the corresponding synthetic assets, we plot
obtained viewpoint value distributions on the unit sphere, where each point on the
unit sphere represents a camera pointing toward the center of sphere.The blue points
show in-plane rotation of < 30◦. The orange points indicate in-plane rotation of > 30◦.

Viewpoint distribution and bias for various classes in VisDA. In Fig. 4.9 (right)
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Figure 4.9: Viewpoint distribution visualization for VehicleID and class knife in VisDA.
(Left:) by estimating the orientation parameters for each vehicle, our method shows
that the viewpoint distribution on VehicleID is bi-modal, where orientations are con-
centrated in the A front or B rear. (Right:) our visualization method shows that the
viewpoint of the class knife on VisDA exhibits various in-plane rotations. The blue
dots indicate image samples with in-plane rotation < 30◦ while the orange dots mean
in-plane rotation > 30◦.

and Fig. 4.12 A, we observe a significant viewpoint bias in the five categories. For
example, we find that airplane, car and bus are usually filmed vertically (in a normal
erect position), because the in-plane rotation angles learned for the three class are
usually less than 30 degrees. In contrast, knife and skateboard are often filmed from a
certain oblique angle with significant in-plane rotations. Moreover, when capturing
airplane, bus and skateboard images, the camera is usually at the same height as the
object, but for knife, it is usually as either a higher or lower position.

Viewpoint distribution and bias for different cameras in re-ID datasets. In Fig.
4.12 B-E, we observe very different viewpoint patterns of different cameras. On the
Market dataset, the viewpoint distribution for camera 2 is distinct from that for cam-
era 3. Specifically, we observe that camera 2 is higher than camera 3 and the azimuth
of camera 2 covers a broader range than that of camera 3. Likewise, on the Duke
dataset, camera 4 mainly films people from front or rear angles, whereas camera 7
films from nearly all directions of the azimuth. Similar phenomena are also observed
in vehicle re-ID datasets. In VeRi, for example, in contrast to camera 8, which films
only car fronts and car rears, camera 7 mainly films vehicles from the side. In sum-
mary, significant viewpoint bias exist for different cameras in re-ID datasets. Such bias
comes from the fact that camera positions are usually fixed and that objects (person
or vehicle) regularly follow predefined lanes. Bias among cameras inevitably leads to
bias between datasets, and potentially decrease accuracy when deploying models.

4.5 Discussion

Optimization under non-differentiable simulation functions. Our system is non-
differentiable because of the Unity rendering function. Under this circumstance, the
gradient can be estimated by a few existing methods such as finite-difference [21] and
reinforcement learning [103]. These methods are best applied in scenarios with a rela-
tively large number of parameters (at least hundreds or thousands) to optimize. How-
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Figure 4.10: Comparison of different attribute orders in attribute descent optimiza-
tion. We show FID values between generated data and the VehicleID dataset after
epoch I and II in attribute descent, which is performed for a total of two epochs (see
Alg. 3). Various optimization orders of attributes are tested. Each order is described
by icons representing attributes of object orientation (azimuth and in-plane rotation),
camera pose (camera height and distance) and lighting (light direction and intensity).
Under different attribute orders, we observe similar FID values after epoch II. These
results suggest the correlation among attributes is weak

ever, in object-centric tasks, far fewer attributes to optimize, so we instead propose a
stable and efficient optimization approach.

The relationship between distribution shift and task accuracy has been exam-
ined in several recent studies. Deng et al. assume a fixed training set and quanti-
tatively measure the strong negative correlation between accuracy and distribution
shift of the test set in image classification [154, 155]. In comparison, we assume a fixed
test set instead and use the negative correlation in method design: a better training set
would have a smaller distribution shift from the test set. This assumption is verified
in both object classification and re-ID, which complements [154, 155] from both the
assumption and application perspectives.

Can we use metrics other than FID to provide supervision signals? Two other
methods could potentially be used to measure distribution gaps: building a discrim-
inator with an adversarial loss or training a task network with the task loss. How-
ever, in our preliminary experiment, the discriminator method is prone to detecting
the large difference between synthetic and real data and thus continually tells the
generator that its generated data have poor quality. This problem breaks the Nash
equilibrium between the generator and discriminator, thus hindering us from obtain-
ing an effective generator. On the other hand, a task network can provide accurate
supervision signals but is infeasible when target domain labels are not provided. Fur-
thermore, for object re-ID which is evaluated across cameras, the overall supervision
provided by the task network does not reflect the training data quality in single cam-
eras and thus poses difficulty in synthesizing data in each camera. As a result, we
focus on the difference between features, using FID [28] to quantitatively measure the
distribution difference between two datasets.

Application scope. To demonstrate the effectiveness of attribute descent, this
chapter focuses on object-centric tasks, which are either fundamental or have very
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Figure 4.11: Ablation studies of each group of attributes: object orientation, camera
pose and lighting. Each ablation experiment leaves a certain group of attributes un-
optimized (i.e., following the uniform distribution) and is compared with the full sys-
tem. Top-1 accuracy (%), mAP (%) and mAP (%) are reported on image classification,
person re-ID and vehicle re-ID tasks, respectively. We use VisDA, Market, and Vehi-
cleID as the target domains for the three tasks, respectively.

important applications in the real world, and a relatively small number of attributes
are involved. Under these scenarios, attribute descent has quicker convergence and
superior performance compared with existing gradient-free optimization methods.
As such, the attribute decent serves as an effective baseline for object-centric content-
level domain adaptation.

Beyond object-centric tasks, we experimentally show that attribute descent is also
useful in the semantic segmentation task where the street scenes have more complex
distributions. For this application, we use the 3D assets (i.e., SceneX) collected in
our previous work [114], where 23 controllable attributes are defined, including scene
layout, illumination, etc. This is significantly more than the 6 attributes defined in
the object-centric tasks. Using the Cityscapes dataset [156] as target and DeepLab-
v2 segmentation model [157], we present quantitative results in Fig. 4.13. In spite of
the more challenging setup, we find that our method still maintains its superiority
to random attributes. For example, under synthetic only training, attribute descent
yields +6.42% improvement in mean intersection over union (mIoU) over the use of
random attributes.

That said, inheriting from coordinate descent, attribute descent may have lower
running efficiency in a complex scenario [158], where we speculate that global opti-
mization algorithms like reinforcement learning will be good alternatives. With these
considerations in mind, we posit that the attribute decent serves as a straightforward
and readily applicable baseline for syn2real content-level domain adaptation. Un-
like the intricate hyperparameter tuning often inherent in reinforcement learning and
evolutionary algorithms, the attribute descent method avoids the complexities asso-
ciated with such processes. Moreover, our paper demonstrates a notable advantage
of the attribute descent technique over these methods within a comparatively limited
search space – specifically, within the scope of object-centric tasks as outlined in our
study. This outcome underscores its promising utility as a foundational benchmark
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Figure 4.12: Viewpoint distribution visualization for different categories in VisDA
and different cameras in Market, Duke, VeRi and CityFlow. In image classification
(VisDA), we observe that each object has a specific and unique view point pattern.
Likewise, each camera in the re-ID task has a distinct pattern. These patterns in classes
or cameras reflect the viewpoint bias of datasets.

for syn2real content-level domain adaptation.

4.6 Conclusion

This chapter studies how to improve training data quality from the perspective of
reducing the domain gap between synthetic data and real data on the content level.
Specifically, we propose an attribute descent algorithm that can automatically edit the
source domain (synthetic) image content in a graphic engine to generate training data
with a good resemblance to the target domain (real world). We evaluate this method
on object-centric tasks, in which the usage of object bounding boxes decreases the
number of attributes to be optimized. Fewer attributes of interest allow us to opti-
mize attributes individually using the proposed attribute descent approach. We show
that data synthesized from learned attributes improve task accuracy in two applica-
tion scenarios: training with synthetic data only and augmenting target data with
synthetic data. In addition, using viewpoint as an example, we show that attribute
descent enables understanding of the dataset content by computing the attribute dis-
tribution of given categories or cameras. This chapter demonstrates the benefit of
training data engineering, and in the future, more investigations will be performed to
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Figure 4.13: Comparison of training sets synthesized from
learned attributes by attribute descent and random at-
tributes, with application to street scene semantic segmen-
tation. We aim to approximate the target distribution of
street scenes. Similar to Fig. 4.7, two application scenarios
are evaluated: training with synthetic data only (“S”) and
training data augmentation (“R+S”). Statistical significance
analysis is conducted.

understand training data quality.



Chapter 5

Building Privacy-preserved
Training Data

5.1 Introduction

The human brain is a complex system. Research towards thought patterns and ex-
panding the way people exchange information with the outside world has never
stopped for areas such as cognitive neuroscience and neurorehabilitation. With the
rapid development of cognitive science, neuroscience, computer science, and signal
processing technology in recent years, brain-computer interfaces (BCIs) provide hu-
man beings with other ways to communicate with the world and also allows us to get
a better understanding of the physical mechanisms of human thought [159, 160].

As an essential part of brain-computer interfaces (BCIs), electroencephalograph
(EEG) signals, also known as brainwaves, have found a variety of exciting and use-
ful applications for users and have become increasingly important in various areas.
Gathered from the scalp, the EEG is a signal containing information about the elec-
trical activity of the brain. Electrodes placed on the scalp are used to detect electrical
information from the brain under the scalp, bone, and other tissues. Since it is an
overall measurement of the human brain’s electrical activity, it contains a wealth of
information. This is the reason why EEG can be applied to diverse areas like personal
recognition [161], disease identification [162], sleep stage classification [163], visual
image generation using brainwaves [164], and brain typing [165].

From the viewpoint of data analysis, automatic EEG analysis is challenging due
to the inherent features of bio-signals. One source of ambiguity is the fused nature of
features, which is common for most bio-signal feature learning tasks. The fusion here
means that any one experimental trial of signals contains both wanted features and
unwanted features for the given tasks. Also, due to the lack of macroscopic knowl-
edge of the mechanism of EEG activity, this fused feature problem in EEG is more
serious than for many other physiological signals. Besides that, brain wave analysis
is challenging in the following aspects:

• Low signal to noise ratio: For EEG signals, being full of information also means
full of noise and interference, making it very hard to extract reliable features

65
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Figure 5.1: Motivation of the feature filter. We proposed the feature filter to condi-
tionally filter out specific features in EEG signals. For example, as shown above, our
model is able to filter out identities or alcoholism information with stimulus informa-
tion remaining.

[166, 167, 168, 169].

• Data format varies: Depending on the collection device, EEG signals have a dif-
ferent format [170]. Hence it becomes difficult to construct standard algorithms
to extract features from EEG.

• Limited training data: Constructing a hand-labeled training corpus for fine-
grained EEG analysis is labor-intensive. Since EEG data collections are often
domain-dependent, it is not practical to always collect new training data for
new domains. Furthermore, due to the feature fusion problem, privacy issues
are an important reason why current datasets do not involve large numbers of
subjects, thereby making it practically impossible to build a huge dataset like
ImageNet [171].

• Large individual difference: EEG signals have significant individual differ-
ences, making it hard to learn robust features across subjects [172, 173, 174].

In this work, we first designed an end-to-end framework for short-term EEG clas-
sification. To address the above difficulties, deep learning approaches are utilized in
this thesis to achieve both learning and visualization. Autoencoder-based techniques
are used for feature learning and dimensionality reduction for short-term EEG sig-
nals. In this thesis, this method is referred to as Image-wise autoencoders. The Image-
wise autoencoders are designed based on Fast Fourier Transform (FFT) and convolu-
tional neural networks. Using FFT, we can obtain three EEG frequency bands, then we
use these frequency bands to achieve an RGB-color visualization (an image). Then, a
CNN-based autoencoder is designed to extract features from these color images with
both classification loss and reconstruction loss. Under this design, our models suc-
cessfully overcomes the difficulties of consistent handling of EEG data.

Furthermore, in a real-world situation, customers not only require accuracy for the
brain-computer interface but also require a competent level of privacy and informa-
tion safety [175]. Shown in Fig. 5.1, for example, if we would like to use EEG for a
personal recognition task for a bank, the only information we would like to upload is
personal identity-related information. But unfortunately, EEG is a fused feature data
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with a messy, vibrant symphony of personal information, including one’s individ-
uality, learning capacity, and emotion information. That is, all brain activity-related
features will be uploaded and available for legal or illegal uses. For the bank example,
since there currently does not exist a suitable information filtering algorithm, both the
bank and potential future hackers will also be able to get our other information like
disease information, emotion information, and so on. Current research has tried to
specify several standards for operating on EEG data to protect users’ privacy but that
has not solved the problem fundamentally [176, 177, 178].

To address the above issue, for the first time, we propose a feature filter for short-
term EEG signals. In practice, we do not use the idea of subtracting features to filter
out properties as such properties are not well-defined. Instead, we choose to generate
a new EEG trial without the unwanted features but maintaining the desired features
of the original EEG trial signal. Thus, a generative adversarial network (GAN) based
technique is utilized to create such an EEG signal. In this thesis, we also introduce
a feature filter, which is as an extension of our short-EEG discriminative model. As
mentioned earlier, the feature filter of EEG is more like a style transformation. So we
are inspired by the idea of Image-to-Image translation [179] introduced in the com-
puter vision area. This approach is designed to map one image distribution to another
image distribution in order to achieve a style transformation. In this section, such a
translation mechanism is used for feature filtering.

Contributions are summarized as listed:

• We propose to use the autoencoder loss to enhance the classification of EEG
signals. The autoencoder loss helps to improve EEG classification accuracy.

• We propose the EEG feature filter. For the first time, we consider the situations
where competent privacy information protection is generally required for cus-
tomers. We transfer time series EEG signals to EEG images, thereby reducing
the feature filter problem to an image translation problem.

• We conduct detailed experiments to validate the performance of the proposed
network and the contribution of each component. Experiment on UCI EEG
datasets shows we achieve the desired competent level of information preser-
vation and privacy protection.

5.2 Related Works

Short-term EEG classification with deep learning. Recent advancements in EEG re-
search have prominently featured deep learning, incorporating a range of models like
Deep Belief Networks [180], Convolutional Neural Networks (CNNs) [181, 182], and
Recurrent Neural Networks (RNNs) [183, 184]. These techniques are frequently used
for concise EEG classification, typically acting as black-box classifiers. An example is
EEGNet [172], which uses a four-layer CNN to successfully classify event-related po-
tentials and EEG oscillations, outperforming traditional methods of extracting basic
features. SyncNet [185], notable for its efficient parameter usage, achieves even better
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task performance. This chapter introduces the image-wise autoencoder, an innovative
method that efficiently handles noisy EEG data, leading to improved results.

The most similar work to our classification model is by Tabar and Halici [186].
They used EEG motor imagery signals and a combined CNN and fully connected
stacked autoencoders (SAE) to find discriminative features. They used a Short-time
Fourier transform (STFT) to build an EEG motor imagery (MI) which is unlike our 3D
electrode location mapping as used in our work (described in section 3). Also, their
autoencoder design is quite different from ours since they used a CNN followed by
an 8-layer SAE. Nevertheless, they have demonstrated that autoencoders can help to
learn robust features from EEG signals.

Privacy preserved data is garnering increasing attention in contemporary research.
Previous studies in this area have primarily employed simple image transformations
to safeguard privacy. This has involved the use of domain-specific knowledge and
manually crafted techniques, such as pixelation, blurring, and the replacement of
faces or objects, to protect sensitive information. For instance, many benchmarks
manually blur human faces [52, 53] and vehicle license plates [83] for privacy rea-
sons. A notable recent development is a shift towards automatic algorithms for creat-
ing privacy-preserved data. For example, Chamikara et al. propose the PEEP protocol,
which applies perturbation to Eigenfaces and stores only the perturbed data in third-
party servers for standard Eigenface recognition [187]. Similarly, Kiya et al. proposed
SETR to encrypted images and then models with a vision transformer for privacy-
preserving semantic segmentation [188]. Compared with existing works working on
different domains, we are among the first to generate privacy-preserved EEG and use
generative models for this propose.

5.3 Methodology

5.3.1 Backgrounds

An Autoencoder is a kind of compression algorithm, or dimension reduction algo-
rithm, which has similar properties to Principal Components Analysis (PCA). As com-
pared with PCA, the autoencoder has no linear constraints. The autoencoder structure
has been widely used for image compression, for example [189], which inspired us to
try an autoencoder based learning algorithm. An autoencoder can be divided into
two parts, an encoder and a decoder. The number of nodes in the hidden layer is gen-
erally less than the nodes in the input layer and the output layer. That is, the original
input is compressed to a smaller feature vector. In equation 1 below,φ andψ stand for
encoder and decoder, respectively, and L means squared loss. The objective of the au-
toencoder is to minimize the difference between the input and the generated output.
A CNN based autoencoder [190] uses convolution operations as the encoder and de-
convolution operations for the decoder, making it better for operating on image data.
Prior to our work, a number of autoencoder-related methods have been applied to
EEG signals. Stober [191] used convolutional autoencoders with custom constraints
to learn features and improve generalization across subjects and trials. It achieved
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commendable results but it uses CNN directly on the time domain features from EEG
signals but not frequency domain features like our approach. Stober’s work inspired
us that it could be a general conclusion that the autoencoder-based structure can in-
crease cross-subject accuracy, forming our basic inspiration to try autoencoder-based
structures.

Generative adversarial networks (GANs) are systems of two neural networks
contesting with each other in a minimax game framework [25]. The GAN approach
has achieved great success in the image generation area [192, 193, 105]. GANs include
two main parts, namely a generator and a discriminator. The generator is mainly
used to learn the distribution of the real image and produce images in order to fool
the discriminator, while the discriminator needs to accept real images while rejecting
generated images. Throughout this process, the generator strives to make the gener-
ated image more realistic, while the discriminator strives to identify the real image.
The key part of GAN is the adversarial loss. For the image generation task, the adver-
sarial loss is very powerful for images in one domain transformed to the other domain
since this domain cannot be discriminated by simple rules, but deep learning models
have achieved some success.

The cycle-consistent adversarial network (CycleGAN) is a well-known image-to-
image translation method for unpaired images [105]. It overcomes the difficulty of
getting paired images and forms an autoencoder-like structure to achieve image trans-
lation. Specifically, suppose G is such a generator that generates a domain Y image
from domain X, while F is the generator that generates a domain X image from the
domain Y. Dx and Dy are two discriminators that are used to determine whether the
coming image really belongs to domain X or domain Y, respectively. The training pro-
cedure can be separated into two symmetric parts. One is X → G(X) → F(G(X)).
In this autoencoder-like loop, the training loss comes from two parts, the first is the
discriminator loss which comes from Dy to judge whether G(X) is really from domain
Y and the second is the reconstruction loss to judge whether F(G(X)) is the same as X
or not. The other loop Y → F(Y) → G(F(Y)) works the same way.

These GAN methods are usually based on two hypotheses. One is that it is pos-
sible to build a strong classifier that can discriminate such features, and the second is
the availability of a reliable generator that can filter out original features and rebuild
target features. For the first hypothesis, if we cannot train a strong classifier in normal
labeled training, it will be almost impossible for us to get a strong discriminator in
training, because adversarial training itself is not well designed to help train the dis-
criminator. That is not an issue for many GAN based methods which have achieved
great success in the CV area, since the most popular current datasets like MNIST [194]
and CIFAR-10 [46] have already achieved more than 90% accuracy using different
CNNs to serve as accurate discriminators. In contrast to CV, since the NLP area does
not have a universally recognized text classification method for grammar checking,
current GAN methods for NLP, like Seqgan [195] and its improved version Leakgan
[196] do not have a strong discriminator to guide the generator. For our second hy-
pothesis, we have to have a strong generator that can rebuild features. However,
building a strong generator is closely related to the given type of data. For the image
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Figure 5.2: Structure of Image-wise Autoencoder. The EEG signals will be trans-
formed to EEG images, using the geometric information of the electrode positions.
When training a classifier for EEG images, the classification loss (i.e., cross-entropy
loss) and reconstruction loss (i.e., MSE loss) are used jointly to achieve high task accu-
racy.

translation area, convolution and deconvolution-based methods are often used.
Image-wise autoencoders to be introduced are the solution we use to meet the two

hypotheses of building a GAN for EEG. An image-wise autoencoder is used to extract
discriminative and robust features from EEG images. During autoencoder training, it
can reduce reconstruction loss to a very low level for the test set, making it possible to
build a generator for the GAN structure. Furthermore, when we connect the features
to a fully connected layer to work as a classifier, it achieves convincing results with
more than 90% accuracy in the within-subject test discriminator.

5.3.2 UCI EEG Dataset

The dataset we use is from UCI, the EEG dataset from the Neurodynamics Laboratory
at the State University of New York. It has a total of 122 participants with 45 control
subjects and 77 subjects diagnosed with alcoholism [185, 197]. Each subject has 120
separate trial. If a subject is labeled with alcoholism, all 120 trials belonging to that
subject will be labeled as alcoholism. The stimuli used are several pictures from the
Snodgrass and Vanderwart picture set. It is a sort time EEG where one trial of EEG
signal is of one second length. Each trial is sampled at 256Hz using 64 electrodes. For
the classification task, models are first evaluated using data within subjects, which is
randomly split as 7:1:2 for training, validation and testing for one person [185]. The
classification objective is to discover whether the subject has been diagnosed with al-
coholism or not. Also, we note that this is not a balanced dataset. It is a two-task
classification but alcoholism trials account for more than 70% of the data. For train-
ing the feature filter, we also use within-subject testing but just split the source dis-
tribution (alcoholism) within subjects, which is similarly randomly split as 7:1:2 for
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Table 5.1: Image-wise autoencoder structure. It contains an encoder and a decoder.
The former encodes the EEG images into the representative feature, while the latter
reconstructs the image from the feature.

Encoder Decoder
Input 32 × 32 × 3 Color Image Input 16 × 8 × 8 Matrix
3 × 3 conv, 2 × 2 max-pooling 3 × 3 deconv, 2 × 2 max-un-pooling

ReLU, 0.25 dropout ReLU, 0.25 dropout
3 × 3 conv, 2 × 2 max-pooling 3 × 3 deconv, 2 × 2 max-un-pooling

ReLU, 0.25 dropout ReLU, 0.25 dropout
3 × 3 conv,ReLU 3 × 3 deconv

training, validation and testing for each alcoholism subject. The target distribution is
the whole data from control subjects. The usual challenges of handling EEG make it
more difficult to apply deep learning methods compared with computer vision data
or natural language processing data. The UCI EEG dataset is not an exception. First,
a label is applied to one trial in this dataset. But as one trial contains 64 channels and
256 time series data, making it a 64 × 256 large matrix. In other words, a single EEG
trial has 64 × 256 attributes, difficult for a neural network to find meaningful features
if treated as 16,384 independent inputs. Second, EEG is a kind of time-series data but
it lacks recognizable patterns in single time slices (1/sampling rate) compared with
natural language processing, since each word in NLP often has a specific meaning.
Third, as previous work has shown, if we consider raw EEG signals and directly use
a convolution neural network for raw EEG data, there is always a serious problem to
determine the size of the kernels to use at each stage [198, 186]. That is because the
original features could be distributed with different time differences in a single trial
depending on the scenario (different classification tasks for example), making it hard
for convolution kernels to extract features.

5.3.3 Image-wise Autoencoder

The image-wise autoencoder takes images as input while using a CNN to extract fea-
tures. The whole procedure is shown in Fig. 5.2, and below is some further explana-
tion.
A. EEG to Image:

The method is derived from Bashivan’s work [183], which is a method that com-
bines the time-series information and spatial channel locations information over the
scalp in a trial of EEG signals. An FFT is performed on the time series to estimate
the power spectrum of the signal for each trial (64 × 256). From the background, we
have seen theta (4-7Hz), alpha (8-13Hz), and beta (13-30Hz) waves are most repre-
sentative of EEG signals when people are awake [199]. Thus, these three frequency
bands are extracted from the original EEG, and the sum of squared absolute values
in these frequency bands is used, forming a 64 × 3 map. To form an RGB EEG im-
age, the theta frequency will be the red channel, alpha the green channel, and beta
the blue channel. For each frequency band (64 × 1), Azimuthal Equidistant Projec-
tion (AEP) also known as Polar Projection is used to map the three-dimensional 64-
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channel position into two-dimensional positions on a flat surface. That is, all EEG
electrode positions are mapped into a consistent 2D space because the original EEG
electrodes are distributed over the scalp in a three-dimensional fashion. In this way,
each 64 × 1 frequency band can be mapped to a 32 × 32 mesh, forming 32 × 32 × 3
data. The CloughTocher scheme is used for estimating the values in-between the elec-
trodes over the 32 × 32 mesh. Thus, a trial of 64 × 256 EEG signals is transformed
to 32 × 32 × 3 color pictures. It is also worth noting that only frequency bands are
used and the rest are omitted, thus it is likely some information is lost. However, as
theta (4-7Hz), alpha (8-13Hz), and beta (13-30Hz) waves are most representative of
EEG signals, to be shown in our experiment, we show that EEG images have a strong
enough discriminate ability.

The motivation for this is straightforward. For the EEG2Img method, theoretically,
we can adjust the size of the output EEG image as needed. For one trial of EEG signals,
we can directly transfer it to one EEG image with 32 × 32 × 3 format which is a very
typical format in the computer vision area and there exist many mature and successful
approaches and models for this format. As a result, by utilizing such a method, it is
possible for us to test those models for EEG images, and leverage the computer vision
community’s past work on images into the EEG space.
B. Autoencoder Design:

The design of this CNN-based autoencoder is inspired by the CNN applications
for CIFAR-10 dataset [46]. The CIFAR-10 dataset consists of 60,000 32 × 32 × 3 color
images in 10 classes, with 6,000 images per class, with the same input dimension as
our generated EEG pictures. Our encoder and decoder are described in Table 5.1.
The design of the autoencoder follows Zeiler and Fergus’ ideas for convolution and
deconvolution [200]. The Rectified Linear Unit (ReLU) is used for activation layers
to speed up the training process while dropout is performed after every activation
layer to make the model more robust, since it forces all the layers before the dropout
to extract redundant representations. Adam optimizer is used with 1e-4 learning rate
and the batch size is set to 64. The Xavier normal initialization is used for convolution
kernels.
C. Classification Task:

The features extracted from image-wise autoencoders will be flattened into a long
vector, composed of 16 hidden unit representations × 64 autoencoders in the channel-
wise case or 16 × 8 × 8 matrix in the image-wise case. Then we use a feedforward
network with three hidden layers. During the training of these three fully connected
layers using a 4e-5 learning rate, the encoder of both the channel-wise and image-wise
autoencoders will also be fine-tuned by the classification loss using a much smaller
learning rate (1e-7).

5.3.4 Feature Filter for EEG

For the feature filter, we consider the problem of supervised domain transformation,
where we are given source domain distribution X with both wanted and unwanted
features, labels Z for wanted features, and target domain distribution Y with wanted
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Figure 5.3: Structure of Feature Filter. Here we use the example of filtering out alco-
holism information in the EEG signal. The feature filter is composed of two genera-
tors, two discriminators, and one classifier. The generators (i.e., G and F) are used for
distribution mapping. The discriminators (i.e., Dx and Dy) are used to judge a sample
whether is in-distribution. The classifier (i.e., C) is used to maintain semantic infor-
mation when mapping distributions.

features only. The given source domain distribution X is not paired with target do-
main distribution Y.

Shown in Fig. 5.3, for the UCI EEG dataset, the task of a feature filter is to replace
EEG images with the alcoholism condition to an EEG image with the control condi-
tion. The objective of the feature filter is to directly learn a mapping from domain
X to domain Y. So given an EEG image from X domain, the mapping representation
in domain Y is our filter result. For this CycleGAN based Structure, the specific loss
formulations are shown as follows.

5.3.4.1 Loss Formulation

The objective of the feature filter is composed of three parts: adversarial loss, autoen-
coder loss and sentiment and classification loss. They can be expressed as:
A. Adversarial Loss:

The adversarial loss is the key part for the mapping from one distribution to an-
other. For achieving this, the adversarial discriminator is used to judge whether the
image is real or fake. For the loop X → G(X) → F(G(X)), the ability to judge whether
an image belongs to a certain distribution is given by the adversarial loss. For loop
X → G(X) → F(G(X)), it is defined as:
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Table 5.2: The conv-deconv generator structure in feature filter. The generator also
contains an encoder and a decoder, which are mainly composed of convolution oper-
ations and deconvolution operations, respectively.

Encoder Decoder
Input 32 × 32 × 3 Color Image Input 128 × 8 × 8 Matrix

4 × 4 conv, Leaky ReLU, 4 × 4 Deconv, Leaky ReLU,
4 × 4 conv, Leaky ReLU, 4 × 4 Deconv, Leaky ReLU,
3 × 3 conv, Leaky ReLU, Tanh
3 × 3 conv, Leaky ReLU,

LGAN(G, DY , X, Y) = Ex∼pdata(x)[log[(1 − DY(G(x))]]

+ Ey∼pdata(y)[logDY(y)].

This is generally the standard format of GAN loss and used to make sure the gener-
ated samples are convincing. The adversarial loss for the loop Y → F(Y) → G(F(Y))
is in a similar format.

In practice, however, the training of a GAN is quite unstable. Though the adver-
sarial loss will force the generated image to look similar to real images, there is no
guarantee for the direction of changes. To further make sure the feature filter meets
our requirements, an autoencoder loss and sentiment loss are introduced as regular-
ization terms.
B. Autoencoder Loss:

The autoencoder loss is also called reconstruction loss or cycle-consistency. It is
an L1 loss that is used to keep X ≈ F(G(X)), so that the generator will be forced to
maintain features from the original image to have enough information to reconstruct
the image during the backward loop. As a result, for loop X → G(X) → F(G(X)), it
refers to:

LAL(G, F) = Ex∼pdata(x)[||F(G(x))− x||1].

Loop Y → F(Y) → G(F(Y)) has a similar autoencoder loss to ensure G(F(Y)) is similar
to Y.
C. Sentiment and Task Loss:

The sentiment and task loss originates from Hoffman’s CYCADA model for do-
main adaptation [19]. Hoffman’s solution is to train a cycleGAN model with senti-
ment and task loss to generate fake target data f akeY from source data XS, thereby
forming ( f akeY, ZS) data label pairs to advance the current state-of-the-art domain
adaptation model.

Though the objective for domain adaptation is not directly related to our feature
filter task, their proposed sentiment and task loss are useful for building a feature
filter. In their proposed CYCADA model, the goal for using sentiment and task loss
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Table 5.3: The effectiveness of image-wise autoencoders in EEG classification. We test
their effectiveness on the task of alcoholism classification, under the setting of within-
subject classification and cross-subject classification. We show that our image-wise
autoencoder achieves competitive within-subject classification accuracy and state-of-
the-art cross-subject classification accuracy.

Method Within Sub. Acc↑ Cross Sub. Acc↑
rEED [201] 70.2 61.4
PSD [202] 81.6 60.5
DE [202] 82.1 62.2

EEGNet [172] 87.8 67.2
SyncNet [185] 92.3 72.3
w/o AE loss 91.5 71.2

w AE loss 91.7 75.6

is to maintain labeled information when generating ( f akeXT , ZS) data label pairs. This
idea satisfies the property that the wanted features are maintained in our feature filter
design.

The sentiment and task loss are given by an additional classifier C which gives la-
beled information. For the definition of task loss, it is basically a simple cross-entropy
loss:

Ltask(C, X, Z) = −E(x,z)∼(X,Z)

K

∑
k=1

1[k=z]log(σ(C(k)(x))),

where σ means the softmax function. In practice, the classifier will be trained on
source domain X and wanted label Z. As a result, loss Ltask(C, X, Z) will be used to
show that the target feature label is retained.

So classifier C works as a constraint by giving a semantic consistent loss. The se-
mantic consistent loss will not take any explicit labeled information but focuses on
the labeling consistency. The two generators will not change the labeled information
when performing image translation. If we define p(C, X) = argmax(C(X)), the se-
mantic consistency loss is as follows:

Lsem(G, F, X, Y, C) = Ltask(C, F(Y), p(C, Y))

+ Ltask(C, G(X), p(C, X)).

In conclusion, using the full loss functions mentioned above, we add those loss
functions, and we have the final objective function:
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Figure 5.4: The performance of the feature filter when (A) aiming to filter out identity
information and (B) to filter out disease (i.e., alcoholism) information.

Ltotal = Ltask(C, X, Z)

+ LGAN(G, DY , X, Y) + LGAN(G, DX , Y, X)

+ LAL(G, F) + LAL(F, G)

+ Lsem(G, F, X, Y, C).

5.3.4.2 Network Architecture

We first use a modified version of Image-wise Autoencoder as our generator (shown
in Table. 2), and our discriminator is the combination of Image-wise Autoencoder and
one fully connected layer.

To improve performance, we tried the ResNet-9 generator and patchGAN combi-
nation for training. The combination of ResNet generator and patchGAN achieves
the best performance in many image translation applications [105]. The residual-
based generator is based on Johnson’s ResNet model for super-resolution [203]. Sim-
ilar to their work, our network is composed of one encoding block, nine residual
blocks, and one decoding block. The encoding or decoding block uses the convo-
lution/deconvolution InstanceNormReLU structure, and each residual block follows
the residual connection structure which contains convolution-InstanceNorm-ReLU-
convolution-InstanceNorm. The advantage of using ResNet-9 comes from its capabil-
ity of handling deep neural networks [204], thereby making it easier for the generator
to learn the mapping from the source distribution to the target distribution [13].

The patchGAN discriminator is derived from pix2pix [179], which is a paired im-
age translation framework. The ordinary discriminator determines whether an image
is real or fake from the entire image while the PatchGAN discriminator uses local
patches. For loop X → G(X) → F(G(X)), The discriminator Dy takes in two images,
the real image Y and the generated image G(X), pass them through 5 downsampling
convolutional-BatchNorm-LeakyReLU layers, and outputs a matrix for further clas-
sification. That is, each element in the matrix corresponds to the classification of one
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Figure 5.5: The performance of the feature
filter when increasing the number of infer-
ences, when we aim to filter out alcoholism
information. We observe that the stimulus
accuracy remains stable but disease accu-
racy essentially decreases when increasing
the number of inferences.

patch. The advantage of using patchGAN is to avoid conflict with the autoencoder
loss. Since we are using the final matrix to classify the image as real or fake, the
patchGAN structure is used primarily to model high-frequency structure, whereas
the autoencoder loss already provides low-frequency information [179].

5.4 Results and Discussion

5.4.1 Evaluation Method

The evaluation method for GAN is a difficult problem that needs to take many factors
into account [205]. For a long time after the original GAN paper was published, the
generated results from GANs still needed to be judged by manual selection in the CV
area. The Fréchet Inception Distance (FID) and F1 scores [205] were introduced to
judge the generation quality of a GAN. Both the FID and F1 scores require a strong
classifier in a pre-trained in general-purposed large-scale image classification dataset
(e.g., ImageNet [206]), making it impossible to directly use in the bio-signal area.

Thus, we learn from the idea of using FID and Inception Score (IS) but simply use
the idea of training an additional classifier to judge the classification accuracy changes.
The classifier we take is still the Image-wise autoencoder with a fully connected layer
(FC) which is trained separately from adversarial training. In this work, we are try-
ing to filter out alcoholism information while keeping stimulus information. So, the
desired best result should be that we get a large alcoholism accuracy reduction while
keeping reasonable stimulus accuracy (low stimulus accuracy reduction) through the
GAN-based autoencoder.

5.4.2 Effectiveness of Image-wise Autoencoder

The accuracy of prediction on the UCI EEG dataset, from a variety of methods, is given
in Tables 4 and 5. From the result above in the within-subject test, we can see that the
accuracy of our autoencoder-based method is better than most of the past methods
except the SyncNet [185]. As for cross-subject results, which is the test format we are
more likely to meet in real life for classifying disease, and the part we are focusing
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Table 5.4: Ablation study of the feature filter structure and loss, when we aim to filter
alcoholism information from EEG signals. For alcoholism accuracy, lower is the aim.
For stimulus accuracy, higher is the aim.

Method Alcoholism Acc %↓ Stimulus Acc %↑
G:Conv-Deconv D:Conv (LGAN + LAL) 18.2 47.7
G:Resnet D:PatchGAN (LGAN + LAL) 0.6 48.9

G:Resnet D:PatchGAN (Ltotal) 0.6 49.5

on to improve through autoencoders. As shown in Table 5, all of our autoencoders
except the shared weight channel-wise autoencoders achieve state-of-art cross-subject
test accuracy. We believe this is because autoencoders can encourage feature extrac-
tion without overfitting, and will prevent the model from performing badly on new
data. In other words, this prevents our model from learning the disease condition by
merely remembering the personal identity and instead makes our model focus on the
common features of alcoholism. This could explain why autoencoders based meth-
ods perform best in the cross-subject test. Further evidence is shown in Table 3: in
order to show the performance of using an autoencoder, we construct an Image-wise
CNN which has the same structure as the encoder of Image-wise autoencoder with
a three-layer FC as the classifier. The result shows that though it can achieve similar
within-subject accuracy as Image-wise autoencoder. it performs badly in the cross-
subject test. That is, an autoencoder structure helps to improve the ability to extract
robust features.

5.4.3 Effectiveness of the Feature Filter

Fig. 5.7 shows a visual example of the result of the feature filter. The left two columns
map disease EEG images to control EEG images, the right two columns map con-
trol EEG images to the disease EEG images. From each direction, it can be seen that
our feature filter has made a slight style transformation to images. However, those
style changes are not interpretable since features from the original EEG images are
not interpretable. But from Fig. 5.4 right part, initially, 90.7% of the original images
are correctly classified as alcoholism. After our feature filter, only 0.6% of the images
are classified as alcoholism. That is nearly all images have their alcoholism informa-
tion filtered out. At the same time, stimulus accuracy has only been reduced by 4.2%,
and the remaining accuracy is still well above chance since it is a 5-class classification
problem.

Furthermore, one testing technique is to go through the feature filter multiple
times. This idea is inspired by Ge’s work for grammar error correction [207]: in their
work, they observed that some sentences with multiple grammatical errors cannot be
corrected by the Seq2Seq [208] inference using a single round of inference. So they in-
volve multiple rounds of inference in both training and testing. In our work, we have
not involved multiple inferences in training but merely used our trained feature filter
to make multiple inferences on validation and test data. The result shown in Fig. 5.5
indicates that the result is stable after six rounds of inference. The accuracy increases
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Figure 5.6: T-SNE Visualization of the feature filter output. We visualize the samples
for feature filter input and output, when we aim to filter out alcoholism information.
T-SNE was performed for samples with individual labeling, i.e., alcoholism, stimulus
label 1 and stimulus label 2.

in the first 3 rounds, we think that is because our feature filter removes unstable fac-
tors rather than filtering out the unwanted information in the first three rounds.

The performance difference between models and loss functions is shown in Ta-
ble 5.4. The results show the best performance after multiple times of inferences on
the test set. We can see that Resnet and patchGAN combination contribute most to
the performance boost. The sentiment loss and task loss contribute to keeping stimu-
lus information but do not achieve significant improvement in the drop of alcoholism
accuracy. One hypothesis we have is that the stimulus classifier is currently far from
a strong classifier. Our initial stimulus classifier at 53.7% is reasonable where chance
is 20%, but cannot really be called a strong classifier. Thus, we think that could be one
factor why adding semantics and task loss has not achieved a larger improvement.

5.4.4 Working Mechanism Investigation

Since style changes from EEG images are not interpretable we turn our attention to
visualizing the distance between distributions. Inspired by the FID score, we can
first embed our original EEG images and generated EEG images into a feature space
given by some convolution layers since this feature space can be a competent repre-
sentation of the original distribution. We choose to put our original EEG images and
generated EEG images into the pre-trained Image-wise Autoencoder again (without
the final fully connected layer) to find feature representations and then apply t-SNE
visualization. Fig. 5.6 shows our t-SNE visualization results. The left part shows the
mapping from the original alcoholism distribution to generated control distribution
through our feature filter. We can see that the generated control image distribution
is close to the original control distribution. Also, they have clear distances from the
original alcoholism image distribution which matches our significant accuracy drop
on alcoholism. The middle part and right part of Fig. 5.6 show the mapping from the
original stimulus distribution to generated stimulus distribution for stimulus label 1
and stimulus label 3 respectively. From the middle part, originally 80.9% of data is
classified correctly for stimulus data with label 1 and we still get 77.3% of data clas-
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Alcoholism Control Control Alcoholism

Figure 5.7: Feature filter output visualization. The example of filtering out alcoholism
information in the EEG signal is shown. Noticeable changes in EEG images can be
observed when feature filtering is conducted.

sified correctly after the feature filter is applied. From the right part, we can see an
accuracy drop from 30.1% to 30.0% for label 3. So we can see that no matter the origi-
nal classification result, the feature filter has no serious influence on the accuracy drop
and t-SNE visualizations further shows that the two distributions are nearly the same
though feature filters.

5.4.5 Limitation and Future Work

The first limitation is that our method is based on EEG2Img and image translation
techniques, which means that it is only suitable for short-term EEG signals. The de-
sign of a feature filter for long-term EEG signals remains to be solved. We may per-
form frame-by-frame transformation to form a time series level solution. However,
doing this may lack consistency between frames. Thus future work on this is required.
The second limitation is future work for the generator; the U-net structure is also ap-
plicable for the generator since it is also the current state-of-the-art method for several
image translation tasks. The third limitation is in our model: we simply stack error
functions but do not really optimize the training procedure. To further reduce the loss
of wanted features, we can begin with the modification of the training procedure for
our GANs. A final step to increase usefulness in practice remains, in converting the
filtered images to EEG signals.

5.5 Conclusion

Removing or filtering features out of EEG signals is difficult. However, building a fea-
ture filter will have a significant improvement for people’s privacy protection. This
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approach can lead to many useful applications. An example could be where a hospital
stores only the medical condition-related EEG signal, but the bank stores only the per-
sonal identification part of an EEG (assuming a future ATM collects EEG for greater
security). This chapter proposes an information-preserving feature filter, which con-
verts the feature filtering task to an image translation task. The experimental results
using accuracy drops show that our proposed feature filter can filter out nearly 90%
of unwanted features and keep most of the desired features.
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Chapter 6

Conclusion and Future Works

In this thesis, we have proposed several novel methods to address the problem of
training set optimization, with the purpose to improve model specificity on target
domains. In particular, four sub-tasks are targeted, i.e., training data quality analysis,
training data optimization from a source pool, training data optimization from the
synthetic to real, and building privacy-preserving training data. In this final chapter,
we first summarize the main content of this thesis, and then discuss the limitations of
our methods which further motivate our future research directions

6.1 Conclusion

Recent years have seen significant efforts made to improve deep learning models’
specificity within a specific field, with the aim of reaching performance that is on par
with human capabilities. This enhancement of deep learning has been underpinned
by a coalescence of the model (namely, algorithms) and data. Interestingly, the pro-
cess of data optimization has been overshadowed by model optimization, receiving
comparatively less attention. The objective of this thesis is to enhance the specificity
of deep learning models through a focus on data. We posit that there are untapped
opportunities for the improvement of the data that these models learn from, known
as training data. Our approach involves the analysis of the training set quality and
the creation of algorithms to optimize this training set within a variety of contexts.

We begin by assessing the quality of the training set, as its quality is integral to
the success of the model built on it, and it forms the foundation of this thesis. As de-
scribed in chapter 2, we have discovered that data diversity and the domain gap are
two crucial elements defining the quality of training data. The former illustrates the
variation among training samples, while the latter highlights the disparity in distri-
bution between training and testing. We assert that these two elements are inherently
related and should be jointly addressed. We frame the quality of training data as a
function of both data diversity and domain gap, and conduct a quantitative analysis
on 872 different training sets created through three methods: rotating and translating
MNIST, geometric image transformations, and neural rendering. We affirm that train-
ing data of high quality is characterized by high diversity and low domain gap, and
we apply this principle to the creation of superior training sets.

83
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Next, with specific knowledge found in chapter 2 that the domain gap has a sig-
nificant influence on training set quality, we examine a specific application, known
as the training set search, where our goal is to generate an effective training set for
a given scenario. Initially, we explore a situation where we have access to the target
domain but lack the resources for real-time training data annotation, and hence, aim
to construct an alternate training set from a large pool of data to yield a competitive
model. In chapter 3, we suggest a search and pruning (SnP) approach to address this
training data search challenge, adapted specifically for object re-identification (re-ID),
an application used to match identical objects captured by different cameras. The SnP
approach allows us to derive training sets that are 80% smaller than the original pool,
yet still capable of achieving equal or even superior re-ID accuracy.

We also consider a training set search scenario where we can access the target
domain and intend to use synthetic data to construct an alternate training set. As
shown in chapter 4, to mitigate the content-level misalignment between synthetic and
real data, we propose an attribute descent approach that automatically adjusts engine
attributes to make synthetic data resemble real-world data. Comprehensive exper-
iments on image classification and object re-ID confirm that the adapted synthetic
data, optimized through attribute descent, can be effectively used in three different
situations: training exclusively with synthetic data, training data augmentation, and
numerically understanding dataset content. The scenario of training exclusively with
synthetic data has data privacy and data security advantages, as it would be possible
for models to be trained without any access to private/confidential data as it is only
used for testing.

In addition to examining training set quality with a focus on achieving high-
accuracy models, we also consider the development of a privacy-protected training
set, which results in a privacy-protected model. In chapter 5, we investigated the is-
sue of feature fusion in data and suggested a new method for removing unwanted
features from data, based on our feature extractor, adapted specifically for brain-
computer interface applications. These applications’ input signal, electroencephalog-
raphy (EEG), is known for its fusion of features and richness in various types of in-
formation from the brain. Our experimental results, obtained from an alcoholism
dataset, indicate that our innovative model can filter out over 90% of alcoholism in-
formation from EEG signals on average, with a minimal loss of only 4.2% in useful
feature accuracy, thereby demonstrating the effectiveness of our proposed task.

6.2 Limitations and Future Works

6.2.1 Theoretical Support for the Impact of Domain Gap and Diversity on
Training Set Quality

While extensive experiments have demonstrated the combined effect of domain gap
and diversity on training set quality, a more robust theoretical foundation is needed
to deepen our understanding of this issue. This thesis includes an analysis of main-
stream methods for creating training sets. However, it is important to note that our
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review is not exhaustive, and some methods like diffusion model based methods [209]
are not covered, which is included in our future work.

6.2.2 Applying Diversity in the Training Set Optimzation

In chapter 2, we posited that the domain gap and diversity together determine the
quality of the training set. In practical applications, however, training set optimization
may be primarily guided by the domain gap, such as Fréchet Inception Distance (FID),
while diversity is often overlooked. We assume that the domain gap, under simplified
conditions, has a more pronounced effect on training set quality.

Consider, for instance, as shown in chapter 3, when searching for training sets
within the source pool for re-identification (re-ID) tasks. The key challenge here is
the significant domain gap arising from class differences or identities (IDs). Similarly,
when synthetic data is used for training, shown in chapter 4, the domain gap between
synthetic and real data is considerable. In these scenarios, the magnitude of the do-
main gap tends to be the dominant factor affecting the training set quality.

There are instances where the original domain gap between source training and
target validation is relatively small. For example, Liu et al. utilized “Variance Di-
versity”, similar to our diversity metric, to guide the search of data augmentation
policies involving geometric image transformations [210]. We postulate that in such
cases, diversity could have a more substantial impact on training set quality. This is
particularly true when geometric image transformations are used for data augmenta-
tion: here, a generally recognized in-distribution training set is typically used – that
is, a training set with a minimal domain gap to the target. Under these circumstances,
the goal shifts from reducing the domain gap to enhancing diversity.

Furthermore, within the context of neural rendering, and data augmentation, we
experimentally found diversity and domain gap have significant influences on train-
ing set quality. It is also worth noting that it is likely to are other factors that may also
have a significant influence on the training set quality when other training set creation
methods are used.

6.2.3 Generalization Ability of Proposed Methods

In this thesis, we are among the first to propose the idea of training set optimization
and design preliminary methods in simplified settings. However, due to the complex-
ity of real-world scenes, though significant progress has been made in these simplified
settings, it is worthwhile to test and improve the generalization ability of the proposed
methods. To improve such generalization ability, we intend to work on approaches
such as the following in the future:

Utilizing search and pruning frameworks in tasks other than re-identification
(re-ID). Our search and pruning framework can be extended to other tasks, such as
classification. However, implementing this extension would involve modifying the
SnP algorithm to some extent. This is because the primary domain gap in object re-ID
arises from differences in classes or identities. In contrast, classification tasks do not
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exhibit such a gap since the train/val/test datasets always consist of the same classes.
Consequently, our current approach of selecting similar identities based on similar
distributions cannot be directly applied and must be adjusted accordingly.

Applying attribute descent on more complex synthetic environments. As de-
lineated in Chapter 4, our focus is on testing attribute descent in object-centric appli-
cations where a single object encompasses a significant portion of an image. Future
endeavors might involve examining the application of attribute descent in more intri-
cate scenarios, such as object detection and semantic segmentation tasks.

A preliminary experiment was conducted by Xue et al., who incorporated attribute
descent in the generation of synthetic semantic segmentation training data [114]. Their
findings aligned with ours, exhibiting a substantial improvement in comparison with
random attributes.

Despite the groundbreaking results from [114], their research also presents notice-
able limitations. Their methodologies remain confined to road scenes, which means
they are not equipped to handle arbitrary scenes. It would indeed be intriguing to
see how the attribute descent algorithm can be employed for the construction of more
complex synthetic scenes, aiding the creation of content-adapted training data.

As a future work talked in [211], we move forward to a more complex problem
named Automated Retail Checkout (ARC), which aims to automate the retail check-
out process, where users effortlessly pass products by hand through a camera, trigger-
ing automatic product detection, tracking, and counting. Compared with the object-
centric tasks studied in this thesis, the synthetic film scene for ARC is significantly
more difficult, including the arrangement of multiple objects instead of one object
only.

Applying feature filter on tasks other than EEG classification. The implemen-
tation of our feature filter on EEG classification tasks proves to be a significant stride
in privacy-preserving data processing. Having successfully maneuvered this on EEG,
we may extend our feature filtering methodology to other types of data, which have
their unique privacy concerns.

One of the potential fields where feature filtering can be introduced is image recog-
nition, specifically face images. Face images carry a wealth of personal information
and often form the basis for biometric identification systems. Privacy preservation in
this context is essential as misuse or mishandling can lead to identity theft or unau-
thorized access. Applying our feature filter on face images will require an adaptation
of the method. Since the features in face images are not numerical or linear as EEG
signals, the filtering process will involve the recognition and extraction of essential
facial characteristics while effectively obscuring personally identifiable information,
and still leaving a human face visible of the appropriate age/gender/ethnicity and so
on.

6.2.4 Improving deep learning models on extreme cases

In the current landscape, high-accuracy deep learning models are not uncommon.
These models have shown great performance on internal benchmarks, as seen in in-
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Figure 6.1: An example of a simulated road scene (left) and its automatically obtained
vehicle bounding boxes (right), as an example of a corner case. In this example, the
dark environment, made using VehicleX proposed in this thesis, makes vehicle detec-
tion very challenging and leads to potential detection failure. As a part of our future
work, we aim to find such difficult test samples that can be used to train better AI
models.

dustries such as autonomous vehicle manufacturing. However, despite their impres-
sive accuracy, these AI systems often fail in unusual or challenging circumstances,
leading to unfortunate accidents. An example could be a pedestrian hidden by an
umbrella on a poorly lit day or someone positioned to cross the road in an unusual
manner.

Given the critical importance of safety in these applications, it’s crucial to evaluate
and refine the AI system against any potential corner case scenarios. However, this
task is far from straightforward. The process of gathering and annotating real-world
data is costly and time-consuming, especially considering the vast number of possible
scenarios.

A more cost-effective and potentially more efficient approach might be to employ
3D data synthesis engines for simulations, as mentioned in a previous chapter. These
engines allow control over various elements like pedestrians, roads, weather condi-
tions, vehicles, trees, and lighting, thereby providing a realistic yet manageable en-
vironment for the AI system. Shown in Fig. 6.1, we show our preliminary results on
building such an extreme case. In this example, the dark environment makes vehicle
detection very challenging and leads to detection failure. Our synthetic environment
can help get such difficult samples that can be used to train better deep-learning mod-
els.

6.2.5 Exploring the intersection of content alignment, image translation,
and data augmentation in syn2real

As discussed in Chapter 4, In the realm of synthetic to real, a process of content align-
ment and image translation, followed by data augmentation, is commonly utilized.
However, as found in Chapter 2, these approaches present a paradox: while content
alignment and image translation aim to minimize the domain gap, data augmentation
tends to widen it. This juxtaposition leads to reduced control over the training dataset.
Considering these processes from a unified perspective opens up new avenues for ex-
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ploration. For instance, is there a need to integrate diversity indicators within content
alignment and image translation methods? Alternatively, could the principles of data
augmentation be adapted to narrow the domain gap? These questions highlight the
potential for innovative strategies in optimizing machine learning methodologies.
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Appendix - Dataset Contributions

To achieve our goal for training set search, we have proposed several datasets that are
publicly available. We summarize them as described below.

A.1 VehicleX

We introduce a large-scale synthetic dataset generator named VehicleX that includes
three components: (1) vehicles rendered using the graphics engine Unity, (2) a Python
API that interacts with the Unity 3D engine, and (3) detailed labels including car type
and color.

VehicleX has a diverse range of realistic backbone models and textures, allowing
it to be able to adapt to the variance of real-world datasets. It has 272 backbones that
are handcrafted by professional 3D modelers. The backbones include ten mainstream
vehicle types including sedan, SUV, van, hatchback, MPV, pickup, bus, truck, estate,
sportscar, and RV. Each backbone represents a real-world model. From these back-
bones, we obtain 1,362 variances (i.e., identities) by adding various colored textures
or accessories. A comparison of VehicleX with some existing vehicle re-ID datasets
is presented in Table A.1. VehicleX is three times larger than the synthetic PAMTRI
dataset [76] in identities, and can potentially render an unlimited number of images
from various attributes. In experiments, we show that our VehicleX benefits from
real-world testing either when used alone or in conjunction with a real-world training
set.

In this work, VehicleX can be set to training mode and testing mode. In training
mode, VehicleX will render images with a black background and these images will
be used for attribute descent (see Section 4.3); in comparison, the testing mode uses
random images (e.g., from CityFlow [83]) as backgrounds, and generates attribute-
adjusted images. In addition, to increase randomness and diversity, the testing mode
contains random street objects such as lamp posts, billboards, and trash cans. Fig. 4.2
shows some sample vehicle identities.

We build the Unity-Python interface using the Unity ML-Agents toolkit [139]. It
allows Python to modify the attributes of the environment and vehicles, and obtain
the rendered images. With this API, given the attributes needed, users can easily
obtain rendered images without expert knowledge about Unity. The code of this API
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Table A.1: Comparison of some real-world and synthetic vehicle re-ID datasets. ”Attr”
denotes whether the dataset has attribute labels (e.g., orientation). Our identities are
different 3D models, and thus can potentially render an unlimited number of images
under different environments and camera settings. VehicleX is released open source
and can be used to generate (possess) an unlimited number of images (cameras).

Datasets #IDs #Images #Cameras # Attr

real

VehicleID [3] 26,328 222,629 2 ✗

CompCar [212] 4,701 136,726 - ✗

VeRi-776 [82] 776 49,357 20 ✓

CityFlow [83] 666 56,277 40 ✗

synthetic PAMTRI [76] 402 41,000 - ✓

VehicleX 1,362 ∞ ∞ ✓

is released together with VehicleX.
VehicleX is a large-scale public 3D vehicle dataset, with real-world vehicle types.

We focus on the vehicle re-ID task in this thesis but our proposed 3D vehicle mod-
els also have potential benefits for many other tasks, such as semantic segmentation,
object detection, fine-grained classification, 3D generation, or reconstruction. It gives
flexibility to computer vision systems to freely edit the content of the object, thus
enabling new research in content-level image analysis. VehicleX has been used as
training data in the AI city challenge in CVPR 2020 and CVPR 20211

A.2 ObjectX

We have ObjectX, which is used for the task of image classification. It is adapted
form from the ShapeNet-V2 dataset [137], which is akin to ImageNet [10], arranges 3D
shapes in accordance with the WordNet hierarchy [138]. From the ShapeNet reposi-
tory, we cherry-pick classes that also appear in the VisDA target dataset, comprising
real-world images [112]. ObjectX contains seven classes and 200 models, chosen at
random for each class. As part of our preprocessing routine, models in every class are
oriented in the same direction and resized to a standard scale. Fig. 4.2 provides vi-
sual examples of 3D shapes gathered for the categories: airplane, bus, skateboard, train,
motorcycle, and knife.

A.3 Automated Retail Checkout Dataset

The Automated Retail Checkout (ARC) dataset [211] is a comprehensive collection
consisting of two components: synthetic images for model training purposes, and
real-world data for validating and testing the model.

1https://www.aicitychallenge.org/
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images for validation / testing3D assets for training

Figure A.1: The Automated Retail Checkout (ARC) dataset. In this dataset, we focus on
the problem of using 3D assets for building 2D image classification/detection systems.
Given 3D assets, we aim to construct 2D training set by setting up a filming scenario.

The synthetic dataset was generated using a camera model, as illustrated in Fig. 4.3,
and elaborated upon in an earlier chapter. This process involved the collection of 116
scans of everyday retail products sourced from various supermarkets, which were
then converted into 3D models. These 3D models represented a wide range of prod-
uct classes, such as everyday essentials, food items, toys, furniture, household goods,
among others. With these models, we were able to generate approximately 116,500
synthetic images. These images were produced in a scene represented in a Figure
provided, with varied attributes like object positioning, camera angle, lighting, and
backdrop used to promote diversity within the dataset. Background images were
sourced from Microsoft’s COCO [131], known for its diverse scene range, suitable for
creating realistic image backgrounds. We have made the 3D models and Unity-Python
interface accessible to participating teams, to facilitate further synthetic data creation
if required.

Regarding real-world data, the test setup involved a camera fixed above a check-
out counter, facing directly downwards. Customers would interact with this setup
by “scanning” items at the counter as they would naturally. Multiple customers par-
ticipated in this exercise, each with a unique scanning style. To help guide the AI
model’s focus, a shopping tray was situated under the camera. Through this exercise,
we captured approximately 22 minutes of video footage, with 222 scanning events.
The footage was then divided into “testA” and “testB” sets, with “testA” constituting
40% of the total footage, while “testB” comprising the remaining 60% was saved for
testing and used to determine the participating teams’ ranks. The ARC dataset has
been employed as challenge data in the AI city challenge at CVPR 2022 and CVPR
2023.
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[170] A. Schlögl, “An overview on data formats for biomedical signals,” in World
Congress on Medical Physics and Biomedical Engineering, September 7-12, 2009, Mu-
nich, Germany. Springer, 2009, pp. 1557–1560.

[171] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in neural information process-
ing systems, 2012, pp. 1097–1105.



106 BIBLIOGRAPHY

[172] V. Lawhern, A. Solon, N. Waytowich, S. Gordon, C. Hung, and B. Lance, “Eeg-
net: a compact convolutional neural network for eeg-based brain-computer in-
terfaces,” Journal of neural engineering, vol. 15, no. 5, pp. 056 013–056 013, 2018.
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[190] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, “Stacked convolutional auto-
encoders for hierarchical feature extraction,” in International Conference on Arti-
ficial Neural Networks. Springer, 2011, pp. 52–59.

[191] S. Stober, A. Sternin, A. M. Owen, and J. A. Grahn, “Deep feature learning for
eeg recordings,” arXiv preprint arXiv:1511.04306, 2015.

[192] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learn-
ing with deep convolutional generative adversarial networks,” arXiv preprint
arXiv:1511.06434, 2015.

[193] M.-Y. Liu, T. Breuel, and J. Kautz, “Unsupervised image-to-image translation
networks,” in Advances in Neural Information Processing Systems, 2017, pp. 700–
708.

[194] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
1998.

[195] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence generative adversarial
nets with policy gradient.” in AAAI, 2017, pp. 2852–2858.

[196] J. Guo, S. Lu, H. Cai, W. Zhang, Y. Yu, and J. Wang, “Long text generation via
adversarial training with leaked information,” in Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.



108 BIBLIOGRAPHY

[197] P. Sykacek and S. J. Roberts, “Adaptive classification by variational kalman fil-
tering,” in Advances in Neural Information Processing Systems, 2003, pp. 753–760.

[198] S. Min, B. Lee, and S. Yoon, “Deep learning in bioinformatics,” Briefings in bioin-
formatics, vol. 18, no. 5, pp. 851–869, 2017.

[199] P. A. Abhang and B. W. Gawali, “Correlation of eeg images and speech sig-
nals for emotion analysis,” British Journal of Applied Science & Technology, vol. 10,
no. 5, pp. 1–13, 2015.

[200] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional net-
works,” in European conference on computer vision. Springer, 2014, pp. 818–833.

[201] D. O’Reilly, M. A. Navakatikyan, M. Filip, D. Greene, and L. J. Van Marter,
“Peak-to-peak amplitude in neonatal brain monitoring of premature infants,”
Clinical neurophysiology, vol. 123, no. 11, pp. 2139–2153, 2012.

[202] W.-L. Zheng, J.-Y. Zhu, Y. Peng, and B.-L. Lu, “Eeg-based emotion classification
using deep belief networks,” in 2014 IEEE international conference on multimedia
and expo (ICME). IEEE, 2014, pp. 1–6.

[203] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style transfer
and super-resolution,” in European Conference on Computer Vision. Springer,
2016, pp. 694–711.

[204] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-
resnet and the impact of residual connections on learning.” in AAAI, vol. 4, 2017,
p. 12.

[205] M. Lucic, K. Kurach, M. Michalski, S. Gelly, and O. Bousquet, “Are gans created
equal? a large-scale study,” in Advances in neural information processing systems,
2018, pp. 700–709.

[206] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A Large-
Scale Hierarchical Image Database,” in CVPR09, 2009.

[207] T. Ge, F. Wei, and M. Zhou, “Reaching human-level performance in au-
tomatic grammatical error correction: An empirical study,” arXiv preprint
arXiv:1807.01270, 2018.

[208] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin, “Convolutional
sequence to sequence learning,” in Proceedings of the 34th International Conference
on Machine Learning-Volume 70. JMLR. org, 2017, pp. 1243–1252.

[209] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution
image synthesis with latent diffusion models,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp. 10 684–10 695.



BIBLIOGRAPHY 109

[210] Z. Liu, H. Jin, T.-H. Wang, K. Zhou, and X. Hu, “Divaug: plug-in automated
data augmentation with explicit diversity maximization,” in ICCV, 2021, pp.
4762–4770.

[211] Y. Yao, X. Tian, Z. Tang, S. Biswas, H. Lei, T. Gedeon, and L. Zheng,
“Training with product digital twins for autoretail checkout,” arXiv preprint
arXiv:2308.09708, 2023.

[212] L. Yang, P. Luo, C. Change Loy, and X. Tang, “A large-scale car dataset for fine-
grained categorization and verification,” in CVPR, 2015.


	Acknowledgements
	Publications
	Abstract
	Introduction
	Motivation
	Objectives
	Contributions
	Thesis Outline

	Training Set Quality Analysis
	Introduction
	Related Work
	Problem Formulation
	Pipeline 
	Measurement of Diversity
	Measurement of Domain Gap

	Experiment
	Experiment Design
	Training Sets Creation

	Results and Findings
	Conclusion

	Training Set Search from a Source Pool
	Introduction
	Related Work
	Motivation: Tackling Target Bias
	Method
	Overview
	Correlation Study
	Target-specific Subset Search
	Budget-constrained Pruning
	Discussion

	Experiment
	Source and Target Datasets
	Experimental Details
	Results
	Further Analysis

	Conclusion
	Source Pool Details

	Training Set Optimization from Synthetic to Real
	Related Work
	Simulation Environment
	3D Asset Acquisition
	Camera Model
	Configurable Attributes
	Image Capturing Process

	Proposed Method
	Attribute Distribution Modeling
	Optimization
	Application Scenarios
	Training with Synthetic Data Only
	Augmenting Target Training Data
	Understanding Dataset Content Numerically


	Experiment
	Source and Target Datasets
	Experimental Details
	Quantitative Evaluation of Attribute Descent
	Numerically Understanding Dataset Content

	Discussion
	Conclusion

	Building Privacy-preserved Training Data
	Introduction
	Related Works
	Methodology
	Backgrounds
	UCI EEG Dataset
	Image-wise Autoencoder 
	Feature Filter for EEG
	Loss Formulation
	Network Architecture


	Results and Discussion
	Evaluation Method
	Effectiveness of Image-wise Autoencoder
	Effectiveness of the Feature Filter
	Working Mechanism Investigation
	Limitation and Future Work

	Conclusion

	Conclusion and Future Works
	Conclusion
	Limitations and Future Works
	Theoretical Support for the Impact of Domain Gap and Diversity on Training Set Quality
	Applying Diversity in the Training Set Optimzation
	Generalization Ability of Proposed Methods
	Improving deep learning models on extreme cases
	Exploring the intersection of content alignment, image translation, and data augmentation in syn2real


	Appendix - Dataset Contributions 
	VehicleX
	ObjectX
	Automated Retail Checkout Dataset


