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Measurement of population persistence is a long-standing
problem in ecology; in particular, whether it is possible to
gain insights into persistence without long time-series. Fractal
measurements of spatial patterns, such as the Korcak exponent
or boundary dimension, have been proposed as indicators
of the persistence of underlying dynamics. Here we explore
under what conditions a predictive relationship between
fractal measures and persistence exists. We combine theoretical
arguments with an aerial snapshot and time series from a long-
term study of seagrass. For this form of vegetative growth,
we find that the expected relationship between the Korcak
exponent and persistence is evident at survey sites where
the population return rate can be measured. This highlights
a limitation of the use of power-law patch-size distributions
and other indicators based on spatial snapshots. Moreover,
our numeric simulations show that for a single species and a
range of environmental conditions that the Korcak–persistence
relationship provides a link between temporal dynamics
and spatial pattern; however, this relationship is specific to
demographic factors, so we cannot use this methodology to
compare between species.

1. Introduction
The description and prediction of spatial patterns in nature
has fascinated theoreticians and applied ecologists alike for

2016 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.
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many years. Initially, the study of seemingly intractable, complex patterns in time and space was
predominantly a descriptive science [1]. However, in the latter years of the previous century, theoretical
advancements demonstrated that complex spatio-temporal patterns could be generated as emergent
properties resulting from simple rules [2]. This opened the door to understanding the mechanistic
basis of many types of ecological pattern, including regular [3] and fractal/scale-free geometries [4].
However, the inverse problem of inferring biological mechanisms from observations and measurements
on ecological systems remains a key challenge [5–8]. In part this is because, surprisingly, very similar
spatial patterns can arise from a wide range of environmental and underlying endogenous processes
[9–11]. In this study, we combine theoretical analysis of a simple but generally applicable, spatio-
temporal simulation model with statistical modelling of independent spatial and temporal datasets from
a well-studied ecosystem: a temperate seagrass monoculture. We explore the theoretical and empirical
relationships between spatial and temporal measures of underlying dynamics, as well as providing
some discussion of the potential, and limitations, of using spatial metrics in order to quantify ecological
dynamics.

Broadly speaking, a spatio-temporal system (such as a spatial vegetative system) will typically have a
high number of dimensions and attempting to match model and data by comparing the precise locations
of individuals would quickly become intractable for all but trivial system sizes. This introduces the idea
of using summary statistics to encapsulate the key information pertaining to the underlying dynamics
of a given ecological growth process [12]. Traditionally, these techniques have taken the form of statistics
derived from longitudinal measures of the total population size, ignoring spatial structure [13–15].
One important measure of resilience is the return rate or engineering resilience [16,17]. Given a stable
ecosystem, this measures how long on average it takes before the system returns to the stable equilibrium
point following a disturbance. The return rate quantifies this, and can be taken mathematically as the
dominant eigenvalue of the dynamic system around the stable equilibrium value. However, often in
order to gain accurate statistics many sequential observations need to be taken over extended periods
of time. By contrast, spatial statistics derived from remote sensing techniques have a high number of
degrees of freedom: they can be produced rapidly, can generate large amounts of data and therefore, in
theory may lead to insights similar to those from more classical long-term studies [2,18,19].

The theory of fractals and scaling has numerous applications in ecology and is intimately linked
with the ideas of spatial dynamics and inferring process from pattern. The original theory, proposed
by Mandelbrot, was used to explain certain seemingly ubiquitous patterns in nature [20]. Since this
time there has been much tantalizing speculation over using fractal theory to elucidate ecologically
meaningful parameters from spatial patterns.

A major application of fractal theory in ecology is in the scaling of vegetation patch sizes. The
distribution can be described by a power law in certain settings such as semi-arid ecosystems [21].
The distribution also tends to develop an increasing truncated tail as the system moves closer to a
critical threshold due to increasing environmental pressure [22]. This implies that a spatial snapshot
of a vegetation distribution can be used to determine if an ecosystem is close to a threshold that would
lead to ecosystem collapse. The truncation of the power law may not universally be an indicator of
ecosystem collapse, where the simpler measure of coverage may provide a stronger indicator [23]. Also,
for diatoms in intertidal mudflats the opposite relationship was found, where the truncation of the power
law disappeared under increased grazing pressure [24]. Until now, there has been little direct comparison
between the properties of patch sizes for a single snapshot and the long-term trends (over several years)
of a vegetation population.

Patch-size distributions may also often be viewed as pure power laws with no truncation term,
characterized by a single exponent that determines the patchiness of the spatial pattern. The exponent of
a power-law patch-size distribution, also known as the Korcak exponent, K is defined given a patch area
A and the number of patches observed of that size NA, using the relationship

NA ∼ A−K.

Power-law patch-size distributions that are key to the Korcak exponent are ubiquitous in nature [25]
and a variety of ecological models can reproduce such patterns [4,26]. Moreover, simple models of
aggregation dynamics, which focus on the rate at which patches of differing sizes coagulate, can produce
patch sizes with power-law distributions and there has been some research to indicate this is a universal
phenomenon [27,28]. The Korcak exponent gives a sense of the patchiness of the spatial pattern and
has been considered in the context of several ecological processes including: correlating with grazing
pressure on a landscape [29]; providing an estimate of patchiness and re-forestation [30] and relating to
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the cover between two species [31]. Mandelbrot [20], and subsequently Hastings [25] and Sugihara [32]
proposed that there should be a linear relationship between the Korcak exponent and the underlying
dynamics of the process.

However, although the Korcak exponent and other measures related to persistence can be related for
particular processes, in general, there is no standard relationship and each measure is independent [33].
It, therefore, remains an open problem whether such fractal exponents are able to give any insight into
the persistence of an ecosystem and where the limitations are.

In this paper, we explore when there is a relationship between the spatial and dynamic persistence
of an ecosystem and under what scenarios we should expect this relationship to develop. In particular,
we use eelgrass (Zostera marina), a key marine species around sheltered coastlines, as motivation and a
source of high-quality ecological data. The eelgrass around the Isles of Scilly (located off the southwest tip
of Cornwall, UK: 49.9◦ N 6.3◦ W) has the key feature that its temporal dynamics can be assembled from
extensive surveys over the past 20 years [34], while its spatial distribution has been assessed from aerial
photography [35]. From our understanding of eelgrass dynamics, we develop a simple probabilistic
cellular automata (PCA) model of clonal growth of vegetation in the presence of an environmental
gradient that limits reproduction; we compare and contrast the findings of this model with the data
available for eelgrass.

2. Lattice-based simulation with environmental gradient
2.1. Model development
In order to understand the factors that determine when a relationship between spatial and dynamic
persistence (in terms of rates of return to equilibrium density) occurs, we developed an explicit spatial
model that includes both demographic and environmental factors. This allows the study of each of these
factors separately in order to determine which contribute to the persistence relationship.

We develop a mechanistic model for the clonal growth of vegetation in the presence of an
environmental gradient. This model is formulated to capture the known behaviour of eelgrass, but
could be parametrized to match a range of ecosystems with a monoculture as the foundation species.
The gradient can be used to determine the boundary between regions where the clonal species can
colonize and persist, and regions where it is unable to do so due to restrictions in the environment
(wave energy, sea depth, temperature, etc.) For example, eelgrass will only colonize coastal regions where
sunlight, nutrients and soft-sediment are sufficient, hence an obvious environmental gradient that would
determine eelgrass growth is sea depth [36,37].

We consider a single species of plant that can reproduce by local clonal growth; the plants also
experience intra-specific competition (competition for nutrients, light, ground water, etc.) from the
extended local environment which impacts on their reproductive potential. Plants are assumed to die at
a constant rate. The model is formulated as a PCA [38,39], based upon similar assumptions to the kinetic
equation modelling vegetative growth given in [40]. Reproduction due to clonal growth or seeding and
intra-specific competition are both governed by spatial kernels (kB and kC) that determine the strength
of each process at a given distance. The model is defined on a square N × N lattice, where each lattice
site can either be occupied (1 for short-hand) or unoccupied (0). For ease of explanation, we conceptually
consider a plant to occupy a single site, although this is not necessary for any of the results. The four
key functions that determine the dynamics of this species are: λ(x), which captures the environmental
gradient and is purely a function of the location x; kB(d), which captures the rate at which new plants
are produced (on unoccupied sites) at a distance d from the plant (a Gaussian function with variance σ 2

1 );
kC(d), which measures the degree of competition felt from a plant at distance d (another Gaussian function
with variance σ 2

2 ), while k determines the strength of this competition on reproduction.
Mathematically, this can be written as

Px(0 → 1) = λ(x)

⎛
⎝ ∑

i:occupied

kB(‖x − oi‖)

⎞
⎠

⎛
⎝1 − k

∑
i:occupied

kC(‖x − oi‖)

⎞
⎠ (2.1a)

and

Px(1 → 0) = μ, (2.1b)

where oi is the location of the ith occupied site. The environmental component λ(x) determines how
growth is modified by environmental factors, and is purely a function of location x. λ(x) has two
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components: an environmental gradient in a given direction and a site-specific noise term to reflect
random perturbations:

λ(x) = γ l.x + ξηx.

Here ξ is the strength of noise parameter (ηx are independent Gaussian noise terms with mean zero and
variance one), γ gives the slope of the environmental gradient and l is a unit vector that specifies the
direction of the gradient.

2.2. Model analysis
Simulations were performed on a 100 × 100 grid for 6 × 104 time steps after the system has reached an
equilibrium state, where the density of occupied sites fluctuates around a mean value. The dynamic (k, μ),
spatial (σ1, σ2) and environmental (γ , ξ ) parameters were varied between simulations and the Korcak
exponent and return rate were calculated for each simulation run.

The return rate for the simulation is taken to be the expected rate of change in density around the
long-term equilibrium, providing an exact counterpoint to the values calculated from the time-series
data. For a given spatial pattern at time t, the exact probabilities for the births and deaths at each
site can be calculated, and a single stochastic realization of these gives the spatial pattern for the next
time step. A general form of the return rate can thus be calculated by summing over the probability
of all birth events minus the probability of all death events. The expected rate of change of density is
therefore E[ρi] = ∑

i Pt,i(B) − Pt,i(D), where each site is indexed with i. Around the equilibrium point,
this equation is linearized such that E[ρt] = a + bρt. The return rate is the gradient of this linear equation
b, which was calculated through linear regression. The system was initialized with the north border,
where the environmental gradient is at its maximum, fully occupied. This border was fixed in order to
ensure stochastic fade-out did not occur. Simulations were run until the population reaches statistical
equilibrium, this is assessed as equilibrating of the population density. Once it has reached statistical
equilibrium, the density and expected change in density is recorded for a given number of generations
N. Linear regression is then performed on the dataset and the gradient of regression is taken to be the
return rate.

For a given spatial model distribution, the Korcak exponent is calculated as follows. The size of each
continuous cluster of occupied sites is calculated, producing a distribution of patch sizes. A power-
law (Pareto) distribution is fitted to this data, with scaling exponent and minimum patch size, using
a maximum-likelihood estimator approach. The minimum patch size is taken to be 1 pixel (0.2 × 0.2 m),
in order to compare the model-generated and field-generated data directly, and the scaling exponent was
estimated via a standard maximum-likelihood method [41].

For the first investigation, dynamic and spatial parameters of the model (corresponding to eelgrass
behaviour) were fixed and the environmental parameters were varied (ξ and γ ) between 0 and 1.
Assuming each grid cell corresponds to a 20 × 20 cm area, dynamic and spatial parameters can be set
that capture the known behaviour of eelgrass. The death probability was kept constant at μ = 0.2, the
spatial growth and competition scales were kept constant at σ1 = 0.5, σ2 = 1; while both high (k = 0.8)
and low (k = 0.2) competition factors were investigated.

For the second investigation, the dynamic parameters (k and μ) were varied between 0 and 1 for fixed
environment and spatial parameters (σ1 = 0.5, σ2 = 1, γ = 0.5, ξ = 0.1).

3. Field survey and aerial photography of seagrass meadows
The results from the simulation study are directly compared with the spatial and temporal seagrass
data. The aim is to find under what circumstances a relationship between the return rate and the Korcak
exponent should exist and then determine if such a relationship can be observed in this real system.

3.1. Seagrass meadow locations
We monitored five seagrass (Z. marina) meadows around the Isles of Scilly, UK (figure 1 and table 1) from
1996 to 2014, using rigorous and consistent methodology [34,42,43].

3.2. Survey protocol
Seagrass was surveyed annually, during the first week of August, by placing 25 quadrats (0.25 × 0.25 m)
in each meadow and counting all the shoots visible above the substrate. Quadrat positions were
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Figure 1. The five surveyed sites in The Isles of Scilly, UK. blt, Broad Ledges Tresco; la, Little Arthur; htb, Higher Town Bay; ogh, Old
Grimsby Harbour; wbl, West Broad Ledges. Both time-series data in the form of annual surveys and spatial data in the form of a single
aerial survey were conducted (adapted from [35]).

Table 1. GPS positions and depths relative to chart datum for the five seagrass survey sites (‘+0.5’ indicates this site is exposed at low
water, all other sites are fully sub-tidal).

site latitude and longitude depth (m)

Broad Ledges Tresco 49◦56.4′ N, 06◦19.6′ W 0.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Higher Town Bay 49◦57.2′ N, 06◦16.6′ W +0.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Little Arthur 49◦56.9′ N, 06◦15.9′ W 1.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Old Grimsby Harbour 49◦57.6′ N, 06◦19.8′ W 0.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

West Broad Ledges 49◦57.5′ N, 06◦18.4′ W 0.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

predetermined as random rectangular coordinates (x, y) translated into polar coordinates (distance,
bearing), radiating from a chosen focal point. Randomization of quadrat locations was renewed each
year and the maximum distance was 30 m from the focal point, close to the centre of each meadow.

3.3. Statistical modelling
We developed a metapopulation dynamic model of seagrass habitat occupancy, based on the classic
Levins model [44]. Suitable habitat is defined as either occupied or vacant. The proportion of habitat
patches for meadow i, Ni, is dependent on colonization and extinction rates, with dynamics described
by a logistic function. In discrete time, this function can follow the standard linearization, such that
yt,i = ai + biNt,i, where yt,i = log(Ni,t+1/Ni,t) [45].

In order to calculate the return rate, we estimated habitat occupancy as the proportion of replicate
quadrats that were occupied by seagrass each year, t, at each of the five survey sites (i = 1, . . . , 5). In
its linearized form, the metapopulation model can be fitted to spatially replicated seagrass data using
a generalized additive model (GAM) framework, regressing y on N, with ai represented by sitewise
y-axis intercepts and density dependence described using smoothing splines at the individual site level
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[46]. The GAM fitting process implements a generalized cross-validation algorithm to assess the optimal
degree of nonlinearity. Additionally, we captured differences in within-site temporal variance, as well as
between-site correlation, by incorporating a full variance–covariance matrix, estimated directly from the
data (see [47] for full details of the method). The regressed value bi is then taken as the estimate for the
return rate at site i [17,48].

All analysis was performed using R v. 3.1.2 (R Core Team 2014), with additional functions from the
packages: ggmap, ggplot2 and mgcv.

4. Results
The spatial-dynamic persistence relationship was compared when either the environmental parameters
or the demographic parameters were varied. These relationships were then compared with the
seagrass ecosystem, where the dynamic persistence was measured from the annual longitudinal
study and the spatial patchiness was measured from the aerial photographic survey described in the
methods.

4.1. Simulations
In the initial investigation, the dynamic and spatial parameters of the model were fixed and the
environmental parameters were varied. The Korcak exponent correlates strongly with the return rate;
there is also a high likelihood for each fitted power-law distribution, indicating a good fit of the exponent
(figure 2a,b). The gradient of the relationship was also found to vary depending on whether high
competition or low competition was present.

The environmental noise and gradient terms both have a large impact on the resulting return rate and
Korcak exponent of the system (figure 3a,b). A higher environmental gradient leads to a higher return
rate, with a decreased spatial patchiness (lower Korcak exponent). This effect is also more pronounced
when the environmental noise term increases. The return rate and spatial patchiness is at its greatest
value, where both the environmental gradient and noise are also at their greatest value.

In the second simulation experiment, the environmental parameters were fixed and the dynamic and
spatial parameters were allowed to vary. The resulting Korcak exponent (figure 4) gives no relationship
to the return rate. Although the spatial scaling does vary (between 2.8 and 3.7) there is no clear emergent
relationship and a linear regression analysis finds no significant trend (p > 0.05).

The simulation analysis therefore indicates that a negative-linear relationship is found when sites are
near equilibrium and when only environmental variables vary between sites.

4.2. Seagrass data analysis
Density dependence analysis was undertaken to quantify the return rate of seagrass metapopulations in
equilibrium at each survey site. Here, return rate is the negative of the gradient of the density-dependent
response around equilibrium [48]. Initially, the fitted variance–covariance matrix was assessed. Inclusion
of empirical between-site spatial correlations did improve model fit (Likelihood ratio = 34.4, d.f. = 10,
p < 0.001). Generalized cross validation showed that a linear functional form, rather than smoothing
splines, was the best fit at all sites except Old Grimsby Harbour, making direct estimation of return rates
straightforward in all but that case (figure 5). Return rates are shown in table 2. At three survey sites,
Broad Ledges Tresco (blt), Higher Town Bay (htb) and West Broad Ledges (wbl), the null hypothesis
of random walk dynamics was rejected in favour of density-dependent population regulation [13].
However, at Little Arthur (la) and Old Grimsby Harbour (ogh), statistically significant return rates could
not be estimated (figure 5).

Seagrass persisted at all five survey sites throughout the length of the study (figure 5). There was
no evidence of temporal autocorrelation in the time series (Likelihood ratio = 0.82, p = 0.37). The only
site to show a significant linear trend (decline) was Old Grimsby Harbour (t = 3.96, p < 0.001). We found
the expected inverse relationship between the power-law exponent of the patch size distribution (the
Korcak exponent) and the dynamic return rate, for survey sites that were confirmed as having stationary
temporal dynamics (figure 6). However, two sites were excluded as they failed to meet this assumption:
Old Grimsby Harbour is evidently in sharp decline (figure 5); and Little Arthur, while maintaining high
patch occupancy throughout the survey period, could not be confirmed as being stationary (figure 5 and
table 2).
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Figure 2. Relationship between return rate and Korcak dimension for high and low competition, where environmental parameters
were varied. Other parameters were kept constant at σ1 = 0.5, σ2 = 1 and μ = 0.2. The log-likelihood indicates goodness of fit to
the spatial data, where higher values indicate a better fit. (a) Korcak dimension (low k) and (b) Korcak dimension (high k).
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Figure 5. Time-series and patch-size data from five survey sites around the Isles of Scilly, UK (blt, Broad Ledges Tresco; htb, Higher Town
Bay; wbl, West Broad Ledges; la, Little Arthur; ogh, Old Grimsby Harbour). The three sites used in the study are on the left, with the two
excluded on the right. Top row: Data points represent proportions of occupied 25 × 25 cm quadrats for the years 1996–2014.Middle row:
Transformed data, comparing density at year t to log(Nt+1/Nt). Regression line for return rate shown in black with 95% confidence limit
shown as a red dashed line. Bottom row: Patch-size distribution for five sites, with normalized frequency. A solid line with a scaling of 2
has been added for clarity.

Table 2. Estimated return rates and Korcak exponent for the five seagrass survey sites. Also given are the standard error (s.e.) of the
return rate fit along with the t-value and corresponding p-value and the 95% CIs for the Korcak exponent estimated through bootstrap
re-sampling.

site return rate s.e. t-value (d.f.= 50) p-value Korcak exponent 95% CI

blt 0.857 0.307 2.79 0.007 1.775 (1.773, 1.776)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

htb 0.718 0.296 2.33 0.023 1.869 (1.866, 1.869)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

la 0.943 0.618 1.52 0.134 1.761 (1.758, 1.762)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ogh n.a. n.a. n.a. n.a. 1.811 (1.806, 1.813)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

wbl 0.930 0.294 3.04 0.004 1.740 (1.735, 1.740)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5. Discussion
There has recently been increasing interest in finding generic spatial indicators of ecosystem pressure
or collapse [22,49]; however, until now there has been little validation of these spatial indicators
against long-term population data. We have demonstrated for a particular ecosystem under what
circumstances there should be a connection between the dynamic persistence, defined using the return
rate to population equilibrium, and the spatial persistence, defined using the Korcak exponent. The
simulations derived from a model of a spatial dynamic vegetation system in the presence of demographic
competition and an environmental gradient demonstrated that a strong relationship exists only when
environmental parameters vary between sites. This relationship was then compared with a long-term
seagrass study, where a similar relationship was found for the sites where the return rate could
be measured.

We have found that a relationship between the Korcak exponent and the return rate only exists when
certain factors are present. Numerical simulation indicates a strong relationship between the Korcak
exponent and the rate of return to equilibrium when only properties of the environment are altered. This
relationship was supported to a limited extent by data obtained from the long-term study of seagrass. To
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Figure 6. Korcak return rate relationship for surveyed vegetation. Empirical seagrass data for three sites surveyed is shown as labelled
points with±s.e. error bars for both return rate and Korcak exponent, where the Korcak exponent errors were found through bootstrap
re-sampling [50]. Although Little Arthur (LA), did not have a statistically significant return rate, this has been plotted here for clarity.
The diagonal solid band describes the inverse relationship reproduced by the PCA model over a range of environmental parameters. The
overall simulation rate is set using known parameters of death and recruitment for Zostera marina [51]. The other simulation parameters
were set arbitrarily and hence show a qualitative as opposed to quantitative similarity with the data.

our knowledge, this is the first time a direct comparison has been possible between time-series and spatial
snapshot data on the same natural system. The strategy of coupling rigorous modelling development
with high-quality, long-term field study is a powerful approach for making generalizable inference
based on biologically well-supported assumptions and observation. In particular, analysis of where the
predicted relationship breaks down in nature, where the demographic parameters between locations are
significantly different, provides useful motivation and insight for further theoretical exploration.

Using a PCA model, we predict a strong negative linear relationship between the Korcak exponent
and the return rate over a wide range of parameters—in fact all parameters that generate return rates
above 0.05 (figure 2). This reversal of the relationship can be observed when there is no environmental
gradient present (figure 3). While variation in environmental parameters gave a strong Korcak–return
rate relationship, this was not duplicated when the dynamic (species-specific) parameters were varied
(figure 4). Instead a very low correlation relationship was found. These results highlight the practical
usefulness and potential shortcomings of this method for discerning the return rate and hence persistence
of a species from its spatial pattern. The change in gradient due to high- and low-competition (k) values
also gives an indication of how comparisons of the Korcak exponent should be implemented (figure 2). If
endogenous parameters (k, σ1, σ2, μ) are fixed then a monotonic relationship is produced with a gradient
that is dependent on those endogenous parameters. This suggests that while in some settings the Korcak
exponent does correlate with the return rate of the system and thus its persistence, this is not true in
general. Other studies have recently highlighted similar results that generic indicators of a catastrophic
shift may not hold generally across all settings [19,23,52].

Our results indicate a Korcak–persistence relationship in a long-term study with an aerial
photographic survey. Vegetation density data in the form of a 20-year quadrat survey from the Isles of
Scilly, UK, was used to estimate the return rate for five distinct ‘meadows’. This was compared with
the Korcak exponent measured from the patch-size distribution obtained via an aerial photographic
survey conducted towards the end of the study. The same negatively correlated Korcak–persistence
relationship was found from this data and has qualitative agreement with the simulation study, subject
to the limitations of assuming equilibrium dynamics already noted. The model is simplistic in nature
and may not fully capture the variety of complex interactions occurring in a vegetation system, indeed
differing model assumptions can lead to different conclusions based on spatial indicators [19,52]. The
comparison between the data and model then is given to illustrate the general form of the relationship.
A model with more realistic assumptions and fitted parameters may better reproduce the observed
relationship therefore. This gives a tantalizing glimpse of how high-resolution remote-sensing techniques
could support some more traditional ecological survey techniques when answering questions about the
dynamical persistence of an ecosystem. As has recently been pointed out, these spatial techniques would
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................................................
be system-dependent and further validation against empirical data is required before drawing robust
conclusions from spatial snapshots alone [52].

In the event, only three out of five sites assessed showed the predicted relationship between spatial
and temporal statistics. In both cases where the relationship between spatial and temporal dynamics
fell down, it was due to being unable to reliably estimate a return rate from time-series analysis. At
one site (Little Arthur), coverage by vegetation was very high for most of the time surveyed. Although
population growth rate and density was reasonably described by a linear relationship (figure 5), this
presented too little information about response to perturbation to derive a statistically significant return
rate. The other site not following the predicted relationship was Old Grimsby Harbour, which is heavily
disturbed by boat traffic and can be seen to be declining precipitously (figure 5). These cases point to
limitations of classic time-series analysis. It would require further validation of the Korcak exponent
approach to confidently use alongside time-series analysis.

Sugihara [32] proposed that dynamics could be inferred from complexity of shape. They illustrated
this point, by using a fractional Brownian motion model where the Hurst exponent could be used to
detect the persistence of the generating process. Other studies [53] have used this relationship to explore
how measures of persistence can relate to dynamics; however, there has been no strong quantitative test
of whether the spatial persistence of a landscape relates to the temporal persistence. Here we have tested
the generality of this hypothesis by precisely defining dynamic persistence and then relating this to the
shape of the resulting distribution. Overall, care must be taken when directly comparing spatial statistics
to temporal ones. This general conclusion has also been recently highlighted in the context of comparing
truncations in the patch-size distribution to the proximity to a dynamic threshold [22,23]. Universality
of fractal growth processes leads to many spatial patterns that are similar in the sense that they share
the same scaling relationship [54]. For a fractal measure to be applied in the context of estimating a
return rate, we believe that a strong mechanistic understanding of the underlying growth mechanisms
is required, which has similarly been found in a study of marine diatoms [24]. We have focused on
mechanisms where growth is locally positively correlated with surrounding vegetation and negatively
correlated on larger scales. However, there may also be other spatially correlated processes in a vegetative
system that lead to changes in the scaling properties of the system such as grazing [22,23,55] or disease
[56]. It would be interesting to discern the Korcak–persistence relationship where such other factors
are present.
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