
Robust Human Action Modelling

Lei Wang

A thesis submitted for the degree of
Doctor of Philosophy

The Australian National University

October 2023

© Lei Wang 2023

Declaration. I hereby declare that this thesis represents my original research, and
I am the sole author of this work. The experimental work is entirely my own, with
clear acknowledgment of any collaborative contributions. Proper references have
been provided for all supporting literature and resources. This thesis has not been
submitted for any other degree or professional qualification.

Lei Wang
6 October 2023

To my beloved family
and my forever father,

for their love, understanding, and support.

Acknowledgments

This thesis could not have been written without the support of numerous individuals,
for whom I am greatly appreciative.

Firstly, I would like to sincerely thank my primary supervisor, Dr. Piotr Koniusz
(Data61/CSIRO and ANU), who dedicated tremendous effort and time to supervising
my research work. His patience, guidance, and support have helped me grow as
a researcher. He generously provided regular and pertinent feedback, which has
steadily improved my research skills. Dr. Piotr Koniusz also offered invaluable
suggestions for my daily life and future research career development, and I will
always remember his contributions.

Secondly, I extend my sincere gratitude to Prof. Stephen Gould (ANU), the chair
of the panel, who provided valuable feedback and suggestions when I embarked on
my PhD journey. I hold him in high regard, and his guidance in research direction
made my work both meaningful and rewarding. Prof. Stephen Gould also played a
significant role in advancing my research career. Thank you.

Thirdly, I thank my associate supervisor, Dr. Liang Zheng (ANU), who joined the
supervisory panel as I was completing my PhD. I had insightful discussions with him,
and I thoroughly enjoyed exploring new ideas and research directions with him. Dr.
Zheng also encouraged me to pursue the seemingly impossible. It is a great honor to
work as a Research Fellow under his guidance, focusing on data-centric problems.

I want to express my gratitude to my former supervisor, A/Prof. Du Huynh
from the Department of Computer Science and Software Engineering in the School of
Physics, Mathematics, and Computing at The University of Western Australia. Her
guidance and support during my master’s degree and the beginning of my PhD
encouraged me to work diligently and remain dedicated to my research interests.

I would also like to thank Mr. Graeme Woods (iCetana’s former Head of Product)
and Dr. Moussa Reda Mansour (iCetana’s former Research & Development Lead).
Their support and guidance in shaping my research career have been invaluable.
Under their mentorship, I have (i) grown professionally, gaining a deeper understand-
ing of business and further exposure to research and development; (ii) developed a
critical mindset regarding techniques in machine learning and computer vision; (iii)
enhanced my self-management skills; and (iv) become more receptive to new ideas
and approaches. I also extend my gratitude to my former colleagues at iCetana, Fran-
cis Williams, Vaughan Harman, and Blair Davidson, with whom I had the pleasure of
collaborating on industrial research projects over the past two years.

Finally, I would like to express my appreciation to my family for their unwavering
encouragement and support throughout my research career. I also want to thank my
wife, Xiaomei Xu, and my son, Ziyuan Wang, for their love, support, and understand-

vii

ing. This thesis is also a gift to my son, Ziyuan Wang, for the future, reminding him
that nothing comes easy, but hard work pays off.

The research works were supported by the Data61 PhD Scholarship, Data61 Top-
up Scholarship, and ANU HDR Fee Remission Merit Scholarship. I also extend
my thanks for the technical support provided by CSIRO Scientific Computing and
NVIDIA for GPUs.

Abstract

Action recognition has numerous valuable applications, including human-computer
interaction, smart video surveillance, sports, and healthcare. These applications have
driven extensive research in this field in recent years. Various studies have shown that
the performance of action recognition depends significantly on the extracted features
and action representations. Despite the abundance of research in the literature,
numerous challenges persist, such as geometric variations (e.g., different camera
viewpoints, rotations, visual appearances, and body sizes), photometric distortions
(e.g., lighting conditions, camera noise, and blur), and varying action execution speeds.
Additional issues include partial occlusions of human subjects by objects in the scene
and self-occlusion of human subjects.

This thesis concentrates on two primary tasks: (1) action classification, which
predicts action concepts, and (2) few-shot learning for understanding the similarity
between pairs of action sequences. The contributions of this work are threefold:
(i) Demonstrating that combining data from different modalities, such as optical
flow and object/saliency detection information, for action recognition outperforms
single-modal approaches, and integrating feature representations or finding view-
invariant action features from multiple camera viewpoints enhances the robustness
of action recognition. (ii) Showing that higher-order feature representations and
emerging Transformers, primarily based on self-attention modules, achieve state-of-
the-art performance in various action recognition benchmarks, including fine-grained
action recognition tasks. (iii) Addressing temporal and geometric variations as well
as photometric distortions for few-shot learning through advanced Dynamic Time
Warping (DTW) techniques, enhancing the similarity learning of matching action
sequences.

Numerous benchmark datasets are available for action recognition, each with its
own characteristics, such as view angles and modalities. An analysis of ten recent
state-of-the-art algorithms reveals that most methods perform better on cross-subject
action recognition than on cross-view action recognition. Skeleton-based features
prove to be more robust for cross-view recognition than depth-based features, while
deep learning features are suitable for large datasets.

The comparison of recent techniques demonstrates a transition in action recog-
nition from handcrafted features to deep learning models, thanks to the availability
of large-scale datasets. However, some domain-specific information remains chal-
lenging for deep learning models to capture, which is where traditional methods
like Improved Dense Trajectories (IDT) encoded by Bag-of-Words (BoW) / Fisher
Vectors (FV) can be beneficial. Therefore, modern CNNs are often fused with IDT
encoded by BoW/FV to improve performance. Additionally, global video descriptors
like IDT-based BoW/FV can be learned through dedicated CNN-streams during

ix

x

training and synthesized during testing. Different modalities, such as I3D Optical
Flow Features (OFF) and IDT-based BoW/FV, are highly complementary. To simplify
the action recognition pipeline, an end-to-end trainable network with streams that
learn IDT-based BoW/FV representations during training is proposed. The model
can use synthesized BoW/FV representations during testing, simplifying the pipeline
and achieving state-of-the-art results.

Building upon previous work on self-supervision, two powerful descriptors are de-
signed and hallucinated: one using popular object detectors applied to training videos
and the other using image- and video-level saliency detectors. These descriptors,
combined with higher-order statistics, enhance the performance of action recognition,
even in fine-grained action recognition tasks.

Inspired by the use of multi-modal inputs and higher-order statistics, tensor
representations are introduced to capture the interplay between spatial features and
their temporal dynamics. These representations leverage positive definite kernels and
higher-order tensors to capture complex action dynamics and relations effectively.
The proposed sequence compatibility kernel (SCK) and dynamics compatibility kernel
(DCK) capture higher-order correlations and action dynamics, leading to state-of-the-
art performance on various benchmarks.

The limitations of current Graph Convolutional Network (GCN)-based models in
handling non-connected body joints in action recognition are addressed by proposing a
hypergraph model. This model leverages hyper-edges to capture higher-order motion
patterns of groups of body joints and achieves state-of-the-art results compared to
existing models.

The thesis also discusses the challenge of geometric distortion in matching tempo-
ral sequences under varying camera viewpoints. An advanced variant of Dynamic
Time Warping (DTW) is proposed, which considers the projective camera geometry
to achieve alignment in both temporal and simulated camera viewpoint spaces. A
similarity-based loss encourages the alignment of sequences of the same class while
preventing the alignment of unrelated sequences, resulting in state-of-the-art results
on multiple datasets.

In conclusion, the innovations presented in this thesis address several challenging
aspects of action recognition, including geometric and photometric distortions, action
dynamics, temporal dependencies, and variations across subjects. These contributions
advance the field of human action modeling.

Key words: Action recognition, Self-supervision, Multi-modal fusion, Tensor
representations, Transformer, Few-shot learning, Similarity learning.

Contents

Acknowledgments vii

Abstract ix

1 Introduction 1
1.1 Motivation . 1
1.2 Action Recognition Benchmarks and Evaluations 2
1.3 Action Recognition on Videos . 5
1.4 Action Recognition on Skeletons . 7
1.5 Multi-modal and Multi-view Action Recognition 9
1.6 One- and Few-shot Action Recognition 12
1.7 Thesis Outline and Contributions . 16
1.8 Publications . 17

2 A Comparative Review 19
2.1 Introduction . 19
2.2 Related Work . 21
2.3 Analyzed and Evaluated Algorithms . 24
2.4 Experimental Setting . 26

2.4.1 Benchmark Datasets . 27
2.4.2 Evaluation Settings . 29
2.4.3 Evaluation Measure . 31
2.4.4 Optimisation of Hyperparameters for HDG 31

2.5 Experimental Results . 32
2.5.1 MSRAction3D, 3D Action Pairs, CAD-60, and UWA3D Activity

Datasets . 32
2.5.2 NTU RGB+D Dataset . 34
2.5.3 UWA3D Multiview Activity II Dataset 35

2.6 Discussions . 36
2.6.1 Single-view versus cross-view . 36
2.6.2 Influence of camera views in cross-view evaluation 38
2.6.3 Depth-based features versus skeleton-based features 39
2.6.4 Handcrafted features versus deep learning features 40
2.6.5 ‘Quo Vadis, action recognition?’ 41

2.7 Conclusion . 41

xi

xii Contents

3 Hallucinating IDT Descriptors and I3D Optical Flow Features 43
3.1 Introduction . 43
3.2 Related Work . 45
3.3 Background . 48

3.3.1 Descriptor Encoding Schemes . 48
3.3.2 Pooling a.k.a. Aggregation . 49
3.3.3 Power Normalization . 49
3.3.4 Count Sketches . 50

3.4 Approach . 50
3.4.1 BoW/FV Hallucinating Streams 51
3.4.2 High Abstraction Features . 52
3.4.3 Optical Flow Features . 52
3.4.4 Combining Hallucinated BoW/FV/OFF and HAF 52
3.4.5 Objective and its Optimization . 53

3.5 Experiments . 54
3.5.1 Datasets and Evaluation Protocols 54
3.5.2 Data Pre-processing . 55
3.5.3 Evaluations . 55

3.6 Conclusions . 61

4 Statistical Moment and Subspace Descriptors 63
4.1 Introduction . 63
4.2 Related Work . 66
4.3 Approach . 69

4.3.1 Statistical Motivation . 69
4.3.2 Positional Embedding . 70
4.3.3 Object Detection Features . 71
4.3.4 Saliency Detection Features . 71
4.3.5 Hallucinating Streams/High Abstr. Features 72
4.3.6 Objective Function . 73

4.4 Experiments . 74
4.4.1 Datasets and Evaluation Protocols 74
4.4.2 Evaluations . 75

4.5 Conclusions . 82

5 Tensor Representations 85
5.1 Introduction . 85
5.2 Related Work . 88
5.3 Preliminaries . 89

5.3.1 Tensor Notations . 89
5.3.2 Kernel Linearization . 90
5.3.3 Equivalence between Polynomial Kernels and the Dot-product

of Tensors . 90
5.4 Proposed Approach . 91

Contents xiii

5.4.1 Statistical Motivation . 91
5.4.2 Problem Formulation . 91
5.4.3 Sequence Compatibility Kernel . 92
5.4.4 Dynamics Compatibility Kernel 96
5.4.5 Sequence Compatibility Kernel ‘Plus’ (SCK⊕) 98
5.4.6 Dynamics Compatibility Kernel ‘Plus’ (DCK⊕) 101

5.5 Experiments . 102
5.5.1 Datasets . 102
5.5.2 Experimental Setup . 103
5.5.3 Sequence compatibility kernel. 104
5.5.4 Dynamics compatibility kernel. 106
5.5.5 SCK and DCK vs. the state of the art. 108
5.5.6 SCK⊕ and DCK⊕ vs. the state of the art. 110

5.6 Linearizing Dynamics Compatibility Kernel 113
5.7 Positive Definiteness of SCK and DCK . 115
5.8 Computational Complexity . 115
5.9 What is (Tensor) Eigenvalue Power Normalization? 116
5.10 Conclusions . 118

6 3Mformer: Multi-order Multi-mode Transformer 119
6.1 Introduction . 119
6.2 Related Work . 121
6.3 Background . 124
6.4 Approach . 126

6.4.1 Model Overview . 126
6.4.2 Coupled-mode Self-Attention . 127
6.4.3 Multi-order Multi-mode Transformer 128

6.4.3.1 Multi-order Pooling (MP) Module 128
6.4.3.2 Temporal block Pooling (TP) Module 129
6.4.3.3 Model Variants . 130

6.4.4 Visualization of 3Mformer. 130
6.5 Experiments . 130

6.5.1 Datasets and Protocols . 130
6.5.2 Skeleton Data Preprocessing . 131
6.5.3 Experimental Setup . 131
6.5.4 Ablation Study . 132
6.5.5 Comparisons with the State of the Arts 134

6.6 Additional Results and Discussions . 136
6.6.1 Ablations of MP . 136
6.6.2 Learning the short-term temporal patterns 136
6.6.3 Why 3Mformer works and when does it fail? 136
6.6.4 Model Complexity . 137
6.6.5 Limitation and Future Work . 137

6.7 Conclusions . 138

xiv Contents

7 Uncertainty-DTW 139
7.1 Introduction . 139

7.1.1 Similarity learning with uDTW . 142
7.1.2 Derivation of uDTW . 144

7.2 Related Work . 145
7.3 Pipeline Formulations . 147

7.3.1 Few-shot Action Recognition . 147
7.3.2 Time Series Forecasting and Classification 149

7.4 Experiments . 149
7.4.1 Fréchet Mean of Time Series . 150
7.4.2 Classification of Time Series . 151
7.4.3 Forecasting the Evolution of Time Series 151
7.4.4 Few-shot Action Recognition . 152

7.5 Effectiveness of SigmaNet . 154
7.6 Hyperparameters Evaluation . 155

7.6.1 Evaluation of Σ . 155
7.6.2 Evaluation of κ and η of SigmaNet 156
7.6.3 Evaluation of β . 157
7.6.4 Evaluation of warping window width 157

7.7 Network Configuration and Training Details 157
7.7.1 Skeleton Data Preprocessing . 158
7.7.2 Network Configuration . 158
7.7.3 Linear Graph Network (S2GC) . 160
7.7.4 K-NN classifier with SoftMax . 160
7.7.5 Training Details . 160

7.8 Additional Evaluations for Few-shot Action Recognition 161
7.9 Conclusions . 162

8 Temporal-Viewpoint Transportation Plan 163
8.1 Introduction . 163
8.2 Related Works . 166
8.3 Background . 167
8.4 Approach . 169
8.5 Experiments . 174

8.5.1 Ablation Study . 175
8.5.2 Comparisons With the State-of-the-Art Methods 178

8.6 Network configuration and training details 180
8.6.1 Network configuration . 180
8.6.2 Training details . 181
8.6.3 Skeleton Data Preprocessing . 182

8.7 Backbone selection and hyperparameter evaluation 183
8.7.1 Backbone selection . 183
8.7.2 Evaluations of viewpoint alignment 185
8.7.3 Evaluations w.r.t. α . 185

Contents xv

8.7.4 Evaluations w.r.t. the number of layers L 185
8.7.5 Evaluation of stride for viewing angles 185

8.8 More baselines on NTU-60 . 185
8.9 Inference Time . 186
8.10 Drawbacks/Limitations . 187
8.11 Conclusions . 187

9 Summary and Future Work 189
9.1 Summary and Contributions . 189

9.1.1 Video-based Action Recognition 190
9.1.2 Skeleton-based Action Recognition 191
9.1.3 Few-shot Skeletal Action Recognition 192

9.2 Future Work . 193

Appendices 195

A Datasets and their statistics 197

B Evaluation Protocols 199
B.1 Few-shot action recognition protocols (the small-scale datasets) 199
B.2 One-shot protocol on NTU-60 . 199
B.3 Few-shot multiview classification on NTU-120 200

C Visualizations of Forecasting the Evolution of Time Series 201

D Visualizations on Barycenters 203

E Visualizations on JEANIE and FVM 205

xvi Contents

List of Figures

2.1 Sample depth images from the CAD-60 dataset. 28

2.2 (a) A perspective view of the camera setup in the UWA3D Multiview
Activity II dataset. The views V1, V2 and V3 are at the same height.
(b) and (c) show the top and side views of the setup. The angles
between V1 and V2, between V1 and V3, and between V1 and V4 are
all approximately 50 degrees [Rahmani et al., 2014b]. (d) An example
video frame of the depth and skeleton data for the bending action. . . . 28

2.3 Confusion matrix for HDG-all features on the UWA3D Multiview Ac-
tivity II dataset when V3 and V4 were used for training and V1 was used
for testing. For each action class along the diagonal, the darker is the
colour, the higher is the recognition accuracy. 37

2.4 The average recognition accuracy (in percentage) of methods using
handcrafted and deep learning features for cross-subject and cross-view
recognition. Numbers of methods using handcrafted (i) depth-based
features: 7; (ii) skeleton-based features: 7; (iii) depth+skeleton-based
features: 4. Numbers of methods using deep learning (i) depth-based
features: 2; (ii) skeleton-based features: 20; (iii) depth+skeleton-based
features: 0 (see Tables 2.4–2.6). 38

2.5 Scatter plots showing the performance of cross-view action recognition
on the UWA3D Multiview Activity II dataset. The blue dots and red
crosses, respectively, represent methods using handcrafted features and
deep learning features. On the horizontal axis of each plot, we use the
notation ViVj-Vk to denote views i and j being used for training and
view k being used for testing. 39

xvii

xviii LIST OF FIGURES

3.1 The overview of our pipeline. We remove the prediction and the last
1D conv. layers from I3D RGB and optical flow streams, concatenate
(⊕) the 1024×7 feature representations X(rgb) and X(opt.), and feed
them into our Fisher Vector (FV), Bag-of-Words (BoW), and the High
Abstraction Features (HAF) streams followed by the Power Normalization
(PN) blocks. The resulting feature vectors ψ̃(f v1), ψ̃(f v2), ψ̃(bow) and
ψ(ha f) are concatenated (⊕) and fed into our Prediction Network (PredNet).
By!, we indicate that the three Mean Square Error (MSE) losses are
only applied at the training stage to train our FV (first- and second-
order components) and BoW hallucinating streams (indicated in dashed
red). By %, we indicate that the MSE losses are switched off at the
testing stage. Thus, we hallucinate ψ̃(f v1), ψ̃(f v2) and ψ̃(bow), and pass
them to PredNet together with ψ(ha f) to obtain labels y. The original
training FV and BoW feature vectors (used only during training) are
denoted by ψ(f v1), ψ(f v2) and ψ(bow), while P are count sketch projecting
matrices (see text for details). 44

3.2 Hallucinating the Optical Flow Features (OFF). 46

3.3 Stream types used in our network. Figures 3.3a and 3.3b show Fully
Connected and Convolutional variants used for the practical realization
of the FV, BoW, OFF and HAF streams. Figure 3.3c shows our PredNet.
Note that we indicate the type of operation and its parameters in each
block e.g., conv2d and its number of filters/size, or Power Normalization
(PN). Beneath arrows, we indicate the size of input, intermediate or
output representation. 51

3.4 Optimization. In each step, we have (i) forward/backward passes via
BoW/FV (optionally OFF) streams for the MSE loss followed by (ii)
forward/backward passes via BoW/FV (opt. OFF), and HAF streams
and PredNet for the classification loss. 54

3.5 Evaluations of (fig. 3.5a) Power Normalization and (fig. 3.5b) sketching
on the HMDB-51 dataset (split 1 only). 57

3.6 Evaluation of the square difference between the hallucinated and
ground truth representations on HMDB-51 (split 1). Experiments in the
top row use (FC) streams with sketching and PN. Two leftmost plots in
the bottom row use (Conv) streams. Two rightmost plots in the bottom
row use (FC) streams without sketching/PN (-SK/PN). 59

4.1 We use detectors and saliency in hallucination descriptors. Figure 4.1a
shows bounding boxes from four detectors. The faster R-CNN detector
with ResNet101 focuses on human-centric actions such as stand, watch,
talk, etc. The other three detectors discover objects e.g., oven, sink, clock,
etc. Figure 4.1b shows that the MNL saliency detector focuses on spatial
regions. Figure 4.1c shows ACLNet saliency detector discovers motion
regions. 64

LIST OF FIGURES xix

4.2 We build on DEEP-HAL [Wang et al., 2019d] which includes I3D RGB
and Optical Flow networks (the latter net. is used only during training).
For AssembleNet and AssembleNet++, the backbone encodes both RGB
and the optical flow, which is synthesized on the fly from RGB frames.
For the I3D variant, we remove the prediction and the last 1D conv.
layers from I3D RGB and optical flow streams, we feed the 1024×7
feature representations X(rgb) into Bag-of-Words (BoW), Fisher Vector (FV),
the Optical Flow Features (OFF) and the High Abstraction Features (HAF)
streams (dashed black) followed by the Power Normalization (PN) and
Sketching (SK) blocks. The OFF stream is supervised by X(opt.). For
the AssembleNet variant, we obtain the 2048 feature representations
X(rgb) and do not use the OFF stream/optical flow backbone. Moreover,
we introduce DET1, ...,DET4, SAL1 and SAL2 streams corresponding
to our detector- and saliency-based descriptors (dashed blue). The
resulting feature vectors ψ̃′

(·), where (·) denotes the stream name e.g.,
(det1), ..., (det2) etc., are reweighted by corresponding weights w(·) (ma-
genta lines) and aggregated (sum) by (⊕). All ψ̃(·) are reweighted,
aggregated (sum) and fed to Prediction Network (PredNet). By !, we
indicate that the Mean Square Error (MSE) losses are used during train-
ing to supervise all streams outputting ψ̃′

(·) by the ground-truth ψ′
(·).

By%, we indicate that the MSE losses are switched off for testing and
ψ̃′
(·) are hallucinated/fed into PredNet to obtain labels y. 65

4.3 Stream details. Figure 4.3a a shows the stream architecture used by us
for the FV, BoW, OFF, HAF, DET1, ...,DET4, SAL1 and SAL2 streams.
Figure 4.3b shows our PredNet. Operation and their parameters are in
each block e.g., conv2d and its number of filters/size, Power Normalization
(PN) and Sketching (SK). We indicate the size of input and/or output
under arrows. 73

4.4 The impact of β in the weighted mean on the classification results.
Figure 4.4a shows results for HMDB-51 on (top) four detectors com-
bined+SVM and (bottom) DEEP-HAL with four detectors combined+SVM.
Figure 4.4b shows results for YUP++. 76

4.5 ODF eval. on SVM on four detectors (the weighted mean). Fig. 4.5a
and 4.5b show results on HMDB-51 and YUP++. µ, u1, ..., ui, ς,φ, and
λ2 correspond to the entries in Eq. (4.7). 77

4.6 Visualization of the feature space (from PredNet) for DEEP-HAL in
Fig. 4.6a and DEEP-HAL+ODF in Fig. 4.6b on the YUP++ dataset. For
comparison, we circle regions with interesting changes. 81

4.7 Visualization of the feature space (from PredNet) for DEEP-HAL in Fig.
4.7a and DEEP-HAL+ODF in Fig. 4.7b on the HMDB-51 dataset. For
comparison, we circle regions with interesting changes. 81

xx LIST OF FIGURES

4.8 Visualization of the Golden-search for the weighting mechanism (final
level weighting). (top) Illustration of how the lower and upper estimates
β(l) and β(u) converge as epochs progress. (bottom) For every epoch, we
set β = 0.5(β(l)+β(u)) and obtain the corresponding validation score
(mAP) on MPII (split1). As the epoch number advances, mAP improves
and remains stable as the Golden-search algorithm converges. 83

5.1 Figure 5.1a illustrates the notion of tensors, their order and modes.
Figure 5.1b illustrates the matrix-vector order outer-product. 91

5.2 Figures 5.2a and 5.2b show how SCK works – kernel Gσ2 compares
exhaustively e.g. hand-related joint i for every frame in sequence A
with every frame in sequence B. Kernel Gσ3 compares exhaustively the
frame indexes. Figure 5.2c shows this burden is avoided by linearization
– third-order statistics on feature maps ϕ(xis) and z(s/N) for joint i are
captured in tensor X i and whitened by EPN to obtain V i which are
concatenated over i=1, ..., J to represent a sequence. The final sequence
tensors are vectorized per video by ‘vec’ and fed to an SVM. 92

5.3 Order r statistics from Eq. (5.7) can be understood by studying the
linearization in Eq. (5.10). For a given joint i at time s/N (normalized
frame number), we embed a 3D joint coordinate xis (all centered w.r.t.
hip) via function ϕ(·) into a non-linear Hilbert space representing an
RBF kernel according to Eq. (5.2). Similarly, we embed the time s/N
via function z(·) (also by Eq. (5.2)). Finally, ⊗r performs the third-
order outer-product on concatenated embeddings aggregated next over
frames s (note ∑s). The interpretation: the Gaussians ‘soft-divide’ the
the Cartesian coordinate system along x, y, z direction, resp., and
time s/N. Thus, triplets (x, y, z), (x, y, s/N), (x, z, s/N) and (y, z, s/N)
assigned into such a ‘soft-divided’ space capture locally three-way
occurrences. They factor out one spatial (or time) variable at a time
(note invariance to such a variable). 93

5.4 Figure 5.4a shows that kernel Gσ′
2

in DCK captures spatio-temporal
dynamics by measuring displacement vectors from any given body-
joint to remaining joints spatially- and temporally-wise (i.e. see dashed
lines). Figure 5.4b shows that comparisons performed by Gσ′

2
for any

selected two joints are performed all-against-all temporally-wise which
is computationally expensive. Figure 5.4c shows the encoding steps in
the proposed linearization which is fastn. We collect all X ii′ for joints
i≤ i′, whiten them by EPN to obtain V ii′ , concatenate, vectorize them
per video with ‘vec’ and fed to an SVM. We introduced color-coded
body joints/frame numbers to show how we assemble a single X ii′ . . . 96

LIST OF FIGURES xxi

5.5 Third-order statistics from Eq. (5.19) can be understood by studying
the linearization in Eq. (5.20). For a given pair of joints i≤ i′ at times
s/N and s′/N (normalized frame numbers), we embed displacement
vectors xis−xi′s′ of 3D joint coordinates xisand xi′s′ via function ϕ(·) into
a non-linear Hilbert space representing an RBF kernel according to Eq.
(5.2). Similarly, we embed the starting and ending times s/N and s′/N
via function z(·) (also by Eq. (5.2)). Finally, ⊗ performs the third-order
outer-product on concatenated displacement and time embeddings
aggregated next over frames s and s′ (note ∑ss′). The interpretation:
the Gaussians ‘soft-divide’ the Cartesian coordinate system along x,
y, z direction, resp., as well as time direction (s/N and s′/N). We
project displacements along x, y, z directions of Cartesian coordinates
and assign each projection to Gaussians. Thus, triplets ([x; y; z], s, s′)
assigned into such a ‘soft-divided’ space capture locally displacements
of pairs of joints on the time grid (3-way soft-histogram). For DCK⊕
in Section 5.4.6 we use velocity vectors xis−xi′s′

max(1,|s′−s|) (c.f . displacement
vectors) with short- and long-term estimates depending on s′−s (3-way
soft-histogram of short- and long-term speeds). 98

5.6 Fine-grained action instances (MPII Cooking Activities [Rohrbach et al.,
2012]) from two different action categories: cut-in (left) and slicing (right). 103

5.7 Figure 5.7a illustrates the classification accuracy on Florence3d-Action
for the sequence compatibility kernel when varying radii σ2 (body-joints
subkernel) and σ3 (temporal subkernel). Figure 5.7b evaluates behavior
of SCK w.r.t. the number of pivots Z2 and Z3. Figure 5.7c demonstrates
effectiveness of our slice-wise Eigenvalue Power Normalization in tack-
ling burstiness by varying parameter γ. Figure 5.7d shows effectiveness
of equalizing the factors in non-symmetric tensor representation by
HOSVD Eigenvalue Power Normalization by varying γ. 105

5.8 Figure 5.8a enumerates the body-joints in the Florence3D-Action dataset.
The table below lists subsets A-I of the body-joints used to build rep-
resentations eval. in Figure 5.8b, which shows the accuracy of our
dynamics compatibility kernel w.r.t. these subsets. 106

5.9 The intuitive principle of the EPN. Given a discrete spectrum following
a Beta distribution in Fig. 5.9a, the pushforward measures by MaxExp
and Gamma in Fig. 5.9b and 5.9c are very similar for large η (and small
γ). Note that both EPN functions in bottom plots whiten the spectrum
(map most values to be close to 1) thus removing burstiness. Fig. 5.9d
illustrates the principle of detecting higher-order occurrence(s) in one
of (Z∗

r) subspaces represented by Eu,v,w (we write E for simplicity).
Fig. 5.9d (top) No EPN: E(θ, α), (middle) MaxExp: 1−(1−E(θ, α))η and
(bottom) Gamma: E(θ, α)γ. Note how MaxExp/Gamma reach high
detection values close to borders. Refer Section 5.9 for def. of E(θ, α). . 114

xxii LIST OF FIGURES

6.1 Pipeline overview. Each sequence is split into τ temporal blocks
B1, ..., Bτ. Subsequently, each block is embedded by a simple MLP
into X1, ..., Xτ, which are passed to Higher-order Transformers (HoT
(n=1, ..., r)) in order to obtain feature tensors Φ1, ..., Φτ. These tensors
are subsequently concatenated by ⊙ along the hyper-edge mode into
a multi-order feature tensor M. The final step is a Multi-order Multi-
mode Transformer (3Mformer from Section 6.4), which contains two
complementary branches, MP→TP and TP→MP, whose outputs are
concatenated by ⊙ and passed to the classifier. MP and TP perform the
Coupled-mode Self-Attention (CmSA) with the so-called coupled-mode
tokens, based on ‘channel-temporal block’, ‘order-channel-body joint’,
‘channel-hyper-edge’ and ‘channel-only’ pairs. To this end, MP contains
also weighted pooling along hyper-edge mode by learnable matrix H
(and H′ in another branch). TP contains also block-temporal pooling
denoted by g(·) whose role is to capture block-temporal order with
average, maximum, rank pooling, etc. In our experiments we show that
such designed MP and TP are able to efficiently process hyper-edge
feature representations from HoT branches. Section 6.4.4 shows full
visualization of our 3Mformer. 122

6.2 Visualization of 3Mformer which is a two- branch model: (a) MP→TP
and (b) TP→MP. Green and orange blocks are Multi-order Pooling
(MP) module and Temporal block Pooling (TP) module, respectively.
(m) inside the MP module denotes the order m ∈ Ir of hyper-edges.
These two modules (MP and TP) are the basic building blocks which
are further stacked to form our 3Mformer. Each module (MP or TP)
uses a specific coupled-mode token through matricization (we use
reshape for simplicity), e.g., ‘channel-temporal block’, ‘order-channel-
body joint’, ‘channel-hyper-edge (any order)’ or ‘channel-only’, and the
Coupled-mode Self-Attention (CmSA) is used to explore the coupled-
mode relationships inside the coupled-mode tokens. We also form our
multi-head CmSA as in standard Transformer (where the CmSA mod-
ule repeats its computations multiple times in parallel and the attention
module splits the query, key and value, each split is independently
passed through a separate head and later combined together to pro-
duce the final coupled-mode attention score). We omit the multi-head
visualization for simplicity and better visualization purposes. 123

6.3 Visualization of attention matrices. (a) single-mode attention matrix
of ‘channel-only’ token, (b)–(d) coupled-mode attention matrices of
‘channel-hyper-edge’, ‘order-channel-body joint’ and ‘channel-temporal
block’ tokens, respectively. 133

6.4 Evaluations of different single-mode (baseline) and joint-mode tokens.
We use a 3rd-order HoT with a standard Transformer, but we replace
the scaled dot-product attention with joint-mode tokens and joint-mode
attention. 134

LIST OF FIGURES xxiii

7.1 Supervised few-shot action recognition of the articulated human 3D
body joints with the uncertainty-DTW (uDTW). Frames from a query
and support sequences are split into short-term temporal blocks X1, ..., Xτ

and X′
1, ..., X′

τ′ of length M given stride S. We pass all skeleton coordi-
nates via Encoding Network to obtain feature tensors Ψ and Ψ′, which
are directed to the Supervised Comparator with uDTW. For each query-
support pair (Ψn, Ψ′

n), uDTW computes the base-distance matrix Dn

reweighted by uncertainty Σ†
n to compare τ×τ′ blocks, and SigmaNet

generates underlying block-wise uncertainty parameters Σn. uDTW
finds the warping path with the smallest distance, and returns its Ωn

penalty (uncertainty aggregated along the path). 140

7.2 Plots (a)-(d) show paths of sDTW and uDTW (in white) for a pair of
sequences. We power-normalized pixels of plots (by the power of 0.1)
to see also darker paths better. With higher γ that controls softness,
in (b) & (d) more paths become ‘active’ (fuzzy effect). In (c), uDTW
has two possible routes vs. sDTW (a) due to uncertainty modeling. In
(e), we visualise uncertainty Σ. We binarize plot (c) and multiply it by
the Σ to display uncertainty values on the path (white pixels = high
uncertainty). The middle of the main path is deemed uncertain, which
explains why an additional path merges in that region with the main
path. See also the histogram of values of Σ. 141

7.3 In (a) is the unsupervised comparator for unsupervised few-shot ac-
tion recognition. The unsupervised head is wired with the Encoding
Network from Figure 7.1, and trained from scratch without labels. In
(b) is the pipeline for forecasting the evolution of time series (a.k.a.
multistep-ahead prediction). 146

7.4 Interpolation between two time series (grey and black dashed lines)
on the Gun Point dataset. We compute the barycenter by solving
arg min

µ,σµ

∑2
n=1 d2

uDTW
(

D, Σ†) + βΩ
(
Σ
)
+ λΩ′(Σ) where D = (xn1⊤−

1µ⊤)2 and Σ = 11⊤+1σ⊤
µ where xn is the given n-th time series. β≥ 0

controls the penalty for high matching uncertainty, Ω′ is defined as in
Eq. (7.3) but element-wise logΣ is replaced by element-wise (Σ−1)2

so that λ ≥ 0 favours uncertainty to remain close to one. β and λ

control the uncertainty estimation and yield different barycenters than
the Euclidean (green color) and sDTW (blue color) distances. As Ω and
Ω′ act similar, we only use Ω in our experiments. 151

7.5 Comparison of barycenter based on sDTW or uDTW on CBF and
Synthetic Control. We visualize uncertainty around the barycenters in
red color for uDTW. Our uDTW generates reasonable barycenters even
when higher γ values are used, e.g., γ=10.0. Higher γ value leads to
smooth barycenter but introducing higher uncertainty. 152

xxiv LIST OF FIGURES

7.6 Given the first part of a time series, we train 3 multi-layer perception
(MLP) to predict the remaining part, we use the Euclidean, sDTW or
uDTW distance per MLP. We use ECG200 and ECG5000 in UCR archive,
and display the prediction obtained for the given test sample with either
of these 3 distances and the ground truth (GT). Oftentimes, we observe
that uDTW helps predict the sudden changes well. 153

7.7 Evaluation of (a) κ which controls the maximum magnitude and (b) η

offset from Eq. (7.25) in SigmaNet and (c) β from Eq. (7.17). Note that
β=0 means no regularization term of uDTW in use. We notice that with
the regularization term added to the uDTW, the overall performance is
improved. 156

8.1 Our 3D skeleton-based FSAR with JEANIE. Frames from a query se-
quence and a support sequence are split into short-term temporal blocks
X1, ..., Xτ and X′

1, ..., X′
τ′ of length M given stride S. Subsequently, we

generate (i) multiple rotations by (∆θx, ∆θy) of each query skeleton by
either Euler angles (baseline approach) or (ii) simulated camera views
(gray cameras) by camera shifts (∆θaz, ∆θalt) w.r.t. the assumed average
camera location (black camera). We pass all skeletons via Encoding
Network (with an optional transformer) to obtain feature tensors Ψ and
Ψ′, which are directed to JEANIE. We note that the temporal-viewpoint
alignment takes place in 4D space (we show a 3D case with three views:
−30◦, 0◦, 30◦). Temporally-wise, JEANIE starts from the same t=(1, 1)
and finishes at t=(τ, τ′) (as in DTW). Viewpoint-wise, JEANIE starts
from every possible camera shift ∆θ ∈ {−30◦, 0◦, 30◦} (we do not know
the true correct pose) and finishes at one of possible camera shifts.
At each step, the path may move by no more than (±∆θaz,±∆θalt) to
prevent erroneous alignments. Finally, SoftMin picks up the smallest
distance. 165

8.2 (top) In viewpoint-invariant learning, the distance between query fea-
tures Ψ and support features Ψ′ has to be computed. The blue arrow
indicates that trajectories of both actions need alignment. (bottom) In
real life, subject’s 3D body joints deviate from one ideal trajectory, and
so advanced viewpoint alignment strategy is needed. 170

8.3 JEANIE (1-max shift). We loop over all points. At (t, t′, n) (green point)
we add its base distance to the minimum of accumulated distances at
(t, t′−1, n−1), (t, t′−1, n), (t, t′−1, n+1) (orange plane), (t−1, t′−1, n−1),
(t−1, t′−1, n), (t−1, t′−1, n+1) (red plane) and (t−1, t′, n−1), (t−1, t′, n),
(t−1, t′, n+1) (blue plane). 170

LIST OF FIGURES xxv

8.4 A comparison of paths in 3D for soft-DTW, Free Viewpoint Matching
(FVM) and our JEANIE. For a given support skeleton sequence (green
color), we choose viewing angles between −45◦ and 45◦ for the camera
viewpoint simulation. The support skeleton sequence is shown in black
color. (a) soft-DTW finds each individual alignment per viewpoint fixed
throughout alignment: dshortest = 4.08. (b) FVM is a greedy matching
algorithm that in each time step seeks the best alignment pose from
all viewpoints which leads to unrealistic zigzag path (person cannot
jump from front to back view suddenly): dFVM=2.53. (c) Our JEANIE
(1-max shift) is able to find smooth joint viewpoint-temporal alignment
between support and query sequences. We show each optimal path
for each possible starting position: dJEANIE = 3.69. While dFVM = 2.53
for FVM is overoptimistic, dshortest=4.08 for fixed-view matching is too
pessimistic, whereas JEANIE strikes the right matching balance with
dJEANIE=3.69. 171

8.5 The impact of viewing angles on NTU-60. 175

8.6 The impact of β in loss function on NTU-60 with S2GC and GCN. . . . 175

8.7 Evaluations of L and σ. (a): L for SGC and S2GC. (b): σ of RBF distance
for Eq. (8.10) (SGC and S2GC, NTU-60). 183

8.8 Evaluations w.r.t. γ. (a): γ in Eq. (8.10) with the temporal alignment
alone. (b): comparisons of temporal alignment alone vs. temporal-
viewpoint alignment (V) on NTU-60. 183

8.9 Evaluations of (a) α and (b) the number of layers L for S2GC on NTU-60. 184

C.1 Additional visualizations for forecasting the evolution of time series.
Given the first part of a time series, we train the pipeline from Fig. 7.3b
to predict the remaining part of the time series. We compare the use
of the Euclidean, sDTW or uDTW distances within the pipeline. We
use CBF and ShapesAll in UCR archive, and display the prediction
obtained for the given test sample with either of these 3 distances,
and the ground truth (GT). Oftentimes, we observe that uDTW helps
predict the sudden changes well. (a) Our uDTW aligns well with
the ground truth compared to sDTW. (b) Our uDTW generates better
shape of prediction compared to sDTW (for example note the red curve
following much closer the rising gray slope). Quantitative results of
MSE and ‘shape’ metrics for the whole UCR archive are given in chapter 7.201

D.1 Comparison of barycenters based on our uDTW vs. sDTW. We visualize
uncertainty around the barycenters in red color for uDTW. Our uDTW
with SigmaNet generates reasonable barycenters even when higher
γ values are used, e.g., γ = 10.0. Higher γ value leads to smooth
barycenters but introducing higher uncertainty. 204

xxvi LIST OF FIGURES

E.1 Visualization of FVM and JEANIE for walking vs. walking (two dif-
ferent sequences) and walking vs. running. From UWA3D Multi-
view Activity II, we choose a walking sequence as the query sample
(‘a12_s01_e01_v01’). We choose another walking sequence from a dif-
ferent view (‘a12_s01_e01_v03’) and a running sequence (‘a20_s01_e01_v02’)
as the support samples respectively. We notice that for two different
action sequences in (b), the greedy FVM finds the path with a very
small distance dFVM =2.68 but for sequences of the same action class,
FVM gives dFVM=4.60. This is clearly suboptimal as the within-class
distance is higher then the between-class distance (to counteract this
issue, we have proposed JEANIE). Our JEANIE is able to produce a
smaller distance for within-class sequences in (c) and a larger distance
for between-class sequences in (d), which is a very important property
when comparing pairs of sequences. 206

E.2 Visualization of FVM and JEANIE for two hand punching vs. two hand
punching (two different sequences) and two hand punching vs. holding
head. From UWA3D Multiview Activity II, we choose a two hand punch-
ing sequence as the query sample (‘a04_s01_e01_v01’), and another
two hand punching sequence from a different view (‘a04_s05_e01_v02’)
and a holding head sequence (‘a10_s05_e01_v02’) as the support sam-
ples respectively. We notice that for two different action sequences in
(b), the greedy FVM finds the path which results in dFVM = 1.63 for
sequences of different action classes, yet FVM gives dFVM = 1.95 for
two sequences of the same class. The within-class distance should be
smaller than the between-class distance but greedy approaches such as
FVM cannot handle this requirement well. Our JEANIE gives smaller
distance when comparing within-class sequences compared to between-
class sequences. This is a very important property when comparing
pairs of sequences. 207

List of Tables

1.1 All the benchmark datasets used in this thesis are for human action
recognition. 2

2.1 Ten state-of-the-art action recognition methods evaluated in this chapter. 24
2.2 Six publicly available benchmark datasets used in our experiments for

3D action recognition. 27
2.3 Optimal hyperparameter values and feature dimensions before and

after pruning for the HDG combined features. 32
2.4 Comparison of average cross-subject action recognition accuracies (per-

centage) for the four single-view datasets (i.e., M = 4 in Eq. (2.2)). Each
block of rows shows the performance of one method and its variants.
The best algorithm for each dataset is highlighted in bold. The last
column of the table shows the average rank of the best performing
algorithm in each block. The final rank values are computed using
Eq. (2.2), where top performing methods have smaller rank values.
Other poorer performing methods in the same block are not considered
for their rank values, so their final ranks are marked as ‘–’. 33

2.5 Comparison of average recognition accuracies (percentage) for both
cross-subject and cross-view action recognition on the NTU RGB+D
Dataset. 35

2.6 Comparison of average recognition accuracies (percentage) for cross-
view action recognition on the UWA3D Multiview Activity II dataset. . 36

2.7 The average recognition accuracies / [AVRank] of all the ten algorithms
for both cross-subject and cross-view action recognition. 38

3.1 Evaluations of pipelines on the HMDB-51 dataset. We compare (HAF
only) and (HAF+BoW/FV exact) which show the lower- and upper bound
on the accuracy, and our (HAF+BoW/FV halluc.), (HAF+BoW halluc.) and
(HAF+FV halluc.). 55

3.2 Eval. of pipelines on YUP++. See Table 3.1 for the legend. 55
3.3 Evaluations of pipelines on the HMDB-51 dataset. We compare (HAF+BoW/FV

halluc.) approach on different architectures used for HAF and BoW/FV
streams such as (FC) and (Conv). 56

3.4 Evaluations of (top) our (HAF+BoW/FV halluc.) and (bottom) compar-
isons to the state of the art on HMDB-51. 57

3.5 Evaluations of (top) our (HAF+BoW/FV halluc.) and (bottom) compar-
isons to the state of the art on YUP++. 58

xxvii

xxviii LIST OF TABLES

3.6 Evaluations of (top) our (HAF+BoW halluc.) pipeline without sketch-
ing/PN, with sketching/PN (SK/PN). The (HAF* only) is our baseline
without the BoW stream, (*) denotes human-centric pre-processing
while (MSK/PN)in pipeline (HAF*+BoW hal.+MSK/PN) denotes multi-
ple sketches per BoW followed by Power Norm (PN). (bottom) Other
methods on the MPII dataset. 58

3.7 Evaluations of our methods on the Charades dataset. 58

3.8 Evaluations on MPII. The (HAF*+BoW halluc.) is our pipeline with the
BoW stream, (*) denotes human-centric pre-processing for 256 pixels
(height) while (HAF*+BoW hal.+MSK/PN) denotes our pipeline with
multiple sketches per BoW followed by Power Norm (PN). By analogy,
(•) denotes human-centric pre-processing for 512 pixels (height). 60

4.1 Evaluations of ODF on HMDB-51. (top) We evaluate backbones such
as (det1) Inception V2, (det2) Inception ResNet V2, (det3) ResNet101
and (det4) NASNet. (middle) The average-pooled, max-pooled and the
weighted mean combination of all detectors are given by (all+avg),
(all+max) and (all+wei). (bottom) Pre-trained DEEP-HAL combined with
all four detectors by the average-pooling, max-pooling and the weighted
mean. 75

4.2 Pooling on YUP++. Results for the average-pooled (avg), max-pooled
(max) and the weighted mean (wei) of all detectors (all) vs. pre-trained
DEEP-HAL combined with all detectors by the average-pooling, max-
pooling and the weighted mean. 76

4.3 Evaluations of (top) our methods and (bottom) comparisons to the state
of the art on HMDB-51. 77

4.4 Evaluations of (top) our methods and (bottom) comparisons to the state
of the art on YUP++. 78

4.5 Evaluations of (top) our methods and (bottom) comparisons to the state
of the art on MPII. 78

4.6 Evaluations of our methods on Charades (I3D backbone). 79

4.7 Evaluations of our methods on the Charades dataset (AssembleNet and
AssembleNet++ backbones). Note that we do not use segmentation
masks for AssembleNet and AssembleNet++, thus baseline results
reported by us are slightly lower compared to authors’ results of 55.0%
and 59.8% mAP, respectively. 79

4.8 Experimental results on the EPIC-Kitchens. 79

4.9 Evaluations of the flat single level weighted mean (wei+flat) vs. three
levels of weighted mean pooling (wei+3 levels) on HMDB-51. 80

4.10 Statistics of datasets used in our experiemnts. 80

LIST OF TABLES xxix

4.11 Statistics of object detectors we use. We provide timings such as seconds
per frame (sec. per frame) and seconds per clip (s.p.c.) for detectors used
by ODF. The total time incurred by a combined detector (ODF total) is
also provided. We also compute the time taken by the full SVD and all
remaining ODF operations, assuming ∼5 detections per frame. 82

4.12 Statistics of saliency detectors we use. We provide timings such as
seconds per frame (sec. per frame) and seconds per clip (s.p.c.) for
detectors used by SDF. The total time incurred by a combined detector
(SDF total) is also provided. We also compute the time taken by the
descriptor in Eq. (10) and all remaining SDF operations. Finally, we
also provide the combined ODF and SDF time (SDF+ODF total). 82

5.1 Evaluations of (top) SCK/DCK, (middle) our improved SCK⊕ / DCK⊕,
(bottom) the state of the art on Florence3D-Action. 107

5.2 Evaluations of (top) SCK/DCK, (middle) our improved SCK⊕ / DCK⊕
and (bottom) the state of the art on UTKinect-Action3D. 107

5.3 Results of (top) SCK/DCK, (middle) our improved SCK⊕ / DCK⊕ and
(bottom) the state of the art on MSR-Action3D. 108

5.4 Results on our SCK and the improved SCK⊕ on (top) skeleton se-
quences and (middle) two-stream networks. We also indicate results on
the baseline two-stream network with standard average pooling (AP)
and maximum pooling (MP). We indicate backbones in parentheses.
(bottom) The state of the art on NTU-RGBD. 109

5.5 SCK and SCK⊕ combined with ST-GCN vs. ST-GCN [Yan et al., 2018]
alone on Kinetics [Kay et al., 2017] skeletons extracted by OpenPose
[Cao et al., 2017]. 110

5.6 Results (mAP%) for (top) our HOK [Cherian et al., 2017b] and im-
proved SCK⊕. We also indicate results on the baseline two-stream
network with standard average pooling (AP). We indicate backbones in
parentheses. (bottom) The state of the art on MPII Cooking Activities. . 111

5.7 Evaluations of (top) our improved SCK⊕. We also indicate results on
baseline two-stream network with standard average pooling (AP) and
maximum pooling (MP). We indicate backbones in parentheses. (bottom)
The state of the art on HMDB-51. 111

6.1 Search for the single best order n of hypergraph (except for n=3 & 4
where we check if n=3 & 4 are complementary). 132

6.2 Evaluations of our model variants with/without MP and/or TP. Base-
line in the table denotes the backbone (MLP unit + HoTs) without the
use of either MP or TP module. 132

6.3 Experimental results on NTU-60, NTU-120 and Kinetics-Skeleton. . . . 133
6.4 Experimental results on Northwestern-UCLA. 135
6.5 Ablations of different pooling methods in MP. 136
6.6 Comparisons of robustness w.r.t. Gaussian noise. 137

xxx LIST OF TABLES

6.7 Experimental results on MSRAction3D. 137
6.8 A comparison of the number of model parameters and FLOPs on NTU-60.137

7.1 Notations and their descriptions. 143
7.2 Classification accuracy (mean±std) on UCR archive by the nearest

neighbor and the nearest centroid classifiers. In the column we indicate
which distance was used for computing the class prototypes. K is the
number of nearest neighbors in this context. 153

7.3 Time series forecasting results evaluated with MSE, DTW, sDTW div.
and uDTW metrics on ECG5000, averaged over 100 runs (mean±std).
Best method(s) are highlighted in bold using Student’s t-test. Column-
wise distances indicate the distance used during training. Row-wise
distances indicate the distance used to compare prediction with the
groundtruth at the test time (lower values are better). 154

7.4 Evaluations on NTU-60. 154
7.5 Evaluations on NTU-120. 154
7.6 Evaluations on 2D and 3D Kinetics-skeleton. 154
7.7 Comparisons of two different ways of generating Σ for few-shot action

recognition. Evaluations on the NTU-60 dataset. 155
7.8 Comparisons of two different ways of generating Σ for classification of

time series. Evaluations on the UCR archive. K denotes the number of
nearest neighbors used by the K nearest neighbors based classification. 155

7.9 Evaluation of different variants of Σ computation on small-scale datasets
(supervised few-shot action recognition). Operator ⊙ is the Hadamart
product. 156

7.10 Evaluation of different variants of Σ computation on the large-scale
NTU-60 dataset (supervised few-shot action recognition). 156

7.11 Experimental results on ECGFiveDays (from UCR) and NTU-60 (50-
class, supervised / unsup. settings) for different warping window
widths. 157

7.12 Classification accuracy (mean±std) on UCR archive using nearest neigh-
bor. K denotes the number of nearest neighbors in the K-NN classifier.
Highlighted rows are the based on SoftMax from Eq. (7.33). Non-
highlighted rows are based on Eq. (7.32). 161

7.13 uDTW derived under the Normal, Laplacian and Cauchy distributions.
Evaluations of few-shot action recognition on small-scale datasets. . . . 161

7.14 uDTW derived under the Normal, Laplacian and Cauchy distributions.
Evaluations of few-shot action recognition on the large-scale NTU-60
dataset. 162

8.1 Experimental results on NTU-60 (left) and NTU-120 (right) for different
camera viewpoint simulations. Below the dashed line are ablated few
variants of JEANIE. 176

LIST OF TABLES xxxi

8.2 Experimental results on NTU-60 (left) and NTU-120 (right) for ι-max
shift. ι-max shift is the max. viewpoint shift from block to block in
JEANIE. 176

8.3 The impact of the number of frames M in temporal block under stride
step S on results (NTU-60). S= pM, where 1−p describes the tempo-
ral block overlap percentage. Higher p means fewer overlap frames
between temporal blocks. 177

8.4 Results on NTU-60 (S2GC backbone). Models use temporal alignment
by soft-DTW or JEANIE (joint temporal-viewpoint alignment) except if
indicated otherwise. 177

8.5 Experimental results on NTU-120 (S2GC backbone). Methods use
temporal alignment by soft-DTW or JEANIE (joint temporal-viewpoint
alignment) except VA [Zhang et al., 2017b, 2019d] and other cited works.
For VA∗, we used soft-DTW on temporal blocks while VA generated
temporal blocks. 178

8.6 Experiments on 2D and 3D Kinetics-skeleton. Note that we have no
results on JEANIE or FVM for 2D coordinates (aligning viewpoints is
an operation in 3D). 179

8.7 Experiments on the UWA3D Multiview Activity II. 179
8.8 Results on NTU-120 (multiview classification). Baseline is soft-DTW +

S2GC. 180
8.9 Seven publicly available benchmark datasets which we use for FSAR. . 182
8.10 Evaluations of backbones on 5 datasets. 182
8.11 A comparison of different backbones in JEANIE on NTU-60 (#training

classes = 10). 184
8.12 Experimental results of stride for degrees on NTU-60. 185
8.13 Evaluations of additional baselines on NTU-60. 186
8.14 A comparison of training/inference time (per query) on NTU-60 (#train-

ing classes = 10). 186

A.1 UCR archive (the latest version from 2018) which we use for time series
analysis. The information is grouped based on the type of time series. . 197

A.2 Popular benchmark datasets which we use for few-shot action recognition.197

xxxii LIST OF TABLES

Chapter 1

Introduction

1.1 Motivation

Videos capture human actions such as answering a phone call, putting on a hat,
throwing a ball, or picking up something from the door, etc. Advances in computer
vision and machine learning have made it possible to automatically recognize these
actions based on the motion of the human body over time. However, robust action
recognition remains challenging due to issues such as (i) geometric distortions, e.g.,
different camera viewpoints, rotations, visual appearances, and variations in human
body sizes; (ii) photometric distortions, e.g., scene clutter, occlusions, self-occlusion,
scene dynamics, lighting conditions, camera noise, and blur; (iii) dynamics of actions,
e.g., varying action speeds; (iv) long-term and short-term motion dependencies; and
(v) cross-subject variations.

Despite these challenges, there has been a significant increase in the number of
papers on human action recognition in recent years. Action recognition finds appli-
cations in various fields, including video surveillance, human-computer interaction,
sports analysis, smart homes, and healthcare [Su and Wen, 2022; Qin et al., 2022; Li
et al., 2022; Song et al., 2022; Zhang et al., 2021d; Hashiguchi and Tamaki, 2022; Wei
et al., 2021b; Zhu et al., 2022; Kong et al., 2022; Jiang et al., 2022; Wang and Koniusz,
2022b,a; Kang et al., 2023; Broomé et al., 2023; Lee et al., 2023; Zhu et al., 2023; Shah
et al., 2023; Du et al., 2023; Seon et al., 2023; Noguchi and Tanizawa, 2023; Ahn et al.,
2023; Wang and Koniusz, 2023].

This thesis addresses these challenges and contributes to robust human action mod-
eling in the following orthogonal directions: (1) handling geometric and photometric
distortions, (2) exploring video-based and skeleton-based feature representations, (3)
improving action recognition/classification and few-shot learning for action sequences,
(4) investigating self-supervised, supervised, and unsupervised action recognition
methods, and (5) comparing uni-modal versus multi-modal approaches in human
action recognition. The contributions of this thesis can be summarized as follows:

1. We address temporal variations, geometric distortions, and photometric distor-
tions (e.g., different camera viewpoints of human skeletons, camera noise, etc.)
by proposing advanced Dynamic Time Warping (DTW) techniques for super-
vised and/or unsupervised similarity learning when matching pairs of action

1

2 Introduction

Table 1.1: All the benchmark datasets used in this thesis are for human action
recognition.

Datasets Year Classes Subjects #views #video clips Sensor Modalities

UTKinect-Action3D [Xia et al., 2012] 2012 10 10 - 199 Kinect v1 RGB+Depth+3DJoints
Florence3D-Action [Seidenari et al., 2013] 2013 9 10 1 215 Kinect v1 RGB+Depth+3DJoints
MSRAction3D [Li et al., 2010] 2010 20 10 1 567 Kinect v1 Depth+3DJoints
3D Action Pairs [Oreifej and Liu, 2013] 2013 12 10 1 360 Kinect v1 RGB+Depth+3DJoints
CAD-60 [Sung et al., 2011] 2011 14 4 – 68 Kinect v1 RGB+Depth+3DJoints
UWA3D Activity [Rahmani et al., 2014b] 2014 30 10 1 701 Kinect v1 RGB+Depth+3DJoints
UWA3D Multiview Activity II [Rahmani et al., 2016b] 2015 30 9 4 1,070 Kinect v1 RGB+Depth+3DJoints
MPII Cooking Activities [Rohrbach et al., 2012] 2012 64 12 1 3,748 - RGB
HMDB-51 [Kuehne et al., 2011] 2011 51 - - 6,766 - RGB
EPIC-Kitchens [Damen et al., 2018] 2018 149 32 - 39,594 - RGB+Flow
NTU RGB+D [Shahroudy et al., 2016a] 2016 60 40 80 56,880 Kinect v2 RGB+Depth+3DJoints
Charades [Sigurdsson et al., 2016] 2016 157 - - 66,500 - RGB+Flow
NTU RGB+D 120 [Liu et al., 2019a] 2019 120 106 155 114,480 Kinect v2 RGB+Depth+3DJoints
Kinetics-skeleton [Yan et al., 2018] 2017 400 - - 260,232 - 2DJoints
Kinetics [Kay et al., 2017] 2018 400 - - ∼ 300,000 - RGB

sequences. Our methods can be viewed as metric learning-inspired few-shot
learning techniques and can be extended to non-episodic learning problems1.

2. We demonstrate that fusing data from different and complementary modali-
ties, such as optical flow, object/saliency detection information, etc., for self-
supervised action recognition outperforms uni-modal approaches. Additionally,
combining feature representations or finding view-invariant action features from
different camera viewpoints enhances the robustness of both video-based and
skeleton-based action recognition.

3. To capture short-term and long-term motion dependencies and different dynam-
ics of actions, we model human body kinematics as a hypergraph. We propose a
new Transformer architecture that leverages multiple modes, including temporal
blocks, channels, and hyper-edges, as well as multiple orders of tensor repre-
sentations. These innovations result in state-of-the-art performance on several
benchmarks, including fine-grained action recognition2.

In the following sections, we describe existing action recognition benchmarks and
evaluation protocols used in this thesis, related works, and the significance of our
research.

1.2 Action Recognition Benchmarks and Evaluations

Table 1.1 displays the publicly available benchmark datasets used in the experiments
of this thesis for 3D action recognition. Since the introduction of the Microsoft Kinect
camera [Zhang, 2012], various research groups have collected datasets for conducting

1Episodic training involves organizing training into a series of learning problems, each relying on
small support and query sets to simulate the few-shot scenarios encountered during evaluation.

2The goal of fine-grained action recognition is to successfully discriminate between action categories
with subtle differences, for example, slicing a cucumber vs. slicing a tomato.

§1.2 Action Recognition Benchmarks and Evaluations 3

research on human action recognition and evaluating different algorithms in this
field. The Kinect camera is capable of capturing real-time RGB and depth videos,
and a publicly available toolkit exists for computing the human skeleton model from
each frame of a depth video. Consequently, numerous papers on 3D human action
recognition using the Kinect camera have been published [Li et al., 2010; Yang and
Tian, 2012; Oreifej and Liu, 2013; Rahmani et al., 2014c, 2016b; Rahmani and Mian,
2016; Wang, 2017; Wang et al., 2019b]. One advantage of using depth videos over
conventional RGB videos is the ease of segmenting the foreground human subject
even in cluttered scenes. Since depth videos lack color information, the color of
the clothing worn by the human subject does not affect the segmentation process.
This allows researchers in action recognition to focus more on developing robust
feature descriptors for describing actions rather than on low-level segmentation. The
algorithm used for computing the 3D joint positions of the human skeletal model
with the Kinect toolkit is based on the human skeleton tracking framework (OpenNI)
developed by Shotton et al. [2011]. Besides providing access to real-time depth video
streams, this tracking framework has also opened up the research area of skeleton-
based action recognition [Vemulapalli et al., 2014; Shahroudy et al., 2016a; Vemulapalli
and Chellappa, 2016; Ke et al., 2017a,b; Rahmani and Bennamoun, 2017; Wang, 2017;
Wang et al., 2019b].

Early benchmark datasets such as MSRAction3D [Li et al., 2010], 3D Action
Pairs [Oreifej and Liu, 2013], CAD-60 [Sung et al., 2011], and UWA3D Activity
Dataset [Rahmani et al., 2014b] suffer from several limitations: (i) They have a limited
number of action classes, and each action class can be easily distinguishable by a
simple motion pattern or even the appearance of an interacted object when only a
very small number of action classes are available. (ii) These datasets have a limited
number of performing subjects and a very narrow range of performers’ ages, which
limits the intra-class variation of actions. (iii) The camera views in these datasets are
highly restricted, with almost all samples captured from a front view with a fixed
camera viewpoint. Other small datasets, such as the UWA3D Multiview Activity II
dataset [Rahmani et al., 2016b], are captured using multiple cameras simultaneously,
but the views are limited to fixed front and side views. (iv) These datasets also have
a highly limited number of video samples, which prevents the application of more
advanced deep learning methods in this field. To address these limitations, many large-
scale benchmark datasets have been introduced, including NTU RGB+D [Shahroudy
et al., 2016a] and NTU RGB+D 120 [Liu et al., 2019a].

However, the research community is currently addressing only a part of the
overall action recognition problem, and several limiting factors still exist in benchmark
datasets: (i) While large-scale datasets with a high number of actions/activities do
exist, the typical inter-class variability is often high, which can be rather unrealistic
for surveillance or elderly care applications, especially when we need to differentiate
between very similar activities. (ii) Many of the considered actions or activities are
rather coarse-grained, mainly focusing on full-body activities, such as ‘open a box’
and ‘throw up cap/hat’ in NTU RGB+D 120. These activities may appear atypical for
many applications where we aim to differentiate between more fine-grained actions

4 Introduction

or activities, such as ‘cut’, ‘squeeze’, ‘peel’, etc. (iii) Many benchmarks solely address
action/activity classification without delving into more realistic and challenging
actions/activities in a continuous data stream. To address these shortcomings, some
fine-grained action/activity recognition datasets have been released, including MPII
Cooking Activities [Rohrbach et al., 2012] and EPIC-Kitchens [Damen et al., 2018].

To further facilitate research in human action recognition, more large-scale, high-
quality datasets have been introduced, including Charades [Sigurdsson et al., 2016]
and Kinetics [Kay et al., 2017]. These datasets cover a diverse range of human
actions, with: (i) Considerable camera motion/shake, illumination variations, shadows,
background clutter, etc. (ii) A wide variety of performers with differences in how
the action is performed, including speed, clothing, body shape, camera framing,
viewpoint, etc. Although these large-scale datasets provide only raw videos and
do not include the modality of 3D human body joints/human skeletons, numerous
skeleton pose estimation methods are available, such as the Kinect toolkit with the
OpenNI framework [Shotton et al., 2011] and OpenPose [Cao et al., 2017], which
can be used for 3D and 2D skeleton estimation. For instance, Kinetics-skeleton [Yan
et al., 2018] in 2D was produced using OpenPose with 18 human body joints. With
the availability of these large-scale datasets, new generations of neural network
architectures, and architectures with attention mechanisms, are being developed. This
includes the use of multiple streams of information, such as RGB, optical flow, human
poses/skeleton sequences, object category recognition, etc.

As different problem definitions have been formulated in various application fields,
action recognition techniques are evaluated in different ways. Our work focuses on
action recognition, which involves recognizing action concepts and few-shot learning
(e.g., learning similarities between pairs of action sequences). For the task of action
classification or few-shot action recognition, the recognition accuracy of an algorithm
for any given action class is defined as the proportion of correct class labels returned
by the algorithm. To demonstrate the recognition accuracies of an algorithm for all
the action classes, a confusion matrix is often used. The overall performance of an
algorithm on a given dataset is evaluated using the average recognition accuracy.
Below, we discuss the commonly used evaluation metrics.

Early action recognition methods, such as those in [Oreifej and Liu, 2013; Rahmani
et al., 2014c; Vemulapalli and Chellappa, 2016; Rahmani et al., 2016b; Wang, 2017; Wang
et al., 2019b], are usually evaluated on small-scale datasets, such as MSRAction3D,
3D Action Pairs, CAD-60, and UWA3D Activity Dataset. The confusion matrix is
typically adopted to display the recognition accuracy of each action category. For some
challenging datasets, such as MPII Cooking Activities, EPIC-Kitchens, and Charades,
the action classification performance is assessed using the standard mean average
precision (mAP) measure. Additionally, the average precision, which approximates
the area under the precision-recall curve, is calculated for each individual action class.

Most deep learning-based approaches, such as those in [Simonyan and Zisserman,
2014; Tran et al., 2015; Carreira and Zisserman, 2017; Yan et al., 2018], are generally
evaluated on datasets like HMDB-51, NTU RGB+D, and NTU RGB+D 120. Therefore,
they can only report the overall recognition performance (i.e., the average recognition

§1.3 Action Recognition on Videos 5

accuracy) on each dataset.
The strong performance of deep learning models, however, heavily relies on

training a neural network with abundant labeled instances that exhibit diverse visual
variations. For example, thousands of samples for each new class are often required,
and pre-training on large-scale datasets with base classes is often necessary. Moreover,
the human annotation cost, as well as the scarcity of data in some classes (e.g., very rare
actions), significantly limit the applicability of the current vision system to efficiently
learn new visual concepts. Inspired by the human visual system’s ability to recognize
new classes with extremely few labeled samples, few-shot learning/classification,
which aims to generalize to new classes with a limited amount of labeled samples
for each novel class, has attracted considerable attention in many areas, including
few-shot action recognition.

The most common/standard settings used in few-shot action recognition are 5-way
1-/5-shot classification. In these settings, either 1 or 5 labeled instances are available
from each novel action class. This is commonly used on datasets like HMDB-51 and
Kinetics. An one-shot evaluation protocol was introduced in [Liu et al., 2019a] for
NTU RGB+D 120. The full dataset is split into the auxiliary set and the evaluation
set, with no overlaps of action classes between these two sets. The evaluation set
consists of the novel action classes for one-shot evaluation, and one sample from
each novel class is chosen as the exemplar, while the remaining samples are used to
test the performance. Based on this evaluation protocol, we created similar one-shot
protocols for NTU RGB+D (also known as NTU-60) and some small-scale datasets
(MSRAction3D, 3D Action Pairs, and UWA3D Activity Dataset) in Appendix B.

Below, we review action recognition models in the literature related to our work.

1.3 Action Recognition on Videos

There has been significant progress in action recognition, spanning from traditional
methods, such as DT [Wang et al., 2011] and IDT [Wang et al., 2013b], to the latest
advancements employing deep learning techniques, such as two-stream networks
[Simonyan and Zisserman, 2014], 3D spatio-temporal features [Tran et al., 2015],
and spatio-temporal ResNet models [Feichtenhofer et al., 2016a]. Deep learning,
renowned for its scalability and capacity to efficiently process vast amounts of data, has
revolutionized video classification by enabling the utilization of large-scale datasets
and powerful models to establish standard representations for video understanding
tasks.

At the forefront of video understanding lies action recognition, the primary
task of which is to identify various actions within videos. Key to successful action
recognition are spatio-temporal and motion information, where the former captures
spatial relationships across different video frames, while the latter encapsulates the
motion between consecutive frames of objects or human subjects. Recent years have
witnessed significant advancements in action recognition performance. Many existing
methods, such as [Ji et al., 2013; Carreira and Zisserman, 2017; Wang et al., 2018b; Xie

6 Introduction

et al., 2018; Wang et al., 2019], approach this problem as a generic classification task.
The distinguishing factor from ImageNet is that the input is now a video sequence.
Consequently, substantial efforts have been directed towards harnessing temporal
information. Human activities, in contrast to objects in ImageNet, involve complex
concepts characterized by factors like human body movement, temporal dynamics,
and human-object interactions. This complexity implies that the modeling of visual
and temporal features often results in confusion between action classes that share
similar visual appearances and motion dynamics. A common modeling approach
involves the widely-used classifier head consisting of global average pooling3 and a
single linear classifier, mirroring the setup of object recognition models on ImageNet.
For fine-grained action recognition, distinguishing confused classes may necessitate
capturing finer-grained motion patterns.

Early deep learning-based action recognition algorithms can be categorized into
two main groups: two-stream neural networks [Feichtenhofer et al., 2016b, 2017a;
Wang et al., 2017] and 3D convolutional networks (3D CNNs) [Tran et al., 2015; Carreira
and Zisserman, 2017]. Two-stream neural networks comprise a spatial stream, which
takes RGB frames as input, and a flow stream that uses optical flow as input. The
spatial stream models appearance features without considering temporal information,
while the flow stream (often referred to as a temporal stream) is designed to capture
temporal information. However, the flow stream primarily represents motion features
between consecutive frames and shares a nearly identical structure with the spatial
stream, utilizing 2D CNNs. This leads to a lack of long-term temporal relationship
modeling in the flow stream, not to mention the computational cost of optical flow
calculation.

On the other hand, 3D CNNs are designed to capture spatio-temporal features
by combining spatial and temporal features using 3D convolutions. While they can
capture long-term temporal relationships, they also introduce significant computa-
tional costs. Many methods still integrate an independent optical flow stream to
further enhance performance with motion information. Thus, these two sources of
information complement each other in action recognition. However, these methods
often result in a high number of parameters, leading to computational burdens. Some
approaches [Sun et al., 2015; Qiu et al., 2017; Tran et al., 2018; Xie et al., 2018] aim
to reduce costs by decomposing 3D convolutional kernels into separate spatial and
temporal components.

Nevertheless, these methods suffer from two main limitations: (i) they require the
pre-computation of optical flow, which is costly, and (ii) the features learned and the
final predictions from multiple streams are simply fused using weighted or average
sums, making them inferior to temporal relationship modeling. Almost all these
works retain the same final layers of the network, which consist of global average
pooling followed by a fully connected layer.

Recent advanced action recognition models include the two-stream I3D net-
work [Carreira and Zisserman, 2017], SlowFast networks [Feichtenhofer et al., 2019],

3A pooling operation computes the average value for patches of a feature map and utilizes this
information to generate a downsampled or pooled feature map.

§1.4 Action Recognition on Skeletons 7

AssembleNet [Ryoo et al., 2020b], its extended version AssembleNet++ [Ryoo et al.,
2020a], video masked autoencoders (VideoMAE) [Tong et al., 2022], Intern-Video [Wang
et al., 2022], and transformer-based models such as multiscale vision transformers
(MViT) [Fan et al., 2021], video vision transformer (ViViT) [Arnab et al., 2021], TimeS-
Former [Bertasius et al., 2021], Recurrent Vision Transformer (RViT) [Yang et al.,
2022a], Uncertainty-Guided Probabilistic Transformer (UGPT) [Guo et al., 2022],
DirecFormer [Truong et al., 2022], and Video swin transformer (VideoSwin) [Liu et al.,
2022]. Vision-language models like CLIP [Radford et al., 2021], X-CLIP [Ni et al.,
2022], and ViT-L [Wu et al., 2023] have also played a significant role.

In this thesis, our work explores the self-supervision capacity of valuable yet costly
auxiliary descriptors. We integrate them with existing state-of-the-art action recogni-
tion architectures to further enhance performance, robustness, and the simplification
of modern action recognition pipelines. This integration is achieved in an end-to-end
trainable manner.

1.4 Action Recognition on Skeletons

Diverging from video-based action recognition methods, which predominantly con-
centrate on modeling spatial and temporal features from RGB frames and/or optical
flow videos, skeleton-based action recognition methods offer immunity against chal-
lenges like background clutter, illumination fluctuations, and appearance variations.
The 3D skeleton data comprises a collection of 3D coordinates corresponding to
human body joints, providing a robust representation that facilitates the modeling
of distinctive temporal aspects of human actions. The accessibility of real-time video
streams [Shotton et al., 2011] and advanced human pose estimation algorithms such
as OpenPose [Cao et al., 2017] have made it significantly more feasible to acquire
skeleton data. Skeleton sequences are built upon two fundamental principles: (i) the
structural connectivity of a skeletal graph and (ii) the temporal continuity of each 3D
body joint as it evolves over time. While the temporal evolution of individual body
joints yields highly informative data, the embeddings of individual joints may fail to
capture relationships between 3D body joints effectively. Additionally, while modeling
connections between adjacent 3D body joints based on structural connectivity proves
informative, these pairs of body joints often exhibit strong correlations in terms of
their temporal evolution.

Early attempts in skeleton-based action recognition often encoded all human
body joint coordinates in each frame into a feature vector for pattern learning [Wang
et al., 2019b]. The advent of real-time video streams and advanced human esti-
mation algorithms also paved the way for handcrafted skeletal action recognition
research [Rahmani et al., 2014c; Vemulapalli et al., 2014; Shahroudy et al., 2016a;
Vemulapalli and Chellappa, 2016; Koniusz et al., 2016a]. These models typically did
not explore the internal motion dependencies between body joints, resulting in the
neglect of abundant and rich actional motion dynamics. To address this limitation,
recent methods construct a skeleton graph with joints as vertices and bones as edges,

8 Introduction

employing deep learning-based models to extract correlated features [Yan et al., 2018;
Cheng et al., 2020b; Shi et al., 2021a].

Graph-based models represent one of the state-of-the-art approaches for skeleton-
based action recognition, leveraging their effectiveness in handling graph-structured
data [Wu et al., 2020]. Existing graph-based models primarily vary in their treatment
of temporal information, with Graph Neural Networks (GNNs) encoding spatial
neighborhood information followed by aggregation using Recurrent Neural Net-
works (RNNs). Alternatively, Graph Convolutional Networks (GCNs) perform spatio-
temporal convolutions within the neighborhood of each node. Spectral GCNs[Kipf
and Welling, 2017] operate in the spectral domain, while spatial GCNs conduct convo-
lutions within a one- or few-hop radius of each node. For instance, the spatio-temporal
GCN model known as ST-GCN [Yan et al., 2018] captures the spatio-temporal vicinity
of each 3D body joint.

However, ST-GCN applies convolution along structural connections (edges be-
tween body joints), overlooking joints that are structurally distant, which may hold
crucial patterns for action recognition. ST-GCN can aggregate even larger neighbor-
hoods as the number of layers increases, but this can lead to oversmoothing issues.
Moreover, convolution along structural links does not consider dependencies between
physically distant 3D body joints.

Recent GCN-based models encompass the Attention-enhanced Graph Convolu-
tional LSTM network (AGC-LSTM) [Si et al., 2019], Actional-Structural GCN (AS-
GCN) [Li et al., 2019], Dynamic Directed GCN (DDGCN) [Korban and Li, 2020], De-
coupling GCN with DropGraph module [Cheng et al., 2020a], Shift-GCN [Cheng et al.,
2020b], Semantics-Guided Neural Networks (SGN) [Zhang et al., 2020c], AdaSGN [Shi
et al., 2021a], Context-Aware GCN (CA-GCN) [Zhang et al., 2020e], Channel-wise
Topology Refinement Graph Convolution (CTR-GC) [Chen et al., 2021b], InfoGCN
[Chi et al., 2022], and a family of Efficient GCN (EfficientGCN-Bx) [Song et al., 2022].

To capture more complex spatio-temporal motion dynamics, some models repre-
sent the human body as a hypergraph by modeling larger groups of 3D body joints
as hyper-edges. A hypergraph was introduced in [Liu et al., 2020a] to represent 3D
human body joints, exploiting kinematic constraints among adjacent and non-adjacent
joints with a semi-dynamic hypergraph neural network. This approach captures richer
information than traditional GCNs. Hypergraph GNNs [Hao et al., 2021] capture both
spatio-temporal information and higher-order dependencies for skeleton-based action
recognition.

Recent transformer-based models for skeletal action recognition include Space-
Time Transformer [Zhang et al., 2021b], spatial and temporal transformer (ST-TR) [Pliz-
zari et al., 2021], spatial-temporal specialized transformer (STST) [Zhang et al., 2021e],
Hyperformer [Zhou et al., 2022], graph-aware transformer (GAT) [Zhang et al., 2022b],
Focal and Global Spatial-Temporal Transformer network (FG-STFormer) [Gao et al.,
2022], multi-scale temporal transformer (MTT) [Kong et al., 2022], and graph skeleton
transformer network (GSTN) [Jiang et al., 2022].

In this thesis, our approach leverages higher-order tensor representations and
multi-order hyper-edge features extracted from the skeletal hypergraph. We employ

§1.5 Multi-modal and Multi-view Action Recognition 9

a newly proposed multi-order multi-mode transformer to capture higher-order rela-
tionships between features, long-term and short-term temporal dependencies, and
spatio-temporal correlations, enabling robust action recognition.

1.5 Multi-modal and Multi-view Action Recognition

Action recognition from multiple data modalities. Multi-modal learning, a pivotal
area of research, revolves around the process of acquiring knowledge from diverse
data modalities. This includes visual data such as images and videos, along with their
fusion with other modalities like audio, speech, and text. This fusion, accomplished
through sophisticated processing algorithms, aims to enhance performance [Koniusz
et al., 2016a,b; Wang et al., 2019b,d; Koniusz et al., 2020; Wang and Koniusz, 2021].
Multi-modal learning capitalizes on the synergies between these different modalities,
often surpassing the capabilities of single-modal (or uni-modal) learning in various
real-world applications, including human action recognition [Radford et al., 2021; Ni
et al., 2022; Wu et al., 2023]. In recent times, multi-task learning (MTL) [Caruana, 1997]
has gained substantial traction within the computer vision community. MTL, while
distinct, shares a conceptual framework closely aligned with multi-modal learning.
Unlike single-task learning, MTL seeks to develop a shared representation capable
of addressing multiple tasks, ultimately leading to improved generalizability. Both
multi-modal learning and MTL capitalize on the idea of concurrently learning the
structural aspects that benefit all tasks, thereby enhancing performance. Typically,
MTL leverages knowledge gained from auxiliary tasks to bolster the performance of
the primary task [Wang et al., 2019d; Wang and Koniusz, 2021].

Several early action recognition methods [Rahmani et al., 2014c; Shahroudy et al.,
2016b; Rahmani and Bennamoun, 2017; Elmadany et al., 2018] have explored the
integration of complementary data modalities. Some handcrafted methods combine
depth and skeleton features to achieve robust human action recognition. For instance,
Rahmani et al. [2014c] proposed a fusion of four types of local features extracted from
both depth images and 3D joint positions to address local occlusions and enhance
recognition accuracy. Shahroudy et al. [2016b]’s approach combines Local Occupancy
Patterns (LOP), HON4D [Oreifej and Liu, 2013], and skeleton-based features with
hierarchical mixed norms to regularize weights across modality groups for different
body parts. Rahmani and Bennamoun [2017] utilized an end-to-end deep learning
model for learning body part representations from skeletal and depth images, further
enhancing their model with a bilinear compact pooling layer for generated depth and
skeletal features. Elmadany et al. [2018] employed canonical correlation analysis to
maximize feature correlations from various sensors, including bag-of-angles from
skeleton data, depth motion maps from depth video, and optical flow from RGB video.
They learned a shared subspace for all these features, and average pooling yielded the
final feature descriptor. Recent deep learning-based models, such as the two-stream
I3D [Carreira and Zisserman, 2017], AssembleNet [Ryoo et al., 2020b], and its extended
version AssembleNet++ [Ryoo et al., 2020a], integrate RGB and optical flow inputs and

10 Introduction

leverage late fusion (next to the classifier) with low-level representations like Improved
Dense Trajectory (IDT) descriptors [Wang and Schmid, 2013]. These models benefit
from the highly complementary nature of these representations[Fernando and Gould,
2016; Cherian et al., 2017b, 2018; Wang and Cherian, 2018; Choutas et al., 2018; Wang
et al., 2019d; Wang and Koniusz, 2021]. Recent advancements in action recognition
include multi-modal CNN-GCN models and multi-modal feature representations
for improved relational action predictions [Shi et al., 2021b], multi-modal domain
adaptation for fine-grained action recognition [Munro and Damen, 2020], cross-modal
knowledge for domain-adaptive action recognition [Yang et al., 2022b], and vision-
language models like CLIP [Radford et al., 2021], X-CLIP [Ni et al., 2022], ViT-L [Wu
et al., 2023], Video-Audio-Text Transformer (VATT) [Akbari et al., 2021], and Modality
Mixer (M-Mixer) [Lee et al., 2023].

In this thesis, we delve into the realm of multi-modal information utilization,
building upon the self-supervision concept. Here, we take RGB frames as input
and employ a multi-task learning (MTL) framework to predict action concepts and
complementary auxiliary descriptors (e.g., IDT-based Bag of Words/Fisher Vectors,
optical flow features, object/saliency detection features). This approach enhances
robust action recognition.
Action recognition from multiple camera viewpoints. In practice, capturing human
actions from arbitrary camera viewpoints presents a significant challenge for the
development of efficient action recognition techniques. A major obstacle in action
recognition stems from the substantial variations in action representations when
observed from different viewpoints [Wang, 2017; Wang et al., 2019b]. These variations
arise due to flexible camera viewpoints that result in markedly different feature
representations, even for the same scene. Additionally, actors may execute actions in
various orientations, dynamically altering their positions over time. Consequently,
the appearance and dynamics of an action can differ significantly when viewed from
distinct angles.

Addressing viewpoint variance has been a dynamic area of research, especially
within human action recognition. Furthermore, it has become increasingly crucial in
the context of representation learning. Large-scale datasets such as Sports1M [Karpa-
thy et al., 2014], Kinetics [Carreira and Zisserman, 2017], Something-something [Goyal
et al., 2017], ActivityNet [Caba Heilbron et al., 2015], and Charades [Sigurdsson et al.,
2016], incorporating multiple modalities like RGB videos, depth videos, skeleton
sequences, optical flow videos, among others, have fueled progress in multi-view
action recognition [Zhang et al., 2017b; Wang et al., 2019a; Vyas et al., 2020; Zhang
et al., 2019d; Shah et al., 2023]. A prevailing approach in these methods revolves
around the learning of view-invariant feature representations. Several works leverage
multiple views of the subject performing the action [Shahroudy et al., 2016a; Liu et al.,
2019a; Zhang et al., 2019d; Wang et al., 2019d] to mitigate viewpoint variations in
action recognition tasks with extensive datasets.

For video-based action recognition, researchers have devised various view-invariant
techniques [Bashir et al., 2006; Junejo et al., 2008; Weinland et al., 2010; Liu et al.,
2011a; Li and Zickler, 2012; Wu and Jia, 2012; Mahasseni and Todorovic, 2013; Zhang

§1.5 Multi-modal and Multi-view Action Recognition 11

et al., 2013; Rahmani and Mian, 2015; Wu et al., 2015]. Early methods explored
view-invariant features such as self-similarity descriptors or descriptors based on
trajectory curvature [Bashir et al., 2006; Junejo et al., 2008]. However, these descriptors,
when presented in another domain, might lose valuable information from the original
video data. Some approaches [Weinland et al., 2010; Mahasseni and Todorovic, 2013;
Wu et al., 2015] require multiple views to train a ‘panorama’ model, for instance,
using the 3D histogram of oriented gradients based on Bag of Words (BoW) to en-
hance robustness against viewpoint changes [Weinland et al., 2010]. Unfortunately,
capturing videos from numerous camera viewpoints is cost-prohibitive. Other ap-
proaches employ knowledge transfer-based models to find a latent space for direct
comparison of features from different viewpoints [Li and Zickler, 2012; Liu et al.,
2011a; Rahmani and Mian, 2015; Zhang et al., 2013]. Nevertheless, these methods
necessitate substantial human effort in designing the view-independent latent space.
Zhang et al. [2019d] proposed adaptive neural networks featuring view adaptation
modules. These modules learn the most suitable observation viewpoints, enabling the
transformation of skeletons to those viewpoints for end-to-end action recognition.

In skeleton-based action recognition, achieving view-invariance often involves
frame-level preprocessing [Xia et al., 2012; Vemulapalli et al., 2014; Du et al., 2015;
Liu et al., 2016; Shahroudy et al., 2016a; Vemulapalli and Chellappa, 2016; Zhu et al.,
2016; Liu et al., 2017; Li et al., 2017b; Song et al., 2017]. However, this approach
may result in the partial loss of relative motion information by transforming per-
frame human skeleton data into a fixed upper-body orientation. On the other hand,
sequence-level preprocessing applies the same transformation to all frames, ensuring
motion invariance to the initial body position and orientation, thereby preserving
motion information. Yet, defining the body plan (e.g., using hip, shoulder, and
neck joints) may not always be suitable for orientation alignment, especially when a
sequence lacks an upright pose [Wang et al., 2012]. Recent methods employ either
view adaptation models to learn suitable camera viewpoints and transform human
skeletons to these views for each sequence [Zhang et al., 2019d] or advanced Dynamic
Time Warping techniques to simultaneously model the best alignment in both temporal
and simulated camera viewpoint spaces for end-to-end learning [Wang and Koniusz,
2022a].

Recent models for multi-view action recognition encompass the Generative Multi-
View Action Recognition (GMVAR) framework [Wang et al., 2019a], an unsupervised
representation learning framework [Vyas et al., 2020], a Cross-view Contrastive Learn-
ing framework (CrosSCLR) [Li et al., 2021a] for unsupervised 3D skeleton-based
action representation, and a supervised contrastive learning framework [Shah et al.,
2023].

In this thesis, our approach tackles the simultaneous temporal and simulated
viewpoint alignment within an end-to-end meta-learning framework. This novel
paradigm centers around similarity learning of support-query pairs rather than
conventional class concept learning.

12 Introduction

1.6 One- and Few-shot Action Recognition

Traditional supervised learning methods rely on extensive labeled data for training,
and the test set typically consists of samples from the same categories as the training
set, following a similar statistical distribution [Carreira and Zisserman, 2017; Ryoo
et al., 2020b,a]. However, emerging few-shot learning offers compelling solutions
to address these challenges: (i) Few-shot learning leverages only a limited number
of labeled samples, avoiding the need for massive volumes of costly labeled data
during model training. This approach enhances generalization capabilities. (ii) One
of its advantages is that it eliminates the requirement to retrain a model entirely
when extending it to new categories of data, resulting in significant computational
savings. (iii) Few-shot learning empowers models to gain insights into rare categories
of data with exposure to only limited prior information. (iv) It exhibits versatility by
extending its application to other data domains, as long as the data in the support
and query sets exhibit coherence, even when the model has been pre-trained on a
statistically different data distribution.

The principles of one- and few-shot learning find applications in various domains,
including natural language processing and computer vision [Miller et al., 2000; Li
et al., 2002; Fink, 2005; Bart and Ullman, 2005; Fei-Fei et al., 2006; Lake et al., 2011;
Mishra et al., 2018; Xu et al., 2018; Guo et al., 2018; Dwivedi et al., 2019; Zhang
et al., 2020a; Cao et al., 2020; Guo et al., 2020; Dvornik et al., 2020; Wang et al., 2020;
Lichtenstein et al., 2020; Fei et al., 2020; Guan et al., 2020; Li et al., 2020b; Elsken
et al., 2020; Cao et al., 2020; Tang et al., 2020; Koniusz and Zhang, 2020; Simon et al.,
2020b; Yu et al., 2020; Luo et al., 2021; Zhang et al., 2021a, 2022a; Zhu and Koniusz,
2022; Lu and Koniusz, 2022; Wang and Koniusz, 2022b; Zhang et al., 2022d,c]. One of
the most promising frontiers in video processing tasks is the realm of meta-learning,
where the aim is to acquire transferable knowledge from a diverse array of sampled
tasks or episodes. This approach is invaluable in enhancing generalization capabilities
and mitigating the risks of over-fitting. Drawing inspiration from metric learning
principles, several established methods in the realm of few-shot video classification
have emerged. These methods assess the similarity between different videos within
the feature space, thereby facilitating classification tasks. Prominent examples of these
methods include MatchingNet [Vinyals et al., 2016], ProtoNet [Snell et al., 2017], and
RelationNet [Sung et al., 2018]. MatchingNet, for instance, gauges the cosine distance
between the query feature and each support feature and subsequently computes the
average cosine distance for each class. ProtoNet, on the other hand, measures the
Euclidean distance between query features and the class mean of support features.
While RelationNet shares a similar underlying concept, it distinguishes itself by
replacing distance calculations with a learnable relation module. Furthermore, an
innovative approach known as absolute-relative learning [Zhang et al., 2021a] has
been proposed. This approach incorporates both similarity and class concept learning
to harness the full potential of label information in both supervised and unsupervised
scenarios, particularly in the context of image classification.
Video-based. In the realm of video-based tasks, a fundamental distinction between

§1.6 One- and Few-shot Action Recognition 13

images and videos lies in the additional temporal dimension. Consequently, repre-
senting an entire video as a singular feature vector, for instance, through temporal
pooling, proves inadequate. To address this challenge, various temporal alignment
methods have been devised to capture the critical temporal information. Cao et al.
[2020] introduced an ordered temporal alignment module designed to learn a pro-
found distance metric for the query video concerning novel class proxies within the
support set, thereby establishing an alignment path. Zhang et al. [2021c] proposed an
implicit temporal alignment network grounded in a self-attention mechanism. This
innovative approach integrates spatial and feature channel context, enabling more
effective modeling of intra-class variations. Bishay et al. [2019] devised a temporal
attentive relation network that capitalizes on attention mechanisms for temporal
alignment. This network is instrumental in acquiring a deep-distance measure at
the video segment level, catering to zero- and few-shot action recognition scenarios.
In [Li et al., 2021c], a two-stage action alignment network was introduced. In the
first stage, it identifies the action by learning a temporal affine transform, while the
second stage orchestrates the query feature to align with the spatio-temporal action
evolution of the support by employing temporal rearrangement and spatial offset
prediction. Another noteworthy approach, detailed in [Li et al., 2021b], employs event
boundary information to guide the temporal alignment of features in the context of
few-shot action recognition. In [Wang et al., 2021a], a temporal relation-based attentive
prototype network was proposed for few-shot action recognition within videos. This
method incorporates a spatio-temporal motion enhancement module to emphasize
object motions in videos. Subsequently, a temporal relation module captures both
short- and long-term temporal scales for relations, and an attentive prototype is
introduced to assign greater weight to discriminative samples. Furthermore, a neural
graph matching network [Guo et al., 2018] was developed to leverage the inherent
structure of 3D data through graph representation, specifically for few-shot 3D action
recognition within videos. In this approach, nodes in the interaction graph are derived
from sources such as human-annotated object and pose detections or pre-trained
object and pose detectors. Additionally, edge generation is learned in conjunction
with the graph matching metric to ensure differentiability and robustness in the task.

A comprehensive examination of the limitations in representation learning within
the domain of metric-based methods is available in [Chen et al., 2019]. Intriguingly,
their findings reveal that a straightforward classifier-based baseline, devoid of any
temporal alignment, can outperform the meta-learning approaches. In addition to
these methodologies, alternative models have been proposed. For example, temporal
attention vectors, as described by Bo et al. [2020], adapt to videos of varying lengths
while preserving the temporal context of the entire video. Furthermore, Zhang
et al. [2020a] introduced permutation-invariant pooling techniques tailored for action
recognition videos, accommodating diverse action lengths and long-range temporal
dependencies. An innovative approach involves the utilization of the CrossTrans-
former attention mechanism, as presented by Perrett et al. [2021], to define class
prototypes based on relevant subsequences extracted from all support videos. This
contrasts with conventional methods that rely on class averages or single best matches.

14 Introduction

Most existing approaches follow a meta-learning paradigm with episodic training. In
each episode, a small subset of samples is partitioned into support and query sets.
These sets are subsequently employed to construct a classifier, which is then assessed
using a query-centered loss for model refinement. However, two significant limitations
persist. Firstly, there is a deficiency in data efficiency attributable to the design of
a query-centered loss4, as outlined in [Zhu et al., 2021b]. Secondly, these methods
struggle to handle outlier samples, such as those involving unconventional viewpoints
or occlusions, as well as challenges posed by overlapping inter-class distributions. For
example, training samples from distinct classes may exhibit similar backgrounds or
visual characteristics in the support set. Consequently, Zhu et al. [2021b] proposed a
prototype-centered attentive learning model to tackle these aforementioned limita-
tions within the context of few-shot action learning. Moreover, a recent advancement
introduced an action-appearance alignment meta-adaptation module, as outlined
in [Patravali et al., 2021]. This module is designed to concentrate on action-oriented
video features in relation to appearance features through explicit few-shot episodic
meta-learning over carefully selected episodes. It aims to enhance the performance of
unsupervised few-shot action recognition.
Skeleton-based. Skeleton-based action recognition has seen significant advancements,
driven by pose representations that offer a robust foundation for understanding human
actions [Wang, 2017; Wang et al., 2019b]. Nevertheless, downstream algorithms reliant
on pose information continue to grapple with unreliable estimations, especially in fine-
grained actions characterized by subtle differences between action categories, such
as distinguishing between actions like cut and peel. With a scarcity of labeled data,
tasks like fine-grained action recognition demand models that can discern actions
with subtle discrepancies while accommodating noisy inputs.

Few-shot learning holds the potential to swiftly adapt to novel classes even with
limited annotations. However, its application to skeleton-based action recognition
remains relatively unexplored due to several challenges, including photometric and
geometric distortions. While a few models venture into few-shot action recognition
using 3D skeletons [Liu et al., 2017; Liu et al., 2019a; Memmesheimer et al., 2020, 2021],
each takes a unique approach. For instance, the Global Context-Aware Attention
LSTM [Liu et al., 2017] selectively focuses on informative joints. The Action-Part Se-
mantic Relevance-aware (APSR) model [Liu et al., 2019a] leverages semantic relevance
between body parts and action classes at the distributed word embedding level. Signal
Level Deep Metric Learning (DML) [Memmesheimer et al., 2020] and Skeleton-DML
[Memmesheimer et al., 2021] encode signals into images, extract features using CNNs,
and employ multi-similarity miner losses for one-shot learning on datasets like NTU
RGB+D 120. Sabater et al. [2021] propose a robust motion representation capable of
handling varying kinematic conditions in skeletons for one-shot action recognition. In

4When you have K samples available for each of the N classes in the support set, the initial N × K
samples are condensed into N prototypes. Following this, a loss term is calculated for each query
sample individually, based on its distances to these prototypes. However, this approach doesn’t take
into account how the samples in the query set as a whole should be distributed. Consequently, it fails to
fully leverage the limited training data available in each episode.

§1.6 One- and Few-shot Action Recognition 15

another approach, Hong et al. [2021] introduce a weakly supervised video pose distil-
lation method for fine-grained sports action recognition, utilizing a teacher-student
network where the teacher network generates view-invariant pose representations
and additional motion signals to guide the student network in generating rich visual
patterns from color video frames and optical flow. Guo et al. [2018] present Neural
Graph Matching (NGM) networks, designed to recognize previously unseen 3D action
classes with only a few examples by harnessing the inherent structure of 3D data
through a graphical representation.

Recent advancements in one- and few-shot skeletal action recognition encompass
a part-aware prototypical representation [Chen et al., 2022] for one-shot skeletal
action recognition, models addressing Few-Shot Open-Set learning for sequences of
3D skeletons [Berti et al., 2022], the Disentangled and Adaptive Spatial-Temporal
Matching (DASTM) model [Ma et al., 2022] for few-shot action recognition, the self
and mutual adaptive matching network (SMAM-Net) [Li et al., 2023] for both one-
and few-shot action recognition, a novel transformer-based model for Skeleton-based
One-shot Action Recognition (Trans4SOAR) [Peng et al., 2023], and an Adaptive
Local-Component-aware Graph Convolutional Network (ALCA-GCN) [Zhu et al.,
2023].

Nevertheless, these methods often overlook critical considerations: (i) accounting
for observation noise and uncertainty in temporal sequences (frame-wise or temporal
block-wise feature representations) stemming from photometric distortions like cam-
era noise, and (ii) addressing geometric distortions such as varying camera viewpoints,
rotations, and visual appearances. Dynamic Time Warping (DTW) [Cuturi, 2011], a
method popular in forecasting time series evolution, estimating Fréchet mean of time
series, or classifying actions, proves adept at overcoming issues related to temporal
alignment in matching action sequence pairs for few-shot learning. Key to DTW is
its sequence matching transportation plan, enabling matched sequences to progress
at varying speeds, both globally and locally in the temporal domain. While DTW
is non-differentiable, a differentiable soft variant known as soft-DTW [Cuturi and
Blondel, 2017] enables backpropagation.

In this thesis, we build upon soft-DTW, proposing advanced DTW techniques for
alignment-based few-shot skeletal action recognition. The advanced DTW techniques
proposed in this thesis extend beyond temporal alignment to account for (i) the
uncertainty in observations of temporal sequences due to photometric distortions like
camera noise and (ii) the alignment of temporal and camera viewpoints to handle
geometric distortions such as variations in camera perspectives and rotations.

In contrast, non-alignment methods often employ approaches like average pool-
ing along the temporal dimension, which may result in the loss of temporal in-
formation [Liu et al., 2017; Liu et al., 2019a], or encoders that capture short-term
dependencies while disregarding long-term ones [Memmesheimer et al., 2020, 2021;
Ben-Ari et al., 2021]. Recognizing the importance of temporal alignment in address-
ing non-linear temporal variations, recent works introduce various alignment-based
models, such as permutation-invariant spatio-temporal attention reweighted distance
in ARN [Zhang et al., 2020a], a variant of DTW utilized in OTAM [Cao et al., 2020], a

16 Introduction

temporal attentive relation network [Mina et al., 2019], a two-stage temporal alignment
network (TA2N) [Li et al., 2021c], a temporal CrossTransformer [Perrett et al., 2021],
and a learnable sequence matching distance named TAP [Su and Wen, 2022].

1.7 Thesis Outline and Contributions

In this section, we provide a brief description of each thesis chapter. Chapter 2
offers a comparative review of recent state-of-the-art action recognition algorithms.
Chapter 3 and 4 present the hallucination of IDT-based BoW/FV representations and
object/saliency detection features for self-supervised action recognition, respectively.
Chapter 5 discusses tensor representations for capturing higher-order relationships
between visual features and temporal dynamics, while Chapter 6 presents the ag-
gregation of embeddings of multi-order hyper-edges of skeletal hypergraph using
Multi-order Multi-mode Transformer (3Mformer). Chapter 7 covers temporal align-
ment with uncertainty modeling, and Chapter 8 addresses joint temporal-viewpoint
alignment for few-shot skeletal action recognition. Finally, our work concludes in
Chapter 9. Our contributions in this thesis are listed below:

—Chapter 2: A Comparative Review. This chapter conducts a comparative review of
10 recent state-of-the-art action recognition algorithms. It specifically focuses on com-
paring the effectiveness of using handcrafted features versus deep learning features
and skeleton-based features versus depth-based features. Additionally, we evaluate
the cross-view versus cross-subject (single-view) performance of these algorithms. For
the multiview datasets, we investigate the impact of the camera view on human action
recognition, considering whether the features used are depth-based, skeleton-based,
or depth+skeleton-based. To the best of our knowledge, such a comparison and
evaluation have not been performed before.

—Chapter 3: Hallucinating IDT Descriptors and I3D Optical Flow Features. In this
chapter, we propose for the first time that old-fashioned IDT-based Bag of Words (BoW)
and Fisher Vector (FV) global video descriptors can be learned through dedicated
Convolutional Neural Network (CNN) streams during the training stage and then
simply hallucinated for classification using a CNN action recognition pipeline during
testing. We also demonstrate that even the I3D optical flow stream can be easily
hallucinated from the I3D RGB stream. Our pipeline leverages self-supervision,
where IDT-based BoW/FV descriptors provide easily obtainable self-information
about videos. Additionally, it utilizes Multi-task Learning (MTL), known for boosting
generalization and preventing overfitting of CNNs due to task-specific losses.

—Chapter 4: Statistical Moment and Subspace Descriptors. In this chapter, we
propose utilizing object and human detectors to enhance the performance of action
recognition pipelines. We design two types of compact descriptors called Object
Detection Features (ODF) and Saliency Detection Features (SDF) for use in action
recognition pipelines. These descriptors are statistically motivated high-order repre-
sentations.

§1.8 Publications 17

—Chapter 5: Tensor Representations. In this chapter, we design sequence and
dynamics compatibility kernels to capture the spatio-temporal evolution of 3D skeleton
body-joints. We derive linearizations of these kernels using tensors. We extend
these kernels to aggregate over multiple subsequences and CNN classifier scores.
Additionally, we conduct a novel theoretical analysis of Tensor Power Normalization,
connecting it to subspace methods. We are the first to conduct a theoretical analysis
of higher-order pooling with Tensor Power Normalization, using it for generic action
recognition as well as fine-grained action recognition.

—Chapter 6: Multi-order Multi-mode Transformer (3Mformer). In this chapter,
we model the skeleton data as a hypergraph of orders 1 to r, where human body
joints serve as nodes. Higher-order Transformer (HoT) embeddings of these formed
hyper-edges represent various groups of 3D body joints and capture various higher-
order dynamics important for action recognition. As HoT embeddings represent
individual hyper-edge order and block, we introduce a novel Multi-order Multi-mode
Transformer (3Mformer) with two modules: Multi-order Pooling and Temporal block
Pooling. Their goal is to form coupled-mode tokens, such as ‘channel-temporal block’,
‘order-channel-body joint’, ‘channel-hyper-edge (any order)’ and ‘channel-only’, and
perform weighted hyper-edge aggregation and temporal block aggregation.

—Chapter 7: Uncertainty-DTW. In this chapter, we introduce the uncertainty-DTW,
known as uDTW, which takes into account the uncertainty of frame-wise (or block-
wise) features by selecting the path that maximizes Maximum Likelihood Estimation
(MLE). We use parameters like variance from a distribution (e.g., the Normal distribu-
tion) within MLE (and uDTW) to model uncertainty. We provide several pipelines
that utilize uDTW for (1) forecasting time series evolution, (2) estimating the Fréchet
mean of time series, (3) supervised few-shot action recognition, and (4) unsupervised
few-shot action recognition.

—Chapter 8: Temporal-Viewpoint Transportation Plan. In this chapter, we propose
a few-shot action recognition approach for learning on skeleton-based articulated
3D body joints via JEANIE. It performs joint alignment of temporal blocks and
simulated viewpoint indexes of skeletons between support-query sequences to select
the smoothest path without abrupt jumps in matching temporal locations and view
indexes. Warping jointly temporal locations and simulated viewpoint indexes helps
meta-learning with limited samples of novel classes. We propose a simple similarity-
based loss to encourage the alignment of within-class sequences and prevent the
alignment of between-class sequences.

—Chapter 9: Summary and Future Work. In the final chapter of this thesis, we
summarize our contributions and outline and discuss future research directions.

1.8 Publications

The following publications are associated with the research in this thesis and have not
been used to obtain any other degree from another university or institution.

18 Introduction

• Lei Wang*, Piotr Koniusz* and Du Q. Huynh. “Hallucinating IDT Descriptors
and I3D Optical Flow Features for Action Recognition with CNNs”. International
Conference on Computer Vision (ICCV, A*), pp. 8698-8708, 2019.

• Lei Wang, Du Q. Huynh and Piotr Koniusz. “A Comparative Review of Re-
cent Kinect-based Action Recognition Algorithms”. IEEE Transactions on Image
Processing (TIP, IF: 11.041), vol. 29, pp. 15-28, 2020.

• Lei Wang and Piotr Koniusz. “Self-supervising Action Recognition by Statistical
Moment and Subspace Descriptors”. The 29th ACM International Conference on
Multimedia (ACM MM, A*), pp. 4324–4333, 2021.

• Lei Wang* and Piotr Koniusz*. “Uncertainty-DTW for Time Series and Se-
quences”. The 17th European Conference on Computer Vision (ECCV, A*, oral), pp.
176–195, 2022.

• Lei Wang and Piotr Koniusz. “Temporal-Viewpoint Transportation Plan for
Skeletal Few-shot Action Recognition”. The 16th Asian Conference on Computer
Vision (ACCV, oral, Sang Uk Lee Best Student Paper Award), pp. 4176-4193, 2022.

• Piotr Koniusz, Lei Wang and Anoop Cherian. “Tensor Representations for
Action Recognition”. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI, IF: 24.314), vol. 44, no. 2, pp. 648-665, 2022.

• Lei Wang and Piotr Koniusz. “3Mformer: Multi-order Multi-mode Transformer
for Skeletal Action Recognition”. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR, A*), pp. 5620-5631, 2023.

During my PhD, I also co-authored the following paper on action recognition,
which is not discussed in this thesis.

• Zhenyue Qin, Yang Liu, Pan Ji, Dongwoo Kim, Lei Wang, R.I. (Bob) McKay,
Saeed Anwar and Tom Gedeon. “Fusing Higher-Order Features in Graph Neural
Networks for Skeleton-Based Action Recognition. IEEE Transactions on Neural
Networks and Learning Systems (TNNLS, IF: 14.255), 2021.

* indicates equal contribution.

Chapter 2

A Comparative Review

Video-based human action recognition is currently one of the most active research
areas in computer vision. Various research studies indicate that the performance
of action recognition is highly dependent on the type of features being extracted
and how the actions are represented. Since the release of the Kinect camera, a large
number of Kinect-based human action recognition techniques have been proposed
in the literature. However, there still does not exist a thorough comparison of these
Kinect-based techniques under the grouping of feature types, such as handcrafted
versus deep learning features and depth-based versus skeleton-based features. In
this chapter, we analyze and compare ten recent Kinect-based algorithms for both
cross-subject action recognition and cross-view action recognition using six benchmark
datasets. In addition, we have implemented and improved some of these techniques
and included their variants in the comparison. Our experiments show that the majority
of methods perform better on cross-subject action recognition than cross-view action
recognition, that skeleton-based features are more robust for cross-view recognition
than depth-based features, and that deep learning features are suitable for large
datasets.

2.1 Introduction

Human action recognition has many useful applications such as human computer
interaction, smart video surveillance, sports and health care. These applications are
one of motivations behind much research work devoted to this area in the last few
years. However, even with a large number of research papers found in the literature,
many challenging problems, such as different viewpoints, visual appearances, hu-
man body sizes, lighting conditions, and speeds of action execution, still affect the
performance of these algorithms. Further problems include partial occlusion of the
human subjects by other objects in the scene and self-occlusion of human subjects
themselves. Among the human action recognition papers presented in the literature,
some of the early techniques focus on using conventional RGB videos [Bobick and
Davis, 2001; Dollár et al., 2005; Blank et al., 2005; Ke et al., 2007; Laptev et al., 2008;
Liu and Shah, 2008; Bregonzio et al., 2009; Liu et al., 2009]. While these video-based
techniques gave promising results, their recognition accuracy is still relatively low,

19

20 A Comparative Review

even when the scene is free of clutter.
The Kinect camera introduced by Microsoft in 2001 was an attempt to broaden

the 3D gaming experience of the Xbox 360’s audience. However, as the Kinect
camera can capture real-time RGB and depth videos, and there is a publicly available
toolkit for computing the human skeleton model from each frame of a depth video,
many research papers on 3D human action recognition using the Kinect camera have
emerged. One advantage of using depth videos than the conventional RGB videos
is that it is easier to segment the foreground human subject even when the scene is
cluttered. As depth videos do not have colour information, the colour of the clothes
worn by the human subject has no effect on the segmentation process. This allows
action recognition researchers to focus their effort more on getting robust feature
descriptors to describe the actions rather than on low level segmentation. Numerous
representative methods for 3D action analysis using depth videos include [Li et al.,
2010; Yang and Tian, 2012; Oreifej and Liu, 2013; Rahmani et al., 2014c, 2016b; Rahmani
and Mian, 2016]. These methods employ advanced machine learning techniques for
which good results have been reported. Of course, depth images are also vulnerable to
noise due to various factors [Mallick et al., 2014]. Thus, using depth images does not
always guarantee good action recognition performance [Li et al., 2010]. The algorithm
used for computing the 3D joint positions of the human skeletal model by the Kinect
toolkit is based on the human skeleton tracking framework (OpenNI) of Shotton
et al. [2011]. In addition to the availability of the real-time depth video stream,
this tracking framework also opens up the research area of skeleton-based human
action recognition [Vemulapalli et al., 2014; Shahroudy et al., 2016a; Vemulapalli and
Chellappa, 2016; Ke et al., 2017a,b; Rahmani and Bennamoun, 2017].

Human action recognition methods using the Kinect data can be classified into
two categories, based on how the feature descriptors are extracted to represent
the human actions. The first category is handcrafted features. Action recognition
methods using handcrafted features require two complex hand-design stages, namely
feature extraction and feature representation, to build the final descriptor. Both the
feature extraction stage and feature representation stage differ from one method
to another. The feature extraction stage may involve computing the depth (and/or
colour) gradients, histogram, and other more complex transformations of the video
data. The feature representation stage may involve simple concatenation of the feature
components extracted from the previous stage, a more complex fusion step of these
feature components, or even using a machine learning technique, to get the final
feature descriptor. These methods usually involve a number of operations that require
researchers to carry out careful feature engineering and tuning. Kinect-based human
action recognition algorithms using handcrafted features reported in the literature
include [Li et al., 2010; Shotton et al., 2011; Yang and Tian, 2012; Oreifej and Liu, 2013;
Rahmani et al., 2014c, 2016b; Vemulapalli et al., 2014; Vemulapalli and Chellappa,
2016; Koniusz et al., 2016a; Zhang et al., 2018b].

The second category is deep learning features. With the huge advance in neural
network research in the last decade, deep neural networks have been used to extract
high-level features from video sequences for many different applications, including

§2.2 Related Work 21

3D human action analysis. Deep learning methods reduce the need for feature
engineering; however, they require a huge amount of labelled training data, which
may not be available, and a long time to train. For small human action recognition
datasets, deep learning methods may not give the best performance. Recent Kinect-
based human action recognition algorithms are: [Shahroudy et al., 2016a; Rahmani
and Mian, 2016; Rahmani and Bennamoun, 2017; Rahmani et al., 2015; Ke et al.,
2017a,b; Yan et al., 2018; Li et al., 2018b,a; Wang and Wang, 2017; Tang et al., 2018; Liu
et al., 2017; Huang et al., 2017; Lee et al., 2017; Si et al., 2018; Wang and Wang, 2018;
Liu et al., 2018; Tanfous et al., 2018; Zheng et al., 2018].

Research contributions. Although both handcrafted and deep learning features have
been used in human action recognition, to the best of our knowledge, a thorough
comparison of recent action recognition methods for these two categories is not found
in the literature. Our contributions in this chapter are twofold:

• We evaluate the performance of 10 recent state-of-art human action recogni-
tion algorithms, with specific focus on comparing the effectiveness of using
handcrafted features versus deep learning features and skeleton-based features
versus depth-based features. We believe that there is a lack of such a comparison
in the literature on human action recognition.

• Furthermore, we evaluate the cross-view versus cross-subject performance of
these algorithms and, for the multiview datasets, the impact of the camera
view for both small and large datasets on human action recognition with re-
spect to whether the features being used are depth-based, skeleton-based, or
depth+skeleton-based. To the best of our knowledge, such evaluation has not
been performed before.

The chapter is organized as follows. Section 2.2 gives a brief review on recent
human action recognition techniques. Section 2.3 covers the details of the 10 algorithms
being compared in this chapter. In Section 2.4, we describe our experimental setting
and the benchmark datasets. Sections 2.5 and 2.6 summarize our experimental results,
comparison, and discussions. The last section concludes the chapter.

2.2 Related Work

Action recognition methods can be classified into three categories based on the type
of input data: colour-based [Bobick and Davis, 2001; Blank et al., 2005; Dollár et al.,
2005; Fishkin et al., 2005; Hodges and Pollack, 2007; Ke et al., 2007; Liu and Shah,
2008; Laptev et al., 2008; Liu et al., 2009; Bregonzio et al., 2009; Buettner et al., 2009;
Sung et al., 2011, 2012; Koppula et al., 2013; Gupta et al., 2014; Bilen et al., 2016;
Shahroudy et al., 2016b; Feichtenhofer et al., 2017a; Kar et al., 2017; Cherian et al.,
2017b,a; Shahroudy et al., 2018; Carreira and Zisserman, 2017; Feichtenhofer et al.,
2016b; Hu et al., 2018], depth-based [Li et al., 2010; Yang and Tian, 2012; Wang et al.,
2012; Oreifej and Liu, 2013; Xia and Aggarwal, 2013; Rahmani et al., 2014c,b,a; Yang
and Tian, 2014b; Wang et al., 2015b; Rahmani et al., 2015; Wang et al., 2016c; Rahmani

22 A Comparative Review

et al., 2016a,b; Rahmani and Mian, 2016; Shahroudy et al., 2016b; Zhang et al., 2017a;
Rahmani and Bennamoun, 2017; Hu et al., 2018; Shi and Kim, 2017; Zhang et al.,
2018b], and skeleton-based [Shotton et al., 2011; Xia et al., 2012; Vemulapalli et al.,
2014; Du et al., 2015; Veeriah et al., 2015; Zhu et al., 2016; Liu et al., 2016; Koniusz
et al., 2016a; Vemulapalli and Chellappa, 2016; Amor et al., 2016; Shahroudy et al.,
2016a; Rahmani and Bennamoun, 2017; Ke et al., 2017b,a; Hu et al., 2018; Wang and
Wang, 2017, 2018; Si et al., 2018; Lee et al., 2017; Huang et al., 2017; Liu et al., 2017;
Tang et al., 2018; Li et al., 2018a; Liu et al., 2018; Tanfous et al., 2018; Zheng et al.,
2018; Elmadany et al., 2018; Zhang et al., 2018b; Si et al., 2019; Li et al., 2019; Shi et al.,
2019a,b]. In this section, we will focus on reviewing recent methods using the last two
types of features.
Depth-based action recognition. Action recognition from depth videos [Li et al., 2010;
Yang and Tian, 2012; Wang et al., 2012; Oreifej and Liu, 2013; Xia and Aggarwal, 2013;
Yang and Tian, 2014b; Rahmani et al., 2014b,a, 2016b,a] has become more popular be-
cause of the availability of real-time cost-effective sensors. Most existing depth-based
action recognition methods use global features such as space-time volume and sil-
houette information. For example, Oreifej and Liu [2013] captured the discriminative
features by projecting the 4D surface normals obtained from the depth sequence onto
a 4D regular space to build the Histogram of Oriented 4D Normals (HON4D). Yang and
Tian [2014b] extended HON4D by concatenating local neighbouring hypersurface nor-
mals from the depth video to jointly characterize local shape and motion information.
More precisely, they introduced an adaptive spatio-temporal pyramid to subdivide
the depth video into a set of space-time cells for more discriminative features. Xia and
Aggarwal [2013] proposed to filter out the noise from the depth sensor so as to get
more reliable spatio-temporal interest points for action recognition. Although these
methods have achieved impressive performance for frontal action recognition, they
are sensitive to changes of viewpoint. One way to alleviate this viewpoint issue is to
directly process the pointclouds, as reported in the paper by Rahmani et al. [2016b].

Apart from the methods mentioned above which use handcrafted features, the use
of deep learning features [Wang et al., 2015b; Rahmani et al., 2015; Wang et al., 2016c;
Shahroudy et al., 2016b; Rahmani and Mian, 2016; Rahmani and Bennamoun, 2017;
Zhang et al., 2017a; Shi and Kim, 2017] in human action recognition is on the rise.
For example, Wang et al. [2015b] used a Hierarchical Depth Motion Maps (HDMMs) to
extract the body shape and motion information and then trained a 3-channel deep
Convolutional Neural Network (CNN) on the HDMMs for human action recognition. In
the following years, Rahmani and Mian [2016] proposed to train a single Human Pose
Model (HPM) from real motion capture data to transfer the human pose from different
unknown views to a view-invariant feature space, and Zhang et al. [2017a] used a
multi-stream deep neural networks to jointly learn the semantic relations among
action attributes.
Skeleton-based action recognition. Existing skeleton-based action recognition meth-
ods can be grouped into two categories: joint-based methods and body part based
methods. Joint-based methods model the positions and motion of the joints (either in-
dividual or a combination) using the coordinates of the joints extracted by the OpenNI

§2.2 Related Work 23

tracking framework. For instance, a reference joint may be used and the coordinates of
other joints are defined relative to the reference joint [Yang and Tian, 2012; Vemulapalli
et al., 2014; Ke et al., 2017b,a], or the joint orientations may be computed relative to
a fixed coordinate system and used to represent the human pose [Xia et al., 2012],
etc. For the body part based methods, the human body parts are used to model the
human’s articulated system. These body parts are usually modelled as rigid cylinders
connected by joints. Information such as joint angles [Vemulapalli and Chellappa,
2016], temporal evolution of body parts [Amor et al., 2016; Shahroudy et al., 2016a;
Koniusz et al., 2016a; Yan et al., 2018], and 3D relative geometric relationships between
rigid body parts [Vemulapalli et al., 2014; Vemulapalli and Chellappa, 2016; Yan et al.,
2018] has all been used to represent the human pose for action recognition.

The method proposed by Vemulapalli et al. [2014] falls into the body part based
category. They represent the relative geometry between a pair of body parts, which
may or may not be directly connected by a joint, as a point in SE(3). Thus, a human
skeleton is a point of the Lie group SE(3)× ... × SE(3) where each action corresponds
to a unique evolution of such a point in time. The approach of Ke et al. [2017a] relies
on both body parts and body joints. The human skeleton model was divided into
5 body parts. A specific joint was selected for each body part as the reference joint
and the coordinates of other joints were expressed as vectors relative to that reference
joint. Various distance measures were computed from these vectors to yield a feature
vector for each video frame. The features vectors from all video frames were finally
appended together and scaled to form a handcrafted greyscale image descriptor fed
into a CNN. Somewhat related approach [Tas and Koniusz, 2018] uses kernels formed
over body joints to obtain feature maps fed into a CNN for simultaneous action
recognition and domain adaptation.

Recent human action recognition papers favour deep learning techniques to
perform human action recognition. Apart from the CNN-based approaches [Ke et al.,
2017a; Tas and Koniusz, 2018], Recurrent Neural Networks (RNNs) have also been
popular [Du et al., 2015; Veeriah et al., 2015; Shahroudy et al., 2016a; Zhu et al., 2016;
Liu et al., 2016; Li et al., 2018b; Shi and Kim, 2017; Wang and Wang, 2018; Zheng
et al., 2018]. Since Long Short-term Memory (LSTM) [Hochreiter and Schmidhuber,
1997] can model temporal dependencies as RNNs and even capture the co-occurrences
of human joints, LSTM networks have also been a popular choice in human action
recognition [Liu et al., 2017; Lee et al., 2017; Tanfous et al., 2018; Liu et al., 2018; Si et al.,
2019]. For instance, Zhu et al. [2016] presented an end-to-end deep LSTM network
with a dropout step, Shahroudy et al. [2016a] proposed a Part-aware Long Short-term
Memory (P-LSTM) network to learn the long-term patterns of the 3D trajectories for
each grouped body part, and Liu et al. [2018] introduced the use of trust gates in their
spatio-temporal LSTM architecture.
Action recognition via a combination of skeleton and depth features. Combining
skeleton and depth features together helps overcome situations when there are interac-
tions between human subject and other objects or when the actions have very similar
motion trajectories. Various action recognition algorithms [Rahmani et al., 2014c;
Shahroudy et al., 2016b; Rahmani and Bennamoun, 2017; Elmadany et al., 2018] that

24 A Comparative Review

Table 2.1: Ten state-of-the-art action recognition methods evaluated in this chapter.

Algorithms Year Short descriptions Kinect data used Feature dimension

HON4D [Oreifej and Liu, 2013] CVPR 2013 handcrafted (global descriptor) depth [17880, 151200]
HDG [Rahmani et al., 2014c] WACV 2014 handcrafted (local + global descriptor) depth+skeleton [1662, 1819]
LARP-SO [Vemulapalli and Chellappa, 2016] CVPR 2016 handcrafted (Lie Group) skeleton 3 × 3× #frames
HOPC [Rahmani et al., 2016b] TPAMI 2016 handcrafted (local descriptor) depth→pointcloud depending on #STKs†

SCK+DCK [Koniusz et al., 2016a] ECCV 2016 handcrafted (tensor representations) skeleton ∼ 40k
P-LSTM [Shahroudy et al., 2016a] CVPR 2016 deep learning (LSTM) skeleton #joints ×3 × 8‡

HPM+TM [Rahmani and Mian, 2016] CVPR 2016 deep learning (CNN) depth 4096
Clips+CNN+MTLN [Ke et al., 2017b] CVPR 2017 deep learning (pre-trained VGG19, MTLN) skeleton 7168
IndRNN [Li et al., 2018b] CVPR 2018 deep learning (independently RNN) skeleton 512
ST-GCN [Yan et al., 2018] AAAI 2018 deep learning (Graph ConvNet) skeleton 256

†STK stands for spatio-temporal keypoint. ‡The P-LSTM features include 8 video segments, each of which
is composed of a number of 3D joints.

use both depth and skeleton features for robust human action recognition have been
reported in recent years. For example, Rahmani et al. [2014c] proposed to combine
4 types of local features extracted from both depth images and 3D joint positions to
deal with local occlusions and to increase the recognition accuracy. We refer to their
method as HDG from hereon. Another example is the approach of Shahroudy et al.
[2016b] where Local Occupancy Patterns (LOP), HON4D, and skeleton-based features
are combined with hierarchical mixed norms which regularize the weights in each
modality group of each body part. Recently, Rahmani and Bennamoun [2017] used
an end-to-end deep learning model to learn the body part representation from both
skeletal and depth images. To improve the performance of the model, they adopted a
bilinear compact pooling [Gao et al., 2016] layer for the generated depth and skeletal
features. Elmadany et al. [2018], on the other hand, proposed to use canonical correla-
tion analysis to maximize the correlation of features extracted from different sensors.
The features investigated in their paper include bag of angles extracted from skeleton
data, depth motion map from depth video, and optical flow from RGB video. The
subspace shared by all the features was learned and average pooling was used to get
the final feature descriptor.

2.3 Analyzed and Evaluated Algorithms

We chose ten action recognition algorithms shown in Table 2.1 for our comparison
and evaluation as they are recent action recognition methods (from 2013 onward) and
they use skeleton-based, depth-based, handcrafted, and/or deep learning features.
The technical details of these algorithms are summarized below.
HON4D. Oreifej and Liu [2013] presented a global feature descriptor that captures
the geometry and motion of human action in the 4D space of spatial coordinates,
depth and time. To form the HON4D descriptor, the space was quantized using a
600-cell polychoron with 120 vertices. The vectors stretching from the origin to these
vertices were used as projection axes to obtain the distribution of normals for each
video sequence. To improve the classification performance, random perturbations
were added to those projectors. The dimensions of HON4D features (Table 2.1) vary

§2.3 Analyzed and Evaluated Algorithms 25

across different datasets.
HDG. In this algorithm [Rahmani et al., 2014c], each depth sequence was firstly
divided into small subvolumes; the histograms of depth and depth derivatives were
computed for each subvolume. For each skeleton sequence, the torso joint was used
as a stable reference joint for computing the histograms of joint position differences.
In addition, the variations of each joint movement volume were incorporated into
the global feature vector to form spatio-temporal joint features. Two Random Decision
Forests (RDFs) were trained in this algorithm, one for feature pruning and one for
classification. More details about feature dimensions of HDG and the feature pruning
applied by us will be given in Section 2.4.4.
HOPC. Approach [Rahmani et al., 2016b] models depth images as 3D pointclouds.
The authors used two types of support volume, namely, so-called spatial support
volume and spatio-temporal support volume. The HOPC descriptor was extracted
from the pointcloud falling inside the support volume around each point, which
may be classified as a spatio-temporal Keypoint (STK) if the eigenvalue ratios of the
pointcloud around it are larger than some predefined threshold. For each STK, the
algorithm further projected eigenvectors onto the axes of the 20 vertices of a regular
dodecahedron. The final HOPC descriptor for each STK is a concatenation of 3 small
histograms, each of which captures the distribution of an eigenvector of the pointcloud
within the support volume.
LARP-SO. Vemulapalli and Chellappa [2016] extended their earlier work [Vemulapalli
et al., 2014] by the use of Lie Algebra Relative Pairs via SO(3) for action recognition.
We follow the convention adopted in [Rahmani and Bennamoun, 2017] and name this
algorithm as LARP-SO. In this algorithm, the rolling map, which describes how a
Riemannian manifold rolls over another one along a smooth rolling curve, was used for
3D action recognition. Each skeleton sequence was firstly represented by the relative
3D rotations between various human body parts, and each action was then modelled
as a curve in the Lie Group. Since it is difficult to perform the classification of action
curves in a non-Euclidean space, the curves were unwrapped by the logarithm map at
a single point while a rolling map was used to reduce distortions. The Fourier Temporal
Pyramid (FTP) representation [Wang et al., 2012] was used in the algorithm to make
the descriptor more robust to noise and less sensitive to temporal misalignments.
SCK+DCK. Koniusz et al. [2016a] used tensor representations to capture the higher-
order relationships between 3D human body joints for action recognition. They
applied two different RBF kernels which they referred to as Sequence Compatibility
Kernel (SCK) and Dynamics Compatibility Kernel (DCK). The former kernel captures the
spatio-temporal compatibility of joints while the latter models the action dynamics of
a sequence. An SVM was then trained on linearized feature maps of such kernels for
action classification.
HPM+TM. Approach [Rahmani and Mian, 2016] employs a dictionary containing rep-
resentative human poses from a motion capture database. A deep CNN architecture
which is a modification of [Gupta et al., 2014] was then used to train a view-invariant
human pose model. Real depth sequences were passed to the learned model frame-
by-frame to extract high-level view-invariant features. Similarly to the LARP-SO

26 A Comparative Review

algorithm above, the FTP was used to capture the temporal structure of the action
videos. The final descriptor for each video sequence is a collection of the Fourier
coefficients from all the segments.
P-LSTM. Approach [Shahroudy et al., 2016a] proceeds by transforming 3D coordinates
of the body joints from the camera coordinate system to the body coordinate system
with the origin set at the spine. The 3D coordinates of all other body joints were then
scaled based on the distance between the ‘hip centre’ joint and the ‘spine’ joint. A
P-LSTM model was built by splitting the memory cells from the LSTM model into
body part based sub-cells. For each video sequence, the pre-processed human joints
were grouped into 5 parts (torso, two hands, and two legs) and the video was divided
into 8 equal-sized video segments. Then, for a randomly selected frame per video
segment, 3D coordinates of the joints inside each grouped part were concatenated
and passed as input to the P-LSTM network to learn common temporal patterns of
the parts and combine them into a global representation.
Clips+CNN+MTLN. Ke et al. [2017b] presented a skeletal representation referred to
as clips. The method proceeds by transforming the Cartesian coordinates of human
joints (per skeleton sequence) into the cylindrical coordinates to generate 3 clips, with
each clip corresponding to one channel of the cylindrical coordinates. To encode the
temporal information for the whole video sequence, four stable joints (left shoulder,
right shoulder, left hip and right hip) were selected as reference joints to produce
4 coordinate frames. The pre-trained VGG19 network [Simonyan and Zisserman,
2015] was used as a feature extractor to learn the long-term spatio-temporal features
from intermediate images formed from the 4 coordinate frames. Moreover, approach
[Ke et al., 2017b] also employs the Multi-task Learning Network (MTLN) proposed
by [Caruana, 1997] to incorporate the spatial structural information from the CNN
features.
IndRNN. Li et al. [2018b] proposed a new RNN method, an Independently Recurrent
Neural Network, for which neurons per layer are independent of each other but they
are reused across layers. Finally, multiple IndRNNs were stacked to build a deeper
network than the traditional RNN.
ST-GCN. The spatio-temporal graph representation for skeleton sequences proposed
by Yan et al. [2018] is an extension of Graph Convolutional Networks (GCN) [Bruna
et al., 2014; Defferrard et al., 2016; Kipf and Welling, 2017] tailored to perform human
action recognition. Firstly, the spatio-temporal graph is constructed by inserting edges
between neighbouring body joints (nodes) of the human body skeleton as well as
along the temporal direction. Subsequently, GCN and a classifier are applied to infer
dependencies in the graphs (a single graph corresponds to a single action sequence)
and perform classification.

2.4 Experimental Setting

To perform experiments, we obtained off-the-shelf codes for HON4D [Oreifej and
Liu, 2013], HOPC [Rahmani et al., 2016b], LARP-SO [Vemulapalli and Chellappa,

§2.4 Experimental Setting 27

Table 2.2: Six publicly available benchmark datasets used in our experiments for 3D
action recognition.

Datasets Year Classes Subjects #Views #videos Sensor Modalities #joints

MSRAction3D [Li et al., 2010] 2010 20 10 1 567 Kinect v1 Depth+3DJoints 20
3D Action Pairs [Oreifej and Liu, 2013] 2013 12 10 1 360 Kinect v1 RGB+Depth+3DJoints 20
CAD-60 [Sung et al., 2011] 2011 14 4 – 68 Kinect v1 RGB+Depth+3DJoints 15
UWA3D Activity Dataset [Rahmani et al., 2014b] 2014 30 10 1 701 Kinect v1 RGB+Depth+3DJoints 15
UWA3D Multiview Activity II [Rahmani et al., 2016b] 2015 30 9 4 1070 Kinect v1 RGB+Depth+3DJoints 15
NTU RGB+D Dataset [Shahroudy et al., 2016a] 2016 60 40 80 56880 Kinect v2 RGB+Depth+3DJoints 25

(The number of views is not stated in the CAD-60 dataset.)

2016], HPM+TM [Rahmani and Mian, 2016], IndRNN [Li et al., 2018b] and ST-
GCN [Yan et al., 2018] from the respective authors’ websites. For SCK+DCK [Koniusz
et al., 2016a], HDG [Rahmani et al., 2014c], P-LSTM [Shahroudy et al., 2016a] and
Clips+CNN+MTLN [Ke et al., 2017b], we used our own Matlab implementations
given that codes for these methods are not publicly available. Moreover, we employed
ten variants of the HDG [Rahmani et al., 2014c] representation so as to evaluate the
performance with respect to different combinations of its individual descriptor types.
We also implemented the traditional RNN and LSTM as baseline methods, and added
four variants of P-LSTM to evaluate the impact of using different numbers of video
segments for skeletal representation as well as different numbers of hidden neurons.

2.4.1 Benchmark Datasets

Listed in Table 2.2 are six benchmark datasets used in our evaluation, each of which
is detailed below.
MSRAction3D [Li et al., 2010] is one of the earliest action datasets captured with the
Kinect depth camera. It contains 20 human sport-related activities such as jogging, golf
swing and side boxing. Each action in this dataset was performed 2 or 3 times by 10
people. This dataset is challenging because of high inter-action similarities.
3D Action Pairs [Oreifej and Liu, 2013] contains 6 selected pairs of actions that have
very similar motion trajectories, e.g., put on a hat and take off a hat; pick up a box and put
down a box; stick a poster and remove a poster. Each action was performed 3 times by 10
people. There are two challenging aspects of this dataset: (i) the actions in each pair
have similar motion trajectories; (ii) the object that is interacted by the subject in each
video is only present in the RGB-D data but not the skeleton data.
Cornell Activity Dataset (CAD) [Sung et al., 2011] comprises two sub-datasets, CAD-
60 and CAD-120. Both sub-datasets contain RGB-D and tracked skeleton video
sequences of human activities captured by a Kinect sensor. In this chapter, only
CAD-60 was used in the experiments. Fig. 2.1 illustrates depth images from the
CAD-60 dataset and demonstrates that this dataset exhibits high levels of noise in its
depth videos.
UWA3D Activity Dataset [Rahmani et al., 2014b] contains 30 actions performed by 10
people of various height at different speeds in cluttered scenes. This dataset has high

28 A Comparative Review

(a) talking (phone) (b) writing (c) brushing teeth

(d) talking (couch) (e) relaxing (couch) (f) cooking (stirring)

Figure 2.1: Sample depth images from the CAD-60 dataset.

Front view (𝑉") Left view (𝑉#) Right view (𝑉$) Top view (𝑉%)

(d)

𝑽𝟐 𝑽𝟏

𝑽𝟑

𝑽𝟒

(a)

(b) (c)

𝑽𝟐 𝑽𝟑

𝑽𝟏
50- 50-

𝑽𝟒

𝑽𝟏

50-

Figure 2.2: (a) A perspective view of the camera setup in the UWA3D Multiview
Activity II dataset. The views V1, V2 and V3 are at the same height. (b) and (c) show
the top and side views of the setup. The angles between V1 and V2, between V1 and
V3, and between V1 and V4 are all approximately 50 degrees [Rahmani et al., 2014b].
(d) An example video frame of the depth and skeleton data for the bending action.

between-class similarity and contains frequent self-occlusions.
UWA3D Multiview Activity II [Rahmani et al., 2016b] contains 30 actions performed
by 9 people in a cluttered environment. In this dataset, the Kinect camera was moved
to different positions to capture the actions from 4 different views (see Fig. 2.2(a)-(c)):
front view (V1), left view (V2), right view (V3), and top view (V4). This dataset is

§2.4 Experimental Setting 29

therefore more challenging than the previous four datasets. Fig. 2.2(d) shows sample
video frames from this dataset.
NTU RGB+D Dataset [Shahroudy et al., 2016a] is so far the largest Kinect-based
action dataset which contains 56,880 video sequences and over 4 million frames. There
are 60 action classes performed by 40 subjects captured from 80 views with 3 Kinect
v.2 cameras. This dataset has variable sequence lengths for different sequences and
exhibits high intra-class variations.
Dataset usage. Below we detail how the above six datasets were used in our experi-
ments.

The MSRAction3D, 3D Action Pairs, CAD-60 and UWA3D Activity datasets were
used for cross-subject (single-view) experiments. For every dataset, we used half
of the subjects’ data for training and the remaining half for testing. We tested all
the possible combinations of subjects for the training and testing splits to obtain the
average recognition accuracy of each algorithm. For example, for 10 subjects in the
MSRAction3D dataset, (10

5) = 252 experiments were carried out.
The UWA3D Multiview Activity II dataset was used for cross-view experiments,

with two views of the samples being used for training and the remaining views for
testing. There were 12 different view combinations in the experiments.

The NTU RGB+D dataset was used in both cross-subject and cross-view experi-
ments. Despite indications that this dataset has 80 views of human action recognition,
the data samples were grouped according to three camera sets. For cross-view action
recognition, we used the video sequences captured by two cameras as our training data
and the remaining sequences for testing. A total of 3 different camera combinations
were experimented with.

2.4.2 Evaluation Settings

Below we detail the experimental settings of the algorithms.
HON4D. According to [Oreifej and Liu, 2013], HON4D has the frame size of 320× 240
and each video is divided into 4×3×3 (width×height×#frames) spatio-temporal cells.
In our evaluations, we used these same settings for all the datasets.
HOPC. Rahmani et al. [2016b] used different spatial and temporal scales for different
datasets. In this chapter, a constant temporal scale and spatial scale were used for
all the datasets. For the MSRAction3D and 3D Action Pairs datasets, the temporal
and spatial scales were set to 2 and 19, respectively. For the remaining datasets, we
used 2 for the temporal scale and 140 as the spatial scale. Moreover, we divided each
depth video into 6×5×3 spatio-temporal cells (along the X, Y and time axes) to extract
features.
LARP-SO. The desired number of frames [Vemulapalli and Chellappa, 2016] used
for computing skeletal representation varies depending on the datasets used in the
experiments. The desired frame numbers for the UWA3D Activity, UWA3D Multiview
Activity II, and NTU RGB+D datasets were all set to 100. For the MSRAction3D, 3D
Action Pairs datasets, and CAD-60, they were set to 76, 111, and 1,000, respectively.

30 A Comparative Review

SCK+DCK. We followed the experimental settings described in [Koniusz et al., 2016a,
2020] for all the datasets and we used authors’ newest model which aggregates over
subsequences (not just sequences). For SCK, we normalized all human body joints
with respect to the hip joints across frames as well as the lengths of all body parts. For
DCK, we used the unnormalized body joints, and assumed that the displacements of
body joint coordinates across frames captured their temporal evolution.
HDG. According to [Rahmani et al., 2014c]), the number of used subvolumes has no
significant effect to the discriminative features, we divided each video sequence into
10×10×5 subvolumes (along X, Y and time) for computing the histograms of depth
as well as the depth gradients. For the joint movement volume features, each joint
volume was divided into 1×1×5 cells (along X, Y and time). There are four individual
feature representations encapsulated by HDG:

(i) histogram of depth (hod),

(ii) histogram of depth gradients (hodg),

(iii) joint position differences (jpd),

(iv) joint movement volume features (jmv).

We follow [Wang, 2017] and evaluate the performance of the 10 variants of HDG in
our experiments.
HPM+TM. We followed [Rahmani and Mian, 2016] and set the number of Fourier
Pyramid levels to 3 and the number of low frequency Fourier coefficients to 4 for
all datasets. We used the human pose model trained by Rahmani and Mian [2016]
to extract view-invariant features from each depth sequence. We also compared the
recognition accuracies of this algorithm given Average Pooling (AP) versus Temporal
Modelling (TM) used for extraction of CNN features.
P-LSTM. We applied the same normalization preprocessing step as in [Shahroudy
et al., 2016a] for the skeletal representation. In our experiments, the number of
video segments and the number of hidden neurons for 1-layer RNN, 2-layer RNN,
1-layer LSTM, 2-layer LSTM, 1-layer P-LSTM and 2-layer P-LSTM were all set to 8 and
50, respectively. We also evaluated the performance of different numbers of video
segments and different numbers of hidden neurons in P-LSTM. The learning rate and
the number of epochs in our experiments were set to 0.01 and 300, respectively.
Clips+CNN+MTLN. The learning rate was set to 0.001 and the batch size was set to
100 for MTLN. We selected four different experimental settings from [Ke et al., 2017b]
to compare the performance of recognition: Frames+CNN, Clips+CNN+Pooling,
Clips+CNN+Concatenation, and Clips+CNN+MTLN.
IndRNN. We used the Adam optimizer with the initial learning rate 2 × 10−4 and
applied the decay by 10 once the evaluation accuracy did not increase. For cross-subject
and cross-view experiments, the dropout rates were set to 0.25 and 0.1, respectively.
ST-GCN. For the convolution operations, we used the optimal partition strategy
according to the ablation study in [Yan et al., 2018]. As different datasets have

§2.4 Experimental Setting 31

different numbers of body joints (see Table 2.2), we reconstructed the spatio-temporal
skeleton graphs. For NTU RGB+D dataset, we used the same experimental settings
as described in [Yan et al., 2018] (e.g., we work with up to two human subjects per
sequence). For the remaining 5 datasets, we used a different setting as only one
performing subject was present per video.

Moreover, we performed extra experiments for IndRNN and ST-GCN: instead of
using 3D skeleton sequences as inputs, we used jpd features which redefine the 3D
skeleton joint positions by translating them to be centred at the torso (or ‘spine’) joint.

2.4.3 Evaluation Measure

The recognition accuracy Ac of an algorithm for any given action class c is defined
as the proportion of correct class c labels returned by the algorithm:

Ac = #correct_class_c_labels
/

#actual_class_c_labels . (2.1)

To show the recognition accuracies of an algorithm for all the action classes, a
confusion matrix is often used. The overall performance of an algorithm on a
given dataset is evaluated using the average recognition accuracy Ā defined as:
Ā = 1

C ∑C
c=1 Ac, where C is the total number of action classes in a given dataset.

To show the overall performance of each algorithm on M datasets, we first rank the
performance of each algorithm from 1 to 5 (a lower rank value represents a better
performance) based on the recognition accuracy so each algorithm has its own rank
value ri given the ith dataset. We then compute the Average Rank (AVRank) as
follows:

AVRank =
1
M ∑M

i=1ri. (2.2)

2.4.4 Optimisation of Hyperparameters for HDG

There are 3 hyperparameters in the HDG algorithm. The first hyperparameter is the
number of subvolumes, which we set to the same value as in [Rahmani et al., 2014c].
The second and third hyperparameters, which are the number of trees Ntrees used
in training and the threshold θ used in feature pruning, were optimised during our
experiments (Table 2.3). As the length of the combined features in the HDG algorithm
is large (e.g., the length of the HDG-all features for the MSRAction3D dataset is 13,250),
we trained one RDF to select the feature components that have high importance values.
This helped to increase the processing speed without compromising the recognition
accuracy.

We evaluated the effect of hyperparameters Ntrees and θ on the HDG algorithm for
different combinations of individual HDG features using the MSRAction3D dataset
(for single-view) and the UWA3D Multiview Activity II dataset (for cross-view).
Table 2.3 shows the optimal values for Ntrees and θ obtained from the grid search.
The corresponding dimensions of different HDG combined features before and after

32 A Comparative Review

Table 2.3: Optimal hyperparameter values and feature dimensions before and after
pruning for the HDG combined features.

Combination MSRAction3D UWA3D Multiview Activity II
of individual dimensions optimal θ optimal dimensions dimensions optimal θ optimal dimensions
features before pruning ×10−3 Ntrees after pruning before pruning ×10−3 Ntrees after pruning

HDG-hod 2,500 1.5 100 1,442 2,500 2.7 60 1,231
HDG-hodg 10,000 20.9 200 550 10,000 2.4 60 3,891
HDG-jpd 150 11.5 80 148 150 48.1 120 142
HDG-jmv 600 3.4 140 571 450 3.1 60 449
HDG-hod+hodg 12,500 17.0 180 786 12,500 4.7 140 3,987
HDG-jpd+jmv 750 2.0 80 690 600 6.8 100 581
HDG-hod+hodg+jpd 12,650 8.2 160 2,221 12,650 29.4 80 239
HDG-hod+hodg+jmv 13,100 7.4 180 2,189 12,950 25.0 100 135
HDG-hodg+jpd+jmv 10,750 8.3 180 1,711 10,600 15.2 140 456
HDG-all features 13,250 13.3 120 1,013 13,100 19.0 100 300

pruning are also indicated. Compared to other individual features of HDG, jpd and
jmv are small-sized features, thus when used alone in both datasets, their dimensions
are not reduced by much during feature pruning. However, when either or both of
them are combined with other individual features in cross-view action recognition,
their importance values are significantly higher. This allows a large reduction in
feature dimension after pruning (see the last 4 rows of the table). Our experiments
in the next section also confirm that skeleton-based features deal better with the
view-invariance than depth-based features.

The optimal values of Ntrees and θ shown in Table 2.3 were used to prune the HDG
features for all datasets. As different datasets have different numbers of body joints
(see Table 2.2), the dimensions of these HDG features after pruning across datasets
are not the same.

2.5 Experimental Results

2.5.1 MSRAction3D, 3D Action Pairs, CAD-60, and UWA3D Activity Datasets

Table 2.4 summarizes the results for the single-view action recognition on these
datasets. The algorithms with the highest recognition accuracy for the handcrafted
feature and deep learning feature categories are highlighted in bold.

Among the methods that use handcrafted features, SCK+DCK outperformed all
other methods on all the datasets. The use of RBF kernels to capture higher-order
statistics of the data and complexity of action dynamics demonstrates its effectiveness
for action recognition. For the 3D Action Pairs and UWA3D Activity datasets, HON4D
and HOPC are, respectively, the second top performers. The poorer performance
of HDG was due to noise in the depth sequences which affected the HDG-hod and
HDG-hodg features, even though the human subjects were successfully segmented. In
general, HDG-hodg outperformed HDG-hod, and HDG-jmv outperformed HDG-jpd.
We also found that concatenating more individual features in HDG (see Table 2.4, row
HDG-hod+hodg+jpd to row HDG-all features) helped improve action recognition. We
note that our results for HDG are different from those reported in [Rahmani et al.,

§2.5 Experimental Results 33

Table 2.4: Comparison of average cross-subject action recognition accuracies (percent-
age) for the four single-view datasets (i.e., M = 4 in Eq. (2.2)). Each block of rows
shows the performance of one method and its variants. The best algorithm for each
dataset is highlighted in bold. The last column of the table shows the average rank
of the best performing algorithm in each block. The final rank values are computed
using Eq. (2.2), where top performing methods have smaller rank values. Other poorer
performing methods in the same block are not considered for their rank values, so
their final ranks are marked as ‘–’.

Method MSRAction3D 3D Action Pairs CAD-60 UWA3D Activity AVRank

Hand-
crafted
fea-
tures

HON4D [Oreifej and Liu, 2013] (Depth) 82.15 96.00 72.70 48.89 3.25
HOPC [Rahmani et al., 2016b] (Depth) 85.49 92.44 47.55 60.58 3.25
LARP-SO-logarithm map [Vemulapalli and Chellappa, 2016] (Skel.) 88.69 92.96 69.12 51.96 –
LARP-SO-unwrapping while rolling [Vemulapalli and Chellappa, 2016] (Skel.) 88.47 94.09 69.12 53.05 –
LARP-SO-FTP [Vemulapalli and Chellappa, 2016] (Skel.) 89.40 94.67 76.96 50.41 2.50
HDG-hod [Wang, 2017] (Depth) 66.22 81.20 26.47 44.35 –
HDG-hodg [Wang, 2017] (Depth) 70.34 90.98 50.98 54.23 –
HDG-jpd [Wang, 2017] (Skel.) 55.54 53.78 46.08 40.88 –
HDG-jmv [Wang, 2017] (Skel.) 62.40 84.87 41.18 51.02 –
HDG-hod+hodg [Wang, 2017] (Depth) 71.81 90.96 51.96 55.17 –
HDG-jpd+jmv [Wang, 2017] (Skel.) 65.57 84.93 49.02 55.57 –
HDG-hod+hodg+jpd [Wang, 2017] (Depth + Skel.) 72.06 90.72 51.47 56.41 –
HDG-hod+hodg+jmv [Wang, 2017] (Depth + Skel.) 75.41 92.27 49.51 58.80 –
HDG-hodg+jpd+jmv [Wang, 2017] (Depth + Skel.) 75.00 92.28 52.94 59.82 –
HDG-all features [Wang, 2017] (Depth + Skel.) 75.45 92.13 51.96 60.33 4.00
SCK+DCK [Koniusz et al., 2016a] (Skel.) 89.47 96.00 89.22 61.52 1.00

Deep
learn-
ing
fea-
tures

Frames+CNN [Ke et al., 2017b] (Skel.) 60.73 73.71 58.82 46.47 –
Clips+CNN+Pooling [Ke et al., 2017b] (Skel.) 67.64 74.86 58.82 46.47 –
Clips+CNN+Concatenation [Ke et al., 2017b] (Skel.) 71.27 78.29 61.76 53.85 –
Clips+CNN+MTLN [Ke et al., 2017b] (Skel.) 73.82 79.43 67.65 54.81 2.25
HPM+AP [Rahmani and Mian, 2016] (Depth) 56.73 56.11 44.12 42.32 –
HPM+TM [Rahmani and Mian, 2016] (Depth) 72.00 98.33 44.12 54.78 2.50
1-layer RNN [Shahroudy et al., 2016a] (Skel.) 18.02 32.76 54.90 14.27 –
2-layer RNN [Shahroudy et al., 2016a] (Skel.) 27.80 56.13 54.91 35.36 –
1-layer LSTM [Shahroudy et al., 2016a] (Skel.) 62.26 67.14 61.77 50.81 –
2-layer LSTM [Shahroudy et al., 2016a] (Skel.) 65.33 73.72 63.24 46.78 –
1-layer P-LSTM [Shahroudy et al., 2016a] (Skel.) 70.50 70.86 61.76 55.16 –
2-layer P-LSTM [Shahroudy et al., 2016a] (Skel.) 69.35 72.00 67.65 50.81 2.75
Our implementation with modified hyperparam. values:
1-layer LSTM (8 segments, 100 hidden neurons) (Skel.) 64.75 73.14 58.82 52.58 –
2-layer P-LSTM (10 segments, 50 hidden neurons) (Skel.) 66.09 75.43 67.65 50.00 –
2-layer P-LSTM (10 segments, 100 hidden neurons) (Skel.) 67.43 71.43 54.41 50.32 –
2-layer P-LSTM (20 segments, 50 hidden neurons) (Skel.) 73.18 71.43 52.94 49.68 –
2-layer P-LSTM (20 segments, 100 hidden neurons) (Skel.) 70.50 71.43 58.82 53.55 –
IndRNN (4 layers) [Li et al., 2018b] (Skel.) 71.50 90.05 51.72 44.63 –
IndRNN (6 layers) [Li et al., 2018b] (Skel.) 72.91 89.53 57.03 42.66 –
Our improved results:
IndRNN (4 layers, with jpd) (Skel.) 76.34 82.66 84.69 52.09 –
IndRNN (6 layers, withjpd) (Skel.) 77.47 86.88 80.16 51.34 2.00
ST-GCN∗ [Yan et al., 2018] (Skel.) 27.64 (69.09) 20.00 (77.14) 23.53 (70.59) 22.12 (45.83) –
Our improved results:
ST-GCN∗ (with jpd) (Skel.) 18.18 (64.00) 54.16 (96.57) 26.47 (67.65) 36.54 (70.51) 4.75

*For ST-GCN, the numbers inside the parentheses denote the top-5 accuracy.

2014c] because we used 1×1×5 = 5 cells [Wang, 2017] instead of 2×2×5 = 20 cells to
store the joint motion features.

For deep learning methods, the 1-layer P-LSTM method (8 video segments, 50
hidden neurons) outperformed others on the UWA3D Activity dataset. In general,
a 1-layer LSTM with more hidden neurons performed better than a 1-layer LSTM
with fewer neurons, and P-LSTM performed better than the traditional LSTM and
RNN (see the last column in Table 2.4). The 2-layer P-LSTM (20 video segments, 50
hidden neurons) achieved the best recognition accuracy on the MSRAction3D dataset
and HPM+TM outperformed on the 3D Action Pairs dataset. Comparing the last 5
rows of Table 2.4 for different variants of 2-layer P-LSTM shows that having more
video segments and/or hidden neurons does not guarantee better performance. The
reasons are: (i) more video segments have less averaging effect and so it is likely that
noisy video frames with unreliable skeletal information would be used for feature

34 A Comparative Review

representation; (ii) having too many hidden neurons would cause overfitting in the
training process.

Using the jpd features instead of the raw 3D joint coordinates boosts the recog-
nition accuracies for both IndRNN and ST-GCN on almost all the datasets. For
the CAD-60 and MSRAction3D datasets, the 4-layer IndRNN and 6-layer IndRNN
using jpd features are the top two performers. Compared to using the raw 3D joint
coordinates, the improvement due to the use of jpd is 4.56% for IndRNN (6 layers) on
the MSRAction3D dataset and 32.97% for IndRNN (4 layers) on the CAD-60 dataset.

The last column of Table 2.4 computed using Eq. (2.2) shows that SCK+DCK
obtains average rank 1 score, followed closely by the 6-layer IndRNN with jpd with
average rank 2 score. The ST-GCN method uses a more complex architecture having 9
layers of spatio-temporal graph convolutional operators, which require a large dataset
for training. As all the datasets in Table 2.4 are quite small, its poor performance
(average rank 4.75 score) is not unexpected.

2.5.2 NTU RGB+D Dataset

Table 2.5 summarizes the evaluation results for cross-subject and cross-view action
recognition on the NTU RGB+D dataset, where methods are grouped into the hand-
crafted feature and deep learning feature categories. Top performing methods are
highlighted in bold.

Among the methods using handcrafted features, SCK+DCK performed the best for
both cross-subject action recognition and cross-view action recognition. Similarly to
results on the four datasets shown in Table 2.4, combining more individual features in
HDG resulted in higher recognition accuracy for both the cross-subject and cross-view
action recognition.

Among deep learning methods, ST-GCN and the 6-layer IndRNN combined with
the jpd features outperformed other deep learning methods in both cross-subject
and cross-view action recognition. In particular, with jpd, ST-GCN became the
top performer (achieving 83.36%) for cross-subject action recognition and IndRNN
(6 layers) achieved the highest accuracy (89.0%) for cross-view action recognition.
Compared to using the raw 3D skeleton joint coordinates, using the jpd features helps
improve the recognition accuracies of both IndRNN and ST-GCN. For example, with
jpd features, both the top-1 and top-5 accuracies of ST-GCN increased by 1.79% and
0.61% in the cross-subject experiment.

For the other deep learning methods, the recognition accuracies of 2-layer RNN,
2-layer LSTM and 2-layer P-LSTM are higher than those of 1-layer RNN, 1-layer LSTM
and 1-layer P-LSTM. Similar to the results in Table 2.4, P-LSTM performed better than
the traditional LSTM and RNN. HPM+AP and HPM+TM, on the other hand, did
not perform so well. The reason is that both of these methods were trained given
only 339 representative human poses from a human pose dictionary whereas the 60
action classes of NTU RGB+D dataset include many more human poses of higher
complexity.

§2.5 Experimental Results 35

Table 2.5: Comparison of average recognition accuracies (percentage) for both cross-
subject and cross-view action recognition on the NTU RGB+D Dataset.

Method Cross-subject Cross-view

Hand-crafted
features

HON4D [Oreifej and Liu, 2013] (Depth) 30.6 7.3
HOPC [Rahmani et al., 2016b] (Depth) 40.3 30.6
LARP-SO-FTP [Vemulapalli and Chellappa, 2016] (Skel.) 52.1 53.4
HDG-hod [Wang, 2017] (Depth) 20.1 13.5
HDG-hodg [Wang, 2017] (Depth) 23.0 25.2
HDG-jpd [Wang, 2017] (Skel.) 27.8 35.9
HDG-jmv [Wang, 2017] (Skel.) 38.1 50.0
HDG-hod+hodg [Wang, 2017] (Depth) 24.6 26.5
HDG-jpd+jmv [Wang, 2017] (Skel.) 39.7 51.9
HDG-hod+hodg+jpd [Wang, 2017] (Depth + Skel.) 29.4 38.8
HDG-hod+hodg+jmv [Wang, 2017] (Depth + Skel.) 39.0 57.0
HDG-hodg+jpd+jmv [Wang, 2017] (Depth + Skel.) 41.2 57.2
HDG-all features [Wang, 2017] (Depth + Skel.) 43.3 58.2
SCK+DCK [Koniusz et al., 2016a] (Skel.) 72.8 74.1

Deep learning
features

Frames+CNN [Ke et al., 2017b] (Skel.) 75.7 79.6
Clips+CNN+Concatenation [Ke et al., 2017b] (Skel.) 77.1 81.1
Clips+CNN+Pooling [Ke et al., 2017b] (Skel.) 76.4 80.5
Clips+CNN+MTLN [Ke et al., 2017b] (Skel.) 79.6 84.8
Clips+CNN+MTLN‡ [Ke et al., 2017b] (Skel.) 79.54 84.70
HPM+AP [Rahmani et al., 2016b] (Depth) 40.2 42.2
HPM+TM [Rahmani et al., 2016b] (Depth) 50.1 53.4
1-layer RNN [Shahroudy et al., 2016a] (Skel.) 56.0 60.2
2-layer RNN [Shahroudy et al., 2016a] (Skel.) 56.3 64.1
1-layer LSTM [Shahroudy et al., 2016a] (Skel.) 59.1 66.8
2-layer LSTM [Shahroudy et al., 2016a] (Skel.) 60.7 67.3
1-layer P-LSTM [Shahroudy et al., 2016a] (Skel.) 62.1 69.4
2-layer P-LSTM [Shahroudy et al., 2016a] (Skel.) 62.9 70.3
2-layer P-LSTM‡ [Shahroudy et al., 2016a] (Skel.) 63.02 70.39
IndRNN (4 layers) [Li et al., 2018b] (Skel.) 78.6 83.8
IndRNN (6 layers) [Li et al., 2018b] (Skel.) 81.8 88.0
Our improved results:
IndRNN (4 layers, with jpd)(Skel.) 79.5 84.5
IndRNN (6 layers, with jpd)(Skel.) 83.0 89.0
ST-GCN∗ [Yan et al., 2018] (Skel.) 81.57 (96.85) 88.76 (98.83)
Our improved results:
ST-GCN∗ (with jpd) (Skel.) 83.36 (97.46) 88.84 (98.87)

‡Our implementations for reproducing original authors’ experiment results.
∗
For ST-GCN, the numbers inside the parentheses denote the top-5 accuracy.

2.5.3 UWA3D Multiview Activity II Dataset

The ten algorithms were compared on the UWA3D Multiview Activity II dataset using
cross-view action recognition. Table 2.6 summarizes the results. The top 2 action
recognition algorithms are highlighted in bold in each column for the handcrafted
feature and deep learning feature categories.

For the methods using handcrafted features, the HDG-all features performed
the best for cross-view action recognition (the last column in Table 2.6) followed by
other HDG variants that use skeletons and depth. Among skeleton-only methods,
HDG-jpd+jmv was the second best performer followed by SCK+DCK, HDG-jmv, and
LARP-SO-FTP, which all performed better than depth-based features such as HON4D,
HDG-hod, HDG-hodg and HDG-hod+hodg. According to the table, using one or both
skeleton-based features (HDG-jpd and/or HDG-jmv) in HDG improved its results.

For deep learning methods, HPM+TM and HPM+AP achieved the highest results.
Although Clips+CNN+MTLN performed better than other ‘Clips’ variants, it did not
perform as good as HPM+TM and HPM+AP, due to the limited number of video
samples in the dataset. P-LSTM performed better than the traditional LSTM and
RNN. We noticed that stacking more layers for IndRNN or using jpd features for

36 A Comparative Review

Table 2.6: Comparison of average recognition accuracies (percentage) for cross-view
action recognition on the UWA3D Multiview Activity II dataset.

Training view V1 & V2 V1 & V3 V1 & V4 V2 & V3 V2 & V4 V3 & V4 Average
Testing view V3 V4 V2 V4 V2 V3 V1 V4 V1 V3 V1 V2

Hand-
crafted
fea-
tures

HON4D [Oreifej and Liu, 2013] (Depth) 31.1 23.0 21.9 10.0 36.6 32.6 47.0 22.7 36.6 16.5 41.4 26.8 28.9
HOPC [Rahmani et al., 2016b] (Depth) 25.7 20.6 16.2 12.0 21.1 29.5 38.3 13.9 29.7 7.8 41.3 18.4 22.9
Holistic HOPC∗ [Rahmani et al., 2016b] (Depth) 32.3 25.2 27.4 17.0 38.6 38.8 42.9 25.9 36.1 27.0 42.2 28.5 31.8
Local HOPC+STK-D∗ [Rahmani et al., 2016b] (Depth) 52.7 51.8 59.0 57.5 42.8 44.2 58.1 38.4 63.2 43.8 66.3 48.0 52.2
LARP-SO-logarithm map [Vemulapalli and Chellappa, 2016] (Skel.) 48.2 47.4 45.5 44.9 46.3 52.7 62.2 46.3 57.7 45.8 61.3 40.3 49.9
LARP-SO-unwrapping while rolling [Vemulapalli and Chellappa, 2016] (Skel.) 50.4 45.7 44.0 44.5 40.8 49.6 57.4 44.4 57.6 47.4 59.2 40.8 48.5
LARP-SO-FTP [Vemulapalli and Chellappa, 2016] (Skel.) 54.9 55.9 50.0 54.9 48.1 56.0 66.5 57.2 62.5 54.0 68.9 43.6 56.0
HDG-hod [Wang, 2017] (Depth) 22.5 17.4 12.5 10.0 19.6 20.4 26.7 13.0 18.7 10.0 27.9 17.2 18.0
HDG-hodg [Wang, 2017] (Depth) 26.9 34.2 20.3 18.6 34.7 26.7 41.0 29.2 29.4 11.8 40.7 28.8 28.5
HDG-jpd [Wang, 2017] (Skel.) 36.3 32.4 31.8 35.5 34.4 38.4 44.2 30.0 44.5 33.7 44.4 34.0 36.6
HDG-jmv [Wang, 2017] (Skel.) 57.2 59.3 59.3 54.3 56.8 50.6 63.4 52.4 65.7 53.7 67.7 56.9 58.1
HDG-hod+hodg [Wang, 2017] (Depth) 26.6 33.6 17.9 19.3 34.4 26.2 40.5 27.6 28.6 11.6 38.4 29.0 27.8
HDG-jpd+jmv [Wang, 2017] (Skel.) 61.0 61.8 59.3 56.0 60.0 57.4 68.8 54.2 71.1 57.2 69.7 59.0 61.3
HDG-hod+hodg+jpd [Wang, 2017] (Depth + Skel.) 31.0 43.5 25.7 21.4 45.9 31.1 53.2 35.7 38.0 11.6 49.7 38.3 35.4
HDG-hod+hodg+jmv [Wang, 2017] (Depth + Skel.) 59.0 62.2 58.1 52.0 62.5 57.1 66.0 54.2 67.7 52.7 70.3 61.1 60.2
HDG-hodg+jpd+jmv [Wang, 2017] (Depth + Skel.) 58.2 61.8 54.8 47.6 63.5 58.7 69.0 52.3 64.9 47.1 67.2 59.4 58.7
HDG-all features [Wang, 2017] (Depth + Skel.) 60.9 64.3 57.9 54.6 62.6 59.2 68.9 55.8 69.8 55.2 71.8 62.6 61.9
SCK+DCK [Koniusz et al., 2016a] (Skel.) 56.0 61.8 50.0 61.8 54.1 56.7 71.4 56.9 72.9 49.6 71.7 44.0 58.9

Deep
learn-
ing
fea-
tures

Frames+CNN [Ke et al., 2017b] (Skel.) 30.4 29.8 27.8 23.8 31.7 27.2 39.2 27.8 31.4 23.2 38.8 28.6 30.0
Clips+CNN+Pooling [Ke et al., 2017b] (Skel.) 31.6 33.3 30.6 27.8 35.3 29.6 44.3 31.3 35.3 23.2 43.1 31.0 33.0
Clips+CNN+Concatenation [Ke et al., 2017b] (Skel.) 33.2 36.9 32.5 29.8 36.9 31.2 46.3 31.0 39.2 23.6 45.5 31.7 34.8
Clips+CNN+MTLN [Ke et al., 2017b] (Skel.) 36.4 38.9 34.1 30.6 37.7 33.2 46.7 31.3 38.8 25.6 49.8 33.7 36.4
HPM+AP [Rahmani and Mian, 2016] (Depth) 68.3 51.7 60.2 62.2 38.7 50.0 58.7 37.8 70.6 61.6 74.0 55.6 57.5
HPM+TM [Rahmani and Mian, 2016] (Depth) 81.7 76.4 74.1 78.7 57.9 69.4 75.8 62.9 81.4 79.9 83.3 73.7 74.6
1-layer RNN [Shahroudy et al., 2016a] (Skel.) 11.4 11.1 10.0 14.9 11.9 13.3 11.1 15.2 10.3 12.2 9.8 12.4 12.0
2-layer RNN [Shahroudy et al., 2016a] (Skel.) 23.4 21.6 27.3 22.7 26.3 20.3 21.7 19.5 20.7 24.8 27.0 21.5 23.1
1-layer LSTM [Shahroudy et al., 2016a] (Skel.) 28.9 12.8 19.2 15.5 20.0 33.1 48.2 16.5 43.3 15.5 38.7 16.4 25.7
2-layer LSTM [Shahroudy et al., 2016a] (Skel.) 29.7 16.3 20.4 12.8 26.8 30.5 53.0 11.0 37.0 17.1 47.4 20.0 26.8
1-layer P-LSTM [Shahroudy et al., 2016a] (Skel.) 26.8 23.5 22.4 22.7 24.4 31.3 49.6 20.3 38.3 19.5 45.9 17.6 28.5
2-layer P-LSTM [Shahroudy et al., 2016a] (Skel.) 30.1 24.7 25.2 21.5 24.4 37.4 51.0 22.7 43.1 21.1 47.8 17.2 30.5
Our implementation with modified hyperparam. values:
2-layer P-LSTM (10 segments, 50 hidden neurons) (Skel.) 23.5 24.3 22.4 25.5 25.6 30.9 48.6 21.1 41.5 19.5 43.9 15.6 28.5
2-layer P-LSTM (10 segments, 100 hidden neurons) (Skel.) 21.1 22.7 24.8 21.1 22.4 33.7 47.8 21.1 45.1 22.0 49.4 17.6 29.1
2-layer P-LSTM (20 segments, 50 hidden neurons) (Skel.) 25.2 18.3 24.8 21.5 26.4 30.5 49.0 19.1 41.5 24.4 43.5 14.8 28.3
2-layer P-LSTM (20 segments, 100 hidden neurons) (Skel.) 27.6 24.3 24.8 21.9 28.4 32.9 44.3 24.3 44.3 20.3 45.9 15.6 29.6
IndRNN (4 layers) [Li et al., 2018b] (Skel.) 34.3 53.8 35.2 42.5 39.1 38.9 49.2 42.5 46.0 27.1 48.6 30.9 40.7
IndRNN (6 layers) [Li et al., 2018b] (Skel.) 30.7 47.2 32.2 36.0 38.8 35.4 44.5 37.9 40.6 23.9 39.2 25.2 36.0
IndRNN (4 layers, with jpd) (Skel.) 33.5 40.2 26.9 40.9 30.4 41.1 50.7 36.7 46.1 24.6 49.0 23.0 36.9
IndRNN (6 layers, with jpd) (Skel.) 29.4 36.3 23.9 38.2 26.0 36.8 45.4 33.0 41.2 20.5 44.7 18.6 32.8
ST-GCN [Yan et al., 2018] (Skel.) 36.4 26.2 20.6 30.2 33.7 22.4 43.1 26.6 16.9 12.8 26.3 36.5 27.6
ST-GCN (with jpd) (Skel.) 29.6 21.8 15.5 19.1 17.1 18.8 35.3 14.3 31.0 14.8 13.3 15.5 20.5

*This result is obtained from [Rahmani et al., 2016b] for comparison.

both IndRNN and ST-GCN did not help increase the recognition accuracy. This is
due to the lack of representative training videos (compared to the results on the NTU
RGB+D dataset in cross-view action recognition).

Fig. 2.3 shows a confusion matrix for the HDG-all representation on the UWA3D
Multiview Activity II dataset when V3 and V4 views were used for training and V1

was used for testing. According the figure, the algorithm was confused by a few
actions which have similar motion trajectories. For example, one hand waving is similar
to two hand waving and two hand punching; walking is very similar to irregular walking;
bending and putting down have very similar appearance; sneezing and coughing are very
similar actions.

2.6 Discussions

2.6.1 Single-view versus cross-view

Table 2.7 summarizes the performance of each algorithm for both single-view action
recognition and cross-view action recognition. One can observe from the table
that some algorithms such as HON4D, LARP-SO-FTP, Clips+CNN+MTLN, P-LSTM,
and SCK+DCK performed better for single-view action recognition but performed
slightly worse in cross-view action recognition. For cross-subject action recognition,

§2.6 Discussions 37

33.3

11.1

11.1

11.1

11.1

11.1

77.8

22.2

22.2

11.1

11.1

33.3

88.9

33.3

33.3

11.1

66.7

11.1

22.2

11.1

66.7

44.4

11.1

11.1

11.1

11.1

11.1

88.9

11.1

11.1

22.2

66.7

11.1

22.2

11.1

11.1

22.2

77.8

11.1

22.2

11.1

66.7

11.1

11.1

11.1

44.4

11.1

22.2

33.3

77.8

11.1

77.8

11.1

100.0

11.1

11.1

66.7

11.1

11.1

22.2

22.2

11.1

22.2

88.9

22.2

66.7

77.8

44.4

11.1

88.9

11.1

88.9

100.0

11.1

100.0

11.1 66.7

11.1

11.1

50.0

11.1

11.1

12.5

66.7

11.1

33.3

88.9

11.1

11.1

37.5

55.6

on
e

ha
nd

 w
av

ing

on
e

ha
nd

 p
un

ch
ing

tw
o

ha
nd

 w
av

ing

tw
o

ha
nd

 p
un

ch
ing

sit
tin

g
do

wn

sta
nd

ing
 u

p

vib
ra

tin
g

fa
llin

g
do

wn

ho
ldi

ng
 ch

es
t

ho
ldi

ng
 h

ea
d

ho
ldi

ng
 b

ac
k

walk
ing

irr
eg

ula
r w

alk
ing

lyi
ng

 d
ow

n

tu
rn

ing
 a

ro
un

d

dr
ink

ing

ph
on

e
an

sw
er

ing

be
nd

ing

jum
pin

g
jac

k

ru
nn

ing

pic
kin

g
up

pu
ttin

g
do

wn

kic
kin

g

jum
pin

g

da
nc

ing

m
op

ing
 flo

or

sn
ee

zin
g

sit
tin

g
do

wn(
ch

air
)

sq
ua

ttin
g

co
ug

hin
g

output from algorithm

one hand waving

one hand punching

two hand waving

two hand punching

sitting down

standing up

vibrating

falling down

holding chest

holding head

holding back

walking

irregular walking

lying down

turning around

drinking

phone answering

bending

jumping jack

running

picking up

putting down

kicking

jumping

dancing

moping floor

sneezing

sitting down(chair)

squatting

coughing

gr
ou

nd
 tr

ut
h

Figure 2.3: Confusion matrix for HDG-all features on the UWA3D Multiview Activity
II dataset when V3 and V4 were used for training and V1 was used for testing. For each
action class along the diagonal, the darker is the colour, the higher is the recognition
accuracy.

SCK+DCK outperformed all other algorithms; for cross-view action recognition, HDG-
all, SCK+DCK and our improved IndRNN with jpd features all performed well
(having the same average rank values).

Fig. 2.4 summarizes the average accuracy of all the algorithms grouped under
the handcrafted and deep learning feature categories. On average, we found that
the recognition accuracy for cross-view action recognition is lower than cross-subject
action recognition using handcrafted features, with the poorest performance from
depth-based features. Combining both depth- and skeleton-based features together
helps improve cross-view action recognition and gives a similar performance for
cross-subject action recognition. Overall, the performance on cross-view recognition

38 A Comparative Review

0

10

30

40

60

50

20

70

R
ec

og
ni

tio
n

ac
cu

ra
cy

Cross-subject Cross-view
handcrafted handcrafteddeep learning deep learning

depth skeleton depth + skeleton

(a) (b)

Figure 2.4: The average recognition accuracy (in percentage) of methods using hand-
crafted and deep learning features for cross-subject and cross-view recognition.
Numbers of methods using handcrafted (i) depth-based features: 7; (ii) skeleton-
based features: 7; (iii) depth+skeleton-based features: 4. Numbers of methods
using deep learning (i) depth-based features: 2; (ii) skeleton-based features: 20;
(iii) depth+skeleton-based features: 0 (see Tables 2.4–2.6).

Table 2.7: The average recognition accuracies / [AVRank] of all the ten algorithms for
both cross-subject and cross-view action recognition.

Algorithms Cross-subject† Cross-view‡

HON4D [Oreifej and Liu, 2013] (Depth) 52.8 / [3.6] 18.1 / [5.0]
HDG-all [Wang, 2017] (Depth + Skel.) 56.6 / [3.8] 60.1 / [1.5]
HOPC [Rahmani et al., 2016b] (Depth) 55.9 / [3.4] 41.4 / [4.0]
LARP-SO-FTP [Vemulapalli and Chellappa, 2016] (Skel.) 65.0 / [2.4] 54.7 / [3.0]
SCK+DCK [Koniusz et al., 2016a] (Skel.) 78.7 / [1.0] 66.5 / [1.5]
HPM+TM [Rahmani and Mian, 2016] (Depth) 58.7 / [3.0] 64.0 / [3.0]
Clips+CNN+MTLN [Ke et al., 2017b] (Skel.) 74.3 / [2.4] 60.6 / [3.0]
P-LSTM [Shahroudy et al., 2016a] (Skel.) 64.0 / [3.0] 50.4 / [4.0]
IndRNN [Li et al., 2018b](Skel.) 72.6 / [2.4] 62.1 / [2.0]
IndRNN with jpd (Skel.) 77.6 / [2.0] 60.8 / [1.5]
ST-GCN [Yan et al., 2018](Skel.) 52.4 / [4.2] 58.2 / [3.5]
ST-GCN with jpd (Skel.) 57.7 / [4.0] 54.7 / [3.0]

†For cross-subject action recognition, the performance of each algorithm is computed by averaging
all the recognition accuracies / rank values on the MSRAction3D, 3D Action Pairs, CAD-60, UWA3D
Activity and NTU RGB+D datasets. ‡For cross-view action recognition, they are computed over the
UWA3D Multiview Activity II and NTU RGB+D datasets.

is lower than cross-subject recognition, except for the deep learning depth-based
feature methods. It should be noted that there are only two methods (HPM+AP
and HPM+TM) falling into this category and they performed well on the UWA3D
Multiview Activity II dataset and reasonably well on the NTU RGB+D dataset.

2.6.2 Influence of camera views in cross-view evaluation

To analyze the influence of using different combinations of camera views in train-
ing and testing, we classified all the algorithms in Table 2.6 into 3 feature types:

§2.6 Discussions 39

v 1
v 2

-v 3

v 1
v 2

-v 4

v 1
v 3

-v 2

v 1
v 3

-v 4

v 1
v 4

-v 2

v 1
v 4

-v 3

v 2
v 3

-v 1

v 2
v 3

-v 4

v 2
v 4

-v 1

v 2
v 4

-v 3

v 3
v 4

-v 1

v 3
v 4

-v 2

0

20

40

60

80
R

ec
og

ni
tio

n
A

cc
ur

ac
y

(a) Depth-based

v 1
v 2

-v 3

v 1
v 2

-v 4

v 1
v 3

-v 2

v 1
v 3

-v 4

v 1
v 4

-v 2

v 1
v 4

-v 3

v 2
v 3

-v 1

v 2
v 3

-v 4

v 2
v 4

-v 1

v 2
v 4

-v 3

v 3
v 4

-v 1

v 3
v 4

-v 2

0

20

40

60

80

R
ec

og
ni

tio
n

A
cc

ur
ac

y

(b) Skeleton-based

v 1
v 2

-v 3

v 1
v 2

-v 4

v 1
v 3

-v 2

v 1
v 3

-v 4

v 1
v 4

-v 2

v 1
v 4

-v 3

v 2
v 3

-v 1

v 2
v 3

-v 4

v 2
v 4

-v 1

v 2
v 4

-v 3

v 3
v 4

-v 1

v 3
v 4

-v 2

0

20

40

60

80

R
ec

og
ni

tio
n

A
cc

ur
ac

y

(c) Depth+Skeleton-based

Figure 2.5: Scatter plots showing the performance of cross-view action recognition on
the UWA3D Multiview Activity II dataset. The blue dots and red crosses, respectively,
represent methods using handcrafted features and deep learning features. On the
horizontal axis of each plot, we use the notation ViVj-Vk to denote views i and j being
used for training and view k being used for testing.

depth-based, skeleton-based, and depth+skeleton-based representations. Scatter plots
showing the performance of all the algorithms on these three feature types are given
in Fig. 2.5, where the blue dots and red crosses denote, respectively, algorithms using
handcrafted features and deep learning features.

According to plots in Fig. 2.5 the recognition accuracy was high when the left view
V2 and right view V3 were used for training and front view V1 for testing (see axis tick
mark V2V3-V1). This is obvious as the viewing angle of the front view V1 is between
V2 and V3, as shown in Fig. 2.2. However, it is surprising that the recognition accuracy
was even slightly higher for V2V4-V1 and V3V4-V1 (see Figs. 2.5(b) and 2.5(c)).

One can also notice that for depth-based methods which use handcrafted features,
the recognition accuracy dropped the most when the left view V2 and top view V4

were used for training, and the right view V3 was used for testing. The main reason
for this behavior is that the visual appearances of an action in V2 and V3 are different,
and it is very difficult to find the same view-invariant features from these views.
Other combinations of views, such as V1V3-V4, V1V3-V2, and V1V2-V4, also led to a
lower performance (see the distribution of the blue dots in Fig. 2.5(a)).

2.6.3 Depth-based features versus skeleton-based features

Cross-subject action recognition. It seems that for the cross-subject action recognition,
skeleton-based features outperformed depth-based features for both the handcrafted
and deep learning feature categories (Fig. 2.4(a)). However, it is surprising that adding
the depth-based features to skeleton-based features actually led to a slight decrease in
the action recognition accuracy. The main reason is the background clutter and noise
(for instance, see Fig. 2.1) in the depth sequences, making the depth-based features
less representative for robust action recognition.

On the other hand, some skeleton-based algorithms such as LARP-SO-FTP and
its variants performed well in human action recognition because they only extracted
reliable features from those human body joints which have high confidence values.

40 A Comparative Review

The only exception is the HOPC algorithm which uses depth-based features and
which performed better than skeleton-based features such as HDG-jpd+jmv in the
cross-subject action recognition (see the average performance in the last column of
Table 2.4). One must note that the HOPC algorithm is different from other depth-
based algorithms as it treats the depth images as a 3D pointcloud. Such an approach
allows the HOPC algorithm to estimate the orientations of the local surface patches
on the body of the human subject to more robustly deal with viewpoint changes.

Cross-view action recognition. In Fig. 2.5(b), for the cross-view action recognition,
methods using handcrafted features (blue dots) performed better than those using
deep learning features (red crosses) for skeleton-based features. For depth-based
features (Fig. 2.5(a)), no clear conclusion can be drawn for the handcrafted versus
deep learning features.

Comparing the handcrafted features (blue dots) in both Figs. 2.5(a) and 2.5(b),
we can see that algorithms using skeleton-based features produced better results
than depth-based features. This is evident from Fig. 2.5(b) as the blue dots are
well above the red crosses, whereas in Fig. 2.5(a) the blue dots are more spread out
and they occupy mainly the lower region of the plot. Our pruning process of the
HDG algorithm also proved that skeleton-based features are more robust than the
depth-based algorithms in the cross-view action recognition.

For the plot in Fig. 2.5(c), the algorithms in our experiments did not use deep
learning to compute depth+skeleton features, thus no comparison on the performance
between using handcrafted and deep learning features is possible.

2.6.4 Handcrafted features versus deep learning features

As expected, our experiments confirm that deep learning methods (e.g., Clips + CNN
+ MTLN, IndRNN, and ST-GCN) performed better on large datasets such as the NTU
RGB+D dataset, which has more than 56,000 video sequences, but achieved a lower
recognition accuracy on the other smaller datasets. The main reason for this behavior
is the reliance of deep learning methods on large amount of data for training to
avoid overfitting (in contrast to handcrafted methods). However, most existing action
datasets have small numbers of performing subjects and action classes, and very few
camera views due to high cost of collecting/annotating data.

We also found that the performance of most handcrafted methods is highly
dependent on the datasets. For example, HON4D and HOPC performed better only
on some specific datasets, such as MSRAction3D and 3D Action Pairs, but achieved
lower performance on the NTU RGB+D dataset. This means that features that have
been handcrafted to work on one dataset may not be transferable to another dataset.
Moreover, as handcrafted methods prevent overfitting well, they may lack the capacity
to learn from big data. With larger benchmark datasets becoming available to the
research community, future research trend is more likely to shift to using deep learning
features with efforts being put into tuning their hyperparameters.

§2.7 Conclusion 41

2.6.5 ‘Quo Vadis, action recognition?’

Based on the methods evaluated in this chapter, we see the following trends in
human action recognition. Handcrafted features progressed from global descriptors
(e.g., HON4D in 2013) to local descriptors (e.g., HOPC in 2016) and combinations
of global and local feature representation (e.g., HDG in 2014). More recent works
focus on designing robust 3D human joint-based representations (e.g., LARP-SO-FTP
and SCK+DCK in 2016). Moreover, researchers have adopted features extracted from
skeleton sequences as they are easier to process and analyze than depth videos. We
also note that deep learning representations are evolving from basic neural networks
(e.g., traditional RNN and LSTM) to adapted and/or dedicated networks that rely on a
pre-trained network (e.g., HPM+AP, HPM+TM, and Clips+CNN+MTLN). Researchers
also modify basic neural network models to improve their learning capability for
action recognition (e.g., P-LSTM and IndRNN). Recently, new models such as ST-GCN
were devised to robustly model the human actions in large datasets. Given the surge of
large datasets and powerful GPU machines, the newest methods learn representations
in an end-to-end manner.

2.7 Conclusion

We have presented, analyzed and compared 10 state-of-the-art algorithms in 3D action
recognition on six benchmark datasets. These algorithms cover the use of handcrafted
and deep learning features computed from depth and skeleton video sequences. We
believe that our comparison results will be useful for future researchers interested in
designing robust representations for recognizing human actions from videos captured
by the Kinect camera and/or similar action sequence capturing sensors.

In our study, we found that skeleton-based features are more robust than depth-
based features for both cross-subject action recognition and cross-view action recog-
nition. Handcrafted features performed better than deep learning features given
smaller datasets. However, deep learning methods achieved very good results if
trained on large datasets. While accuracy as high as 90% has been achieved by some
algorithms on cross-subject action recognition, the average accuracy on cross-view
action recognition is much lower.

From our literature review and comprehensive experiments, we see that many
research papers on human action recognition have already attempted to tackle the
challenging issues mentioned in the introduction of the chapter. Examples include
using a skeleton model or treating depth maps as 3D pointcloud to overcome the
changes of viewpoint; using Fourier temporal pyramid or dynamic time warping to
deal with different speeds of execution of actions; using depth videos to overcome
changes in lighting conditions and eliminate visual appearances that may be irrelevant
to the actions performed. While these papers all report promising action recogni-
tion results, new and more robust action recognition algorithms are still required,
given that there is a pressing demand for using these algorithms in real and new
environments.

42 A Comparative Review

Chapter 3

Hallucinating IDT Descriptors and
I3D Optical Flow Features

In this chapter, we revive the use of old-fashioned handcrafted video representations
for action recognition and put new life into these techniques via a CNN-based
hallucination step. Despite of the use of RGB and optical flow frames, the I3D model
(amongst others) thrives on combining its output with the Improved Dense Trajectory
(IDT) and extracted with its low-level video descriptors encoded via Bag-of-Words
(BoW) and Fisher Vectors (FV). Such a fusion of CNNs and handcrafted representations
is time-consuming due to pre-processing, descriptor extraction, encoding and tuning
parameters. Thus, we propose an end-to-end trainable network with streams which
learn the IDT-based BoW/FV representations at the training stage and are simple
to integrate with the I3D model. Specifically, each stream takes I3D feature maps
ahead of the last 1D conv. layer and learns to ‘translate’ these maps to BoW/FV
representations. Thus, our model can hallucinate and use such synthesized BoW/FV
representations at the testing stage. We show that even features of the entire I3D
optical flow stream can be hallucinated thus simplifying the pipeline. Our model saves
20–55h of computations and yields state-of-the-art results on four publicly available
datasets.

3.1 Introduction

Action Recognition (AR) pipelines have transitioned from the use of handcrafted
descriptors [Dalal et al., 2006; Scovanner et al., 2007; Kläser et al., 2008; Wang et al.,
2011, 2013b; Wang and Schmid, 2013] to CNN models such as the two-stream network
[Simonyan and Zisserman, 2014], 3D spatio-temporal features [Tran et al., 2015],
spatio-temporal ResNet [Feichtenhofer et al., 2016a] and the I3D network pre-trained
on Kinetics-400 [Carreira and Zisserman, 2017]. Such CNNs operate on RGB/optical
flow videos thus failing to capture some domain-specific information which sophis-
ticated low-level representations capture by design. One prominent example are
Improved Dense Trajectory (IDT) descriptors [Wang and Schmid, 2013] which are
typically encoded with Bag-of-Words (BoW) [Sivic and Zisserman, 2003; Csurka et al.,
2004] or Fisher Vectors (FV) [Perronnin and Dance, 2007; Perronnin et al., 2010] and

43

44 Hallucinating IDT Descriptors and I3D Optical Flow Features

Figure 3.1: The overview of our pipeline. We remove the prediction and the last 1D
conv. layers from I3D RGB and optical flow streams, concatenate (⊕) the 1024×7
feature representations X(rgb) and X(opt.), and feed them into our Fisher Vector (FV),
Bag-of-Words (BoW), and the High Abstraction Features (HAF) streams followed by the
Power Normalization (PN) blocks. The resulting feature vectors ψ̃(f v1), ψ̃(f v2), ψ̃(bow)

and ψ(ha f) are concatenated (⊕) and fed into our Prediction Network (PredNet). By
!, we indicate that the three Mean Square Error (MSE) losses are only applied at
the training stage to train our FV (first- and second-order components) and BoW
hallucinating streams (indicated in dashed red). By%, we indicate that the MSE losses
are switched off at the testing stage. Thus, we hallucinate ψ̃(f v1), ψ̃(f v2) and ψ̃(bow),
and pass them to PredNet together with ψ(ha f) to obtain labels y. The original training
FV and BoW feature vectors (used only during training) are denoted by ψ(f v1), ψ(f v2)
and ψ(bow), while P are count sketch projecting matrices (see text for details).

fused with CNNs [Fernando and Gould, 2016; Cherian et al., 2017b, 2018; Wang and
Cherian, 2018; Choutas et al., 2018] at the classifier which improves results due to
several sophisticated steps of IDT: (i) camera motion estimation, (ii) motion descrip-
tor modeling along motion trajectories estimated by the optical flow, (iii) pruning
inconsistent matches, (iv) focusing on human motions via a human detector, (v)
combination of IDT with powerful and highly complementary to each other video
descriptors such as Histogram of Oriented Gradients (HOG) [Freeman and Roth, 1994;
Kläser et al., 2008], Histogram of Optical Flow (HOF) [Dalal et al., 2006] and Motion
Boundary Histogram (MBH) [Wang et al., 2013b] e.g., HOF and MBH contain zero-
and first-order motion statistics [Wang and Schmid, 2013].

However, extracting dense trajectories and corresponding video descriptors is
costly due to several off-line/CPU-based steps. Motivated by this shortcoming, we
propose simple trainable CNN streams on top of a CNN network (in our case I3D
[Carreira and Zisserman, 2017]) which learn to ‘translate’ the I3D output into IDT-
based BoW and FV global video descriptors. We can even ‘translate’ the I3D RGB
output into I3D Optical Flow Features (OFF). At the testing stage, our so-called
BoW, and FV and OFF streams (on top of I3D) are able to hallucinate such global
descriptors which we feed into the final layer preceding a classifier. We show that
IDT/OFF representations can be synthesized by our network thus removing the need
of actually computing them which simplifies the AR pipeline. With a handful of
convolutional/FC layers and basic CNN building blocks, our representation rivals
sophisticated AR pipelines that aggregate features frame-by-frame e.g., HOK [Cherian
et al., 2017b] and rank-pooling [Fernando and Gould, 2016; Cherian et al., 2018; Wang
and Cherian, 2018; Choutas et al., 2018]. Below, we detail our contributions:

§3.2 Related Work 45

I. We are the first to propose that old-fashioned IDT-based BoW and FV global video
descriptors can be learned via simple dedicated CNN-streams at the training stage
and simply hallucinated for classification with a CNN action recognition pipeline
during testing.

II. We show that even the I3D optical flow stream can be easily hallucinated from the
I3D RGB stream.

III. We study various aspects of our model e.g., the count sketch [Pham and Pagh,
2013] of features to avoid overfitting when fusing several streams and Power
Normalization [Koniusz et al., 2013b, 2016c, 2018b] to prevent so-called burstiness
in BoW, FV and CNNs, and we perform several experiments on four datasets.

Sections 3.2 and 3.3 introduce the background, notations and concepts. Sections
3.4 and 3.5 present our method and results.

3.2 Related Work

Below, we describe handcrafted spatio-temporal video descriptors and their encoding
strategies, optical flow, and deep learning pipelines for video classification.
Handcrafted video representations. Early AR relied on spatio-temporal interest point
detectors [Laptev, 2005; Dollár et al., 2005; Chakraborty et al., 2012; Willems et al.,
2008; Li et al., 2014; Wang et al., 2011] and spatio-temporal descriptors [Dalal et al.,
2006; Scovanner et al., 2007; Uijlings et al., 2014; Wang et al., 2011, 2013b; Wang and
Schmid, 2013] which capture various appearance and motion statistics.

Spatio-temporal interest point detectors were developed for the task of identifying
spatio-temporal regions of videos rich in motion patterns relevant to classification,
thus providing sampling locations for local descriptors. The number of sampling
points had a significant influence on the processing speed due to the volumetric nature
of videos. Harris3D [Laptev, 2005], one of the earliest detectors, performs a search
for extreme points in the spatio-temporal domain via the so-called structure tensor
and the determinant-to-trace ratio test. Cuboid [Dollár et al., 2005], a faster detector,
applies Gaussian and Gabor filters in spatial and temporal domains, respectively.
Selective STIP [Chakraborty et al., 2012] extracts initial key-point candidates with
the Harris corner detector followed by the candidate suppression with a so-called
surround suppression mask. Hes-STIP, a more recent detector, uses integral videos and
Hessian matrix to search the scale-space for local maxima of the signal. Evaluations
and further reading on spatio-temporal detectors can be found in surveys [Gauglitz
et al., 2011; Wang, 2017; Wang et al., 2019b].

One drawback of spatio-temporal interest point detectors is the sparsity of key-
points and inability to capture long-term motion patterns. Thus, a Dense Trajectory
(DT) [Wang et al., 2011] approach densely samples feature points in each frame to
track them in the video (via optical flow). Then, multiple descriptors are extracted
along trajectories to capture shape, appearance and motion cues. As DT cannot
compensate for the camera motion, the IDT [Wang and Schmid, 2013; Wang et al.,

46 Hallucinating IDT Descriptors and I3D Optical Flow Features

Figure 3.2: Hallucinating the Optical Flow Features (OFF).

2013b] estimates the camera motion to remove the global background motion. IDT
also removes inconsistent matches via a human detector.

For spatio-temporal descriptors, IDT employs HOG [Freeman and Roth, 1994],
HOF [Dalal et al., 2006] and MBH [Wang et al., 2013b]. HOG [Freeman and Roth, 1994]
contains statistics of the amplitude of image gradients w.r.t. the gradient orientation.
Thus, it captures the static appearance cues while its close cousin, HOG-3D [Kläser
et al., 2008], is designed for spatio-temporal interest points. In contrast, HOF [Dalal
et al., 2006] captures histograms of optical flow while MBH [Wang et al., 2013b]
captures derivatives of the optical flow, thus it is highly resilient to the global camera
motion whose cues cancel out due to derivatives. Thus, HOF and MBH contain the
zero- and first-order optical flow statistics. Other spatio-temporal descriptors include
SIFT3D [Scovanner et al., 2007], SURF3D [Willems et al., 2008] and LTP [Yeffet and
Wolf, 2009].

In this work, we follow the standard practice, that is, we use the Improved Dense
Trajectories [Wang et al., 2011; Cherian et al., 2017b; Choutas et al., 2018] and we
encode them together with HOG, HOF, and MBH descriptors via BoW [Sivic and
Zisserman, 2003; Csurka et al., 2004] and FV [Perronnin and Dance, 2007; Perronnin
et al., 2010] which we describe below.

Descriptor encoding. BoW [Sivic and Zisserman, 2003; Csurka et al., 2004], a global
image representation, is likely the oldest encoding strategy for local descriptors. It
consists of (i) clustering with k-means for a collection of descriptor vectors from the
training set to build so-called visual vocabulary, (ii) assigning each descriptor to its
nearest cluster center from the visual dictionary, and (iii) aggregating the one-hot
assignment vectors via average pooling. Similar models such as Soft Assignment
(SA) [van Gemert et al., 2010; Koniusz and Mikolajczyk, 2011] and Localized Soft
Assignment (LcSA) [Lingqiao et al., 2011; Koniusz et al., 2013b] use the Component
Membership Probability (CMP) of GMM to assign each descriptor with some proba-
bility to visual words followed by average or non-linear pooling [Koniusz et al., 2013b;
Wang et al., 2019c].

In this chapter, we chose the simplest BoW model [Csurka et al., 2004] with Power
Normalization [Koniusz et al., 2013b] detailed in Section 3.3. BoW can be seen as
zero-order statistics of FV [Perronnin and Dance, 2007; Perronnin et al., 2010], thus we
also employ FV to capture first- and second-order statistics of local descriptors. FV
builds a visual dictionary from training data via GMM. Then, a displacement/square

§3.2 Related Work 47

displacement of each descriptor vector w.r.t. each GMM component center is taken,
normalized by its GMM standard deviation/variance to capture the first/second-order
terms, and then soft-assigned via CMP to each GMM component.

Optical flow. As a key concept in AR from videos, optical flow is the distribution
of velocities of movement of brightness pattern across frames [Horn and Schunck,
1981] such as the pattern of motion of objects, surfaces and edges in a visual scene
caused by the relative motion between an observer and a scene [Hunter, 1980]. Early
optical flow coped with small displacements via energy minimization [Horn and
Schunck, 1981; Papenberg et al., 2006]. However, to capture informative motions
of subjects/objects, optical flow needs to cope with large displacements [Alvarez
et al., 2000]. As energy-based methods suffer from the local minima, local descriptor
matching is used in Large Displacement Optical Flow (LDOF) [Brox and Malik, 2011].
Recent methods use non-rigid descriptor matching [Weinzaepfel et al., 2013], segment
matching [Braux-Zin et al., 2013] or even edge-preserving interpolation [Revaud et al.,
2015].

In this work, we are not concerned with the use of the newest possible optical flow.
Thus, we opt for LDOF [Papenberg et al., 2006].

CNN-based action recognition. The success of AlexNet [Krizhevsky et al., 2012]
and ImageNet [Russakovsky et al., 2015] sparked studies into AR with CNNs. Early
models extracted per-frame representations followed by average pooling [Karpathy
et al., 2014] which discards the temporal order. To fix such a shortcoming, frame-
wise CNN scores were fed to LSTMs [Donahue et al., 2015]. Two-stream networks
[Simonyan and Zisserman, 2014] compute representations per RGB frame and per
10 stacked optical flow frames. However, a more obvious extension is to model
spatio-temporal 3D CNN filters [Ji et al., 2013; Tran et al., 2015; Feichtenhofer et al.,
2016a; Varol et al., 2018].

The recent I3D model [Carreira and Zisserman, 2017] draws on the two-stream
networks, ‘inflates’ 2D CNN filters pre-trained on ImageNet to spatio-temporal 3D
filters, and implements temporal pooling across the inception module. In this chapter,
we opt for the I3D network but our proposed layers are independent of the CNN
design. We are concerned with ‘absorbing’ the old yet powerful IDT representations
and/or optical flow features into CNN and hallucinating them at the test time.

Temporal aggregation. While two-stream networks [Simonyan and Zisserman, 2014]
discard the temporal order and others use LSTMs [Donahue et al., 2015], many AR
pipelines address the spatio-temporal aggregation. Rank pooling [Fernando et al.,
2015; Fernando and Gould, 2016] projects frame-wise feature vectors onto a line such
that the temporal order of vectors is preserved along the line. Subspace and kernel
rank pooling [Cherian et al., 2018; Wang and Cherian, 2018] use projections into the
RKHS in which the temporal order of frames is preserved. Another aggregation
family captures second- or higher-order statistics [Cherian et al., 2017b; Koniusz et al.,
2016a,c; Fang et al., 2019].

In this chapter, we are not concerned with temporal pooling. Thus, we use a 1D
convolution (as in I3D [Carreira and Zisserman, 2017]).

48 Hallucinating IDT Descriptors and I3D Optical Flow Features

Power Normalization family. BoW, FV and even CNN-based descriptors have to deal
with the so-called burstiness defined as ‘the property that a given visual element appears
more times in an image than a statistically independent model would predict’ [Jégou et al.,
2009], a phenomenon also present in video descriptors. Power Normalization [Koniusz
et al., 2013b, 2021] is known to suppress the burstiness, and it has been extensively
studied in the context of BoW [Koniusz et al., 2013b, 2021, 2016c, 2018b]. Moreover, a
connection to Max-pooling was found in survey [Koniusz et al., 2013b] which also
shows that the so-called MaxExp pooling is in fact a detector of ‘at least one particular
visual word being present in an image’. According to papers [Koniusz et al., 2013b,
2018b], many Power Normalization functions are closely related. We outline Power
Normalizations used in our work in Section 3.3.

3.3 Background

In our work, we use BoW/FV (training stage), as well as Power Normalization
[Koniusz et al., 2013b, 2016c] and count sketches [Weinberger et al., 2009].
Notations. We use boldface uppercase letters to express matrices e.g., M, P, regular
uppercase letters with a subscript to express matrix elements e.g., Pij is the (i, j)th

element of P, boldface lowercase letters to express vectors, e.g. x, ϕ, ψ, and regular
lowercase letters to denote scalars. Vectors can be numbered e.g., m1, ..., mK or xn, etc.,
while regular lowercase letters with a subscript express an element of vector e.g., mi is
the ith element of m. Operators ‘;’ and ⊕ concatenate vectors e.g., ⊕i∈IK vi = [v1; ...; vK]
while Id denotes an index set of integers {1, ..., d}.

3.3.1 Descriptor Encoding Schemes

Bag-of-Words [Sivic and Zisserman, 2003; Csurka et al., 2004] assigns each local
descriptor x to the closest visual word from M = [m1, ..., mK] built via k-means. In
order to obtain mid-level feature ϕ, we solve:

ϕ = arg min
ϕ′

∥∥x − Mϕ′∥∥2
2,

s. t. ϕ′ ∈ {0, 1}, 1Tϕ′=1.
(3.1)

Fisher Vector Encoding [Perronnin and Dance, 2007; Perronnin et al., 2010] uses a
Mixture of K Gaussians from a GMM used as a dictionary. It performs descriptor
coding w.r.t. to Gaussian components G(wk, mk, σk) which are parametrized by mixing
probability, mean, and on-diagonal standard deviation. The first- and second-order
features ϕk, ϕ′

k ∈ RD are :

ϕk = (x−mk)/σk, ϕ′
k = ϕ2

k−1. (3.2)

Concatenation of per-cluster features ϕ∗
k ∈ R2D forms the mid-level feature ϕ ∈ R2KD:

§3.3 Background 49

ϕ = [ϕ∗
1 ; ...; ϕ∗

K] , ϕ∗
k =

p (mk|x, θ)√
wk

[
ϕk; ϕ′

k/
√

2
]

, (3.3)

where p and θ are the component membership probabilities and parameters of GMM,
respectively. For each descriptor x of dimensionality D (after PCA), its encoding ϕ is
of 2KD dim. as ϕ contains first- and second-order statistics.

3.3.2 Pooling a.k.a. Aggregation

Traditionally, pooling is performed via averaging mid-level feature vectors ϕ(x)
corresponding to (local) descriptors x ∈ X from a video sequence X , that is ψ =
avgx∈X ϕ(x), and (optionally) applying the ℓ2-norm normalization. In this chapter,
we work with either sequences X (for which the above step is used) or subsequences.

Proposition 1. For subsequence pooling, let X s,t =X 0,t\X 0,s−1, where X s,t denotes a set
of descriptors in the sequence X counting from frame s up to frame t, where 0≤ s≤ t≤ τ,
X 0,−1≡∅, and τ is the length of X . Moreover, let us compute an integral mid-level feature
ϕ′

t =ϕ′
t−1+∑x∈X t,t

ϕ(x) which aggregates mid-level feature vectors from frame 0 to frame t,
and ϕ′

−1 is an all-zeros vector. Then, the pooled subsequence is given by:

ψs,t = (ϕ′
t−ϕ′

s−1)/(∥ϕ′
t−ϕ′

s−1∥2 + ϵ), (3.4)

where 0≤ s≤ t≤ τ are the starting and ending frames of subsequence X ′
s,t ⊆X and ϵ is a

small constant. We normalize the pooled sequences/subseq. as described next.

3.3.3 Power Normalization

As alluded to in Section 3.2, we apply Power Normalizing functions to BoW and FV
streams which hallucinate these two modalities (and HAF/OFF stream explained
later). We investigate three operators g(ψ, ·) detailed by Remarks 1–3.

Remark 1. AsinhE function [Koniusz et al., 2018b] is an extension of a well-known Power
Normalization (Gamma) [Koniusz et al., 2018b] defined as g(ψ, γ)= Sgn(ψ)|ψ|γ for 0<
γ≤1 to the operator with a smooth derivative and a parameter γ′. AsinhE is defined as the
normalized Arcsin hyperbolic function:

g(ψ, γ′)= arcsinh(γ′ψ)/ arcsinh(γ′). (3.5)

Remark 2. Sigmoid (SigmE), a Max-pooling approximation [Koniusz et al., 2018b], is an
extension of the MaxExp operator defined as g(ψ, η)=1−(1−ψ)η for η>1 to the operator
with a smooth derivative, a response defined for real-valued ψ (rather than ψ≥0), a parameter
η′ and a small const. ϵ′:

g(ψ, η′)=
2

1+e−η′ψ/(∥ψ∥2+ϵ′)
−1. (3.6)

Remark 3. AxMin, a piece-wise linear form of SigmE [Koniusz et al., 2018b], is given as
g(ψ, η′′)=Sgn(ψ)min(η′′ψ/(∥ψ∥2 + ϵ′), 1) for η′′>1 and a small constant ϵ′.

50 Hallucinating IDT Descriptors and I3D Optical Flow Features

Despite the similar role of these three pooling operators, we investigate each of
them as their interplay with end-to-end learning differs. Specifically, limψ→±∞ g(ψ, ·)
for AsinhE and SigmE are ±∞ and ±1, resp., thus their asymptotic behavior dif-
fers. Moreover, AxMin is non-smooth and relies on the same gradient re-projection
properties as ReLU.

3.3.4 Count Sketches

Sketching vectors by the count sketch [Cormode and Hadjieleftheriou, 2008; Wein-
berger et al., 2009] is used for their dimensionality reduction which we use in this
chapter.

Proposition 2. Let d and d′ denote the dimensionality of the input and sketched output
vectors, respectively. Let vector h ∈ Id

d′ contain d uniformly drawn integer numbers from
{1, ..., d′} and vector s∈{−1, 1}d contain d uniformly drawn values from {−1, 1}. Then,
the sketch projection matrix P∈{−1, 0, 1}d′×d becomes:

Pij =

{
si if hi = j,
0 otherwise,

(3.7)

and the sketch projection p : Rd → Rd′ is a linear operation given as p(ψ) = Pψ (or
p(ψ; P)=Pψ to highlight P).

Proof 1. It directly follows from the definition of the count sketch e.g., see Definition 1
[Weinberger et al., 2009].

Remark 4. Count sketches are unbiased estimators: Eh,s(p(ψ, P(h, s)), p(ψ′, P(h, s)))=

⟨ψ, ψ′⟩. As variance Vh,s(p(ψ), p(ψ′))≤ 1
d′

(
⟨ψ, ψ′⟩2 + ∥ψ∥2

2∥ψ′∥2
2

)
, we note that larger

sketches are less noisy. Thus, for every modality we compress, we use a separate sketch matrix
P. As video modalities are partially dependent, this implicitly leverages the unbiased estimator
and reduces the variance.

Proof 2. For the first and second property, see Appendix A of paper [Weinberger et al., 2009]
and Lemma 3 [Pham and Pagh, 2013].

3.4 Approach

Our pipeline is illustrated in Figure 3.1. It consist of (i) the Fisher Vector and Bag-
of-Words hallucinating streams denoted as FV and BoW (shown in dashed red),
respectively, (ii) the High Abstraction Features stream denoted as HAF, and (iii) the
Prediction Network abbreviated as PredNet.

The role of BoW/FV streams is to take I3D intermediate representations generated
from the RGB and optical flow frames and learn to hallucinate BoW/FV representa-
tions. For this purpose, we use the MSE loss between the ground-truth BoW/FV and
the outputs of BoW/FV streams. The role of the HAF stream is to further process I3D

§3.4 Approach 51

(a)

(b)

(c)

Figure 3.3: Stream types used in our network. Figures 3.3a and 3.3b show Fully
Connected and Convolutional variants used for the practical realization of the FV, BoW,
OFF and HAF streams. Figure 3.3c shows our PredNet. Note that we indicate the
type of operation and its parameters in each block e.g., conv2d and its number of
filters/size, or Power Normalization (PN). Beneath arrows, we indicate the size of input,
intermediate or output representation.

intermediate representations before they are concatenated with hallucinated BoW/FV.
PredNet fuses the concatenated BoW/FV/HAF and learns class concepts. Figure 3.2
shows our pipeline for hallucinating the OFF representation (I3D optical flow). Below,
we describe each module in detail.

3.4.1 BoW/FV Hallucinating Streams

BoW/FV take as input the I3D intermediate representations X(rgb) and X(opt.) of size
1024×7 which were obtained by stripping the classifier and the last 1D conv. layer
of I3D pre-trained on Kinetics-400. The latter dimension of X(rgb) and X(opt.) can be
thought of as the temporal size. We concatenate X(rgb) and X(opt.) along the third
mode and obtain X which has dimensionality 1024×7×2. As FV contains the first-
and second-order statistics, we use a separate stream per each type of statistics, and a
single stream for BoW. For the practical choice of BoW/FV pipelines, we use either a
Fully Connected (FC) unit shown in Figure 3.3a or a Convolutional (Conv) pipeline in
Figure 3.3b. Thus, we investigate the following hallucinating stream combinations:
(i) BoW-FC and FV-FC, (ii) BoW-Conv and FV-FC, or (iii) BoW-Conv and FV-Conv.
Where indicated, we also equip each stream with Power Normalization (PN). For
specific PN realizations, we investigate AsinhE, SigmE, and AxMin variants from
Remarks 1, 2 and 3. Below we detail how we obtained ground-truth BoW/FV.
Ground-truth BoW/FV. To train Fisher Vectors, we computed 256 dimensional GMM-
based dictionaries on descriptors resulting from IDT [Wang and Schmid, 2013] accord-
ing to steps described in Sections 3.2 and 3.3.1. We applied PCA to trajectories (30
dim.), HOG (96 dim.), HOF (108 dim.), MBHx (96 dim.) and MBHy (96 dim.), and

52 Hallucinating IDT Descriptors and I3D Optical Flow Features

we obtained the final 213 dim. local descriptors. We applied encoding as in Eq. (3.2)
and (3.3), the aggregation from Section 3.3.2 and Power Normalization from Section
3.3.3. Thus, our encoded first- and second-order FV representations, each of size
256×213=54528, had to be sketched to 1000 dimensions. To this end, we followed
Section 3.3.4, prepared matrices P(f v1) and P(f v2) as in Proposition 2, and fixed both of
them throughout experiments. The sketched first- and second-order representations
ψ′
(f v1)=P(f v1)ψ(f v1) and ψ′

(f v2)=P(f v2)ψ(f v2) can be readily combined next with the
MSE loss functions detailed in Section 3.4.5.

For BoW, we followed Section 3.3.1 and applied k-means to build a 1000 dim.
dictionary from the same descriptors which were employed to pre-compute FV. Then,
the descriptors were encoded according to Eq. (3.1), aggregated according to steps
described in Section 3.3.2 and normalized by Power Normalization from Section 3.3.3.
Where indicated, we used 4000 dim. dictionary and thus applied sketching on such
BoW to limit its vector size to 1000 dim.

We note that we use ground-truth BoW/FV descriptors only at the training stage
to train our hallucination streams.

3.4.2 High Abstraction Features

High Abstraction Features (HAF) take as input the I3D intermediate representations
X(rgb) and X(opt.). Practical realizations of HAF pipelines are identical to those of
BoW/FV/OFF. Thus, we have a choice of either FC or Conv units illustrated in
Figures 3.3a and 3.3b. We simply refer to those variants as HAF-FC and HAF-Conv,
respectively. Similar to BoW/FV/OFF streams, the HAF representation also uses
Power Normalization and it is of size 1000.

3.4.3 Optical Flow Features

For pipeline in Figure 3.2, the I3D intermediate representation X(rgb) only is fed to
hallucination/HAF streams. I3D Optical Flow Features X(opt.) are pre-computed as
the training ground-truth for the OFF layer (the MSE loss is used).

3.4.4 Combining Hallucinated BoW/FV/OFF and HAF

Figure 3.1 indicates that FV (first- and second-order), BoW and HAF feature vectors
ψ̃(f v1), ψ̃(f v2), ψ̃(bow) and ψ(ha f) are concatenated (via operator ⊕) to obtain ψ(tot) and
subsequently sketched (if indicated so during experiments), that is, ψ′

(tot)=P(tot)ψ(tot)

which reduces the size of the total representation from d = 4000 to 500≤ d′ ≤ 2000.
Matrix P(tot) is prepared according to Proposition 2 and fixed throughout experiments.
As sketching is a linear projection, we can backpropagate through it with ease. When
also hallucinating OFF as in Figure 3.2, we additionally concatenate ψ(o f f) with other
feature vectors to obtain ψ(tot).
PredNet. The final unit of our overall pipeline, PredNet, is illustrated in Figure 3.3c.
On input, we take ψ(tot) (no sketching) or (ψ′

(tot)) if sketching is used, pass it via the

§3.4 Approach 53

batch normalization and then an FC layer which produces a C dim. representation
passed to the cross-entropy loss.

3.4.5 Objective and its Optimization

During training, we combine MSE loss functions responsible for training hallucina-
tion streams with the class. loss:

ℓ∗(X , y; Θ̄)=
α

|H| ∑
i∈H

∥∥ψ̃i−ψ′
i
∥∥2

2+ℓ
(

f(ψ′
(tot); Θ(pr)), y; Θ(ℓ)

)
,

where: ∀i∈H, ψ̃i = g(ℏ(X , Θi), η) , ψ′
i =Piψi,

ψ(ha f)= g
(
ℏ(X , Θ(ha f)), η

)
,

ψ′
(tot)=P(tot)

[
⊕i∈Hψ̃i; ψ(ha f)

]
. (3.8)

The above equation is a trade-off between the MSE loss functions {∥ψ̃i−ψ′
i∥

2
2, i∈

H} and the classification loss ℓ(·, y; Θ(ℓ)) with some label y ∈ Y and parameters
Θ(ℓ)≡{W , b}. The trade-off is controlled by a constant α≥0 while MSE is computed
over hallucination streams i ∈H, and H≡ {(f v1), (f v2), (bow), (o f f)} is our set of
hallucination streams which can be modified to multiple/few such streams depending
on the task at hand. Moreover, g(·, η) is a Power Normalizing function chosen
from the family described in Section 3.3.3, f (·; Θ(pr)) is the PredNet module with
parameters Θ(pr) which we learn, {ℏ(·, Θi), i ∈ H} are the hallucination streams
while {ψ̃i, i∈H} are the corresponding hallucinated BoW/FV/OFF representations.
Moreover, ℏ(·, Θ(ha f)) is the HAF stream with the output denoted by ψ(ha f). For the
hallucination streams, we learn parameters {Θi, i∈H} while for HAF, we learn Θ(ha f).
The full set of parameters we learn is defined as Θ̄≡ ({Θi, i∈H}, Θ(ha f), Θ(pr), Θ(ℓ)).
Furthermore, {Pi, i∈H} are the projection matrices for count sketching of the ground-
truth BoW/FV/OFF feature vectors {ψi, i∈H} while {ψ′

i , i∈H} are the corresponding
sketched/compressed representations. Finally, P(tot) is the projection matrix for
hallucinated BoW/FV/OFF representations concatenated with each other and HAF,
that is, for ψ(tot)=

[
⊕i∈Hψ̃i; ψ(ha f)

]
which results in the sketched counterpart ψ′

(tot)
that goes into the PredNet module f . Section 3.3.4 details how to select matrices P. If
sketching is not needed, we simply set a given P to be the identity projection P=I. In
our experiments, we simply set α=1.
Optimization. We minimize ℓ∗(X , y; Θ̄) w.r.t. parameters of each stream, that is
{Θi, i∈H} for hallucination streams, Θ(ha f) for the HAF stream, Θ(pr) for PredNet and
Θ(ℓ) for the classification loss. In practice, we perform a simple alternation over two
minimization steps shown in Figure 3.4. In each iteration, we perform one forward
and backward pass regarding the MSE losses to update the parameters {Θi, i∈H}
of the hallucination streams. Then, we perform one forward and backward pass
regarding the classification loss ℓ. We update all network streams during this pass.
Thus, one can think of our network as multi-task learning with BoW/FV/OFF and
label learning tasks. Furthermore, we use the Adam minimizer with 10−4 initial

54 Hallucinating IDT Descriptors and I3D Optical Flow Features

Figure 3.4: Optimization. In each step, we have (i) forward/backward passes via
BoW/FV (optionally OFF) streams for the MSE loss followed by (ii) forward/backward
passes via BoW/FV (opt. OFF), and HAF streams and PredNet for the classification
loss.

learning rate which we halve every 10 epochs. We run our training for 50–100 epochs
depending on the dataset.
Sketching the Power Normalized vectors.

Proposition 3. Sketching PN vectors increases the sketching variance (ℓ2-normalized by vec.
norms) by 1≤κ≤2.

Proof 3. Normalize variance V from Remark 4 by the norms ∥ψ∥2
2∥ψ′∥2

2. Consider V(γ)

which is the variance for d dimensional vectors {(ψγ, ψ′γ) : ψ≥0, ψ′≥0} power normalized
by Gamma from Remark 1, and divide it accordingly by ∥ψγ∥2

2∥ψ′γ∥2
2. For extreme PN

(γ→0), we have:
lim
γ→0

V(γ)=
1
d′

lim
γ→0

(
⟨ψγ, ψ′γ⟩2

∥ψγ∥2
2∥ψ′γ∥2

2
+1

)
=

2
d′

. (3.9)

Now, assume that d dimensional ψ and ψ′ are actually ℓ2-norm normalized. Then, we have
the following ratio of variances:

κ=V/V(γ) = 2/(
〈
ψ, ψ′〉2

+1), (3.10)

Thus, 1≤ κ ≤ 2 depends on (ψ, ψ′), and κ varies smoothly between [1; 2] for 1≤ γ ≤ 0 of
Gamma, a monotonically increasing function. For typical γ=0.5, we measured for the actual
data that κ≈1.3.

3.5 Experiments

3.5.1 Datasets and Evaluation Protocols

HMDB-51 [Kuehne et al., 2011] consists of 6766 internet videos over 51 classes; each
video has ∼20–1000 frames. Following the protocol, we report the mean accuracy
across three splits.
YUP++ [Feichtenhofer et al., 2017b] dataset contains so-called video textures. It has
20 scene classes, 60 videos per class, and its splits contain scenes captured with the
static or moving camera. We follow the standard splits (1/9 dataset for training).

§3.5 Experiments 55

sp1 sp2 sp3 mean acc.

HAF only 81.83% 80.78% 80.45% 81.02%
HAF+BoW/FV exact 83.00% 82.80% 81.70% 82.50%

HAF+BoW halluc. 82.29% 81.24% 80.98% 81.50%
HAF+FV halluc. 82.68% 81.05% 79.93% 81.22%

HAF+BoW/FV halluc. 82.88% 82.74% 81.50% 82.37%

Table 3.1: Evaluations of pipelines on the HMDB-51 dataset. We compare (HAF only)
and (HAF+BoW/FV exact) which show the lower- and upper bound on the accuracy,
and our (HAF+BoW/FV halluc.), (HAF+BoW halluc.) and (HAF+FV halluc.).

static dynamic mixed mean acc.

HAF only 92.03% 81.67% 89.07% 87.59%
HAF+BoW/FV exact 93.30% 89.82% 92.41% 91.84%

HAF+BoW halluc. 92.69% 85.93% 92.41% 90.34%
HAF+FV halluc. 92.69% 88.15% 91.48% 90.77%

HAF+BoW/FV halluc. 93.15% 89.63% 92.31% 91.69%

Table 3.2: Eval. of pipelines on YUP++. See Table 3.1 for the legend.

MPII Cooking Activities [Rohrbach et al., 2012] consist of high-resolution videos of
people cooking various dishes. The 64 distinct activities from 3748 clips include coarse
actions e.g., opening refrigerator, and fine-grained actions e.g., peel, slice, cut apart. We
use the mean Average Precision (mAP) over 7-fold cross validation. For human-centric
protocol [Cherian et al., 2017a, 2018], we use Faster-RCNN [Ren et al., 2015] to crop
video around humans.
Charades [Sigurdsson et al., 2016] consist of of 9848 videos of daily indoors activities,
66500 temporal annotations and 157 classes.

3.5.2 Data Pre-processing

For HMDB-51 and YUP++, we use the data augmentation strategy described in the
original authors’ papers (e.g., random crop of videos, left-right flips on RGB and
optical flow frames. For testing, center crop, no flipping are used.

For the MPII dataset with human-centric pre-processing, human detector is used
first. Then, we crop randomly around the bounding box of human subject (we include
it). Finally, we allow scaling, zooming in, and left-right flips. For longer videos, we
sample sequences to form a 64-frame sequence. For short videos (less than 64 frames),
we loop the sequence many times to fit its length to the expected input length. Lastly,
we scale the pixel values of RGB and optical flow frames to the range between −1 and
1.

3.5.3 Evaluations

We start our experiments by investigating various aspects of our pipeline and then we
present our final results.
HAF, BoW and FV streams. Firstly, we ascertain the gains from our HAF and

56 Hallucinating IDT Descriptors and I3D Optical Flow Features

sp1 sp2 sp3 mean acc.

HAF-Conv+BoW/FV-FC halluc. 81.96% 80.39% 80.52% 80.95%
HAF-FC+BoW/FV-Conv halluc. 82.42% 81.30% 81.50% 81.74%
HAF-FC+BoW/FV-FC halluc. 82.88% 82.74% 81.50% 82.37%

Table 3.3: Evaluations of pipelines on the HMDB-51 dataset. We compare
(HAF+BoW/FV halluc.) approach on different architectures used for HAF and BoW/FV
streams such as (FC) and (Conv).

BoW/FV streams. We evaluate the performance of (i) the HAF-only baseline pipeline
without IDT-based BoW/FV information (HAF only), (ii) the HAF-only baseline with
exact ground-truth IDT-based BoW/FV added at both training and testing time
(HAF+BoW/FV exact), and (iii) the combined HAF plus IDT-based BoW/FV streams
(HAF+BoW/FV halluc.). We also perform evaluations on (iv) HAF plus IDT-based
BoW stream (HAF+BoW halluc.) and HAF plus IDT-based FV stream (HAF+FV halluc.)
to examine how much gain IDT-based BoW and FV bring, respectively. As Section
3.4.1 suggests that each stream can be based on either the Fully Connected (FC) or
Convolutional (Conv.) pipeline, we firstly investigate the use of FC unit from Figure
3.3a, that is, we use HAF-FC, BoW-FC and HAF-FC streams. PredNet also uses FC.
For ground-truth FV, we use 1000 dim. sketches.

Table 3.1 presents results on the HMDB-51 dataset. As expected, the (HAF only) is
the poorest performer while (HAF+BoW/FV exact) is the best performer determining
the upper limit on the accuracy. Hallucinating (HAF+BoW halluc.) outperforms
(HAF+FV halluc.) marginally. We expect FV to perform close to BoW due to the
significant compression with sketching by factor ∼52.5×. Approaches (HAF+FV/BoW
halluc.) and (HAF+BoW/FV exact) achieve the best results, and outperform (HAF
only) by 1.35% and 1.48% accuracy. These result show that our hallucination strategy
(HAF+FV/BoW halluc.) can mimic (HAF+BoW/FV exact) closely. Our 82.37% accuracy
is the new state of the art. Below we show larger gains on YUP++.

Table 3.2 presents similar findings on the YUP++ dataset. Our (HAF+FV halluc.)
brings the improvement of ∼2.2 and ∼6.5% over (HAF+BoW halluc.) and (HAF only)
on scenes captured with the moving camera (dynamic). Our (HAF+BoW/FV halluc.)
yields ∼8.0% over (HAF only) thus demonstrating again the benefit of hallucinating
BoW/FV descriptors. The total gain for (HAF+BoW/FV halluc.) over (HAF only)
equals 4.1%. Our (HAF+FV/BoW halluc.) matches results of (HAF+BoW/FV exact)
without explicitly computing BoW/FV during testing. Below, we investigate different
architectures of our streams.

Fully Connected/Convolutional streams. Figures 3.3a and 3.3b show two possible
realizations of HAF, BoW and FV streams. While FC and Conv. architectures are
not the only possibilities, they are the simplest ones. Table 3.3 shows that using FC
layers (FC) for HAF and BoW/FV streams, denoted as (HAF-FC+BoW/FV-FC halluc.)
outperforms Convolutional (Conv) variants by up to ∼1.5% accuracy. Thus, we use
only the FC architecture in what follows.

Sketching and Power Normalization. As PredNet uses FC layers (see Figure 3.3c), we

§3.5 Experiments 57

γ′, η′, η′′

a
c
c
u

ra
c
y
 (

%
)

1 25 50 75 100 125 150
82

82.5

83

83.5

84
AsinhE
SigmE
AxMin

(a)

d′

a
c
c
u

ra
c
y
 (

%
)

100 1000 2000 3000 4000
82

82.5

83

83.5

84

sketch

(b)

Figure 3.5: Evaluations of (fig. 3.5a) Power Normalization and (fig. 3.5b) sketching on
the HMDB-51 dataset (split 1 only).

sp1 sp2 sp3 mean acc.

HAF only 81.83% 80.78% 80.45% 81.02%
HAF+BoW/FV halluc. 83.46% 82.61% 81.37% 82.48%

ADL+ResNet+IDT 74.3% [Wang and Cherian, 2018] STM Network+IDT 72.2% [Feichtenhofer et al., 2017a]
ADL+I3D 81.5% [Wang and Cherian, 2018] Full-FT I3D 81.3% [Carreira and Zisserman, 2017]

Table 3.4: Evaluations of (top) our (HAF+BoW/FV halluc.) and (bottom) comparisons to
the state of the art on HMDB-51.

expect that limiting the input size to this layer via count sketching from Section 3.3.4
should benefit the performance. Moreover, as visual and video representations suffer
from so-called burstiness, we investigate AsinhE, SigmE and AxMin from Remarks 1,
2 and 3.

Figure 3.5a investigates the classification accuracy on the HMDB-51 dataset (split
1) when our HAF and BoW/FV feature vectors {ψ̃i, i∈H} and ψ(ha f) (described in
Sections 3.4.4 and 3.4.5) are passed via Power Normalizing functions AsinhE, SigmE
and AxMin prior to concatenation (see Figure 3.1). From our experiment it appears
that all PN functions perform similarly and improve results from the baseline 82.29%
to ∼83.20% accuracy. We observe a similar gain from 93.15% to 94.44% acc. on YUP++
(static). In what follows, we simply use AsinhE for PN.

Figure 3.5b illustrates on the HMDB-51 dataset (split 1) that applying count
sketching on concatenated HAF and BoW/FV feature vectors ψ(tot), which produces
ψ′
(tot) (see Section 3.4.5 for reference to symbols), improves results from 82.88% to

83.92% accuracy for d′ = 2000. This is expected as reduced size of ψ′
(tot) results in

fewer parameters of the FC layer of PredNet and less overfitting. Similarly, for the
YUP++ dataset and the split (static), we see the performance increase from 93.15% to
94.81% accuracy.

Comparisons with other methods. Below we present our final results and we
contrast them against the state of the art. Table 3.4 shows results on the HMDB-51
dataset. For our method, we used sketching of ψ(tot) with d′ = 2000 and PN. Our
(HAF+BoW/FV halluc.) model yields 82.48% acc. which beats results in the literature to

58 Hallucinating IDT Descriptors and I3D Optical Flow Features

static dynamic mixed mean mean
stat/dyn all

HAF only 92.03% 81.67% 89.07% 86.8% 87.6%
HAF+BoW/FV halluc. 94.81% 89.63% 93.33% 92.2% 92.6%

T-ResNet [Feichtenhofer et al., 2017b] 92.41% 81.50% 89.00% 87.0% 87.6%
ADL I3D [Wang and Cherian, 2018] 95.10% 88.30% - 91.7% -

Table 3.5: Evaluations of (top) our (HAF+BoW/FV halluc.) and (bottom) comparisons to
the state of the art on YUP++.

sp1 sp2 sp3 sp4 sp5 sp6 sp7 mAP

HAF+BoW halluc. 73.9 71.6 76.2 70.7 76.3 71.9 63.4 71.9%
HAF+BoW halluc.+SK/PN 73.9 75.8 72.2 73.9 77.0 73.6 68.8 73.6%

HAF* only 74.6 73.2 77.0 75.1 76.1 75.6 71.9 74.8%
HAF*+BoW halluc. 78.8 75.0 84.1 76.0 77.0 78.3 75.2 77.8%

HAF*+BoW hal.+MSK/PN 80.1 79.2 84.8 83.9 80.9 78.5 75.5 80.4%
HAF•+BoW hal.+MSK/PN 80.8 80.9 85.0 83.9 82.0 79.8 79.6 81.7%

ditto+OFF hal. 81.2 81.2 84.9 83.4 84.2 78.9 79.1 81.8%
I3D+BoW MTL• 79.1 78.1 83.6 78.7 79.1 78.6 76.5 79.1%

KRP-FS 70.0% [Cherian et al., 2018] KRP-FS+IDT 76.1% [Cherian et al., 2018]
GRP 68.4% [Cherian et al., 2017a] GRP+IDT 75.5% [Cherian et al., 2017a]

Table 3.6: Evaluations of (top) our (HAF+BoW halluc.) pipeline without sketching/PN,
with sketching/PN (SK/PN). The (HAF* only) is our baseline without the BoW stream,
(*) denotes human-centric pre-processing while (MSK/PN)in pipeline (HAF*+BoW
hal.+MSK/PN) denotes multiple sketches per BoW followed by Power Norm (PN).
(bottom) Other methods on the MPII dataset.

HAF HAF+BoW/ HAF+BoW/FV/OFF HAF+BoW/FV/OFF HAF+BoW/FV/OFF
only FV exact halluc. +MSK×2/PN halluc. +MSK×4/PN halluc. +MSK×8/PN

37.2 41.9 42.0 42.2 43.1

Table 3.7: Evaluations of our methods on the Charades dataset.

the best of our knowledge. If we tune PN per split, our results reach 82.78% accuracy.
However, we do not advise such tuning due to danger of overfitting. We note that
we outperform more complex methods such as Adversarial Discriminative Learning
(ADL) with I3D [Wang and Cherian, 2018] and Fully Fine-Tuned I3D [Carreira and
Zisserman, 2017].

Table 3.5 shows results on the YUP++ dataset. Our (HAF+BoW/FV halluc.) model
yields very competitive results on the static protocol and outperforms competitors on
the dynamic and mixed protocols. With 92.2% mean accuracy over static and dynamic
scores (mean stat/dyn), we outperform more complex ADL+I3D [Wang and Cherian,
2018] and T-ResNet [Feichtenhofer et al., 2017b].

Table 3.6 shows results for the MPII dataset for which we use HAF with/without
the BoW (4000 dim.) hallucination stream (no FV stream). As MPII contains sub-
sequences, we use integral pooling from Prop. 1. Our basic model (HAF+BoW
halluc.) scores ∼71.9% mAP. Applying sketching and PN (HAF+BoW halluc.+SK/PN)
yields 73.6% mAP. Unlike GRP+IDT [Cherian et al., 2017a] and KRP-FS+IDT [Cherian

§3.5 Experiments 59

0 0.05 0.1 0.15 0.2
square diff.

0

0.1

0.2

0.3

0.4

0.5

0.6
c
o
u
n
t
(n

o
rm

.)
tr (epoch 1)
tr (epoch 5)
tr (epoch 15)
tr (epoch 25)

(a) BoW FC (train)

0 0.05 0.1 0.15 0.2
square diff.

0

0.1

0.2

0.3

0.4

0.5

0.6

c
o
u
n
t
(n

o
rm

.)

te (epoch 1)
te (epoch 5)
te (epoch 15)
te (epoch 25)

(b) BoW FC (test)

0 0.05 0.1 0.15 0.2
square diff.

0

0.1

0.2

0.3

0.4

0.5

0.6

c
o
u
n
t
(n

o
rm

.)

tr (epoch 1)
tr (epoch 5)
tr (epoch 15)
tr (epoch 25)

(c) FV1 FC (train)

0 0.05 0.1 0.15 0.2
square diff.

0

0.1

0.2

0.3

0.4

0.5

0.6

c
o
u
n
t
(n

o
rm

.)

tr (epoch 1)
tr (epoch 5)
tr (epoch 15)
tr (epoch 25)

(d) FV2 FC (train)

0 0.05 0.1 0.15 0.2
square diff.

0

0.1

0.2

0.3

0.4

0.5

0.6

c
o
u
n
t
(n

o
rm

.)

tr (epoch 1)

tr (epoch 5)

tr (epoch 10)

(e) BoW Conv (train)

0 0.05 0.1 0.15 0.2
square diff.

0

0.1

0.2

0.3

0.4

0.5

0.6

c
o
u
n
t
(n

o
rm

.)

te (epoch 1)

te (epoch 5)

te (epoch 10)

(f) BoW Conv (test)

0 0.05 0.1 0.15 0.2

square diff.

0

0.1

0.2

0.3

0.4

0.5

0.6

c
o

u
n

t
(n

o
rm

.)

tr (epoch 1)

tr (epoch 5)

tr (epoch 15)

tr (epoch 25)

(g) FV1 FC (train), -SK/PN

0 0.05 0.1 0.15 0.2

square diff.

0

0.1

0.2

0.3

0.4

0.5

0.6

c
o

u
n

t
(n

o
rm

.)

tr (epoch 1)

tr (epoch 5)

tr (epoch 15)

tr (epoch 25)

(h) FV2 FC (train), -SK/PN

Figure 3.6: Evaluation of the square difference between the hallucinated and ground
truth representations on HMDB-51 (split 1). Experiments in the top row use (FC)
streams with sketching and PN. Two leftmost plots in the bottom row use (Conv)
streams. Two rightmost plots in the bottom row use (FC) streams without sketch-
ing/PN (-SK/PN).

et al., 2018], our first two experiments do not use any human- or motion-centric
pre-processing. With human-centric crops, denoted with (*), our baseline without
BoW (HAF* only) achieves 74.8% mAP. The model with BoW (HAF+BoW halluc.)
scores 77.8% mAP. By utilizing 4 sketches for BoW and 4 BoW streams with Power
Normalization (HAF*+BoW hal.+MSK/PN), we obtain 80.4% mAP.

Hallucinating Optical Flow. For (HAF•+BoW hal.+MSK/PN) in Table 3.6, we increased
the resolution of RGB frames 2× to obtain larger human-centric crops and 2× larger
optical flow res., which yielded 81.7% mAP. In the same setting, hallucinating optical
flow feat. (ditto+OFF hal.) yielded 81.84% mAP, the new state of the art.

Charades. In Table 3.7, baselines (HAF only) and (HAF+BoW/FV exact) score 37.2%
and 41.9% mAP. Moreover, our best pipeline (HAF+BoW/FV/OFF halluc.+MSK×8/PN)
that hallucinates IDT BoW/FV and I3D optical flow features (OFF) with 8 sketches
per BoW/FV/OFF and PN yielded 43.1% (a much more complex feature banks [Wu
et al., 2019a] yield 43.4%). Finally, if 25% of this dataset was dedicated to testing,
∼55h of computations would be saved.
Hallucination quality. Below, we provide an analysis of the quality of hallucination of
the BoW/FV streams compared to the ground-truth BoW/FV feature vectors. Figure
3.6 presents histograms of the square difference between the hallucinated features and
ground-truth ones. Specifically, we plot histograms of {(ψ̃(bow),mn − ψ(bow),mn)

2, m∈
I1000, n∈N}, where index m runs over features m∈I1000 and n∈N runs over each
video. Counts for training and testing splits are normalized by 1000 (the number of
features) and the number of training and testing videos, respectively. The histograms
are computed over bins of size 0.01 thus allowing us to simply plot continuously
looking lines instead of bins. Figure 3.6a shows that the BoW ground-truth descriptors

60 Hallucinating IDT Descriptors and I3D Optical Flow Features

sp1 sp2 sp3 sp4 sp5 sp6 sp7 mAP

HAF*+BoW halluc. 78.8 75.0 84.1 76.0 77.0 78.3 75.2 77.8%
HAF*+BoW hal.+MSK/PN 80.1 79.2 84.8 83.9 80.9 78.5 75.5 80.4%

HAF•+BoW halluc. 78.8 78.3 84.2 77.4 77.1 78.3 75.2 78.5%
HAF•+BoW hal.+MSK/PN 80.8 80.9 85.0 83.9 82.0 79.8 79.6 81.7%

Table 3.8: Evaluations on MPII. The (HAF*+BoW halluc.) is our pipeline with the
BoW stream, (*) denotes human-centric pre-processing for 256 pixels (height) while
(HAF*+BoW hal.+MSK/PN) denotes our pipeline with multiple sketches per BoW
followed by Power Norm (PN). By analogy, (•) denotes human-centric pre-processing
for 512 pixels (height).

for the training split are learnt closely by our BoW hallucinating unit based on FC
layers (FC). We capture histograms for epochs 1, 5, 15, 25 in colors interpolated from
red to blue. As one can see, in early epochs, the peak around the first bin is small.
As the epochs progress, the peak around the first bin becomes prominent while
further bins decrease in size. This indicates that as the training epochs progress, the
approximation error becomes smaller and smaller. Figure 3.6b shows that the BoW
ground-truth descriptors for the testing split are also approximated closely by the
hallucinated BoW descriptors.

We compared histograms for testing and training slits for BoW, first- and second-
order FV and observed small differences only. Such a comparison can be conducted
by computing the ratio of testing to training bins and it reveals variations between
0.8× and 1.25×. Thus, without the loss of clarity, we skip showing plots for FV testing
splits. Figures 3.6c and 3.6d show that the first- and second-order FV terms (FV1) and
(FV2) can be also learnt closely by our hallucinating units. We show only the quality
of approximation on the training split as behavior on testing splits matches closely
the behavior on training splits. Figures 3.6e, 3.6f, 3.6g and 3.6h show the similar
learning/approximation trend for BoW training and testing splits, and the first- and
second-order FV terms (training only) given our hallucinating unit based on FC layers
(FC) with no sketching or PN (-SK/PN).

Higher resolution frames on MPII. For human-centric pre-processing on MPII de-
noted by (*) in the main submission, we observed that the bounding boxes used for
extraction of the human subject are of low resolution. Thus, we decided to firstly
resize RGB frames to 512 pixels (height) rather than 256 pixels (as in our main sub-
mission) and then compute the corresponding optical flow, and perform extraction of
human subjects for which the resolution thus increased 2×. The (HAF*+BoW halluc.),
our pipeline with the BoW stream, and (HAF*+BoW hal.+MSK/PN) with multiple
sketches and PN are computed for the standard 256 pixels (height) denoted by (*)
are given in Table 3.8. Note that results for (*) are taken from our main submis-
sion. The (HAF•+BoW halluc.), our pipeline with the BoW stream, and (HAF•+BoW
hal.+MSK/PN) pipeline are analogous pipelines but computed for the increased 512
pixel resolution (height) denoted by (•). According to the table, increasing the resolu-
tion 2× prior to human detection, extracting subjects in higher resolution and scaling
(to the 256 size for shorter side) yields 1.3% improvement in accuracy.

§3.6 Conclusions 61

Discussion. There exist several reasons explaining why our pipeline works well
e.g., sophisticated IDT trajectory modeling is unlikely to be captured by off-the-shelf
CNNs unless a CNN is enforced to learn IDT. We perform ‘translation’ of the I3D
output into IDT-based BoW/FV descriptors thus enforcing I3D to implicitly learn
IDT which co-regularizes I3D which resembles Domain Adaptation (DA) methods: a
source network co-regularizes a target network [Koniusz et al., 2017; Tas and Koniusz,
2018; Koniusz et al., 2018a; Herath et al., 2019; Harandi et al., 2018; Kumar Roy et al.,
2019] by the alignment of feature statistic of both streams. Related to DA is Multi-task
Learning (MTL) known for boosting generalization/preventing overfitting of CNNs
due to task specific losses [Caruana, 1997]. MTL training on related tasks is known to
boost individual task accuracies beyond a vanilla feature fusion [Thrun, 1996]. Finally,
our pipeline uses self-supervision e.g., IDT BoW/FV and OFF descriptors represent
easy to obtain self-information about videos. We train our halluc./last I3D layers via
task-specific losses (similar to MTL). However, our halluc. layers distill the domain
specific cues which are fed back into the network (PredNet) which boosts our results
by further ∼2.7% compared to vanilla (I3D+BoW MTL•) in Table 3.6.

3.6 Conclusions

We have proposed a simple yet powerful strategy that learns IDT-based descriptors
(and even optical flow features) and hallucinates them in a CNN pipeline for AR at
the test time. With state-of-the-art results, we hope our method will spark a renewed
interest in IDT-like descriptors.

62 Hallucinating IDT Descriptors and I3D Optical Flow Features

Chapter 4

Statistical Moment and Subspace
Descriptors

In this chapter, we build on a concept of self-supervision by taking RGB frames as
input to learn to predict both action concepts and auxiliary descriptors e.g., object
descriptors. So-called hallucination streams are trained to predict auxiliary cues,
simultaneously fed into classification layers, and then hallucinated at the testing
stage to aid network. We design and hallucinate two descriptors, one leveraging
four popular object detectors applied to training videos, and the other leveraging
image- and video-level saliency detectors. The first descriptor encodes the detector-
and ImageNet-wise class prediction scores, confidence scores, and spatial locations
of bounding boxes and frame indexes to capture the spatio-temporal distribution of
features per video. Another descriptor encodes spatio-angular gradient distributions
of saliency maps and intensity patterns. Inspired by the characteristic function of the
probability distribution, we capture four statistical moments on the above intermediate
descriptors. As numbers of coefficients in the mean, covariance, coskewness and
cokurtotsis grow linearly, quadratically, cubically and quartically w.r.t. the dimension
of feature vectors, we describe the covariance matrix by its leading n′ eigenvectors
(so-called subspace) and we capture skewness/kurtosis rather than costly coskew-
ness/cokurtosis. We obtain state of the art on five popular datasets such as Charades
and EPIC-Kitchens.

4.1 Introduction

Action Recognition (AR) has progressed from hand-crafted video representations
[Dalal et al., 2006; Scovanner et al., 2007; Kläser et al., 2008; Wang et al., 2011, 2013b;
Wang and Schmid, 2013; Wang, 2017; Wang et al., 2019b,c] to Convolutional Neural
Networks (CNN) [Simonyan and Zisserman, 2014; Tran et al., 2015; Feichtenhofer
et al., 2016a; Carreira and Zisserman, 2017]. The two-stream networks [Simonyan
and Zisserman, 2014], 3D spatio-temporal features [Tran et al., 2015], spatio-temporal
ResNet model [Feichtenhofer et al., 2016a] and the new Inflated 3D (I3D) convolutions
network pre-trained on Kinetics-400 [Carreira and Zisserman, 2017]. Often, AR
combine the RGB and optical flow inputs, and benefit from a late fusion (next to the

63

64 Statistical Moment and Subspace Descriptors

(a)

(b)

(c)

Figure 4.1: We use detectors and saliency in hallucination descriptors. Figure 4.1a
shows bounding boxes from four detectors. The faster R-CNN detector with ResNet101
focuses on human-centric actions such as stand, watch, talk, etc. The other three
detectors discover objects e.g., oven, sink, clock, etc. Figure 4.1b shows that the MNL
saliency detector focuses on spatial regions. Figure 4.1c shows ACLNet saliency
detector discovers motion regions.

classifier) with low-level representations such as Improved Dense Trajectory (IDT)
descriptors [Wang and Schmid, 2013] due to their highly complementary nature
[Fernando and Gould, 2016; Cherian et al., 2017b, 2018; Wang and Cherian, 2018;
Choutas et al., 2018]. Recently, AssembleNet and AssembleNet++ [Ryoo et al., 2020b],
learnt with the Neural Architecture Search (NAS) have yielded superb results.

A recent AR pipeline [Wang et al., 2019d], called DEEP-HAL, used IDT descriptors
encoded with Bag-of-Words (BoW) [Sivic and Zisserman, 2003; Csurka et al., 2004]
and Fisher Vectors (FV) [Perronnin and Dance, 2007; Perronnin et al., 2010] to learn
them by so-called hallucination streams and generate at the testing stage to boost
results beyond a naive fusion of modalities. DEEP-HAL and approach [Tang et al.,
2019] have shown that even optical flow frames encoded by a network can be learnt
by another network trained on RGB frames only, thus pointing at redundancy in
training both RGB and optical flow network streams. DEEP-HAL [Wang et al., 2019d]
has attained the state of the art on several AR benchmarks by learning to hallucinate
IDT-based BoW/FV and Optical Flow Features (OFF) from a single RGB-based I3D
network stream.

DEEP-HAL opens up an exciting opportunity to investigate what other represen-
tations can co-regularize/self-supervise a backbone network for AR with the goal of
learning to hallucinate costly representations at the training stage and simply lever-
aging outputs of halluciantion streams at the testing time. We build on DEEP-HAL
which already includes IDT-based BoW/FV and OFF streams. However, we investi-
gate the self-supervisory ability of object/saliency detectors in DEEP-HAL. Moreover,
beyond I3D backbone, we investigate the use of AssembleNet and AssembleNet++
but we disable their (impractical to obtain) segmentation mask input.

In this chapter, we design and hallucinate two kinds of descriptors, namely Object
Detection Features (ODF) and Saliency Detection Features (SDF). The ODF descriptor

§4.1 Introduction 65

Figure 4.2: We build on DEEP-HAL [Wang et al., 2019d] which includes I3D RGB and
Optical Flow networks (the latter net. is used only during training). For AssembleNet
and AssembleNet++, the backbone encodes both RGB and the optical flow, which is
synthesized on the fly from RGB frames. For the I3D variant, we remove the prediction
and the last 1D conv. layers from I3D RGB and optical flow streams, we feed the
1024×7 feature representations X(rgb) into Bag-of-Words (BoW), Fisher Vector (FV), the
Optical Flow Features (OFF) and the High Abstraction Features (HAF) streams (dashed
black) followed by the Power Normalization (PN) and Sketching (SK) blocks. The OFF
stream is supervised by X(opt.). For the AssembleNet variant, we obtain the 2048
feature representations X(rgb) and do not use the OFF stream/optical flow backbone.
Moreover, we introduce DET1, ...,DET4, SAL1 and SAL2 streams corresponding to our
detector- and saliency-based descriptors (dashed blue). The resulting feature vectors
ψ̃′
(·), where (·) denotes the stream name e.g., (det1), ..., (det2) etc., are reweighted by

corresponding weights w(·) (magenta lines) and aggregated (sum) by (⊕). All ψ̃(·)
are reweighted, aggregated (sum) and fed to Prediction Network (PredNet). By !,
we indicate that the Mean Square Error (MSE) losses are used during training to
supervise all streams outputting ψ̃′

(·) by the ground-truth ψ′
(·). By%, we indicate that

the MSE losses are switched off for testing and ψ̃′
(·) are hallucinated/fed into PredNet

to obtain labels y.

leverages faster R-CNN detector [Ren et al., 2015] based on backbones such as (i)
Inception V2 [Szegedy et al., 2016], (ii) Inception ResNet V2 [Szegedy et al., 2017],
(iii) ResNet101 [He et al., 2016] and (iv) NASNet [Zoph et al., 2018]. The Inception
V2, Inception ResNet V2 and NASNet are pre-trained on the COCO dataset [Lin
et al., 2014] (91 object classes), whereas the ResNet101 is pre-trained on the AVA v2.1
dataset [Gu et al., 2018] (80 human AR classes). The above detectors are applied to
training videos to identify humans and objects. Such detected objects together with
their relevance and class labels summarized with our descriptor encourage the AR
pipeline to focus on semantically important regions and actors relevant to the task of
action recognition. Figure 4.1a shows a few of bounding boxes detected by these four
detectors.

The SDF leverages image- and video-level saliency detectors such as MNL [Zhang
et al., 2018c] and ACLNet [Zhang et al., 2019c] with the goal of identifying salient
regions correlating with the human gaze in spatial and temporal sense. Saliency
maps extracted from training videos and summarized by our descriptor help the AR
pipeline learn spatial and temporal regions correlating with actions. Figures 4.1b and
4.1c show saliency maps from region-wise and temporal saliency detectors.

IDT descriptors are fused with the majority of modern AR pipelines [Fernando and
Gould, 2016; Cherian et al., 2017b, 2018; Wang and Cherian, 2018; Choutas et al., 2018]

66 Statistical Moment and Subspace Descriptors

at the classifier level for the best performance while DEEP-HAL [Wang et al., 2019d]
learns to hallucinate, and feeds them into the classification branch called PredNet.
In this chapter, we go further and prepare two compact descriptors, ODF and SDF,
and hallucinate them within DEEP-HAL. We equip each hallucination branch with
a weighting mechanism adjusted per epoch to attain the best results. Figure 4.2
illustrates DEEP-HAL at the conceptual level.

For ODF descriptors, we concatenate together per bounding box per frame (i) the
one-hot detection and (ii) ImageNet [Russakovsky et al., 2015] scores, (iii) embedded
confidence scores, (iv) embedded bounding box coordinates, and (v) embedded
normalized frame index. For all bounding boxes, we stack such features into a matrix.
Inspired by the characteristic function of the probability density fun., we extract the
mean, leading eigenvectors of covariance, skewness and kurtosis. For SDF descriptors,
per frame, we encode saliency via (i) kernelized descriptor on spatio-angular gradient
distributions of saliency maps and (ii) intensity patterns. We obtain an ODF per
detector and an SDF per saliency detector. Our contributions are as follows:

i. We propose to utilize the object and human detectors to enhance the performance
of AR pipelines.

ii. We design two types of statistically motivated high-order compact descriptors,
Object Detection Features and Saliency Detection Features, for the use in AR
pipelines.

iii. We build on the recent DEEP-HAL pipeline [Wang et al., 2019d] but we introduce
AssembleNet and AssembleNet++ apart from I3D backbone. Moreover, we intro-
duce a weight learning mechanism for hallucinated feature vectors, and ODF and
SDF are hallucinated which leads to the state-of-the-art performance.

4.2 Related Work

Below, we describe handcrafted spatio-temporal video descriptors, their encoding
strategies and the optical flow used by DEEP-HAL [Wang et al., 2019d]. We also
describe deep learning pipelines for video classification. Finally, we discuss the object
category and human detectors followed by the spatial and temporal saliency detectors
used by us.
Early video descriptors. Early AR used on spatio-temporal interest point detectors
[Laptev, 2005; Dollár et al., 2005; Chakraborty et al., 2012; Willems et al., 2008; Li
et al., 2014; Wang et al., 2011] and spatio-temporal descriptors [Dalal et al., 2006;
Scovanner et al., 2007; Uijlings et al., 2014; Wang et al., 2011, 2013b; Wang and Schmid,
2013] which capture various appearance and motion statistics. As spatio-temporal
interest point detectors are unable to capture long-term motion patterns, a Dense
Trajectory (DT) [Wang et al., 2011] approach densely samples feature points in each
frame to track them in the video (via optical flow). Then, multiple descriptors are
extracted along trajectories to capture shape, appearance and motion cues. As DT
cannot compensate for the camera motion, the IDT [Wang and Schmid, 2013; Wang

§4.2 Related Work 67

et al., 2013b] estimates the camera motion to remove the global background motion.
IDT also removes inconsistent matches via a human detector. For spatio-temporal
descriptors, IDT employs HOG [Freeman and Roth, 1994], HOF [Dalal et al., 2006] and
MBH [Wang et al., 2013b]. HOG [Freeman and Roth, 1994] contains statistics of the
amplitude of image gradients w.r.t. the gradient orientation, thus it captures the static
appearance cues. In contrast, HOF [Dalal et al., 2006] captures histograms of optical
flow while MBH [Wang et al., 2013b] captures derivatives of the optical flow, thus it is
highly resilient to the global camera motion whose cues cancel out due to derivatives.
Thus, HOF and MBH contain the zero- and first-order optical flow statistics. Other
spatio-temporal descriptors include HOG-3D [Kläser et al., 2008], SIFT3D [Scovanner
et al., 2007], SURF3D [Willems et al., 2008] and LTP [Yeffet and Wolf, 2009].

We use the DEEP-HAL [Wang et al., 2019d] setup. We encode HOG, HOF, and
MBH descriptors on the Improved Dense Trajectories [Wang et al., 2011; Cherian et al.,
2017b; Choutas et al., 2018] via BoW [Sivic and Zisserman, 2003; Csurka et al., 2004]
and FV [Perronnin and Dance, 2007; Perronnin et al., 2010].

BoW/FV encoding. BoW [Sivic and Zisserman, 2003; Csurka et al., 2004] uses a
k-means vocabulary to which local descriptors are assigned. Variants include Soft
Assignment (SA) [van Gemert et al., 2010; Koniusz and Mikolajczyk, 2011] and Lo-
calized Soft Assignment (LcSA) [Lingqiao et al., 2011; Koniusz et al., 2013b]. As we
use DEEP-HAL [Wang et al., 2019d], we use BoW [Csurka et al., 2004] with Power
Normalization [Koniusz et al., 2013b], and FV [Perronnin and Dance, 2007; Perronnin
et al., 2010] which capture first- and second-order statistics of local descriptors as-
signed to GMM clusters. DEEP-HAL [Wang et al., 2019d] setup describes how to
obtain the BoW/FV global descriptors.

Optical flow. Older optical flow methods cope with small displacements [Horn
and Schunck, 1981; Papenberg et al., 2006] while newer methods cope with larger
displacements e.g., Large Displacement Optical Flow (LDOF) [Brox and Malik, 2011].
Recent methods use non-rigid descriptor or segment matching [Weinzaepfel et al.,
2013; Braux-Zin et al., 2013], or edge-preserving interpolation [Revaud et al., 2015].
We use LDOF [Papenberg et al., 2006].

Object detectors. Modern deep learning methods include Region-based Convolutional
Neural Networks (R-CNN) [Girshick et al., 2016], its faster variants [Girshick, 2015;
Ren et al., 2015], its mask-based variants [He et al., 2017], and YOLO [Redmon et al.,
2015], YOLO v2, YOLO v3 etc., which use a single network for efficiency.

In this chapter, we use the faster R-CNN detector [Ren et al., 2015] with backbones
such as (i) Inception V2 [Szegedy et al., 2016], (ii) Inception ResNet V2 [Szegedy
et al., 2017], (iii) ResNet101 [He et al., 2016] and (iv) NASNet [Zoph et al., 2018]. As
the Inception V2, Inception ResNet V2 and NASNet are pre-trained on the COCO
dataset [Lin et al., 2014], they detect from 91 object classes good at summarizing
e.g., indoor environments and helping us associate the scene context with actions.
The ResNet101 model is pre-trained on the AVA v2.1 dataset [Gu et al., 2018] with
80 different human actions, thus directly helping human-centric action recognition
problems.

68 Statistical Moment and Subspace Descriptors

In addition to detection scores, we describe each bounding box with ImageNet
[Russakovsky et al., 2015] scores from pre-trained Inception ResNet V2 [Szegedy et al.,
2017].

Saliency detectors. Image regions correlating with human visual attention are de-
tected by saliency detectors in the form of saliency maps. Deep saliency models
[Wang et al., 2016a; Hou et al., 2017] outperform conventional saliency detectors
[Zhu et al., 2014] but they require pixel-wise annotations. Recent models include
MNL [Zhang et al., 2018c] (weakly-supervised model), RFCN [Wang et al., 2016a] (a
fully-supervised model) and a cheap non-CNN Robust Background Detector (RBD)
[Zhu et al., 2014] (see survey [Borji et al., 2015] for more details).

For the spatial saliency, we use MNL [Zhang et al., 2018c] trained on multiple noisy
labels from weak/noisy unsupervised handcrafted saliency models. For temporal
saliency, we use a CNN-LSTM ACLNet [Zhang et al., 2019c].

Deep learning AR. Early AR CNN models use frame-wise features and average
pooling [Karpathy et al., 2014] discarding the temporal order. Thus, frame-wise CNN
scores were fed to LSTMs [Donahue et al., 2015] while the two-stream networks
[Simonyan and Zisserman, 2014] compute representations per RGB frame and per 10
stacked optical flow frames. Finally, spatio-temporal 3D CNN filters [Ji et al., 2013;
Tran et al., 2015; Feichtenhofer et al., 2016a; Varol et al., 2018] model spatio-temporal
patterns.

As two-stream networks [Simonyan and Zisserman, 2014] discard the temporal
order, rank pooling [Fernando et al., 2015; Fernando and Gould, 2016; Cherian et al.,
2018; Wang and Cherian, 2018] and higher-order pooling [Cherian et al., 2017b; Ko-
niusz et al., 2016a,c; Fang et al., 2019; Koniusz et al., 2020] are popular. A recent I3D
model [Carreira and Zisserman, 2017] ‘inflates’ 2D CNN filters pre-trained on Ima-
geNet to spatio-temporal 3D filters, and implements temporal pooling. PAN [Zhang
et al., 2019a] proposes a motion cue called Persistence of Appearance that enables
the network to distill the motion information directly from adjacent RGB frames.
Approach [Liu et al., 2019b] uses bootstrapping with long-range temporal context
attention while approach [Kumar et al., 2020] proposes a graph attention model
to explore the semantics. Slow-I-Fast-P (SIFP) [Li et al., 2020a] for compressed AR
contains the slow and fast pathways I and P, resp., receiving a sparse sampling I-frame
clip and a dense sampling pseudo optical flow clip.

AssembleNet [Ryoo et al., 2020b] automatically finds a neural architecture with
a good connectivity to capture spatio-temporal interactions for AR through NAS.
AssembleNet++ [Ryoo et al., 2020a] further learns the interactions between raw
appearance and/or motion features and spatial object information through learning
dynamic attention weights and search through the inter-block attention connectivity.

We use DEEP-HAL [Wang et al., 2019d] which employs a 1D convolution for
temporal pooling (I3D net.). We also investigate the use of AssembleNet and Assem-
bleNet++ as backbones to show that our proposed object and saliency descriptors
are independent of the backbone. We focus on the design/ability of ODF/SDF to
supervise DEEP-HAL.

§4.3 Approach 69

Power Normalization. For BoW/FV and CNN-based streams, the so-called burstiness
defined as ‘the property that a given visual element appears more times in an image than a
statistically independent model would predict’ [Jégou et al., 2009] has to be tackled. Thus,
we employ Power Normalization [Koniusz et al., 2013b, 2021, 2016c, 2018b; Koniusz
and Zhang, 2020] which suppresses the burstiness via the so-called MaxExp pooling
[Koniusz et al., 2013b].

4.3 Approach

Notations. We use boldface uppercase letters to express matrices e.g., M, P, regular
uppercase letters with a subscript to express matrix elements e.g., Pij is the (i, j)th

element of P, boldface lowercase letters to express vectors, e.g. x, ϕ, ψ, and regular
lowercase letters to denote scalars. Vectors can be numbered e.g., xn while regular
lowercase letters with a subscript express an element of vector e.g., xi is the ith element
of x. Operators ‘;’ and ‘,’ concatenate vectors along the first and second mode,
respectively, ⊚i∈IK vi = [v1; ...; vK] and ⊚2

i∈IK
vi = [v1, ..., vK] concatenate a group of

vectors in the first and second mode, respectively, ⊕ denotes the aggregation (sum)
while Id denotes an index set of integers {1, ..., d}.

Our pipeline is illustrated in Figure 4.2. It consists of (i) streams already present
in DEEP-HAL [Wang et al., 2019d] such as the FV/BoW streams (black), the High
Abstraction Features (HAF) stream and the Optical Flow Features (OFF) which are fed
into (ii) the Prediction Network abbreviated as PredNet. In this chapter we focus on
two non-trivial streams, that is the Object Detection Features and Saliency Detection
Features (dashed blue) (ODF and SDF for short).

BoW/FV/OFF streams take the backbone intermediate representations generated
from the RGB frames and learn to hallucinate BoW/FV and the optical flow (I3D
only) representations via the MSE loss between the ground-truth BoW/FV/OFF and
the outputs of BoW/FV/OFF streams. For AssembleNet / AssembleNet++, RGB
and optical flow are combined by the backbone, thus we remove the OFF stream.
The same MSE loss is applied to the ODF and SDF streams. However, the design of
compact ground-truth ODF and SDF descriptors is one of our main contributions.

The HAF stream processes the backbone representations prior to combining them
with the hallucinated streams. PredNet fuses the combined BoW/FV/OFF/HAF and
our new ODF and SDF to learn actions on videos. Below, we start by describing how
we obtain our ODF and SDF descriptors before we describe modules of DEEP-HAL
[Wang et al., 2019d] and our modifications. One change is that we learn weights for
the weighted mean pooling (i.e., ∑i w′

iψ/ ∑i w′
i) of each stream to avoid concatenation

of streams (prevent overparametrization).

4.3.1 Statistical Motivation

We motivate the use of higher-order statistics. To compare videos, we want to capture
a distribution of local features/descriptors e.g., detection scores. The characteris-
tic function φΥ(ω) = Eυ∼Υ

(
exp(iωTυ)

)
describes the probability density fΥ(υ) of

70 Statistical Moment and Subspace Descriptors

some video features (local features υ ∼ Υ). We obtain the Taylor expansion of the
characteristic function:

Eυ∼Υ

(
∞

∑
r=0

i j

r!
⟨υ, ω⟩r

)
≈ 1

N

N

∑
n=0

∞

∑
r=0

ir

r!
⟨↑⊗rυn, ↑⊗rω⟩= (4.1)

∞

∑
r=0

ir

r!

〈
1
N

N

∑
n=0

↑⊗rυn, ↑⊗rω

〉
=

∞

∑
r=0

〈
X (r),

ir

r!
↑⊗rω

〉
,

where i is the imaginary number, and a tensor descriptor X (r) = 1
N

N
∑

n=0
↑⊗rυn. In

principle, with infinite data and infinite moments, one can fully capture fΥ(υ). In
practice, first-, second- and third-order moments are typically sufficient, however,
second- and third-order tensors grow quadratically and cubically w.r.t. the size of υ.
Thus, in what follows, we represent second-order moments not by a covariance matrix
but by the subspace corresponding to the top n′ leading eigenvectors. We also make
use of the corresponding eigenvalues of the signal. Finally, it suffices to notice that
κ(r)=diag

(
X (r)

)
corresponds to the notion of order r cumulants used in calculations

of skewness (r=3) and kurtosis (r=4) but it grows linearly w.r.t. the size of υ. Thus,
in what follows, we use the ℓ2 norm normalized mean, leading eigenvectors (and
trace-normalized eigenvalues), skewness and kurtosis (rather than coskewness and
cokurtosis) to obtain compact representation of ODF and SDF.

4.3.2 Positional Embedding

Let Gσ(x−x′) = exp(−∥x−x′∥2
2 /2σ2) denote a standard Gaussian RBF kernel cen-

tered at x′ and having a bandwidth σ. Kernel linearization refers to rewriting this
Gσ as an inner-product of two infinite-dimensional feature maps. To obtain these
maps, we use a fast approximation method based on probability product kernels
[Jebara et al., 2004]. Specifically, we employ the inner product of d′′-dimensional
isotropic Gaussians given x, x′∈Rd′′. Thus, we have:

Gσ

(
x−x′

)
=

(
2

πσ2

)d′′
2 ∫

ζ∈Rd′′

Gσ/
√

2(x−ζ) Gσ/
√

2(x
′−ζ)dζ. (4.2)

Eq. (4.2) is then approximated by replacing the integral with the sum over Z pivots
ζ1, ..., ζZ, thus yielding a feature map ϕ as:

ϕ(x; {ζ i}i∈IZ) =
[

Gσ/
√

2(x − ζ1), ..., Gσ/
√

2(x − ζZ)
]T

, (4.3)

and Gσ(x−x′) ≈
〈√

cϕ(x),
√

cϕ(x′)
〉

, (4.4)

where c is a const. Eq. (4.4) is the linearization of the RBF kernel. Eq. (4.3) is the
feature map. {ζ i}i∈IZ are pivots. As we use 1 dim. signals, we simply cover interval
[0; 1] with Z equally spaced pivots. For clarity, we drop {ζ i}i∈IZ and write ϕ(x), etc.

§4.3 Approach 71

4.3.3 Object Detection Features

Each object bounding box is described by the feature vector:

υ=

[
δ(y(det)); y(inet); ϕ(ς);⊚i∈I4 ϕ(vi); ϕ

(
t−1

τ−1

)]
∈Rd, (4.5)

where δ= [0, ..., 1, ..., 0]T is a vector with all zeros but a single 1 placed at the location y.
As we have 91 object classes for detectors trained on the COCO dataset and 80 classes
for a detector trained on the AVA v2.1 dataset, we simply assume y(det)∈I91+80, that
is, the labels 0, ..., 91 describe classes from COCO while classes 92, ..., 80+91 describe
classes from AVA v2.1. Moreover, y(inet)∈R1001 is an ℓ1 norm normalized ImageNet
classification score, 0≤ς≤1 is the detector confidence score, v0, ..., v4 are the top-left
and bottom-right Cartesian coordinates of a bounding box normalized in range [0; 1],
and (t−1)/(τ−1) is the frame index normalized w.r.t. the video sequence length τ.
For feature maps ϕ(·) defined in Eq. (4.3), we simply use Z=7 pivots and the σ of
RBF is set to 0.5. Finally, for all detections per video from a given detector, we first
compute the mean µ([υ1, ..., υN])∈Rd (we write µ) where N is the total number of
detections. Then, we form a matrix Υ ∈ Rd×N :

Υ =
1

J

[
1

K1

[
⊚2

i∈IK1
(υi1−µ)

]
, ...,

1

KJ

[
⊚2

i∈IKJ
(υi J−µ)

]]
, (4.6)

where Kj denotes a number of detections per frame j ∈ IJ , from which we extract
higher-order statistical moments as described below. As N is large and its size varies
from video to video, hallucinating Υ directly is not feasible (nor it has invariance
properties).

Firstly, we obtain UλV= svd (Υ) rather than Uλ2UT = eig
(
ΥΥ T) as N ≪ d, where

U = [u1, u2, ...]. Take X (r)({v−µ}N
n=0
)

(which we abbreviate to X (r)) and κ(r) =

diag
(
X (r)

)
defined in Section 4.3.1. We form our multi-moment descriptor ψ(det)∈

Rd(4+n′), n′≥1:

ψ(det)=

[
µ

||µ||2
;⊚2

i∈In′
ui

(
X (2)

)
;

κ(3)(
κ(2)

)3/2 ;
κ(4)(
κ(2)

)2 ;
diag(λ2)

∑iλ
2
ii

]
, (4.7)

The composition of Eq. (4.7) is described in Section 4.3.1. It is easy to verify that
κ(3)

(κ(2))
3/2 and κ(4)

(κ(2))
2 are the empirical versions of skewness and kurtosis given by

Eυ∼Υ((υ−µ)3)
E3/2

υ∼Υ((υ−µ)2)
and

Eυ∼Υ((υ−µ)4)
E2

υ∼Υ((υ−µ)2)
.

4.3.4 Saliency Detection Features

We extract directional gradients from saliency frames by discretised gradient operators
[−1, 0, 1] and [−1, 0, 1]T and obtain gradient amplitude and orientation maps Λ and θ

72 Statistical Moment and Subspace Descriptors

per frame encoded by:

υ′
(sal) =∑

i∈IW ,j∈IH

Λijϕ(θij/(2π))⊗ ϕ

(
i−1

W−1

)
⊗ ϕ

(
j−1

H−1

)
, (4.8)

where ⊗ is the Kronecker product and ϕ(θ) follows Eq. (4.3) with the exception that
the assignment to Gaussians is realized in the modulo ring to respect the periodical
nature of θ. We encode ϕ(θ) with 12 pivots which encode the orientation of gradients.
The remaining maps ϕ(·) are encoded with 5 pivots each, which correspond to
spatial binning. Note that υ′

(sal) (we write υ′) is similar to a single CKN layer [Mairal
et al., 2014] but is simpler: for one dimensional variables we sample pivots (c.f .
learn) for maps ϕ(·). Each saliency frame is described as a feature vector υ† =

[υ′/||υ′||2; I:/||I:||1]∈Rd†
, where I: is a vectorized low-resolution saliency map. Thus, υ†

captures the directional gradient statistics and the intensity-based gist of saliency maps.
Subsequently, we compute the mean µ([υ†

1 , ..., υ†
J])∈Rd†

(we simply write µ) where J is

the total number of frames per video. Then, we obtain Υ † =
[
υ†

1, ..., υ†
J

]
/J ∈Rd†×Jwhich

is compactly described by the multi-moment Eq. (4.7) resulting in ψ(sal)∈Rd(4+n†).

4.3.5 Hallucinating Streams/High Abstr. Features

Each hallucinating stream takes as input the backbone intermediate representation
X(rgb) of size 1024×7 obtained by removing the classifier and the last 1D conv.
layer of I3D pre-trained on Kinetics-400. For AssembleNet/AssembleNet++, instead
of the classification layer (FC layer), we use a 2048 dimensional output from 3D
AveragePooling layer. For the BoW/FV/OFF and HAL streams, we follow the steps
described in the DEEP-HAL approach [Wang et al., 2019d]. For all streams, we
use a Fully Connected (FC) unit shown in Figure 4.3a. Each stream uses Power
Normalization (PN) realized via SigmE and Sketching (SK) from 1000 to 512 dim via
ψ̃′
(·)= P̃(·)ψ̃(·). Outputs ψ̃′ can be now aligned with ground-truth ψ′

(·) described below.
The same steps are applied to High Abstraction Features (HAF), combined with
other streams, and also fed into PredNet (see Fig. 4.2). While hallucinating streams
co-supervise the backbone via external ground-truth tasks, HAF simply passes the
backbone features into PredNet.

Ground-truth BoW/FV/OFF. We follow the DEEP-HAL setup [Wang et al., 2019d] and
apply PCA to a concatenation of IDT trajectories (30 dim.), HOG (96 dim.), HOF (108
dim.), MBHx (96 dim.) and MBHy (96 dim.). The resulting 213 dim. local descriptors
are encoded by FV and BoW with a 256 dim. and a 1000 dim. GMM and k-means
dictionaries. For the OFF stream (not used with AssembleNet or AssembleNet++),
we pre-computed I3D with LDOF X(opt.) (Fig. 4.2). All ground-truth representations
were Power Normalized by SigmE/sketched to 512 dim. each via ψ′

(·)=P(·)ψ(·) and
fed into the MSE loss. No ground-truth testing data is used in training/testing.

Ground-truth DET1, ...,DET4/SAL1/SAL2. The ODF ground-truth training represen-
tations are of size 1214×N, where N is the total number of bounding boxes per video

§4.3 Approach 73

(a)

(b)

Figure 4.3: Stream details. Figure 4.3a a shows the stream architecture used by us for
the FV, BoW, OFF, HAF, DET1, ...,DET4, SAL1 and SAL2 streams. Figure 4.3b shows
our PredNet. Operation and their parameters are in each block e.g., conv2d and its
number of filters/size, Power Normalization (PN) and Sketching (SK). We indicate the
size of input and/or output under arrows.

(50–10000). The feature dim. 1214 is composed of 80+91 dim. one-hot detection
classes, 6×7 are the ϕ(·)-embedded confidence, bounding box coordinates and the
frame number, 1001 is the ImageNet score. We also consider a variant without the
RBF embedding: ϕ(x)=x (1178×N size). The SDF ground-truth training repr. are of
size 556× J, where J is the number of frames per video. 300 dim. (12×5×5) concern
spatio-angular gradient distributions and 256 dim. (16×16) concern the luminance
of saliency maps. Each ODF/SDF is encoded per video with the multi-moment
descriptor in Eq. (4.7) yielding 1178×(4 + n′) and 556×(4 + n†) compact representa-
tions (we vary n′ and n† between 1 and 5). ODF and SDF are Power Normalized by
SigmE/sketched to 512 dim. each via ψ′

(·)=P(·)ψ(·) and fed into the MSE loss. No
ground-truth testing representations were used for training/testing.

4.3.6 Objective Function

During training, we combine MSE loss functions which co-supervise hallucination
streams with the classifier:

ℓ∗(X , y; Θ̄)=
α

|H| ∑
i∈H

∥∥ψ̃i−ψ′
i
∥∥2

2+ℓ
(

f(ψ′
(tot); Θ(pr)), y; Θ(ℓ)

)
,

where: ∀i∈H, ψ̃′
i = P̃ig(ℏ(X , Θi), η) , ψ′

i =Piψi,

ψ′
(ha f)= P(ha f)g

(
ℏ(X , Θ(ha f)), η

)
,

ψ′
(tot)=

1
|H∗|+1

(
w(ha f)ψ

′
(ha f)+∑

i∈H∗
wiψ̃

′
i

)
,

ψ̃′
(det)=

1
|D| ∑i∈D

wiψ̃
′
i , ψ̃′

(sal)=
1
|S| ∑i∈S

wiψ̃
′
i . (4.9)

The above equation is a trade-off between the MSE loss functions {∥ψ̃′
i−ψ′

i∥
2
2, i∈

H} and the classification loss ℓ(·, y; Θ(ℓ)) with some label y∈ Y and parameters Θ(ℓ)≡
{W , b}. The trade-off is controlled by α≥0 while MSE is computed over hall. streams

74 Statistical Moment and Subspace Descriptors

i∈H, and H≡{(f v1), (f v2), (bow), (o f f), (det1), ..., (det4), (sal1), (sal2)} is our set of
hallucination streams. Moreover, g(·, η) is a Power Norm. in Eq. (3.6), f (·; Θ(pr)) is the
PredNet module with parameters Θ(pr) which we learn, {ℏ(·, Θi), i∈H} are the hallu-
cination streams while {ψ̃i, i∈H} are resulting hallucinated BoW/FV/OFF/ODF/SDF
representations. We set α = 1. Moreover, ℏ(·, Θ(ha f)) is the HAF stream with the
sketched output ψ′

(ha f) = P(ha f)ψ(ha f). For the hallucination streams, we learn pa-
rameters {Θi, i ∈ H} while for HAF, we learn Θ(ha f). The full set of parameters
we learn is defined as Θ̄ ≡ ({Θi, i∈H}, Θ(ha f), Θ(pr), Θ(ℓ)). Furthermore, {P̃i, i ∈
H} and {Pi, i ∈ H} are the projection matrices for count sketching of streams
{ψ̃i, i ∈ H} and the ground-truth feature vectors {ψi, i ∈ H}. Finally, for ψ′

(tot)
is a weighted average of several streams fed into the PredNet module f . More-
over, H∗ ≡ {(f v1), (f v2), (bow), (o f f), (det), (sal)}, D ≡ {(det1), ..., (det4)} and S ≡
{(sal1), (sal2)}. Section 3.3.4 details how to select matrices P.

Let T be set to either H∗, D or S , then our weights are:

wi =
1
|T |

max(w′β
i, ρ)

∑j∈T max(w′β
j, ρ)

. (4.10)

Prior to CNN training, we train an SVM on each ground-truth stream separately
(using a manageable training subset), and we set weights w′ proportionally to
the accuracies obtained on the validation set. For the HAF stream, we simply
set w′

(ha f) =
1

|H∗|+1 and ρ = 0.1. For the first few epochs (i.e., 10), we set β = 0 so
that all streams receive equal weights. Subsequently, in each epoch, we run the
Golden-section search to find the best β≥0. We start from initial boundary values
β∈{0, 50}, we train an SVM on a manageable subset of training data and evaluate β

on the validation set, and we update boundary values for the next epoch accordingly.
Eq. (4.10) has a nice property: for β = 0, we have wi = 1/|T |. For β → ∞, we
have wi = 1 if wi =max({wi}i∈T), otherwise wi = 0. Thus, β interpolates between
equalizing all weights and the winner-takes-all solution.

4.4 Experiments

4.4.1 Datasets and Evaluation Protocols

HMDB-51 [Kuehne et al., 2011] has 6766 internet videos/ 51 classes; each video has
∼20–1000 frames. We report the mean accuracy across three splits.
YUP++ [Feichtenhofer et al., 2017b] has 20 scene classes of video textures, 60 videos
per class. Splits contain scenes captured by the static or moving camera. We use
standard splits (1/9 dataset for training) for evaluation.
MPII Cooking Activities [Rohrbach et al., 2012] contains high-resolution videos of
people cooking dishes. The 64 activities from 3748 clips include coarse actions e.g.,
opening refrigerator, and fine-grained actions e.g., peel, slice, cut apart. We use the mean
Average Precision (mAP) over 7-fold cross validation. For human-centric protocol

§4.4 Experiments 75

sp1 sp2 sp3 mean acc.
det1 42.00% 39.74% 40.39% 40.72%
det1 40.49% 40.13% 39.67% 40.09%
det3 43.78% 44.05% 41.97% 43.26%
det4 41.08% 39.22% 40.39% 40.23%
all+avg 42.50% 41.05% 41.01% 41.52%
all+max 43.25% 42.32% 42.09% 42.55%
all+wei 45.80% 44.52% 44.09% 44.80%
DEEP-HAL+all+avg 83.25% 82.24% 82.84% 82.77%
DEEP-HAL+all+max 83.18% 81.86% 82.84% 82.62%
DEEP-HAL+all+wei 84.01% 83.25% 83.10% 83.45%

Table 4.1: Evaluations of ODF on HMDB-51. (top) We evaluate backbones such as
(det1) Inception V2, (det2) Inception ResNet V2, (det3) ResNet101 and (det4) NASNet.
(middle) The average-pooled, max-pooled and the weighted mean combination of all
detectors are given by (all+avg), (all+max) and (all+wei). (bottom) Pre-trained DEEP-
HAL combined with all four detectors by the average-pooling, max-pooling and the
weighted mean.

[Cherian et al., 2017a, 2018], we use the faster RCNN [Ren et al., 2015] to crop video
around human subjects.
Charades [Sigurdsson et al., 2016] consist of of 9848 videos of daily indoors activities,
66500 clip annotations and 157 classes.
EPIC-Kitchens [Damen et al., 2018] is a multi-class egocentric dataset with 28K
training videos associated with 331 noun and 125 verb classes. The dataset consists of
39,594 segments in 432 videos. We follow protocol [Baradel et al., 2018]. We evaluate
our model on validation, standard seen (S1: 8047 videos), and unseen (S2: 2929 videos)
test sets.

4.4.2 Evaluations

Below, we show the effectiveness of our method. For smaller datasets, we use the
I3D backbone. For large Charades and EPIC-Kitchens, we additionally investigate
AssembleNet and AssembleNet++ backbones. Firstly, we evaluate various design
components.
Ground-truth ODF+SVM. Firstly, we evaluate our ODF on SVM given the HMDB-51
dataset. We set n′ = 3 for Eq. (4.7) and compare various detector backbones and
pooling strategies. Table 4.1 shows that all detectors perform similarly with (det3)
being slightly better than other methods. Moreover, max-pooling on ODFs from
all four detectors is marginally better than the average-pooling. However, only the
weighted mean (all+wei) according to Eq. (4.10) outperforms (det3) which highlights
the need for the robust aggregation of ODFs. Similarly, when we combine pre-trained
DEEP-HAL with all detectors, the weighted mean (DEEP-HAL+all+wei) performs best.
Table 4.2 shows the similar trend on YUP++. We trained SVM only on videos for
which at least one detection occurred, thus a 75.74% accuracy is much lower than the
main results reported on the full pipeline. Figure 4.4 shows that β ̸=1 has a positive
impact on reweighting.
Ground-truth SDF. The SDF on HMDB-51 and YUP++ yielded 24.35% and 32.68%

76 Statistical Moment and Subspace Descriptors

avg max wei
all 55.12% 42.34% 60.52%
DEEP-HAL+all 74.22% 71.85% 75.74%

Table 4.2: Pooling on YUP++. Results for the average-pooled (avg), max-pooled (max)
and the weighted mean (wei) of all detectors (all) vs. pre-trained DEEP-HAL combined
with all detectors by the average-pooling, max-pooling and the weighted mean.

0.01 0.1 0.5 1 2 4 8 20
40

40.5
41

41.5
42

β

m
e
a
n
 a

c
c
u
ra

c
y
 (

%
)

0.01 0.1 0.5 1 2 4 8 20
80
81
82
83
84

(a)

0.01 0.1 0.5 1 2 4 8 20
57

59

61

63

β

m
e
a
n
 a

c
c
u
ra

c
y
 (

%
)

0.01 0.1 0.5 1 2 4 8 20
71

73

75

77

(b)

Figure 4.4: The impact of β in the weighted mean on the classification results. Figure
4.4a shows results for HMDB-51 on (top) four detectors combined+SVM and (bottom)
DEEP-HAL with four detectors combined+SVM. Figure 4.4b shows results for YUP++.

accuracy. This is expected as SDFs do not capture a discriminative information per
se but they locate salient spatial and temporal regions to focus the main network on
them.

Multi-moment descr. Figure 4.5 shows that the concat. of the mean and three
eigenvectors according to Eq. (4.7) yields good results but adding further vectors
deteriorates the performance. Adding skewness and kurtosis (ς and φ) further
improves results, while adding eigenvalues has a limited impact.

HMDB-51. Table 4.3 shows several DEEP-HAL variants, which all hallucinate
BoW/FV/OFF. DEEP-HAL with our reweighting mechanism. (DEEP-HAL+W) out-
performs the original DEEP-HAL denoted as (HAF/BoW/FV hal.) [Wang et al., 2019d]
by ∼0.8%. DEEP-HAL with our ODF and SDF descriptors (DEEP-HAL+ODF) and
(DEEP-HAL+SDF) outperform (HAF/BoW/FV hal.) by ∼1.8% and ∼1.4%, resp. This
shows that both ODF and SDF are effective. Combining DEEP-HAL, ODF and SDF
outperform DEEP-HAL by ∼2.7% demonstrating the complementary nature of ODF
and SDF. Utilizing our weighting mechanism with DEEP-HAL, ODF and SDF denoted
as (DEEP-HAL+W+ODF+SDF) outperform (HAF/BoW/FV hal.) by ∼ 4.6%. Finally,
DEEP-HAL with weighting, and ODF and SDF with RBF feature maps from Eq. (4.3)
outperform (HAF/BoW/FV hal.) by ∼5.1%.

YUP++. Table 4.4 shows that ODF is better than SDF, that is (DEEP-HAL+ODF)
and (DEEP-HAL+SDF) outperform (HAF/BoW/FV hal.) by ∼0.6% and ∼0.2%, resp.
This is expected as YUP++ contains dynamic scenes without objects/specific saliency
regions correlating with class concepts. However, a combination of detectors/saliency
(DEEP-HAL+SDF) plus weighting (DEEP-HAL+W+ODF+SDF) plus the RBF maps

§4.4 Experiments 77

ODF (variant)

m
e
a
n
 a

c
c
u
ra

c
y
 (

%
)

25

30

35

40

45

[µ]

[µ,u1]

[µ,u1,u2]

[µ,u1,u2,u3]

[µ,u1, · · · ,u4]

[µ,u1, · · · ,u5]

[µ,u1,u2,u3, ς, ϕ]

[µ,u1,u2,u3, ς, ϕ, λ
2]

(a)
ODF (variant)

m
e
a
n
 a

c
c
u
ra

c
y
 (

%
)

40

45

50

55

60

[µ]

[µ,u1]

[µ,u1,u2]

[µ,u1,u2,u3]

[µ,u1, · · · ,u4]

[µ,u1, · · · ,u5]

[µ,u1,u2,u3, ς, ϕ]

[µ,u1,u2,u3, ς, ϕ, λ
2]

(b)

Figure 4.5: ODF eval. on SVM on four detectors (the weighted mean). Fig. 4.5a and
4.5b show results on HMDB-51 and YUP++. µ, u1, ..., ui, ς,φ, and λ2 correspond to the
entries in Eq. (4.7).

sp1 sp2 sp3 mean acc.

DEEP-HAL+W 83.94% 82.50% 83.34% 83.26%
DEEP-HAL+ODF 85.03% 83.59% 84.25% 84.29%
DEEP-HAL+SDF 84.64% 83.20% 83.82% 83.88%
DEEP-HAL+ODF+SDF 86.14% 83.66% 85.81% 85.20%
DEEP-HAL+W+ODF+SDF 87.78% 86.27% 87.06% 87.04%
DEEP-HAL+W+G+ODF+SDF 88.37% 86.80% 87.52% 87.56%

ADL+I3D 81.5% [Wang and Cherian, 2018] Full-FT I3D 81.3% [Carreira and Zisserman, 2017]
EvaNet (Ensemble) 82.3% [Piergiovanni et al., 2019] PA3D + I3D 82.1% [Yan et al., 2019]

HAF/BoW/FV exact 82.50% [Wang et al., 2019d] HAF/BoW/FV hal. 82.48% [Wang et al., 2019d]

Table 4.3: Evaluations of (top) our methods and (bottom) comparisons to the state of
the art on HMDB-51.

(DEEP-HAL+W+G+ODF+SDF) outperform (HAF/BoW/FV hal.) by ∼0.7%, ∼1.6% and
∼1.8% accuracy, resp.

MPII. Table 4.5 shows a ∼3.0% mAP gain over (HAF/BoW/FV hal.) due to detectors
capturing the human interaction with objects.

Charades. Table 4.6 (top) presents relative gains of our hallucination pipeline (DEEP-
HAL) with weighted mean pooling (W) and the RBF maps (G) denoted as (DEEP-
HAL+W+G). We evaluate Object Detection Features (ODF) and Saliency Detection
Features (SDF) with 512 dim. sketching (SK512) and note that (DEEP-HAL+W+G+ODF
(SK512)) outperforms (DEEP-HAL+W+G+SDF (SK512)), and both methods outperform
the baseline (HAF/BoW/FV hal.) [Wang et al., 2019d].

Table 4.6 (bottom) shows that combining ODF and SDF into (DEEP-HAL+W+G
+SDF+ODF (SK512)) yields 49.06% mAP which constitutes on a ∼6% gain over the
baseline(HAF/BoW/FV hal.) [Wang et al., 2019d]. This demonstrates that ODF and SDF
are highly complementary. Applying a larger sketch (DEEP-HAL+W+G+ODF+SDF
(SK1024)) yields 50.14% mAP which matches the use (DEEP-HAL+W+G+ODF+SDF
(exact)) that denotes a late fusion by concatenation of ODF and SDF with the stream
resulting from DEEP-HAL fed into PredNet. Note that (exact) indicates that ODF and
SDF are not hallucinated at the test time but they are computed. the results matching

78 Statistical Moment and Subspace Descriptors

static dynamic mixed mean mean
stat/dyn all

DEEP-HAL+ODF 95.00% 90.93% 93.52% 93.0% 93.2%
DEEP-HAL+SDF 94.96% 89.93% 93.58% 92.4% 92.8%
DEEP-HAL+SDF+ODF 95.10% 91.11% 93.61% 93.1% 93.3%
DEEP-HAL+W+SDF+ODF 96.30% 92.22% 94.17% 94.3% 94.2%
DEEP-HAL+W+G+SDF+ODF 96.30% 92.40% 94.35% 94.4% 94.4%
T-ResNet [Feichtenhofer et al., 2017b] 92.4% 81.5% 89.0% 87.0% 87.6%
ADL I3D [Wang and Cherian, 2018] 95.1% 88.3% - 91.7% -
HAF/BoW/FV hal. [Wang et al., 2019d] 94.8% 89.6% 93.3% 92.2% 92.6%
MSOE-two-stream [Hadji and Wildes, 2018] 97.0% 87.0% 91.8% 92.0% 91.9%

Table 4.4: Evaluations of (top) our methods and (bottom) comparisons to the state of
the art on YUP++.

sp1 sp2 sp3 sp4 sp5 sp6 sp7 mAP

DEEP-HAL+W+ODF+SDF 82.5 85.1 85.6 83.5 86.6 80.8 81.2 83.6%
DEEP-HAL+W+G+ODF+SDF 83.3 87.6 85.6 83.4 86.6 83.2 83.6 84.8%

KRP-FS+IDT 76.1% [Cherian et al., 2018] GRP+IDT 75.5% [Cherian et al., 2017a]
I3D+BoW/OFF MTL 79.1% [Wang et al., 2019d] HAF/BoW/OFF hal. 81.8% [Wang et al., 2019d]

Table 4.5: Evaluations of (top) our methods and (bottom) comparisons to the state of
the art on MPII.

between (DEEP-HAL+W+G+ODF+SDF (SK1024)) and (DEEP-HAL+W+G+ODF+SDF
(exact)) show that we can hallucinate ODF and SDF at the test time while regaining
the full performance. We save computational time and hallucinate the detection and
saliency features which boost results on Charades by ∼6% over the baseline.

Table 4.7 shows that our idea applied to AssembleNet and AssembleNet++ yields
state of the art e.g., we outperform these two networks by 4.5% and 5.6% mAP,
respectively. We note that our detectors do not need to be computed at all at the test
time.

In contrast, the best currently reported papers such as SlowFast networks [Feicht-
enhofer et al., 2019] and AssembleNet [Ryoo et al., 2020b] achieve 45.2% and 51.6% on
Charades. As SlowFast networks and AssembleNet backbones can be used in place
of I3D in our experimental setup, our approach is ‘orthogonal’ to these latest devel-
opments which focus on heavy mining for combinations of neural blocks/dataflow
between them to obtain an ‘optimal’ pipeline. We achieve similar results with a simple
approach based on self-supervised learning. Our pipeline is lightweight by compar-
ison (no need for computations of the optical flow, or detections or segmentation
masks at test time).
ImageNet (global score) vs. object detectors. Various scores from the object and
saliency detectors which we use cannot be plugged directly into the DEEP-HAL
due to the varying number of objects detected and the varying number of frames,
thus we propose and use ODF and SDF descriptors. We also note that using a
simplified variant of ODF which stacks up ImageNet scores per frame into a matrix
(no detectors) to which we apply our multi-moment descriptor yielded ∼4% worse
results on Charades than our DEEP-HAL+ODF (detectors-based approach) which
yields 48.0% mAP. This is expected as ImageNet is trained in a multi-class setting
(one object per image) while detectors let us model robustly distributions of object

§4.4 Experiments 79

HAF/BoW/FV DEEP-HAL+ DEEP-HAL+
hal. [Wang et al., 2019d] W+G+ODF (SK512) W+G+SDF (SK512)

43.1 47.22 45.30

DEEP-HAL+W+G+ DEEP-HAL+W+G+ DEEP-HAL+W+G+
ODF+SDF (SK512) ODF+SDF (SK1024) ODF+SDF (exact)

49.06 50.14 50.16

Table 4.6: Evaluations of our methods on Charades (I3D backbone).

AssembleNet++ 50 (Kinetics-400 pre-training)
baseline ODF+SDF (SK512) ODF+SDF (SK1024) ODF+SDF (exact)

53.8 55.81 56.94 57.30

AssembleNet++ 50 (without pre-training)
baseline ODF+SDF (SK512) ODF+SDF (SK1024) ODF+SDF (exact)

56.7 60.71 61.98 62.29

Table 4.7: Evaluations of our methods on the Charades dataset (AssembleNet and
AssembleNet++ backbones). Note that we do not use segmentation masks for Assem-
bleNet and AssembleNet++, thus baseline results reported by us are slightly lower
compared to authors’ results of 55.0% and 59.8% mAP, respectively.

Verbs Nouns Actions
top-1 top-5 top-1 top-5 top-1 top-5

Validation
LFB Max [Wu et al., 2019a] 52.6 81.2 31.8 56.8 22.8 41.1
WeakLargeScale [Ghadiyaram et al., 2019] 58.4 84.1 36.9 60.3 26.1 42.7
DEEP-HAL+ODF+SDF(SK1024) 55.4 82.9 33.3 55.1 21.5 39.7
AssembleNet++ ODF+SDF(SK512) 57.2 84.6 34.8 56.4 23.2 41.3
AssembleNet++ ODF+SDF(SK1024) 58.7 85.6 36.0 57.3 24.7 43.0
AssembleNet++ ODF+SDF(exact) 60.0 86.7 37.1 59.2 25.2 43.4

Test s1 (seen)
TSN Fusion [Damen et al., 2018] 48.2 84.1 36.7 62.3 20.5 39.8
LFB Max [Wu et al., 2019a] 60.0 88.4 45.0 71.8 32.7 55.3
WeakLargeScale [Ghadiyaram et al., 2019] 65.2 87.4 45.1 67.8 34.5 53.8
DEEP-HAL+ODF+SDF(SK1024) 62.2 85.0 46.1 69.3 32.5 53.6
AssembleNet++ ODF+SDF(SK1024) 65.0 87.8 48.8 72.5 35.0 56.1
AssembleNet++ ODF+SDF(exact) 66.2 88.5 49.3 72.8 35.8 56.8

Test s2 (unseen)
TSN Fusion [Damen et al., 2018] 39.4 74.3 22.7 45.7 10.9 25.3
LFB Max [Wu et al., 2019a] 50.9 77.6 31.5 57.8 21.2 39.4
WeakLargeScale [Ghadiyaram et al., 2019] 57.3 81.1 35.7 58.7 25.6 42.7
DEEP-HAL+ODF+SDF(SK1024) 55.3 79.1 32.6 55.4 22.3 39.2
AssembleNet++ ODF+SDF(SK1024) 58.3 82.1 35.2 58.2 25.9 42.9
AssembleNet++ ODF+SDF(exact) 59.0 83.3 35.7 59.0 27.3 44.0

Table 4.8: Experimental results on the EPIC-Kitchens.

classes and locations per frame.
EPIC-Kitchens.Table 4.8 shows the experimental results. I3D and AssembleNet /
AssembleNet++ learn human-like semantic features due to ODF/SDF, and there is
no evidence a backbone can discover these without a guidance. By comparing MPII
(3748 clips) with large EPIC-Kitchens (39594 clips) (both about cooking), SDF+ODF
boost MPII from 81.8 to 84.8%, and SDF+ODF boost EPIC-Kitchens from 32.51%
(DEEP-HAL) to 35.88% (on seen classes protocol), and from 22.33% (DEEP-HAL) to

80 Statistical Moment and Subspace Descriptors

sp1 sp2 sp3 mean acc.
wei+flat 86.47% 85.56% 86.27% 86.10%
wei+3 levels 88.37% 86.80% 87.52% 87.56%

Table 4.9: Evaluations of the flat single level weighted mean (wei+flat) vs. three levels
of weighted mean pooling (wei+3 levels) on HMDB-51.

no. of av. frame no. of no. of no. of
frames count videos clips classes

HMDB-51 628635 92.91 6766 6766 51
YUP++ 166463 138.72 1200 1200 20
MPII 662394 176.73 44 3748 60
Charades 19978821 300.51 9848 66500 157
EPIC-Kitchens ∼ 11.5M 290.43 432 39596 149

Table 4.10: Statistics of datasets used in our experiemnts.

27.32% (on unseen classes protocol). The boost is 3% on both MPII and EPIC-Kitchens
(nearly 10× more clips than MPII).
Reweighting mechanism. In this experiment, we employ pipeline (DEEP-HAL+W+G+
SDF+ODF (SK512)) explained above. Typically, we use three levels of weighting
mean pooling which are applied to (i) four object detectors constituting on ODF,
(ii) two saliency detectors constituting on SDF, and (iii) the final combination of
HAF/BOW/FV/OFF/ODF/SDF. Thus, below we investigate the performance of a
single weighting mean pooling step applied simultaneously to four object detectors,
two saliency detectors and the remaining streams.

Table 4.9 shows that using a flat single level weighted mean pooling yields 86.1%
accuracy on the HMDB-51 which is a ∼1.4% less compared to utilizing three levels
of weighted mean pooling. We expect that having one weighted mean pooling per
modality is a reasonable strategy as for instance object category detectors may yield
similar responses thus they should be first reweighted for the best ‘combined detector’
performance before being combined with highly complementary modalities.

Finally, Figure 4.8 (top) demonstrates how our Golden-search selects optimal β on
the validation set of MPII (split1). Figure 4.8 (bottom) demonstrates the corresponding
validation mAP (this is not the mAP score on the testing set). Note that for the first 10
epochs we use β=0 and we start the Golden-search from epoch 11.
Dataset statistics and timing. Table 4.10 shows basic statistics re. datasets used in our
experiments. We note that Charades with 66500 uniquely annotated clips, 157 action
labels and an average frame count of 300 per clip is the largest among these datasets.

Table 4.11 introduces timing for object detectors used by our ODF descriptors
during training. We note that detections with all four object detectors which we use
take ∼1.47 second per frame. Thus, obtaining four ODF descriptors per clip (uniquely
annotated sequence to train or classify) takes between 136 and 441 seconds. Table 4.12
introduces timing for saliency detectors used in our SDF descriptors during training.
We note that detections with both saliency detectors which we use take ∼0.9 second
per frame, and obtaining both SDF descriptors per clip takes between 84 and 271
seconds. We do note that the major computational cost is incurred due to detectors

§4.4 Experiments 81

00

(a)

Oo
(b)

Figure 4.6: Visualization of the feature space (from PredNet) for DEEP-HAL in Fig.
4.6a and DEEP-HAL+ODF in Fig. 4.6b on the YUP++ dataset. For comparison, we
circle regions with interesting changes.

00
(a)

O

O
(b)

Figure 4.7: Visualization of the feature space (from PredNet) for DEEP-HAL in Fig.
4.7a and DEEP-HAL+ODF in Fig. 4.7b on the HMDB-51 dataset. For comparison, we
circle regions with interesting changes.

rather than our ODF and SDF descriptors (their cost is minimal). We further note
that the idea of learning these costly representations during training is very valuable.
While the total computations per training clip vary between 220 and 712 seconds,
during testing time we obtain these representations for free (milliseconds) thanks to
DET1,...,DET4 and SAL1/SAL2 units from Figure 2 (the main submission). Assuming
25% of clips in charades for testing, that results in 137 days of computational savings
on a single GPU (conversely, 1 day savings on 137 GPUs). Given the obtained 6%
boost on Charades over the baseline without ODF and SDF, and the computational
savings, we believe these statistics highlight the value of our approach.
Visualization using UMAP. Figure 4.6 is a visualization performed with UMAP

82 Statistical Moment and Subspace Descriptors

DET1: DET2: DET3: DET4: ODF
Inception Inception ResNet101 NASNet total

V2 ResNet V2 AVA (+SVD)
sec. per frame 0.07 0.38 0.10 0.91 1.46 (+0.09)
s.p.c. HMDB-51 6.5 35.3 9.3 84.5 135.6 (+0.5)
s.p.c. YUP++ 9.7 52.7 13.9 126.2 202.5 (+0.8)
s.p.c. MPII 12.4 67.1 17.7 160.8 258.0 (+1.3)
s.p.c. Charades 21.0 114.2 30.0 273.5 438.7 (+2.6)
s.p.c. EPIC-Kitchens 20.3 110.4 29.0 264.3 424.0 (+2.6)

Table 4.11: Statistics of object detectors we use. We provide timings such as seconds
per frame (sec. per frame) and seconds per clip (s.p.c.) for detectors used by ODF. The
total time incurred by a combined detector (ODF total) is also provided. We also
compute the time taken by the full SVD and all remaining ODF operations, assuming
∼5 detections per frame.

SAL1: SAL2: SDF ODF+SDF
MNL ACLNet total total

(+Eq. (10)) (+Eq. (10)+SVD)
sec. per frame 0.60 0.30 0.90 (+0.003) 2.36 (+0.1)
s.p.c. HMDB-51 55.7 27.9 83.6 (+0.3) 219.2 (+0.8)
s.p.c. YUP++ 83.2 41.6 124.8 (+0.4) 327.3 (+1.2)
s.p.c. MPII 106.0 53.0 159.0 (+0.5) 417.0 (+1.8)
s.p.c. Charades 180.3 90.1 270.4 (+0.9) 709.1 (+3.5)
s.p.c. EPIC-Kitchens 174.3 87.1 261.4 (+0.9) 685.4 (+2.9)

Table 4.12: Statistics of saliency detectors we use. We provide timings such as seconds
per frame (sec. per frame) and seconds per clip (s.p.c.) for detectors used by SDF.
The total time incurred by a combined detector (SDF total) is also provided. We also
compute the time taken by the descriptor in Eq. (10) and all remaining SDF operations.
Finally, we also provide the combined ODF and SDF time (SDF+ODF total).

[McInnes et al., 2018] on the YUP++ dataset. In Fig. 4.6a, top left corner contains
samples from classes in red, green, and blue colors which partially overlap. In Fig.
4.6b, top left corner contains the samples from the corresponding classes in red, green,
and blue colors. This time, the samples of these three classes are well separated from
each other.

Figure 4.7 is a visualization performed with UMAP [McInnes et al., 2018] on the
HMDB-51 dataset. In Fig. 4.7a, bottom left corner contains samples from classes in
red and blue colors which partially overlap. In Fig. 4.7b, bottom left corner contains
the samples from the corresponding classes in red and blue colors. This time, the
class-wise clusters seem to be more clearly delineated and samples of these classes
are separated better from each other.

4.5 Conclusions

We have introduced two simple yet effective object and saliency descriptors, which
perform self-supervision of an AR hallucination-based network. We have shown
that modeling high-order statistical moments can result in small representations that
can self-supervise our AR pipeline. The findings are in line with recent multi-task

§4.5 Conclusions 83

1 5 9 13 17 21 25 29
0
1
2
3
4
5

β(l)

β(u)

epoch

m
A

P
 (

%
)

1 5 9 13 17 21 25 29
15
25
35
45
55
65
75

Figure 4.8: Visualization of the Golden-search for the weighting mechanism (final
level weighting). (top) Illustration of how the lower and upper estimates β(l) and
β(u) converge as epochs progress. (bottom) For every epoch, we set β=0.5(β(l)+β(u))
and obtain the corresponding validation score (mAP) on MPII (split1). As the epoch
number advances, mAP improves and remains stable as the Golden-search algorithm
converges.

learning papers which argue that related tasks can co-supervise the main task. We
are the first to hallucinate object and saliency detection descriptors with clear cut
improvements in accuracy, and state-of-the-art results on the large-scale Charades
and EPIC-Kitchens. More importantly, we demonstrate that hallucinating object
and saliency detections is an attractive proposition even for the state-of-the-art AR
backbones such as AssembleNet and AssembleNet++.

84 Statistical Moment and Subspace Descriptors

Chapter 5

Tensor Representations

Human actions in video sequences are characterized by the complex interplay between
spatial features and their temporal dynamics. In this chapter, we propose novel tensor
representations for compactly capturing such higher-order relationships between
visual features for the task of action recognition. We propose two tensor-based
feature representations, viz. (i) sequence compatibility kernel (SCK) and (ii) dynamics
compatibility kernel (DCK). SCK builds on the spatio-temporal correlations between
features, whereas DCK explicitly models the action dynamics of a sequence. We
also explore generalization of SCK, coined SCK⊕, that operates on subsequences to
capture the local-global interplay of correlations, which can incorporate multi-modal
inputs e.g., skeleton 3D body-joints and per-frame classifier scores obtained from deep
learning models trained on videos. We introduce linearization of these kernels that
lead to compact and fast descriptors. We provide experiments on (i) 3D skeleton
action sequences, (ii) fine-grained video sequences, and (iii) standard non-fine-grained
videos. As our final representations are tensors that capture higher-order relationships
of features, they relate to co-occurrences for robust fine-grained recognition [Lin
and Maji, 2017; Koniusz et al., 2018b]. We use higher-order tensors and so-called
Eigenvalue Power Normalization (EPN) which have been long speculated to perform
spectral detection of higher-order occurrences [Koniusz et al., 2013a, 2016c], thus
detecting fine-grained relationships of features rather than merely count features
in action sequences. We prove that a tensor of order r, built from Z∗ dimensional
features, coupled with EPN indeed detects if at least one higher-order occurrence
is ‘projected’ into one of its (Z∗

r) subspaces of dim. r represented by the tensor, thus
forming a Tensor Power Normalization metric endowed with (Z∗

r) such ‘detectors’.

5.1 Introduction

Human action recognition is a central problem in computer vision with potential
impact in surveillance, human-robot interaction, elderly assistance systems, etc. While
there have been significant advancements in this area over the past few years, action
recognition in unconstrained settings still remains a challenge. Some papers simplify
the problem from using RGB cameras to the use of Microsoft Kinect or the OpenPose
library [Cao et al., 2017] to localize human body-parts, produce moving 3D skele-

85

86 Tensor Representations

tons [Shotton et al., 2013] and use them for recognition. However, skeletons can be
noisy due to badly localized body-parts, self-occlusions, and sensor errors. Similarly,
a popular strategy of classifying RGB frames into actions followed by average/max-
pooling fails as only correlations of some features are informative [Mahmud et al.,
2017; Cherian et al., 2017a; Cherian and Gould, 2018]. Such observations motivate the
need for higher-order reasoning on 3D skeletons/frame-wise CNN classifier scores
taking action recognition toward fine-grained modeling.

Recent approaches which work with skeletons can be mainly divided into two per-
spectives, namely (i) generative models that assume the skeleton points are produced
by a latent dynamic model [Turaga and Chellappa, 2009] corrupted by noise and (ii)
discriminative approaches that generate compact representations of sequences on
which classifiers are trained [Presti and La Cascia, 2015]. Due to the huge configuration
space of 3D actions and the unavailability of sufficient training data, discriminative
approaches have been more successful. In this line of research, the main idea is to
compactly represent the spatio-temporal evolution of 3D skeletons, and later train
classifiers on these representations to recognize actions. Fortunately, there is a defini-
tive structure to motions of 3D joints relative to each other due to the connectivity and
length constraints of body-parts. Such constraints have been used with the Lie Alge-
bra [Vemulapalli et al., 2014], positive definite matrices [Harandi et al., 2014; Hussein
et al., 2013], torus manifold [Elgammal and Lee, 2009], Hanklet representations [Li
et al., 2012], etc. While modeling actions with explicit manifold assumptions is useful,
it is computationally costly.

However, action recognition from videos [Simonyan and Zisserman, 2014; Tran
et al., 2015; Karpathy et al., 2014; Donahue et al., 2015] does not require elaborate
skeletal models. A two-stream CNN framework [Simonyan and Zisserman, 2014] uses
two streams to model RGB frames and optical flow. Tran et al. [Tran et al., 2015] use
CNNs to learn spatio-temporal filters. Karpathy et al. [Karpathy et al., 2014] apply
RGB and optical-flow fusion, whereas approach [Donahue et al., 2015] combines CNNs
with LSTM to model temporal flow. Wang et al. [Wang et al., 2016b] apply a long-range
temporal structure modeling. Tran et al. [Tran et al., 2018] study several forms of
spatiotemporal convolutions. Recent works on fine-grained activity recognition use
CNNs [Chéron et al., 2015; Ji et al., 2013] and the human pose estimation for high-level
fine-grained reasoning [Rohrbach et al., 2012; Wang et al., 2013a; Zuffi and Black, 2013;
Chéron et al., 2015]. Finally, the recent I3D model [Carreira and Zisserman, 2017]
‘inflates’ 2D CNN filters pretrained on ImageNet to spatio-temporal 3D filters yielding
state-of-the-art results.

In contrast to these approaches, we present a novel representation of actions
based on 3D skeleton sequences and the CNN classifier score sequences. We avoid
assumptions about the data manifold by capturing higher-order statistics of the body-
joints and the classifier score interactions per sequence. To this end, our scheme
combines positive definite kernels and higher-order tensors, with the goal of obtaining
rich and compact representations that benefit from the non-linearity of radial basis
functions (RBF). Such a scheme captures higher-order data statistics [Koniusz et al.,
2016c], complex action dynamics [Koniusz et al., 2016a; Cherian et al., 2017b] and

§5.1 Introduction 87

fine-grained relations [Lin and Maji, 2017; Koniusz et al., 2018b].
We present two representations for classification of 3D skeletons. Our first represen-

tation, sequence compatibility kernel (SCK), captures the spatio-temporal compatibility of
body-joints between two sequences. To this end, we present an RBF kernel formulation
that jointly captures the spatial and temporal similarity of each body-pose (normalized
with respect to the hip position) in a sequence against those in another. We show
that tensors generated from third-order outer-products of the linearizations of these
kernels are a simple yet powerful representation capturing higher-order statistics of
body-parts.

Our second representation, termed dynamics compatibility kernel (DCK), represents
spatio-temporal dynamics of each sequence explicitly. We present a novel RBF
kernel formulation that captures the similarity between a pair of body-poses in a
given sequence explicitly, and then compare it against such body-pose pairs in other
sequences. Such spatio-temporal modeling could be expensive due to the volumetric
nature of space and time. However, we show that using an appropriate kernel model
can shrink the time-related variable into a small representation of constant size after
kernel linearization. With this approach, we can model both spatial and temporal
variations in the form of co-occurrences which could otherwise be prohibitive. We
show empirically that SCK and DCK are complementary.

As SCK/DCK work on entire sequences, we formulate an SCK-like kernel over
multiple length subsequences as some of subsequences capture the gist of performed
actions better than full sequences. To show the versatility of the extended SCK, we
apply it to capture spatio-temporal compatibility of frame-wise CNN classifier scores
from videos (regular and fine-grained actions).

We present experiments on seven standard datasets: (i) UTKinect-Action3D [Xia
et al., 2012], (ii) Florence3D-Actions [Seidenari et al., 2013], (iii) MSR-Action3D [Li
et al., 2010] and (iv) HMDB-51[Kuehne et al., 2011] datasets as well as two fine-
grained datasets: (v) NTU RGB+D [Shahroudy et al., 2016a], (vi) MPII Cooking
Activities [Rohrbach et al., 2012] and (vii) Kinetics [Kay et al., 2017]. We use the first
three datasets as a source of 3D body joint sequences (as well as Kinetics), NTU for
both 3D body joint sequences, and videos with RGB frames and optical flow frames,
and HMDB-51 and MPII Cooking Activities for videos with RGB and optical flow
frames. We show that our extensions can still achieve state-of-the-art accuracy two
years after SCK/DCK were proposed [Koniusz et al., 2016a]. To summarize:

i. We design sequence and dynamics compatibility kernels that capture spatio-
temporal evolution of 3D skeleton body-joints.

ii. We derive linearizations of these kernels by tensors.

iii. We extend these kernels to aggregation over multiple subsequences and CNN
classifier scores.

iv. We conduct a novel theoretical analysis of Tensor Power Normalization which
connects it to subspace methods. We are the first to conduct a theoretical analysis

88 Tensor Representations

of higher-order pooling with Tensor Power Normalization in Section 5.9, and use it
for generic/fine-grained action recognition.

5.2 Related Work

In the first part of our chapter, we focus on action recognition from an articulated set of
connected body-joints that evolve in time [Zatsiorsky, 1997]. A temporal evolution of
the human skeleton is very informative for action recognition as shown by Johansson
in his seminal experiment involving the moving lights display [Johansson, 1973].
At the simplest level, the human body can be represented as a set of 3D points
corresponding to body-joints such as elbow, wrist, knee, ankle, etc. Action dynamics
has been modeled using the motion of such 3D points in [Hussein et al., 2013; Lv and
Nevatia, 2006], using joint orientations with respect to a reference axis [Parameswaran
and Chellappa, 2006] and even relative body-joint positions [Wang et al., 2012; Yang
and Tian, 2014a]. In contrast, we represent these 3D body-joints by kernels whose
linearization results in higher-order tensors capturing complex statistics. We also note
parts-based approaches that use connected body segments [Yacoob and Black, 1998;
Ohn-Bar and Trivedi, 2013; Ofli et al., 2014; Vemulapalli et al., 2014]. For details, see a
survey [Presti and La Cascia, 2015].

We also handle the temporal domain differently to other methods. 3D joint
locations are modeled as temporal hierarchy of coefficients in [Hussein et al., 2013].
Pairwise relative positions of joints were modeled in [Wang et al., 2012] and combined
with a hierarchy of Fourier coefficients to capture temporal evolution of actions. In
[Yang and Tian, 2014a], the relative joint positions and their temporal displacements
are modeled with respect to the initial frame. In [Vemulapalli et al., 2014], the
displacements and angles between the body parts are represented as a collection
of matrices belonging to SE(3), a special Euclidean group. The temporal domain is
handled by the dynamic time warping and Fourier temporal pyramid matching. In
contrast, we avoid expensive time warping by modeling the temporal domain with an
RBF kernel invariant to local temporal shifts.

Our scheme also differs from works such as kernel descriptors [Bo et al., 2011]
that sum gradient orientations over image patches, action recognition via kernelized
covariances [Wang et al., 2015a; Cavazza et al., 2016; Zhang et al., 2020b], and a time
series kernel [Gaidon et al., 2011] which extracts spatio-temporal autocorrelations. In
contrast, our scheme sums over several multiplicative and additive RBF kernels. We
capture higher-order statistics by linearizing a polynomial kernel and avoid evaluating
costly kernels directly.

Third-order tensors have been used to form spatio-temporal tensors on videos
in [Kim et al., 2007]. Non-negative tensor factorization is used for image denoising
[Shashua and Hazan, 2005], tensors are used for texture rendering [Vasilescu and
Terzopoulos, 2004] and for face recognition [Vasilescu and Terzopoulos, 2002]. A
survey of multi-linear algebraic methods for tensor subspace learning is available
in [Lu et al., 2011]. These methods use a single tensor, whereas we use tensors as

§5.3 Preliminaries 89

descriptors [Koniusz et al., 2013a, 2016c; Koniusz and Cherian, 2016; Zhao et al., 2012].
However, we use third-order tensors for action recognition, which poses a set of new
challenges.

For fine-grained action recognition, high-level sophisticated action reasoning [Wang
et al., 2013a; Rohrbach et al., 2012; Zuffi and Black, 2013; Chéron et al., 2015] is typically
used together with pose estimation systems [Wei et al., 2016; Insafutdinov et al., 2016].
However, these approaches scale poorly to millions of video frames. Human-object
interactions in the videos are analyzed in [Zhou et al., 2015]. Correlations between
space-time features are proposed in [Shechtman and Irani, 2005].

Power Normalization approaches [Koniusz et al., 2013a, 2016c; Koniusz and
Cherian, 2016; Koniusz et al., 2018b; Koniusz and Zhang, 2020] speculate that Eigen-
value Power Normalization prevents so-called burstiness, thus performing spectral
detection of higher-order occurrences of features [Koniusz et al., 2013a, 2016c], which
can be paraphrased as ‘do a knife, a hand and a chopping board co-occur together?’ rather
than ‘how many knifes, hands and chopping boards appear in the scene?’

Moreover, first-order pooling was successfully used for representing action recog-
nition via hallucination [Wang et al., 2019d]. Papers [Koniusz et al., 2018b; Koniusz
and Zhang, 2020] study second-order pooling, power normalizing functions and their
taxonomy while fast pooling methods are proposed in [Lin and Maji, 2017; Koniusz
and Zhang, 2020; Lin et al., 2018].

Finally, second-order pooling was successfully used for few-shot action recognition
[Zhang et al., 2020a], few-shot classification [Zhang and Koniusz, 2019; Simon et al.,
2020a], few-shot segmentation [Zhang et al., 2020d], modulating optimization [Simon
et al., 2020b], style transfer [Shiri et al., 2017, 2018, 2019b,a] and action self-supervision
[Wang and Koniusz, 2021]. Noteworthy are also graph convolutional networks [Yan
et al., 2018; Sun et al., 2019; Zhu and Koniusz, 2021b] and embeddings [Zhu and
Koniusz, 2021a] easily applicable to 3D skeleton action recognition.

5.3 Preliminaries

In this section, we review our notations and the necessary background on shift-
invariant kernels and their linearizations.

5.3.1 Tensor Notations

Figure 5.1a illustrates the notion of tensors, their order and modes. Let V ∈ Rd1×d2×d3

denote a third-order tensor. Using the Matlab notation, we refer to the k-th slice
of this tensor as V :,:,k, which is a d1 × d2 matrix. For a matrix V ∈ Rd1×d2 and a
vector v ∈ Rd3 , the notation V = V ↑⊗ v produces a tensor V ∈ Rd1×d2×d3 whose
k-th slice is given by V·vk, vk being the k-th coefficient of v. Figure 5.1b illustrates
such an outer-product. Symmetric third-order tensors of rank one are formed by the
outer-product of a vector v ∈ Rd in three modes, that is, a rank-one V ∈ Rd×d×d is
obtained from v as V=(↑⊗3v≜ (vvT) ↑⊗ v) which yields Vijk =vi ·vj ·vk, where Vijk
represents the ijk-th element of V . Matrices have two modes: the first and second

90 Tensor Representations

mode correspond to the row and column indexes i and j, respectively. Order r tensors
have r modes addressed by Vi1...ir where V ∈Rd1×...×dk×...×dr and k indicates the mode k.
Concatenation of n tensors in mode k is simply stacking them along mode k, denoted
as [V i]

⊕k
i∈In

≡ numpy.concatenate((V1, ...,Vn), axis= k−1)). In is an index sequence

1, 2, ..., n. We define the Frobenius norm ∥V∥F =
√

∑i,j,k V2
ijk and the inner-product

between X and Y as ⟨X ,Y⟩ = ∑ijk XijkYijk. Also, ez are spanning bases of RZ.
Further basics on tensors and tensor algebra can be found in [Huckle, 2019].

5.3.2 Kernel Linearization

Let Gσ(u − ū) = exp(−∥u − ū∥2
2 /2σ2) denote a standard Gaussian RBF kernel cen-

tered at ū and having a bandwidth σ. Kernel linearization refers to rewriting this Gσ

as an inner-product of two infinite-dimensional feature maps. To obtain these maps,
we use a fast approximation method based on probability product kernels [Jebara
et al., 2004]. Specifically, we employ the inner product of d′-dimensional isotropic
Gaussians given u, u′∈Rd′. Thus, we have:

Gσ(u−ū)=
(

2
πσ2

)d′
2∫

ζ∈Rd′

Gσ/
√

2(u−ζ) Gσ/
√

2(ū−ζ)dζ. (5.1)

Eq. (5.1) is then approximated by replacing the integral with the sum over Z pivots
ζ1, ..., ζZ. Thus, we obtain a feature map ϕ:

ϕ(u; {ζ i}i∈IZ) =
[

Gσ/
√

2(u − ζ1), ..., Gσ/
√

2(u − ζZ)
]T

, (5.2)

and Gσ(u−ū) ≈
〈√

cϕ(u),
√

cϕ(ū)
〉

, (5.3)

where c is a const. Eq. (5.3) is the linearization of the RBF kernel. Eq. (5.2) is the
feature map. {ζ i}i∈IZ are pivots. As we use 1 dim. signals, we simply cover interval
[−1; 1] (or [0; 1]) with Z equally spaced pivots. For clarity, we drop {ζ i}i∈IZ and write
ϕ(u), etc.

5.3.3 Equivalence between Polynomial Kernels and the Dot-product of
Tensors

For any two Z′ dim. feature vectors ϕ, ϕ̄∈RZ′
, we have:

⟨ϕ, ϕ̄⟩r=
Z′

∑
i1=1

...
Z′

∑
ir=1

ϕi1 ϕ̄i1 ·...·ϕir ϕ̄ir= ⟨↑⊗rϕ, ↑⊗rϕ̄⟩, (5.4)

where X =(↑⊗rϕ) is defined as Xi1...ir =ϕi1 ·...·ϕir .

§5.4 Proposed Approach 91

(a) (b)

Figure 5.1: Figure 5.1a illustrates the notion of tensors, their order and modes. Figure
5.1b illustrates the matrix-vector order outer-product.

5.4 Proposed Approach

Below, we formulate the problem of action recognition from 3D skeleton sequences,
which precedes an exposition of our two kernel formulations for describing actions,
followed by their tensor reformulations through kernel linearization. We also intro-
duce Eigenvalue Power Normalization and our improved kernels used for action
recognition based on skeletons and/or classifier scores obtained from videos passed
via CNNs.

5.4.1 Statistical Motivation

Before we outline our higher-order tensor representations, below we motivate the use
of higher-order statistics. To compare skeleton sequences/videos, we want to capture
distribution of local features/descriptors per sequence e.g., body joints or receptive
fields in CNN. The characteristic function φΦ(ω)=Eϕ∼Φ

(
exp(iωTϕ)

)
describes the

probability density fΦ(ϕ) of a skeleton sequence/video (local features/descriptors
ϕ∼Φ).

Taylor expansion of the characteristic function per sequence is:

Eϕ∼Φ

(∞

∑
r=0

ir

r!
⟨ϕ, ω⟩r

)
≈ 1

N

N

∑
n=0

∞

∑
r=0

ir

r!
⟨↑⊗rϕn, ↑⊗rω⟩ (5.5)

=
∞

∑
r=0

ir

r!

〈 1
N

N

∑
n=0

↑⊗rϕn, ↑⊗rω
〉
=

∞

∑
r=0

〈
X (r),

ir

r!
↑⊗rω

〉
.

Symbol X (r) = 1
N

N
∑

n=0
↑⊗rϕn defines a tensor descriptor while i is the imaginary

number. In principle, with infinite data and infinite moments, one can fully capture
fΦ(ϕ) which is intractable. In practice, third-order moments work well in what
follows while second-order moments are somewhat insufficient.

5.4.2 Problem Formulation

Suppose we are given a set of 3D human pose skeleton sequences, each pose consisting
of J body-keypoints. Further, to simplify our notations, we assume each sequence

92 Tensor Representations

B

G :

A

1 2 3

(a)

A

B

G :
s

t

1 2 3

(b) (c)

Figure 5.2: Figures 5.2a and 5.2b show how SCK works – kernel Gσ2 compares
exhaustively e.g. hand-related joint i for every frame in sequence A with every frame
in sequence B. Kernel Gσ3 compares exhaustively the frame indexes. Figure 5.2c
shows this burden is avoided by linearization – third-order statistics on feature maps
ϕ(xis) and z(s/N) for joint i are captured in tensor X i and whitened by EPN to
obtain V i which are concatenated over i=1, ..., J to represent a sequence. The final
sequence tensors are vectorized per video by ‘vec’ and fed to an SVM.

consists of N skeletons, one per frame1. We define such a pose sequence Π as:

Π =
{

xis ∈ R3, i ∈ IJ , s ∈ IN
}

. (5.6)

Further, let each such a sequence Π be associated with one of K action class labels
ℓ ∈ IK. Our goal is to use the skeleton sequence Π and generate an action descriptor
for this sequence that can be used in a classifier for recognizing the action class.
In what follows, we will present two such action descriptors, namely (i) sequence
compatibility kernel and (ii) dynamics compatibility kernel, which are formulated
using kernel linearization and tensor algebra theories. We present both these kernel
formulations next.

5.4.3 Sequence Compatibility Kernel

As alluded to earlier, the main idea of this kernel is to measure the compatibility
between two action sequences in terms of the similarity between their skeletons and
their temporal order. To this end, we assume each skeleton is centered with respect to
one of the body-joints (say, hip). Suppose we are given two such sequences ΠA and
ΠB, each with J joints, and N frames. Further, let xis ∈R3 and yjt ∈R3 correspond to
the body-joint coordinates of ΠA and ΠB, respectively.

We define our sequence compatibility kernel (SCK) between ΠA and ΠB as1:

KS(ΠA, ΠB) = (5.7)
1
Λ ∑
(i,s)∈J

∑
(j,t)∈J

Gσ1(i− j)
(

β1Gσ2

(
xis−yjt

)
+β2 Gσ3(

s − t
N

)
)r

.

Symbol Λ is a normalization constant and J = IJ × IN . As is clear, this kernel
involves three different compatibility subkernels, namely (i) Gσ1 , capturing the com-

1We assume that all sequences have N frames for simplification of presentation. Our formulations
are applicable to sequences of arbitrary lengths e.g., M and N. Thus, we apply in practice Gσ3 (

s
M − t

N)
in Eq. (5.7).

§5.4 Proposed Approach 93

Figure 5.3: Order r statistics from Eq. (5.7) can be understood by studying the
linearization in Eq. (5.10). For a given joint i at time s/N (normalized frame number),
we embed a 3D joint coordinate xis (all centered w.r.t. hip) via function ϕ(·) into a
non-linear Hilbert space representing an RBF kernel according to Eq. (5.2). Similarly,
we embed the time s/N via function z(·) (also by Eq. (5.2)). Finally, ⊗r performs the
third-order outer-product on concatenated embeddings aggregated next over frames s
(note ∑s). The interpretation: the Gaussians ‘soft-divide’ the the Cartesian coordinate
system along x, y, z direction, resp., and time s/N. Thus, triplets (x, y, z), (x, y, s/N),
(x, z, s/N) and (y, z, s/N) assigned into such a ‘soft-divided’ space capture locally
three-way occurrences. They factor out one spatial (or time) variable at a time (note
invariance to such a variable).

patibility between joint-types i and j, (ii) Gσ2 , capturing the compatibility between
joint locations x and y, and (iii) Gσ3 , measuring the temporal alignment of two poses
in two sequences. We also introduce weighting factors β1, β2 ≥ 0 that adjust the
importance of the body-joint compatibility against the temporal alignment, where
β1 + β2 = 1. Figures 5.2a and 5.2b illustrate how this kernel works. It might come
as a surprise that we use kernel Gσ1 . Note that our skeletons may be noisy and there
is a possibility that some keypoints are detected incorrectly (for example, elbows
and wrists). Thus, this kernel allows incorporating a degree of uncertainty into
the alignment of such joints. To simplify our formulation, in this chapter, we will
assume that such errors are absent from our skeletons, and thus Gσ1(i − j) = δ(i − j).
Furthermore, standard deviations σ2 and σ3 control the joint-coordinate selectivity and
temporal shift-invariance, respectively. That is, for σ3 → 0, two sequences will have to
match perfectly in the temporal sense. For σ3 → ∞, the algorithm is invariant to any
permutations of the frames. As will be clear in the sequel, parameter r determines the
order of statistics of our kernel (we use r = 3).

Next, we present linearization of our kernel using the method from Sections 5.3.2,
5.3.3, and Eq. (5.3), so that kernel Gσ2(x−y) ≈ ϕ(x)Tϕ(y) (see note2) while Gσ3(

s−t
N) ≈

z(s/N)Tz(t/N) (see note3). With these approximations and simplification to Gσ1

2In practice, Cartesian coordinates of joints x, y ∈ R3 are fed into a kernel. Thus, in place
of kernel Gσ2 , we use the sum kernel G

′
σ2
(x−y) = Gσ2 (x1−y1)+Gσ2 (x2−y2)+Gσ2 (x3−y3) whose

approximation is given as: G
′
σ2
(x−y) ≈ [ϕ(x1; {ζ i}i∈IZ2

); ϕ(x2; {ζ i}i∈IZ2
); ϕ(x3; {ζ i}i∈IZ2

)]T [ϕ(y1;
{ζ i}i∈IZ2

); ϕ(y2; {ζ i}i∈IZ2
); ϕ(y3; {ζ i}i∈IZ2

)] but for simplicity we refer to it in our formulations by
its generic form Gσ2 (x−y)≈ϕ(x)Tϕ(y) because we can define ϕ(x)= [ϕ(x1); ϕ(x2); ϕ(x3)].

3Feature maps z(·)≡ϕ(·) from Eq. (5.2). We simply write z rather than ϕ to denote these feat. maps
as they encode the time/frame number (c.f . the body joints). Note that z(·; {ζ′i}i∈IZ3

) uses Z3 pivots

94 Tensor Representations

described above, we rewrite our sequence compatibility kernel as:

KS(ΠA, ΠB) ≈

1
Λ∑

i∈IJ

∑
s∈IN

∑
t∈IN

[√β1 ϕ(xis), (see note2)√
β2 z(s/N), (see note3)

]T

·
[√

β1ϕ(yit)√
β2z(t/N)

]r

(5.8)

=
1
Λ∑

i∈IJ

∑
s∈IN

∑
t∈IN

〈
↑⊗r

[√
β1 ϕ(xis)√

β2 z(s/N)

]
, ↑⊗r

[√
β1ϕ(yit)√

β2z(t/N)

]〉
(5.9)

=∑
i∈IJ

〈
1√
Λ

∑
s∈IN

↑⊗r

[√
β1 ϕ(xis)√
β2z(s/N)

]
,

1√
Λ

∑
t∈IN

↑⊗r

[√
β1ϕ(yit)√

β2z(t/N)

]〉
. (5.10)

Expansion of Eq. (5.8) into Eq. (5.9) simply follows the notion of equivalence
between the polynomial kernels and tensor outer-products as detailed in Eq. (5.4).
Similarly, the summations in Eq. (5.9) can be absorbed into the dot-product in Eq.
(5.10) because the inner-product is a linear operation in each of its arguments e.g.,
⟨v1+v2, v̄⟩= ⟨v1, v̄⟩+⟨v2, v̄⟩. The physical meaning of the above equation is detailed
in Figure 5.3. While the first-, second- and third-order outer-products are connected
to the sample mean, covariance and co-skewness of features, our tensors are not
mere counts of features, as explained next. As is clear, (5.10) expresses KS(ΠA, ΠB)
as a sum of inner-products on third-order tensors (r = 3), as shown in Figure 5.2c.
While, using the dot-product as the inner-product is an option, other alternatives for
tensors of order r ≥ 2 can act on their spectrum, leading to better representations.
An example is the so-called burstiness [Jégou et al., 2009], which is a commonly
encountered property that a given feature appears more/less often in a sequence than
a statistically independent model predicts. Robust descriptors must be invariant w.r.t.
the length of actions e.g., a prolonged hand waving represents the same action as a short
hand wave. Eigenvalue Power Normalization (EPN) [Koniusz et al., 2016c] suppresses
burstiness by acting on higher-order statistics (see Fig. 5.2c). By incorporating EPN,
we generalize (5.10) as:

K∗
S(ΠA, ΠB)=∑

i∈IJ

〈
G
(

1√
Λ

∑
s∈IN

↑⊗r

[√
β1ϕ(xis)√
β2z(s/N)

])
,

G
(

1√
Λ

∑
t∈IN

↑⊗r

[√
β1ϕ(yit)√

β2z(t/N)

])〉
, (5.11)

where the operator G performs EPN by applying power normalization to the spectrum
of the third-order tensor (by taking the higher-order SVD). Note that in general
K∗

S(ΠA, ΠB) ̸≈KS(ΠA, ΠB) as G is intended to manipulate the spectrum of X .

{ζ′i}i∈IZ3
(see Figure 5.3).

§5.4 Proposed Approach 95

The final representation for linearized SCK becomes:

V i =G(X i), where X i =
1√
Λ

∑
s∈IN

↑⊗r

[√
β1 ϕ(xis)√
β2z(s/N)

]
. (5.12)

We replace the sum over the body-joint indexes in (5.11) by concatenating V i in
(5.12) along the fourth tensor mode, thus defining V =

[
V i
]⊕4

i∈IJ
. Suppose VA and

VB are the corresponding fourth order tensors for ΠA and ΠB respectively. Then,
we obtain:

K∗
S(ΠA, ΠB) = ⟨VA,VB⟩ . (5.13)

Note that tensors X have the following properties: (i) super-symmetry X i,j,k =
X π(i,j,k) for indexes i, j, k and their permutation given by π, ∀π, and (ii) positive
semi-definiteness of every slice, that is, X :,:,s ∈Sd

+, for s∈Id. Thus, we use only the
upper-simplices of V i which consist of (d+r−1

r) coefficients (which is the total size of
our final representation times the number of body-joints) rather than dr, where d is the
side-dimension of V i i.e., d=3Z2+Z3 (see notes2,3), and Z2 and Z3 are the numbers
of pivots used in the approximation of Gσ2 and Gσ3 (see notes2,3).

Next, we pass tensors X via (i) slice-wise EPN (sEPN) operator or (ii) HOSVD-
based tensor whitening EPN (tEPN) [Koniusz et al., 2016c]. sEPN is faster but tEPN
uses the entire tensor spectrum, thus being more accurate. The slice-wise EPN uses
the Power-Euclidean dist. for rising matrices, slices of tensor tensor X , to the power
of γ. Power norm. and re-stacking slices along the third mode yields:

G(X)= [X γ
:,:,s]

⊕3
s∈Id

, for 0< γ≤1. (5.14)

We note that G(X) preserves listed earlier properties of tensors X and it forms our
final tensors V for the action sequence.

The HOSVD-based tensor whitening EPN, proposed in [Koniusz et al., 2016c], is
defined by the following operator G:

(E ; A1, ..., Ar) = HOSVD(X), (5.15)

Ê = Sgn(E) |E |γ,
(

generally Ê= Ĝ(E)
)

(5.16)

V̂ = ((Ê ×1 A1) ...)×r Ar,,
(

think V̂ = X
1
2

)
(5.17)

G(X) = Sgn(V̂) |V̂ |γ∗
. (5.18)

In the above equations, we distinguish the core tensor E , its power-normalized variant
Ê with factor weights evened out by rising them to the power 0 < γ ≤ 1, singular
vector matrices A1, ..., Ar and operation ×r which is the so-called tensor-product in
mode r.

As our tensors X are super-symmetric, we note that A1 = A2 = ... = Ar. How-
ever, the kernel which is proposed in Section 5.4.4 leads to a non-symmetric tensor
representation. We refer the reader to paper [Koniusz et al., 2016c] for the detailed

96 Tensor Representations

I

II

B

G :

A

1 2 3

III

IV
V

I II

III IV
V

(a)

A
I II III IV V

B

G :

(b) (c)

Figure 5.4: Figure 5.4a shows that kernel Gσ′
2

in DCK captures spatio-temporal
dynamics by measuring displacement vectors from any given body-joint to remaining
joints spatially- and temporally-wise (i.e. see dashed lines). Figure 5.4b shows that
comparisons performed by Gσ′

2
for any selected two joints are performed all-against-all

temporally-wise which is computationally expensive. Figure 5.4c shows the encoding
steps in the proposed linearization which is fastn. We collect all X ii′ for joints i≤ i′,
whiten them by EPN to obtain V ii′ , concatenate, vectorize them per video with ‘vec’
and fed to an SVM. We introduced color-coded body joints/frame numbers to show
how we assemble a single X ii′ .

description of the above steps.

Eq. (5.16) has a more general form Ê= Ĝ(E), where Ĝ can be any power normalizing
function [Koniusz et al., 2018b]. In Sec. 5.9, we derive the exact interpretation
of Eq. (5.15-5.18) for Ĝ = Sgn(E) (1 − (1 − |E |)N̄) for which Sgn(E) |E |γ is an
approximation [Koniusz et al., 2018b]. We prove in Sec. 5.9 that EPN performs in
fact a spectral detection of higher-order occurrences of features, the base of fine-
grained systems [Lin and Maji, 2017; Koniusz et al., 2018b]. Figure 5.9 illustrates
details of such a spectral detection.

5.4.4 Dynamics Compatibility Kernel

The SCK kernel that we described above captures the inter-sequence alignment,
whereas the intra-sequence spatio-temporal dynamics is lost. Thus, we propose
a novel dynamics compatibility kernel (DCK). In what follows, we use the absolute
coordinates of the joints in our kernel and follow notations from the prev. section.

DCK for two action sequences ΠA and ΠB is defined as:

KD(ΠA, ΠB) =

1
Λ ∑
(i,s)∈J,
(i′,s′)∈J,

i′̸=i,s′̸=s

∑
(j,t)∈J,
(j′,t′)∈J ,
j′̸=j,t′̸=t

G′
σ′

1
(i− j, i′− j′) Gσ′

2

(
(xis−xi′s′)−

(
yjt−yj′t′

))
·

· G′
σ′

3
(

s−t
N

,
s′−t′

N
) G′

σ′
4
(s−s′, t−t′). (5.19)

In contrast to SCK in (5.7), the DCK kernel uses the intra-sequence joint differences,
thus capturing the dynamics, which is then compared against dynamics of other
sequences.

§5.4 Proposed Approach 97

Figures 5.4a-5.4c depict schematically how DCK captures co-occurrences. As in
SCK, the first kernel, G′

σ′
1
, captures the sensor uncertainty in body-keypoint detection,

and is assumed to be a delta function in this chapter. The second kernel, Gσ′
2
, models

the spatio-temporal co-occurrences of the body-joints. Temporal alignment kernels,
expressed as G′

σ′
3
(α, β)=Gσ′

3
(α)Gσ′

3
(β), encode temporal start- and end-points from

(s, s′) and (t, t′). Finally, Gσ′
4

limits contributions of dynamics between temporal points
if they are distant from each other, i.e. if s′≫ s or t′≫ t and σ′

4 is small. Similarly to
SCK, the standard deviations σ′

2 and σ′
3 control the selectivity over spatio-temporal

dynamics of body-joints and their temporal shift-invariance for the start and end
points, resp. As discussed for SCK, the practical extensions from footnotes1,2,3 also
apply to DCK e.g., the definition of z, the pivot numbers Z2 and Z3 for Gσ′

2
and Gσ′

3
kernels.

Based on the above formulations, Section 5.6 shows that the linearization of DCK
admits the form:

KD(ΠA, ΠB) ≈ (5.20)

∑
i∈IJ,
i′∈IJ:
i′̸=i

〈
1√
Λ

∑
s∈IN,
s′∈IN:

s′̸=s

Gσ′
4
(s−s′)

(
ϕ(xis−xi′s′)·z

(s
N
)T
)
↑⊗ z

(s′

N
)

,

1√
Λ

∑
t∈IN,
t′∈IN:

t′̸=t

Gσ′
4
(t−t′)

(
ϕ(yit−yi′t′)·z

(t
N
)T
)
↑⊗ z

(t′

N
)〉

.

Equation (5.20) expresses KD(ΠA, ΠB) as a sum over inner-products on third-
order non-symmetric tensors (c.f. Section 5.4.3 where the proposed kernel results in
an inner-product between super-symmetric tensors). However, we can decompose
each of these tensors with a variant of EPN, which involves Higher Order Singular
Value Decomposition (HOSVD), into factors stored in the so-called core tensor, and
equalize the contributions of these factors to prevent bursts in the spatio-temporal
co-occurrence dynamics of actions. For example, consider that a long hand wave versus
a short hand wave yield different temporal statistics, that is, the prolonged action
results in bursts. However, the final representation described below becomes invariant
to bursts.

The final representation for linearized DCK with a non-linear operator G introduced
into Eq. (5.20) to prevent burstiness becomes:

V ii′=G(X ii′), where (5.21)

X ii′=
1√
Λ

∑
s,s′∈IN :s′̸=s

Gσ′
4
(s−s′)

(
ϕ(xis−xi′s′)·z

(s
N
)T
)
↑⊗ z

(s′

N
)
.

The summation over pairs of body-joint indexes in (5.20) is equivalent to the con-
catenation of V ii′ from (5.21) along the fourth mode. Thus, we obtain tensor repre-
sentations

[
V ii′
]⊕4

i>i′: i,i′∈IJ
for sequence ΠA and

[
V̄ ii′
]⊕4

i>i′: i,i′∈IJ
for sequence ΠB.

The physical meaning of Eq. (5.21) is detailed in Figure 5.5. The dot-product can

98 Tensor Representations

Figure 5.5: Third-order statistics from Eq. (5.19) can be understood by studying the
linearization in Eq. (5.20). For a given pair of joints i ≤ i′ at times s/N and s′/N
(normalized frame numbers), we embed displacement vectors xis−xi′s′ of 3D joint
coordinates xisand xi′s′ via function ϕ(·) into a non-linear Hilbert space representing
an RBF kernel according to Eq. (5.2). Similarly, we embed the starting and ending
times s/N and s′/N via function z(·) (also by Eq. (5.2)). Finally, ⊗ performs the third-
order outer-product on concatenated displacement and time embeddings aggregated
next over frames s and s′ (note ∑ss′). The interpretation: the Gaussians ‘soft-divide’ the
Cartesian coordinate system along x, y, z direction, resp., as well as time direction (s/N
and s′/N). We project displacements along x, y, z directions of Cartesian coordinates
and assign each projection to Gaussians. Thus, triplets ([x; y; z], s, s′) assigned into
such a ‘soft-divided’ space capture locally displacements of pairs of joints on the
time grid (3-way soft-histogram). For DCK⊕ in Section 5.4.6 we use velocity vectors

xis−xi′s′
max(1,|s′−s|) (c.f . displacement vectors) with short- and long-term estimates depending
on s′−s (3-way soft-histogram of short- and long-term speeds).

be now applied between these representations to compare them. Tensors X in (5.21)
are non-symmetric. Thus, for the operator G, we choose the HOSVD-based tensor
whitening EPN, that is, tEPN defined in Eq. (5.15-5.18).

5.4.5 Sequence Compatibility Kernel ‘Plus’ (SCK⊕)

Below, we extend the SCK formulation from Section 5.4.3 to aggregate over multiple
subsequences extracted from the input sequence. Intuitively, this process is an equiva-
lent of extracting local descriptors from images to attain so-called shift-invariance to
the object location. As it is unlikely that relevant motion patterns stretch throughout
a sequence, a specific pattern associated with some action classes may appear in
one/few subsequences. Moreover, in what follows next, we will allow the aggregation
to run over multiple modalities q∈IQ e.g., we use 3D body-joints and/or frame-wise
CNN classification scores from RGB videos and/or optical flow. Thus, we can define
our multimodal pose sequence Π as:

Π =
{

x(q)is ∈ RWq , i ∈ IJ , s ∈ IM, q ∈ IQ

}
, (5.22)

where W1 = 3, J is the total number of body-joints, Wq for q > 1 equals the size of
modality q other than body-joints. Note that if modality q>1 is global rather than
per-joint specified, we can replicate it e.g., x(q)1s = ...= x(q)Js .

§5.4 Proposed Approach 99

SCK⊕ on a pair of sequences ΠA and ΠB of length M and N is defined as:
KS⊕ (ΠA, ΠB) = (5.23)

1
Λ ∑

i∈IJ

∑
τ∈PA
τ′∈PB

∑
u∈Uτ
u′∈Uτ′

∑
s∈Sτ
t∈Sτ′

(
∑

q∈IQ

β
(q)
1 G

σ
(q)
2

(
x(q)i,u+s − y(q)

i,u′+t

)
+

β2 Gσ3 (f (s,Sτ)− f (t,Sτ′))+

β3 Gσ4 (f (u,UA
τ)− f (u′,UB

τ′))+

β4 Gσ5 (f (τ,PA)− f (τ′,PB))
)r

.

Symbols PA and PB denote subsequence lengths, PA =PB =P is a possible assertion
to make, so that i.e. P = {8, 10, 12, ..., 20}. Moreover, U A

τ and U B
τ′ are sets of all

positions in sequences πA and πB for subsequences of lengths τ and τ′, respectively,
i.e., if N = 100 and τ = 20 then U A

20 = {1, 3, 5, ..., 79} is an example of a possible
choice. Furthermore, Sτ and Sτ′ are sets of all sampling positions in subsequences
of lengths τ and τ′, i.e., if τ=20 then S20={0, 1, 2, ..., 19} is an example of a possible
choice. We define a function f (s,S) = s−Smin

Smax−πmin which performs normalization on
s w.r.t. set π, and Smin and Smax denote the smallest and largest element of set S ,
respectively. Moreover, normalizations f (u,U) and f (τ,P) are defined by analogy,
Λ=ΛA ·ΛB = (|IJ |·|PA|·|U A

τ |·|Sτ|)·(|IJ |·|PB|·|U B
τ |·|Sτ′|). For simplicity, we do not

model the within-sequence similarity between the body joints in contrast to Eq. (5.7),
thus we skip Gσ1 . Kernels G

σ
(i)
2

capture the compatibility between body-joint locations

x and y in a subsequence. Kernel Gσ3 measures the temporal alignment of two
pose snippets in the given two subsequences. Kernel Gσ4 measures the temporal
alignment of two subsequences in two sequences. Lastly, Gσ5 measures the match
of two subsequence lengths. Weight factors β

(q)
1 ≥ 0 adjust the importance of each

modality q∈IQ. Weight β2≥0 is the importance of the temporal alignment of snippets
within subsequences. Weight β3≥0 is the importance of the temporal alignment of
subsequences within sequences. Weight β4≥0 is the importance of the match of two
subsequence lengths. We let ∑qβ

(q)
1 +β2+β3+β4 = 1. Parameters σ

(q)
2 in G

σ
(q)
2

and β
(q)
1

are set per modality e.g., for the 3D body-joints we chose G
σ
(1)
2

to be an RBF kernel, for

frame-wise class predictions obtained from CNNs applied on (i) RGB and (ii) optical
flow frames we choose G

σ
(2)
2

and G
σ
(3)
2

to be linear kernels (with no parameters). As

previously, r denotes the order of captured statistics i.e., r=3.
Below, we present the process of linearization of our kernel which follows the

reasoning from Section 5.3.2 and Eq. (5.3). However, we feel it is interesting to show
how various kernel components translate to various statistics encoded by the tensor:

i. G
σ
(q)
2
(x − y) ≈ ϕ(q)(x)Tϕ(q)(y) (see note2) and, in order to reflect the choice of par.

σ
(q)
2 for index q, we write ϕ(q),

ii. Gσ3(f (s,Sτ)− f (t,Sτ′)) ≈ z′(f (s,Sτ)Tz′(f (t,Sτ′)),

iii. Gσ4(f (u,Uτ)− f (u′,Uτ′)) ≈ z′′(f (u,Uτ)Tz′′(f (u′,Uτ′)),

iv. Gσ5(f (τ,PA)− f (τ′,PB)) ≈ z′′′(f (τ,PA)
Tz′′′(f (τ′,PB)).

100 Tensor Representations

With these approximations at hand, we rewrite our sequence compatibility kernel
‘plus’ as:

KS⊕ (ΠA, ΠB) ≈

1
Λ ∑

i∈IJ

∑
τ∈PA
τ′∈PB

∑
u∈Uτ
u′∈Uτ′

∑
s∈Sτ
t∈Sτ′

√
β
(1)
1 ϕ(x(1)i,u+s)

...√
β
(Q)
1 ϕ(x(Q)

i,u+s)√
β2 z′(f (s,Sτ))√
β3 z′′(f (u,Uτ))√
β4 z′′′(f (τ,PA))

T

·

√
β
(1)
1 ϕ(y(1)

i,u′+t)
...√

β
(Q)
1 ϕ(y(Q)

i,u′+t)√
β2z′(f (t,Sτ′))√

β3z′′(f (u′,Uτ′))√
β4z′′′(f (τ′,PB))

r

=

(5.24)

∑
i∈IJ

〈
G

1

ΛA
∑

τ∈PA

∑
u∈Uτ

∑
s∈Sτ

↑⊗r

√
β
(1)
1 ϕ(x(1)i,u+s)

...√
β
(Q)
1 ϕ(x(Q)

i,u+s)√
β2 z′(f (s,Sτ))√
β3 z′′(f (u,Uτ))√
β4 z′′′(f (τ,PA))

, (5.25)

G

1

ΛB
∑

τ′∈PB

∑
u′∈Uτ′

∑
t∈Sτ′

↑⊗r

√
β
(1)
1 ϕ(y(1)

i,u′+t)
...√

β
(Q)
1 ϕ(y(Q)

i,u′+t)√
β2z′(f (t,Sτ′))√

β3z′′(f (u′,Uτ′))√
β4z′′′(f (τ′,PB))

〉

.

In the above equation, we set G(X) = X for Eq. (5.25) to be equivalent to Eq.
(5.24). However, similarly to considerations in Section 5.4.3, a commonly encountered
adversity in aggregated representations, the burstiness, requires some suppression.
To this end, we let operator G in Eq. (5.25) perform tEPN on the spectrum of the
third-order tensor.

The final representation for linearized SCK⊕ becomes:

V i =G(X i), where X i =
1

ΛA
∑

τ∈PA

∑
u∈Uτ

∑
s∈Sτ

↑⊗r

√
β
(1)
1 ϕ(x(1)i,u+s)

...√
β
(Q)
1 ϕ(x(Q)

i,u+s)√
β2 z′(f (s,Sτ))√
β3 z′′(f (u,Uτ))√

β4 z′′′(f (τ,PA))

. (5.26)

We can further replace the summation over the body-joint indexes in (5.25) by
concatenating V i in (5.26) along the fourth tensor mode, thus defining V =

[
V i
]⊕4

i∈IJ
.

Suppose VA and VB are the corresponding fourth order tensors for ΠA and ΠB,
then we have:

K∗
S⊕(ΠA, ΠB) = ⟨VA,VB⟩ . (5.27)

Note that in general K∗
S⊕(ΠA, ΠB) ̸≈KS⊕(ΠA, ΠB) as G manipulates the spectrum

of X . Finally, for our final representation, we use only the upper-simplices of V i which
consist of (d+r−1

r) coefficients each, rather than dr, where d is the side-dimension of

V i i.e., d=3Z(1)
2 +...+ Z(Q)

2 +Z3+Z4+Z5 (see notes2,3), and Z(1)
2 , ..., Z(Q)

2 and Z3, Z4, Z5

are the numbers of pivots used in the approximation of G
σ
(1)
2

, ..., G
σ
(Q)
2

and Gσ3 , Gσ4 , Gσ5

§5.4 Proposed Approach 101

(see notes2,3).

5.4.6 Dynamics Compatibility Kernel ‘Plus’ (DCK⊕)

Below, we apply the aggregation over subsequences to our DCK kernel. We follow
the same steps as for SCK⊕ (Section 5.4.5) except that our subsequences for DCK⊕
have a fixed length. For a pair of sequences ΠA and ΠB of length M and N, we have:

KD⊕(ΠA, ΠB) = (5.28)
1

Λ′ ∑
u,u′∈Uτ

KD(Π
′
A,τ,u, Π′

B,τ,u′)Gσ4(f (u,U A
τ)− f (u′,U B

τ)),

where τ is a length of subsequences. KD(Π
′
A,τ,u, ΠB′,τ,u′) is defined in Eq. (5.19). How-

ever, we use velocity vectors xis−xi′s′
max(1,|s′−s|) (c.f . displacement vectors in DCK) with short-

and long-term estimates depending on s′−s. Figure 5.5 provides an interpretation
of this kernel. KD(Π

′
A,τ,u, ΠB′,τ,u′) is evaluated over subsequences Π′

A,τ,u and Π′
B,τ,u′

sampled from ΠA and ΠB according to sets of sampling coordinates Sτ,u ={Sτ}+u
and Sτ,u′={Sτ′}+u′ of length τ which are shifted by locations u and u′ according to
Uτ. Lastly, Λ′= |U A

τ |·|U B
τ |. The remaining symbols follow definitions in Section 5.4.5.

Kernel in Eq. (5.28) is then linearized in the similar manner to Eq. (5.19) which results
in linearization similar to Eq. (5.21) but containing an additional mode corresponding
to linearization of kernel Gσ4 . We skip this derivation for brevity.

KD(ΠA, ΠB) =
1
Λ ∑
(i,s)∈J,
(i′ ,s′)∈J,

i′̸=i,s′̸=s

∑
(j,t)∈J,
(j′,t′)∈J ,
j′̸=j,t′̸=t

G′
σ′1
(i− j, i′− j′) Gσ′2

(
(xis−xi′s′)−

(
yjt − yj′ t′

))
G′

σ′3
(

s − t
N

,
s′ − t′

N
) · G′

σ′4
(s−s′, t−t′)

=
1
Λ ∑

i,i′∈IJ:
i′̸=i

∑
s,s′∈IN:

s′̸=s

∑
t,t′:
t′̸=t

Gσ′2

(
(xis−xi′s′)−

(
yjt − yj′ t′

))
Gσ′3

(s − t
N
)
Gσ′3

(s′ − t′

N
)
· Gσ′4

(s−s′) Gσ′4
(t−t′)

∣∣∣∣∣ j=i
j′=i′

≈ 1
Λ ∑

i,i′∈IJ:
i′̸=i

∑
s,s′∈IN:

s′̸=s

∑
t,t′∈IN:

t′̸=t

ϕ (xis−xi′s′)
Tϕ (yit − yi′ t′)·z

(s
N
)Tz
(t

N
)
·z
(s′

N
)Tz
(t′

N
)
· Gσ′4

(s−s′) Gσ′4
(t−t′)

=
1
Λ ∑

i,i′∈IJ:
i′̸=i

∑
s,s′∈IN:

s′̸=s

∑
t,t′∈IN:

t′̸=t

〈
Gσ′4

(s−s′)
(

ϕ(xis−xi′s′)·z
(s

N
)T
)
↑⊗ z

(s′

N
)

, Gσ′4
(t−t′)

(
ϕ(yit−yi′ t′)·z

(t
N
)T
)
↑⊗ z

(t′

N
)〉

=∑
i,i′∈IJ:

i′̸=i

〈
1√
Λ

∑
s,s′∈IN:

s′̸=s

Gσ′4
(s−s′)

(
ϕ(xis−xi′s′)·z

(s
N
)T
)
↑⊗ z

(s′

N
)

,
1√
Λ

∑
t,t′∈IN:

t′̸=t

Gσ′4
(t−t′)

(
ϕ(yit−yi′ t′)·z

(t
N
)T
)
↑⊗ z

(t′

N
)〉

(5.29)

K∗
D(ΠA, ΠB) =∑

i,i′∈IJ:
i′̸=i

〈
G
(

1√
Λ

∑
s,s′∈IN:

s′̸=s

Gσ′4
(s−s′)

(
ϕ(xis−xi′s′)·z

(s
N
)T
)
↑⊗ z

(s′

N
))

,G
(

1√
Λ

∑
t,t′∈IN:

t′̸=t

Gσ′4
(t−t′)

(
ϕ(yit−yi′ t′)·z

(t
N
)T
)
↑⊗ z

(t′

N
))〉

(5.30)

102 Tensor Representations

5.5 Experiments

Below, we present experiments on our models on seven popular datasets. For datasets
based on 3D skeletons, we use (i) the UTKinect-Action3D [Xia et al., 2012], (ii)
Florence3D-Action [Seidenari et al., 2013], (iii) MSR-Action3D [Li et al., 2010], and
(iv) Kinetics [Kay et al., 2017] (where stated). For datasets based on RGB frames,
we use (v) the fine-grained MPII Cooking Activities [Rohrbach et al., 2012] and (vi)
HMDB-51 [Kuehne et al., 2011] datasets. For experiments on the 3D skeletons fused
with RGB frames, we use (vii) large scale NTU-RGBD [Shahroudy et al., 2016a] dataset.
We also evaluate the influence of various hyper-parameters, such as the number of
pivots Z used for linearizing the body-joint and temporal kernels, and the impact
of Eigenvalue Power Normalization (we vary the factor equalization). We evaluate
our older SCK and DCK kernels, and their newer counterparts SCK⊕ and DCK⊕.
For skeletons, we feed them directly to our kernel representations while RGB-based
datasets are firstly encoded by the two-stream CNN [Simonyan and Zisserman, 2014]
or the I3D [Carreira and Zisserman, 2017].

5.5.1 Datasets

UTKinect-Action3D [Xia et al., 2012] consists of 10 actions performed twice by 10
different subjects, and has 199 action sequences. The dataset provides 3D coordinate
annotations of 20 body-joints for every frame. The dataset was captured with a
stationary Kinect sensor and contains significant viewpoint and intra-class variations.
Florence3D-Action [Seidenari et al., 2013] dataset consists of 9 actions performed 2–
3× by 10 different subjects and it has 215 action sequences. 3D coordinate annotations
of 15 body-joints captured with a Kinect sensor are provided. Significant intra-class
variations are present i.e., the same action articulated with the left/right hand, and
actions like drinking/performing a phone call can be seen as fine-grained.
MSR-Action3D [Li et al., 2010] dataset is comprised of 20 actions performed 2–3× by
10 different subjects and it has 567 action sequences. 3D coordinates of 20 body-joints
captured by a Kinect-like depth sensor are provided. MSR-Action3D has strong
inter-class similarity.

In the above datasets, we use the cross-subject test setting (unless stated other-
wise), in which half of the subjects are used for training and the remaining half
for testing. Similarly, we divide the training set into two halves for the purpose of
training/validation.
NTU-RGBD [Shahroudy et al., 2016a] is by far the largest 3D skeleton-based video
action recognition dataset. It has 56880 video sequences across 60 classes, 40 subjects,
and 80 views. The videos have on average 70 frames and consist of people performing
various actions. Each frame is annotated with 25 human skeletal keypoints (some
videos have multiple subjects). Two evaluation protocols are used for this dataset,
namely, cross-subject and cross-view evaluation. This dataset can be considered as
having many fine-grained classes e.g., make a phone call, playing with phone, punching
other person, pushing other person, pat on back of other person, etc.

§5.5 Experiments 103

Figure 5.6: Fine-grained action instances (MPII Cooking Activities [Rohrbach et al.,
2012]) from two different action categories: cut-in (left) and slicing (right).

MPII Cooking Activities [Rohrbach et al., 2012] dataset consists of high-resolution
videos of cooking activities/people cooking various dishes. There are 64 distinct
activities spread across 3748 video clips and one background activity (1861 clips). Ac-
tivities include coarse actions e.g., opening refrigerator, and fine-grained actions e.g., peel,
slice, cut apart (see Figure 5.6). This dataset is challenging due to (i) unbalanced action
classes, (ii) significant intra-class differences (each subject cooks according to their
own style). We use the mean Average Precision (mAP) over 7-fold cross-validation.
HMDB-51 [Kuehne et al., 2011] dataset is a popular video benchmark for human
action recognition, consisting of 6766 Internet videos over 51 classes. Each video
has about 20–1000 frames. We report the average classification accuracy on standard
three-fold splits.
Kinetics [Kay et al., 2017] contains ∼300000 clips from YouTube which cover 400 hu-
man action classes, ranging from daily activities, sports scenes, to complex interactions.
Each clip is ∼10 seconds long.

5.5.2 Experimental Setup

For our experiments, we distinguish four configurations: (i) for UTKinect-Action3D,
Florence3D-Action and MSR-Action3D that provide 3D body-joints, we feed sequences
of 3D body-joints to our kernel(s), (ii) for MPII Cooking Activities, HMDB-51 and
NTU-RGBD that provide RGB frames, we train a two-stream ResNet-152 model (as
in [Simonyan and Zisserman, 2014]) taking RGB frames (in the spatial stream) and a
stack of optical flow frames (in the temporal stream) as input to obtain classification
scores per frame per stream which are then passed to our kernel, (iii) for NTU-RGBD
which contains both 3D body-joints and RGB frames, we investigate both such inputs
separately as well as their combination, and (iv) for Kinetics, we use skeletons and
combine ST-GCN with SCK.

For the sequence compatibility kernel on sequences of 3D body-joints, we first
normalized all body-keypoints with respect to the hip joints across frames, as indicated
in Section 5.4.3. We also normalized lengths of all body-parts w.r.t. to a reference
skeleton. This setup follows pre-processing of [Vemulapalli et al., 2014]. For our
dynamics compatibility kernel, we use unnormalized body-joints and assume that
the displacements of body-joint coordinates across frames capture their temporal

104 Tensor Representations

evolution implicitly. For the sequence compatibility kernel on classifier scores, we
take the scores before they are passed through the logistic function and we apply a
rectifier.
CNN Training. To extract features with CNN, we train a two-stream ResNet-152
model [Simonyan and Zisserman, 2014] taking RGB frames (in the spatial stream) and
a stack of optical flow frames (in the temporal stream) from a given training split as
input. For optical flow, we use the Large Displacement Optical Flow (LDOF) [Brox
and Malik, 2011]. We use the classifier predictions from each stream as inputs to
our kernels. The two streams of the CNN are trained separately on the respective
input modalities against a softmax cross-entropy loss. We simply follow the standard
training protocols from [Simonyan and Zisserman, 2014]. For fine-tuning, we used a
fixed learning rate of 1e−4 and a momentum of 0.9. For the MPII Cooking Activities
dataset, we used the sequences from the training set for training the CNNs (1992
sequences) and those from the validation set (615 sequences) to check for overfitting.
For HMDB-51, we use three standard splits provided with the dataset. For NTU-
RGBD dataset in the cross-subject evaluation, the training and testing sets have 40320
and 16560 samples, respectively. For NTU-RGBD dataset in the cross-view evaluation,
the training and testing sets have 37920 and 18960 samples, respectively. We use
70% of the training set for training and 30% for validation. To train SVM, we simply
vectorize our tensors and set c=1e−2.

To stay competitive w.r.t. the state of the art, we additionally use two newer
backbones such as (i) Spatial Temporal Graph Convolutional Network (ST-GCN) [Yan
et al., 2018] and (ii) Two-Stream Inflated 3D ConvNet (I3D) [Carreira and Zisserman,
2017]. For ST-GCN, we train it on skeletal sequences from NTU and Kinetics [Kay et al.,
2017] datasets following the standard protocols. For Kinetics, we follow approach [Kay
et al., 2017] and use skeletons extracted with OpenPose [Cao et al., 2017]. Finally, we
combine our vectorized tensors from SCK or SCK⊕ with the output of the last layer of
ST-GCN preceding the classifier, and feed such a representation into the cross-entropy
loss. As SCK is a shallow approach, we expect it to be highly complementary with
ST-GCN. For I3D network, we train it on subsequences extracted from HMDB51 and
MPII. We use RGB and optical flow (LDOF) streams. We extract subsequences of
length 48, 64, 80, 96 given strides 1, 2 and 3. Then, subsequences shorter than 64 are
lapped. We put together all training subsequences of all lengths and all strides, and
we train RGB and LDOF I3D networks separately with a learning rate 1e−4 halved
every 10 epochs.
IDT Features. On HMDB-51 and MPII Cooking Activities, we also report accuracy
when our kernel is combined with dense trajectories [Wang et al., 2011] encoded by
Fisher Vectors [Perronnin et al., 2010].

5.5.3 Sequence compatibility kernel.

In this section, we first present experiments evaluating the influence of parameters
σ2 and σ3 of kernels Gσ2 and Gσ3 which control the degree of selectivity for the 3D
body-joints and the temporal shift invariance, respectively. See Section 5.4.3 for a full

§5.5 Experiments 105

σ

ac
cu

rr
ac

y
(%

)

0 0.5 1 1.5 2
80

82

84

86

88

90

92

94

σ
2
 (body−joints subker.)

σ
3
 (temporal subker.)

(a)

K

ac
cu

rr
ac

y
(%

)

2 4 6 8 10 12 14 16 18 20
92

92.2

92.4

92.6

92.8

93

Z
2
 (body−joints subker.)

Z
3
 (temporal subker.)

(b)

γ

ac
cu

ra
cy

 (
%

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
89

90

91

92

93

γ (SCK)

(c)

γ

ac
cu

rr
ac

y
(%

)

0.4 0.5 0.6 0.7 0.8 0.9 1
87

88

89

90

91

92

93

γ (DCK)

(d)

Figure 5.7: Figure 5.7a illustrates the classification accuracy on Florence3d-Action for
the sequence compatibility kernel when varying radii σ2 (body-joints subkernel) and
σ3 (temporal subkernel). Figure 5.7b evaluates behavior of SCK w.r.t. the number of
pivots Z2 and Z3. Figure 5.7c demonstrates effectiveness of our slice-wise Eigenvalue
Power Normalization in tackling burstiness by varying parameter γ. Figure 5.7d
shows effectiveness of equalizing the factors in non-symmetric tensor representation
by HOSVD Eigenvalue Power Normalization by varying γ.

definition of these parameters. Recall that kernels Gσ2 and Gσ3 are approximated via
linearizations according to Eq. (5.1) and (5.3). The quality of these approximations
and the size of our final tensor representations depend on the numbers Z2 and Z3 of
pivots chosen. See Section 5.3.2, Figure 5.3 and notes2,3 for details on pivots. In our
experiments, the pivots ζ are spaced uniformly within interval [−1; 1] and [0; 1] for
kernels Gσ2 and Gσ3 respectively.

Figures 5.7a and 5.7b present the results of this experiment on the Florence3D-
Action dataset. Figure 5.7a shows that the body-joint compatibility subkernel Gσ2

requires a choice of σ2, which is not too strict as specific body-joints (e.g., elbow) are
expected to repeat across sequences in similar locations due to zero-centering w.r.t.
hip. On the one hand, very small σ2 leads to poor generalization. On the other hand,
very large σ2 allows big displacements of the corresponding body-joints between
sequences which results in a poor discriminative power of this kernel. Furthermore,
Figure 5.7a demonstrates that the range of σ3 for the temporal subkernel for which
we obtain very good performance is large. However, as σ3 becomes very small or very

106 Tensor Representations

1
2

3

4

5

6

7

8

910

11

12

13

14

15

A B C D E
6,9 1,6,9 6,9,12,15 4,6,7,9,11,14 4,6,7,9,
F G H I 11,12,

4-15 1,4-15 1,2,4-15 1-15 14,15

(a)

joint config.

ac
cu

rr
ac

y
(%

)

A B C D E F G H I
88

89

90

91

92

93

(b)

Figure 5.8: Figure 5.8a enumerates the body-joints in the Florence3D-Action dataset.
The table below lists subsets A-I of the body-joints used to build representations eval.
in Figure 5.8b, which shows the accuracy of our dynamics compatibility kernel w.r.t.
these subsets.

large, extreme temporal selectivity or full temporal invariance, respectively, result in a
loss of performance. For instance, σ3=4 results in 91% accuracy only.

In Figure 5.7b, we show the performance of our SCK kernel with respect to the
number of pivots used for linearization. For the body-joint compatibility subkernel
Gσ2 , we see that Z2 = 5 pivots are sufficient to obtain good performance of 92.98%
accuracy. We have observed that this is consistent with the results on the validation set.
Using more pivots, say Z2=20, deteriorates the results slightly, suggesting overfitting.
We make similar observations for the temporal subkernel Gσ3 which demonstrates a
good performance for as few as Z3=2 pivots. Such a small number of pivots suggests
that linearizing 1D variables and generating higher-order co-occurrences, as described
in Section 5.4.3, constitute on a simple, robust, and effective linearization strategy.

Furthermore, Figure 5.7c demonstrates the effectiveness of our slice-wise Eigen-
value Power Normalization described in Eq. (5.14). When γ=1, the EPN functionality
is absent. This results in a drop of performance from 92.98% to 88.7% accuracy. This
demonstrates that statistically unpredictable bursts of actions described by body-joints,
such as long versus short hand waving, are indeed undesirable. It is clear that in such
cases, EPN is very effective, as it deals with correlated bursts, e.g. co-occurring hand
wave and associated with it elbow and neck motion. For more details regarding this
concept, see [Koniusz et al., 2016c]. For our further experiments, we choose σ2=0.6,
σ3=0.5, Z2=5, Z3=6, and γ=0.36, as dictated by cross-validation.

5.5.4 Dynamics compatibility kernel.

Below, we evaluate the influence of parameters of the DCK kernel. Our experiments
are based on the Florence3D-Action dataset. For ablations, we present results on
the test set as results on the validation set match test results closely. As this kernel
considers all spatio-temporal co-occurrences of body-joints, we firstly evaluate the

§5.5 Experiments 107

SCK DCK SCK+DCK

accuracy 92.98% 93.03% 92.77% 95.23%
size 26,565 9,450 16,920 43,485

SCK⊕ DCK⊕ SCK⊕ + DCK⊕
accuracy 96.50% 96.41% 97.45%

size 60,900 37,800 98,700

Bag-of-Poses 82.00% [Seidenari et al., 2013] Kendal Traj. 93.04% [Tanfous et al., 2018]
SE(3) 90.88% [Vemulapalli et al., 2014] Kernel+ResNet 95.4% [Tas and Koniusz, 2018]

Table 5.1: Evaluations of (top) SCK/DCK, (middle) our improved SCK⊕ / DCK⊕,
(bottom) the state of the art on Florence3D-Action.

SCK DCK SCK+DCK

accuracy 96.08% 97.5% 98.2%
size 40,480 16,920 57,400

SCK⊕ DCK⊕ SCK⊕ + DCK⊕
accuracy 98.50% 98.12% 99.2%

size 81,200 67,680 148,880

3D joints. hist. 90.92% [Xia et al., 2012] Kendal Traj. 97.39% [Tanfous et al., 2018]
SE(3) 97.08% [Vemulapalli et al., 2014] Second-order DA 98.9% [Tas and Koniusz, 2018]

Table 5.2: Evaluations of (top) SCK/DCK, (middle) our improved SCK⊕ / DCK⊕ and
(bottom) the state of the art on UTKinect-Action3D.

impact of the joint subsets we select for generating DCK, as not all body-joints need
to be used for capturing actions.

Figure 5.8a enumerates all body-joints that describe every 3D human skeleton
on the Florence3D-Action dataset, whereas the table underneath lists the proposed
body-joint subsets A-I which we use for computations of DCK. In Figure 5.8b, we
plot the performance of our DCK kernel for each subset. The plot shows that using
two body-joints associated with the hands from Configuration-A in the DCK kernel
construction, we attain 88.32% accuracy which highlights the informativeness of
temporal dynamics.

Some body-joints may be noisy and thus detrimental to recognition, and should not
be selected for experiments e.g., Configuration-D, which includes six body-joints
such as the knees, elbows and hands, yields 93.03%, which outperforms more
complex configurations.

As Configuration-E includes eight body-joints such as the feet, knees, elbows and
hands, we choose it for our further experiments as it represents a reasonable trade-off
between performance and size of representations. This configuration scores 92.77%

108 Tensor Representations

SCK DCK SCK+DCK

acc., prot. [Wang et al., 2012] 90.72% 86.30% 91.45%
acc., prot. [Li et al., 2010] 93.52% 91.71% 93.96%

size 40,480 16,920 57,400

SCK⊕ DCK⊕ SCK⊕ + DCK⊕
acc., prot. [Wang et al., 2012] 97.50% 90.03% 98.10%

acc., prot. [Li et al., 2010] 98.12% 94.28% 98.62%
size 81,200 67,680 148,880

accuracy, protocol [Wang et al., 2012] accuracy, protocol [Li et al., 2010]

Actionlets 88.20% [Wang et al., 2012] SE(3) 92.46% [Vemulapalli et al., 2014]
SE(3) 89.48% [Vemulapalli et al., 2014] Kendal Traj. 94.19% [Tanfous et al., 2018]
Kin. desc. 91.07% [Zanfir et al., 2013] Ker-RP-RBF 96.9% [Wang et al., 2015a]

Table 5.3: Results of (top) SCK/DCK, (middle) our improved SCK⊕ / DCK⊕ and
(bottom) the state of the art on MSR-Action3D.

accuracy. We see that if we utilize all the body-joints according to Configuration-I,
performance of 91.65% accuracy is still somewhat lower compared to 93.03% accuracy
for Configuration-D highlighting the issue of noisy body-joints.

In Figure 5.7d, we show the accuracy on our DCK kernel when HOSVD factors
underlying our non-symmetric tensors are equalized by varying the EPN parameter
γ. For γ=1, EPN is disabled, which leads to 90.49% accuracy only. For the optimal
value of γ = 0.85, the accuracy rises to 92.77% which indicates the presence of the
burstiness effect in temporal representations.

5.5.5 SCK and DCK vs. the state of the art.

Below, we compare the performance of our representations against the state of the
art. Along with comparing SCK and DCK, we also explore the complementarity of
these representations by combining them via the so-called late fusion, that is, a simple
weighted concatenation of vectorized SCK and DCK.

On the Florence3D-Action dataset, we present our best results in Table 5.1. Note
that the model parameters for the evaluation was selected by cross-validation. Lin-
earizing a sequence compatibility kernel using these parameters resulted in a tensor
representation of size 26, 565 dimensions4, and produced an accuracy of 92.98% accu-
racy. As for DCK, our model used Configuration-E (described in Figure 5.8a) resulting
in a representation of dimensionality 16, 920, and achieved a performance of 92%.
However, somewhat better results were attained by Configuration-D, that is, 92.27%
accuracy for size of 9, 450. Combining SCK and DCK in Configuration-E yields 95.23%
accuracy, a 4.5% improvement over the state of the art on this dataset, as listed in
Table 5.1, which highlights the complementary nature of SCK and DCK.

4This is the length of a vector per sequence after unfolding our tensor represent./removing duplicate
coefficients from the symmetries in the tensor.

§5.5 Experiments 109

cross-subject cross-view

SCK (r=2)on 3D body-joints

64.08% 65.24%
SCK (no EPN) 65.37% 67.18%

SCK 69.20% 70.55%
SCK⊕ 72.82% 74.10%

SCK{3D body-joints
+ST-GCN

82.61% 89.52%
SCK⊕ 83.58% 90.84%

cross-subject cross-view

Two-stream+AP (ResNet-50) 74.4% 83.3%
Two-stream+MP (ResNet-50) 65.8% 58.7%

SCK⊕ on RGB frames (ResNet-152) 90.11% 93.62%

SCK⊕
{3D body-joints

+ RGB (ResNet-152)
90.78% 94.15%

SCK⊕
{3D body-joints

+RGB+optical flow
(ResNet-152)

91.56% 94.75%

cross-subjectcross-view

Second-order DA [Tas and Koniusz, 2018] (ResNet-50) 75.35% 79.30%
Frames + CNN [Ke et al., 2017b] (VGG-19) 75.73% 79.62%
Clips + CNN + MTLN [Ke et al., 2017b] (VGG-19) 79.57% 84.83%
VA-LSTM [Zhang et al., 2017b] 79.4% 87.6%
ST-GCN [Yan et al., 2018] 81.5% 88.3%
DSP [Wang and Cherian, 2018] 81.6% 88.7%
Multi-scale CNN [Li et al., 2017a] (ResNet-101) 84.6% 92.1%
Multi-scale CNN [Li et al., 2017a] (ResNet-152) 85.0% 92.3%
Deep Bilinear [Hu et al., 2018] (ResNet-101) 85.4% 90.7%

Table 5.4: Results on our SCK and the improved SCK⊕ on (top) skeleton sequences
and (middle) two-stream networks. We also indicate results on the baseline two-stream
network with standard average pooling (AP) and maximum pooling (MP). We indicate
backbones in parentheses. (bottom) The state of the art on NTU-RGBD.

Action recognition results on the UTKinect-Action3D dataset are presented in
Table 5.2. For our experiments on this dataset, we kept all the parameters the same as
those used on the Florence3D dataset. SCK and DCK representations yielded 96.08%
and 97.5% accuracy, respectively. Combining SCK and DCK yielded 98.2% accuracy
outperforming marginally a more complex approach [Vemulapalli et al., 2014] based
on the Lie group algebra, dynamic time warping and Fourier temporal pyramids.

In Table 5.3, we present our results on the MSR-Action3D dataset. Conforming to
the prior literature, we use two evaluation protocols, that is, (i) the protocol described
in actionlets [Wang et al., 2012], for which the authors utilize the entire dataset with
its 20 classes during the training and evaluation, and (ii) approach of [Li et al., 2010],
for which the authors divide the data into three subsets and report the average in
classification accuracy over these subsets. SCK yields the state-of-the-art accuracy of

110 Tensor Representations

SCK+ST-GCN SCK⊕+ST-GCN ST-GCN

top-1 31.2% 31.8% 30.7%
top-5 53.7% 54.9% 52.8%

Table 5.5: SCK and SCK⊕ combined with ST-GCN vs. ST-GCN [Yan et al., 2018] alone
on Kinetics [Kay et al., 2017] skeletons extracted by OpenPose [Cao et al., 2017].

90.72% and 93.52% for the two evaluation protocols, respectively. Combining SCK
with DCK outperforms other approaches listed in the table and yields 91.45% and
93.96% accuracy for the two protocols, respectively.

5.5.6 SCK⊕ and DCK⊕ vs. the state of the art.

Our extended SCK⊕ is trained with 3Z2 =15, Z3 = Z4 =5 and Z5 =3 while DCK⊕
follows the same setting as DCK, except that we introduce quantity Z6=4 which is the
number of pivots encoding the subsequence position within the sequence, as dictated
by Eq. (5.28). For the Florence3D-Action dataset, Table 5.1 shows that aggregating
over subsequences across various scales results in SCK⊕ outperforming SCK by
∼3.5%, DCK⊕ outperforming DCK by ∼3.4% and the combined kernel SCK⊕ +
DCK⊕ outperforming SCK+DCK by ∼2.2%. Table 5.2 shows the similar trend
for the UTKinect-Action3D dataset, for which SCK⊕ outperforms SCK by ∼2.4%,
DCK⊕ outperforms DCK by ∼0.6% and the combined kernel SCK⊕ + DCK⊕
outperforms SCK+DCK by ∼1.0%. Note that the results on UTKinect-Action3D
should be considered as already saturated. Furthermore, Table 5.3 shows that on
MSR-Action3D, SCK⊕ outperforms SCK by ∼6.8%, DCK⊕ outperforms DCK by
∼3.7% and the combined kernel SCK⊕ + DCK⊕ outperforms SCK+DCK by ∼7.5%.
Fine-grained Action Recognition. In what follows, we employ NTU-RGBD, a
partially fine-grained dataset, and MPII Cooking Activities containing many fine-
grained classes.

Our SCK⊕ kernel is designed to capture specific subsequences of variable lengths.
Kernels Gσ2 , ..., Gσ5 from Section 5.4.5 capture higher-order statistics of joint locations
in subsequences, the temporal alignment of pose snippets, the global alignment
of subsequences, and the match of subsequence lengths. SCK⊕ uses EPN in Eq.
(5.15-5.18) which makes it act as a detector of spectral higher-order occurrences.
Thus, SCK⊕ addresses all hallmarks of modern fine-grained recognition systems:
it captures higher-order statistics describing visual contents/objects and discarding
burstiness [Koniusz et al., 2018b] (co-occurrence detection).

Moreover, our SCK⊕ kernel captures higher-order occurrences of features rep-
resenting spatio-temporal evolution of skeletons (for 3D body-joints) and/or frame-
based classifier scores (semantic information) by feeding them into kernels G

σ
(1)
2

, ..., G
σ
(Q)
2

from Eq. (5.23) for Q modalities.
Table 5.4 (top) shows that, our SCK⊕ yields some ∼3.6% improvement over SCK

and reaches 72.82% accuracy on the NTU-RGBD dataset in the cross- subject setting

§5.5 Experiments 111

- +IDT +sec-ord
+sec-ord

+IDT

Two-stream+AP (VGG-19) 38.1% - - -
Two-stream+AP (ResNet-152) 45.3% - - -
Subsequences+AP (I3D) 52.7% - - -
HOK [Cherian et al., 2017b] (VGG-16) 60.1% - 69.1% 73.1%
SCK⊕ (VGG-19) 70.1% - 74.0% 76.1%
SCK⊕ (ResNet-152) 71.4% - 75.5% 77.4%
SCK⊕ (I3D) 77.8% 80.4% - -

KRP-FS 70.0% [Cherian et al., 2018] (VGG-19)KRP-FS+IDT 76.1% [Cherian et al., 2018] (VGG-19)
GRP 68.4% [Cherian et al., 2017a] (VGG-19) GRP+IDT 75.5% [Cherian et al., 2017a] (VGG-19)

Table 5.6: Results (mAP%) for (top) our HOK [Cherian et al., 2017b] and improved
SCK⊕. We also indicate results on the baseline two-stream network with standard
average pooling (AP). We indicate backbones in parentheses. (bottom) The state of the
art on MPII Cooking Activities.

sp1 sp2 sp3 mean acc.

Two-stream+AP (ResNet-152) 65.30%62.20%62.55% 63.35%
Two-stream+MP (ResNet-152)61.38%60.58%60.06% 60.66%
SCK⊕ (ResNet-152) 72.55%70.85%71.63% 71.67%
SCK⊕ (ResNet-152)+IDT 74.20%73.73%73.40% 73.77%
SCK⊕(r=2) (I3D)+IDT 85.61%84.54%85.25% 85.13%
SCK⊕ (I3D)+IDT 86.31%85.63%86.41% 86.11%

DSP 72.4% [Wang and Cherian, 2018] (ResNet-152) ShuttleNet+MIF 71.08% [Shi et al., 2017]
DSP+IDT 74.3% [Wang and Cherian, 2018] (ResNet-152)I3D 80.2% [Carreira and Zisserman, 2017]

Table 5.7: Evaluations of (top) our improved SCK⊕. We also indicate results on
baseline two-stream network with standard average pooling (AP) and maximum
pooling (MP). We indicate backbones in parentheses. (bottom) The state of the art on
HMDB-51.

for the 3D body-joints as input. We expect that aggregating over subsequences can
encode local fine-grained motion details essential for the good performance. Similar
observations hold for the cross-view setting.

Table 5.4 (middle) shows that our SCK⊕ attains 90.11% accuracy on the NTU-
RGBD dataset in the cross- subject setting on the RGB frames (classifier scores) as
input. With the 3D body-joints added, results increase to 90.78%. Lastly, adding
optical flow as input to our SCK⊕ yields 91.56%. This is ∼ 10.0% improvement over
competing methods from Table 5.4 (bottom).

Table 5.6 shows that our SCK⊕ yields some 1.4% mAP improvement over other
state-of-the-art methods [Cherian et al., 2017a, 2018] on the MPII Cooking Activities
dataset. Further improvements are attained by combining SCK⊕ with the second-
order descriptor (sec-ord) [Cherian et al., 2018] and the IDT representation, which
yields 77.4% mAP. This compares favorably with other methods in the table. We also

112 Tensor Representations

note that SCK⊕ outperforms the HOK descriptor [Cherian et al., 2017b] which is a
variant of SCK with a suboptimal linearization of an fc layer. Finally, applying SCK⊕
over I3D-based subsequences yields state-of-the-art 80.4% mAP (we comment on the
reasons below).

Video Classification. Table 5.4 confirms that the classifier scores extracted from
CNNs rather than mere 3D body-joints are a more informative input for SCK⊕. Thus,
we perform additional evaluations on the HMDB-51 dataset. Table 5.7 (top) shows
that SCK⊕ and SCK⊕+IDT, trained with the two-stream ResNet-152 backbone, score
71.67 and 73.77% accuracy which is on a par with other best methods listed in Table 5.7
(bottom). Furthermore, applying the I3D backbone on SCK⊕ yields state-of-the-art
86.11% accuracy. We believe that training I3D on subsequences of various lengths
and strides, as detailed in Section 5.5.2 (bottom), is a more discriminative strategy
than average-pooling of frame-wise features in standard two-stream networks. As
SCK⊕ is designed to combine subsequences of various lengths and strides rather
than sequences, it captures informative higher-order occurrences of multiple comple-
mentary features, and also preserves a degree of individual statistics by factoring out
one variable at a time e.g., see the discussion in Figure 5.3.

Kinetics-400. Table 5.5 shows that our SCK and SCK⊕ are complementary to
powerful networks such as ST-GCN [Yan et al., 2018]. We work with Kinetics skeletons
extracted with [Cao et al., 2017] and compare our method to the baseline ST-GCN
[Yan et al., 2018]. We use the standard training/evaluation protocol (but we use
skeletons rather than RGB or optical flow frames). As SCK and SCK⊕ are shallow
representations based on higher-order aggregation, it is unrealistic to expect them to
outperform deep networks. However, SCK and SCK⊕ capture very different statistics
compared to deep networks, being highly complementary. Table 5.5 shows that we
attain 1.1% and 2.1% gain over ST-GCN alone by concatenating both representations.

Signature Lengths. Section 5.5.6 indicates the number of pivots for SCK⊕ on NTU
(skeleton-based experiments) to amount to d=3Z2+Z3+Z4+Z5 =15+5+5+3=28.
The unique number of coefficients in the super-symmetric tensor of order r follows
the formula (d+r−1

r) discussed just below Eq. (5.11). As we obtain a tensor per joint,
and we concatenate unique parts of tensors j=1, ..., J, we have (d+r−1

r)· J coefficients
in total in our representation. For SCK⊕ on NTU with J = 25 body joints, we
obtain 4060×25 = 101500 coefficients for SCK⊕. For SCK and SCK (r = 2) on
NTU, we set d = 3Z2+Z3 = 24+5 = 29 and obtain 112375 and 10875 coefficients,
respectively. For Kinetics skeletons with J =18 body joints, OpenPose returns only
two Cartesian coordinates, so we set d=2Z2+Z3+Z4+Z5 =20+5+5+3=33 which
yields 4545×18=117810 coefficients.

For SCK⊕ (NTU) on (i) RGB frames and (ii) RGB frames+optical flow, we obtain
d= Z2+Z3+Z4+Z5 = 60+5+5+3= 73 and d= 2Z2+Z3+Z4+Z5 = 73 (for the latter
case, we reduce the size of vector of classifier scores 2× by the PCA). As we do
not use any body joints here, we obtain 67525 coefficients. When we concatenate
these representations with the skeleton-based one, we obtain 67525+101500=169025
coefficients per video.

§5.6 Linearizing Dynamics Compatibility Kernel 113

On SCK⊕ given MPII and HMDB-51 datasets, we obtain 171700 and 125580
coefficients after reducing the size of vectors of RGB frame-wise and optical flow
classifier scores from 2×64 to 100 and from 2×51 to 90, respectively.
Parameters in SCK⊕. The main parameters shared between SCK and SCK⊕ are
evaluated in Figures 5.7 and 5.8. The parameters for SCK⊕ that we start with are
indicated in Section 5.4.5 (bottom). To select the best parameters, we cross-validate
one parameter at a time while keeping the rest fixed. For NTU, we aggregated over
subsequence lengths (using the Matlab notation) of 14 :1 :110, 14 :2 :110, 14 :4 :110 and
14 :6 :110, and we obtained 73.10%, 72.82%, 72.41% and 71.65% accuracy, respectively.
For subsequence lengths 30 : 2 : 110 and 30 : 2 : 80, we obtained 72.54% and 72.12%
accuracy. These evaluations show that SCK⊕ is not overly sensitive to its parameters.
For smaller skeleton-based datasets, we aggregate subsequences in range 6 : 2 : 24,
whereas on HMDB-51 we use 6 :8 :62, and for MPII we use 48 :16 :96.
Processing Time. For SCK/DCK, processing a sequence with unoptimized MATLAB
code on a single i5 core takes 0.2s and 1.2s, respectively. For SCK⊕ / DCK⊕,
processing one sequence takes 0.5s and 3.0s. Training on full MSR-Action3D with the
SCK+DCK takes about 13 min, whereas with the SCK⊕ + DCK⊕, it takes about 35
min. In comparison, extracting SE(3) features [Vemulapalli et al., 2014] takes 5.3s per
sequence, processing on the full MSR-Action3D dataset takes ∼50 min., whereas with
post-processing (time warping and Fourier pyramids) it takes about 72 min. Thus,
SCK+DCK is ∼5.4× faster while SCK⊕ + DCK⊕ is ∼2× faster. Section 5.8 contains
the computational complexity analysis.

5.6 Linearizing Dynamics Compatibility Kernel

In what follows, we derive the linearization of DCK. Let us recall that Gσ(u − ū) =
exp(−∥u − ū∥2

2 /2σ2), G′
σ(α, β) = Gσ(α)Gσ(β) and Gσ(i − j) = δ(i − j) if σ → 0,

therefore δ(0) = 1 and δ(u) = 0 if u ̸= 0. Moreover, Λ = J2 is a normalization
constant and J = IJ × IN . We recall that kernel Gσ′

2
(x − y) ≈ ϕ(x)Tϕ(y) while

Gσ′
3
(s−t

N) ≈ z(s/N)Tz(t/N). Thus, we obtain Eq. (5.29) which expresses KD(ΠA, ΠB)
as a sum over dot-products on third-order non-symmetric tensors. We introduce
operator G into Eq. (5.29) to amend the dot-product with a distance which handles
burstiness. We obtain a modified kernel in Eq. (5.30) based on which the following
notation is introduced:

V ii′=G(X ii′), where (5.31)

X ii′=
1√
Λ

∑
s,s′∈IN:

s′̸=s

Gσ′
4
(s−s′)

(
ϕ(xis−xi′s′)·z

(s
N
)T
)
↑⊗ z

(s′

N
)
,

and the summation over the pairs of body-joints in Eq. (5.30) is replaced by the
concatenation along the fourth mode to obtain representations

[
V ii′
]⊕4

i>i′: i,i′∈IJ
and[

V̄ ii′
]⊕4

i>i′: i,i′∈IJ
for ΠA and ΠB. Thus, K∗

D becomes:

114 Tensor Representations

0 1e−3 2e−3 3e−3 4e−3
0

E ∼ Beta(α=1, β=3)

co
u
n
t

(a) Initial spectral dist.

0 0.25 0.5 0.75 1.0

400

1 − (1 − E)η

0 0.25 0.5 0.75 1.0

400

1 − (1 − E)η

co
u
n
t

MaxExp η=900

MaxExp η=5000

(b) Pushforward (MaxExp)

0 0.25 0.5 0.75 1.0

400

Eγ

0 0.25 0.5 0.75 1.0

400

Eγ

co
u
n
t

Gamma γ=0.1

Gamma γ=0.01

(c) Pushforward (Gamma)

0

1

pi/4 pi/2pi/400

0

1

pi/4 pi/2pi/400

0

1

pi/2pi/4 pi/400

(d) Spectral detectors

Figure 5.9: The intuitive principle of the EPN. Given a discrete spectrum following
a Beta distribution in Fig. 5.9a, the pushforward measures by MaxExp and Gamma
in Fig. 5.9b and 5.9c are very similar for large η (and small γ). Note that both EPN
functions in bottom plots whiten the spectrum (map most values to be close to 1)
thus removing burstiness. Fig. 5.9d illustrates the principle of detecting higher-
order occurrence(s) in one of (Z∗

r) subspaces represented by Eu,v,w (we write E for
simplicity). Fig. 5.9d (top) No EPN: E(θ, α), (middle) MaxExp: 1−(1−E(θ, α))η and
(bottom) Gamma: E(θ, α)γ. Note how MaxExp/Gamma reach high detection values
close to borders. Refer Section 5.9 for def. of E(θ, α).

K∗
D(ΠA, ΠB) =

〈√
2
[
V ii′
]⊕4

i>i′: i,i′∈IJ
,
√

2
[
V̄ ii′
]⊕4

i>i′: i,i′∈IJ

〉
(5.32)

As Eq. (5.32) suggests, we avoid repeating the same evaluations in our representa-
tions: we stack only unique pairs of body-joints i> i′. Moreover, we ensure we run
computations temporally only for s > s′. In practice, we have to evaluate only (JN

2)
unique spatio-temporal pairs in Eq. (5.32) rather than naive J2N2 per sequence. The
final representation is of Z′

2·(JZ′
3

2) size, where Z′
2 and Z′

3 are the numbers of pivots for
approximation of Gσ′

2
and Gσ′

3
.

We assume that all sequences have N frames for simplification of presentation.
Our formulations are equally applicable to sequences of arbitrary lengths e.g., M and
N. Thus, we apply in practice G′

σ′
3
(s

M− t
N , s′

M− t′
N) and Λ= J2MN in Eq. (5.29).

Moreover, a displacement between any pair of joints x, y ∈ R3 lies within the

§5.7 Positive Definiteness of SCK and DCK 115

Cartesian coordinate system, thus x−y∈R3. In practice, in place of generic Gσ′
2
, we

use the sum kernel G
′
σ′

2
(x−y) = Gσ′

2
(x1−y1)+Gσ′

2
(x2−y2)+Gσ′

2
(x3−y3) so the kernel

G
′
σ′

2
(x−y) ≈ [ϕ(x1); ϕ(x2); ϕ(x3)]T[ϕ(y1); ϕ(y2); ϕ(y3)]. However, for the simplicity of

notation, we refer to it in our formulations by its generic form Gσ′
2
(x−y)≈ϕ(x)Tϕ(y),

as we can simply define ϕ(x)= [ϕ(x1); ϕ(x2); ϕ(x3)].

5.7 Positive Definiteness of SCK and DCK

SCK/DCK are sums over products of RBF subkernels. According to [Shawe-Taylor and
Cristianini, 2004], sums, products and linear combinations (for non-negative weights)
of positive definite kernels yield positive definite kernels. Moreover, subkernel
Gσ′

2

(
(xis−xi′s′)−

(
yjt − yj′t′

))
employed by DCK in Eq. (5.29) (top) can be rewritten as:

Gσ′
2

(
zisi′s′−z′jtj′t′

)
, (5.33)

where zisi′s′ =xis−xi′s′ and z′jtj′t′ =yjt − yj′t′ .

The RBF kernel Gσ′
2

is positive definite (PD) by definition and the mappings from
xis and xi′s′ to zisi′s′ and from yjt and yj′t′ to z′jtj′t′ , respectively, are unique. Thus, the
entire kernel is PD.

Whitening on SCK results in a positive (semi)definite (PSD) kernel as we employ
the Power-Euclidean kernel e.g., if X is PD then Xγ stays also PD for 0 < γ ≤ 1
because Xγ =UλγV and element-wise rising of eigenvalues to the power of γ gives
us daig(λ)γ ≥0. Thus, the sum over dot-products of positive (semi)definite matrices
raised to the power of γ stays PSD/PD.

5.8 Computational Complexity

Non-linearized SCK with ker. SVM have complexity O(JN2Tρ) given J body joints, N
frames per sequence, T sequences, and 2<ρ<3 which concerns complexity of kernel
SVM. Linearized SCK with linear SVM takes O(JNTZr

∗) for total of Z∗ pivots and
tensor of order r=3. Note that N2Tρ ≫NTZr

∗. For N=50 and Z∗=20, this is 3.5× (or
32×) faster than the exact kernel for T=557 (or T=5000) used in our experiments.

Non-linearized DCK+kernel SVM enjoys O(J2N4Tρ) complexity. Linearized
DCK+SVM enjoys O(J2N2TZ3) for Z pivots per kernel, e.g. Z = Z2 = Z3 given
Gσ′

2
and Gσ′

3
. As N4Tρ ≫ N2TZ3, the linearization is 11000× faster than the exact

kernel, for say Z=5. Slice-wise EPN applied to SCK has negligible cost O(JTZω+1
∗),

where 2<ω< 2.376 concerns complexity of eigenvalue decomposition applied per
tensor slice.

Note that EPN incurs negligible cost (see [Koniusz et al., 2016b] for details). EPN
applied to DCK utilizes HOSVD and results in complexity O(J2TZ4). As HOSVD
is performed by truncated SVD on matrices obtained from unfolding V ii′ ∈ RZ×Z×Z

116 Tensor Representations

along a chosen mode, O(Z4) represents the complexity of truncated SVD on matrices
Vii′ ∈ RZ×Z2

which have rank less than or equal Z.

Linearized SCK⊕ with linear SVM also takes O(JNTZr
∗) for a total of Z∗. However,

Z∗=3Z2+Z3+Z4+Z5 thus Z∗=28. The linearized DCK⊕ takes O(J2N2TZ3Z6) where
Z6=4 in our experiments. EPN applied to SCK⊕ and DCK⊕ results in complexity
O(JTZ2(r−1)

∗) and O(J2TZ4Z6).

5.9 What is (Tensor) Eigenvalue Power Normalization?

Below, we show that EPN in fact retrieves factors which quantify whether there is
at least one datapoint ϕ(xn) from n ∈ IN projected into each subspace spanned by
r-tuples of eigenvectors from matrices A1 = A2 = ...= Ar. For brevity, assume order
r=3, a super-symmetric case, and a 3-tuple of eigenvectors u, v, and w from A. Note
that u⊥v, v⊥w and u⊥w. Moreover, note that if we have Z∗ unique eigenvectors,
we can enumerate (Z∗

r) r-tuples and thus (Z∗
r) subspaces Rr ⊂ RZ∗ . For brevity, let

||ϕ(x)||2=1 and ϕ(x)≥0. Also, we write ϕn instead of ϕ(x) for n∈IN . Next, let us
write our super-symmetric tensor as:

X =
1
N ∑

n∈IN

↑⊗r ϕn, (5.34)

and the ‘diagonalization’ of X w.r.t. by eigenvec. u, v, and w as:

Eu,v,w = ((X ⊗1u) ⊗1v)⊗3w, (5.35)

where Eu,v,w is a coefficient from the core tensor E for eigenvectors u, v, and w. Now,
we combine Eq. 5.34 and 5.35 and obtain:

Eu,v,w =

(((1
N ∑

n∈IN

↑⊗3 ϕn
)
⊗1u

)
⊗2v

)
⊗3w

=
1
N ∑

n∈IN

⟨ϕn, u⟩ ⟨ϕn, v⟩ ⟨ϕn, w⟩ (5.36)

We assume ϕn is projected into subspace spanned by u, v and w when ψ′
n =

⟨ϕn, u⟩ ⟨ϕn, v⟩ ⟨ϕn, w⟩ is maximized. As our u, v, and w are orthogonal w.r.t. each
other and ||ϕn||2 = 1, simple Lagrange eq. L=Πr

i=1eT
i ϕn+λ(||ϕn||22−1) yields max-

imum of κ = (1/
√

r)r at ϕn = [(1/
√

r), ..., (1/
√

r)]T. For each n ∈ IN , we store
ψn =ψ′

n/κ in vector ψ.

§5.9 What is (Tensor) Eigenvalue Power Normalization? 117

Assume that ψ∈{0, 1}N stores N outcomes of drawing from Bernoulli distribution
under the i.i.d. assumption for which the probability p of an event (ψn = 1) and
1−p for (ψn = 0) is estimated as an expected value, p= avgn ψn (even if 0≤ψ≤ 1
in reality). Then the probability of at least one projection event (ψn = 1) into the
subspace spanned by r-tuples in N trials becomes:

Êu,v,w =1−(1−p)N = 1−
(

1−Eu,v,w

κ

)N
≈
(Eu,v,w

κ

)γ

. (5.37)

Thus, each of (Z∗
r) subspaces spanned by r-tuples acts as a detector of projections

into this subspace. The middle part of Eq. (5.37) (so-called MaxExp pooling) and
its connection to the right-hand part of Eq. (5.37) (so-called Gamma) are detailed
in [Koniusz et al., 2018b]. In fact, our ψ can be negative so extending Eq. (5.37) to

Sgn(Eu,v,w)
(

1−(1− |Eu,v,w|
κ)N+η

)
makes our model a detector of asymmetry between

projections into ‘positive’ and ‘negative’ parts of each subspace, and η compensates
for non-binary ψ.

Figure 5.9 illustrates that MaxExp and Gamma are in fact very similar. Figure
5.9a shows an initial Beta distribution of spectrum. Figures 5.9b and 5.9c (bottom)
show that for sufficiently large parameters η and γ, both MaxExp and Gamma shift
most of the distribution values to be approximately equal 1. Figure 5.9c illustrates
the effect of EPN on eigenvalue Eu,v,w (denoted as E for simplicity) representing a
single subspace spanned by eigenvectors u, v, w such that u⊥v, v⊥w and u⊥w. As
a single projection into the subspace is defined as ψn = ⟨ϕn, u⟩ ⟨ϕn, v⟩ ⟨ϕn, w⟩ /κ, we
note this is the product of three projections of ϕn onto u, v, w, respectively, measured
by the cosine (dot-product). Thus, we parametrize such a projection by the spherical
coordinates, that is:

πu(θ, α)=cos(θ)·sin(α), πv(θ, α)=sin(θ)·sin(α),

πu(α)=cos(α), (5.38)

where the azimuthal coordinate θ runs from 0 to 2π and the polar coordinate α runs
from 0 to π. We rewrite the projection as:

πu,v,w(θ, α)=πu(θ, α)·πv(θ, α)·πw(α)/κ. (5.39)

We note that πu,v,w(θ, α) and ψn are isomorphic as ||ϕn||2=1, thus it suffices to note
Eu,v,w ∼πu,v,w(θ, α) and show the EPN pushforward output of E to understand how
EPN behaves around the boundaries of the spanning vectors u, v, w. Figure 5.9d (top)
shows that E by itself has a weak response in the proximity of the spanning vectors
u, v, w. However, MaxExp and Gamma in Figures 5.9d middle and bottom manage to
boost projections in the proximity of the spanning vectors in the similar manner to
each other, both behaving like spectral detectors.

To conclude, let us consider the dot-product between Power Normalized tensors
X and Y computed according to Eq. (5.15-5.17). Then:

118 Tensor Representations

〈
V̂(X), V̂(Y)

〉
=

〈
∑

u∈U(X)
v∈V(X)

w∈W(X)

Êu,v,wuvT↑⊗w, ∑
u′∈U(Y)
v′∈V(Y)

w′∈W(Y)

Ê ′
u′,v′,w′u′v′T↑⊗w′

〉

= ∑
u∈U(X)
v∈V(X)

w∈W(X)

∑
u′∈U(Y)
v′∈V(Y)

w′∈W(Y)

Êu,v,w Ê ′
u′,v′,w′

〈
u, u′〉 〈v, v′〉 〈w, w′〉 .

(5.40)

Eq.(5.40) shows that all subspaces of X and Y spanned by r-tuples (3-tuples in this
example) are compared against each other for alignment by the cosine distance. When
two subspaces [u v w]T and [u′ v′ w′]T are aligned, for a strong similarity between
these subspaces, a detection of at least one ϕn and ϕ′

n evidenced by Êu,v,w and
Ê ′

u′,v′,w′ is also needed. We term Eq. (5.40) together with Eq. (5.15-5.17) as Tensor
Power Euclidean dot-product which has the associated Tensor Power Euclidean metric
||X−Y ||T = ||V̂(X)− V̂(Y)||F.

5.10 Conclusions

We have presented two kernel-based tensor representations, namely the sequence
compatibility kernel (SCK) and dynamics compatibility kernel (DCK). SCK captures
the higher-order correlations between 3D coordinates of the body-joints and their
temporal variations. As SCK factors out the temporal variable, expensive Fourier
temporal pyramid matching/dynamic time warping are not needed. Further, our DCK
kernel captures the action dynamics by modeling the spatio-temporal co-occurrences
of the body-joints.

Additionally, we have presented a highly effective extension of SCK, termed
SCK⊕, which aggregates over subsequences of multiple lengths, focusing on actions
within subsequences. We have demonstrated that SCK⊕ can aggregate over 3D
body-joints and/or frame-wise classifier scores from CNNs to capture higher-order
statistics between various features extracted from body-skeletons, classifier scores,
and temporal positions.

Section 5.9 shows that (Tensor) Eigenvalue Power Normalization indeed acts as a
spectrum-based metric with (Z∗

r) subspace-based detectors of higher-order occur-
rence of datapoints of dim. Z∗, more specifically, detectors that capture asymmetry
of projections into ‘positive’ and ‘negative’ parts of each subspace. As (Z∗

3)≫ (Z∗
2),

third-order tensors capture more dependencies than autocorrelation matrices, im-
proving fine-grained systems.

Chapter 6

3Mformer: Multi-order Multi-mode
Transformer

Many skeletal action recognition models use GCNs to represent the human body
by 3D body joints connected body parts. GCNs aggregate one- or few-hop graph
neighbourhoods, and ignore the dependency between not linked body joints. We
propose to form hypergraph to model hyper-edges between graph nodes (e.g., third-
and fourth-order hyper-edges capture three and four nodes) which help capture
higher-order motion patterns of groups of body joints. We split action sequences
into temporal blocks, Higher-order Transformer (HoT) produces embeddings of
each temporal block based on (i) the body joints, (ii) pairwise links of body joints
and (iii) higher-order hyper-edges of skeleton body joints. We combine such HoT
embeddings of hyper-edges of orders 1, ..., r by a novel Multi-order Multi-mode
Transformer (3Mformer) with two modules whose order can be exchanged to achieve
coupled-mode attention on coupled-mode tokens based on ‘channel-temporal block’,
‘order-channel-body joint’, ‘channel-hyper-edge (any order)’ and ‘channel-only’ pairs.
The first module, called Multi-order Pooling (MP), additionally learns weighted
aggregation along the hyper-edge mode, whereas the second module, Temporal
block Pooling (TP), aggregates along the temporal block1 mode. Our end-to-end
trainable network yields state-of-the-art results compared to GCN-, transformer- and
hypergraph-based counterparts.

6.1 Introduction

Action Recognition has applications in video surveillance, human-computer interac-
tion, sports analysis, and virtual reality [Wang, 2017; Wang et al., 2019c,b,d; Koniusz
et al., 2020, 2021; Wang and Koniusz, 2021; Wang et al., 2021b; Qin et al., 2022; Wang
and Koniusz, 2022b,a]. Different from video-based methods which mainly focus
on modeling the spatio-temporal representations from RGB frames and/or optical
flow [Wang, 2017; Wang et al., 2019c,b,d; Wang and Koniusz, 2021; Koniusz et al.,
2021], skeleton sequences, representing a spatio-temporal evolution of 3D body joints,
have been proven robust against sensor noises and effective in action recognition

1For brevity, we write τ temporal blocks per sequence but τ varies.

119

120 3Mformer: Multi-order Multi-mode Transformer

while being computationally and storage efficient [Wang, 2017; Wang et al., 2019b;
Koniusz et al., 2020; Wang et al., 2021b; Qin et al., 2022; Wang and Koniusz, 2022b,a].
The skeleton data is usually obtained by either localization of 2D/3D coordinates of
human body joints with the depth sensors or pose estimation algorithms applied to
videos [Cao et al., 2017]. Skeleton sequences enjoy (i) simple structural connectivity
of skeletal graph and (ii) temporal continuity of 3D body joints evolving in time.
While temporal evolution of each body joint is highly informative, embeddings of
separate body joints are insensitive to relations between body parts. Moreover, while
the links between adjacent 3D body joints (following the structural connectivity) are
very informative as they model relations, these links represent highly correlated nodes
in the sense of their temporal evolution. Thus, modeling larger groups of 3D body
joints as hyper-edges can capture more complex spatio-temporal motion dynamics.

The existing graph-based models mainly differ by how they handle temporal
information. Graph Neural Network (GNN) may encode spatial neighborhood of
the node followed by aggregation by LSTM [Si et al., 2019; Zhang et al., 2019b].
Alternatively, Graph Convolutional Network (GCN) may perform spatio-temporal
convolution in the neighborhood of each node [Yan et al., 2018]. Spatial GCNs perform
convolution within one or two hop distance of each node, e.g., spatio-temporal GCN
model called ST-GCN [Yan et al., 2018] models spatio-temporal vicinity of each
3D body joint. As ST-GCN applies convolution along structural connections (links
between body joints), structurally distant joints, which may cover key patterns of
actions, are largely ignored. ST-GCN captures ever larger neighborhoods as layers are
added but suffers from oversmoothing that can be mitigated by linear GCNs [Zhu
and Koniusz, 2021c; Zhu et al., 2021a,a].

Human actions are associated with interaction groups of skeletal joints, e.g., wrist
alone, head-wrist, head-wrist-ankles, etc. The impact of these groups of joints on each
action differs, and the degree of influence of each joint should be learned. Accordingly,
designing a better model for skeleton data is vital given the topology of skeleton
graph is suboptimal. While GCN can be applied to a fully-connected graph (i.e., 3D
body joints as densely connected graph nodes), Higher-order Transformer (HoT) [Kim
et al., 2021] has been proven more efficient.

Thus, we propose to use hypergraphs with hyper-edges of order 1 to r to effectively
represent skeleton data for action recognition. Compared to GCNs, our encoder
contains an MLP followed by three HoT branches that encode first-, second- and
higher-order hyper-edges, i.e., set of body joints, edges between pairs of nodes, hyper-
edges between triplets of nodes, etc. Each branch has its own learnable parameters,
and processes temporal blocks2 one-by-one.

We notice that (i) the number of hyper-edges of J joints grows rapidly with order
r, i.e., (J

i) for i = 1, ..., r, embeddings of the highest order dominate lower orders in
terms of volume if such embeddings are merely concatenated, and (ii) long-range
temporal dependencies of feature maps are insufficiently explored, as sequences are
split into τ temporal blocks for computational tractability.

2Each temporal block enjoys a locally factored out (removed) temporal mode, which makes each
block representation compact.

§6.2 Related Work 121

Merely concatenating outputs of HoT branches of orders 1 to r, and across τ blocks,
is sub-optimal. Thus, our Multi-order Multi-mode Transformer (3Mformer) with two
modules whose order can be exchanged, realizes a variation of coupled-mode tokens
based on ‘channel-temporal block’, ‘order-channel-body joint’, ‘channel-hyper-edge
(any order)’ and ‘channel-only’ pairs. As HoT operates block-by-block, ‘channel-
temporal block’ tokens and weighted hyper-edge aggregation in Multi-order Pooling
(MP) help combine information flow block-wise. Various coupled-mode tokens help
improve results further due to different focus of each attention mechanism. As
the block-temporal mode needs to be aggregated (number of blocks varies across
sequences), Temporal block Pooling (TP) can use rank pooling [Fernando et al., 2017],
second-order [Lin et al., 2018; Zilin et al., 2019; Wang et al., 2018a; Girdhar and
Ramanan, 2017; Zhang et al., 2020d; Koniusz and Zhang, 2020; Rahman et al., 2023]
or higher-order pooling [Cherian et al., 2017b; Koniusz et al., 2021, 2020; Zhang et al.,
2022d,c].

In summary, our main contributions are listed as follows:

i. We model the skeleton data as hypergraph of orders 1 to r (set, graph and/or
hypergraph), where human body joints serve as nodes. Higher-order Transformer
embeddings of such formed hyper-edges represent various groups of 3D body
joints and capture various higher-order dynamics important for action recognition.

ii. As HoT embeddings represent individual hyper-edge order and block, we intro-
duce a novel Multi-order Multi-mode Transformer (3Mformer) with two mod-
ules, Multi-order Pooling and Temporal block Pooling. Their goal is to form
coupled-mode tokens such as ‘channel-temporal block’, ‘order-channel-body joint’,
‘channel-hyper-edge (any order)’ and ‘channel-only’, and perform weighted hyper-
edge aggregation and temporal block aggregation.

Our 3Mformer outperforms other GCN- and hypergraph-based models on NTU-60,
NTU-120, Kinetics-Skeleton and Northwestern-UCLA by a large margin.

6.2 Related Work

Below we describe popular action recognition models for skeletal data.

Graph-based models. Popular GCN-based models include the Attention enhanced
Graph Convolutional LSTM network (AGC-LSTM) [Si et al., 2019], the Actional-
Structural GCN (AS-GCN) [Li et al., 2019], Dynamic Directed GCN (DDGCN) [Korban
and Li, 2020], Decoupling GCN with DropGraph module [Cheng et al., 2020a],
Shift-GCN [Cheng et al., 2020b], Semantics-Guided Neural Networks (SGN) [Zhang
et al., 2020c], AdaSGN [Shi et al., 2021a], Context Aware GCN (CA-GCN) [Zhang
et al., 2020e], Channel-wise Topology Refinement Graph Convolution Network (CTR-
GCN) [Chen et al., 2021b] and a family of Efficient GCN (EfficientGCN-Bx) [Song et al.,
2022]. Although GCN-based models enjoy good performance, they have shortcomings,
e.g., convolution and/or pooling are applied over one- or few-hop neighborhoods, e.g.,

122 3Mformer: Multi-order Multi-mode Transformer

ReLU ReLU

block 1

Sequence
of blocks

block

Encoding Network Multi-order Multi-mode Transformer (3Mformer)

MP

TP

TP

MP

classify

CmSA CmSA

Figure 6.1: Pipeline overview. Each sequence is split into τ temporal blocks B1, ..., Bτ.
Subsequently, each block is embedded by a simple MLP into X1, ..., Xτ, which are
passed to Higher-order Transformers (HoT (n = 1, ..., r)) in order to obtain feature
tensors Φ1, ..., Φτ. These tensors are subsequently concatenated by ⊙ along the
hyper-edge mode into a multi-order feature tensor M. The final step is a Multi-
order Multi-mode Transformer (3Mformer from Section 6.4), which contains two
complementary branches, MP→TP and TP→MP, whose outputs are concatenated by
⊙ and passed to the classifier. MP and TP perform the Coupled-mode Self-Attention
(CmSA) with the so-called coupled-mode tokens, based on ‘channel-temporal block’,
‘order-channel-body joint’, ‘channel-hyper-edge’ and ‘channel-only’ pairs. To this end,
MP contains also weighted pooling along hyper-edge mode by learnable matrix H
(and H′ in another branch). TP contains also block-temporal pooling denoted by g(·)
whose role is to capture block-temporal order with average, maximum, rank pooling,
etc. In our experiments we show that such designed MP and TP are able to efficiently
process hyper-edge feature representations from HoT branches. Section 6.4.4 shows
full visualization of our 3Mformer.

ST-GCN [Yan et al., 2018], according to the human skeleton graph (body joints linked
up according to connectivity of human body parts). Thus, indirect links between
various 3D body joints such as hands and legs are ignored. In contrast, our model
is not restricted by the structure of typical human body skeletal graph. Instead, 3D
body joints are nodes which form hyper-edges of orders 1 to r.

Hypergraph-based models. Pioneering work on capturing groups of nodes across
time uses tensors [Koniusz et al., 2020] to represent the 3D human body joints to exploit
the kinematic relations among the adjacent and non-adjacent joints. Representing the
human body as a hypergraph is adopted in [Liu et al., 2020a] via a semi-dynamic
hypergraph neural network that captures richer information than GCN. A hypergraph
GNN [Hao et al., 2021] captures both spatio-temporal information and higher-order
dependencies for skeleton-based action recognition. Our work is somewhat closely
related to these works, but we jointly use hypergraphs of order 1 to r to obtain rich
hyper-edge embeddings based on Higher-order Transformers.

Transformer-based models. Action recognition with transformers includes self-
supervised video transformer [Ranasinghe et al., 2022] that matches the features from
different views (a popular strategy in self-supervised GCNs [Zhang et al., 2022f, 2023]),
the end-to-end trainable Video-Audio-Text-Transformer (VATT) [Akbari et al., 2021]
for learning multi-model representations from unlabeled raw video, audio and text
through the multimodal contrastive losses, and the Temporal Transformer Network

§6.2 Related Work 123

SoftM
ax

Scale

M
atM

ul

M
atM

ul

123

423

523
623 623∗ (9::)< reshape 9

Linear

Linear

Linear

Linear

Linear

Linear

9::
SoftM

ax

Scale

M
atM

ul

M
atM

ul

1=3

4=3

5=3
Pooling step

CmSA

‘channel-temporal
block’ token

‘order-channel-body
joint’ token

6=3::∗

623
(>)?(>)

CmSA

(a) Single-branch: MP followed by TP (denoted MP→TP).

6=3∗ (9:)< reshape

SoftM
ax

Scale

M
atM

ul

M
atM

ul

123

423

523
623

Linear

Linear

Linear

Linear

Linear

Linear

SoftM
ax

Scale

M
atM

ul

M
atM

ul

1=3

4=3

5=3
Pooling step9

9: 623:∗

‘channel-hyper-edge’
token

‘channel-only’
token

623
(>)?:(>)

CmSA

CmSA

(b) Single-branch: TP followed by MP (denoted TP→MP).

Figure 6.2: Visualization of 3Mformer which is a two- branch model: (a) MP→TP
and (b) TP→MP. Green and orange blocks are Multi-order Pooling (MP) module and
Temporal block Pooling (TP) module, respectively. (m) inside the MP module denotes
the order m ∈ Ir of hyper-edges. These two modules (MP and TP) are the basic
building blocks which are further stacked to form our 3Mformer. Each module (MP
or TP) uses a specific coupled-mode token through matricization (we use reshape for
simplicity), e.g., ‘channel-temporal block’, ‘order-channel-body joint’, ‘channel-hyper-
edge (any order)’ or ‘channel-only’, and the Coupled-mode Self-Attention (CmSA)
is used to explore the coupled-mode relationships inside the coupled-mode tokens.
We also form our multi-head CmSA as in standard Transformer (where the CmSA
module repeats its computations multiple times in parallel and the attention module
splits the query, key and value, each split is independently passed through a separate
head and later combined together to produce the final coupled-mode attention score).
We omit the multi-head visualization for simplicity and better visualization purposes.

124 3Mformer: Multi-order Multi-mode Transformer

with Self-supervision (TTSN) [Zhang et al., 2021d]. Motion-Transformer [Cheng et al.,
2021] captures the temporal dependencies via a self-supervised pre-training on human
actions, Masked Feature Prediction (MaskedFeat) [Wei et al., 2021a] pre-trained on
unlabeled videos with MViT-L learns abundant visual representations, and video-
masked autoencoder (VideoMAE) [Tong et al., 2022] with vanilla ViT uses the masking
strategy. In contrast to these works, we use three HoT branches of model [Kim et al.,
2021], and we model hyper-edges of orders 1 to r by forming several multi-mode
token variations in 3Mformer.

Attention. In order to improve feature representations, attention captures rela-
tionship between tokens. Natural language processing and computer vision have
driven recent developments in attention mechanisms based on transformers [Vaswani
et al., 2017; Dosovitskiy et al., 2020]. Examples include the hierarchical Cross At-
tention Transformer (CAT) [Lin et al., 2021], Cross-attention by Temporal Shift with
CNNs [Hashiguchi and Tamaki, 2022], Cross-Attention Multi-Scale Vision Transformer
(CrossViT) for image classification [Chen et al., 2021a] and Multi-Modality Cross At-
tention (MMCA) Network for image and sentence matching [Wei et al., 2020]. In
GNNs, attention can be defined over edges [Veličković et al., 2018; Zhang et al., 2018a]
or over nodes [Lee et al., 2018]. In this work, we use the attention with hyper-edges
of several orders from HoT branches serving as tokens, and coupled-mode attention
with coupled-mode tokens based on ‘channel-temporal block’, ‘order-channel-body
joint’, ‘channel-hyper-edge (any order)’ and ‘channel-only’ pairs formed in 3Mformer.

6.3 Background

Below we describe foundations necessary for our work.

Notations. IK stands for the index set {1, 2, ..., K}. Regular fonts are scalars; vectors
are denoted by lowercase boldface letters, e.g., x; matrices by the uppercase boldface,
e.g., M; and tensors by calligraphic letters, e.g., M. An rth-order tensor is denoted
as M ∈ RI1×I2×...×Ir , and the mode-m matricization of M is denoted as M(m) ∈
RIm×(I1...Im−1 Im+1...Ir).
Skeletal Graph [Yan et al., 2018]. Let G=(V, E) be a skeletal graph with the vertex
set V of nodes (body joints) {v1, ..., vJ}, and E be edges (bones) of the graph, and E
consists of ES and ET. The subset ES ={(vit, vjt) : i, j∈IJ and t∈IT} represents that at
time step t, each pair of joints (vit, vjt) corresponding to skeletal connectivity diagram
is connected; whereas ET = {(vit, vi(t+1)) : i∈IJ and t∈IT} forms the connection of
the same joint across time. The set of joints and edges together form the skeleton
graph. If two body joints are connected by an edge, the corresponding element in the
incidence matrix H is equal to 1, otherwise it is equal to 0, and the adjacency matrix
A = HTH − 2I (where I is the identity matrix). The update rule of a common GCN
model at time step t is defined as:

X(l+1)
t =σ

(
D̃− 1

2 ÃD̃− 1
2 X(l)

t Θ(l)), (6.1)

§6.3 Background 125

where σ(·) is a non-linearity, D̃ is the graph degree matrix, X(l)
t is the input data of the

convolutional layer l at the time step t and Θ(l) is the learnable parameters of layer l.
Ã=A + I is a normalized graph adjacency matrix.

The tensor representation of graph data can be given by X∈RJ2×d where d is the
feature channel dimension.

Skeletal Hypergraph [Liu et al., 2020a; Hao et al., 2021]. Hypergraph captures
complex higher-order relationships by hyper-edges that connect more than two nodes
(body joints). Each hyper-edge is a subset of all nodes. Let Gh =(Vh, Eh, Wh) where
Vh, Eh and Wh denote respectively the set of body joints, hyper-edges and the weights
of hyper-edges. Given v∈Vh and e∈Eh, the elements in the incidence matrix Hh of
the skeleton hypergraph are defined as Hh,v,e = 1, or simply put h(v, e) = 1, if vertex
v is part of edge e, 0 otherwise. The degree of node/body joint v∈Vh is the number
of hyper-edges passing through the node, which is defined as:

d(v)= ∑
e∈Eh

w(e)h(v, e), (6.2)

where w(e) is the weight of hyper-edge e. The degree of hyper-edge e ∈ Eh is the
number of nodes (body joints) contained in the hyper-edge e that satisfies:

δ(e)= ∑
v∈Vh

h(v, e). (6.3)

Moreover, let Dv and De be the diagonal matrices of node degrees d(v) and the hyper-
edge degrees δ(e) respectively. Let W denote the diagonal matrix of the hyper-edge
weights (initially the weights of all hyper-edges are set to 1). Then the update rule of
the Hypergraph Convolutional Network at the time step t is given by:

X(l+1)
t =σ

(
D

1
2
v HhWD−1

e H⊤
h D

1
2
v X(l)

t Θ(l)), (6.4)

where Θ(l) are learnable parameters for layer l.

Transformer layers [Vaswani et al., 2017; Dosovitskiy et al., 2020]. A transformer
encoder layer f : RJ×d → RJ×d consists of two sub-layers: (i) a self-attention a :
RJ×d → RJ×d and (ii) an element-wise feed-forward MLP : RJ×d → RJ×d. For a set
of J nodes with X∈RJ×d, where xi is a feature vector of node i, a transformer layer3

computes:

a(xi)=xi+
H

∑
h=1

J

∑
j=1

αh
ijxjWV

h WO
h , (6.5)

f (xi)= a(xi)+MLP(a(X))i, (6.6)

where H and dH denote respectively the number of heads and the head size, αh =
σ
(
XWQ

h (XWK
h)

⊤) is the attention coefficient, WO
h ∈RdH×d, and WV

h , WK
h , WQ

h ∈Rd×dH .

3Normalizations after a(·) & MLP(·) are omitted for simplicity.

126 3Mformer: Multi-order Multi-mode Transformer

Higher-order transformer layers [Kim et al., 2021]. Let the HoT layer be fm→n :
RJm×d →RJn×d with two sub-layers: (i) a higher-order self-attention am→n : RJm×d →
RJn×d and (ii) a feed-forward MLPn→n : RJn×d →RJn×d. Moreover, let indexing vectors
i ∈ Im

J ≡ IJ×IJ×...×IJ (m modes) and j ∈ In
J ≡ IJ×IJ×...×IJ (n modes). For the

input tensor X∈RJm×d with hyper-edges of order m, a HoT layer evaluates:

am→n(X)j =
H

∑
h=1

∑
µ

∑
i

α
h,µ
i,j XiWV

h,µWO
h,µ (6.7)

MLPn→n(am→n(X))=L2
n→n(ReLU(L1

n→n(am→n(X)))), (6.8)

fm→n(X)= am→n(X)+MLPn→n(am→n(X)), (6.9)

where αh,µ ∈ RJm+n
is the so-called attention coefficient tensor with multiple heads,

and α
h,µ
i,j ∈ RJ is a vector, WV

h,µ ∈ Rd×dH and WO
h,µ ∈ RdH×d are learnable parameters.

Moreover, µ indexes over the so-called equivalence classes of order-(m+n) in the same
partition of nodes, L1

n→n : RJn×d → RJn×dF and L2
n→n : RJn×dF → RJn×d are equivariant

linear layers and dF is the hidden dimension.
To compute each attention tensor αh,µ ∈RJm+n

from the input tensor X∈RJm×d of
hyper-edges of order m, from the higher-order query and key, we obtain:

α
h,µ
i,j =

σ(Qh,µ

j ,Kh,µ
i)

Zj
(i, j)∈µ

0 otherwise,
(6.10)

where Qµ =Lµ
m→n(X), Kµ =Lµ

m→m(X), and normalization constant Zj =∑i:(i,j)∈µ σ(Qµ
j , Kµ

i).
Finally, kernel attention in Eq. (6.10) can be approximated with RKHS feature
maps ψ ∈ R

dK
+ for efficacy as dK ≪ dH. Specifically, we have σ

(
Qh,µ

j , Kh,µ
i

)
≈

ψ
(
Qh,µ

j

)⊤
ψ
(
Kh,µ

i

)
as in [Katharopoulos et al., 2020; Choromanski et al., 2021]. We

choose the performer kernel [Choromanski et al., 2021] due to its good performance.
As query and key tensors are computed from the input tensor X using the equiv-

ariant linear layers, the transformer encoder layer fm→n satisfies the permutation
equivariance.

6.4 Approach

Skeletal Graph [Yan et al., 2018] and Skeletal Hypergraph [Liu et al., 2020a; Hao et al.,
2021] are popular for modeling edges and hyper-edges. In this work, we use the
Higher-order Transformer (HoT) [Kim et al., 2021] as a backbone encoder.

6.4.1 Model Overview

Fig. 6.1 shows that our framework contains a simple 3-layer MLP unit (FC, ReLU,
FC, ReLU, Dropout, FC), three HoT blocks with each HoT for each type of input (i.e.,
body joint feature set, graph and hypergraph of body joints), followed by Multi-order

§6.4 Approach 127

Multi-mode Transformer (3Mformer) with two modules (i) Multi-order Pooling (MP)
and (ii) Temporal block Pooling (TP). The goal of 3Mformer is to form coupled-
mode tokens (explained later) such as ‘channel-temporal block’, ‘order-channel-body
joint’, ‘channel-hyper-edge (any order)’ and ‘channel-only’, and perform weighted
hyper-edge aggregation and temporal block aggregation. Their outputs are further
concatenated and passed to an FC layer for classification.

MLP unit. The MLP unit takes T neighboring frames, each with J 2D/3D skeleton
body joints, forming one temporal block. In total, depending on stride S, we obtain
some τ temporal blocks (a block captures the short-term temporal evolution), In
contrast, the long-term temporal evolution is modeled with HoT and 3Mformer. Each
temporal block is encoded by the MLP into a d× J dimensional feature map.

HoT branches. We stack r branches of HoT, each taking embeddings Xt ∈ Rd×J

where t ∈ Iτ denotes a temporal block. HoT branches output hyper-edge feature
representations of size m ∈ Ir as Φ′

m ∈ RJm×d′ for order m ∈ Ir.
For the first-, second- and higher-order stream outputs Φ′

1, ..., Φ′
r, we (i) swap

feature channel and hyper-edge modes, (ii) extract the upper triangular of tensors,
and we concatenate along the block-temporal mode, so we have Φm ∈ Rd′×NEm×τ,
where NEm =(J

m). Subsequently, we concatenate Φ1, ..., Φr along the hyper-edge mode
and obtain a multi-order feature tensor M ∈ Rd′×N×τ where the total number of
hyper-edges across all orders is N = ∑r

m=1 (
J
m).

3Mformer. Our Multi-order Multi-mode Transformer (3Mformer) with Coupled-mode
Self-Attention (CmSA) is used for the fusion of information flow inside the multi-order
feature tensor M, and finally, the output from 3Mformer is passed to a classifier for
classification.

6.4.2 Coupled-mode Self-Attention

Coupled-mode tokens. We are inspired by the attentive regions of the one-class
token in the standard Vision Transformer (ViT) [Vaswani et al., 2017] that can be
leveraged to form a class-agnostic localization map. We investigate if the transformer
model can also effectively capture the coupled-mode attention for more discriminative
classification tasks, e.g., tensorial skeleton-based action recognition by learning the
coupled-mode tokens within the transformer. To this end, we propose a Multi-order
Multi-mode Transformer (3Mformer), which uses coupled-mode tokens to jointly learn
various higher-order motion dynamics among channel-, block-temporal-, body joint-
and order-mode. Our 3Mformer can successfully produce coupled-mode relationships
from CmSA mechanism corresponding to different tokens. Below we introduce our
CmSA.

Given the order-r tensor M ∈ RI1×I2×...×Ir , to form the joint mode token, we
perform the mode-m matricization of M to obtain M ≡ M⊤

(m) ∈ R(I1...Im−1 Im+1...Ir)×Im ,
and the coupled-token for M is formed. For example, for a given 3rd-order tensor that
has feature channel-, hyper-edge- and temporal block-mode, we can form ‘channel-
temporal block’, ‘channel-hyper-edge (any order)’ and ‘channel-only’ pairs; and if

128 3Mformer: Multi-order Multi-mode Transformer

the given tensor is used as input and outputs a new tensor which produces new
mode, e.g., body joint-mode, we can form the ‘order-channel-body joint’ token. In the
following sections, for simplicity, we use reshape for the matricization of tensor to
form different types of coupled-mode tokens.

Our CmSA is given as:

a(Q, K, V)=SoftMax
(

QK⊤
√

dK

)
V, (6.11)

where
√

dK is the scaling factor, Q=WqM, K=WkM and V=WvM are the query, key
and value, respectively, and M ≡ M⊤

(m). Moreover, Q, K, V∈R(I1...Im−1 Im+1...Ir)×Im and
Wq, Wk, Wv ∈R(I1...Im−1 Im+1...Ir)×(I1...Im−1 Im+1...Ir) are learnable weights. We notice that
various coupled-mode tokens have different ‘focus’ of attention mechanisms, and we
apply them in our 3Mformer for the fusion of multi-order feature representations.

6.4.3 Multi-order Multi-mode Transformer

Below we introduce Multi-order Multi-mode Transformer (3Mformer) with Multi-
order Pooling (MP) block and Temporal block Pooling (TP) block, which are cascaded
into two branches (i) MP→TP and (ii) TP→MP, to achieve different types of coupled-
mode tokens.

6.4.3.1 Multi-order Pooling (MP) Module

CmSA in MP. We reshape the multi-order feature representation M∈Rd′×N×τ into
M ∈ Rd′τ×N (or reshape the output from TP explained later into M′ ∈ Rd′×N) to let
the model attend to different types of feature representations. Let us simply denote
d′′ = d′τ (or d′′ = d′) depending on the source of input. We form an coupled-mode
self-attention (if d′′ = d′τ, we have, i.e., ‘channel-temporal block’ token; if d′′ = d′, we
have ‘channel-only’ token):

aMP(QMP, KMP, VMP)=SoftMax

(
QMPK⊤

MP√
dKMP

)
VMP, (6.12)

where
√

dKMP is the scaling factor, QMP =Wq
MPM, KMP =Wk

MPM and VMP =Wv
MPM

(we can use here M or M′) are the query, key and value. Moreover, QMP, KMP,
VMP ∈ Rd′′×N and Wq

MP, Wk
MP, Wv

MP ∈ Rd′′×d′′ are learnable weights. Eq. (6.12) is a
self-attention layer which reweighs VMP based on the correlation between QMP and
KMP token embeddings of so-called coupled-mode tokens.

Weighted pooling. Attention layer in Eq. (6.12) produces feature representation
OMP∈Rd′′×N to enhance the relationship between for example feature channels and
body joints. Subsequently, we handle the impact of hyper-edges of multiple orders by

§6.4 Approach 129

weighted pooling along hyper-edges of order m ∈ Ir:

O∗(m)
MP =O(m)

MP H(m)∈Rd′′×J , (6.13)

where O(m)
MP ∈Rd′′×NEm is simply extracted from OMP for hyper-edges of order m, and

matrices H(m) ∈ RNEm×J are learnable weights to perform weighted pooling along
hyper-edges of order m. Finally, we obtain O∗

MP ∈ Rrd′′×J by simply concatenating
O∗(1)

MP , ..., O∗(r)
MP . If we used the input to MP from TP, then we denote the output of MP

as O′∗
MP.

6.4.3.2 Temporal block Pooling (TP) Module

CmSA in TP. Firstly, we reshape the multi-order feature representation M∈Rd′×N×τ

into M ∈ Rd′N×τ (or reshape the output from MP into M′′ ∈ Rrd′ J×τ). For simplicity,
we denote d′′′ = d′N in the first case and d′′′ = rd′ J in the second case. As the
first mode of reshaped input serves to form tokens, they are again coupled-mode
tokens, e.g., ‘channel-hyper-edge’ and ‘order-channel-body joint’ tokens, respectively.
Moreover, TP also performs pooling along block-temporal mode (along τ). We form
an coupled-mode self-attention:

aTP(QTP, KTP, VTP)=SoftMax

(
QTPK⊤

TP√
dKTP

)
VTP, (6.14)

where
√

dKTP is the scaling factor, QTP=Wq
TPM, KTP=Wk

TPM and VTP=Wv
TPM (we

can use here M or M′′) are the query, key and value. Moreover, QTP, KTP, VTP∈Rd′′′×τ

and Wq
TP, Wk

TP, Wv
TP ∈Rd′′′×d′′′ are learnable weights. Eq. (6.14) reweighs VTP based

on the correlation between QTP and KTP token embeddings of coupled-mode tokens
(‘channel-hyper-edge’ or ‘order-channel-body joint’). The output of attention is the
temporal representation OTP∈Rd′′′×τ. If we used M′′ as input, we denote the output
as O′′

TP.

Pooling step. Given the temporal representation OTP ∈ Rd′′′×τ (or O′′
TP), we apply

pooling along the block-temporal mode to obtain compact feature representations
independent of length (block count τ) of skeleton sequence. There exist many pool-
ing operations4 including first-order, e.g., average, maximum, sum pooling, second-
order [Zilin et al., 2019; Wang et al., 2018a] such as attentional pooling [Girdhar and
Ramanan, 2017], higher-order (tri-linear) [Cherian et al., 2017b; Koniusz et al., 2021]
and rank pooling [Fernando et al., 2017]. The output after pooling is O∗

TP ∈Rd′′′ (or
O′′∗

TP).

4We do not propose pooling operators but we select popular ones with the purpose of comparing
their impact on TP.

130 3Mformer: Multi-order Multi-mode Transformer

6.4.3.3 Model Variants

We devise four model variants by different stacking of MP with TP, with the goal of
exploiting attention with different kinds of coupled-mode tokens:

i. Single-branch: MP followed by TP, denoted MP→TP, (Fig. 6.1 top right branch).

ii. Single-branch: TP followed by MP, denoted TP→MP, (Fig. 6.1 bottom right
branch).

iii. Two-branch (our 3Mformer, Fig. 6.1) which concatenates outputs of MP→TP
and TP→MP.

iv. We also investigate only MP or TP module followed by average pooling or an
FC layer.

The outputs from MP→TP and TP→MP have exactly the same feature dimension
(Rrd′ J , after reshaping into vector). For two-branch (our 3Mformer), we simply
concatenate these outputs (R2rd′ J , after concatenation). These vectors are forwarded to
the FC layer to learn a classifier.

6.4.4 Visualization of 3Mformer.

Fig. 6.2 shows the visualization of our 3Mformer. The green and orange blocks denote
the Multi-order Pooling (MP) and the Temporal block Pooling (TP) respectively, which
are two basic building blocks that can be stacked to form our 3Mformer. More
precisely, our 3Mformer consists of two branches: (i) MP followed by TP (denoted MP
→ TP, Fig. 6.2a) and (ii) TP followed by MP (denoted TP → MP, Fig. 6.2b).

6.5 Experiments

6.5.1 Datasets and Protocols

(i) NTU RGB+D (NTU-60) [Shahroudy et al., 2016a] contains 56,880 video se-
quences.This dataset has variable sequence lengths and high intra-class variations.
Each skeleton sequence has 25 joints and there are no more than two human subjects in
each video. Two evaluation protocols are: (i) cross-subject (X-Sub) and (ii) cross-view
(X-View).
(ii) NTU RGB+D 120 (NTU-120) [Liu et al., 2019a], an extension of NTU-60, contains
120 action classes (daily/health-related), and 114,480 RGB+D video samples captured
with 106 distinct human subjects from 155 different camera viewpoints. There are
also two evaluation protocols: (i) cross-subject (X-Sub) and (ii) cross-setup (X-Set).
(iii) Kinetics-Skeleton, based on Kinetics [Kay et al., 2017], is large-scale dataset
with 300,000 video clips and up to 400 human actions collected from YouTube. This
dataset involves human daily activities, sports scenes and complex human-computer
interaction scenes. Since Kinetics only provides raw videos without the skeletons,
ST-GCN [Yan et al., 2018] uses the publicly available OpenPose toolbox [Cao et al.,

§6.5 Experiments 131

2017] to estimate and extract the location of 18 human body joints on every frame
in the clips. We use their released skeleton data to evaluate our model. Following
the standard evaluation protocol, we report the Top-1 and Top-5 accuracies on the
validation set.
(iv) Northwestern-UCLA [Wang et al., 2014] was captured by 3 Kinect cameras
simultaneously from multiple viewpoints. It contains 1494 video clips covering 10
actions. Each action is performed by 10 different subjects. We follow the same
evaluation protocol as [Wang et al., 2014]: training split is formed from the first two
cameras, and testing split from the last camera.

6.5.2 Skeleton Data Preprocessing

Before passing the skeleton sequences into MLP, we first normalize each body joint
w.r.t. to the torso joint v f ,c:

v′
f ,i =v f ,i−v f ,c, (6.15)

where f and i are the index of video frame and human body joint respectively. After
that, we further normalize each joint coordinate into [-1, 1] range:

v̂ f ,i[j] =
v′

f ,i[j]

max([abs(v′
f ,i[j])] f∈Iτ ,i∈IJ)

, (6.16)

where j is for selection of the x, y and z axes, τ is the number of frames and J is the
number of 3D body joints per frame.

For the skeleton sequences that have more than one performing subject, (i) we
normalize each skeleton separately, and each skeleton is passed to MLP for learning
the temporal dynamics, and (ii) for the output features per skeleton from MLP, we
pass them separately to the block-temporal HoT, e.g., two skeletons from a given video
sequence will have two outputs obtained from the the block-temporal HoT, and we
aggregate the outputs through average pooling before passing our 3Mformer.

6.5.3 Experimental Setup

We use PyTorch and 1×Titan RTX 3090 for experiments. We use the Stochastic
Gradient Descent (SGD) with momentum 0.9, cross-entropy as the loss, weight decay
of 0.0001 and batch size of 32. The learning rate is set to 0.1 initially. On NTU-60
and NTU-120, the learning rate is divided by 10 at the 40th and 50th epoch, and
the training process ends at the 60th epoch. On Kinetics-Skeleton, the learning rate
is divided by 10 at the 50th and 60th epoch, and the training finishes at the 80th
epoch. We took 20% of training set for validation to tune hyperparameters. All
models have fixed hyperparameters with 2 and 4 layers for NTU-60/NTU-120 and
Kinetics-Skeleton, respectively. The hidden dimensions is set to 16 for all 3 datasets.
We use 4 attention heads for NTU-60 and NTU-120, and 8 attention heads for Kinetics-
Skeleton. To form each video temporal block, we simply choose temporal block size to
be 10 and stride to be 5 to allow a 50% overlap between consecutive temporal blocks.

132 3Mformer: Multi-order Multi-mode Transformer

Table 6.1: Search for the single best order n of hypergraph (except for n=3 & 4 where
we check if n=3 & 4 are complementary).

Order-n NTU-60 NTU-120 Kinetics-Skel.
X-Sub X-View X-Sub X-Set Top-1 acc.

n = 1 78.5 86.3 75.3 77.9 32.0
n = 2 83.0 89.2 86.2 88.3 37.1
n = 3 91.3 97.0 87.5 89.7 39.5
n = 4 91.5 97.1 87.8 90.0 40.1
n = 5 91.4 97.3 87.8 90.0 40.3
n = 3 & 4 91.6 97.2 87.6 90.3 40.5

Table 6.2: Evaluations of our model variants with/without MP and/or TP. Baseline in
the table denotes the backbone (MLP unit + HoTs) without the use of either MP or TP
module.

Variants NTU-60 NTU-120 Kinetics-Skel.
X-Sub X-View X-Sub X-Set Top-1 acc.

Baseline 89.8 91.4 86.5 87.0 38.6
+ TP only 91.2 93.8 87.5 88.6 39.8
+ MP only 92.0 94.3 88.7 89.7 40.3
+ MP→TP 93.0 96.1 90.8 91.7 45.7
+ TP→MP 92.6 95.8 90.2 91.1 44.0
+ 2-branch(3Mformer) 94.8 98.7 92.0 93.8 48.3

For Northwestern-UCLA, the batch size is 16. We adopted the data pre-processing
in [Cheng et al., 2020b].

6.5.4 Ablation Study

Search for the single best order n. Table 6.1 shows our analysis regarding the best
order n. In general, increasing the order n improves the performance (within ∼ 0.5%
on average), but causing higher computational cost, e.g., the number of hyper-edges
for the skeletal hypergraph of order n=4 is 3060 on Kinetics-Skeleton. We also notice
that combining orders 3 and 4 yields very limited improvements. The main reasons
are: (i) reasonable order n, e.g., n = 3 or 4 improves accuracy as higher-order motion
patterns are captured which are useful for classification-related tasks (ii) further
increasing order n, e.g., n = 5 introduces patterns in feature representations that
rarely repeat even for the same action class. Considering the cost and performance,
we choose the maximum order r=3 (n = 1, 2, 3) in the following experiments unless
specified otherwise.

Discussion on coupled-mode attention. Fig. 6.3 shows the visualization of some
attention matrices in our 3Mformer, which show diagonal and/or vertical patterns
that are consistent with the patterns of the attention matrices found in standard
Transformer trained on sequences, e.g., for natural language processing tasks [Vaswani
et al., 2017; Kovaleva et al., 2019]. We also notice that the coupled-mode attention, e.g.,
‘channel-temporal block’ captures much richer information compared to single mode

§6.5 Experiments 133

Table 6.3: Experimental results on NTU-60, NTU-120 and Kinetics-Skeleton.

Method Venue NTU-60 NTU-120 Kinetics-Skeleton
X-Sub X-View X-Sub X-Set Top-1 Top-5

Graph-based

TCN [Kim and Reiter, 2017] CVPRW’17 - - - - 20.3 40.0
ST-GCN [Yan et al., 2018] AAAI’18 81.5 88.3 70.7 73.2 30.7 52.8
AS-GCN [Li et al., 2019] CVPR’19 86.8 94.2 78.3 79.8 34.8 56.5
2S-AGCN [Shi et al., 2019b] CVPR’19 88.5 95.1 82.5 84.2 36.1 58.7
NAS-GCN [Peng et al., 2020] AAAI’20 89.4 95.7 - - 37.1 60.1
Sym-GNN [Li et al., 2022] TPAMI’22 90.1 96.4 - - 37.2 58.1
Shift-GCN [Cheng et al., 2020b] CVPR’20 90.7 96.5 85.9 87.6 - -
MS-G3D [Liu et al., 2020b] CVPR’20 91.5 96.2 86.9 88.4 38.0 60.9
CTR-GCN [Chen et al., 2021b] ICCV’21 92.4 96.8 88.9 90.6 - -
InfoGCN [Chi et al., 2022] CVPR’22 93.0 97.1 89.8 91.2 - -
PoseConv3D [Duan et al., 2022] CVPR’22 94.1 97.1 86.9 90.3 47.7 -

Hypergraph-
based

Hyper-GNN [Hao et al., 2021] TIP’21 89.5 95.7 - - 37.1 60.0
DHGCN [Wei et al., 2021b] CoRR’21 90.7 96.0 86.0 87.9 37.7 60.6
Selective-HCN [Zhu et al., 2022] ICMR’22 90.8 96.6 - - 38.0 61.1
SD-HGCN [He et al., 2021] ICONIP’21 90.9 96.7 87.0 88.2 37.4 60.5

Transformer-
based

ST-TR [Plizzari et al., 2021] CVIU’21 90.3 96.3 85.1 87.1 38.0 60.5
MTT [Kong et al., 2022] LSP’21 90.8 96.7 86.1 87.6 37.9 61.3
4s-GSTN [Jiang et al., 2022] Symmetry’22 91.3 96.6 86.4 88.7 - -
STST [Zhang et al., 2021e] ACM MM’21 91.9 96.8 - - 38.3 61.2
3Mformer (with avg-pool, ours) 92.0 97.3 88.0 90.1 43.1 65.2
3Mformer (with max-pool, ours) 92.1 97.8 - - - -
3Mformer (with attn-pool, ours) 94.2 98.5 89.7 92.4 45.7 67.6
3Mformer (with tri-pool, ours) 94.0 98.5 91.2 92.7 47.7 71.9
3Mformer (with rank-pool, ours) 94.8 98.7 92.0 93.8 48.3 72.3

(a) (b) (c) (d)

Figure 6.3: Visualization of attention matrices. (a) single-mode attention matrix of
‘channel-only’ token, (b)–(d) coupled-mode attention matrices of ‘channel-hyper-edge’,
‘order-channel-body joint’ and ‘channel-temporal block’ tokens, respectively.

attention, e.g., ‘channel-only’. Our coupled-mode attention can be applied to different
orders of tensor representations through simple matricization.

Discussion on model variants. To show the effectiveness of the proposed MP and TP
module, firstly, we compare TP only and MP only with the baseline (No MP or TP
module). We use the TP module followed by an FC layer instead of MP as in TP→MP,
where the FC layer takes the output from TP (Rd′N) and produces a vector in R3d′ J ,
passed to the classifier. Similarly, for MP only, we use the MP module followed by
an average pooling layer instead of TP as in MP→TP, where the average layer takes
output from MP (R3d′ J×τ) and generates a vector in R3d′ J (pool along τ blocks), passed
to the classifier. Table 6.2 shows the results. With just the TP module, we outperform
the baseline by 1.3% on average. With only the MP module, we outperform the
baseline by 2.34% on average. These comparisons show that (i) CmSA in MP and TP
are efficient for better performance (ii) MP performs better than TP which shows that

134 3Mformer: Multi-order Multi-mode Transformer

NTU-60 NTU-120 Kinetics-Skeleton
20

40

60

80
hyper-edge-only
body joint-only
temporal block-only
channel-only
channel-hyper-edge
order-channel-body joint
channel-temporal block

Figure 6.4: Evaluations of different single-mode (baseline) and joint-mode tokens.
We use a 3rd-order HoT with a standard Transformer, but we replace the scaled
dot-product attention with joint-mode tokens and joint-mode attention.

‘channel-temporal block’ token contains richer information than ‘channel-hyper-edge’
token. We also notice that MP→TP slightly outperforms TP→MP by ∼ 1%, and the
main reason is that MP→TP has coupled-mode tokens ‘channel-temporal block’ and
‘order-channel-joint’ which attend 4 modes, whereas TP→MP has ‘channel-hyper-edge’
and ‘channel-only’ tokens which attend only 2 modes. Fig. 6.4 shows a comparison of
different coupled-mode tokens on 3 benchmark datasets. This also suggests that one
should firstly perform attention with coupled-mode ‘channel-block’ tokens, followed
by weighted pooling along the hyper-edge mode, followed by attention with coupled-
mode ‘order-channel-body joint’ and finalised by block-temporal pooling. Finally,
with 2-branch (3Mformer), we further boost the performance by 2–4%, which shows
that MP→TP and TP→MP are complementary branches. Below we use 2-branch
(3Mformer) in the experiments (as in Fig. 6.1).

Comparison of pooling in TP. As shown in Table 6.3, average pooling (avg-pool)
achieves similar performance (within ∼ 0.5% difference) as maximum pooling (max-
pool), second-order pooling (attn-pool) outperforms average and maximum pooling
by ∼ 1–2% and third-order pooling (tri-pool) outperforms second-order pooling by ∼
1%. Interestingly, rank pooling (rank-pool) achieves the best performance. We think
it is reasonable as rank pooling strives to enforce the temporal order in the feature
space to be preserved, e.g., it forces network to always preserve temporal progression
of actions over time. With multiple attention modules, orderless statistics such as
second- or third-order pooling may be too general.

6.5.5 Comparisons with the State of the Arts

We compare our model with recent state-of-the-art methods. On the NTU-60 (Tab. 6.3),
we obtain the top-1 accuracies of the two evaluation protocols during test stage. The
methods in comparisons include popular graph-based [Yan et al., 2018; Li et al., 2019;
Shi et al., 2019b; Peng et al., 2020; Li et al., 2022] and hypergraph-based models [Hao
et al., 2021; Wei et al., 2021b; Zhu et al., 2022; He et al., 2021]. Our 3rd-order model
outperforms all graph-based methods, and also outperforms existing hypergraph-
based models such as Selective-HCN and SD-HGCN by 0.45% and 0.35% on average

§6.5 Experiments 135

Table 6.4: Experimental results on Northwestern-UCLA.

Shift-GCN (CVPR’20) CTR-GCN (ICCV’21) InfoGCN (CVPR’22) 2nd-order 3rd-order 3Mformer
[Cheng et al., 2020b] [Chen et al., 2021b] [Chi et al., 2022] only (ours) only (ours) (ours)

acc.(%) 94.6 96.5 97.0 96.5 97.2 97.8

on X-Sub and X-View respectively. With 3Mformer for the fusion of multi-order
features, our model further boosts the performance by ∼ 3% and 1.5% on the two
protocols.

It can be seen from Tab. 6.3 on NTU-60 that although some learned graph-based
methods such as AS-GCN and 2S-AGCN can also capture the dependencies between
human body joints, they only consider the pairwise relationship between body joints,
which is the second-order interaction, and ignore the higher-order interaction between
multiple body joints in form of hyper-edges, which may lose sensitivity to important
groups of body joints. Our proposed 3Mformer achieves better performance by con-
structing a hypergraph from 2D/3D body joints as nodes for action recognition, thus
capturing higher-order interactions of body joints to further improve the performance.
Note that even with the average pooling, our model still achieves competitive results
compared to its counterparts.

For the NTU-120 dataset (Tab. 6.3), we obtain the top-1 performance on X-Sub
and X-Set protocols. Our 2nd-order HoT alone outperforms graph-based models by
2–2.4% on average. For example, we outperform recent Shift-GCN by 0.3% and 0.7%
on X-Sub and X-Set respectively. Moreover, our 3rd-order HoT alone outperforms
SD-HGCN by 0.5% and 1.5% respectively on X-Sub and X-Set. With the 3Mformer
for the fusion of multi-order feature maps, we obtain the new state-of-the-art results.
Notice that our 3Mformer yields 92.0% / 93.8% on NTU-120 while [Peng et al., 2021]
yields 80.5% / 81.7% as we explore the fusion of multiple orders of hyperedges and
several coupled-token types capturing easy-to-complex dynamics of varying joint
groups.

As videos from the Kinetics dataset are processed by the OpenPose, the skeletons
in the Kinetics-Skeleton dataset have defects which adversely affect the performance
of the model. We show both top-1 and top-5 performance in Table 6.3 to better reflect
the performance of our 3Mformer. ST-GCN is the first method based on GCN, our
2nd-order HoT alone achieves very competitive results compared to the very recent
NAS-GCN and Sym-GNN. The 3rd-order HoT alone outperforms Hyper-GNN, SD-
HGCN and Selective-HCN by 3.4%, 3.1% and 2.9% respectively for top-1 accuracies.
Moreover, fusing multi-order feature maps from multiple orders of hyper-edges via
3Mformer gives us the best performance on Kinetics-Skeleton with 48.3% for top-1,
the new state-of-the-art result.

Table 6.4 shows results on the Northwestern-UCLA dataset. Our 3Mformer is also
effective on this dataset–it outperforms the current state-of-the-art InfoGCN by 0.8%.

136 3Mformer: Multi-order Multi-mode Transformer

Table 6.5: Ablations of different pooling methods in MP.

Pooling NTU-60 NTU-120 Kinetics-Skel.
X-Sub X-View X-Sub X-Set Top-1 acc.

avg-pool 91.3 96.8 86.5 89.0 41.9
max-pool 92.7 98.0 88.5 91.0 43.8
wei-pool (ours) 94.8 98.7 92.0 93.8 48.3

6.6 Additional Results and Discussions

6.6.1 Ablations of MP

We choose average pooling (avg-pool) and max-pooling (max-pool) for hyper-edge
features in comparison to our learned weighted pooling (wei-pool), and the compar-
isons are given in Table 6.5. As shown in the table, our learned weighted pooling
(wei-pool) consistently achieves the best performance on all 3 datasets.

6.6.2 Learning the short-term temporal patterns

A block of T neighbor frames are passed to the MLP unit to capture the short-
term temporal patterns. The whole sequence consists of τ such blocks, each passed
separately through the MLP unit (and each joint 1, ..., J). Thus, the MLP only mixes
the information from 1, ..., T frames of a given block/body joint j and captures short-
term relations (within-block) of a given 3D body joint (in contrast to between-block
relations). The MLP unit input size is 3T; 3 due to 3D coordinate). The MLP:R3T →Rd

contains: FC (3T → 6T), ReLU, FC (6T → 9T), ReLU, Dropout, FC (9T → d). J body
joints and τ blocks are treated as the batch dimension. Feature output size d: 100, 150,
420 on NTU-60, NTU-120, Kinetics-Skeleton.

6.6.3 Why 3Mformer works and when does it fail?

Our method works well as it (i) uses skeletal hypergraphs of various orders to learn
the interaction of varying size groups of skeletal joints (as opposed to typical skeleton
graph physical connectivity), (ii) fuses groups multiple orders by 3Mformer by several
coupled-token types via two basic building blocks (MP & TP) that learn various aspects
of higher-order motion dynamics. Multiple-order hyperedges are more resistant to
noise (e.g., Kinetics-Skeleton is noisy due to the pose estimation errors), if one body
joint is noisy (but the rest is stable). We inject Gaussian noise into 3D ankle joints, vary
noise amplitude, and we show the experimental results in Table 6.6. As shown in the
table, our 3Mformer copes with noise better than ST-GCN.

Our method may underperform if (i) the backbone encoder cannot efficiently
produce higher-order features (ii) the number of skeletal joints are very large (the
number of hyper-edge features would be very large) (iii) when dataset is too small
to learn high-order interactions (extra learnable parameters). For example, see the
experimental results on MSRAction3D in Table 6.7.

§6.6 Additional Results and Discussions 137

Table 6.6: Comparisons of robustness w.r.t. Gaussian noise.

original × 1 × 1.5 × 2

ST-GCN 81.5 74.9 (↓6.6) 69.2 (↓12.3) 50.1 (↓31.4)
3Mformer 94.8 91.9 (↓2.9) 89.5 (↓5.3) 86.8 (↓8.0)

Table 6.7: Experimental results on MSRAction3D.

order 2 3 4

acc.(%) 73.82 63.64 55.27

Table 6.8: A comparison of the number of model parameters and FLOPs on NTU-60.

ST-GCN 2S-AGCN NAS-GCN 2rd-order 3rd-order 3Mformer
only (ours) only (ours) (ours)

Params (M) 3.14 3.45 6.57 1.15 2.07 4.37
FLOPs (G) 16.36 37.22 108.82 6.54 35.53 58.45
Acc. (%) 81.5 88.5 89.4 83.0 91.3 94.8

We notice that small datasets may be not enough to train high-order models
(Table 6.7). On key classic large datasets, NTU-60, NTU-120 and Kinetics-Skeleton, we
do not observe any issue as human motions exhibit similar multi-joint dynamics for
typical action classes. Perhaps some fine-grained unusual action classes could pose
problems.

6.6.4 Model Complexity

Table 6.8 shows the number of model parameters/FLOPs and NTU-60 accuracy. Our
cost is moderate. 2S-AGCN (37.22 GFLOPs & 3.45M param.) yields 89.4% accuracy.
Our ‘3rd-order’ uses 35.5 GFLOPs & 2.07M param. which is 2 GFLOPs & 1.37M
param. less, yet we outperform 2S-AGC by 1.9%. NAS-GCN uses 40.4 GFLOPs/2.2M
param. more compared to our 3Mformer: we beat NAS-GCN by 4.4%.

6.6.5 Limitation and Future Work

Despite the high accuracy of our model, there are still some limitations. Firstly,
as we use r branches of HoT, the number of parameters and computational cost
are higher than existing methods. However, our method with single branch, e.g.,
3rd-order HoT only, still achieves very competitive results compared to existing
graph-, transformer- and hypergraph-based models for the same parameter scale on 3
benchmarks. Secondly, in this work, we only use HoT block to encode the temporal
block feature representations. The more efficient way is to redesign HoT block so that
it is able to encode both short-term and long-term spatio-temporal features to simplify

138 3Mformer: Multi-order Multi-mode Transformer

the backbone encoder, i.e., without the need of MLP unit. Note that the design of
our 3Mformer is independent of the backbone encoder. Our 3Mformer is especially
suitable for tensorial data, e.g., higher-order feature representations. Our future work
will focus on applying our Multi-order Multi-mode Transformer (3Mformer) to other
computer vision tasks with tensorial data.

6.7 Conclusions

In this chapter, we model the skeleton data as hypergraph to capture higher-order
information formed between groups of human body joints of orders 1, ..., r. We use
Higher-order Transformer (HoT) to learn higher-order information on hypergraphs
of r-order formed over 2D/3D human body joints. We also introduce a novel Multi-
order Multi-mode Transformer (3Mformer) for the fusion of multi-order feature
representations. Our end-to-end trainable 3Mformer outperforms state-of-the-art
graph- and hypergraph-based models by a large margin on several benchmarks.

Chapter 7

Uncertainty-DTW

Dynamic Time Warping (DTW) is used for matching pairs of sequences and celebrated
in applications such as forecasting the evolution of time series, clustering time series
or even matching sequence pairs in few-shot action recognition. The transportation
plan of DTW contains a set of paths; each path matches frames between two sequences
under a varying degree of time warping, to account for varying temporal intra-class
dynamics of actions. However, as DTW is the smallest distance among all paths, it
may be affected by the feature uncertainty which varies across time steps/frames.
Thus, in this chapter, we propose to model the so-called aleatoric uncertainty of a
differentiable (soft) version of DTW. To this end, we model the heteroscedastic aleatoric
uncertainty of each path by the product of likelihoods from Normal distributions,
each capturing variance of pair of frames. (The path distance is the sum of base
distances between features of pairs of frames of the path.) The Maximum Likelihood
Estimation (MLE) applied to a path yields two terms: (i) a sum of Euclidean distances
weighted by the variance inverse, and (ii) a sum of log-variance regularization terms.
Thus, our uncertainty-DTW is the smallest weighted path distance among all paths,
and the regularization term (penalty for the high uncertainty) is the aggregate of
log-variances along the path. The distance and the regularization term can be used in
various objectives. We showcase forecasting the evolution of time series, estimating the
Fréchet mean of time series, and supervised/unsupervised few-shot action recognition
of the articulated human 3D body joints.

7.1 Introduction

Dynamic Time Warping (DTW) [Cuturi, 2011] is a method popular in forecasting the
evolution of time series, estimating the Fréchet mean of time series, or classifying
generally understood actions. The key property of DTW is its sequence matching
transportation plan that allows any two sequences that are being matched to progress
at different ‘speeds’ not only in the global sense but locally in the temporal sense. As
DTW is non-differentiable, a differentiable ‘soft’ variant of DTW, soft-DTW [Cuturi
and Blondel, 2017], uses a soft-minimum function which enables backpropagation.

The role of soft-DTW is to evaluate the (relaxed) DTW distance between a pair
of sequences Ψ ≡ [ψ1, ..., ψτ] ∈ Rd′×τ, Ψ′ ≡ [ψ′

1, ..., ψ′
τ′] ∈ Rd′×τ′

of lengths τ and τ′,

139

140 Uncertainty-DTW

ReLU ReLU

Scaled SigmoidScaled Sigmoid

Figure 7.1: Supervised few-shot action recognition of the articulated human 3D body
joints with the uncertainty-DTW (uDTW). Frames from a query and support sequences
are split into short-term temporal blocks X1, ..., Xτ and X′

1, ..., X′
τ′ of length M given

stride S. We pass all skeleton coordinates via Encoding Network to obtain feature
tensors Ψ and Ψ′, which are directed to the Supervised Comparator with uDTW.
For each query-support pair (Ψn, Ψ′

n), uDTW computes the base-distance matrix Dn
reweighted by uncertainty Σ†

n to compare τ×τ′ blocks, and SigmaNet generates
underlying block-wise uncertainty parameters Σn. uDTW finds the warping path
with the smallest distance, and returns its Ωn penalty (uncertainty aggregated along
the path).

respectively. Under its transportation plan Aτ,τ′ , each path Π∈Aτ,τ′ is evaluated to
ascertain the path distance, and the smallest distance is ‘selected’ by the soft minimum:

d2
DTW(Ψ, Ψ′)=SoftMinγ

([〈
Π, D(Ψ, Ψ′)

〉]
Π∈Aτ,τ′

)
, (7.1)

where SoftMinγ(α) =−γlog ∑i exp(−αi/γ) is the soft minimum, γ ≥ 0 controls its
relaxation (hard vs. soft path selection), and D ∈ Rτ×τ′

+ ≡ [d2
base(ψm, ψ′

n)](m,n)∈Iτ×Iτ′
contains pair-wise distances between all possible pairings of frame-wise feature
representations of sequences Ψ and Ψ′, and d2

base(·, ·) may be the squared Euclidean
distance.

However, the path distance ⟨Π, D(Ψ, Ψ′)⟩ of path Π ignores the observation un-
certainty of frame-wise feature representations by simply relying on the Euclidean
distances stored in D. Thus, we resort to the notion of the so-called aleatoric uncer-
tainty known from a non-exhaustive list of works about uncertainty [Matthies, 2007;
Kiureghian and Ditlevsen, 2009; Indrayan, 2008; Hüllermeier and Waegeman, 2021;
Kendall and Gal, 2017].

Specifically, to capture the aleatoric uncertainty of the Euclidean distance (or
regression, etc.), one should tune the observation noise parameter of sequences.
Instead of the homoscedastic model (constant observation noise), we opt for the
so-called heteroscedastic aleatoric uncertainty model (the observation noise may vary
with each frame/sequence). To this end, we model each path distance by the product
of likelihoods of Normal distributions (we also investigate other distributions in
Sec. 7.8).

§7.1 Introduction 141

(a) sDTWγ=0.01 (b) sDTWγ=0.1 (c) uDTWγ=0.01 (d) uDTWγ=0.1 (e) uDTW uncert.

Figure 7.2: Plots (a)-(d) show paths of sDTW and uDTW (in white) for a pair of
sequences. We power-normalized pixels of plots (by the power of 0.1) to see also
darker paths better. With higher γ that controls softness, in (b) & (d) more paths
become ‘active’ (fuzzy effect). In (c), uDTW has two possible routes vs. sDTW (a) due
to uncertainty modeling. In (e), we visualise uncertainty Σ. We binarize plot (c) and
multiply it by the Σ to display uncertainty values on the path (white pixels = high
uncertainty). The middle of the main path is deemed uncertain, which explains why
an additional path merges in that region with the main path. See also the histogram
of values of Σ.

Our (soft) uncertainty-DTW takes the following generalized form:
d2

uDTW(D, Σ†)=SoftMinγ

([〈
Π, D⊙Σ†

〉]
Π∈Aτ,τ′︸ ︷︷ ︸

w

)
Ω(Σ)=SoftMinSelγ

(
w, [⟨Π, logΣ⟩]Π∈Aτ,τ′

)
,

(7.2)

(7.3)

where D≡D(Ψ, Ψ′), Σ≡Σ(Ψ, Ψ′) and Σ† = inv(Σ),

where ⊙ is the Hadamard product, Σ†(Ψ, Ψ′) is the element-wise inverse of matrix
Σ ∈ Rτ×τ′

+ ≡ [σ2(ψm, ψ′
n)](m,n)∈Iτ×Iτ′

which contains pair-wise variances between all
possible pairings of frame-wise feature representations from sequences Ψ and Ψ′.
SoftMinγ(α) = ∑i αi

exp(−(αi−µα)/γ)

∑j exp(−(αj−µα)/γ)
with µα (the mean over coefficients of α) sub-

tracted from each coefficient αi to attain stability of the softmax (into which we
feed (αi−µα)). Moreover, SoftMinSelγ(α, β) =∑i βi

exp(−(αi−µα)/γ)

∑j exp(−(αj−µα)/γ)
is a soft-selector

returning (βi∗: i∗=arg mini αi) if γ approaches zero.

Eq. (7.2) yields the uncertainty-weighted time warping distance d2
uDTW(D, Σ†)

between sequences Ψ and Ψ′ because D and Σ† are both functions of (Ψ, Ψ′).

Eq. (7.3) provides the regularization penalty Ω(Σ) for sequences Ψ and Ψ′ (as Σ

is a function of (Ψ, Ψ′)) which is the aggregation of log-variances along the path with
the smallest distance, i.e., path matrix ((Πi∗ ∈{0, 1}τ×τ′

): i∗=arg mink wk) if γ=0, and
vector w contains path-aggregated distances for all possible paths of the plan Aτ,τ′ .

Contributions. The celebrated DTW warps the matching path between a pair of
sequences to recover the best matching distance under varying temporal within-class
dynamics of each sequence. The recovered path, and the distance corresponding to
that path, may be suboptimal if frame-wise (or block-wise) features contain noise
(frames that are outliers, contain occlusions or large within-class object variations, etc.)

142 Uncertainty-DTW

To this end, we propose several contributions:

i. We introduce the uncertainty-DTW, dubbed as uDTW, whose role is to take into
account the uncertainty of in frame-wise (or block-wise) features by selecting
the path which maximizes the Maximum Likelihood Estimation (MLE). The
parameters (such as variance) of a distribution (i.e., the Normal distribution) are
thus used within MLE (and uDTW) to model the uncertainty.

ii. As pairs of sequences are often of different lengths, optimizing the free-form
variable of variance is impossible. To that end, we equip each of our pipelines
with SigmaNet, whose role is to take frames (or blocks) of sequences, and generate
the variance end-to-end (the variance is parametrized by SigmaNet).

iii. We provide several pipelines that utilize uDTW for (1) forecasting the evolution of
time series, (2) estimating the Fréchet mean of time series, (3) supervised few-shot
action recognition, and (4) unsupervised few-shot action recognition.

Notations. Iτ is the index set {1, 2, ..., τ}. Concatenation of αi into a vector α is
denoted by [αi]i∈II . Concatenation of αij into matrix A is denoted by [αij](i,j)∈II×IJ

.
Dot-product between two matrices equals the dot-product of vectorized Π and D,
that is ⟨Π, D⟩≡⟨vec(Π), vec(D)⟩. Mathcal symbols are sets, e.g., A is a transportation
plan, capitalized bold symbols are matrices, e.g., D is the distance matrix, lowercase
bold symbols are vectors, e.g., w contains weighted distances. Regular fonts are scalars.
Table 7.1 shows the notations with their short descriptions used in this chapter.

7.1.1 Similarity learning with uDTW

In further chapters, based on the distance in Eq. (7.2) and the regularization term in
Eq. (7.3), we define specific loss functions for several problems such as forecasting
the evolution of time series, clustering time series or even matching sequence pairs in
few-shot action recognition. Below is an example of a generic similarity learning loss:

arg min
P

∑
n
ℓ
(

d2
uDTW(D(Ψn, Ψ′

n), Σ†(Ψn, Ψ′
n)), δn

)
+ βΩ(Σ(Ψn, Ψ′

n)), (7.4)

or

arg min
P ,Σ>0

∑
n
ℓ
(

d2
uDTW(D(Ψn, Ψ′

n), Σ†), δn

)
+ βΩ(Σ), (7.5)

where Ψn = f (Xn;P) and Ψ′
n = f (X′

n;P) are obtained from some backbone encoder
f (·;P) with parameters P and (Xn, X′

n)∈X is a sequence pair to compare with the
similarity label δn ∈ {0, 1} (where δn = 0 if yn = y′n and δn = 1 otherwise), (yn, y′n) is
a pair of class labels for (Ψn, Ψ′

n), and β≥ 0 controls the penalty for high matching
uncertainty. Figure 7.2 illustrates the impact of uncertainty on uDTW.

§7.1 Introduction 143

Table 7.1: Notations and their descriptions.

Notation Description

Ψ Query feature maps
Ψ′ Support feature maps
Π Path matrix

D(·, ·) Pair-wise distances
d2
∗(·, ·) Distance functions and * can be base (squared Euclidean), DTW, sDTW or uDTW

γ The relaxation parameter of sDTW/uDTW
τ The number of temporal blocks for query
τ′ The number of temporal blocks for support
Σ Pair-wise variances between all possible pairs of two sequences
Σ† Element-wise inverse of Σ

f (·; ·) Encoder function
P The set of parameters to learn
β Regularization parameter
σ Uncertainty parameter
X Query frames per block
X′ Support frames per block
K The size of dictionary
K′ The subset size for K′ nearest anchors
x Time series for training
x′ Time series for testing
µc Class prototype for class c

Ω(·) Regularization penalty
α Coding vector

λDL Learning rate for dictionary learning
λEN Learning rate for encoder
M Dictionary anchors
B The number of training episodes
N The number of classes
Z The number of samples from each class
J The number of human body joints
d Feature dimension after MLP
d′ Feature dimension (output of EN)
δ The similarity label

Nc The number of samples for class c

144 Uncertainty-DTW

Note that minimizing Eq. (7.5) w.r.t. (P , Σ) assumes that Σ ∈ Rτ×τ′
+ is a free variable

to minimize over (derivation in Section 7.1.2). However, as sequence pairs vary in
length, i.e., τ ̸=τ′, optimizing one global Σ is impossible (its size changes). Thus, for
problems we tackle, we minimize loss functions with the distance/penalty in Eq.
(7.4) and (7.5) where Σ is parametrized by (Ψn, Ψ′

n):
d2

uDTW•(Ψ, Ψ′)≡d2
uDTW(D(Ψ, Ψ′), Σ†(Ψ, Ψ′)), (7.6)

Ω•(Ψ, Ψ′)≡Ω(Σ(Ψ, Ψ′)). (7.7)

To that end, we devise a small MLP unit σ(·;Pσ) or σ(·, ·;Pσ) and obtain:

Σ=0.5·[(σ2(ψm;Pσ) + σ2(ψ′
n;Pσ))](m,n)∈Iτ×Iτ′

(7.8)
or
Σ′=[σ2(ψm, ψ′

n;Pσ)](m,n)∈Iτ×Iτ′
, (7.9)

where Eq. (7.8) uses additive variance terms generated for individual frames ψm

and ψ′
n, whereas (7.9) is a jointly generated variance for (ψm, ψ′

n).

7.1.2 Derivation of uDTW

We proceed by modeling an arbitrary path Πi from the transportation plan of Aτ,τ′ as
the following Maximum Likelihood Estimation (MLE) problem:

arg max
{σmn}(m,n)∈Πi

∏
(m,n)∈Πi

p(∥ψm−ψ′
n∥, σ2

mn), (7.10)

where p may be some arbitrary distribution, σ are distribution parameters, and ∥ · ∥
is an arbitrary norm. For the Normal distribution N which relies on the squared
Euclidean distance ∥ · ∥2

2, we have:

arg max
{σmn}(m,n)∈Πi

∏
(m,n)∈Πi

N (ψm; ψ′
n, σ2

mn) (7.11)

= arg max
{σmn}(m,n)∈Πi

log ∏
(m,n)∈Πi

1

(2π)
d′
2 σd′

exp
(
− ∥ψm−ψ′

n∥2
2

σ2
mn

)
(7.12)

= arg max
{σmn}(m,n)∈Πi

∑
(m,n)∈Πi

−d′

2
log(2π)− d′ log(σ)− ∥ψm−ψ′

n∥2
2

σ2
mn

(7.13)

= arg min
{σmn}(m,n)∈Πi

∑
(m,n)∈Πi

d′ log(σ) +
∥ψm−ψ′

n∥2
2

σ2
mn

, (7.14)

where d′ is the length of feature vectors ψ. Having recovered uncertainty parameters
{σmn}(m,n)∈Πi

, we obtain a combination of penalty terms and reweighted squared

§7.2 Related Work 145

Euclidean distances:

βΩΠi + d2
Πi
= ∑

(m,n)∈Πi

β log(σmn) +
∥ψm−ψ′

n∥2
2

σ2
mn

, (7.15)

where β≥0 (generally β ̸=d′) adjusts the penalty for large uncertainty. Separating the
uncertainty penalty log(σmn) from the uncertainty-weighted distance (both aggregated
along path Πi) yields: {

d2
Πi
=
〈
Πi, D(Ψ, Ψ′)⊙Σ†〉

ΩΠi = ⟨Πi, logΣ⟩ ,
(7.16)

where D∈Rτ×τ′
+ ≡

[d2
2(ψm,ψ′

n)
σ2

mn

]
(m,n)∈Iτ×Iτ′

and Σ∈Rτ×τ′
+ ≡ [σ2

mn](m,n)∈Iτ×Iτ′
. Derivations

for other distributions, i.e., Laplace or Cauchy, follow the same reasoning.

7.2 Related Work

Different flavors of Dynamic Time Warping. DTW [Cuturi, 2011], which seeks a
minimum cost alignment between time series is computed by dynamic programming
in quadratic time, is not differentiable and is known to get trapped in bad local minima.
In contrast, soft-DTW (sDTW) [Cuturi and Blondel, 2017] addresses the above issues
by replacing the minimum over alignments with a soft minimum, which has the
effect of inducing a ‘likelihood’ field over all possible alignments. However, sDTW
has been successfully applied in many computer vision tasks including audio/music
score alignment [Mensch and Blondel, 2018], action recognition [Su and Wen, 2022;
Cao et al., 2020], and end-to-end differentiable text-to-speech synthesis [Donahue
et al., 2021]. Despite its successes, sDTW has some limitations: (i) it can be negative
when used as a loss (ii) it may still get trapped in bad local minima. Thus, soft-
DTW divergences (sDTW div.) [Blondel et al., 2021], inspired by sDTW, attempts to
overcome such issues.

Other approaches inspired by DTW have been used to improve the inference
or adapt to modified or additional constraints, i.e., OPT [Su and Hua, 2019] and
OWDA [Su et al., 2019] treat the alignment as the optimal transport problem with
temporal regularization. TAP [Su and Wen, 2022] directly predicts the alignment
through a lightweight CNN, thus is does not follow a principled transportation plan,
and is not guaranteed to find a minimum cost path.

Our uDTW differs from these methods in that the transportation plan is executed
under the uncertainty estimation, thus various feature-level noises and outliers are
less likely to lead to the selection of a sub-optimal cost path.
Alignment-based time series problems. Distance between sequences plays an im-
portant role in time series retrieval [Su et al., 2019], forecasting [Cuturi and Blondel,
2017; Blondel et al., 2021], classification [Cuturi and Blondel, 2017; Blondel et al., 2021;
Dempster et al., 2021; Yang et al., 2021], clustering [García-García et al., 2009; Sakoe
and Chiba, 1978], etc. Various temporal nuisance noises such as initial states, different

146 Uncertainty-DTW

Scaled SigmoidScaled Sigmoid

(a)

Tanh

Scaled SigmoidScaled Sigmoid

(b)

Figure 7.3: In (a) is the unsupervised comparator for unsupervised few-shot action
recognition. The unsupervised head is wired with the Encoding Network from Figure
7.1, and trained from scratch without labels. In (b) is the pipeline for forecasting the
evolution of time series (a.k.a. multistep-ahead prediction).

sampling rates, local distortions, and execution speeds make the measurement of
distance between sequences difficult. To tackle these issues, typical feature-based
methods use RNNs to encode sequences and measure the distance between corre-
sponding features [Ramachandran et al., 2018]. Other existing methods [Wang, 2017;
Wang et al., 2019c; Koniusz et al., 2020] either encode each sequence into features that
are invariant to temporal variations [Abid and Zou, 2018; Lohit et al., 2019] or adopt
alignment for temporal correspondence calibration [Su and Hua, 2019]. However,
none of these methods is modeling the aleatoric uncertainty. As we model it along
the time warping path, the observation noise may vary with each frame or block.

Few-shot action recognition. Most existing few-shot action recognition methods [Wang
et al., 2019b,d; Wang and Koniusz, 2021] follow the metric learning paradigm. Sig-
nal Level Deep Metric Learning [Memmesheimer et al., 2020] and Skeleton-DML
[Memmesheimer et al., 2021] one-shot FSL approaches encode signals into images,
extract features using a deep residual CNN and apply multi-similarity miner losses.
TAEN [Ben-Ari et al., 2021] and FAN [Tan and Yang, 2019] encode actions into
representations and apply vector-wise metrics.

Most methods identify the importance of temporal alignment for handling the
non-linear temporal variations, and various alignment-based models are proposed
to compare the sequence pairs, e.g., permutation-invariant spatial-temporal atten-
tion reweighted distance in ARN [Zhang et al., 2020a], a variant of DTW used in
OTAM [Cao et al., 2020], temporal attentive relation network [Mina et al., 2019], a
two-stage temporal alignment network (TA2N) [Li et al., 2021c], a temporal CrossTrans-
former [Perrett et al., 2021], a learnable sequence matching distance called TAP [Su
and Wen, 2022].

In all cases, temporal alignment is a well-recognized tool, however lacking the
uncertainty modeling, which impacts the quality of alignment. Such a gap in the
literature inspires our work on uncertainty-DTW.

§7.3 Pipeline Formulations 147

7.3 Pipeline Formulations

Below we provide our several pipeline formulations for which uDTW is used as an
indispensable component embedded with the goal of measuring the distance for
warped paths under uncertainty.

7.3.1 Few-shot Action Recognition

For both supervised and unsupervised few-shot pipelines, we employ the Encoder
Network (EN) and the Supervised Comparator (similarity learning) as in Figure 7.1,
or Unupervised Comparator (based on dictionary learning) as in Figure 7.3a.
Encoding Network (EN). Our EN contains a simple 3-layer MLP unit (FC, ReLU, FC,
ReLU, Dropout, FC), GNN, with transformer [Dosovitskiy et al., 2020] and FC. The
MLP unit takes M neighboring frames, each with J skeleton body joints given by
Cartesian coordinates (x, y, z), forming one temporal block1. In total, depending on
stride S, we obtain some τ temporal blocks (each block captures the short temporal
dependency), whereas the long temporal dependency will be modeled by uDTW.
Each temporal block is encoded by the MLP into a d× J dimensional feature map.
Subsequently, query feature maps of size τ and support feature maps of size τ′ are
forwarded to a simple linear GNN model, and transformer, and an FC layer, which
returns Ψ ∈ Rd′×τ query feature maps and Ψ′ ∈ Rd′×τ′

support feature maps. Such
encoded feature maps are passed to the Supervised Comparator with uDTW.

Let support maps Ψ′ ≡ [f (X ′
1;P), ..., f (X ′

τ′ ;P)] ∈ Rd′×τ′
and query maps Ψ ≡

[f (X1;P), ..., f (Xτ;P)] ∈ Rd′×τ for query and support frames per block X, X′ ∈
R3×J×M. Define f (X;P) = FC(Transf(S2GC(MLP(X;PMLP);PS2GC); PTrans f);PFC) where P ≡
[PMLP,PS2GC,PTrans f ,PFC,PSN] is the set of parameters of EN, where PSN are param-
eters of SigmaNet, and S2GC is a Simple Spectral Graph Convolution (S2GC) [Zhu
and Koniusz, 2021b] whose details are in Sec. 7.7.3.
Supervised Few-shot Action Recognition. For the N-way Z-shot problem, we have
one query feature map and N×Z support feature maps per episode. We form a
mini-batch containing B episodes. We have query feature maps {Ψb}b∈IB and support
feature maps {Ψ′

b,n,z}b∈IB,n∈IN ,z∈IZ . Moreover, Ψb and Ψ′
b,1,: share the same class (drawn

from N classes per episode), forming the subset C‡ ≡ {c1, ..., cN} ⊂ IC ≡ C. To be
precise, labels y(Ψb) = y(Ψ′

b,1,z), ∀b ∈ IB, z ∈ IZ while y(Ψb) ̸= y(Ψ′
b,n,z), ∀b ∈ IB, n ∈

IN\{1}, z ∈ IZ. Thus the similarity label δ1 = 0, whereas δn ̸=1 = 1. Note that the
selection of C‡ per episode is random. For the N-way Z-shot protocol, the Supervised
Comparator is minimized w.r.t. P (Ψb and Ψ′ depend on P) as:

arg min
P

∑
b∈IB

∑
n∈IN

∑
z∈IZ

(
d2

uDTW•(Ψb, Ψ′
b,n,z)− δn

)2
+ βΩ•(Ψb, Ψ′

b,n,z). (7.17)

Unsupervised Few-shot Action Recognition. Below we propose a very simple
unsupervised variant with so-called Unsupervised Comparator. The key idea is that

1We use temporal blocks as they were shown more robust than frame-wise FSAR [Zhang et al.,
2020a] models.

148 Uncertainty-DTW

with uDTW, invariant to local temporal speed changes can be used to learn a dictionary
which, with some dictionary coding method should outperform at reconstructing
the sequences. This means we can learn an unsupervised comparator by projecting
sequences onto the dictionary space. To this end, let the protocol remain as for the
supervised few-shot learning with the exception that class labels are not used during
training, and only support images in testing are labeled for sake of evaluation the
accuracy by deciding which support representation each query is the closest to in the
nearest neighbor sense.

Firstly, in each training episode, we combine the query sequences Ψb with the sup-
port sequences Ψ′

b,n,z into episode sequences denoted as Ψ
‡
b,n where b∈IB enumerates

over B episodes, and n∈I(N·Z+1). For the feature coding, we use Locality-constrained
Soft Assignment (LCSA) [Liu et al., 2011b; Koniusz and Mikolajczyk, 2011; Koniusz
et al., 2013b] and a simple dictionary update based on the least squares computation.

For each episode b∈IB, we iterate over the following three steps:

i. The LCSA coding step which expresses each Ψ
‡
b,n as αb,n ∈RK

+ that assign Ψ
‡
b,n into

a dictionary with K sequences M1, ..., MK ∈Rd′×τ′
(dictionary anchors):

∀k,n, αk,b,n =

exp
(
− 1

γ′ d2
uDTW•

(
Ψ

‡
b,n,Mk

))
∑

l∈M(Ψ
‡
b,n ;K′)

exp
(
− 1

γ′ d2
uDTW•

(
Ψ

‡
b,n,Ml

)) if Mk ∈M
(
Ψ

‡
b,n; K′),

0 otherwise, (7.18)

where 0 < K′ ≤ K is a subset size for K′ nearest anchors of Ψ
‡
b,n retrieved by

operation M(Ψ
‡
b,n; K′) (based on uDTW) from M1, ..., MK, τ′ is set to the mean of

τ (over training set), and γ′=0.7 is a so-called smoothing factor;

ii. The dictionary update step updates M1, ..., MK given αb,n from Eq. (7.18):

for i=1,...,dict_iter:

∀k, Mk := Mk−λDL

N·Z+1

∑
n=1

∇Mk d2
uDTW•

(
Ψ

‡
b,n,

K

∑
l=1

αl,b,n Ml

)
, (7.19)

where dict_iter is set to 10 and λDL=0.001;

iii. The main loss for the Feature Encoder update step is given as (λEN=0.001):

P := P−λEN

N·Z+1

∑
n=1

∇Pd2
uDTW•

(
Ψ

‡
b,n, M ′

)
+βΩ•

(
Ψ

‡
b,n, M ′

)
, (7.20)

where M ′=
K

∑
l=1

αl,b,n Ml .

During testing, we use the learnt dictionary, pass new support and query sequences
via Eq. (7.18) and obtain α codes. Subsequently, we compare the LCSA code of the
query sequence with LCSA codes of support sequences via the histogram intersection

§7.4 Experiments 149

kernel. The closest match in the support set determines the test label of the query
sequence.

7.3.2 Time Series Forecasting and Classification

One of key applications of DTW and sDTW is learning with time series, including
forecasting the evolution of time series as in Figure 7.3b and time series classification.
Forecasting the Evolution of Time Series. Let x∈Rt and x′ ∈Rτ−t be the training
and testing parts of one time series corresponding to timesteps 1, ..., t and t+1, ..., τ,
respectively. The goal is to learn encoder f (x;P)∈Rτ−t which will be able to take x
as input, learn to translate it to x′. Figure 7.3b show the full pipeline. We took the
Encoding Network from the original soft-DTW pipeline [Cuturi and Blondel, 2017].
Our training objective is:

arg min
P

∑
n∈IN

d2
uDTW•(ψn, x′n)+ βΩ•(ψn, x′n), (7.21)

where ψ = f (x;P) and N is the number of training time series, P ≡ [PMLP,PSN] is
the set of parameters of EN and SigmaNet. In order to obtain Σ, vectors ψ and x′ are
passed via SigmaNet. After training, at the test time, for a previously unseen testing
sample x, f (·) has to predict the remaining part of the time series given by x′.
Time Series Classification. Below we follow the setting for this classical task according
to the original soft-DTW paper [Cuturi and Blondel, 2017], and define the nearest
centroid classifier. We estimate the Fréchet mean of training time series of each class
separately. We do not use any Encoding Network but the raw features. Let x∈Rτ be
training samples and µ∈Rτ′

be class prototypes (τ′ is set to average of τ across all
classes). We have:

∀c, arg min
P

∑
n∈INc

d2
uDTW•(xn, µc)+ βΩ•(xn, µc), (7.22)

where Nc is the number of samples for class c∈IC and P≡ [PSN , µc]. During testing,
we apply arg minc∈IC

d2
uDTW•(x, µc)+ βΩ•(x, µc) for x to find its nearest neighbor and

label it. The variances of x are recovered through SigmaNet while variances of µc were
obtained during training (adding both yields Σ of testing sample). As in soft-DTW
paper [Cuturi and Blondel, 2017], we use uDTW to directly find the nearest neighbor
of x across training samples to label x (for uncertainty, we use SigmaNet from the
nearest centroid task).

7.4 Experiments

Below we apply uDTW in several scenarios such as (i) forecasting the evolution of
time series, (ii) clustering/classifying time series, (iii) supervised few-shot action
recognition, and (iv) unsupervised few-shot action recognition.
Datasets. The following datasets are used in our experiments:

150 Uncertainty-DTW

i. UCR archive [Dau et al., 2018] is a dataset for time series classification archive. This
dataset contains a wide variety of fields (astronomy, geology, medical imaging) and
lengths, and can be used for time series classification/clustering and forecasting
tasks.

ii. NTU RGB+D (NTU-60) [Shahroudy et al., 2016a] contains 56,880 video sequences
and over 4 million frames. NTU-60 has variable sequence lengths and high
intra-class variations.

iii. NTU RGB+D 120 (NTU-120) [Liu et al., 2019a], an extension of NTU-60, con-
tains 120 action classes (daily/health-related), and 114,480 RGB+D video samples
captured with 106 distinct human subjects from 155 different camera viewpoints.

iv. Kinetics [Kay et al., 2017] is a large-scale collection of 650,000 video clips that cover
400/600/700 human action classes. It includes human-object interactions such as
playing instruments, as well as human-human interactions such as shaking hands and
hugging. We follow approach [Yan et al., 2018] and use the estimated joint locations
in the pixel coordinate system as the input to our pipeline. As OpenPose produces
the 2D body joint coordinates and Kinetics-400 does not offer multiview or depth
data, we use a network of Martinez et al. [Martinez et al., 2017] pre-trained on
Human3.6M [Catalin et al., 2014], combined with the 2D OpenPose output to
estimate 3D coordinates from 2D coordinates. The 2D OpenPose and the latter
network give us (x, y) and z coordinates, respectively.

7.4.1 Fréchet Mean of Time Series

Below, we visually inspect the Fréchet mean for the Euclidean, sDTW and our uDTW
distance, respectively.
Experimental setup. We follow the protocol of soft-DTW paper [Cuturi and Blondel,
2017]. For each dataset in UCR, we choose a class at random, pick 10 time series from
the selected class to compute its barycenter. We use L-BFGS [Liu and Nocedal, 1989]
to minimise the proposed uDTW barycenter objective. We set the maximum number
of iterations to 100.
Qualitative results. We first perform averaging between two time series (Figure 7.4).
We notice that averaging under the uDTW yields substantially different results than
those obtained with the Euclidean and sDTW geometry.

Figure 7.5 shows the barycenters obtained using sDTW and our uDTW. We observe
that our uDTW yields more reasonable barycenters than sDTW even when large γ

are used, e.g., for γ = 10 (right column of plots in Figure 7.5), the change points
of red curve look sharper. We also notice that both uDTW and sDTW with low
smoothing parameter γ=0.1 can get stuck in some bad local minima, but our uDTW
has fewer sharp peaks compared with sDTW (barycenters of uDTW are improved
by the uncertainty measure). Moreover, higher γ values smooth the barycenter but
introducing higher uncertainty (see uncertainty visualization around the barycenters
by comparing, e.g., γ = 0.1 vs. γ = 10.0). With γ = 1, the barycenters of sDTW and
uDTW match well with the time series. More visualizations can be found in Sec. 7.5.

§7.4 Experiments 151

0 20 40 60 80 100 120 140

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

sDTW+uncer. geometry

Eucl.
sDTW

=10.0
=1.0
=0.1

(a) β (where λ=1)

0 20 40 60 80 100 120 140

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

sDTW+uncer. geometry

Eucl.
sDTW
=10.0
=1.0
=0.1

(b) λ (where β=10)

Figure 7.4: Interpolation between two time series (grey and black dashed
lines) on the Gun Point dataset. We compute the barycenter by solving
arg min

µ,σµ

∑2
n=1 d2

uDTW
(

D, Σ†) + βΩ
(
Σ
)
+ λΩ′(Σ) where D = (xn1⊤−1µ⊤)2 and Σ =

11⊤+1σ⊤
µ where xn is the given n-th time series. β≥0 controls the penalty for high

matching uncertainty, Ω′ is defined as in Eq. (7.3) but element-wise logΣ is replaced
by element-wise (Σ−1)2 so that λ ≥ 0 favours uncertainty to remain close to one.
β and λ control the uncertainty estimation and yield different barycenters than the
Euclidean (green color) and sDTW (blue color) distances. As Ω and Ω′ act similar, we
only use Ω in our experiments.

7.4.2 Classification of Time Series

In this section, we devise the nearest neighbor and nearest centroid classifiers [Hastie
et al., 2001] with uDTW, as detailed in Section 7.3. For the K-nearest neighbor classifier,
we used softmax for the final decision. See Sec. 7.7.4 for details.
Experimental setup. We use 50% of the data for training, 25% for validation and 25%
for testing. We report K = 1, 2 and 3 for the nearest neighbor classifier.
Quantitative results. Table 7.2 shows a comparison of our uDTW versus Euclidean,
DTW, sDTW, and sDTW div. Unsurprisingly, the use of uDTW for barycenter com-
putation improves the accuracy of the nearest centroid classifier, and it outperforms
sDTW div. by ∼ 2%. Moreover, uDTW boosts results for the nearest neighbor classifier
given K=1, 2 and 3 by 1.4%, 1.7% and 3.2%, respectively, compared to sDTW div.

7.4.3 Forecasting the Evolution of Time Series

Experimental setup. We use the training and test sets pre-defined in the UCR archive.
For both training and test, we use the first 60% of timesteps of series as input and the
remaining 40% as output, ignoring the class information.
Qualitative results. The visualization of the predictions are given in Figure 7.6.
Although the predictions under the sDTW and uDTW losses sometimes agree with
each other, they can be visibly different. Predictions under uDTW can confidently
predict the abrupt and sharp changes. More visualizations can be found in Sec. C.

152 Uncertainty-DTW

(a) CBF

0 20 40 60

2

1

0

1

2
=0.1

uDTW
sDTW

0 20 40 60

2

1

0

1

2
=1.0

uDTW
sDTW

0 20 40 60

2

1

0

1

2
=10.0

uDTW
sDTW

(b) Synthetic Control

Figure 7.5: Comparison of barycenter based on sDTW or uDTW on CBF and Synthetic
Control. We visualize uncertainty around the barycenters in red color for uDTW.
Our uDTW generates reasonable barycenters even when higher γ values are used,
e.g., γ = 10.0. Higher γ value leads to smooth barycenter but introducing higher
uncertainty.

Quantitative results. We also provide quantitive results to validate the effectiveness
of uDTW. We use ECG5000 dataset from the UCR archive which is composed of 5000
electrocardiograms (ECG) (500 for training and 4500 for testing) of length 140. To
better evaluate the predictions, we use 2 different metrics (i) MSE for the predicted
errors of each time step (ii) DTW, sDTW div. and uDTW for comparing the ‘shape’
of time series. We use such shape metrics for evaluation as the length of time series
generally varies, and the MSE metric may lead to biased results which ignore the
shape trend of time series. We then use the Student’s t-test (with significance level
0.05) to highlight the best performance in each experiment (averaged over 100 runs).
Table 7.3 shows that our uDTW achieves almost the best performance on both MSE
and shape evaluation metrics (lower score is better).

7.4.4 Few-shot Action Recognition

Below, we use uDTW as a distance in our objectives for few-shot action recognition
(AR) tasks. We implement supervised and unsupervised pipelines (which is also
novel).
Experimental setup. For NTU-120, we follow the standard one-shot protocols [Liu
et al., 2019a]. Base on this protocol, we create a similar one-shot protocol for NTU-60,
with 50/10 action classes used for training/testing respectively (see Sec. B for details).

§7.4 Experiments 153

Table 7.2: Classification accuracy (mean±std) on UCR archive by the nearest neighbor
and the nearest centroid classifiers. In the column we indicate which distance was
used for computing the class prototypes. K is the number of nearest neighbors in this
context.

Nearest neighbor Nearest centroid
K = 1 K = 3 K = 5

Euclidean 71.2±17.5 72.3±18.1 73.0±16.7 61.3±20.1
DTW [Cuturi, 2011] 74.2±16.6 75.0±17.0 75.4±15.8 65.9±18.8
sDTW [Cuturi and Blondel, 2017] 76.2±16.6 77.2±15.9 78.0±16.5 70.5±17.6
sDTW div. [Blondel et al., 2021] 78.6±16.2 79.5±16.7 80.1±16.5 70.9±17.8
uDTW 80.0±15.0 81.2±17.8 83.3±16.2 72.2±16.0

0 20 40 60 80 100
3
2
1
0
1
2
3 Eucl.

sDTW
uDTW
GT

0 20 40 60 80 100

2

0

2

Eucl.
sDTW
uDTW
GT

0 20 40 60 80 100

2

0

2

Eucl.
sDTW
uDTW
GT

0 20 40 60 80 100

2

0

2

Eucl.
sDTW
uDTW
GT

(a) ECG200

0 50 100 150

6

4

2

0

2

4

Eucl.
sDTW
uDTW
GT

0 50 100 150

6

4

2

0

2

4
Eucl.
sDTW
uDTW
GT

0 50 100 150

6

4

2

0

2

4
Eucl.
sDTW
uDTW
GT

0 50 100 150

6

4

2

0

2

4
Eucl.
sDTW
uDTW
GT

(b) ECG5000

Figure 7.6: Given the first part of a time series, we train 3 multi-layer perception
(MLP) to predict the remaining part, we use the Euclidean, sDTW or uDTW distance
per MLP. We use ECG200 and ECG5000 in UCR archive, and display the prediction
obtained for the given test sample with either of these 3 distances and the ground
truth (GT). Oftentimes, we observe that uDTW helps predict the sudden changes well.

We also evaluate the model on both 2D and 3D Kinetics-skeleton. We split the whole
Kinetics-skeleton into 200 actions for training (the rest is used for testing). We choose
Matching Nets (MatchNets) and Prototypical Net (ProtoNet) as baselines as these two
models are very popular baselines, and we adapt these methods to skeleton-based
action recognition. We reshape and resize each video block into 224×224 color image,
and pass this image into MatchNets and ProtoNet to learn the feature representation
per video block. We compare uDTW vs. Euclidean, sDTW, sDTW div. and recent TAP.

Quantitative results. Table 7.4, 7.5 and 7.6 show that our uDTW performs better
than sDTW and sDTW div. on both supervised and unsupervised few-shot action
recognition. On Kinetics-skeleton dataset, we gain 2.4% and 4.4% improvements on
3D skeletons for supervised and unsupervised settings. On supervised setting, we
outperform TAP by ∼ 4% and 2% on NTU-60 and NTU-120 respectively. Moreover,
we outperform sDTW by ∼ 2% and 3% on NTU-60 and NTU-120 for the unsupervised
setting. More evaluations on few-shot action recognition are in Sec. 7.8.

154 Uncertainty-DTW

Table 7.3: Time series forecasting results evaluated with MSE, DTW, sDTW div. and
uDTW metrics on ECG5000, averaged over 100 runs (mean±std). Best method(s)
are highlighted in bold using Student’s t-test. Column-wise distances indicate the
distance used during training. Row-wise distances indicate the distance used to
compare prediction with the groundtruth at the test time (lower values are better).

MSE DTW sDTW div. uDTW
Euclidean 32.1±1.62 20.0±0.18 15.3±0.16 14.4±0.18
sDTW [Cuturi and Blondel, 2017] 38.6±6.30 17.2±0.80 22.6±3.59 32.1±2.25
sDTW div. [Blondel et al., 2021] 24.6±1.37 38.9±5.33 20.0±2.44 15.4±1.62
uDTW 23.0±1.22 16.7±0.08 16.8±1.62 8.27±0.79

Table 7.4: Evaluations on NTU-60.

#classes 10 20 30 40 50

Supervised
MatchNets [Vinyals et al., 2016] 46.1 48.6 53.3 56.3 58.8
ProtoNet [Snell et al., 2017] 47.2 51.1 54.3 58.9 63.0
TAP [Su and Wen, 2022] 54.2 57.3 61.7 64.7 68.3
Euclidean 38.5 42.2 45.1 48.3 50.9
sDTW [Cuturi and Blondel, 2017] 53.7 56.2 60.0 63.9 67.8
sDTW div. [Blondel et al., 2021] 54.0 57.3 62.1 65.7 69.0
uDTW 56.9 61.2 64.8 68.3 72.4

Unsupervised
Euclidean 20.9 23.7 26.3 30.0 33.1
sDTW [Cuturi and Blondel, 2017] 35.6 45.2 53.3 56.7 61.7
sDTW div. [Blondel et al., 2021] 36.0 46.1 54.0 57.2 62.0
uDTW 37.0 48.3 55.3 58.0 63.3

Table 7.5: Evaluations on NTU-120.

#classes 20 40 60 80 100

Supervised
MatchNets [Vinyals et al., 2016] 20.5 23.4 25.1 28.7 30.0
ProtoNet [Snell et al., 2017] 21.7 24.0 25.9 29.2 32.1
TAP [Su and Wen, 2022] 31.2 37.7 40.9 44.5 47.3
Euclidean 18.7 21.3 24.9 27.5 30.0
sDTW [Cuturi and Blondel, 2017] 30.3 37.2 39.7 44.0 46.8
sDTW div. [Blondel et al., 2021] 30.8 38.1 40.0 44.7 47.3
uDTW 32.2 39.0 41.2 45.3 49.0

Unsupervised
Euclidean 13.5 16.3 20.0 24.9 26.2
sDTW [Cuturi and Blondel, 2017] 20.1 25.3 32.0 36.9 40.9
sDTW div. [Blondel et al., 2021] 20.8 26.0 33.2 37.5 42.3
uDTW 22.7 28.3 35.9 39.4 44.0

7.5 Effectiveness of SigmaNet

In this section, we introduce several variants of how Σ is computed to verify the
effectiveness of our proposed SigmaNet.

Firstly, we investigate whether SigmaNet is needed in its current form (as in
taking features to produce the uncertainty variable), or if Σ could be learnt as the
so-called free variable. To this end, we create a vector of parameters of size τ(0) ·τ(0)
which we register as one of parameters of the network (we backpropagate w.r.t. this
parameter among others). We set τ(0) to be the average integer of numbers of blocks
over sequences. We then reshape this vector into τ(0)×τ(0) matrix and initialize with
0±0.1 uniform noise. We then apply a 2D bilinear interpolation to the matrix to obtain
Σ of desired size τ×τ′, where τ and τ′ are the number of temporal blocks for query
and support samples, respectively. The τ× τ′ matrix is then passed into the sigmoid

Table 7.6: Evaluations on 2D and 3D Kinetics-skeleton.

Supervised Unsupervised
2D 3D 2D 3D

Euclidean 21.2 23.1 12.7 13.3
TAP [Su and Wen, 2022] 32.9 36.0 - -
sDTW [Cuturi and Blondel, 2017] 34.7 39.6 23.3 28.3
sDTW div. [Blondel et al., 2021] 35.0 40.1 24.0 28.9
uDTW 35.5 42.0 25.9 32.7

§7.6 Hyperparameters Evaluation 155

function to produce the Σ matrix.
For classification of time series, we create a vector of parameters of size t(0)

which we register as one of parameters of the network (we backpropagate w.r.t. this
parameter among others). We set τ(0) to be the average integer of numbers of time
steps of input time series. We initialize that vector with 0±0.1 uniform noise, and
we then use a 1D bilinear interpolation to interpolate the vector into desired length
τ. The interpolated vector is passed into the sigmoid function to generate σx for the
input sequence x of length τ. For sequence x′ (exhaustive search via nearest neighbor)
or µc (via nearest centroid), we use exactly the same process to generate σx′ or σµc but
of course they have their own vector of length τ(0) that we minimize over. We obtain

Σ=σ2
x1⊤+1σ⊤

x′
2 (or Σ=σ2

x1⊤+1σ⊤
µc

2 if we use the nearest centroid), where squaring is
performed in the element-wise manner.

Table 7.7: Comparisons of two different ways of generating Σ for few-shot action
recognition. Evaluations on the NTU-60 dataset.

#classes 10 20 30 40 50

uDTW (Σ via the free variable) 54.1 56.5 61.0 64.1 68.0
uDTW (Σ via SigmaNet) 56.9 61.2 64.8 68.3 72.4

Table 7.8: Comparisons of two different ways of generating Σ for classification of time
series. Evaluations on the UCR archive. K denotes the number of nearest neighbors
used by the K nearest neighbors based classification.

Nearest neighbor Nearest centroid
K = 1 K = 3 K = 5

uDTW (Σ via the free variable) 77.0 77.3 78.0 70.9
uDTW (Σ via SigmaNet) 80.0 81.2 83.3 72.2

In conclusion, the above steps facilitate the direct minimization w.r.t. the variable
tied with Σ instead of learning Σ through our SigmaNet whose input are encoded
features etc. Tables 7.7 and 7.8 show that using SigmaNet is a much better choice than
trying to infer the uncertainty by directly minimizing the free variable. The result
is expected as SigmaNet learns to associate feature patterns of sequences with their
uncertainty patterns. Minimizing w.r.t. the free variables cannot learn per se.

7.6 Hyperparameters Evaluation

In this section, we evaluate the impact of key hyperparameters. Remaining hyperpa-
rameters are obtained through Hyperopt [Bergstra et al., 2015] for hyperparameter
search on the validation set.

7.6.1 Evaluation of Σ

We compare results given different formulations of Σ in Tables 7.9 and 7.10. We notice
that on smaller datasets, it is hard to determine which variant of Σ is better (as these

156 Uncertainty-DTW

Table 7.9: Evaluation of different variants of Σ computation on small-scale datasets
(supervised few-shot action recognition). Operator ⊙ is the Hadamart product.

σψ1⊤⊙1σ⊤
ψ′ σ2

ψ1⊤⊙1σ⊤
ψ′

2
σψ1⊤+1σ⊤

ψ′ σ2
ψ1⊤+1σ⊤

ψ′
2

MSR Action 3D 72.32 68.51 70.59 69.20
3D Action Pairs 82.78 80.56 82.22 85.00
UWA 3D Activity 43.86 45.91 45.91 45.03

Table 7.10: Evaluation of different variants of Σ computation on the large-scale NTU-60
dataset (supervised few-shot action recognition).

#classes σψ1⊤⊙1σ⊤
ψ′ σ2

ψ1⊤⊙1σ⊤
ψ′

2
σψ1⊤+1σ⊤

ψ′ σ2
ψ1⊤+1σ⊤

ψ′
2

10 56.6 56.0 55.6 56.9
20 60.4 61.0 61.2 61.2
30 64.2 64.1 63.5 64.8
40 68.1 66.9 67.2 68.3
50 72.0 72.3 72.0 72.4

earlier datasets have fewer limited reliable skeletons compared to the new datasets).
However, on bigger datasets, Σ=σ2

ψ1⊤+1σ⊤
ψ′

2 performs the best in all cases; thus we
choose this formulation of Σ for large-scale datasets.

7.6.2 Evaluation of κ and η of SigmaNet

0.5 0.7 0.9 1.0 1.2 1.5 1.8 2.0 2.5 3.0 3.5 4.0 4.5
40

45

50

55

60

65

70

75

80

85

ac
cu

ra
cy

 (
%

)

MSRActiton3D
3DActionPairs
UWA3DActivity
NTU-60

(a)
0.0 0.001 0.003 0.005 0.007 0.009 0.01 0.03 0.05 0.07

40

45

50

55

60

65

70

75

80

85

ac
cu

ra
cy

 (
%

)

MSRActiton3D
3DActionPairs
UWA3DActivity
NTU-60

(b)

0 0.005 0.007 0.01 0.03 0.05 0.07 0.1 0.5
40

45

50

55

60

65

70

75

80

85

ac
cu

ra
cy

 (
%

)

MSRActiton3D
3DActionPairs
UWA3DActivity
NTU-60

(c)
Figure 7.7: Evaluation of (a) κ which controls the maximum magnitude and (b) η
offset from Eq. (7.25) in SigmaNet and (c) β from Eq. (7.17). Note that β= 0 means
no regularization term of uDTW in use. We notice that with the regularization term
added to the uDTW, the overall performance is improved.

Figures 7.7a and 7.7b show the impact of κ and η of the scaled sigmoid function in
SigmaNet on both small-scale datasets and the large-scle NTU-60 dataset. We notice
that κ=1.5 performs the best on the three small-scale datasets and κ=1.8 works the
best on NTU-60. We choose κ = 1.8 in the experiments for the large-scale datasets.
Moreover, η∈ [0.003, 0.01] works better on NTU-60, and on the small-scale datasets,
η=0.01 achieves the best performance; thus we choose η=0.01 for the experiments.

§7.7 Network Configuration and Training Details 157

Table 7.11: Experimental results on ECGFiveDays (from UCR) and NTU-60 (50-class,
supervised / unsup. settings) for different warping window widths.

γ = 0.001 γ = 0.01 γ = 0.1 γ = 1
r=1.0r=3.0r=5.0 r=1.0r=3.0r=5.0 r=1.0r=3.0r=5.0 r=1.0r=3.0r=5.0

ECG
FiveDays

sDTW 83.4 82.8 82.0 79.7 76.8 77.8 75.4 69.0 65.3 62.5 61.7 60.2
uDTW 85.6 91.2 81.0 93.5 82.8 80.6 79.7 73.9 67.3 69.0 65.3 62.5
uDTW
w/o reg. 75.4 74.0 69.0 79.7 77.9 76.8 65.3 62.5 61.5 61.2 62.0 60.2

NTU-60
(sup.)

sDTW 65.7 64.7 64.8 65.2 67.8 63.9 60.0 58.9 54.3 54.0 52.2 52.3
uDTW 71.5 71.0 70.0 72.4 72.4 70.0 68.3 66.7 67.8 65.7 64.8 66.8
uDTW
w/o reg. 66.3 65.0 65.5 66.4 68.0 65.2 62.0 59.2 55.0 52.0 52.0 51.2

NTU-60
(unsup.)

sDTW 56.7 53.2 50.0 61.7 61.7 60.0 54.4 52.5 52.1 48.3 45.2 40.9
uDTW 61.0 61.5 60.7 63.3 63.0 62.5 59.2 59.0 57.3 58.0 57.2 55.7
uDTW
w/o reg. 50.1 49.3 47.0 55.3 54.0 51.3 44.1 42.0 40.7 42.3 40.1 35.6

7.6.3 Evaluation of β

Figure 7.7c shows the evaluations of β for both small-scale datasets and NTU-60.
Firstly, note that β = 0 means lack of the regularization term of uDTW, which
immediately causes the performance deterioration. As shown in the figure, β=0.05
performs the best on UWA 3D Activity, β = 0.03 achieves the best performance on
MSR Action 3D and β = 0.007 works the best on 3D Action Pairs dataset. We use
the corresponding best β values for the smaller datasets. On NTU-60, β∈ [0.01, 0.05]
performs the best compared to other β values, thus we choose β = 0.03 for the
experiments on all large-scale datasets.

7.6.4 Evaluation of warping window width

Table 7.11 on ECGFiveDays (from UCR) and NTU-60 (50-class, supervised / unsup.
settings) shows that uDTW does not break quicker than sDTW (window size is
parametrized by r). Very small r may preclude backpropagating through some
paths (of large distance). For such paths ‘beyond window’, learning uncertainty
is limited but this is normal. For similar reasons, choosing the right window size
is required by other DTW variants too. Also, if r is very large, large uncertainty
score may decrease the distance on multitude of paths by downweighting parts of
paths (could lead to strange matching) but as the uncertainty is aggregated into the
regularization penalty, this penalty prevents uDTW from unreasonable solutions.
Lack of regularization penalty (w/o reg.) affects the most the unsupervised few-shot
learning, while supervised loss can still drive SigmaNet to produce meaningful results.

7.7 Network Configuration and Training Details

Below we provide the details of network configuration and training process.

158 Uncertainty-DTW

7.7.1 Skeleton Data Preprocessing

Before passing the skeleton sequences into MLP and a simple linear graph network
(e.g., S2GC), we first normalize each body joint w.r.t. to the torso joint v f ,c:

v′
f ,i =v f ,i−v f ,c, (7.23)

where f and i are the index of video frame and human body joint respectively. After
that, we further normalize each joint coordinate into [-1, 1] range:

v̂ f ,i[j] =
v′

f ,i[j]

max([abs(v′
f ,i[j])] f∈Iτ ,i∈IJ)

, (7.24)

where j is for selection of the x, y and z axes, τ is the number of frames and J is the
number of 3D body joints per frame.

For the skeleton sequences that have more than one performing subject, (i) we
normalize each skeleton separately, and each skeleton is passed to MLP for learning
the temporal dynamics, and (ii) for the output features per skeleton from MLP, we
pass them separately to the graph neural network, e.g., two skeletons from a given
video sequence will have two outputs obtained from the graph neural network, and
we aggregate the outputs through average pooling before passing to sDTW or uDTW.

7.7.2 Network Configuration

SigmaNet. It is composed of an FC layer and a scaled sigmoid function which
translate the learned features of either actions or time series into desired Σ. The input
to FC is of the size of feature dimension (depends on the encoder) and the output is a
scalar. SigmaNet with the scaled sigmoid function can be defined as:

σ(ψ)=
κ

1+exp(−FC(ψ))
+η, (7.25)

where η > 0 is the offset and κ ≥ 0 is the maximum magnitude of sigmoid. For an
entire sequence with τ blocks, the SigmaNet produces vector σx for sequence x and
σx′ for sequence x′ (we concatenate per-block scalars to form these vectors), and we
typically obtain Σ=σ2

x1⊤+1σ2
x′
⊤.

Forecasting of the evolution of time series. The MLP for this task consists of two FC
layers with a tanh layer in between. The input to the first FC layer is t and output size
is t′, and after the tanh layer, the input to the second FC layer is t′ and output (τ−t)
dimensional prediction. We set t′= 30 or 50 depending on the length of time series in
each dataset.
Few-shot action recognition. Given the temporal block size M (the number of frames
in a block) and desired output size d, the configuration of the 3-layer MLP unit is: FC
(3M → 6M), LayerNorm (LN) as in [Dosovitskiy et al., 2020], ReLU, FC (6M → 9M),
LN, ReLU, Dropout (for smaller datasets, the dropout rate is 0.5; for large-scale
datasets, the dropout rate is 0.1), FC (9M → d), LN. Note that M is the temporal

§7.7 Network Configuration and Training Details 159

block size and d is the output feature dimension per body joint. We set M=10 for
experiments.

For the encoding network, let us take the query input X∈R3×J×M for the temporal
block of length M as an example, where 3 indicates that Cartesian coordinates (x, y, z)
were used, and J is the number of body joints. As alluded to earlier, we obtain
X̂T =MLP(X;PMLP)∈Rd×J .

Subsequently, we employ a simple linear graph network, S2GC from Section 7.7.3,
and the transformer encoder [Dosovitskiy et al., 2020] which consists of alternating
layers of Multi-Head Self-Attention (MHSA) and a feed-forward MLP (two FC layers
with a GELU non-linearity between them). LayerNorm (LN) is applied before every
block, and residual connections after every block. Each block feature matrix X̂ ∈ RJ×d

encoded by a simple linear graph network S2GC (without learnable Θ) is then passed
to the transformer. Similarly to the standard transformer, we prepend a learnable
vector ytoken∈R1×d to the sequence of block features X̂ obtained from S2GC, and we
also add the positional embeddings Epos ∈ R(1+J)×d based on the sine and cosine
functions (standard in transformers) so that token ytoken and each body joint enjoy
their own unique positional encoding. We obtain Z0∈R(1+J)×d which is the input in
the following backbone:

Z0 = [ytoken; S2GC(X̂)] + Epos, (7.26)

Z′
k = MHSA(LN(Zk−1)) + Zk−1, k = 1, ..., Ltr (7.27)

Zk = MLP(LN(Z′
k)) + Z′

k, k = 1, ..., Ltr (7.28)

y′ = LN
(
Z(0)

Ltr

)
where y′ ∈ R1×d (7.29)

f (X;P) = FC(y′T;PFC) ∈ Rd′ , (7.30)

where Z(0)
Ltr

is the first d dimensional row vector extracted from the output ma-
trix ZLtr of size (J+1) × d which corresponds to the last layer Ltr of the trans-
former. Moreover, parameter Ltr controls the depth of the transformer, whereas
P ≡ [PMLP,PS2GC,PTrans f ,PFC] is the set of parameters of EN. In case of S2GC,
|PS2GC|=0 because we do not use their learnable parameters Θ (i.e., think Θ is set as
the identity matrix in Eq. (7.31)).

We can define now a support feature map as Ψ′=[f (X1;P), ..., f (Xτ′ ;P)]∈Rd′×τ′

for τ′ temporal blocks, and the query map Ψ accordingly.
The hidden size of our transformer (the output size of the first FC layer of the

MLP depends on the dataset. For smaller datasets, the depth of the transformer is
Ltr = 6 with 64 as the hidden size, and the MLP output size is d= 32 (note that the
MLP which provides X̂ and the MLP in the transformer must both have the same
output size). For NTU-60, the depth of the transformer is Ltr=6, the hidden size is
128 and the MLP output size is d= 64. For NTU-120, the depth of the transformer
is Ltr = 6, the hidden size is 256 and the MLP size is d= 128. For Kinetics-skeleton,
the depth for the transformer is Ltr=12, hidden size is 512 and the MLP output size
is d = 256. The number of Heads for the transformer of smaller datasets, NTU-60,
NTU-120 and Kinetics-skeleton is set as 6, 12, 12 and 12, respectively.

160 Uncertainty-DTW

The output sizes d′ of the final FC layer are 50, 100, 200, and 500 for the smaller
datasets, NTU-60, NTU-120 and Kinetics-skeleton, respectively.

7.7.3 Linear Graph Network (S2GC)

Based on a modified Markov Diffusion Kernel, Simple Spectral Graph Convolution
(S2GC) is the summation over l-hops, l=1, ..., L. The output of S2GC is given as:

ΦS2GC=
1
L

L

∑
l=1

((1−α)SlX+αX)Θ, (7.31)

where L≥ 1 is the number of linear layers and α≥ 0 determines the importance of
self-loop of each node (we use their default setting α = 0.05 and L = 6). Choice of
other graph embeddings are possible, including contrastive models COLES [Zhu et al.,
2021a] or COSTA [Zhang et al., 2022f], adversarial Fisher-Bures GCN [Sun et al., 2019]
or GCNs with rectifier attention [Zhang et al., 2022e]. One may also use kernels on
3D body joints as in [Tas and Koniusz, 2018] or even use CNN to encode 3D body
joints as COLTRANE [Prabowo et al., 2019].

7.7.4 K-NN classifier with SoftMax

For the K-NN classifier, instead of using K best weights proportional to the inverse
of the distance from the query sample x∗ to the closest samples xn (as is done in the
soft-DTW paper [Cuturi and Blondel, 2017]) and expressed by

w(xn|x∗) =
1

d2
(
x∗, xn

) , (7.32)

we weigh the neighbors xn of x∗ using

w(xn|x∗) =
exp

(
− 1

γ′′ d2(x∗, xn
))

∑n′∈N (x∗;K) exp
(
− 1

γ′′ d2
(
x∗, xn′

)) (7.33)

such that N (x∗; K) produces K nearest samples xn′ of x∗ according to distance d(·, ·),
e.g., the Euclidean distance, sDTW or uDTW. Parameter γ′′> 0 (in our case, we set
γ′′=6) further controls the impact of each sample xn on the classifier based on the
bell shape of Radial Basis Function in the above equation.

Table 7.12 shows the comparisons. We notice that the use of SoftMax in the K-NN
classifier improves the performance for all the methods when K=3 and K=5.

7.7.5 Training Details

For both time series and few-shot action recognition pipelines, the weights are initial-
ized with the normal distribution (zero mean and unit standard deviation). We use
1e-3 for the learning rate, and the weight decay is 1e-6. We use the SGD optimizer.

§7.8 Additional Evaluations for Few-shot Action Recognition 161

Table 7.12: Classification accuracy (mean±std) on UCR archive using nearest neighbor.
K denotes the number of nearest neighbors in the K-NN classifier. Highlighted rows
are the based on SoftMax from Eq. (7.33). Non-highlighted rows are based on Eq.
(7.32).

Nearest neighbor
K = 1 K = 3 K = 5

Euclidean 71.2±17.5 69.5±18.0 67.5±17.6
Euclidean (SoftMax) 71.2±17.5 72.3±18.1 73.0±16.7
DTW [Cuturi, 2011] 74.2±16.6 72.8±16.9 71.4±16.8
DTW [Cuturi, 2011] (SoftMax) 74.2±16.6 75.0±17.0 75.4±15.8
sDTW [Cuturi and Blondel, 2017] 76.2±16.6 74.0±15.6 70.5±17.6
sDTW [Cuturi and Blondel, 2017] (SoftMax) 76.2±16.6 77.2±15.9 78.0±16.5
sDTW div. [Blondel et al., 2021] 78.6±16.2 76.5±16.4 74.8±15.8
sDTW div. [Blondel et al., 2021] (SoftMax) 78.6±16.2 79.5±16.7 80.1±16.5
uDTW 80.0±15.0 78.0±15.8 76.2±15.0
uDTW (SoftMax) 80.0±15.0 81.2±17.8 83.3±16.2

For time series, we set the training epochs to 30, 50 and 100 depending on the
dataset in the UCR archive (due to many datasets, the epoch settings will be provided
in the code directly).

For few-shot action recognition, we set the number of training episodes to 100K
for NTU-60, 200K for NTU-120, 500K for 3D Kinetics-skeleton, 10K for small datasets
such as UWA 3D Multiview Activity II.

7.8 Additional Evaluations for Few-shot Action Recognition

Table 7.13: uDTW derived under the Normal, Laplacian and Cauchy distributions.
Evaluations of few-shot action recognition on small-scale datasets.

Supervised Unsupervised
MSR 3DActionPairs UWA3D MSR 3DActionPairs UWA3D

TAP (HM) [Su and Wen, 2022] 67.40 77.22 37.13 - - -
TAP (Lifted) [Su and Wen, 2022] 65.20 78.33 34.80 - - -
TAP (Bino.) [Su and Wen, 2022] 66.67 78.33 36.55 - - -
sDTW [Cuturi and Blondel, 2017] 70.59 81.67 44.74 62.63 48.33 39.47
uDTW (Laplace) 72.24 82.89 45.64 66.00 55.00 41.22
uDTW (Cauchy) 70.88 84.44 45.03 65.12 50.32 40.50
uDTW (Normal) 72.66 83.33 47.66 65.00 52.22 41.74

We also evaluate our proposed uDTW versus sDTW on smaller datasets for
both supervised and unsupervised settings. As uDTW was derived in Section 7.1.2
under modeling the MLE of the product of the Normal distributions, we investigate
modeling each path Πi by replacing the Normal distribution with the Laplace or
Cauchy distributions. By applying MLE principles in analogy to Section 7.1.2, we
arrive at βΩΠi + d2

Πi
for

i. Laplace: ∑(m,n)∈Πi
β log(σmn) +

∥ψm−ψ′
n∥1

σmn
;

162 Uncertainty-DTW

Table 7.14: uDTW derived under the Normal, Laplacian and Cauchy distributions.
Evaluations of few-shot action recognition on the large-scale NTU-60 dataset.

#classes 10 20 30 40 50

Supervised
sDTW(baseline) [Cuturi and Blondel, 2017] 53.7 56.2 60.0 63.9 67.8
uDTW(Cauchy) 56.1 61.1 62.9 68.3 69.9
uDTW(Laplace) 55.3 59.2 63.3 67.7 70.3
uDTW(Normal) 56.9 61.2 64.8 68.3 72.4

Unsupervised
sDTW(baseline) [Cuturi and Blondel, 2017] 35.6 45.2 53.3 56.7 61.7
uDTW(Cauchy) 36.7 47.9 54.9 57.3 63.3
uDTW(Laplace) 36.2 48.2 54.3 57.8 63.1
uDTW(Normal) 37.0 48.3 55.3 58.0 63.3

ii. Cauchy: ∑(m,n)∈Πi
β log(σmn) + log

(
1 + ∥ψm−ψ′

n∥2
2

σ2
mn

)
.

Table 7.13 shows that uDTW achieves better performance than sDTW, and the
Laplace distribution is performing particularly well on the unsupervised few-shot
action recognition. Table 7.14 shows that uDTW based on the Normal distribution is
overall better than other distributions on large-scale datasets such as NTU-60. For this
very reason we use uDTW based on the Normal distribution.

7.9 Conclusions

We have introduced the uncertainty-DTW which handles the uncertainty estimation
of frame- and/or block-wise features to improve the path warping of the celebrated
soft-DTW. Our uDTW produces the uncertainty-weighted distance along the path and
returns the regularization penalty aggregated along the path, which follows sound
principles of classifier regularization. We have provided several pipelines for time
series forecasting, and supervised and unsupervised action recognition, which use
uDTW as a distance. Our simple uDTW achieves better sequence alignment in several
benchmarks.

Chapter 8

Temporal-Viewpoint Transportation
Plan

We propose a Few-shot Learning pipeline for 3D skeleton-based action recognition
by Joint tEmporal and cAmera viewpoiNt alIgnmEnt (JEANIE). To factor out mis-
alignment between query and support sequences of 3D body joints, we propose an
advanced variant of Dynamic Time Warping which jointly models each smooth path
between the query and support frames to achieve simultaneously the best alignment
in the temporal and simulated camera viewpoint spaces for end-to-end learning under
the limited few-shot training data. Sequences are encoded with a temporal block
encoder based on Simple Spectral Graph Convolution, a lightweight linear Graph
Neural Network backbone. We also include a setting with a transformer. Finally,
we propose a similarity-based loss which encourages the alignment of sequences
of the same class while preventing the alignment of unrelated sequences. We show
state-of-the-art results on NTU-60, NTU-120, Kinetics-skeleton and UWA3D Multiview
Activity II.

8.1 Introduction

Action recognition is arguably among key topics in computer vision due to appli-
cations in video surveillance [Wang, 2017; Wang et al., 2019c], human-computer
interaction, sports analysis, virtual reality and robotics. Many pipelines [Tran et al.,
2015; Feichtenhofer et al., 2016b, 2017a; Carreira and Zisserman, 2017; Wang et al.,
2019b; Koniusz et al., 2020] perform action classification given the large amount of
labeled training data. However, manually collecting and labeling videos for 3D skele-
ton sequences is laborious, and such pipelines need to be retrained or fine-tuned for
new class concepts. Popular action recognition networks include two-stream neural
networks [Feichtenhofer et al., 2016b, 2017a; Wang et al., 2017] and 3D convolutional
networks (3D CNNs) [Tran et al., 2015; Carreira and Zisserman, 2017], which aggre-
gate frame-wise and temporal block representations, respectively. However, such
networks indeed must be trained on large-scale datasets such as Kinetics [Carreira
and Zisserman, 2017; Wang et al., 2019d; Wang and Koniusz, 2021; Koniusz et al.,
2021] under a fixed set of training class concepts.

163

164 Temporal-Viewpoint Transportation Plan

Thus, there exists a growing interest in devising effective Few-shot Learning (FSL)
for action recognition, termed Few-shot Action Recognition (FSAR), that rapidly
adapts to novel classes given a few training samples [Mishra et al., 2018; Xu et al.,
2018; Guo et al., 2018; Dwivedi et al., 2019; Zhang et al., 2020a; Cao et al., 2020; Wang
and Koniusz, 2022b]. However, FSAR for videos is scarce due to the volumetric nature
of videos and large intra-class variations.

FSL for image recognition has been widely studied [Miller et al., 2000; Li et al.,
2002; Fink, 2005; Bart and Ullman, 2005; Fei-Fei et al., 2006; Lake et al., 2011] including
contemporary CNN-based FSL methods [Koch et al., 2015; Vinyals et al., 2016; Snell
et al., 2017; Finn et al., 2017; Sung et al., 2018; Zhang and Koniusz, 2019], which use
meta-learning, prototype-based learning and feature representation learning. Just
in 2020–2022, many FSL methods [Guo et al., 2020; Dvornik et al., 2020; Wang et al.,
2020; Lichtenstein et al., 2020; Luo et al., 2021; Fei et al., 2020; Guan et al., 2020; Li
et al., 2020b; Elsken et al., 2020; Cao et al., 2020; Tang et al., 2020; Koniusz and Zhang,
2020; Simon et al., 2020b; Zhang et al., 2022a; Zhu and Koniusz, 2022; Lu and Koniusz,
2022] have been dedicated to image classification or detection [Yu et al., 2020; Zhang
et al., 2021a, 2020d, 2022d,c]. Noteworthy mentioning is the incremental learning
paradigm that can also tackle novel classes [Simon et al., 2021]. In this chapter, we
aim at advancing few-shot recognition of articulated set of connected 3D body joints.

With an exception of very recent models [Liu et al., 2017; Liu et al., 2019a;
Memmesheimer et al., 2020, 2021; Wang and Koniusz, 2022b; Qin et al., 2022], FSAR
approaches that learn from skeleton-based 3D body joints are scarce. The above
situation prevails despite action recognition from articulated sets of connected body
joints, expressed as 3D coordinates, does offer a number of advantages over videos
such as (i) the lack of the background clutter, (ii) the volume of data being several
orders of magnitude smaller, and (iii) the 3D geometric manipulations of sequences
being relatively friendly.

Thus, we propose a FSAR approach that learns on skeleton-based 3D body joints
via Joint tEmporal and cAmera viewpoiNt alIgnmEnt (JEANIE). As FSL is based
on learning similarity between support-query pairs, to achieve good matching of
queries with support sequences representing the same action class, we propose to
simultaneously model the optimal (i) temporal and (ii) viewpoint alignments. To
this end, we build on soft-DTW [Cuturi and Blondel, 2017], a differentiable variant
of Dynamic Time Warping (DTW) [Cuturi, 2011]. Unlike soft-DTW, we exploit the
projective camera geometry. We assume that the best smooth path in DTW should
simultaneously provide the best temporal and viewpoint alignment, as sequences that
are being matched might have been captured under different camera viewpoints or
subjects might have followed different trajectories.

To obtain skeletons under several viewpoints, we rotate skeletons (zero-centered
by hip) by Euler angles [eul] w.r.t. x, y and z axes, or generate skeleton locations given
simulated camera positions, according to the algebra of stereo projections [ste].

We note that view-adaptive models for action recognition do exist. View Adaptive
Recurrent Neural Networks [Zhang et al., 2017b, 2019d] is a classification model
equipped with a view-adaptive subnetwork that contains the rotation and translation

§8.1 Introduction 165

ReLU

ReLU

=

Figure 8.1: Our 3D skeleton-based FSAR with JEANIE. Frames from a query se-
quence and a support sequence are split into short-term temporal blocks X1, ..., Xτ and
X′

1, ..., X′
τ′ of length M given stride S. Subsequently, we generate (i) multiple rotations

by (∆θx, ∆θy) of each query skeleton by either Euler angles (baseline approach) or
(ii) simulated camera views (gray cameras) by camera shifts (∆θaz, ∆θalt) w.r.t. the
assumed average camera location (black camera). We pass all skeletons via Encoding
Network (with an optional transformer) to obtain feature tensors Ψ and Ψ′, which are
directed to JEANIE. We note that the temporal-viewpoint alignment takes place in 4D
space (we show a 3D case with three views: −30◦, 0◦, 30◦). Temporally-wise, JEANIE
starts from the same t=(1, 1) and finishes at t=(τ, τ′) (as in DTW). Viewpoint-wise,
JEANIE starts from every possible camera shift ∆θ ∈ {−30◦, 0◦, 30◦} (we do not know
the true correct pose) and finishes at one of possible camera shifts. At each step,
the path may move by no more than (±∆θaz,±∆θalt) to prevent erroneous alignments.
Finally, SoftMin picks up the smallest distance.

switches within its RNN backbone, and the main LSTM-based network. Temporal
Segment Network [Wang et al., 2019] models long-range temporal structures with
a new segment-based sampling and aggregation module. However, such pipelines
require a large number of training samples with varying viewpoints and temporal
shifts to learn a robust model. Their limitations become evident when a network
trained under a fixed set of action classes has to be adapted to samples of novel classes.
Our JEANIE does not suffer from such a limitation.

Our pipeline consists of an MLP which takes neighboring frames to form a
temporal block. Firstly, we sample desired Euler rotations or simulated camera
viewpoints, generate multiple skeleton views, and pass them to the MLP to get
block-wise feature maps, next forwarded to a Graph Neural Network (GNN), e.g.,
GCN [Kipf and Welling, 2017], Fisher-Bures GCN [Sun et al., 2019], SGC [Wu et al.,
2019b], APPNP [Klicpera et al., 2019] or S2GC [Zhu and Koniusz, 2021b; Zhu et al.,
2021a], followed by an optional transformer [Dosovitskiy et al., 2020], and an FC layer
to obtain graph-based representations passed to JEANIE.

JEANIE builds on Reproducing Kernel Hilbert Spaces (RKHS) [Smola and Kondor,
2003] which scale gracefully to FSAR problems which, by their setting, learn to
match pairs of sequences rather than predict class labels. JEANIE builds on Optimal
Transport [Villani, 2009] by using a transportation plan for temporal and viewpoint
alignment in skeletal action recognition.

Below are our contributions:

i. We propose a Few-shot Action Recognition approach for learning on skeleton-

166 Temporal-Viewpoint Transportation Plan

based articulated 3D body joints via JEANIE, which performs the joint alignment
of temporal blocks and simulated viewpoint indexes of skeletons between support-
query sequences to select the smoothest path without abrupt jumps in matching
temporal locations and view indexes. Warping jointly temporal locations and
simulated viewpoint indexes helps meta-learning with limited samples of novel
classes.

ii. To simulate different viewpoints of 3D skeleton sequences, we consider rotating
them (1) by Euler angles within a specified range along x and y axes, or (2) towards
the simulated camera locations based on the algebra of stereo projection.

iii. We investigate several different GNN backbones (including transformer), as well
as the optimal temporal size and stride for temporal blocks encoded by a simple
3-layer MLP unit before forwarding them to GNN.

iv. We propose a simple similarity-based loss encouraging the alignment of within-
class sequences and preventing the alignment of between-class sequences.

We achieve the state of the art on large-scale NTU-60 [Shahroudy et al., 2016a],
NTU-120 [Liu et al., 2019a], Kinetics-skeleton [Yan et al., 2018] and UWA3D Multiview
Activity II [Rahmani et al., 2016b]. As far as we can tell, the simultaneous alignment
in the joint temporal-viewpoint space for FSAR is a novel proposition.

8.2 Related Works

Below, we describe 3D skeleton-based action recognition, FSAR approaches and
GNNs.
Action recognition (3D skeletons). 3D skeleton-based action recognition pipelines
often use GCNs [Kipf and Welling, 2017], e.g., spatio-temporal GCN [Yan et al., 2018],
an a-links inference model [Li et al., 2019], shift-graph model [Cheng et al., 2020b]
and multi-scale aggregation node [Liu et al., 2020b]. However, such models rely on
large-scale datasets, and cannot be easily adapted to novel class concepts.
FSAR (videos). Approaches [Mishra et al., 2018; Guo et al., 2018; Xu et al., 2018]
use a generative model, graph matching on 3D coordinates and dilated networks,
respectively. Approach [Zhu and Yang, 2018] uses a compound memory network.
ProtoGAN [Dwivedi et al., 2019] generates action prototypes. Model [Zhang et al.,
2020a] uses permutation-invariant attention and second-order aggregation of temporal
video blocks, whereas approach [Cao et al., 2020] proposes a modified temporal
alignment for query-support pairs via DTW.
FSAR (3D skeletons). Few FSAR models use 3D skeletons [Liu et al., 2017; Liu
et al., 2019a; Memmesheimer et al., 2020, 2021]. Global Context-Aware Attention
LSTM [Liu et al., 2017] selectively focuses on informative joints. Action-Part Semantic
Relevance-aware (APSR) model [Liu et al., 2019a] uses the semantic relevance between
each body part and action class at the distributed word embedding level. Signal
Level Deep Metric Learning (DML) [Memmesheimer et al., 2020] and Skeleton-DML

§8.3 Background 167

[Memmesheimer et al., 2021] one-shot FSL approaches encode signals into images,
extract features using CNN and apply multi-similarity miner losses. In contrast, we
use temporal blocks of 3D body joints of skeletons encoded by GNNs under multiple
viewpoints of skeletons to simultaneously perform temporal and viewpoint-wise
alignment of query-support in the meta-learning regime.
Graph Neural Networks. GNNs are popular in the skeleton-based action recognition.
We build on GNNs in this chapter due to their excellent ability to represent graph-
structured data such as interconnected body joints. GCN [Kipf and Welling, 2017]
applies graph convolution in the spectral domain, and enjoys the depth-efficiency
when stacking multiple layers due to non-linearities. However, depth-efficiency costs
speed due to backpropagation through consecutive layers. In contrast, a very recent
family of so-called spectral filters do not require depth-efficiency but apply filters
based on heat diffusion to the graph Laplacian. As a result, they are fast linear models
as learnable weights act on filtered node representations. SGC [Wu et al., 2019b],
APPNP [Klicpera et al., 2019] and S2GC [Zhu and Koniusz, 2021b] are three methods
from this family which we investigate for the backbone.
Multi-view action recognition. Multi-modal sensors enable multi-view action recog-
nition [Wang et al., 2019b; Zhang et al., 2017b]. A Generative Multi-View Action
Recognition framework [Wang et al., 2019d] integrates complementary information
from RGB and depth sensors by View Correlation Discovery Network. Some works
exploit multiple views of the subject [Shahroudy et al., 2016a; Liu et al., 2019a; Zhang
et al., 2019d; Wang et al., 2019d] to overcome the viewpoint variations for action recog-
nition on large training datasets. In contrast, our JEANIE learns to perform jointly the
temporal and simulated viewpoint alignment in an end-to-end meta-learning setting.
This is a novel paradigm based on similarity learning of support-query pairs rather
than learning class concepts.

8.3 Background

Below we present a necessary background on Euler angles and the algebra of stereo
projection, GNNs and the formulation of soft-DTW.
Euler angles [eul] are defined as successive planar rotation angles around x, y, and z
axes. For 3D coordinates, we have the following rotation matrices Rx, Ry and Rz:[

1 0 0
0 cosθx sinθx
0 −sinθx cosθx

]
,

[
cosθy 0 −sinθy

0 1 0
sinθy 0 cosθy

]
,

[
cosθz sinθz 0
−sinθz cosθz 0

0 0 1

]
(8.1)

As the resulting composite rotation matrix depends on the order of rotation axes, i.e.,
RxRyRz ̸=RzRyRx, we also investigate the algebra of stereo projection.

Stereo projections [ste]. Suppose we have a rotation matrix R and a translation
vector t= [tx, ty, tz]T between left/right cameras (imagine some non-existent stereo
camera). Let Ml and Mr be the intrinsic matrices of the left/right cameras. Let pl
and pr be coordinates of the left/right camera. As the origin of the right camera

168 Temporal-Viewpoint Transportation Plan

in the left camera coordinates is t, we have: pr = R(pl−t) and (pl−t)T = (RTpr)T.
The plane (polar surface) formed by all points passing through t can be expressed

by (pl−t)T(pl×t) = 0. Then, pl×t = Spl where S =

[
0 −tz ty
tz 0 −tx−ty tx 0

]
. Based on

the above equations, we obtain pr
TRSpl = 0, and note that RS = E is the Essential

Matrix, and pT
r Epl =0 describes the relationship for the same physical point under

the left and right camera coordinate system. As E has no internal inf. about the
camera, and E is based on the camera coordinates, we use a fundamental matrix F
that describes the relationship for the same physical point under the camera pixel
coordinate system. The relationship between the pixel and camera coordinates is:
p∗=Mp′ and p′

r
TEp′

l =0.
Now, suppose the pixel coordinates of p′

l and p′
r in the pixel coordinate system are

p∗
l and p∗

r , then we can write p∗
r

T(M−1
r)TEM−1

l p∗
l =0, where F=(M−1

r)TEM−1
l is the

fundamental matrix. Thus, the relationship for the same point in the pixel coordinate
system of the left/right camera is:

p∗
r

TFp∗
l =0. (8.2)

We treat 3D body joint coordinates as p∗
l . Given F, we obtain their coordinates p∗

r in
the new view.
GNN notations. Firstly, let G=(V, E) be a graph with the vertex set V with nodes
{v1, ..., vn}, and E are edges of the graph. Let A and D be the adjacency and diagonal
degree matrix, respectively. Let Ã = A+I be the adjacency matrix with self-loops
(identity matrix) with the corresponding diagonal degree matrix D̃ such that D̃ii =

∑j(Aij+Iij). Let S = D̃− 1
2 ÃD̃− 1

2 be the normalized adjacency matrix with added
self-loops. For the l-th layer, we use Θ(l) to denote the learnt weight matrix, and Φ to
denote the outputs from the graph networks. Below, we list backbones used by us.

GCN [Kipf and Welling, 2017]. GCNs learn the feature representations for the features
xi of each node over multiple layers. For the l-th layer, we denote the input by H(l−1)

and the output by H(l). Let the input (initial) node representations be H(0)=X. For an
L-layer GCN, the output representations are given by:

ΦGCN=SH(L−1)Θ(L) where H(l)=ReLU(SH(l−1)Θ(l)). (8.3)

APPNP [Klicpera et al., 2019]. The Personalized Propagation of Neural Predictions
(PPNP) and its fast approximation, APPNP, are based on the personalized PageRank.
Let H(0)= fΘ(X) be the input to APPNP, where fΘ can be an MLP with parameters Θ.
Let the output of the l-th layer be H(l)=(1 − α)SH(l−1)+αH(0), where α is the teleport
(or restart) probability in range (0, 1]. For an L-layer APPNP, we have:

ΦAPPNP=(1−α)SHL+αH(0). (8.4)

SGC [Wu et al., 2019b] & S2GC [Zhu and Koniusz, 2021b]. SGC captures the L-hops
neighborhood in the graph by the L-th power of the transition matrix used as a

§8.4 Approach 169

spectral filter. For an L-layer SGC, we obtain:

ΦSGC=SLXΘ. (8.5)

Based on a modified Markov Diffusion Kernel, Simple Spectral Graph Convolution
(S2GC) is the summation over l-hops, l=1, ..., L. The output of S2GC is:

ΦS2GC=
1
L

L

∑
l=1

((1−α)SlX+αX)Θ. (8.6)

Soft-DTW [Cuturi, 2011; Cuturi and Blondel, 2017]. Dynamic Time Warping can be
seen as a specialized case of the Wasserstein metric, under specific transportation plan.
Soft-DTW is defined as:

dDTW(Ψ, Ψ′)=SoftMinγ
A∈Aτ,τ′

〈
A, D(Ψ, Ψ′)

〉
, (8.7)

where SoftMinγ(α)=−γlog ∑
i

exp(−αi/γ). (8.8)

The binary A ∈ Aτ,τ′ denotes a path within the transportation plan Aτ,τ′ which
depends on lengths τ and τ′ of sequences Ψ≡ [ψ1, ..., ψτ]∈Rd′×τ, Ψ′≡ [ψ′

1, ..., ψ′
τ′]∈

Rd′×τ′
and D∈Rτ×τ′

+ ≡ [dbase(ψm, ψ′
n)](m,n)∈Iτ×Iτ′

, the matrix of distances, is evaluated
for τ×τ′ frame representations according to some base distance dbase(·, ·), i.e., the
Euclidean or the RBF-induced distance. We make use of principles of soft-DTW.
However, we design a joint alignment between temporal skeleton sequences and
simulated skeleton viewpoints, an entirely novel proposal.

8.4 Approach

To learn similarity/dissimilarity between pairs of sequences of 3D body joints repre-
senting query and support samples from episodes, our goal is to find a smooth joint
viewpoint-temporal alignment of query and support and minimize or maximize the
matching distance dJEANIE (end-to-end setting) for same or different support-query la-
bels, respectively. Fig. 8.2 (top) shows that sometimes matching of query and support
may be as easy as rotating one trajectory onto another, in order to achieve viewpoint
invariance. A viewpoint invariant distance [Haasdonk and Burkhardt, 2007] can be
defined as:

dinv(Ψ, Ψ′)= Inf
γ,γ′∈T

d
(
γ(Ψ), γ′(Ψ′)

)
, (8.9)

where T is a set of transformations required to achieve a viewpoint invariance, d(·, ·) is
some base distance, e.g., the Euclidean distance, and Ψ and Ψ′ are features describing
query and support pair of sequences. Typically, T may include 3D rotations to rotate
one trajectory onto the other. However, such a global viewpoint alignment of two
sequences is suboptimal. Trajectories are unlikely to be straight 2D lines in the
3D space. Fig. 8.2 (bottom) shows that 3D body joints locally follow complicated

170 Temporal-Viewpoint Transportation Plan

query

support

query

support

Figure 8.2: (top) In viewpoint-invariant
learning, the distance between query fea-
tures Ψ and support features Ψ′ has to
be computed. The blue arrow indicates
that trajectories of both actions need align-
ment. (bottom) In real life, subject’s 3D
body joints deviate from one ideal trajec-
tory, and so advanced viewpoint align-
ment strategy is needed.

-20
0
20

1

Figure 8.3: JEANIE (1-max shift). We loop
over all points. At (t, t′, n) (green point)
we add its base distance to the minimum
of accumulated distances at (t, t′−1, n−1),
(t, t′−1, n), (t, t′−1, n+1) (orange plane),
(t−1, t′−1, n−1), (t−1, t′−1, n), (t−1, t′−
1, n+1) (red plane) and (t−1, t′, n−1), (t−
1, t′, n), (t−1, t′, n+1) (blue plane).

non-linear paths.
Thus, we propose JEANIE that aligns and warps query/support sequences based

on the feature similarity. One can think of JEANIE as performing Eq. (8.9) with
T containing camera viewpoint rotations, and the base distance d(·, ·) being a joint
temporal-viewpoint variant of soft-DTW to account for local temporal-viewpoint
variations of 3D body joint trajectories. JEANIE unit in Fig. 8.1 realizes such a strategy
(SoftMin operation is equivalent of Eq. (8.9)). While such an idea sounds simple, it
is effective, it has not been done before. Fig. 8.3 (discussed later in the text) shows
one step of the temporal-viewpoint computations of JEANIE. Below, we detail our
pipeline shown in Figure 8.1, explain the proposed JEANIE and our loss function.
Firstly, we present our notations.
Notations. IK stands for the index set {1, 2, ..., K}. Concatenation of αi is denoted
by [αi]i∈II , whereas X:,i means we extract/access column i of matrix D. Calligraphic
mathcal fonts denote tensors (e.g., D), capitalized bold symbols are matrices (e.g., D),
lowercase bold symbols are vectors (e.g., ψ), and regular fonts denote scalars.
Encoding Network (EN). We start by generating K×K′ Euler rotations or K×K′

simulated camera views (moved gradually from the estimated camera location) of
query skeletons. Our EN contains a simple 3-layer MLP unit (FC, ReLU, FC, ReLU,
Dropout, FC), GNN, optional Transformer [Dosovitskiy et al., 2020] and FC. The MLP
unit takes M neighboring frames, each with J 3D skeleton body joints, forming one
temporal block. In total, depending on stride S, we obtain some τ temporal blocks
which capture the short temporal dependency, whereas the long temporal dependency
is modeled with our JEANIE. Each temporal block is encoded by the MLP into a
d× J dimensional feature map. Subsequently, query feature maps of size K×K′×τ

and support feature maps of size τ′ are forwarded to a GNN, optional Transformer
(similar to ViT [Dosovitskiy et al., 2020], instead of using image patches, we feed each

§8.4 Approach 171

Viewpoints

-45o

-30o

0o

30o

45o Temporal

4.94
4.64
4.15
4.08
4.21

(a) soft-DTW (view-wise)

Viewpoints

-45o

-30o

0o

30o

45o Temporal

dFVM = 2.53

(b) FVM

Viewpoints

-45o

-30o

0o

30o

45o Temporal

4.38
4.45
4.07
3.69
3.99

(c) JEANIE (1-max shift)

Figure 8.4: A comparison of paths in 3D for soft-DTW, Free Viewpoint Matching (FVM)
and our JEANIE. For a given support skeleton sequence (green color), we choose
viewing angles between −45◦ and 45◦ for the camera viewpoint simulation. The
support skeleton sequence is shown in black color. (a) soft-DTW finds each individual
alignment per viewpoint fixed throughout alignment: dshortest = 4.08. (b) FVM is a
greedy matching algorithm that in each time step seeks the best alignment pose from
all viewpoints which leads to unrealistic zigzag path (person cannot jump from front
to back view suddenly): dFVM = 2.53. (c) Our JEANIE (1-max shift) is able to find
smooth joint viewpoint-temporal alignment between support and query sequences.
We show each optimal path for each possible starting position: dJEANIE=3.69. While
dFVM =2.53 for FVM is overoptimistic, dshortest =4.08 for fixed-view matching is too
pessimistic, whereas JEANIE strikes the right matching balance with dJEANIE=3.69.

body joint encoded by GNN into the transformer), and an FC layer, which returns
Ψ ∈ Rd′×K×K′×τ query feature maps and Ψ′ ∈ Rd′×τ′

support feature maps. Feature
maps are passed to JEANIE and the similarity classifier.

Let support maps Ψ′ be [f (X ′
1;F), ..., f (X ′

τ′ ;F)] ∈ Rd′×τ′
and query maps Ψ be

[f (X1;F), ..., f (Xτ;F)]∈Rd′×K×K′×τ, for query and support frames per block X, X′∈
R3×J×M. Moreover, we define f (X;F)=FC(Transf(GNN(MLP(X;FMLP); FGNN);FTrans f);FFC),
F ≡ [FMLP,FGNN ,FTrans f ,FFC] is the set of parameters of EN (note optional Trans-
former [Dosovitskiy et al., 2020]). As GNN, we try GCN [Kipf and Welling, 2017],
SGC [Wu et al., 2019b], APPNP [Klicpera et al., 2019] or S2GC [Zhu and Koniusz,
2021b].

JEANIE. Matching query-support pairs requires temporal alignment due to potential
offset in locations of discriminative parts of actions, and due to potentially different
dynamics/speed of actions taking place. The same concerns the direction of the
dominant action trajectory w.r.t. the camera. Thus, JEANIE, our advanced soft-DTW,
has the transportation plan A′≡Aτ,τ′,K,K′ , where apart from temporal block counts
τ and τ′, for query sequences, we have possible ηaz left and ηaz right steps from
the initial camera azimuth, and ηalt up and ηalt down steps from the initial camera
altitude. Thus, K=2ηaz+1, K′=2ηalt+1. For the variant with Euler angles, we simply
have A′′≡Aτ,τ′,K,K′ where K=2ηx+1, K′=2ηy+1 instead.

172 Temporal-Viewpoint Transportation Plan

Then, JEANIE is given as:

dJEANIE(Ψ, Ψ′)=SoftMinγ
A∈A′

〈
A,D(Ψ, Ψ′)

〉
, (8.10)

where D∈RK×K′×τ×τ′
+ ≡ [dbase(ψm,k,k′ , ψ′

n)](m,n)∈Iτ×Iτ′
(k,k′)∈IK×IK′

and D contains distances.

Figure 8.3 shows one step of JEANIE (1-max shift). Suppose the given viewing
angle set is {−40◦,−20◦, 0◦, 20◦, 40◦}. For 1-max shift, we loop over (t, t′, n). At
location (t, t′, n), we extract the base distance and add it together with the minimum of
aggregated distances at the shown 9 predecessor points. We store that total distance
at (t, t′, n), and we move to the next point. Note that for viewpoint index n, we look
up (n−1, n, n+1). Extension to the ι-max shift is straightforward.

Algorithm 1 illustrates JEANIE. For brevity, let us tackle the camera viewpoint
alignment in a single space, e.g., for some shifting steps −η, ..., η, each with size ∆θaz.
The maximum viewpoint change from block to block is ι-max shift (smoothness). As
we have no way to know the initial optimal camera shift, we initialize all possible
origins of shifts in accumulator rn,1,1 = dbase(ψn,1, ψ′

1) for all n ∈ {−η, ..., η}. Subse-
quently, a phase related to soft-DTW (temporal-viewpoint alignment) takes place.
Finally, we choose the path with the smallest distance over all possible viewpoint
ends by selecting a soft-minimum over [rn,τ,τ′]n∈{−η,...,η}. Notice that accumulator
R ∈ R(2ι+1)×τ×τ′

. Moreover, whenever either index n−i, t−j or t′−k in rn−i,t−j,t′−k (see
algorithm) is out of bounds, we define rn−i,t−j,t′−k = ∞.
FVM. To ascertain whether JEANIE is better than performing separately the temporal
and simulated viewpoint alignments, we introduce a baseline called the Free View-
point Matching (FVM). FVM, for every step of DTW, seeks the best local viewpoint
alignment, thus realizing non-smooth temporal-viewpoint path in contrast to JEANIE.
To this end, we apply DTW in Eq. (8.10) with the base distance replaced by:

dFVM(ψt,ψ′
t′)
= SoftMinγ̄

m,n,m′,n′∈{−η,...,η}
dbase(ψm,n,t, ψ′

m′,n′,t′), (8.11)

where Ψ∈Rd′×K×K′×τ and Ψ′∈Rd′×K×K′×τ′
are query and support feature maps. We

abuse the notation by writing dFVM(ψt,ψ′
t′)

as we minimize over viewpoint indexes in

Eq. (8.11). We compute the distance matrix D∈Rτ×τ′
+ ≡ [dFVM(ψt, ψ′

t′)](t,t′)∈Iτ×Iτ′
.

Fig. 8.4 shows the comparison between soft-DTW (view-wise), FVM and our
JEANIE. FVM is a greedy matching method which leads to complex zigzag path in
3D space (assuming the camera viewpoint single space in ψn,t and no viewpoint in
ψ′

t′). Although FVM is able to find the smallest distance path compared to soft-DTW
and JEANIE, it suffers from several issues (i) It is unreasonable for poses in a given
sequence to match under sudden jumps in viewpoints. (ii) Suppose the two sequences
are from two different classes, FVM still yields the smallest distance (decreased
inter-class variance).
Loss Function. For the N-way Z-shot problem, we have one query feature map

§8.4 Approach 173

Algorithm 1 Joint tEmporal and cAmera viewpoiNt alIgnmEnt (JEANIE).
Input (forward pass): Ψ, Ψ′, γ>0, dbase(·, ·), ι-max shift.

1: r:,:,: =∞, rn,1,1=dbase(ψn,1, ψ′
1), ∀n∈{−η, ..., η}

2: Π ≡ {−ι, ..., 0, ..., ι} × {(0, 1), (1, 0), (1, 1)}
3: for t∈Iτ:
4: for t′∈Iτ′ :
5: if t ̸=1 or t′ ̸=1:
6: for n∈{−η, ..., η}:

7: rn,t,t′ = dbase(ψn,t, ψ′
t′) + SoftMinγ

(
[rn−i,t−j,t′−k](i,j,k)∈Π

)
Output: SoftMinγ

(
[rn,τ,τ′]n∈{−η,...,η}

)

and N×Z support feature maps per episode. We form a mini-batch containing B
episodes. Thus, we have query feature maps {Ψb}b∈IB and support feature maps
{Ψ′

b,n,z}b∈IB,n∈IN ,z∈IZ . Moreover, Ψb and Ψ′
b,1,: share the same class, one of N classes

drawn per episode, forming the subset C‡ ≡ {c1, ..., cN} ⊂ IC ≡ C. To be precise,
labels y(Ψb)=y(Ψ′

b,1,z), ∀b∈IB, z∈IZ while y(Ψb) ̸=y(Ψ′
b,n,z), ∀b∈IB, n∈IN\{1}, z∈

IZ. In most cases, y(Ψb) ̸=y(Ψb′) if b ̸=b′ and b, b′∈IB. Selection of C‡ per episode is
random.

For the N-way Z-shot protocol, we minimize:

l(d+, d−)=
(

µ(d+)−{µ(TopMinβ(d
+))}

)2
(8.12)

+
(

µ(d−)−{µ(TopMaxNZβ(d
−))}

)2
, (8.13)

where d+=[dJEANIE(Ψb, Ψ′
b,1,z)]b∈IB

z∈IZ

and d−=[dJEANIE(Ψb, Ψ′
b,n,z)] b∈IB,

n∈IN\{1},z∈IZ

,

where d+ is a set of within-class distances for the mini-batch of size B given N-
way Z-shot learning protocol. By analogy, d− is a set of between-class distances.
Function µ(·) is simply the mean over coefficients of the input vector, {·} detaches
the graph during the backpropagation step, whereas TopMinβ(·) and TopMaxNZβ(·)
return β smallest and NZβ largest coefficients from the input vectors, respectively.
Thus, Eq. (8.12) promotes the within-class similarity while Eq. (8.13) reduces the
between-class similarity. Integer β ≥ 0 controls the focus on difficult examples,
e.g., β = 1 encourages all within-class distances in Eq. (8.12) to be close to the
positive target µ(TopMinβ(·)), the smallest observed within-class distance in the
mini-batch. If β>1, this means we relax our positive target. By analogy, if β=1, we
encourage all between-class distances in Eq. (8.13) to approach the negative target
µ(TopMaxNZβ(·)), the average over the largest NZ between-class distances. If β>1,
the negative target is relaxed.

174 Temporal-Viewpoint Transportation Plan

8.5 Experiments

We provide network configurations and training details in Sec. 7.7. Below, we describe
the datasets and evaluation protocols on which we validate our JEANIE.
Datasets. Table 8.9 contain details of datasets described below. Sec. B.1 of Appendix
details the class concepts per split for small datasets.

i. UWA3D Multiview Activity II [Rahmani et al., 2016b] contains 30 actions performed
by 9 people in a cluttered environment. In this dataset, the Kinect camera was
moved to different positions to capture the actions from 4 different views: front
view (V1), left view (V2), right view (V3), and top view (V4).

ii. NTU RGB+D (NTU-60) [Shahroudy et al., 2016a] contains 56,880 video sequences
and over 4 million frames. This dataset has variable sequence lengths and high
intra-class variations.

iii. NTU RGB+D 120 (NTU-120) [Liu et al., 2019a], an extension of NTU-60, con-
tains 120 action classes (daily/health-related), and 114,480 RGB+D video samples
captured with 106 distinct human subjects from 155 different camera viewpoints.

iv. Kinetics [Kay et al., 2017] is a large-scale collection of 650,000 video clips that
cover 400/600/700 human action classes. It includes human-object interactions
such as playing instruments, as well as human-human interactions such as shaking
hands and hugging. As the Kinetics-400 dataset provides only the raw videos, we
follow approach [Yan et al., 2018] and use the estimated joint locations in the pixel
coordinate system as the input to our pipeline. To obtain the joint locations, we
first resize all videos to the resolution of 340 × 256, and convert the frame rate
to 30 FPS. Then we use the publicly available OpenPose [Cao et al., 2017] toolbox
to estimate the location of 18 joints on every frame of the clips. As OpenPose
produces the 2D body joint coordinates and Kinetics-400 does not offer multiview
or depth data, we use a network of Martinez et al. [Martinez et al., 2017] pre-trained
on Human3.6M [Catalin et al., 2014], combined with the 2D OpenPose output to
estimate 3D coordinates from 2D coordinates. The 2D OpenPose and the latter
network give us (x, y) and z coordinates, respectively.

Evaluation protocols. For the UWA3D Multiview Activity II, we use standard multi-
view classification protocol [Rahmani et al., 2016b; Wang, 2017; Wang et al., 2019b], but
we apply it to one-shot learning as the view combinations for training and testing sets
are disjoint. For NTU-120, we follow the standard one-shot protocol [Liu et al., 2019a].
Based on this protocol, we create a similar one-shot protocol for NTU-60, with 50/10
action classes used for training/testing respectively. To evaluate the effectiveness of
the proposed method on viewpoint alignment, we also create two new protocols on
NTU-120, for which we group the whole dataset based on (i) horizontal camera views
into left, center and right views, (ii) vertical camera views into top, center and bottom
views. We conduct two sets of experiments on such disjoint view-wise splits: (i) using
100 action classes for training, and testing on the same 100 action classes (ii) training

§8.5 Experiments 175

0 [-15,15] [-30,30] [-45,45] [-60,60] [-75,75] [-90,90]

horizontal camera view
50

58

65

73

80
ac

cu
ra

cy
 (

%
)

10-way
20-way
30-way
40-way
50-way

(a) horizontal camera view

0 [-15,15] [-30,30] [-45,45] [-60,60] [-75,75] [-90,90]

vertical camera view
50

58

65

73

80

ac
cu

ra
cy

 (
%

)

10-way
20-way
30-way
40-way
50-way

(b) vertical camera view

Figure 8.5: The impact of viewing angles on NTU-60.

2 6 10 14 18 22

30

40

50

60
65

100

ac
c.

 (
%

) S2GC (20-way)

S2GC (50-way)
GCN (20-way)
GCN (50-way)

Figure 8.6: The impact
of β in loss function on
NTU-60 with S2GC and
GCN.

on 100 action classes but testing on the rest unseen 20 classes. Appendix Sec. B details
new/additional eval. protocols on NTU-60/NTU-120.
Stereo projections. For simulating different camera viewpoints, we estimate the
fundamental matrix F (Eq. (8.2)), which relies on camera parameters. Thus, we
use the Camera Calibrator from MATLAB to estimate intrinsic, extrinsic and lens
distortion parameters. For a given skeleton dataset, we compute the range of spatial
coordinates x and y, respectively. We then split them into 3 equally-sized groups to
form roughly left, center, right views and other 3 groups for bottom, center, top views.
We choose ∼15 frame images from each corresponding group, upload them to the
Camera Calibrator, and export camera parameters. We then compute the average
distance/depth and height per group to estimate the camera position. On NTU-60
and NTU-120, we simply group the whole dataset into 3 cameras, which are left,
center and right views, as provided in [Liu et al., 2019a], and then we compute the
average distance per camera view based on the height and distance settings given in
the table in [Liu et al., 2019a].

8.5.1 Ablation Study

We start our experiments by investigating the GNN backbones (Sec. 8.7.1), camera
viewpoint simulation and their hyper-parameters (Sec. 8.7.3, 8.7.4, 8.7.5).
Camera viewpoint simulations. We choose 15 degrees as the step size for the
viewpoints simulation. The ranges of camera azimuth/altitude are in [−90◦, 90◦].
Where stated, we perform a grid search on camera azimuth/altitude with Hyperopt.
Below, we explore the choice of the angle ranges for both horizontal and vertical
views. Fig. 8.5a and 8.5b (evaluations on the NTU-60 dataset) show that the angle
range [−45◦, 45◦] performs the best, and widening the range in both views does not
increase the performance any further. Table 8.1 (top) shows results for the chosen
range [−45◦, 45◦] of camera viewpoint simulations. Euler simple (K+K′) denotes a
simple concatenation of features from both horizontal and vertical views, whereas
Euler/CamVPC(K×K′) represents the grid search of all possible views. It shows that
Euler angles for the viewpoint augmentation outperform Euler simple, and CamVPC
(viewpoints of query sequences are generated by the stereo projection geometry)

176 Temporal-Viewpoint Transportation Plan

Table 8.1: Experimental results on NTU-60 (left) and NTU-120 (right) for different
camera viewpoint simulations. Below the dashed line are ablated few variants of
JEANIE.

NTU-60 NTU-120
Training Classes 10 20 30 40 50 20 40 60 80 100

Euler simple (K+K′) 54.3 56.2 60.4 64.0 68.1 30.7 36.8 39.5 44.3 46.9
Euler (K×K′) 60.8 67.4 67.5 70.3 75.0 32.9 39.2 43.5 48.4 50.2
CamVPC (K×K′) 59.7 68.7 68.4 70.4 73.2 33.1 40.8 43.7 48.4 51.4
V(Euler) 54.0 56.0 60.2 63.8 67.8 30.6 36.7 39.2 44.0 47.0
2V(Euler simple) 54.3 56.2 60.4 64.0 68.1 30.7 36.8 39.5 44.3 46.9
2V(Euler) 60.8 67.4 67.5 70.3 75.0 32.9 39.2 43.5 48.4 50.2
2V(CamVPC) 59.7 68.7 68.4 70.4 73.2 33.1 40.8 43.7 48.4 51.4
2V(CamVPC+crossval.) 63.4 72.4 73.5 73.2 78.1 37.2 43.0 49.2 50.0 55.2
2V(CamVPC+crossval.)+Transf. 65.0 75.2 76.7 78.9 80.0 38.5 44.1 50.3 51.2 57.0

Table 8.2: Experimental results on NTU-60 (left) and NTU-120 (right) for ι-max shift.
ι-max shift is the max. viewpoint shift from block to block in JEANIE.

NTU-60 NTU-120
10 20 30 40 50 20 40 60 80 100

ι=1 60.8 70.7 72.5 72.9 75.2 36.3 42.5 48.7 50.0 54.8
ι=2 63.8 72.9 74.0 73.4 78.1 37.2 43.0 49.2 50.0 55.2
ι=3 55.2 58.9 65.7 67.1 72.5 36.7 43.0 48.5 49.0 54.9
ι=4 54.5 57.8 63.5 65.2 70.4 36.5 42.9 48.3 48.9 54.3

outperforms Euler angles in almost all the experiments on NTU-60 and NTU-120.
This proves the effectiveness of using the stereo projection geometry for the viewpoint
augmentation. More baseline experiments with/without viewpoint alignment are in
Sec. 8.7.2.
Evaluation of β. Figure 8.6 shows that if β = 8 and 14, our loss function performs
the best on 20- and 50-class protocol, respectively, on NTU-60 for the S2GC and GCN
backbone. Moreover, β is not affected by backbone.
The ι-max shift. Table 8.2 shows the evaluations of ι for the maximum shift. We notice
that ι=2 yields the best results for all the experimental settings on both NTU-60 and
NTU-120. Increasing ι does not help improve the performance.
Block size and strides. Table 8.3 shows evaluations of block size M and stride
S, and indicates that the best performance (both 50- and 20-class) is achieved for
smaller block size (frame count in the block) and smaller stride. Longer temporal
blocks decrease the performance due to the temporal information not reaching the
temporal alignment step. Our block encoder encodes each temporal block for learning
the local temporal motions, and aggregate these block features finally to form the
global temporal motion cues. Smaller stride helps capture more local motion patterns.

§8.5 Experiments 177

Table 8.3: The impact of the number of frames M in temporal block under stride step
S on results (NTU-60). S = pM, where 1−p describes the temporal block overlap
percentage. Higher p means fewer overlap frames between temporal blocks.

S = M S = 0.8M S = 0.6M S = 0.4M S = 0.2M
M 50-class 20-class 50-class 20-class 50-class 20-class 50-class 20-class 50-class 20-class
5 69.0 55.7 71.8 57.2 69.2 59.6 73.0 60.8 71.2 61.2
6 69.4 54.0 65.4 54.1 67.8 58.0 72.0 57.8 73.0 63.0
8 67.0 52.7 67.0 52.5 73.8 61.8 67.8 60.3 68.4 59.4
10 62.2 44.5 63.6 50.9 65.2 48.4 62.4 57.0 70.4 56.7
15 62.0 43.5 62.6 48.9 64.7 47.9 62.4 57.2 68.3 56.7
30 55.6 42.8 57.2 44.8 59.2 43.9 58.8 55.3 60.2 53.8
45 50.0 39.8 50.5 40.6 52.3 39.9 53.0 42.1 54.0 45.2

Table 8.4: Results on NTU-60 (S2GC backbone). Models use temporal alignment
by soft-DTW or JEANIE (joint temporal-viewpoint alignment) except if indicated
otherwise.

Training Classes 10 20 30 40 50

Each frame to frontal view 52.9 53.3 54.6 54.2 58.3
Each block to frontal view 53.9 56.1 60.1 63.8 68.0
Traj. aligned baseline (video-level) 36.1 40.3 44.5 48.0 50.2
Traj. aligned baseline (block-level) 52.9 55.8 59.4 63.6 66.7
Matching Nets [Vinyals et al., 2016] 46.1 48.6 53.3 56.2 58.8
Matching Nets [Vinyals et al., 2016]+2V 47.2 50.7 55.4 57.7 60.2
Prototypical Net [Snell et al., 2017] 47.2 51.1 54.3 58.9 63.0
Prototypical Net [Snell et al., 2017]+2V 49.8 53.1 56.7 60.9 64.3
TAP [Su and Wen, 2022] 54.2 57.3 61.7 64.7 68.3
S2GC (no soft-DTW) 50.8 54.7 58.8 60.2 62.8
soft-DTW 53.7 56.2 60.0 63.9 67.8
(no soft-DTW)+Transf. 56.0 64.2 67.3 70.2 72.9
soft-DTW+Transf. 57.3 66.1 68.8 72.3 74.0
JEANIE+Transf. 65.0 75.2 76.7 78.9 80.0

Considering the computational cost and the performance, we choose M = 8 and
S=0.6M.

Euler vs. CamVPC. Table 8.1 (bottom) shows that using the viewpoint alignment
simultaneously in two dimensions, x and y for Euler angles, or azimuth and alti-
tude the stereo projection geometry (CamVPC), improves the performance by 5-8%
compared to (Euler simple), a variant where the best viewpoint alignment path was
chosen from the best alignment path along x and the best alignment path along y.
Euler simple is better than Euler with y rotations only ((V) includes rotations along
y while (2V) includes rotations along two axes). Using HyperOpt [Bergstra et al.,
2015] to search for the best angle range in which we perform the viewpoint alignment
(CamVPC+crossval.) improves results. Enabling the viewpoint alignment for support
sequences yields extra improvement. With Transformer (2V+Transf.), JEANIE boosts
results by ∼ 2%.

178 Temporal-Viewpoint Transportation Plan

Table 8.5: Experimental results on NTU-120 (S2GC backbone). Methods use temporal
alignment by soft-DTW or JEANIE (joint temporal-viewpoint alignment) except VA
[Zhang et al., 2017b, 2019d] and other cited works. For VA∗, we used soft-DTW on
temporal blocks while VA generated temporal blocks.

Training Classes 20 40 60 80 100

APSR [Liu et al., 2019a] 29.1 34.8 39.2 42.8 45.3
SL-DML [Memmesheimer et al., 2020] 36.7 42.4 49.0 46.4 50.9
Skeleton-DML [Memmesheimer et al., 2021] 28.6 37.5 48.6 48.0 54.2
Prototypical Net+VA-RNN(aug.) [Zhang et al., 2017b] 25.3 28.6 32.5 35.2 38.0
Prototypical Net+VA-CNN(aug.) [Zhang et al., 2019d] 29.7 33.0 39.3 41.5 42.8
Prototypical Net+VA-fusion(aug.) [Zhang et al., 2019d] 29.8 33.2 39.5 41.7 43.0
Prototypical Net+VA∗-fusion(aug.) [Zhang et al., 2019d] 33.3 38.7 45.2 46.3 49.8
TAP [Su and Wen, 2022] 31.2 37.7 40.9 44.5 47.3
S2GC(no soft-DTW) 30.0 35.9 39.2 43.6 46.4
soft-DTW 30.3 37.2 39.7 44.0 46.8
(no soft-DTW)+Transf. 31.2 37.5 42.3 47.0 50.1
soft-DTW+Transf. 31.6 38.0 43.2 47.8 51.3
FVM+Transf. 34.5 41.9 44.2 48.7 52.0
JEANIE+Transf. 38.5 44.1 50.3 51.2 57.0

8.5.2 Comparisons With the State-of-the-Art Methods

One-shot action recognition (NTU-60). Table 8.4 shows that aligning query and
support trajectories by the angle of torso 3D joint, denoted (Traj. aligned baseline) is not
very powerful, as alluded to in Figure 8.2 (top). Aligning piece-wise parts (blocks)
is better than aligning entire trajectories. In fact, aligning individual frames by torso
to the frontal view (Each frame to frontal view) and aligning block average of torso
direction to the frontal view (Each block to frontal view)) were marginally better. We
note these baselines use soft-DTW. We show more comparisons in Sec. 8.8. Our
JEANIE with Transformer (JEANIE+Transf.) outperforms soft-DTW with Transformer
(soft-DTW+Transf.) by 7.46% on average.
One-shot action recognition (NTU-120). Table 8.5 shows that JEANIE outperforms re-
cent SL-DML and Skeleton-DML by 6.1% and 2.8% respectively (100 training classes).
For comparisons, we extended the view adaptive neural networks [Zhang et al.,
2019d] by combining them with Prototypical Net [Snell et al., 2017]. VA-RNN+VA-
CNN [Zhang et al., 2019d] uses 0.47M+24M parameters with random rotation augmen-
tations while JEANIE uses 0.25–0.5M params. Their rotation+translation keys are not
proven to perform smooth optimal alignment as JEANIE. In contrast, dJEANIE performs
jointly a smooth viewpoint-temporal alignment via a principled transportation plan
(≥3 dim. space) by design. Their use Euler angles which are a worse option than the
camera projection of JEANIE. We notice that ProtoNet+VA backbones is 12% worse
than our JEANIE. Even if we split skeletons into blocks to let soft-DTW perform
temporal alignment of prototypes and query, JEANIE is still 4–6% better. JEANIE out-
performs FVM by 2-4%. This shows that seeking jointly the best temporal-viewpoint
alignment is more valuable than considering viewpoint alignment as a local task (free
range alignment per each step of soft-DTW).

§8.5 Experiments 179

Table 8.6: Experiments on 2D and 3D Kinetics-skeleton. Note that we have no results
on JEANIE or FVM for 2D coordinates (aligning viewpoints is an operation in 3D).

S2GC soft-DTW FVM JEANIE JEANIE
(no soft-DTW) +Transf.

2D skel. 32.8 34.7 - - -
3D skel. 35.9 39.6 44.1 50.3 52.5

Table 8.7: Experiments on the UWA3D Multiview Activity II.

Training view V1 & V2 V1 & V3 V1 & V4 V2 & V3 V2 & V4 V3 & V4 MeanTesting view V3 V4 V2 V4 V2 V3 V1 V4 V1 V3 V1 V2

GCN 36.4 26.2 20.6 30.2 33.7 22.4 43.1 26.6 16.9 12.8 26.3 36.5 27.6
SGC 40.9 60.3 44.1 52.6 48.5 38.7 50.6 52.8 52.8 37.2 57.8 49.6 48.8
+soft-DTW 43.9 60.8 48.1 54.6 52.6 45.7 54.0 58.2 56.7 40.2 60.2 51.1 52.2
+JEANIE 47.0 62.8 50.4 57.8 53.6 47.0 57.9 62.3 57.0 44.8 61.7 52.3 54.6
APPNP 42.9 61.9 47.8 58.7 53.8 44.0 52.3 60.3 55.1 38.2 58.3 47.9 51.8
+soft-DTW 44.3 63.2 50.7 62.3 53.9 45.0 56.9 62.8 56.4 39.3 60.1 51.9 53.9
+JEANIE 46.8 64.6 51.3 65.1 54.7 46.4 58.2 65.1 58.8 43.9 60.3 52.5 55.6
S2GC 45.5 64.4 46.8 61.6 49.5 43.2 57.3 61.2 51.0 42.9 57.0 49.2 52.5
+soft-DTW 48.2 67.2 51.2 67.0 53.2 46.8 62.4 66.2 57.8 45.0 62.2 53.0 56.7
+FVM 50.7 68.8 56.3 69.2 55.8 47.1 63.7 68.8 62.5 51.4 63.8 55.7 59.5
+JEANIE 55.3 70.2 61.4 72.5 60.9 50.8 66.4 73.9 68.8 57.2 66.7 60.2 63.7

JEANIE on the Kinetics-skeleton. We evaluate our proposed model on both 2D and
3D Kinetics-skeleton. We split the whole dataset into 200 actions for training, and
the rest half for testing. As we are unable to estimate the camera location, we simply
use Euler angles for the camera viewpoint simulation. Table 8.6 shows that using 3D
skeletons outperforms the use of 2D skeletons by 3-4%, and JEANIE outperforms the
baseline (temporal alignment only) and Free Viewpoint Matching (FVM, for every
step of DTW, seeks the best local viewpoint alignment, thus realizing non-smooth
temporal-viewpoint path in contrast to JEANIE) by around 5% and 6%, respectively.
With the transformer, JEANIE further boosts results by 2%.
Few-shot multiview classification. Table 8.7 (UWA3D Multiview Activity II) shows
that adding temporal alignment to SGC, APPNP and S2GC improves the performance,
and the big performance gain is obtained by further adding the viewpoint alignment.
As this dataset is challenging in recognizing the actions from a novel view point,
our proposed method performs consistently well on all different combinations of
training/testing viewpoint variants. This is predictable as our method aligns both
temporal and camera viewpoints which allows a robust classification. JEANIE outper-
forms FVM by 4.2%, and outperforms the baseline (with temporal alignment only) by
7% on average.

Table 8.8 (NTU-120) shows that adding more camera viewpoints to the training
process helps the multiview classification. Using bottom and center views for training
and top view for testing, or using left and center views for training and the right view
for testing yields 4% gain (‘same 100’ means the same train/test classes but different
views). Testing on 20 novel classes (‘novel 20’ never used in training) yields 62.7%

180 Temporal-Viewpoint Transportation Plan

Table 8.8: Results on NTU-120 (multiview classification). Baseline is soft-DTW + S2GC.

Training view bott. bott. bott.& cent. left left left & cent.
Testing view cent. top top cent. right right

100/same 100 (baseline) 74.2 73.8 75.0 58.3 57.2 68.9
100/same 100 (FVM) 79.9 78.2 80.0 65.9 63.9 75.0
100/same 100 (JEANIE) 81.5 79.2 83.9 67.7 66.9 79.2
100/novel 20 (baseline) 58.2 58.2 61.3 51.3 47.2 53.7
100/novel 20 (FVM) 66.0 65.3 68.2 58.8 53.9 60.1
100/novel 20 (JEANIE) 67.8 65.8 70.8 59.5 55.0 62.7

and 70.8% for multiview classification in horizontal and vertical camera viewpoints,
respectively.

8.6 Network configuration and training details

Below we provide the details of network configuration and training process in the
following sections.

8.6.1 Network configuration

Given the temporal block size M (the number of frames in a block) and desired output
size d, the configuration of the 3-layer MLP unit is: FC (3M → 6M), LayerNorm
(LN) as in [Dosovitskiy et al., 2020], ReLU, FC (6M → 9M), LN, ReLU, Dropout (for
smaller datasets, the dropout rate is 0.5; for large-scale datasets, the dropout rate is
0.1), FC (9M → d), LN. Note that M is the temporal block size and d is the output
feature dimension per body joint. Note that ablations on the value of M are already
conducted in Table 8.3.
Backbone with GNN and Transformer. Following EN described in Section 8.4, let us
take the query input X∈R3×J×M for the temporal block of length M as an example,
where 3 indicates 3D Cartesian coordinate and J is the number of body joints. As
alluded to earlier, we obtain X̂T =MLP(X;FMLP)∈Rd×J .

Subsequently, we employ a GNN and the transformer encoder [Dosovitskiy et al.,
2020] which consists of alternating layers of Multi-Head Self-Attention (MHSA)
and a feed-forward MLP (two FC layers with a GELU non-linearity between them).
LayerNorm (LN) is applied before every block, and residual connections after every
block. Each block feature matrix X̂ ∈ RJ×d encoded by GNN (without learnable Θ) is
then passed to the transformer. Similarly to the standard transformer, we prepend a
learnable vector ytoken∈R1×d to the sequence of block features X̂ obtained from GNN,
and we also add the positional embeddings Epos ∈ R(1+J)×d based on the sine and
cosine functions (standard in transformers) so that token ytoken and each body joint
enjoy their own unique positional encoding. We obtain Z0 ∈R(1+J)×d which is the

§8.6 Network configuration and training details 181

input in the following backbone:

Z0 = [ytoken; GNN(X̂)] + Epos, (8.14)

Z′
k = MHSA(LN(Zk−1)) + Zk−1, k = 1, ..., Ltr (8.15)

Zk = MLP(LN(Z′
k)) + Z′

k, k = 1, ..., Ltr (8.16)

y′ = LN
(
Z(0)

Ltr

)
where y′ ∈ R1×d (8.17)

f (X;F) = FC(y′T;FFC) ∈ Rd′ , (8.18)

where Z(0)
Ltr

is the first d dimensional row vector extracted from the output ma-
trix ZLtr of size (J+1) × d which corresponds to the last layer Ltr of the trans-
former. Moreover, parameter Ltr controls the depth of the transformer, whereas
F ≡ [FMLP,FGNN ,FTrans f ,FFC] is the set of parameters of EN. In case of APPNP, SGC
and S2GC, |FGNN |=0 because we do not use their learnable parameters Θ (i.e., think
Θ is set as the identity matrix).

As in Section 8.4, one can define now a support feature map as Ψ′ =
[f (X1;F), ..., f (Xτ′ ;F)] ∈ Rd′×τ′

for τ′ temporal blocks, and the query map Ψ ac-
cordingly.

The hidden size of our transformer (the output size of the first FC layer of the
MLP in Eq. (8.16)) depends on the dataset. For smaller datasets, the depth of the
transformer is Ltr =6 with 64 as the hidden size, and the MLP output size is d=32
(note that the MLP which provides X̂ and the MLP in the transformer must both
have the same output size). For NTU-60, the depth of the transformer is Ltr = 6,
the hidden size is 128 and the MLP output size is d = 64. For NTU-120, the depth
of the transformer is Ltr = 6, the hidden size is 256 and the MLP size is d = 128.
For Kinetics-skeleton, the depth for the transformer is Ltr = 12, hidden size is 512
and the MLP output size is d = 256. The number of Heads for the transformer of
smaller datasets, NTU-60, NTU-120 and Kinetics-skeleton is set as 6, 12, 12 and 12,
respectively.

The output sizes d′ of the final FC layer in Eq. (8.18) are 50, 100, 200, and 500 for
the smaller datasets, NTU-60, NTU-120 and Kinetics-skeleton, respectively.

8.6.2 Training details

The weights for the pipeline are initialized with the normal distr. (zero mean and unit
standard dev.). We use 1e-3 for the learning rate, and the weight decay is 1e-6. We use
the SGD optimizer. We set the number of training episodes to 100K for NTU-60, 200K
for NTU-120, 500K for 3D Kinetics-skeleton, 10K for small datasets such as UWA3D
Multiview Activity II. We use Hyperopt for hyperparam. search on validation sets for
all the datasets.

182 Temporal-Viewpoint Transportation Plan

Table 8.9: Seven publicly available benchmark datasets which we use for FSAR.

Datasets Year Classes Subjects #views #clips Sensor Modalities #joints

MSRAction3D [Li et al., 2010] 2010 20 10 1 567 Kinect v1 Depth+3DJoints 20
3D Action Pairs [Oreifej and Liu, 2013] 2013 12 10 1 360 Kinect v1 RGB+Depth+3DJoints 20
UWA3D Activity [Rahmani et al., 2014b] 2014 30 10 1 701 Kinect v1 RGB+Depth+3DJoints 15
UWA3D Multiview Activity II [Rahmani et al., 2016b] 2015 30 9 4 1,070 Kinect v1 RGB+Depth+3DJoints 15
NTU RGB+D [Shahroudy et al., 2016a] 2016 60 40 80 56,880 Kinect v2 RGB+Depth+3DJoints 25
NTU RGB+D 120 [Liu et al., 2019a] 2019 120 106 155 114,480 Kinect v2 RGB+Depth+3DJoints 25
Kinetics-skeleton [Yan et al., 2018] 2018 400 - - ∼ 300,000 - RGB+2DJoints 18

Table 8.10: Evaluations of backbones on 5 datasets.

MSRAction3D 3DAct.Pairs UWA3DActivity NTU-60 NTU-120
5-way 10-way 5-way 5-way 10-way 50-way 20-way

GCN 56.0±1.3 37.6±1.2 - 55.4±0.8 42.4±0.8 56.0 -
SGC 66.0±1.1 48.3±1.1 69.0±1.8 56.4±0.7 41.6±0.6 68.1 30.7

APPNP 67.2±0.8 58.1±0.8 69.0±2.0 60.6±1.5 42.4±1.3 68.5 30.8
S2GC (Eucl.) 68.8±1.2 63.1±0.9 72.2±1.8 69.8±0.7 58.3±0.6 75.6 34.5
S2GC (RBF) 73.2±0.9 64.6±0.8 75.6±2.1 76.4±0.7 58.9±0.7 78.1 36.2

8.6.3 Skeleton Data Preprocessing

Before passing the skeleton sequences into MLP and graph networks (e.g., S2GC), we
first normalize each body joint w.r.t. to the torso joint v f ,c:

v′
f ,i =v f ,i−v f ,c, (8.19)

where f and i are the index of video frame and human body joint respectively. After
that, we further normalize each joint coordinate into [-1, 1] range:

v̂ f ,i[j] =
v′

f ,i[j]

max([abs(v′
f ,i[j])] f∈Iτ ,i∈IJ)

, (8.20)

where j is for selection of the x, y and z axes, τ is the number of frames and J is the
number of 3D body joints per frame.

For the skeleton sequences that have more than one performing subject, (i) we
normalize each skeleton separately, and each skeleton is passed to MLP for learning
the temporal dynamics, and (ii) for the output features per skeleton from MLP, we pass
them separately to graph networks, e.g., two skeletons from a given video sequence
will have two outputs from the graph networks, and we aggregate the outputs through
average pooling before passing to FVM or JEANIE.

§8.7 Backbone selection and hyperparameter evaluation 183

2 4 6 8 10 12 14 16 18 20
L40

45

51

58

64

75

90

ac
cu

ra
cy

 (
%

)
SGC (50-way)
SGC (20-way)

S2GC (50-way)

S2GC (20-way)

(a)

0.2 0.5 1 1.5 2 2.5 3 3.3
55

65

75

85

92

ac
cu

ra
cy

 (
%

)

SGC+V (50-way)
SGC+V (20-way)

S2GC+V (50-way)

S2GC+V (20-way)

(b)

Figure 8.7: Evaluations of L and σ. (a): L for SGC and S2GC. (b): σ of RBF distance
for Eq. (8.10) (SGC and S2GC, NTU-60).

0.0001 0.001 0.01 0.1 1
25

40

50

65

80

ac
cu

ra
cy

 (
%

)

SGC (50-way)
SGC (20-way)
GCN (50-way)
GCN (20-way)

(a)

0.0001 0.001 0.01 0.1 1
25

40

50

65

80
ac

cu
ra

cy
 (

%
)

SGC (50-way)
SGC (20-way)
SGC+V (50-way)
SGC+V (20-way)

(b)

Figure 8.8: Evaluations w.r.t. γ. (a): γ in Eq. (8.10) with the temporal alignment alone.
(b): comparisons of temporal alignment alone vs. temporal-viewpoint alignment (V)
on NTU-60.

8.7 Backbone selection and hyperparameter evaluation

8.7.1 Backbone selection

We conduct experiments on 4 GNN backbones listed in Table 8.10. S2GC performs the
best on all datasets including large-scale NTU-60 and NTU-120, APPNP outperforms
SGC, and SGC outperforms GCN. We note that using the RBF-induced distance for
dbase(·, ·) of DTW outperforms the Euclidean distance. Fig. 8.7 shows a comparison of
using SGC and S2GC on NTU-60. As shown in the figure that using S2GC performs
better than SGC for both 50-way and 20-way settings. We also notice that results w.r.t.
the number of layers L are more stable for S2GC than SGC. We choose L=6 for our
experiments. Fig. 8.7b shows evaluations of σ for the RBF-induced distance for both
SGC and S2GC. As σ=2 in S2GC achieves the highest performance (both 50-way and
20-way), we choose S2GC as the backbone and σ=2 for the experiments.

184 Temporal-Viewpoint Transportation Plan

0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
60

65

70

75

80

90

ac
cu

ra
cy

 (
%

)

S2GC (50-way)

S2GC (20-way)

(a)

2 4 6 8 10 12 14 16 18 20

L
60

65

70

75

90

ac
cu

ra
cy

 (
%

)

S2GC+JEANIE (50-way)

S2GC+JEANIE (20-way)

S2GC+FVM (50-way)

S2GC+FVM (20-way)

(b)

Figure 8.9: Evaluations of (a) α and (b) the number of layers L for S2GC on NTU-60.

Table 8.11 is a comparison of CNN, RNN and GNN as backbones of JEANIE.
The role of this backbone in JEANIE is to process the per-block per-viewpoint body
joint features obtained from MLP and exploit interactions among body joints. The
input and output feature dimension (per temporal block) of backbone (e.g., CNN,
RNN and GNN) are J×d. For CNN, we simply use 2D convolution (square kernels
and equal stride with auto padding to ensure the input and output feature maps
have the same dimensions). For RNN (joint-wise), we use J RNN cells, each RNN
processes d-dimensional vector for each body joint (J-input to J-output). Both input
and output are d-dimensional feature vectors. The outputs from J RNN cells are
concatenated to form J×d feature maps. For RNN (temporal-wise), we modify the
first MLP in our pipeline, to produce J×d vector per each time-step 1, ..., T of temporal
block. We use T RNN cells, each RNN processes J×d-dimensional vector (T-input to
1-output). The output we use is from the last of T RNN cells is J×d. As shown in
the table, GNN outperforms RNN, and RNN outperforms CNN. Note that our GNN
(S2GC) is a simple linear projection on a spectral filter of graph and without learnable
parameters. We believe RNN (temporal-wise) is better than RNN (joint-wise) as joints
to not have well defined time-like order (thus RNN is bad) while GNN uses the graph
connectivity (topological order).

Table 8.11: A comparison of different backbones in JEANIE on NTU-60 (#training
classes = 10).

Backbones CNN RNN RNN GNN
(joint-wise) (temporal-wise) (ours)

Results (acc.) 55.3 59.9 61.1 65.0

§8.8 More baselines on NTU-60 185

Table 8.12: Experimental results of stride for degrees on NTU-60.

10 20 30 40 50

5◦ 63.8 73.7 74.2 75.0 76.5
10◦ 64.2 74.8 75.0 78.0 79.1
15◦ 65.0 75.2 76.7 78.9 80.0
30◦ 65.0 74.8 75.0 76.9 78.5
45◦ 60.0 68.5 71.0 71.5 72.0

8.7.2 Evaluations of viewpoint alignment

Fig. 8.8 shows comparisons with temporal-viewpoint alignment (V) vs. temporal
alignment alone on NTU-60.

Fig. 8.8a shows evaluations of γ without the viewpoint alignment. Fig. 8.8b shows
that temporal-viewpoint alignment (V) brings around 5% (20- and 50-way protocols,
γ=0.0001) improvement.

8.7.3 Evaluations w.r.t. α

Figure 8.9a shows the evaluations of α for the S2GC backbone. As shown in the plot,
for 50-way protocol, the best performance is achieved when α = 0.7 (α = 0.5 is the
second best performer for the 50-way protocol)). For the 20-way protocol, the top
performer is α=0.4 or α=0.5. Thus, we chose α=0.5 in our experiments. Please note
we observed the same trend on the validation split.

8.7.4 Evaluations w.r.t. the number of layers L

Figure 8.9b shows the performance w.r.t. the number of layers L used by S2GC and
S2GC+JEANIE. As shown in this plot, when L = 6, S2GC with JEANIE performs
the best for both 20- and 50-way experiments. For the Free Viewpoint Matching
(FVM) using S2GC (S2GC+FVM), the performance is not as stable as in the case of
S2GC+JEANIE.

8.7.5 Evaluation of stride for viewing angles

The stride for viewing angles is a mere equivalent of stride parameter in CNNs, which
is an equal interval location sampler. We show various sampling steps for viewing
angles in Table 8.12. We notice that when stride is 15◦, JEANIE performs the best on
NTU-60.

8.8 More baselines on NTU-60

Table 8.13 shows more evaluations on NTU-60. Before GCNs have become mainstream
backbones for the 3D Skeleton-based Action Recognition, encoding 3D body joints of

186 Temporal-Viewpoint Transportation Plan

Table 8.13: Evaluations of additional baselines on NTU-60.

Training Classes 10 20 30 40 50

Matching Nets [Vinyals et al., 2016] (skeleton to image tensor) 26.7 30.6 32.9 36.4 39.9
Proto. Net [Snell et al., 2017] (skeleton to image tensor) 30.6 33.9 36.8 40.2 43.0
Proto. Net (per block image tensor, temp. align.) 40.4 42.4 45.2 49.0 50.3
Proto. Net (per block image tensor, temp. & view. align.) 41.6 43.0 47.7 50.4 51.6

skeletons as texture-like images enjoyed some limited popularity, with approaches [Ke
et al., 2017b, 2018; Tas and Koniusz, 2018] feeding such images into CNN backbones.
This facilitates easy FSL with existing pipelines such as Matching Nets [Vinyals et al.,
2016] and Prototypical Net [Snell et al., 2017]. Thus, we reshape the normalized 3D
coordinates of each skeleton sequence or per block skeleton into image tensors, and
pass them into Matching Nets [Vinyals et al., 2016] and Prototypical Net [Snell et al.,
2017] for few-shot learning. Not surprisingly, using texture-like images for skeletons
is suboptimal. Our JEANIE is more than 25% better.

8.9 Inference Time

Table 8.14 below compares training and inference times per query on Titan RTX 2090.
For soft-DTW, each query is augmented by K×K′ = 9 viewpoints. In the test time,
we average match distance over K×K′ = 9 viewpoints of each test query (this is a
popular standard test augmentation strategy) w.r.t. support samples. This strategy
is denoted as soft-DTWaug. We also apply the above strategy to TAP (denoted as
TAPaug). JEANIE also uses K×K′=9 viewpoints per query. We exclude the time of

Table 8.14: A comparison of training/inference time (per query) on NTU-60 (#training
classes = 10).

Training time (s) Inference time (s) Total inference time (s) Acc. (%)

soft-DTWaug 0.098 0.019 178.5 56.8
TAPaug 0.124 0.024 225.5 57.6
JEANIE 0.099 0.020 187.0 65.0

applying viewpoint generation as skeletons can be pre-processed at once (1.6h with
non-optimized CPU code) and stored for the future use. Among methods which use
multiple viewpoints, JEANIE outperforms soft-DTWaug and TAPaug by 8.2% and 7.4%
respectively. JEANIE outperforms ordinary soft-DTW and TAP by 11.3% and 10.8%.
For soft-DTWaug and TAPaug, their total training and testing were about 5× and 9×
slowed compared to counterpart soft-DTW and TAP. This is expected as they had to
deal with K×K′=9 more samples. We tried also parallel JEANIE. Training JEANIEpar

with 4 Titan RTX 2090 took 44h, the total inference was 48s.

§8.10 Drawbacks/Limitations 187

8.10 Drawbacks/Limitations

Some minor drawbacks of our work are: (i) extending our work to video-based
action recognition requires more work as it is hard to simulate the views of pixels
for RGB videos; (ii) alignment in 4D space is slower than in 2D space and slower
than no alignment at all, but improvements in accuracy are significant, and in fact
the alignment step can be written as the RKHS kernel, which can be linearized by the
Nyström feature maps, casting 4D problem as two 2D problems.

8.11 Conclusions

We have proposed a Few-shot Action Recognition (FSAR) approach for learning on
3D skeletons via JEANIE. We have demonstrated that the joint alignment of temporal
blocks and simulated viewpoints of skeletons between support-query sequences
is efficient in the meta-learning setting where the alignment has to be performed
on new action classes under the low number of samples. Our experiments have
shown that using the stereo camera geometry is more efficient than simply generating
multiple views by Euler angles in the meta-learning regime. Most importantly, we
have introduced a novel FSAR approach that learns on articulated 3D body joints.

188 Temporal-Viewpoint Transportation Plan

Chapter 9

Summary and Future Work

9.1 Summary and Contributions

This thesis tackles five significant challenges in action recognition: (i) Geometric
Distortions: These include variations in camera viewpoints, rotations, etc. (ii) Photo-
metric Distortions: Such as scene clutter, occlusions, self-occlusion, lighting conditions,
camera noise, and blur. (iii) Speeds of Action Execution: Addressing the dynamics of
actions, which can vary significantly. (iv) Temporal Dependencies: Both long-term
and short-term temporal relationships between actions. (v) Cross-Subject Variations:
Accounting for differences in human body sizes, which affect robust human action
modeling. Moreover, we explore five related research directions that intersect with
these challenges: (i) Video-Based vs. Skeleton-Based Features: Comparing the ef-
fectiveness of video-based and skeleton-based feature representations. (ii) Action
Classification/Recognition vs. Few-Shot Learning: Investigating conventional action
classification/recognition versus few-shot learning between pairs of action sequences.
(iii) Self-Supervised vs. Supervised vs. Unsupervised Action Recognition: Assessing
different learning paradigms for action recognition. (iv) Geometric and Photometric
Distortion Issues in 3D Action Recognition: Focusing on challenges specific to 3D
action recognition. (v) Uni-Modal vs. Multi-Modal Problem in Action Recognition:
Examining the use of single modality versus multiple modalities in action recognition.

We evaluate the performance of ten state-of-the-art action recognition algorithms
on six benchmark datasets, with a particular focus on comparing handcrafted features
versus deep learning features and skeleton-based features versus depth-based features.
We also explore the impact of cross-view versus cross-subject performance on human
action recognition, considering whether features used are depth-based, skeleton-
based, or depth+skeleton-based. Our findings reveal valuable insights: (i) Many
methods perform better on cross-subject action recognition than cross-view action
recognition. (ii) Skeleton-based features demonstrate robustness for both cross-subject
and cross-view action recognition. (iii) Handcrafted vs. Deep Learning Features:
Handcrafted features excel with smaller datasets, while deep learning features shine
when trained on larger datasets. (iv) Computational Costs: Deep learning requires
substantial computational resources primarily for training, while handcrafted features
are more efficient during inference. (v) Memory Requirements: Deep learning models

189

190 Summary and Future Work

often demand more memory for storage and feature extraction, whereas handcrafted
features are memory-efficient. The choice between handcrafted and deep learning
features depends on specific requirements, resources, and priorities. Handcrafted
features offer resource efficiency; however, the pipeline typically necessitates multiple
distinct computational steps, scripting, and disk storage for intermediate data. On
the other hand, deep learning features provide higher accuracy, especially with larger
datasets. Our comprehensive review also highlights the evolution of action recognition
approaches, including the shift from handcrafted to deep learning features and the
development of robust skeleton-based representations. Researchers have increasingly
explored end-to-end learning with large-scale datasets and powerful GPUs.

In summary, this thesis contributes valuable solutions in the domains of video-
based, skeleton-based, and few-shot skeletal action recognition.

9.1.1 Video-based Action Recognition

Our research draws inspiration from self-supervised learning (SSL) to acquire valu-
able representations that can benefit downstream tasks like action recognition. Our
approach adopts a multi-task learning (MTL) framework, well-known for enhancing
generalization and mitigating overfitting in modern action recognition models. This
MTL strategy leverages self-supervisory signals, such as Improved Dense Trajectories
(IDT) encoded using Bag of Words (BoW) and Fisher Vectors (FV) from videos. In this
context, our work simplifies modern video-based action recognition by investigating
feature representations that can co-regularize and self-supervise a backbone network.
The goal is to learn how to synthesize or hallucinate expensive representations during
training and then utilize the outputs of these hallucination streams at testing time.

Our approach involves two key aspects: (i) We propose that traditional IDT-
based BoW/FV global video descriptors and I3D optical flow features (OFF) can be
learned through dedicated CNN streams during training. These learned features
can then be synthesized for classification using a CNN action recognition pipeline
(e.g., the I3D RGB stream) at testing time. Our observations indicate that even
OFF, which is typically encoded by a separate network, can be learned by another
network trained on RGB frames only. This suggests redundancy in training both
RGB and optical flow network streams. We find that OFF and IDT-based BoW/FV
descriptors are highly complementary, and their late fusion significantly improves
performance and robustness. (ii) We introduce an alternative approach in which we
learn a representation capable of approximating various descriptors through distinct
projection heads. After training, we use this representation while discarding the
hallucinated descriptor. This variant, while slightly decreasing performance by 1-
2% on average, highlights the effectiveness of our design in leveraging hallucinated
features to enhance performance.

Additionally, we propose the utilization of object and saliency detectors to enhance
action recognition pipelines. We create two compact descriptors known as Object
Detection Features (ODF) and Saliency Detection Features (SDF). These descriptors are
statistically motivated high-order representations. Our findings indicate that object

§9.1 Summary and Contributions 191

and saliency detection features complement each other effectively and contribute
to further improving action recognition performance. We also note that the effec-
tiveness of our model depends on the learning capability of the backbone network,
with AssembleNet and AssembleNet++ outperforming I3D in feature hallucination
and action classification tasks. Furthermore, higher-order object/saliency detection
features prove valuable for fine-grained action recognition tasks due to their rich
visual information.

While our model simplifies architecture and achieves better action classification
results, particularly in fine-grained action recognition, we acknowledge the computa-
tional costs during training. Preparing IDT-based BoW/FV, object/saliency detection
features, and extracting optical flow features from I3D optical flow streams for self-
supervisory signals can be resource-intensive. Moreover, training our hallucination
streams atop backbone networks consumes additional time due to increased learning
parameters. To address this, we suggest exploring lightweight action recognition mod-
els, such as SqueezeNet [Iandola et al., 2016], Xception [Chollet, 2017], ShuffleNet [Ma
et al., 2018], EfficientNet [Tan and Le, 2019], MobileNet [Howard et al., 2019], the
FASTER framework [Zhu et al., 2019] and Video Transformer Network (VTN) [Kozlov
et al., 2020], which can be employed for both hallucination and classification tasks.
These models can help mitigate computational demands while maintaining robust
performance.

9.1.2 Skeleton-based Action Recognition

Unlike video-based methods, which primarily concentrate on modeling spatio-
temporal representations, skeleton sequences have proven to be robust against sensor
noises, computationally efficient, and storage-friendly. These sequences represent
the spatio-temporal evolution of 3D body joints, and they are highly effective in
action recognition. Human actions are characterized by interaction groups of skeletal
joints, such as wrist-only, head-wrist, or head-wrist-ankles, and the influence of these
joint groups on each action can vary significantly. Hence, it’s crucial to design a
better model for skeleton data, especially considering the suboptimal topology of the
skeleton graph.

In our work, we introduce two essential components: the sequence compatibility
kernel (SCK) and the dynamics compatibility kernel (DCK). These kernels capture
the spatio-temporal evolution of 3D skeleton body joints. We extend these kernels
to aggregate over multiple subsequences and CNN classifier scores for 3D action
recognition. Our findings reveal that SCK captures higher-order correlations between
3D coordinates of body joints and their temporal variations, while DCK captures action
dynamics by modeling the spatio-temporal co-occurrences of body joints. Furthermore,
skeleton subsequences of varying lengths contain rich long-term and short-term
temporal motion dependencies that significantly benefit classifying similar actions
or actions with similar motion trajectories. Kernel-based tensor representations help
capture higher-order relationships between spatial features and temporal dynamics,
contributing to fine-grained action recognition tasks.

192 Summary and Future Work

To further enhance our model, we adopt the concept of a hypergraph, representing
3D body joints as nodes of different orders. We introduce a novel Multi-order Multi-
mode Transformer (3Mformer) consisting of Multi-order Pooling (MP) and Temporal
block Pooling (TP) modules. This approach aims to create coupled-mode tokens, such
as ‘channel-temporal block’ and ‘order-channel-body joint’, and perform weighted
hyper-edge aggregation and temporal block aggregation. We observe that modeling
larger groups of 3D body joints as hyper-edges can capture complex spatio-temporal
motion dynamics effectively. The 3Mformer proves to be efficient in fusing higher-
order feature representations, and coupled-mode tokens contribute to improved action
recognition due to the diverse focus of each attention mechanism.

While our model demonstrates impressive performance, it has some limitations.
The number of parameters and computational costs are higher than existing models,
mainly due to the incorporation of r branches of the Higher-order Transformer (HoT).
Furthermore, the HoT block focuses solely on encoding temporal block features of
skeleton subsequences. A more efficient approach might involve redesigning the HoT
block to encode both short-term and long-term spatio-temporal features, potentially
simplifying the backbone encoder. Additionally, these models require substantial
training on large-scale datasets like Kinetics-Skeleton, making them less suitable
for scenarios where collecting and labeling videos for 3D skeleton sequences are
labor-intensive and require retraining or fine-tuning for new class concepts.

Finally, when comparing our higher-order tensor representations to 3Mformer,
we find that 3Mformer outperforms tensor representations on the NTU-60 dataset,
with improvements of 3.24% and 3.95% for cross-subject and cross-view evaluation
protocols, respectively. It’s worth noting that 3Mformer is an end-to-end pipeline
that incorporates various orders of feature representations, whereas SCK⊕ is not an
end-to-end pipeline and employs a higher-order pooling strategy for aggregation.

9.1.3 Few-shot Skeletal Action Recognition

There is a growing interest in developing effective Few-shot Learning (FSL) techniques
for action recognition, often referred to as Few-shot Action Recognition (FSAR). FSAR
aims to quickly adapt to new classes with minimal training samples, but it remains
relatively scarce for video data due to the voluminous nature of videos and the
significant intra-class variations they exhibit. Many methods recognize the importance
of temporal alignment in handling nonlinear temporal variations, leading to the
development of various alignment-based models for comparing sequence pairs.

Our work specifically focuses on advancing few-shot recognition within the context
of articulated sets of connected 3D body joints. We have introduced a novel method
called uncertainty-DTW, or uDTW, which considers the uncertainty associated with
frame-wise (or block-wise) features when selecting the optimal path using Maximum
Likelihood Estimation (MLE). We employ parameters, such as variance, from a
distribution (typically the Normal distribution), within MLE (and uDTW) to model
uncertainty. We present several applications of uDTW, including forecasting time
series evolution, estimating the Fréchet mean of time series, supervised few-shot

§9.2 Future Work 193

action recognition, and unsupervised few-shot action recognition. Our observations
indicate that uDTW, compared to soft-DTW, generates more potential routes for
matching sequence pairs due to its uncertainty modeling capability, enhancing path
warping in soft-DTW.

In addition, we propose a FSAR approach named Joint tEmporal and cAmera
viewpoiNt alIgnmEnt (JEANIE), which aligns temporal blocks and simulates view-
point indexes of skeletons between support and query sequences. This alignment
ensures the selection of smooth paths without abrupt jumps in temporal locations
and view indexes, aiding meta-learning with limited samples of novel classes. To
simulate different viewpoints of 3D skeleton sequences, we explore two strategies:
(1) rotating sequences using Euler angles within a specified range along the x and
y axes and (2) simulating camera viewpoints based on stereo projection principles.
We also introduce a similarity-based loss to encourage within-class sequence align-
ment and discourage between-class sequence alignment. Extensive experiments on
one-shot action recognition and few-shot multiview classification tasks demonstrate
our method’s state-of-the-art performance on various benchmarks, including the
large-scale Kinetics-skeleton dataset. Importantly, our uDTW and JEANIE methods
can be viewed as metric-learning-inspired FSL approaches and can be extended to
non-episodic problems.

Our findings highlight that using camera viewpoint simulation in JEANIE yields
improved performance compared to using Euler angles, and aligning both temporal
and camera viewpoints contributes to robust multiview classification. However, there
are some minor limitations to our work: (1) Extending our approach to video-based
action recognition is challenging due to the difficulty of simulating pixel views for
RGB videos, and (2) alignment in 4D space is computationally slower than in 2D
space and slower than no alignment at all, but the gains in accuracy are substantial.
Additionally, the alignment step can be expressed as an RKHS kernel, which can be
linearized using Nyström feature maps, effectively transforming the 4D problem into
two 2D problems, addressing some computational challenges.

9.2 Future Work

While existing research has yielded promising results in action recognition, there
is an ongoing demand for the development of new and more robust algorithms.
These algorithms are needed to meet the pressing requirements for utilizing action
recognition in various real-world and novel environments. In the following sections,
we outline our short-term and long-term goals for future work in this domain.

Our short-term goal is to enhance existing methods by introducing more efficient
action recognition models. For video-based action recognition, we intend to employ
lightweight models to generate valuable descriptors efficiently. Additionally, we
plan to explore feature descriptors derived from various sources such as audio,
skeleton sequences, depth videos, point clouds, and more. In the context of skeleton-
based action recognition, we aim to apply contrastive learning techniques using

194 Summary and Future Work

a novel transformer or higher-order transformer for few-shot action recognition.
Furthermore, we will investigate uncertainty-driven kernel tensor learning for action
recognition with skeleton sequences. We also plan to extend the application of
JEANIE to unsupervised few-shot skeletal action recognition and explore the use of
our uncertainty-DTW method for anomaly detection in videos.

Furthermore, we intend to integrate these proposed methods into a unified frame-
work with the following key components: (i) organizing data into a unified dataset
that combines video and skeleton information for each action sequence, (ii) extracting
video-based feature representations from RGB frames or optical flow sequences using
deep learning models, extracting skeleton-based features from 3D joint coordinates
or skeleton graphs using graph-based or hypergraph-based models or transformers,
and combining these features into a unified representation through late fusion or
attention-based fusion, and (iii) implementing a few-shot learning module that takes
these unified feature representations and learns to recognize actions with limited
examples. This unified framework incorporates modules for both video-based and
skeleton-based action recognition and introduces a few-shot learning component
that can adapt to new actions. Shared layers within the framework extract common
features from video and skeleton data, allowing the model to leverage complementary
information effectively.

In contrast to most existing approaches in human action recognition, which adopt
model-centric solutions, our long-term goal is to explore data-centric solutions for
action recognition in videos. In this context, we will address issues related to data
quality, reliability, errors, and inconsistencies in videos and skeleton sequences. Our
proposed solutions include: (i) revisiting the training set and modeling temporal
uncertainty for video frames (or their feature representations), (ii) spatio-temporal un-
certainty modeling for skeleton sequences (or frame-wise feature representations), and
(iii) temporal-viewpoint uncertainty modeling for frame-wise (or video block-wise fea-
ture representations). For few-shot data-centric action recognition, we plan to explore
this domain by considering high-quality and reliable human action videos/skeleton
sequences (or the uncertainty-modeled versions) to model the alignment between
pairs of video frames (or skeleton sequences) in both temporal and viewpoint spaces.
This approach aims to achieve robust human action modeling, ultimately leading
to faster and more reliable action recognition and anomaly detection models. The
proposed solutions for few-shot data-centric action recognition include: (i) video data
augmentation for domain gap alignment through few-shot learning, (ii) data-agnostic
meta-learning, and (iii) finding a balance between data-centric and model-centric ap-
proaches in few-shot action recognition and anomaly detection tasks. For data-centric
action recognition on edge devices, we will investigate data imbalance issues and
explore auto-evaluation methods for action recognition and anomaly detection on
mobile devices. The proposed solutions for this aspect include: (i) designing training
data sampling strategies using statistical learning methods to form reliable training
batch data and (ii) implementing auto-evaluation through pseudo-labeling.

Appendices

195

Appendix A

Datasets and their statistics

Table A.1: UCR archive (the latest version from 2018) which we use for time series
analysis. The information is grouped based on the type of time series.

Dataset type Avg. #train Avg. #test Total #classes Avg. length

Device 1261 1135 44 895
ECG 708 1755 95 326
EOG 362 362 24 1250
EPG 40 249 6 601
Hemodynamics 104 208 156 2000
HRM 18 186 18 201
Image 595 1157 334 360
Motion 347 1057 99 517
Power 180 180 2 144
Sensor 420 1286 177 410
Simulated 203 1021 32 267
Spectro 179 147 24 553
Spectrum 305 388 17 1836
Traffic 607 1391 12 24
Trajectory 208 130 78 360

Table A.2: Popular benchmark datasets which we use for few-shot action recognition.

Datasets Year Classes Subjects #views #clips Sensor #joints

MSR Action 3D 2010 20 10 1 567 Kinect v1 20
3D Action Pairs 2013 12 10 1 360 Kinect v1 20
UWA 3D Activity 2014 30 10 1 701 Kinect v1 15
NTU RGB+D 2016 60 40 80 56,880 Kinect v2 25
NTU RGB+D 120 2019 120 106 155 114,480 Kinect v2 25
Kinetics-skeleton 2018 400 - - ∼ 300,000 - 18

The UCR time series archive [Dau et al., 2018]. UCR, introduced in 2002, is an
important resource in the time series analysis community with at least 1,000 published
papers making use of at least 1 dataset from this archive. We use 128 datasets from the
latest version of UCR from 2018, encompassing a wide variety of fields and lengths.
Table A.1 details the statistics of this archive by grouping the whole dataset into
different types.

197

198 Datasets and their statistics

Few-shot action recognition datasets. Table A.2 contains statistics of datasets used
in our experiments. Smaller datasets listed below are used for more evaluations of
supervised and unsupervised few-shot action recognition:

• MSR Action 3D [Li et al., 2010] is an older AR dataset captured with the Kinect
depth camera. It contains 20 human sport-related activities such as jogging, golf
swing and side boxing.

• 3D Action Pairs [Oreifej and Liu, 2013] contains 6 selected pairs of actions that
have very similar motion trajectories, e.g., put on a hat and take off a hat, pick up a
box and put down a box, etc.

• UWA 3D Activity [Rahmani et al., 2014b] has 30 actions performed by 10 people
of various height at different speeds in cluttered scenes.

As MSR Action 3D, 3D Action Pairs, and UWA 3D Activity have not been used
in FSAR, we created 10 training/testing splits, by choosing half of class concepts
for training, and half for testing per split per dataset. Training splits were further
subdivided for crossvalidation. Section B.1 details the class concepts per split for
small datasets.

Appendix B

Evaluation Protocols

Below, we detail our new/additional evaluation protocols used in the experiments on
Few-shot Action Recognition (FSAR).

B.1 Few-shot action recognition protocols (the small-scale
datasets)

As we use several class-wise splits for small datasets, these splits will be simply
released in our code. Below, we explain the selection process that we used.
FSAR (MSR Action 3D). As this dataset contains 20 action classes, we randomly
choose 10 action classes for training and the rest 10 for testing. We repeat this sampling
process 10 times to form in total 10 train/test splits. For each split, we have 5-way and
10-way experimental settings. The overall performance on this dataset is computed by
averaging the performance over the 10 splits.
FSAR (3D Action Pairs). This dataset has in total 6 action pairs (12 action classes),
each pair of action has very similar motion trajectories, e.g., pick up a box and put down
a box. We randomly choose 3 action pairs to form a training set (6 action classes)
and the half action pairs for the test set, and in total there are (n

k)=(6
3)=20 different

combinations of train/test splits. As our train/test splits are based on action pairs,
we are able to test whether the algorithm is able to classify unseen action pairs that
share similar motion trajectories. We use 5-way protocol on this dataset to evaluate
the performance of FSAR, averaged over all 20 splits.
FSAR (UWA 3D Activity). This dataset has 30 action classes. We randomly choose 15
action classes for training and the rest half action classes for testing. We form in total
10 train/test splits, and we use 5-way and 10-way protocols on this dataset, averaged
over all 10 splits.

B.2 One-shot protocol on NTU-60

Following NTU-120 [Liu et al., 2019a], we introduce the one-shot AR setting on NTU-
60. We split the whole dataset into two parts: auxiliary set (on NTU-120 the training
set is called as auxiliary set, so we follow such a terminology) and one-shot evaluation
set.

199

200 Evaluation Protocols

Auxiliary set contains 50 classes, and all samples of these classes can be used for
learning and validation. Evaluation set consists of 10 novel classes, and one sample
from each novel class is picked as the exemplar (terminology introduced by authors
of NTU-120), while all the remaining samples of these classes are used to test the
recognition performance.
Evaluation set contains 10 novel classes, namely A1, A7, A13, A19, A25, A31, A37,
A43, A49, A55.

The following 10 samples are the exemplars:
(01)S001C003P008R001A001, (02)S001C003P008R001A007,
(03)S001C003P008R001A013, (04)S001C003P008R001A019,
(05)S001C003P008R001A025, (06)S001C003P008R001A031,
(07)S001C003P008R001A037, (08)S001C003P008R001A043,
(09)S001C003P008R001A049, (10)S001C003P008R001A055.
Auxiliary set contains 50 classes (the remaining 50 classes of NTU-60 excluding the
10 classes in evaluation set).

B.3 Few-shot multiview classification on NTU-120

Horizontal camera view. As NTU-120 is captured by 3 cameras (from 3 different
horizontal angles: -45◦, 0◦, 45◦), we split the whole dataset based on the camera ID
to form our 3 horizontal camera viewpoints (left, center and right views). We then
evaluate few-shot multiview classification using (i) the left view for training and the
center view for testing (ii) the left view for training and the right view for testing (ii)
the left and center views for training and the right view for testing.
Vertical camera view. Based on the table provided in [Liu et al., 2019a], we first
group 32 camera setups into 3 groups by dividing the range of heights into 3 equally-
sized ranges to form roughly the top, center and bottom views. We then group the
whole dataset into 3 camera viewpoints based on the camera setup IDs. For few-shot
multiview classification, we evaluate our proposed method using (i) bottom view for
training and center view for testing (ii) bottom view for training and top view for
testing (iii) bottom and center views for training and top view for testing.

Appendix C

Visualizations of Forecasting the
Evolution of Time Series

0 50 100 150

6

4

2

0

2

Eucl.
sDTW
uDTW
GT

0 50 100 150

6

4

2

0

2

Eucl.
sDTW
uDTW
GT

0 50 100 150

6

4

2

0

2
Eucl.
sDTW
uDTW
GT

0 50 100 150

6

4

2

0

2

Eucl.
sDTW
uDTW
GT

(a) CBF

0 100 200 300 400 500

6

4

2

0

2

Eucl.
sDTW
uDTW
GT

0 100 200 300 400 500

6

4

2

0

2

Eucl.
sDTW
uDTW
GT

0 100 200 300 400 500

6

4

2

0

2

Eucl.
sDTW
uDTW
GT

0 100 200 300 400 500

6

4

2

0

2

Eucl.
sDTW
uDTW
GT

(b) ShapesAll

Figure C.1: Additional visualizations for forecasting the evolution of time series.
Given the first part of a time series, we train the pipeline from Fig. 7.3b to predict
the remaining part of the time series. We compare the use of the Euclidean, sDTW
or uDTW distances within the pipeline. We use CBF and ShapesAll in UCR archive,
and display the prediction obtained for the given test sample with either of these
3 distances, and the ground truth (GT). Oftentimes, we observe that uDTW helps
predict the sudden changes well. (a) Our uDTW aligns well with the ground truth
compared to sDTW. (b) Our uDTW generates better shape of prediction compared to
sDTW (for example note the red curve following much closer the rising gray slope).
Quantitative results of MSE and ‘shape’ metrics for the whole UCR archive are given
in chapter 7.

We provide additional visualizations of forecasting the evolution of time series in
Figure C.1. We notice that our uDTW produces predictions that are better aligned
with the ground truth (see Fig. C.1a). Moreover, our uDTW generates better shape
of the predictions compared to sDTW, and the predictions from sDTW have more
perturbations/fluctuations (see Fig. C.1b). Quantitative results for the whole UCR
archive can be found in chapter 7.

201

202 Visualizations of Forecasting the Evolution of Time Series

Appendix D

Visualizations on Barycenters

Figure D.1 shows more visualizations of barycenters of time series. With our SigmaNet,
we obtain much better barycenters with our uDTW compared to sDTW.

203

204 Visualizations on Barycenters

0 25 50 75

2

1

0

1

2

3

=0.1

uDTW
sDTW

0 25 50 75

2

1

0

1

2

3

=1.0

uDTW
sDTW

0 25 50 75

2

1

0

1

2

3

=10.0

uDTW
sDTW

(a) ECG200

0 25 50 75

2

1

0

1

2

3

=0.1

uDTW
sDTW

0 25 50 75

2

1

0

1

2

3

=1.0

uDTW
sDTW

0 25 50 75

2

1

0

1

2

3

=10.0

uDTW
sDTW

(b) ECG200 (our SigmaNet)

0 25 50 75 100

2

1

0

1

2
=0.1

uDTW
sDTW

0 25 50 75 100

2

1

0

1

2
=1.0

uDTW
sDTW

0 25 50 75 100

2

1

0

1

2
=10.0

uDTW
sDTW

(c) Medical Images

0 25 50 75 100

2

1

0

1

2
=0.1

uDTW
sDTW

0 25 50 75 100

2

1

0

1

2
=1.0

uDTW
sDTW

0 25 50 75 100

2

1

0

1

2
=10.0

uDTW
sDTW

(d) Medical Images (our SigmaNet)

Figure D.1: Comparison of barycenters based on our uDTW vs. sDTW. We visualize
uncertainty around the barycenters in red color for uDTW. Our uDTW with SigmaNet
generates reasonable barycenters even when higher γ values are used, e.g., γ=10.0.
Higher γ value leads to smooth barycenters but introducing higher uncertainty.

Appendix E

Visualizations on JEANIE and FVM

To explain what makes JEANIE perform well on the task of comparing pairs of
sequences, we perform additional visualisations.

To this end, we choose skeleton sequences from UWA3D Multiview Activity II for
experiments and visualizations of FVM and JEANIE. UWA3D Multiview Activity II
contains rich viewpoint configurations and so is perfect for our investigations.
1. Matching similar actions. We choose a walking skeleton sequence
(‘a12_s01_e01_v01’) as the query sample with more viewing angles for the camera
viewpoint simulation, and we select another walking skeleton sequence of a different
view (‘a12_s01_e01_v03’) and a running skeleton sequence (‘a20_s01_e01_v02’) as
support samples respectively, to verify that our JEANIE is able to find the better
matching distances compared to FVM.
2. Matching actions with similar motion trajectories. We choose a two hand punching
skeleton sequence (‘a04_s01_e01_v01’) as the query sample with more viewing
angles for the camera viewpoint simulation, and we select another two hand punching
skeleton sequence of a different view (‘a04_s05_e01_v02’) and a holding head skeleton
sequence (‘a10_s05_e01_v02’) as support samples respectively, to verify that our
JEANIE is able to find the better matching distances compared to FVM.

Fig. E.1 shows the visualizations. Comparing Fig. E.1a and E.1b of FVM, we notice
that for skeleton sequences from different action classes (walking vs.running), FVM
finds the path with a very small distance dFVM=2.68. In contrast, for sequences from
the same action class (walking vs.walking), FVM gives dFVM=4.60 which higher than in
case of within-class sequences. This is an undesired effect which may result in wrong
comparison decision.

In contrast, in Fig E.1c and E.1d, our JEANIE gives dJEANIE=8.57 for sequences of
the same action class and dJEANIE=11.21 for sequences from different action classes,
which means that the within-class distances are smaller than between-class distances.
This is in fact a very important property when comparing pairs of sequences.

Fig E.2 shows additional visualizations. Again, our JEANIE produces more
reasonable matching distances than FVM.

205

206 Visualizations on JEANIE and FVM

-60o-45o-30o-15o 0o 15o30o45o60o

Temporal

dFVM = 4.60

(a) walking vs. walking (dFVM=4.60)
-60o-45o-30o-15o 0o 15o30o45o60o

Temporal

dFVM = 2.68

(b) walking vs. running (dFVM=2.68)

-60o-45o-30o-15o 0o 15o30o45o60o

Temporal

dJEANIE = 8.57

(c) walking vs. walking (dJEANIE=8.57)
-60o-45o-30o-15o 0o 15o30o45o60o

Temporal

dJEANIE = 11.21

(d) walking vs. running (dJEANIE=11.21)

Figure E.1: Visualization of FVM and JEANIE for walking vs. walking (two different
sequences) and walking vs. running. From UWA3D Multiview Activity II, we choose
a walking sequence as the query sample (‘a12_s01_e01_v01’). We choose another
walking sequence from a different view (‘a12_s01_e01_v03’) and a running sequence
(‘a20_s01_e01_v02’) as the support samples respectively. We notice that for two
different action sequences in (b), the greedy FVM finds the path with a very small
distance dFVM=2.68 but for sequences of the same action class, FVM gives dFVM=4.60.
This is clearly suboptimal as the within-class distance is higher then the between-class
distance (to counteract this issue, we have proposed JEANIE). Our JEANIE is able to
produce a smaller distance for within-class sequences in (c) and a larger distance for
between-class sequences in (d), which is a very important property when comparing
pairs of sequences.

207

-60o-45o-30o-15o 0o 15o30o45o60o

Temporal

dFVM = 1.95

(a) two hand punching vs. two hand punching
(dFVM=1.95)

-60o-45o-30o-15o 0o 15o30o45o60o

Temporal

dFVM = 1.63

(b) two hand punching vs. holding head
(dFVM=1.63)

-60o -45o -30o -15o 0o 15o 30o 45o 60o
Temporal

dJEANIE = 2.92

(c) two hand punching vs. two hand punching
(dJEANIE=2.92)

-60o -45o -30o -15o 0o 15o 30o 45o 60o
Temporal

dJEANIE = 4.73

(d) two hand punching vs. holding head
(dJEANIE=4.73)

Figure E.2: Visualization of FVM and JEANIE for two hand punching vs. two hand
punching (two different sequences) and two hand punching vs. holding head. From
UWA3D Multiview Activity II, we choose a two hand punching sequence as the query
sample (‘a04_s01_e01_v01’), and another two hand punching sequence from a different
view (‘a04_s05_e01_v02’) and a holding head sequence (‘a10_s05_e01_v02’) as the
support samples respectively. We notice that for two different action sequences in (b),
the greedy FVM finds the path which results in dFVM=1.63 for sequences of different
action classes, yet FVM gives dFVM = 1.95 for two sequences of the same class. The
within-class distance should be smaller than the between-class distance but greedy
approaches such as FVM cannot handle this requirement well. Our JEANIE gives
smaller distance when comparing within-class sequences compared to between-class
sequences. This is a very important property when comparing pairs of sequences.

208 Visualizations on JEANIE and FVM

Bibliography

Euler angles. Wikipedia, https://en.wikipedia.org/wiki/Euler_angles. Accessed: 24-
03-2023. (cited on pages 164 and 167)

Lecture 12: Camera projection. On-line, http://www.cse.psu.edu/~rtc12/CSE486/
lecture12.pdf. Accessed: 24-03-2023. (cited on pages 164 and 167)

Abid, A. and Zou, J., 2018. Autowarp: Learning a warping distance from unlabeled
time series using sequence autoencoders. NIPS’18. Curran Associates Inc., Red
Hook, NY, USA. (cited on page 146)

Ahn, D.; Kim, S.; Hong, H.; and Ko, B. C., 2023. Star-transformer: A spatio-temporal
cross attention transformer for human action recognition. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 3330–3339.
(cited on page 1)

Akbari, H.; Yuan, L.; Qian, R.; Chuang, W.-H.; Chang, S.-F.; Cui, Y.; and Gong,
B., 2021. VATT: Transformers for multimodal self-supervised learning from raw
video, audio and text. In Advances in Neural Information Processing Systems. https:
//openreview.net/forum?id=RzYrn625bu8. (cited on pages 10 and 122)

Alvarez, L.; Weickert, J.; and Sánchez, J., 2000. Reliable estimation of dense
optical flow fields with large displacements. IJCV, 39, 1 (Aug. 2000), 41–56. doi:
10.1023/A:1008170101536. https://doi.org/10.1023/A:1008170101536. (cited on page
47)

Amor, B. B.; Su, J.; and Srivastava, A., 2016. Action Recognition Using Rate-Invariant
Analysis of Skeletal Shape Trajectories. TPAMI, 38, 1 (2016), 1–13. (cited on pages
22 and 23)

Arnab, A.; Dehghani, M.; Heigold, G.; Sun, C.; Lučić, M.; and Schmid, C., 2021.
Vivit: A video vision transformer. In Proceedings of the IEEE/CVF international
conference on computer vision, 6836–6846. (cited on page 7)

Baradel, F.; Neverova, N.; Wolf, C.; Mille, J.; and Mori, G., 2018. Object level visual
reasoning in videos. In ECCV, 1–16. Springer Science+Business Media, Munich,
Germany. (cited on page 75)

Bart, E. and Ullman, S., 2005. Cross-generalization: Learning novel classes from a
single example by feature replacement. CVPR, (2005), 672–679. (cited on pages 12
and 164)

209

https://en.wikipedia.org/wiki/Euler_angles
http://www.cse.psu.edu/~rtc12/CSE486/lecture12.pdf
http://www.cse.psu.edu/~rtc12/CSE486/lecture12.pdf
https://openreview.net/forum?id=RzYrn625bu8
https://openreview.net/forum?id=RzYrn625bu8
https://doi.org/10.1023/A:1008170101536

210 BIBLIOGRAPHY

Bashir, F. I.; Khokhar, A. A.; and Schonfeld, D., 2006. View-invariant motion
trajectory-based activity classification and recognition. Multimedia Systems, 12 (2006),
45–54. (cited on pages 10 and 11)

Ben-Ari, R.; Shpigel Nacson, M.; Azulai, O.; Barzelay, U.; and Rotman, D., 2021.
Taen: Temporal aware embedding network for few-shot action recognition. In 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
2780–2788. (cited on pages 15 and 146)

Bergstra, J.; Komer, B.; Eliasmith, C.; Yamins, D.; and Cox, D. D., 2015. Hyperopt: a
python library for model selection and hyperparameter optimization. Computational
Science & Discovery, 8, 1 (2015), 014008. http://stacks.iop.org/1749-4699/8/i=1/a=
014008. (cited on pages 155 and 177)

Bertasius, G.; Wang, H.; and Torresani, L., 2021. Is space-time attention all you
need for video understanding? In ICML, vol. 2, 4. (cited on page 7)

Berti, S.; Rosasco, A.; Colledanchise, M.; and Natale, L., 2022. One-shot open-set
skeleton-based action recognition. In 2022 IEEE-RAS 21st International Conference on
Humanoid Robots (Humanoids), 765–772. IEEE. (cited on page 15)

Bilen, H.; Fernando, B.; Gavves, E.; Vedaldi, A.; and Gould, S., 2016. Dynamic
Image Networks for Action Recognition. CVPR, (2016), 3034–3042. (cited on page
21)

Bishay, M.; Zoumpourlis, G.; and Patras, I., 2019. TARN: temporal attentive relation
network for few-shot and zero-shot action recognition. CoRR, abs/1907.09021 (2019).
http://arxiv.org/abs/1907.09021. (cited on page 13)

Blank, M.; Gorelick, L.; Shechtman, E.; Irani, M.; and Basri, R., 2005. Actions as
Space-Time Shapes. ICCV, (2005), 1–8. (cited on pages 19 and 21)

Blondel, M.; Mensch, A.; and Vert, J.-P., 2021. Differentiable divergences between
time series. In Proceedings of The 24th International Conference on Artificial Intelligence
and Statistics, vol. 130 of Proceedings of Machine Learning Research, 3853–3861. PMLR.
(cited on pages 145, 153, 154, and 161)

Bo, L.; Lai, K.; Ren, X.; and Fox, D., 2011. Object recognition with hierarchical kernel
descriptors. CVPR, (2011). (cited on page 88)

Bo, Y.; Lu, Y.; and He, W., 2020. Few-shot learning of video action recognition only
based on video contents. In 2020 IEEE Winter Conference on Applications of Computer
Vision (WACV), 584–593. doi:10.1109/WACV45572.2020.9093481. (cited on page 13)

Bobick, A. F. and Davis, J. W., 2001. The Recognition of Human Movement Using
Temporal Templates. TPAMI, 23, 3 (3 2001), 257–267. (cited on pages 19 and 21)

http://stacks.iop.org/1749-4699/8/i=1/a=014008
http://stacks.iop.org/1749-4699/8/i=1/a=014008
http://arxiv.org/abs/1907.09021

BIBLIOGRAPHY 211

Borji, A.; Cheng, M.-M.; Jiang, H.; and Li, J., 2015. Salient object detection: A
benchmark. TIP, 24, 12 (2015), 5706–5722. doi:10.1109/TIP.2015.2487833. (cited on
page 68)

Braux-Zin, J.; Dupont, R.; and Bartoli, A., 2013. A general dense image matching
framework combining direct and feature-based costs. In ICCV, 185–192. (cited on
pages 47 and 67)

Bregonzio, M.; Gong, S.; and Xiang, T., 2009. Recognising Actions as Clouds of
Space-Time Interest Points. CVPR, (2009), 1948–1955. (cited on pages 19 and 21)

Broomé, S.; Pokropek, E.; Li, B.; and Kjellström, H., 2023. Recur, attend or
convolve? on whether temporal modeling matters for cross-domain robustness in
action recognition. In Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision (WACV), 4199–4209. (cited on page 1)

Brox, T. and Malik, J., 2011. Large displacement optical flow: Descriptor matching
in variational motion estimation. TPAMI, 33, 3 (Mar. 2011), 500–513. doi:10.1109/
TPAMI.2010.143. http://dx.doi.org/10.1109/TPAMI.2010.143. (cited on pages 47,
67, and 104)

Bruna, J.; Zaremba, W.; Szlam, A.; and LeCun, Y., 2014. Spectral Networks and
Deep Locally Connected Networks on Graphs. In ICLR, 1–14. (cited on page 26)

Buettner, M.; Prasad, R.; Philipose, M.; and Wetherall, D., 2009. Recognizing
Daily Activities with RFID-Based Sensors. UbiComp, (2009). (cited on page 21)

Caba Heilbron, F.; Escorcia, V.; Ghanem, B.; and Carlos Niebles, J., 2015. Activi-
tynet: A large-scale video benchmark for human activity understanding. In CVPR.
(cited on page 10)

Cao, K.; Ji, J.; Cao, Z.; Chang, C.-Y.; and Niebles, J. C., 2020. Few-shot video
classification via temporal alignment. In CVPR. (cited on pages 12, 13, 15, 145, 146,
164, and 166)

Cao, Z.; Simon, T.; Wei, S.-E.; and Sheikh, Y., 2017. Realtime multi-person 2d pose
estimation using part affinity fields. In CVPR. (cited on pages xxix, 4, 7, 85, 104,
110, 112, 120, 130, and 174)

Carreira, J. and Zisserman, A., 2017. Quo vadis, action recognition? a new model
and the kinetics dataset. In CVPR. (cited on pages 4, 5, 6, 9, 10, 12, 21, 43, 44, 47,
57, 58, 63, 68, 77, 86, 102, 104, 111, and 163)

Caruana, R., 1997. Multitask learning. Machine Learning, 28, 1 (Jul. 1997), 41–75.
doi:10.1023/A:1007379606734. https://doi.org/10.1023/A:1007379606734. (cited on
pages 9, 26, and 61)

http://dx.doi.org/10.1109/TPAMI.2010.143
https://doi.org/10.1023/A:1007379606734

212 BIBLIOGRAPHY

Catalin; Ionescu; Dragos; Papava; Vlad; Olaru; Cristian; and Sminchisescu,
2014. Human3.6m: Large scale datasets and predictive methods for 3d human
sensing in natural environments. IEEE Transactions on Pattern Analysis & Machine
Intelligence, (2014). (cited on pages 150 and 174)

Cavazza, J.; Zunino, A.; Biagio, M. S.; and Vittorio, M., 2016. Kernelized covariance
for action recognition. CoRR abs/1604.06582, (2016). (cited on page 88)

Chakraborty, B.; Holte, M. B.; Moeslund, T. B.; and Gonzàlez, J., 2012. Selective
spatio-temporal interest points. CVIU, 116, 3 (2012), 396–410. (cited on pages 45
and 66)

Chen, C.; Fan, Q.; and Panda, R., 2021a. Crossvit: Cross-attention multi-scale
vision transformer for image classification. CoRR, abs/2103.14899 (2021). https:
//arxiv.org/abs/2103.14899. (cited on page 124)

Chen, T.; Zhou, D.; Wang, J.; Wang, S.; He, Q.; Hu, C.; Ding, E.; Guan, Y.; and He,
X., 2022. Part-aware prototypical graph network for one-shot skeleton-based action
recognition. arXiv preprint arXiv:2208.09150, (2022). (cited on page 15)

Chen, W.-Y.; Liu, Y.-C.; Kira, Z.; Wang, Y.-C. F.; and Huang, J.-B., 2019. A closer
look at few-shot classification. In International Conference on Learning Representations.
https://openreview.net/forum?id=HkxLXnAcFQ. (cited on page 13)

Chen, Y.; Zhang, Z.; Yuan, C.; Li, B.; Deng, Y.; and Hu, W., 2021b. Channel-wise
topology refinement graph convolution for skeleton-based action recognition. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, 13359–13368.
(cited on pages 8, 121, 133, and 135)

Cheng, K.; Zhang, Y.; Cao, C.; Shi, L.; Cheng, J.; and Lu, H., 2020a. Decoupling gcn
with dropgraph module for skeleton-based action recognition. In Computer Vision –
ECCV 2020, 536–553. Springer International Publishing, Cham. (cited on pages 8
and 121)

Cheng, K.; Zhang, Y.; He, X.; Chen, W.; Cheng, J.; and Lu, H., 2020b. Skeleton-based
action recognition with shift graph convolutional network. In CVPR. (cited on
pages 8, 121, 132, 133, 135, and 166)

Cheng, Y.-B.; Chen, X.; Zhang, D.; and Lin, L., 2021. Motion-transformer: Self-
supervised pre-training for skeleton-based action recognition. In Proceedings of
the 2nd ACM International Conference on Multimedia in Asia, MMAsia ’20 (Virtual
Event, Singapore, 2021). Association for Computing Machinery, New York, NY, USA.
doi:10.1145/3444685.3446289. https://doi.org/10.1145/3444685.3446289. (cited on
page 124)

Cherian, A.; Fernando, B.; Harandi, M.; and Gould, S., 2017a. Generalized Rank
Pooling for Activity Recognition. CVPR, (2017), 3222–3231. (cited on pages 21, 55,
58, 75, 78, 86, and 111)

https://arxiv.org/abs/2103.14899
https://arxiv.org/abs/2103.14899
https://openreview.net/forum?id=HkxLXnAcFQ
https://doi.org/10.1145/3444685.3446289

BIBLIOGRAPHY 213

Cherian, A. and Gould, S., 2018. Second-order temporal pooling for action recogni-
tion. IJCV, (2018). (cited on page 86)

Cherian, A.; Koniusz, P.; and Gould, S., 2017b. Higher-order pooling of cnn features
via kernel linearization for action recognition. In 2017 IEEE Winter Conference on
Applications of Computer Vision (WACV), 130–138. doi:10.1109/WACV.2017.22. (cited
on pages xxix, 10, 21, 44, 46, 47, 64, 65, 67, 68, 86, 111, 112, 121, and 129)

Cherian, A.; Sra, S.; Gould, S.; and Hartley, R., 2018. Non-linear temporal subspace
representations for activity recognition. In CVPR, 2197–2206. doi:10.1109/CVPR.
2018.00234. (cited on pages 10, 44, 47, 55, 58, 64, 65, 68, 75, 78, and 111)

Chéron, G.; Laptev, I.; and Schmid, C., 2015. P-CNN: Pose-based CNN Features for
Action Recognition. ICCV, (2015). (cited on pages 86 and 89)

Chi, H.-g.; Ha, M. H.; Chi, S.; Lee, S. W.; Huang, Q.; and Ramani, K., 2022.
Infogcn: Representation learning for human skeleton-based action recognition. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 20186–20196. (cited on pages 8, 133, and 135)

Chollet, F., 2017. Xception: Deep learning with depthwise separable convolutions. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
(cited on page 191)

Choromanski, K. M.; Likhosherstov, V.; Dohan, D.; Song, X.; Gane, A.; Sar-
los, T.; Hawkins, P.; Davis, J. Q.; Mohiuddin, A.; Kaiser, L.; Belanger, D. B.;
Colwell, L. J.; and Weller, A., 2021. Rethinking attention with performers. In
International Conference on Learning Representations. https://openreview.net/forum?
id=Ua6zuk0WRH. (cited on page 126)

Choutas, V.; Weinzaepfel, P.; Revaud, J.; and Schmid, C., 2018. PoTion: Pose motion
representation for action recognition. In CVPR, 7024–7033. (cited on pages 10, 44,
46, 64, 65, and 67)

Cormode, G. and Hadjieleftheriou, M., 2008. Finding frequent items in data
streams. Proc. VLDB Endow., 1, 2 (Aug. 2008), 1530–1541. doi:10.14778/1454159.
1454225. http://dx.doi.org/10.14778/1454159.1454225. (cited on page 50)

Csurka, G.; Dance, C. R.; Fan, L.; Willamowski, J.; and Bray, C., 2004. Visual
categorization with bags of keypoints. ECCV Workshop, (2004), 1–22. (cited on
pages 43, 46, 48, 64, and 67)

Cuturi, M., 2011. Fast global alignment kernels. In International Conference on Machine
Learning (ICML). (cited on pages 15, 139, 145, 153, 161, 164, and 169)

Cuturi, M. and Blondel, M., 2017. Soft-dtw: a differentiable loss function for
time-series. In International Con- ference on Machine Learning (ICML). (cited on pages
15, 139, 145, 149, 150, 153, 154, 160, 161, 162, 164, and 169)

https://openreview.net/forum?id=Ua6zuk0WRH
https://openreview.net/forum?id=Ua6zuk0WRH
http://dx.doi.org/10.14778/1454159.1454225

214 BIBLIOGRAPHY

Dalal, N.; Triggs, B.; and Schmid, C., 2006. Human Detection Using Oriented
Histogram of Flow and Appearance. ECCV, (2006), 428–441. (cited on pages 43, 44,
45, 46, 63, 66, and 67)

Damen, D.; Doughty, H.; Farinella, G. M.; Fidler, S.; Furnari, A.; Kazakos,
E.; Moltisanti, D.; Munro, J.; Perrett, T.; Price, W.; and Wray, M., 2018.
Scaling egocentric vision: The epic-kitchens dataset. In ECCV, 1–17. Springer
Science+Business Media, Munich, Germany. (cited on pages 2, 4, 75, and 79)

Dau, H. A.; Keogh, E.; Kamgar, K.; Yeh, C.-C. M.; Zhu, Y.; Gharghabi, S.;
Ratanamahatana, C. A.; Yanping; Hu, B.; Begum, N.; Bagnall, A.; Mueen,
A.; and Batista, G., 2018. The UCR Time Series Classification Archive. https:
//www.cs.ucr.edu/~eamonn/time_series_data_2018/. (cited on pages 150 and 197)

Defferrard, M.; Bresson, X.; and Vandergheynst, P., 2016. Convolutional Neural
Networks on Graphs with Fast Localized Spectral Filtering. In NIPS, 1–9. (cited on
page 26)

Dempster, A.; Schmidt, D. F.; and Webb, G. I., 2021. Minirocket: A very fast (almost)
deterministic transform for time series classification. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, KDD ’21 (Virtual Event,
Singapore, 2021), 248–257. Association for Computing Machinery, New York, NY,
USA. doi:10.1145/3447548.3467231. (cited on page 145)

Dollár, P.; Rabaud, V.; Cottrell, G.; and Belongie, S., 2005. Behavior recognition
via sparse spatio-temporal features. In Proceedings of the 14th International Conference
on Computer Communications and Networks, 65–72. http://dl.acm.org/citation.cfm?
id=1259587.1259830. (cited on pages 19, 21, 45, and 66)

Donahue, J.; Anne Hendricks, L.; Guadarrama, S.; Rohrbach, M.; Venugopalan,
S.; Saenko, K.; and Darrell, T., 2015. Long-term recurrent convolutional networks
for visual recognition and description. In CVPR. (cited on pages 47, 68, and 86)

Donahue, J.; Dieleman, S.; Binkowski, M.; Elsen, E.; and Simonyan, K., 2021.
End-to-end adversarial text-to-speech. In International Conference on Learning Repre-
sentations. (cited on page 145)

Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner,
T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al., 2020. An image is
worth 16x16 words: Transformers for image recognition at scale. In International
Conference on Learning Representations. (cited on pages 124, 125, 147, 158, 159, 165,
170, 171, and 180)

Du, D.; Shringi, A.; Hoogs, A.; and Funk, C., 2023. Reconstructing humpty dumpty:
Multi-feature graph autoencoder for open set action recognition. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 3371–3380.
(cited on page 1)

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
http://dl.acm.org/citation.cfm?id=1259587.1259830
http://dl.acm.org/citation.cfm?id=1259587.1259830

BIBLIOGRAPHY 215

Du, Y.; Wang, W.; and Wang, L., 2015. Hierarchical Recurrent Neural Network for
Skeleton Based Action Recognition. In CVPR, 1110–1118. (cited on pages 11, 22,
and 23)

Duan, H.; Zhao, Y.; Chen, K.; Lin, D.; and Dai, B., 2022. Revisiting skeleton-based
action recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2969–2978. (cited on page 133)

Dvornik, N.; Schmid, C.; and Mairal1, J., 2020. Selecting relevant features from a
multi-domain representation for few-shot classification. In ECCV. (cited on pages
12 and 164)

Dwivedi, S. K.; Gupta, V.; Mitra, R.; Ahmed, S.; and Jain, A., 2019. Protogan:
Towards few shot learning for action recognition. arXiv, (2019). (cited on pages 12,
164, and 166)

Elgammal, A. and Lee, C.-S., 2009. Tracking people on a torus. TPAMI, (2009). (cited
on page 86)

Elmadany, N. E. D.; He, Y.; and Guan, L., 2018. Information Fusion for Human
Action Recognition via Biset/Multiset Globality Locality Preserving Canonical
Correlation Analysis. In TIP, 5275–5287. (cited on pages 9, 22, 23, and 24)

Elsken, T.; Staffler, B.; Metzen, J. H.; and Hutter, F., 2020. Meta-learning of neural
architectures for few-shot learning. In CVPR. (cited on pages 12 and 164)

Fan, H.; Xiong, B.; Mangalam, K.; Li, Y.; Yan, Z.; Malik, J.; and Feichtenhofer, C.,
2021. Multiscale vision transformers. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, 6824–6835. (cited on page 7)

Fang, P.; Zhou, J.; Kumar Roy, S.; Petersson, L.; and Harandi, M., 2019. Bilinear
attention networks for person retrieval. In ICCV. (cited on pages 47 and 68)

Fei, N.; Guan, J.; Lu, Z.; and Gao, Y., 2020. Few-shot zero-shot learning: Knowledge
transfer with less supervision. In ACCV. (cited on pages 12 and 164)

Fei-Fei, L.; Fergus, R.; and Perona, P., 2006. One-shot learning of object categories.
IEEE TPAMI, 28, 4 (2006), 594–611. (cited on pages 12 and 164)

Feichtenhofer, C.; Fan, H.; Malik, J.; and He, K., 2019. Slowfast networks for video
recognition. In ICCV, 6202–6211. IEEE, Seoul, Korea. (cited on pages 6 and 78)

Feichtenhofer, C.; Pinz, A.; and Wildes, R. P., 2016a. Spatiotemporal residual
networks for video action recognition. In NIPS, 3468–3476. (cited on pages 5, 43,
47, 63, and 68)

Feichtenhofer, C.; Pinz, A.; and Wildes, R. P., 2017a. Spatiotemporal multiplier
networks for video action recognition. In CVPR. (cited on pages 6, 21, 57, and 163)

216 BIBLIOGRAPHY

Feichtenhofer, C.; Pinz, A.; and Wildes, R. P., 2017b. Temporal residual networks
for dynamic scene recognition. In CVPR. (cited on pages 54, 58, 74, and 78)

Feichtenhofer, C.; Pinz, A.; and Zisserman, A., 2016b. Convolutional two-stream
network fusion for video action recognition. In CVPR. (cited on pages 6, 21,
and 163)

Fernando, B.; Gavves, E.; M., J. O.; Ghodrati, A.; and Tuytelaars, T., 2015.
Modeling video evolution for action recognition. In CVPR, 5378–5387. (cited on
pages 47 and 68)

Fernando, B.; Gavves, E.; Oramas M., J. O.; Ghodrati, A.; and Tuytelaars, T.,
2017. Rank pooling for action recognition. IEEE Trans. Pattern Anal. Mach. Intell., 39,
4 (apr 2017), 773–787. doi:10.1109/TPAMI.2016.2558148. https://doi.org/10.1109/
TPAMI.2016.2558148. (cited on pages 121 and 129)

Fernando, B. and Gould, S., 2016. Learning end-to-end video classification with
rank-pooling. In ICML, vol. 48, 1187–1196. (cited on pages 10, 44, 47, 64, 65, and 68)

Fink, M., 2005. Object classification from a single example utilizing class relevance
metrics. NeurIPS, (2005), 449–456. (cited on pages 12 and 164)

Finn, C.; Abbeel, P.; and Levine, S., 2017. Model-agnostic meta-learning for fast
adaptation of deep networks. In ICML, vol. 70, 1126–1135. PMLR. (cited on page
164)

Fishkin, K. P.; Philipose, M.; and Rea, A., 2005. Hands-On RFID: Wireless Wearables
for Detecting Use of Objects. IEEE ISWC, (2005). (cited on page 21)

Freeman, W. T. and Roth, M., 1994. Orientation histograms for hand gesture recogni-
tion. Technical Report TR94-03, MERL - Mitsubishi Electric Research Laboratories,
Cambridge, MA 02139. http://www.merl.com/publications/TR94-03/. (cited on
pages 44, 46, and 67)

Gaidon, A.; Harchoui, Z.; and Schmid, C., 2011. A time series kernel for action
recognition. BMVC, (2011), 63.1–63.11. (cited on page 88)

Gao, Y.; Beijbom, O.; Zhang, N.; and Darrell, T., 2016. Compact Bilinear Pooling.
CVPR, (2016), 1–10. (cited on page 24)

Gao, Z.; Wang, P.; Lv, P.; Jiang, X.; Liu, Q.; Wang, P.; Xu, M.; and Li, W., 2022. Focal
and global spatial-temporal transformer for skeleton-based action recognition. In
Proceedings of the Asian Conference on Computer Vision, 382–398. (cited on page 8)

García-García, D.; Parrado Hernández, E.; and Díaz-de María, F., 2009. A new
distance measure for model-based sequence clustering. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 31, 7 (2009), 1325–1331. doi:10.1109/TPAMI.2008.
268. (cited on page 145)

https://doi.org/10.1109/TPAMI.2016.2558148
https://doi.org/10.1109/TPAMI.2016.2558148
http://www.merl.com/publications/TR94-03/

BIBLIOGRAPHY 217

Gauglitz, S.; Höllerer, T.; and Turk, M., 2011. Evaluation of interest point detectors
and feature descriptors for visual tracking. IJCV, 94, 3 (3 2011), 335. doi:10.1007/
s11263-011-0431-5. https://doi.org/10.1007/s11263-011-0431-5. (cited on page 45)

Ghadiyaram, D.; Tran, D.; and Mahajan, D., 2019. Large-scale weakly-supervised
pre-training for video action recognition. In CVPR, 12046–12055. IEEE, Long
Beach,California,USA. (cited on page 79)

Girdhar, R. and Ramanan, D., 2017. Attentional pooling for action recognition. In
NIPS. (cited on pages 121 and 129)

Girshick, R., 2015. Fast r-cnn. In ICCV, 1440–1448. IEEE, Santiago, Chile. (cited on
page 67)

Girshick, R.; Donahue, J.; Darrell, T.; and Malik, J., 2016. Region-based convolu-
tional networks for accurate object detection and segmentation. TPAMI, 38, 1 (Jan.
2016), 142–158. (cited on page 67)

Goyal, R.; Ebrahimi Kahou, S.; Michalski, V.; Materzynska, J.; Westphal, S.; Kim,
H.; Haenel, V.; Fruend, I.; Yianilos, P.; Mueller-Freitag, M.; Hoppe, F.; Thurau,
C.; Bax, I.; and Memisevic, R., 2017. The "something something" video database for
learning and evaluating visual common sense. In The IEEE International Conference
on Computer Vision (ICCV). (cited on page 10)

Gu, C.; Sun, C.; Ross, D. A.; Vondrick, C.; Pantofaru, C.; Li, Y.; Vijayanarasimhan,
S.; Toderici, G.; Ricco, S.; Sukthankar, R.; Schmid, C.; and Malik, J., 2018. Ava:
A video dataset of spatio-temporally localized atomic visual actions. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). (cited on pages 65
and 67)

Guan, J.; Zhang, M.; and Lu, Z., 2020. Large-scale cross-domain few-shot learning.
In ACCV. (cited on pages 12 and 164)

Guo, H.; Wang, H.; and Ji, Q., 2022. Uncertainty-guided probabilistic transformer for
complex action recognition. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 20052–20061. (cited on page 7)

Guo, M.; Chou, E.; Huang, D.-A.; Song, S.; Yeung, S.; and Fei-Fei, L., 2018. Neural
graph matching networks for fewshot 3d action recognition. In ECCV, 653–669.
(cited on pages 12, 13, 15, 164, and 166)

Guo, Y.; Codella, N. C.; Karlinsky, L.; Codella, J. V.; Smith, J. R.; Saenko, K.;
Rosing, T.; and Feris, R., 2020. A broader study of cross-domain few-shot learning.
In ECCV. (cited on pages 12 and 164)

Gupta, S.; Girshick, R.; Arbelaez, P.; and Malik, J., 2014. Learning Rich Features
from RGB-D Images for Object Detection and Segmentation. ECCV, (2014), 1–16.
(cited on pages 21 and 25)

https://doi.org/10.1007/s11263-011-0431-5

218 BIBLIOGRAPHY

Haasdonk, B. and Burkhardt, H., 2007. Invariant kernel functions for pattern
analysis and machine learning. Mach. Learn., 68, 1 (2007), 35–61. (cited on page 169)

Hadji, I. and Wildes, R. P., 2018. A new large scale dynamic texture dataset with
application to ConvNet understanding. In ECCV. (cited on page 78)

Hao, X.; Li, J.; Guo, Y.; Jiang, T.; and Yu, M., 2021. Hypergraph neural network for
skeleton-based action recognition. IEEE Transactions on Image Processing, 30 (2021),
2263–2275. doi:10.1109/TIP.2021.3051495. (cited on pages 8, 122, 125, 126, 133,
and 134)

Harandi, M.; Salzmann, M.; and Hartley, R., 2018. Dimensionality reduction on
SPD manifolds: The emergence of geometry-aware methods. TPAMI, (2018). (cited
on page 61)

Harandi, M.; Salzmann, M.; and Porikli, F., 2014. Bregman divergences for infinite
dimensional covariance matrices. CVPR, (2014). (cited on page 86)

Hashiguchi, R. and Tamaki, T., 2022. Vision transformer with cross-attention by
temporal shift for efficient action recognition. doi:10.48550/ARXIV.2204.00452.
https://arxiv.org/abs/2204.00452. (cited on pages 1 and 124)

Hastie, T.; Tibshirani, R.; and Friedman, J., 2001. The Elements of Statistical Learning.
Springer Series in Statistics. Springer New York Inc., New York, NY, USA. (cited
on page 151)

He, C.; Xiao, C.; Liu, S.; Qin, X.; Zhao, Y.; and Zhang, X., 2021. Single-skeleton
and dual-skeleton hypergraph convolution neural networks for skeleton-based
action recognition. In Neural Information Processing, 15–27. Springer International
Publishing, Cham. (cited on pages 133 and 134)

He, K.; Gkioxari, G.; Dollár, P.; and Girshick, R. B., 2017. Mask r-cnn. In ICCV,
2980–2988. IEEE, Venice, Italy. (cited on page 67)

He, K.; Zhang, X.; Ren, S.; and Sun, J., 2016. Deep residual learning for image
recognition. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). (cited on pages 65 and 67)

Herath, S.; Harandi, M.; Fernando, B.; and Nock, R., 2019. Min-max statistical
alignment for transfer learning. CVPR, (2019). (cited on page 61)

Hochreiter, S. and Schmidhuber, J., 1997. Long Short-Term Memory. Neural
Comput., (1997), 1735–1780. (cited on page 23)

Hodges, M. R. and Pollack, M. E., 2007. An ‘Object-Use Fingerprint’: The Use of
Electronic Sensors for Human Identification. UbiComp, (2007). (cited on page 21)

Hong, J.; Fisher, M.; Gharbi, M.; and Fatahalian, K., 2021. Video pose distillation
for few-shot, fine-grained sports action recognition. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), 9254–9263. (cited on page 15)

https://arxiv.org/abs/2204.00452

BIBLIOGRAPHY 219

Horn, B. K. P. and Schunck, B. G., 1981. Determining optical flow. Artificial
Intelligence, 17 (1981), 185–203. (cited on pages 47 and 67)

Hou, Q.; Cheng, M.-M.; Hu, X.; Borji, A.; Tu, Z.; and Torr, P. H. S., 2017. Deeply
supervised salient object detection with short connections. In CVPR, 3203–3212.
IEEE, Honolulu, HI, USA. (cited on page 68)

Howard, A.; Sandler, M.; Chen, B.; Wang, W.; Chen, L.; Tan, M.; Chu, G.; Vasude-
van, V.; Zhu, Y.; Pang, R.; Adam, H.; and Le, Q., 2019. Searching for mobilenetv3.
In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 1314–1324.
IEEE Computer Society, Los Alamitos, CA, USA. doi:10.1109/ICCV.2019.00140.
https://doi.ieeecomputersociety.org/10.1109/ICCV.2019.00140. (cited on page 191)

Hu, J.-F.; Zheng, W.-S.; Pan, J.; Lai, J.; and Zhang, J., 2018. Deep bilinear learning for
rgb-d action recognition. ECCV, (2018). (cited on pages 21, 22, and 109)

Huang, Z.; Wan, C.; Probst, T.; and Gool, L. V., 2017. Deep Learning on Lie Groups
for Skeleton-based Action Recognition. In CVPR, 6099–6108. (cited on pages 21
and 22)

Huckle, T., 2019. www5.in.tum.de/persons/huckle/tensor-kurs_1.pdf. (cited on page
90)

Hüllermeier, E. and Waegeman, W., 2021. Aleatoric and epistemic uncertainty in
machine learning: an introduction to concepts and methods. Mach. Learn., 110, 3
(2021), 457–506. doi:10.1007/s10994-021-05946-3. (cited on page 140)

Hunter, I. M. L., 1980. Book review: Thinking in perspective: Critical essays
in the study of thought processes. Quarterly Journal of Experimental Psychology,
32, 2 (1980), 358–359. doi:10.1080/14640748008401170i. https://doi.org/10.1080/
14640748008401170i. (cited on page 47)

Hussein, M. E.; Torki, M.; Gowayyed, M.; and El-Saban, M., 2013. Human ac-
tion recognition using a temporal hierarchy of covariance descriptors on 3D joint
locations. IJCAI, (2013). (cited on pages 86 and 88)

Iandola, F. N.; Moskewicz, M. W.; Ashraf, K.; Han, S.; Dally, W. J.; and Keutzer,
K., 2016. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb
model size. CoRR, abs/1602.07360 (2016). http://arxiv.org/abs/1602.07360. (cited
on page 191)

Indrayan, A., 2008. Medical biostatistics. Chapman & Hall/CRC„ Boca Raton :, 2nd ed.
edn. http://www.loc.gov/catdir/toc/ecip0723/2007030353.html. (cited on page 140)

Insafutdinov, E.; Pishchulin, L.; Andres, B.; Andriluka, M.; and Schiele, B.,
2016. Deepercut: A deeper, stronger, and faster multi-person pose estimation model.
ECCV, (2016). (cited on page 89)

https://doi.ieeecomputersociety.org/10.1109/ICCV.2019.00140
www5.in.tum.de/persons/huckle/tensor-kurs_1.pdf
https://doi.org/10.1080/14640748008401170i
https://doi.org/10.1080/14640748008401170i
http://arxiv.org/abs/1602.07360
http://www.loc.gov/catdir/toc/ecip0723/2007030353.html

220 BIBLIOGRAPHY

Jebara, T.; Kondor, R.; and Howard, A., 2004. Probability product kernels. JMLR, 5
(2004), 819–844. (cited on pages 70 and 90)

Jégou, H.; Douze, M.; and Schmid, C., 2009. On the Burstiness of Visual Elements.
CVPR, (2009), 1169–1176. (cited on pages 48, 69, and 94)

Ji, S.; Xu, W.; Yang, M.; and Yu, K., 2013. 3d convolutional neural networks for human
action recognition. TPAMI, 35, 1 (1 2013), 221–231. doi:10.1109/TPAMI.2012.59.
(cited on pages 5, 47, 68, and 86)

Jiang, Y.; Sun, Z.; Yu, S.; Wang, S.; and Song, Y., 2022. A graph skeleton transformer
network for action recognition. Symmetry, 14, 8 (2022). doi:10.3390/sym14081547.
https://www.mdpi.com/2073-8994/14/8/1547. (cited on pages 1, 8, and 133)

Johansson, G., 1973. Visual perception of biological motion and a model for its
analysis. Perception and Psychophysics, 14, 2 (1973), 201–211. (cited on page 88)

Junejo, I. N.; Dexter, E.; Laptev, I.; and Pérez, P., 2008. Cross-view action recognition
from temporal self-similarities. In Computer Vision – ECCV 2008, 293–306. Springer
Berlin Heidelberg, Berlin, Heidelberg. (cited on pages 10 and 11)

Kang, M.-S.; Kang, D.; and Kim, H., 2023. Efficient skeleton-based action recognition
via joint-mapping strategies. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV), 3403–3412. (cited on page 1)

Kar, A.; Rai, N.; Sikka, K.; and Sharma, G., 2017. AdaScan: Adaptive Scan Pooling
in Deep Convolutional Neural Networks for Human Action Recognition in Videos.
CVPR, (2017), 3376–3385. (cited on page 21)

Karpathy, A.; Toderici, G.; Shetty, S.; Leung, T.; Sukthankar, R.; and Fei-Fei, L.,
2014. Large-scale video classification with convolutional neural networks. In CVPR,
1725–1732. doi:10.1109/CVPR.2014.223. https://doi.org/10.1109/CVPR.2014.223.
(cited on pages 10, 47, 68, and 86)

Katharopoulos, A.; Vyas, A.; Pappas, N.; and Fleuret, F., 2020. Transformers
are RNNs: Fast autoregressive transformers with linear attention. In Proceedings
of the 37th International Conference on Machine Learning, vol. 119 of Proceedings of
Machine Learning Research, 5156–5165. PMLR. https://proceedings.mlr.press/v119/
katharopoulos20a.html. (cited on page 126)

Kay, W.; Carreira, J.; Simonyan, K.; Zhang, B.; Hillier, C.; Vijayanarasimhan, S.;
Viola, F.; Green, T.; Back, T.; Natsev, P.; Suleyman, M.; and Zisserman, A., 2017.
The kinetics human action video dataset. CoRR abs/1705.06950, (2017). (cited on
pages xxix, 2, 4, 87, 102, 103, 104, 110, 130, 150, and 174)

Ke, Q.; An, S.; Bennamoun, M.; Sohel, F.; and Boussaid, F., 2017a. SkeletonNet:
Mining Deep Part Features for 3D Action Recognition. IEEE SPL, 24, 6 (2017),
731–735. (cited on pages 3, 20, 21, 22, and 23)

https://www.mdpi.com/2073-8994/14/8/1547
https://doi.org/10.1109/CVPR.2014.223
https://proceedings.mlr.press/v119/katharopoulos20a.html
https://proceedings.mlr.press/v119/katharopoulos20a.html

BIBLIOGRAPHY 221

Ke, Q.; Bennamoun, M.; An, S.; Sohel, F.; and Boussaid, F., 2017b. A New Represen-
tation of Skeleton Sequences for 3D Action Recognition. In CVPR. (cited on pages
3, 20, 21, 22, 23, 24, 26, 27, 30, 33, 35, 36, 38, 109, and 186)

Ke, Q.; Bennamoun, M.; An, S.; Sohel, F.; and Boussaid, F., 2018. Learning clip
representations for skeleton-based 3d action recognition. IEEE TIP, 27, 6 (2018),
2842–2855. (cited on page 186)

Ke, Y.; Sukthankar, R.; and Hebert, M., 2007. Spatio-temporal Shape and Flow
Correlation for Action Recognition. Proc. 7th Int. Workshop on Visual Surveillance,
(2007). (cited on pages 19 and 21)

Kendall, A. and Gal, Y., 2017. What uncertainties do we need in bayesian deep
learning for computer vision? In Advances in Neural Information Processing Systems,
vol. 30. Curran Associates, Inc. (cited on page 140)

Kim, J.; Oh, S.; and Hong, S., 2021. Transformers generalize deepsets and can be
extended to graphs & hypergraphs. In Advances in Neural Information Processing
Systems. https://openreview.net/forum?id=scn3RYn1DYx. (cited on pages 120, 124,
and 126)

Kim, T.-K.; Wong, K.-Y. K.; and Cipolla, R., 2007. Tensor canonical correlation
analysis for action classification. CVPR, (2007). (cited on page 88)

Kim, T. S. and Reiter, A., 2017. Interpretable 3d human action analysis with temporal
convolutional networks. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), 1623–1631. doi:10.1109/CVPRW.2017.207. (cited
on page 133)

Kipf, T. N. and Welling, M., 2017. Semi-supervised classification with graph con-
volutional networks. In International Conference on Learning Representations (ICLR).
(cited on pages 8, 26, 165, 166, 167, 168, and 171)

Kiureghian, A. D. and Ditlevsen, O., 2009. Aleatory or epistemic? does it matter?
Structural Safety, 31, 2 (2009), 105–112. doi:https://doi.org/10.1016/j.strusafe.2008.
06.020. Risk Acceptance and Risk Communication. (cited on page 140)

Kläser, A.; Marszalek, M.; and Schmid, C., 2008. A Spatio-Temporal Descriptor
Based on 3D-Gradients. BMCV, (2008), 1–10. (cited on pages 43, 44, 46, 63, and 67)

Klicpera, J.; Bojchevski, A.; and Gunnemann, S., 2019. Predict then propagate:
Graph neural networks meet personalized pagerank. In ICLR. (cited on pages 165,
167, 168, and 171)

Koch, G.; Zemel, R.; and Salakhutdinov, R., 2015. Siamese neural networks for
one-shot image recognition. In ICML deep learning workshop, vol. 2. (cited on page
164)

https://openreview.net/forum?id=scn3RYn1DYx

222 BIBLIOGRAPHY

Kong, J.; Bian, Y.; and Jiang, M., 2022. Mtt: Multi-scale temporal transformer for
skeleton-based action recognition. IEEE Signal Processing Letters, 29 (2022), 528–532.
doi:10.1109/LSP.2022.3142675. (cited on pages 1, 8, and 133)

Koniusz, P. and Cherian, A., 2016. Sparse coding for third-order super-symmetric
tensor descriptors with application to texture recognition. CVPR, (2016). (cited on
page 89)

Koniusz, P.; Cherian, A.; and Porikli, F., 2016a. Tensor representations via kernel
linearization for action recognition from 3D skeletons. ECCV, (2016). (cited on
pages 7, 9, 20, 22, 23, 24, 25, 27, 30, 33, 35, 36, 38, 47, 68, 86, and 87)

Koniusz, P.; Cherian, A.; and Porikli, F., 2016b. Tensor representations via kernel
linearization for action recognition from 3D skeletons (extended version). CoRR
abs/1604.00239, (2016). (cited on pages 9 and 115)

Koniusz, P. and Mikolajczyk, K., 2011. Soft assignment of visual words as linear
coordinate coding and optimisation of its reconstruction error. In 2011 18th IEEE In-
ternational Conference on Image Processing, 2413–2416. doi:10.1109/ICIP.2011.6116129.
(cited on pages 46, 67, and 148)

Koniusz, P.; Tas, Y.; and Porikli, F., 2017. Domain adaptation by mixture of
alignments of second- or higher-order scatter tensors. CVPR, (2017). (cited on page
61)

Koniusz, P.; Tas, Y.; Zhang, H.; Harandi, M.; Porikli, F.; and Zhang, R., 2018a.
Museum exhibit identification challenge for the supervised domain adaptation and
beyond. In ECCV. (cited on page 61)

Koniusz, P.; Wang, L.; and Cherian, A., 2020. Tensor representations for action
recognition. In IEEE Transactions on Pattern Analysis and Machine Intelligence. IEEE.
(cited on pages 9, 30, 68, 119, 120, 121, 122, 146, and 163)

Koniusz, P.; Wang, L.; and Sun, K., 2021. High-order tensor pooling with attention
for action recognition. arXiv, (2021). (cited on pages 48, 69, 119, 121, 129, and 163)

Koniusz, P.; Yan, F.; Gosselin, P.; and Mikolajczyk, K., 2013a. Higher-order occur-
rence pooling on mid- and low-level features: Visual concept detection. Technical
Report, (2013). (cited on pages 85 and 89)

Koniusz, P.; Yan, F.; Gosselin, P.; and Mikolajczyk, K., 2016c. Higher-order
occurrence pooling for bags-of-words: Visual concept detection. TPAMI, (2016).
(cited on pages 45, 47, 48, 68, 69, 85, 86, 89, 94, 95, and 106)

Koniusz, P.; Yan, F.; and Mikolajczyk, K., 2013b. Comparison of mid-level feature
coding approaches and pooling strategies in visual concept detection. Computer
Vision and Image Understanding, 117, 5 (2013), 479–492. doi:https://doi.org/10.1016/
j.cviu.2012.10.010. (cited on pages 45, 46, 48, 67, 69, and 148)

BIBLIOGRAPHY 223

Koniusz, P. and Zhang, H., 2020. Power normalizations in fine-grained image,
few-shot image and graph classification. In IEEE Transactions on Pattern Analysis and
Machine Intelligence. IEEE. (cited on pages 12, 69, 89, 121, and 164)

Koniusz, P.; Zhang, H.; and Porikli, F., 2018b. A deeper look at power normaliza-
tions. CVPR, (2018), 5774–5783. (cited on pages 45, 48, 49, 69, 85, 87, 89, 96, 110,
and 117)

Koppula, H. S.; Gupta, R.; and Saxena, A., 2013. Learning Human Activities and
Object Affordances from RGB-D Videos. IJRR, (1 2013). (cited on page 21)

Korban, M. and Li, X., 2020. Ddgcn: A dynamic directed graph convolutional
network for action recognition. In Computer Vision – ECCV 2020, 761–776. Springer
International Publishing, Cham. (cited on pages 8 and 121)

Kovaleva, O.; Romanov, A.; Rogers, A.; and Rumshisky, A., 2019. Revealing the dark
secrets of BERT. In Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), 4365–4374. Association for Computational Linguistics,
Hong Kong, China. doi:10.18653/v1/D19-1445. https://aclanthology.org/D19-1445.
(cited on page 132)

Kozlov, A.; Andronov, V.; and Gritsenko, Y., 2020. Lightweight Network Architecture
for Real-Time Action Recognition, 2074–2080. Association for Computing Machinery,
New York, NY, USA. ISBN 9781450368667. https://doi.org/10.1145/3341105.3373906.
(cited on page 191)

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E., 2012. ImageNet classification with
deep convolutional neural networks. NIPS, (2012), 1106–1114. (cited on page 47)

Kuehne, H.; Jhuang, H.; Garrote, E.; Poggio, T.; and Serre, T., 2011. HMDB: A
large video database for human motion recognition. In ICCV, 2556–2563. (cited on
pages 2, 54, 74, 87, 102, and 103)

Kumar, D.; Kumar, C.; Seah, C.; Xia, S.; and Shao, M., 2020. Finding achilles’
heel: Adversarial attack on multi-modal action recognition. In MM, 3829–3837.
ACM, Seattle, United States. doi:10.1145/3394171.3413531. https://doi.org/10.1145/
3394171.3413531. (cited on page 68)

Kumar Roy, S.; Harandi, M.; Nock, R.; and Hartley, R., 2019. Siamese networks:
The tale of two manifolds. In ICCV. (cited on page 61)

Lake, B. M.; Salakhutdinov, R.; Gross, J.; and Tenenbaum, J. B., 2011. One shot
learning of simple visual concepts. CogSci, (2011). (cited on pages 12 and 164)

Laptev, I., 2005. On space-time interest points. IJCV, 64, 2-3 (Sep. 2005), 107–123.
doi:10.1007/s11263-005-1838-7. http://dx.doi.org/10.1007/s11263-005-1838-7. (cited
on pages 45 and 66)

https://aclanthology.org/D19-1445
https://doi.org/10.1145/3341105.3373906
https://doi.org/10.1145/3394171.3413531
https://doi.org/10.1145/3394171.3413531
http://dx.doi.org/10.1007/s11263-005-1838-7

224 BIBLIOGRAPHY

Laptev, I.; Marszalek, M.; Schmid, C.; and Rozenfeld, B., 2008. Learning Realistic
Human Actions from Movies. CVPR, (2008), 1–8. (cited on pages 19 and 21)

Lee, I.; Kim, D.; Kang, S.; and Lee, S., 2017. Ensemble Deep Learning for Skeleton-
based Action Recognition using Temporal Sliding LSTM networks. In ICCV, 1012–
1020. (cited on pages 21, 22, and 23)

Lee, J. B.; Rossi, R.; and Kong, X., 2018. Graph classification using structural attention.
In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, KDD ’18 (London, United Kingdom, 2018), 1666–1674. Associa-
tion for Computing Machinery, New York, NY, USA. doi:10.1145/3219819.3219980.
https://doi.org/10.1145/3219819.3219980. (cited on page 124)

Lee, S.; Woo, S.; Park, Y.; Nugroho, M. A.; and Kim, C., 2023. Modality mixer for
multi-modal action recognition. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV), 3298–3307. (cited on pages 1 and 10)

Li, B.; Camps, O. I.; and Sznaier, M., 2012. Cross-view activity recognition using
hankelets. CVPR, (2012). (cited on page 86)

Li, B.; He, M.; Cheng, X.; Chen, Y.; and Dai, Y., 2017a. Skeleton based action
recognition using translation-scale invariant image mapping and multi-scale deep
cnn. CoRR abs/1704.05645v2, (2017). (cited on page 109)

Li, C.; Cui, Z.; Zheng, W.; Xu, C.; and Yang, J., 2018a. Spatio-Temporal Graph
Convolution for Skeleton Based Action Recognition. In AAAI, 3482–3489. (cited on
pages 21 and 22)

Li, C.; Su, B.; Wang, J.; and Zhang, Q., 2014. Human action recognition using
multi-velocity STIPs and motion energy orientation histogram. J. Inf. Sci. Eng., 30
(2014), 295–312. (cited on pages 45 and 66)

Li, F. F.; VanRullen, R.; Koch, C.; and Perona, P., 2002. Rapid natural scene
categorization in the near absence of attention. PNAS, 99, 14 (2002), 9596–9601.
(cited on pages 12 and 164)

Li, J.; Wei, P.; Zhang, Y.; and Zheng, N., 2020a. A slow-i-fast-p architecture for
compressed video action recognition. In MM, 2039–2047. ACM, Seattle, United
States. (cited on page 68)

Li, K.; Zhang, Y.; Li, K.; and Fu, Y., 2020b. Adversarial feature hallucination networks
for few-shot learning. In CVPR. (cited on pages 12 and 164)

Li, L.; Wang, M.; Ni, B.; Wang, H.; Yang, J.; and Zhang, W., 2021a. 3d human action
representation learning via cross-view consistency pursuit. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 4741–4750.
(cited on page 11)

https://doi.org/10.1145/3219819.3219980

BIBLIOGRAPHY 225

Li, M.; Chen, S.; Chen, X.; Zhang, Y.; Wang, Y.; and Tian, Q., 2019. Actional-
structural graph convolutional networks for skeleton-based action recognition. In
CVPR. (cited on pages 8, 22, 121, 133, 134, and 166)

Li, M.; Chen, S.; Chen, X.; Zhang, Y.; Wang, Y.; and Tian, Q., 2022. Symbiotic
graph neural networks for 3d skeleton-based human action recognition and motion
prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 6 (2022),
3316–3333. doi:10.1109/TPAMI.2021.3053765. (cited on pages 1, 133, and 134)

Li, R. and Zickler, T., 2012. Discriminative virtual views for cross-view action
recognition. In 2012 IEEE Conference on Computer Vision and Pattern Recognition,
2855–2862. doi:10.1109/CVPR.2012.6248011. (cited on pages 10 and 11)

Li, S.; Li, W.; Cook, C.; Zhu, C.; and Gao, Y., 2018b. Independently Recurrent Neural
Network (IndRNN): Building A Longer and Deeper RNN. CVPR, (2018), 5457–5466.
(cited on pages 21, 23, 24, 26, 27, 33, 35, 36, and 38)

Li, S.; Liu, H.; Fei, M.; Yu, X.; and Lin, W., 2021b. Temporal alignment via event
boundary for few-shot action recognition. In BMVC. (cited on page 13)

Li, S.; Liu, H.; Qian, R.; Li, Y.; See, J.; Fei, M.; Yu, X.; and Lin, W., 2021c. TTAN:
two-stage temporal alignment network for few-shot action recognition. CoRR, (2021).
(cited on pages 13, 16, and 146)

Li, W.; Wen, L.; Chang, M.-C.; Lim, S. N.; and Lyu, S., 2017b. Adaptive rnn tree
for large-scale human action recognition. In 2017 IEEE International Conference on
Computer Vision (ICCV), 1453–1461. doi:10.1109/ICCV.2017.161. (cited on page 11)

Li, W.; Zhang, Z.; and Liu, Z., 2010. Action recognition based on a bag of 3D points.
CVPR Workshop, (2010), 9–14. doi:10.1109/CVPRW.2010.5543273. (cited on pages 2,
3, 20, 21, 22, 27, 87, 102, 108, 109, 182, and 198)

Li, Z.; Gong, X.; Song, R.; Duan, P.; Liu, J.; and Zhang, W., 2023. Smam: Self and
mutual adaptive matching for skeleton-based few-shot action recognition. IEEE
Transactions on Image Processing, 32 (2023), 392–402. doi:10.1109/TIP.2022.3226410.
(cited on page 15)

Lichtenstein, M.; Sattigeri, P.; Feris, R.; Giryes, R.; and Karlinsky, L., 2020. Tafssl:
Task-adaptive feature sub-space learning for few-shot classification. In ECCV. (cited
on pages 12 and 164)

Lin, H.; Cheng, X.; Wu, X.; Yang, F.; Shen, D.; Wang, Z.; Song, Q.; and Yuan, W.,
2021. CAT: cross attention in vision transformer. CoRR, abs/2106.05786 (2021).
https://arxiv.org/abs/2106.05786. (cited on page 124)

Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.;
and Zitnick, C. L., 2014. Microsoft coco: Common objects in context. In Computer
Vision – ECCV 2014, 740–755. Springer International Publishing, Cham. (cited on
pages 65 and 67)

https://arxiv.org/abs/2106.05786

226 BIBLIOGRAPHY

Lin, T.-Y. and Maji, S., 2017. Improved Bilinear Pooling with CNNs. BMVC, (2017).
(cited on pages 85, 87, 89, and 96)

Lin, T.-Y.; Maji, S.; and Koniusz, P., 2018. Second-order democratic aggregation.
ECCV, (2018). (cited on pages 89 and 121)

Lingqiao, L.; Wang, L.; and Liu, X., 2011. In Defence of Soft-assignment Coding.
ICCV, (2011). (cited on pages 46 and 67)

Liu, D. C. and Nocedal, J., 1989. On the limited memory bfgs method for large scale
optimization. Mathematical Programming, 45 (1989), 503–528. (cited on page 150)

Liu, J.; Luo, J.; and Shah, M., 2009. Recognizing Realistic Actions from Videos in the
Wild’. CVPR, (2009), 1–8. (cited on pages 19 and 21)

Liu, J. and Shah, M., 2008. Learning Human Actions via Information Maximization.
CVPR, (2008), 1–9. (cited on pages 19 and 21)

Liu, J.; Shah, M.; Kuipers, B.; and Savarese, S., 2011a. Cross-view action recognition
via view knowledge transfer. In CVPR 2011, 3209–3216. doi:10.1109/CVPR.2011.
5995729. (cited on pages 10 and 11)

Liu, J.; Shahroudy, A.; Perez, M.; Wang, G.; Duan, L.-Y.; and Kot, A. C., 2019a. Ntu
rgb+d 120: A large-scale benchmark for 3d human activity understanding. IEEE
Transactions on Pattern Analysis and Machine Intelligence, (2019). doi:10.1109/TPAMI.
2019.2916873. (cited on pages 2, 3, 5, 10, 14, 15, 130, 150, 152, 164, 166, 167, 174, 175,
178, 182, 199, and 200)

Liu, J.; Shahroudy, A.; Xu, D.; Kot, A. C.; and Wang, G., 2018. Skeleton-Based Action
Recognition Using Spatio-Temporal LSTM Network with Trust Gates. In TPAMI,
1–14. (cited on pages 21, 22, and 23)

Liu, J.; Shahroudy, A.; Xu, D.; and Wang, G., 2016. Spatio-Temporal LSTM with
Trust Gates for 3D Human Action Recognition. ECCV, (2016), 816–833. (cited on
pages 11, 22, and 23)

Liu, J.; Wang, G.; Hu, P.; Duan, L.; and Kot, A. C., 2017. Global context-aware
attention lstm networks for 3d action recognition. In CVPR, 3671–3680. (cited on
pages 11, 14, 15, 21, 22, 23, 164, and 166)

Liu, L.; Wang, L.; and Liu, X., 2011b. In defense of soft-assignment coding. In
2011 International Conference on Computer Vision, 2486–2493. doi:10.1109/ICCV.2011.
6126534. (cited on page 148)

Liu, S.; Lv, P.; Zhang, Y.; Fu, J.; Cheng, J.; Li, W.; Zhou, B.; and Xu, M., 2020a.
Semi-dynamic hypergraph neural network for 3d pose estimation. In Proceedings
of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20,
782–788. International Joint Conferences on Artificial Intelligence Organization.
doi:10.24963/ijcai.2020/109. https://doi.org/10.24963/ijcai.2020/109. Main track.
(cited on pages 8, 122, 125, and 126)

https://doi.org/10.24963/ijcai.2020/109

BIBLIOGRAPHY 227

Liu, Z.; Gao, G.; Qin, A. K.; Wu, T.; and Liu, C. H., 2019b. Action recognition
with bootstrapping based long-range temporal context attention. In MM, 583–591.
ACM, Nice, France. doi:10.1145/3343031.3350916. https://doi.org/10.1145/3343031.
3350916. (cited on page 68)

Liu, Z.; Ning, J.; Cao, Y.; Wei, Y.; Zhang, Z.; Lin, S.; and Hu, H., 2022. Video swin
transformer. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 3202–3211. (cited on page 7)

Liu, Z.; Zhang, H.; Chen, Z.; Wang, Z.; and Ouyang, W., 2020b. Disentangling and
unifying graph convolutions for skeleton-based action recognition. In CVPR. (cited
on pages 133 and 166)

Lohit, S.; Wang, Q.; and Turaga, P., 2019. Temporal transformer networks: Joint
learning of invariant and discriminative time warping. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). (cited on page 146)

Lu, C. and Koniusz, P., 2022. Few-shot keypoint detection with uncertainty learning
for unseen species. CVPR, (2022). (cited on pages 12 and 164)

Lu, H.; Plataniotis, K. N.; and Venetsanopoulos, A. N., 2011. A survey of
multilinear subspace learning for tensor data. Pattern Recognition, 44, 7 (2011),
1540–1551. (cited on page 88)

Luo, Q.; Wang, L.; Lv, J.; Xiang, S.; and Pan, C., 2021. Few-shot learning via feature
hallucination with variational inference. In WACV. (cited on pages 12 and 164)

Lv, F. and Nevatia, R., 2006. Recognition and segmentation of 3-D human action using
hmm and multi-class adaboost. ECCV, (2006), 359–372. doi:10.1007/11744085_28.
(cited on page 88)

Ma, N.; Zhang, H.; Li, X.; Zhou, S.; Zhang, Z.; Wen, J.; Li, H.; Gu, J.; and Bu,
J., 2022. Learning spatial-preserved skeleton representations for few-shot action
recognition. In Computer Vision – ECCV 2022, 174–191. Springer Nature Switzerland,
Cham. (cited on page 15)

Ma, N.; Zhang, X.; Zheng, H.-T.; and Sun, J., 2018. Shufflenet v2: Practical guidelines
for efficient cnn architecture design. In Proceedings of the European Conference on
Computer Vision (ECCV). (cited on page 191)

Mahasseni, B. and Todorovic, S., 2013. Latent multitask learning for view-invariant
action recognition. In 2013 IEEE International Conference on Computer Vision, 3128–
3135. doi:10.1109/ICCV.2013.388. (cited on pages 10 and 11)

Mahmud, T.; Hasan, M.; and Roy-Chowdhury, A. K., 2017. Joint prediction of
activity labels and starting times in untrimmed videos. ICCV, (2017). (cited on
page 86)

https://doi.org/10.1145/3343031.3350916
https://doi.org/10.1145/3343031.3350916

228 BIBLIOGRAPHY

Mairal, J.; Koniusz, P.; Harchaoui, Z.; and Schmid, C., 2014. Convolutional kernel
networks. NIPS, (2014). (cited on page 72)

Mallick, T.; Das, P. P.; and Majumdar, A. K., 2014. Characterizations of Noise
in Kinect Depth Images: A Review. IEEE SEN, 14, 6 (2014), 1731–1740. doi:
10.1109/JSEN.2014.2309987. (cited on page 20)

Martinez, J.; Hossain, R.; Romero, J.; and Little, J. J., 2017. A simple yet effective
baseline for 3d human pose estimation. In 2017 IEEE International Conference on
Computer Vision (ICCV), 2659–2668. doi:10.1109/ICCV.2017.288. (cited on pages 150
and 174)

Matthies, H. G., 2007. Quantifying uncertainty: Modern computational representa-
tion of probability and applications. In Extreme Man-Made and Natural Hazards in
Dynamics of Structures, 105–135. Springer Netherlands, Dordrecht. (cited on page
140)

McInnes, L.; Healy, J.; Saul, N.; and Grossberger, L., 2018. Umap: Uniform
manifold approximation and projection. The Journal of Open Source Software, 3, 29
(2018), 861. (cited on page 82)

Memmesheimer, R.; Häring, S.; Theisen, N.; and Paulus, D., 2021. Skeleton-dml:
Deep metric learning for skeleton-based one-shot action recognition. (cited on
pages 14, 15, 146, 164, 166, 167, and 178)

Memmesheimer, R.; Theisen, N.; and Paulus, D., 2020. Signal level deep metric
learning for multimodal one-shot action recognition. (cited on pages 14, 15, 146,
164, 166, and 178)

Mensch, A. and Blondel, M., 2018. Differentiable dynamic programming for
structured prediction and attention. In Proceedings of the 35th International Conference
on Machine Learning, vol. 80 of Proceedings of Machine Learning Research, 3462–3471.
PMLR. (cited on page 145)

Miller, E. G.; Matsakis, N. E.; and Viola, P. A., 2000. Learning from one example
through shared densities on transforms. CVPR, 1 (2000), 464–471. (cited on pages
12 and 164)

Mina, B.; Zoumpourlis, G.; and Patras, I., 2019. Tarn: Temporal attentive relation
network for few-shot and zero-shot action recognition. In Proceedings of the British
Machine Vision Conference (BMVC), 130.1–130.14. BMVA Press. doi:10.5244/C.33.130.
(cited on pages 16 and 146)

Mishra, A.; Verma, V. K.; Reddy, M. S. K.; Arulkumar, S.; Rai, P.; and Mittal,
A., 2018. A generative approach to zero-shot and few-shot action recognition. In
WACV, 372–380. (cited on pages 12, 164, and 166)

BIBLIOGRAPHY 229

Munro, J. and Damen, D., 2020. Multi-modal domain adaptation for fine-grained
action recognition. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 122–132. (cited on page 10)

Ni, B.; Peng, H.; Chen, M.; Zhang, S.; Meng, G.; Fu, J.; Xiang, S.; and Ling, H., 2022.
Expanding language-image pretrained models for general video recognition. In
Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27,
2022, Proceedings, Part IV, 1–18. Springer. (cited on pages 7, 9, and 10)

Noguchi, C. and Tanizawa, T., 2023. Ego-vehicle action recognition based on semi-
supervised contrastive learning. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV), 5988–5998. (cited on page 1)

Ofli, F.; Chaudhry, R.; Kurillo, G.; Vidal, R.; and Bajcsy, R., 2014. Sequence of the
most informative joints (SMIJ). J. Vis. Comun. Image Represent., 25, 1 (2014), 24–38.
doi:10.1016/j.jvcir.2013.04.007. (cited on page 88)

Ohn-Bar, E. and Trivedi, M. M., 2013. Joint angles similarities and HOG2 for action
recognition. CVPR Workshop, (2013). (cited on page 88)

Oreifej, O. and Liu, Z., 2013. HON4D: Histogram of Oriented 4D Normals for
Activity Recognition from Depth Sequences. In CVPR, 716–723. (cited on pages 2,
3, 4, 9, 20, 21, 22, 24, 26, 27, 29, 33, 35, 36, 38, 182, and 198)

Papenberg, N.; Bruhn, A.; Brox, T.; Didas, S.; and Weickert, J., 2006. Highly
accurate optic flow computation with theoretically justified warping. IJCV, 67
(2006), 141–158. (cited on pages 47 and 67)

Parameswaran, V. and Chellappa, R., 2006. View invariance for human action
recognition. IJCV, 66, 1 (2006), 83–101. doi:10.1007/s11263-005-3671-4. (cited on
page 88)

Patravali, J.; Mittal, G.; Yu, Y.; Li, F.; and Chen, M., 2021. Unsupervised few-
shot action recognition via action-appearance aligned meta-adaptation. CoRR,
abs/2109.15317 (2021). https://arxiv.org/abs/2109.15317. (cited on page 14)

Peng, K.; Roitberg, A.; Yang, K.; Zhang, J.; and Stiefelhagen, R., 2023. Delving
deep into one-shot skeleton-based action recognition with diverse occlusions. IEEE
Transactions on Multimedia, (2023), 1–16. doi:10.1109/TMM.2023.3235300. (cited on
page 15)

Peng, W.; Hong, X.; Chen, H.; and Zhao, G., 2020. Learning graph convolutional net-
work for skeleton-based human action recognition by neural searching. Proceedings
of the AAAI Conference on Artificial Intelligence, 34, 03 (Apr. 2020), 2669–2676. doi:
10.1609/aaai.v34i03.5652. https://ojs.aaai.org/index.php/AAAI/article/view/5652.
(cited on pages 133 and 134)

https://arxiv.org/abs/2109.15317
https://ojs.aaai.org/index.php/AAAI/article/view/5652

230 BIBLIOGRAPHY

Peng, W.; Shi, J.; Varanka, T.; and Zhao, G., 2021. Rethinking the st-gcns for 3d
skeleton-based human action recognition. Neurocomputing, 454 (2021), 45–53. (cited
on page 135)

Perrett, T.; Masullo, A.; Burghardt, T.; Mirmehdi, M.; and Damen, D., 2021.
Temporal-relational crosstransformers for few-shot action recognition. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 475–484. (cited
on pages 13, 16, and 146)

Perronnin, F. and Dance, C., 2007. Fisher kernels on visual vocabularies for image
categorization. CVPR, 0 (2007), 1–8. (cited on pages 43, 46, 48, 64, and 67)

Perronnin, F.; Sánchez, J.; and Mensink, T., 2010. Improving the Fisher Kernel for
Large-Scale Image Classification. ECCV, (2010), 143–156. (cited on pages 43, 46, 48,
64, 67, and 104)

Pham, N. and Pagh, R., 2013. Fast and scalable polynomial kernels via explicit
feature maps. In Proceedings of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 239–247. ACM. doi:10.1145/2487575.2487591.
http://doi.acm.org/10.1145/2487575.2487591. (cited on pages 45 and 50)

Piergiovanni, A.; Angelova, A.; Toshev, A.; and Ryoo, M. S., 2019. Evolving
space-time neural architectures for videos. In ICCV. (cited on page 77)

Plizzari, C.; Cannici, M.; and Matteucci, M., 2021. Skeleton-based action recogni-
tion via spatial and temporal transformer networks. Computer Vision and Image Un-
derstanding, 208-209 (2021), 103219. doi:https://doi.org/10.1016/j.cviu.2021.103219.
https://www.sciencedirect.com/science/article/pii/S1077314221000631. (cited on
pages 8 and 133)

Prabowo, A.; Koniusz, P.; Shao, W.; and Salim, F. D., 2019. COLTRANE: convo-
lutional trajectory network for deep map inference. In Proceedings of the 6th ACM
International Conference on Systems for Energy-Efficient Buildings, Cities, and Trans-
portation, BuildSys 2019, New York, NY, USA, November 13-14, 2019, 21–30. ACM.
doi:10.1145/3360322.3360853. (cited on page 160)

Presti, L. L. and La Cascia, M., 2015. 3D skeleton-based human action classification:
A survey. Pattern Recognition, (2015). (cited on pages 86 and 88)

Qin, Z.; Liu, Y.; Ji, P.; Kim, D.; Wang, L.; McKay, B.; Anwar, S.; and Gedeon, T., 2022.
Fusing higher-order features in graph neural networks for skeleton-based action
recognition. IEEE TNNLS, (2022). (cited on pages 1, 119, 120, and 164)

Qiu, Z.; Yao, T.; and Mei, T., 2017. Learning spatio-temporal representation with
pseudo-3d residual networks. In The IEEE International Conference on Computer Vision
(ICCV). (cited on page 6)

http://doi.acm.org/10.1145/2487575.2487591
https://www.sciencedirect.com/science/article/pii/S1077314221000631

BIBLIOGRAPHY 231

Radford, A.; Kim, J. W.; Hallacy, C.; Ramesh, A.; Goh, G.; Agarwal, S.; Sastry,
G.; Askell, A.; Mishkin, P.; Clark, J.; et al., 2021. Learning transferable visual
models from natural language supervision. In International conference on machine
learning, 8748–8763. PMLR. (cited on pages 7, 9, and 10)

Rahman, S.; Koniusz, P.; Wang, L.; Zhou, L.; Moghadam, P.; and Sun, C., 2023.
Learning partial correlation based deep visual representation for image classification.
In CVPR. (cited on page 121)

Rahmani, H. and Bennamoun, M., 2017. Learning Action Recognition Model From
Depth and Skeleton Videos. In ICCV, 5832–5841. (cited on pages 3, 9, 20, 21, 22, 23,
24, and 25)

Rahmani, H.; Huynh, D. Q.; Mahmood, A.; and Mian, A., 2016a. Discriminative
Human Action Classification using Locality-constrained Linear Coding. Pattern
Recognit. Lett., (2016), 62–71. (cited on pages 21 and 22)

Rahmani, H.; Mahmood, A.; Huynh, D. Q.; and Mian, A., 2014a. Action Classifica-
tion with Locality-constrained Linear Coding. In ICPR, 3511–3516. (cited on pages
21 and 22)

Rahmani, H.; Mahmood, A.; Huynh, D. Q.; and Mian, A., 2014b. HOPC: Histogram
of Oriented Principal Components of 3D Pointclouds for Action Recognition. In
ECCV, 742–757. (cited on pages xvii, 2, 3, 21, 22, 27, 28, 182, and 198)

Rahmani, H.; Mahmood, A.; Huynh, D. Q.; and Mian, A., 2014c. Real Time Action
Recognition Using Histograms of Depth Gradients and Random Decision Forests.
In WACV, 626–633. (cited on pages 3, 4, 7, 9, 20, 21, 23, 24, 25, 27, 30, 31, and 32)

Rahmani, H.; Mahmood, A.; Huynh, D. Q.; and Mian, A., 2016b. Histogram of
Oriented Principal Components for Cross-View Action Recognition. TPAMI, (2016),
2430–2443. (cited on pages 2, 3, 4, 20, 22, 24, 25, 26, 27, 28, 29, 33, 35, 36, 38, 166,
174, and 182)

Rahmani, H. and Mian, A., 2015. Learning a non-linear knowledge transfer model
for cross-view action recognition. In 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2458–2466. doi:10.1109/CVPR.2015.7298860. (cited on
page 11)

Rahmani, H. and Mian, A., 2016. 3D Action Recognition from Novel Viewpoints.
CVPR, (2016), 1–12. (cited on pages 3, 20, 21, 22, 24, 25, 27, 30, 33, 36, and 38)

Rahmani, H.; Mian, A.; and Shah, M., 2015. Learning a Deep Model for Human
Action Recognition from Novel Viewpoints. TPAMI, (2015), 1–14. (cited on pages
21 and 22)

Ramachandran, P.; Liu, P. J.; and Le, Q. V., 2018. Unsupervised pretraining for
sequence to sequence learning. (cited on page 146)

232 BIBLIOGRAPHY

Ranasinghe, K.; Naseer, M.; Khan, S.; Khan, F. S.; and Ryoo, M., 2022. Self-
supervised video transformer. In IEEE/CVF International Conference on Computer
Vision and Pattern Recognition. (cited on page 122)

Redmon, J.; Divvala, S.; Girshick, R.; and Farhadi, A., 2015. You only look once:
Unified, real-time object detection. In CVPR, 779–788. IEEE, Boston, MA, USA.
(cited on page 67)

Ren, S.; He, K.; Girshick, R.; and Sun, J., 2015. Faster R-CNN: Towards real-time
object detection with region proposal networks. In NIPS, 91–99. MIT Press, Montreal,
Canada. (cited on pages 55, 65, 67, and 75)

Revaud, J.; Weinzaepfel, P.; Harchaoui, Z.; and Schmid, C., 2015. EpicFlow: Edge-
Preserving Interpolation of Correspondences for Optical Flow. In CVPR. (cited on
pages 47 and 67)

Rohrbach, M.; Amin, S.; Andriluka, M.; and Schiele, B., 2012. A database for fine
grained activity detection of cooking activities. In CVPR. (cited on pages xxi, 2, 4,
55, 74, 86, 87, 89, 102, and 103)

Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.;
Karpathy, A.; Khosla, A.; Bernstein, M.; Berg, A. C.; and Fei-Fei, L., 2015.
ImageNet large scale visual recognition challenge. IJCV, 115, 3 (2015), 211–252.
doi:10.1007/s11263-015-0816-y. (cited on pages 47, 66, and 68)

Ryoo, M. S.; Piergiovanni, A.; Kangaspunta, J.; and Angelova, A., 2020a. Assem-
blenet++: Assembling modality representations via attention connections. In ECCV,
1–19. Springer Science+Business Media, Glasgow, UK. (cited on pages 7, 9, 12,
and 68)

Ryoo, M. S.; Piergiovanni, A.; Tan, M.; and Angelova, A., 2020b. Assemblenet:
Searching for multi-stream neural connectivity in video architectures. In ICLR, 1–15.
ICLR, Addis Ababa, Ethiopia. (cited on pages 7, 9, 12, 64, 68, and 78)

Sabater, A.; Santos, L.; Santos-Victor, J.; Bernardino, A.; Montesano, L.; and

Murillo, A. C., 2021. One-shot action recognition in challenging therapy scenarios.
In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), 2771–2779. doi:10.1109/CVPRW53098.2021.00312. (cited on page 14)

Sakoe, H. and Chiba, S., 1978. Dynamic programming algorithm optimization for
spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing,
26, 1 (1978), 43–49. doi:10.1109/TASSP.1978.1163055. (cited on page 145)

Scovanner, P.; Ali, S.; and Shah, M., 2007. A 3-Dimentional SIFT Descriptor and its
Application to Action Recognition. CRCV, (2007), 1–4. (cited on pages 43, 45, 46,
63, 66, and 67)

BIBLIOGRAPHY 233

Seidenari, L.; Varano, V.; Berretti, S.; Bimbo, A. D.; and Pala, P., 2013. Recognizing
actions from depth cameras as weakly aligned multi-part bag-of-poses. CVPR
Workshop, (2013). (cited on pages 2, 87, 102, and 107)

Seon, J.; Hwang, J.; Mun, J.; and Han, B., 2023. Stop or forward: Dynamic layer
skipping for efficient action recognition. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV), 3361–3370. (cited on page 1)

Shah, K.; Shah, A.; Lau, C. P.; de Melo, C. M.; and Chellappa, R., 2023. Multi-view
action recognition using contrastive learning. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV), 3381–3391. (cited on pages 1,
10, and 11)

Shahroudy, A.; Liu, J.; Ng, T.-T.; and Wang, G., 2016a. Ntu rgb+ d: A large scale
dataset for 3d human activity analysis. CVPR, (2016), 1010–1019. (cited on pages 2,
3, 7, 10, 11, 20, 21, 22, 23, 24, 26, 27, 29, 30, 33, 35, 36, 38, 87, 102, 130, 150, 166, 167,
174, and 182)

Shahroudy, A.; Ng, T.-T.; Gong, Y.; and Wang, G., 2018. Deep Multimodal Feature
Analysis for Action Recognition in RGB+D Videos. TPAMI, (2018), 1045–1058. (cited
on page 21)

Shahroudy, A.; Ng, T.-T.; Yang, Q.; and Wang, G., 2016b. Multimodal Multipart
Learning for Action Recognition in Depth Videos. TPAMI, 38, 10 (2016), 2123–2129.
(cited on pages 9, 21, 22, 23, and 24)

Shashua, A. and Hazan, T., 2005. Non-negative tensor factorization with applications
to statistics and computer vision. ICML, (2005). (cited on page 88)

Shawe-Taylor, J. and Cristianini, N., 2004. Kernel methods for pattern analysis.
Cambridge University Press. ISBN 0521813972. (cited on page 115)

Shechtman, E. and Irani, M., 2005. Space-time behavior based correlation. CVPR,
(2005). (cited on page 89)

Shi, L.; Zhang, Y.; Cheng, J.; and Lu, H., 2019a. Skeleton-Based Action Recognition
with Directed Graph Neural Networks. In CVPR, 7912–7921. (cited on page 22)

Shi, L.; Zhang, Y.; Cheng, J.; and Lu, H., 2019b. Two-stream adaptive graph
convolutional networks for skeleton-based action recognition. In CVPR. (cited on
pages 22, 133, and 134)

Shi, L.; Zhang, Y.; Cheng, J.; and Lu, H., 2021a. Adasgn: Adapting joint number
and model size for efficient skeleton-based action recognition. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), 13413–13422. (cited
on pages 8 and 121)

234 BIBLIOGRAPHY

Shi, Y.; Tian, Y.; Wang, Y.; Zeng, W.; and Huang, T., 2017. Learning long-term
dependencies for action recognition with a biologically-inspired deep network. In
ICCV. (cited on page 111)

Shi, Z. and Kim, T.-K., 2017. Learning and Refining of Privileged Information-based
RNNs for Action Recognition from Depth Sequences. In CVPR, 3461–3470. (cited
on pages 22 and 23)

Shi, Z.; Liang, J.; Li, Q.; Zheng, H.; Gu, Z.; Dong, J.; and Zheng, B., 2021b. Multi-
modal multi-action video recognition. In 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), 13658–13667. doi:10.1109/ICCV48922.2021.01342. (cited on
page 10)

Shiri, F.; Porikli, F.; Hartley, R.; and Koniusz, P., 2018. Identity-preserving face
recovery from portraits. WACV, (2018). (cited on page 89)

Shiri, F.; Yu, X.; Porikli, F.; Hartley, R.; and Koniusz, P., 2019a. Identity-preserving
face recovery from stylized portraits. IJCV, 127, 6-7 (2019), 863–883. doi:10.1007/
s11263-019-01169-1. (cited on page 89)

Shiri, F.; Yu, X.; Porikli, F.; Hartley, R.; and Koniusz, P., 2019b. Recovering faces
from portraits with auxiliary facial attributes. WACV, (2019). (cited on page 89)

Shiri, F.; Yu, X.; Porikli, F.; and Koniusz, P., 2017. Face destylization. DICTA, (2017).
(cited on page 89)

Shotton, J.; Fitzgibbon, A.; Cook, M.; Sharp, T.; Finocchio, M.; Moore, R.; Kipman,
A.; and Blake, A., 2011. Real-Time Human Pose Recognition in Parts from Single
Depth Images. In CVPR, 1297–1304. (cited on pages 3, 4, 7, 20, and 22)

Shotton, J.; Sharp, T.; Kipman, A.; Fitzgibbon, A.; Finocchio, M.; Blake, A.; Cook,
M.; and Moore, R., 2013. Real-time human pose recognition in parts from single
depth images. Communications of the ACM, (2013). (cited on page 86)

Si, C.; Chen, W.; Wang, W.; Wang, L.; and Tan, T., 2019. An Attention Enhanced
Graph Convolutional LSTM Network for Skeleton-Based Action Recognition. In
CVPR, 1227–1236. (cited on pages 8, 22, 23, 120, and 121)

Si, C.; Jing, Y.; Wang, W.; Wang, L.; and Tan, T., 2018. Skeleton-Based Action
Recognition with Spatial Reasoning and Temporal Stack Learning. In ECCV, 1–16.
(cited on pages 21 and 22)

Sigurdsson, G. A.; Varol, G.; Wang, X.; Farhadi, A.; Laptev, I.; and Gupta, A., 2016.
Hollywood in homes: Crowdsourcing data collection for activity understanding. In
ECCV. (cited on pages 2, 4, 10, 55, and 75)

Simon, C.; Koniusz, P.; and Harandi, M., 2021. On learning the geodesic path for
incremental learning. In CVPR, 1591–1600. (cited on page 164)

BIBLIOGRAPHY 235

Simon, C.; Koniusz, P.; Nock, R.; and Harandi, M., 2020a. Adaptive subspaces for
few-shot learning. CVPR, (2020). (cited on page 89)

Simon, C.; Koniusz, P.; Nock, R.; and Harandi, M., 2020b. On modulating the
gradient for meta-learning. ECCV, (2020). (cited on pages 12, 89, and 164)

Simonyan, K. and Zisserman, A., 2014. Two-stream convolutional networks for
action recognition in videos. In NIPS, 568–576. http://papers.nips.cc/paper/
5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf. (cited
on pages 4, 5, 43, 47, 63, 68, 86, 102, 103, and 104)

Simonyan, K. and Zisserman, A., 2015. Very Deep Convolutional Networks for
Large-scale Image Recognition. ICLR, (2015), 1–14. (cited on page 26)

Sivic, J. and Zisserman, A., 2003. Video Google: A text retrieval approach to object
matching in videos. ICCV, 2 (2003), 1470–1477. (cited on pages 43, 46, 48, 64,
and 67)

Smola, A. J. and Kondor, R., 2003. Kernels and regularization on graphs. COLT,
(2003). (cited on page 165)

Snell, J.; Swersky, K.; and Zemel, R. S., 2017. Prototypical networks for few-shot
learning. In Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA,
USA, 4077–4087. (cited on pages 12, 154, 164, 177, 178, and 186)

Song, S.; Lan, C.; Xing, J.; Zeng, W.; and Liu, J., 2017. An end-to-end spatio-temporal
attention model for human action recognition from skeleton data. In Proceedings
of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI’17 (San Francisco,
California, USA, 2017), 4263–4270. AAAI Press. (cited on page 11)

Song, Y.-F.; Zhang, Z.; Shan, C.; and Wang, L., 2022. Constructing stronger and faster
baselines for skeleton-based action recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, (2022), 1–1. doi:10.1109/TPAMI.2022.3157033. (cited on
pages 1, 8, and 121)

Su, B. and Hua, G., 2019. Order-preserving optimal transport for distances between
sequences. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41, 12
(2019), 2961–2974. doi:10.1109/TPAMI.2018.2870154. (cited on pages 145 and 146)

Su, B. and Wen, J.-R., 2022. Temporal alignment prediction for supervised represen-
tation learning and few-shot sequence classification. In International Conference on
Learning Representations. (cited on pages 1, 16, 145, 146, 154, 161, 177, and 178)

Su, B.; Zhou, J.; and Wu, Y., 2019. Order-preserving wasserstein discriminant analysis.
In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 9884–9893.
doi:10.1109/ICCV.2019.00998. (cited on page 145)

http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf

236 BIBLIOGRAPHY

Sun, K.; Koniusz, P.; and Wang, Z., 2019. Fisher-Bures adversary graph convolutional
networks. UAI, 115 (2019), 465–475. (cited on pages 89, 160, and 165)

Sun, L.; Jia, K.; Yeung, D.-Y.; and Shi, B. E., 2015. Human action recognition using
factorized spatio-temporal convolutional networks. In ICCV. (cited on page 6)

Sung, F.; Yang, Y.; Zhang, L.; Xiang, T.; Torr, P. H. S.; and Hospedales, T. M., 2018.
Learning to compare: Relation network for few-shot learning. In CVPR, 1199–1208.
(cited on pages 12 and 164)

Sung, J.; Ponce, C.; Selman, B.; and Saxena, A., 2011. Human Activity Detection
from RGBD Images. PAIR, (2011). (cited on pages 2, 3, 21, and 27)

Sung, J.; Ponce, C.; Selman, B.; and Saxena, A., 2012. Unstructured Human Activity
Detection from RGBD Images. In ICRA. (cited on page 21)

Szegedy, C.; Ioffe, S.; Vanhoucke, V.; and Alemi, A. A., 2017. Inception-v4, inception-
resnet and the impact of residual connections on learning. In Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence, AAAI’17 (San Francisco, California,
USA, 2017), 4278–4284. AAAI Press. http://dl.acm.org/citation.cfm?id=3298023.
3298188. (cited on pages 65, 67, and 68)

Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; and Wojna, Z., 2016. Rethinking
the inception architecture for computer vision. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). (cited on pages 65 and 67)

Tan, M. and Le, Q., 2019. EfficientNet: Rethinking model scaling for convolutional
neural networks. In Proceedings of the 36th International Conference on Machine
Learning, vol. 97 of Proceedings of Machine Learning Research, 6105–6114. PMLR.
https://proceedings.mlr.press/v97/tan19a.html. (cited on page 191)

Tan, S. and Yang, R., 2019. Learning similarity: Feature-aligning network for few-shot
action recognition. In International Joint Conference on Neural Networks (IJCNN), 1–7.
(cited on page 146)

Tanfous, A. B.; Drira, H.; and Amor, B. B., 2018. Coding Kendall’s Shape Trajectories
for 3D Action Recognition. In CVPR, 2840–2849. (cited on pages 21, 22, 23, 107,
and 108)

Tang, L.; Wertheimer, D.; and Hariharan, B., 2020. Revisiting pose-normalization
for fine-grained few-shot recognition. In CVPR. (cited on pages 12 and 164)

Tang, Y.; Ma, L.; and Zhou, L., 2019. Hallucinating optical flow features for video
classification. In IJCAI, 926–932. IJCAI, Macao, China. (cited on page 64)

Tang, Y.; Tian, Y.; Lu, J.; Li, P.; and Zhou, J., 2018. Deep Progressive Reinforcement
Learning for Skeleton-based Action Recognition. In CVPR, 1–10. (cited on pages
21 and 22)

http://dl.acm.org/citation.cfm?id=3298023.3298188
http://dl.acm.org/citation.cfm?id=3298023.3298188
https://proceedings.mlr.press/v97/tan19a.html

BIBLIOGRAPHY 237

Tas, Y. and Koniusz, P., 2018. CNN-based Action Recognition and Supervised
Domain Adaptation on 3D Body Skeletons via Kernel Feature Maps. In BMVC.
(cited on pages 23, 61, 107, 109, 160, and 186)

Thrun, S., 1996. Is learning the n-th thing any easier than learning the first? NIPS,
(1996), 640–646. (cited on page 61)

Tong, Z.; Song, Y.; Wang, J.; and Wang, L., 2022. VideoMAE: Masked autoencoders
are data-efficient learners for self-supervised video pre-training. In Advances in Neu-
ral Information Processing Systems. https://openreview.net/forum?id=AhccnBXSne.
(cited on pages 7 and 124)

Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; and Paluri, M., 2015. Learning
Spatiotemporal Features with 3D Convolutional Networks. ICCV, (2015), 4489–4497.
(cited on pages 4, 5, 6, 43, 47, 63, 68, 86, and 163)

Tran, D.; Wang, H.; Torresani, L.; Ray, J.; LeCun, Y.; and Paluri, M., 2018. A closer
look at spatiotemporal convolutions for action recognition. In CVPR. (cited on
pages 6 and 86)

Truong, T.-D.; Bui, Q.-H.; Duong, C. N.; Seo, H.-S.; Phung, S. L.; Li, X.; and Luu, K.,
2022. Direcformer: A directed attention in transformer approach to robust action
recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 20030–20040. (cited on page 7)

Turaga, P. and Chellappa, R., 2009. Locally time-invariant models of human
activities using trajectories on the grassmannian. CVPR, (2009). (cited on page 86)

Uijlings, J. R.; Duta, I. C.; Rostamzadeh, N.; and Sebe, N., 2014. Realtime Video
Classification using Dense HOF/HOG. ICMR, (2014). (cited on pages 45 and 66)

van Gemert, J. C.; Veenman, C. J.; Smeulders, A. W. M.; and Geusebroek, J.-M.,
2010. Visual word ambiguity. TPAMI, 32, 7 (Jul. 2010), 1271–1283. doi:10.1109/
TPAMI.2009.132. http://dx.doi.org/10.1109/TPAMI.2009.132. (cited on pages 46
and 67)

Varol, G.; Laptev, I.; and Schmid, C., 2018. Long-term temporal convolutions for
action recognition. TPAMI, 40, 6 (2018), 1510–1517. (cited on pages 47 and 68)

Vasilescu, M. A. and Terzopoulos, D., 2002. Multilinear analysis of image ensembles:
Tensorfaces. ECCV, (2002). (cited on page 88)

Vasilescu, M. A. O. and Terzopoulos, D., 2004. TensorTextures: Multilinear image-
based rendering. ACM Transactions on Graphics, 23, 3 (2004), 336–342. (cited on
page 88)

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser,
L. u.; and Polosukhin, I., 2017. Attention is all you need. In Advances in Neural
Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.

https://openreview.net/forum?id=AhccnBXSne
http://dx.doi.org/10.1109/TPAMI.2009.132
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

238 BIBLIOGRAPHY

neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf. (cited on
pages 124, 125, 127, and 132)

Veeriah, V.; Zhuang, N.; and Qi, G.-J., 2015. Differential Recurrent Neural Networks
for Action Recognition. CVPR, (2015), 1–9. (cited on pages 22 and 23)

Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; and Bengio, Y., 2018.
Graph attention networks. In International Conference on Learning Representations.
https://openreview.net/forum?id=rJXMpikCZ. (cited on page 124)

Vemulapalli, R.; Arrate, F.; and Chellappa, R., 2014. Human action recognition
by representing 3D skeletons as points in a Lie Group. CVPR, (2014), 588–595.
doi:http://doi.ieeecomputersociety.org/10.1109/CVPR.2014.82. (cited on pages 3,
7, 11, 20, 22, 23, 25, 86, 88, 103, 107, 108, 109, and 113)

Vemulapalli, R. and Chellappa, R., 2016. Rolling Rotations for Recognizing Human
Actions from 3D Skeletal Data. CVPR, (2016), 4471–4479. (cited on pages 3, 4, 7, 11,
20, 22, 23, 24, 25, 26, 29, 33, 35, 36, and 38)

Villani, C., 2009. Optimal Transport, Old and New. Springer. (cited on page 165)

Vinyals, O.; Blundell, C.; Lillicrap, T.; Kavukcuoglu, K.; and Wierstra, D.,
2016. Matching networks for one shot learning. In Advances in Neural Information
Processing Systems 29: Annual Conference on Neural Information Processing Systems
2016, December 5-10, 2016, Barcelona, Spain, 3630–3638. (cited on pages 12, 154, 164,
177, and 186)

Vyas, S.; Rawat, Y. S.; and Shah, M., 2020. Multi-view action recognition using
cross-view video prediction. In Computer Vision – ECCV 2020, 427–444. Springer
International Publishing, Cham. (cited on pages 10 and 11)

Wang, C.; Wang, Y.; and Yuille, A. L., 2013a. An approach to pose-based action
recognition. CVPR, (2013). (cited on pages 86 and 89)

Wang, G.; Ye, H.; Wang, X.; Ye, W.; and Wang, H., 2021a. Temporal relation based
attentive prototype network for few-shot action recognition. In Proceedings of The
13th Asian Conference on Machine Learning, vol. 157 of Proceedings of Machine Learning
Research, 406–421. PMLR. https://proceedings.mlr.press/v157/wang21b.html. (cited
on page 13)

Wang, H.; Kläser, A.; Schmid, C.; and Cheng-Lin, L., 2011. Action Recognition by
Dense Trajectories. CVPR, (2011), 3169–3176. (cited on pages 5, 43, 45, 46, 63, 66,
67, and 104)

Wang, H.; Kläser, A.; Schmid, C.; and Liu, C.-L., 2013b. Dense Trajectories and
Motion Boundary Descriptors for Action Recognition. IJCV, (2013). (cited on pages
5, 43, 44, 45, 46, 63, 66, and 67)

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=rJXMpikCZ
https://proceedings.mlr.press/v157/wang21b.html

BIBLIOGRAPHY 239

Wang, H. and Schmid, C., 2013. Action Recognition with Improved Trajectories.
ICCV, (2013), 3551–3558. (cited on pages 10, 43, 44, 45, 51, 63, 64, and 66)

Wang, H. and Wang, L., 2017. Modeling Temporal Dynamics and Spatial Configu-
rations of Actions Using Two-Stream Recurrent Neural Networks. In CVPR, 1–10.
(cited on pages 21 and 22)

Wang, H. and Wang, L., 2018. Beyond Joints: Learning Representations From
Primitive Geometries for Skeleton-Based Action Recognition and Detection. In TIP,
4382–4394. (cited on pages 21, 22, and 23)

Wang, J. and Cherian, A., 2018. Learning discriminative video representations using
adversarial perturbations. In ECCV, 716–733. doi:10.1007/978-3-030-01225-0_42.
https://doi.org/10.1007/978-3-030-01225-0_42. (cited on pages 10, 44, 47, 57, 58, 64,
65, 68, 77, 78, 109, and 111)

Wang, J.; Liu, Z.; Wu, Y.; and Yuan, J., 2012. Mining Actionlet Ensemble for Action
Recognition with Depth Cameras. CVPR, (2012), 1290–1297. (cited on pages 11, 21,
22, 25, 88, 108, and 109)

Wang, J.; Nie, X.; Xia, Y.; Wu, Y.; and Zhu, S.-C., 2014. Cross-view action modeling,
learning and recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, 2649–2656. (cited on page 131)

Wang, L., 2017. Analysis and Evaluation of Kinect-based Action Recognition Algorithms.
Master’s thesis, School of the Computer Science and Software Engineering, The
University of Western Australia. (cited on pages 3, 4, 10, 14, 30, 33, 35, 36, 38, 45,
63, 119, 120, 146, 163, and 174)

Wang, L.; Ding, Z.; Tao, Z.; Liu, Y.; and Fu, Y., 2019a. Generative multi-view human
action recognition. In The IEEE International Conference on Computer Vision (ICCV).
(cited on pages 10 and 11)

Wang, L.; Huynh, D. Q.; and Koniusz, P., 2019b. A comparative review of recent
kinect-based action recognition algorithms. TIP, (2019). doi:10.1109/TIP.2019.
2925285. (cited on pages 3, 4, 7, 9, 10, 14, 45, 63, 119, 120, 146, 163, 167, and 174)

Wang, L.; Huynh, D. Q.; and Mansour, M. R., 2019c. Loss switching fusion with
similarity search for video classification. ICIP, (2019). (cited on pages 46, 63, 119,
146, and 163)

Wang, L. and Koniusz, P., 2021. Self-Supervising Action Recognition by Statistical
Moment and Subspace Descriptors, 4324–4333. Association for Computing Machinery,
New York, NY, USA. ISBN 9781450386517. https://doi.org/10.1145/3474085.3475572.
(cited on pages 9, 10, 89, 119, 146, and 163)

Wang, L. and Koniusz, P., 2022a. Temporal-viewpoint transportation plan for skeletal
few-shot action recognition. In Proceedings of the Asian Conference on Computer Vision
(ACCV), 4176–4193. (cited on pages 1, 11, 119, and 120)

https://doi.org/10.1007/978-3-030-01225-0_42
https://doi.org/10.1145/3474085.3475572

240 BIBLIOGRAPHY

Wang, L. and Koniusz, P., 2022b. Uncertainty-dtw for time series and sequences.
In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October
23–27, 2022, Proceedings, Part XXI, 176–195. Springer. (cited on pages 1, 12, 119, 120,
and 164)

Wang, L. and Koniusz, P., 2023. 3mformer: Multi-order multi-mode transformer for
skeletal action recognition. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 5620–5631. (cited on page 1)

Wang, L.; Koniusz, P.; and Huynh, D. Q., 2019d. Hallucinating IDT descriptors and
I3D optical flow features for action recognition with cnns. In ICCV. (cited on pages
xix, 9, 10, 64, 65, 66, 67, 68, 69, 72, 76, 77, 78, 79, 89, 119, 146, 163, and 167)

Wang, L.; Liu, J.; and Koniusz, P., 2021b. 3d skeleton-based few-shot action recogni-
tion with jeanie is not so naïve. arXiv preprint arXiv:2112.12668, (2021). (cited on
pages 119 and 120)

Wang, L.; Wang, L.; Lu, H.; Zhang, P.; and Ruan, X., 2016a. Saliency detection with re-
current fully convolutional networks. In ECCV, 825–841. Springer Science+Business
Media, Amsterdam, The Netherlands. doi:10.1007/978-3-319-46493-0_50. (cited on
page 68)

Wang, L.; Xiong, Y.; Wang, Z.; Qiao, Y.; Lin, D.; Tang, X.; and Gool, L. V., 2016b.
Temporal segment networks: Towards good practices for deep action recognition.
ECCV, (2016). (cited on page 86)

Wang, L.; Xiong, Y.; Wang, Z.; Qiao, Y.; Lin, D.; Tang, X.; and Van Gool, L., 2019.
Temporal segment networks for action recognition in videos. TPAMI, 41, 11 (11
2019), 2740–2755. doi:10.1109/TPAMI.2018.2868668. (cited on pages 6 and 165)

Wang, L.; Zhang, J.; Zhou, L.; Tang, C.; and Li, W., 2015a. Beyond covariance:
Feature representation with nonlinear kernel matrices. ICCV, (2015). (cited on
pages 88 and 108)

Wang, P.; Li, W.; Gao, Z.; Zhang, J.; Tang, C.; and Ogunbona, P., 2015b. Deep Con-
volutional Neural Networks for Action Recognition Using Depth Map Sequences.
In CVPR, 1–8. (cited on pages 21 and 22)

Wang, P.; Li, W.; Gao, Z.; Zhang, J.; Tang, C.; and Ogunbona, P. O., 2016c. Action
Recognition From Depth Maps Using Deep Convolutional Neural Networks. IEEE
T HUM-MACH SYST, (2016), 498–509. (cited on pages 21 and 22)

Wang, Q.; Gao, Z.; Xie, J.; Zuo, W.; and Li, P., 2018a. Global gated mixture of second-
order pooling for improving deep convolutional neural networks. In Advances in Neu-
ral Information Processing Systems, vol. 31. Curran Associates, Inc. https://proceedings.
neurips.cc/paper/2018/file/17c276c8e723eb46aef576537e9d56d0-Paper.pdf. (cited on
pages 121 and 129)

https://proceedings.neurips.cc/paper/2018/file/17c276c8e723eb46aef576537e9d56d0-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/17c276c8e723eb46aef576537e9d56d0-Paper.pdf

BIBLIOGRAPHY 241

Wang, S.; Yue, J.; Liu, J.; Tian, Q.; and Wang, M., 2020. Large-scale few-shot learning
via multi-modal knowledge discovery. In ECCV. (cited on pages 12 and 164)

Wang, X.; Girshick, R.; Gupta, A.; and He, K., 2018b. Non-local neural networks. In
CVPR. (cited on page 5)

Wang, Y.; Li, K.; Li, Y.; He, Y.; Huang, B.; Zhao, Z.; Zhang, H.; Xu, J.; Liu, Y.; Wang,
Z.; Xing, S.; Chen, G.; Pan, J.; Yu, J.; Wang, Y.; Wang, L.; and Qiao, Y., 2022.
Internvideo: General video foundation models via generative and discriminative
learning. arXiv preprint arXiv:2212.03191, (2022). (cited on page 7)

Wang, Y.; Long, M.; Wang, J.; and Yu, P. S., 2017. Spatiotemporal pyramid network
for video action recognition. In CVPR. (cited on pages 6 and 163)

Wei, C.; Fan, H.; Xie, S.; Wu, C.; Yuille, A. L.; and Feichtenhofer, C., 2021a. Masked
feature prediction for self-supervised visual pre-training. CoRR, abs/2112.09133
(2021). https://arxiv.org/abs/2112.09133. (cited on page 124)

Wei, J.; Wang, Y.; Guo, M.; Lv, P.; Yang, X.; and Xu, M., 2021b. Dynamic hypergraph
convolutional networks for skeleton-based action recognition. CoRR, abs/2112.10570
(2021). https://arxiv.org/abs/2112.10570. (cited on pages 1, 133, and 134)

Wei, S.-E.; Ramakrishna, V.; Kanade, T.; and Sheikh, Y., 2016. Convolutional pose
machines. CVPR, (2016). (cited on page 89)

Wei, X.; Zhang, T.; Li, Y.; Zhang, Y.; and Wu, F., 2020. Multi-modality cross attention
network for image and sentence matching. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). (cited on page 124)

Weinberger, K.; Dasgupta, A.; Langford, J.; Smola, A.; and Attenberg, J., 2009.
Feature hashing for large scale multitask learning. In ICML, 1113–1120. doi:
10.1145/1553374.1553516. http://doi.acm.org/10.1145/1553374.1553516. (cited on
pages 48 and 50)

Weinland, D.; Özuysal, M.; and Fua, P., 2010. Making action recognition robust
to occlusions and viewpoint changes. In Computer Vision – ECCV 2010, 635–648.
Springer Berlin Heidelberg, Berlin, Heidelberg. (cited on pages 10 and 11)

Weinzaepfel, P.; Revaud, J.; Harchaoui, Z.; and Schmid, C., 2013. DeepFlow:
Large displacement optical flow with deep matching. In ICCV. http://hal.inria.fr/
hal-00873592. (cited on pages 47 and 67)

Willems, G.; Tuytelaars, T.; and Gool, L. V., 2008. An efficient dense and
scale-invariant spatio-temporal interest point detector. In ECCV (Marseille,
France, 2008), 650–663. doi:10.1007/978-3-540-88688-4_48. https://doi.org/10.1007/
978-3-540-88688-4_48. (cited on pages 45, 46, 66, and 67)

https://arxiv.org/abs/2112.09133
https://arxiv.org/abs/2112.10570
http://doi.acm.org/10.1145/1553374.1553516
http://hal.inria.fr/hal-00873592
http://hal.inria.fr/hal-00873592
https://doi.org/10.1007/978-3-540-88688-4_48
https://doi.org/10.1007/978-3-540-88688-4_48

242 BIBLIOGRAPHY

Wu, C.-Y.; Feichtenhofer, C.; Fan, H.; He, K.; Krahenbuhl, P.; and Girshick, R.,
2019a. Long-term feature banks for detailed video understanding. In CVPR. (cited
on pages 59 and 79)

Wu, F.; Zhang, T.; de Souza Jr., A. H.; Fifty, C.; Yu, T.; and Weinberger, K. Q., 2019b.
Simplifying graph convolutional networks. In ICML. (cited on pages 165, 167, 168,
and 171)

Wu, W.; Sun, Z.; and Ouyang, W., 2023. Revisiting classifier: Transferring vision-
language models for video recognition. (2023). (cited on pages 7, 9, and 10)

Wu, X. and Jia, Y., 2012. View-invariant action recognition using latent kernelized
structural svm. In Computer Vision – ECCV 2012, 411–424. Springer Berlin Heidelberg,
Berlin, Heidelberg. (cited on page 10)

Wu, X.; Wang, H.; Liu, C.; and Jia, Y., 2015. Cross-view action recognition over
heterogeneous feature spaces. IEEE Transactions on Image Processing, 24, 11 (2015),
4096–4108. doi:10.1109/TIP.2015.2445293. (cited on page 11)

Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; and Philip, S. Y., 2020. A compre-
hensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32, 1 (2020), 4–24. (cited on page 8)

Xia, L. and Aggarwal, J. K., 2013. Spatio-Temporal Depth Cuboid Similarity Feature
for Activity Recognition Using Depth Camera. In CVPR, 2834–2841. (cited on
pages 21 and 22)

Xia, L.; Chen, C.-C.; and Aggarwal, J. K., 2012. View invariant human action
recognition using histograms of 3D joints. CVPR Workshops, (2012), 20–27. (cited
on pages 2, 11, 22, 23, 87, 102, and 107)

Xie, S.; Sun, C.; Huang, J.; Tu, Z.; and Murphy, K., 2018. Rethinking spatiotemporal
feature learning: Speed-accuracy trade-offs in video classification. In ECCV. (cited
on pages 5 and 6)

Xu, B.; Ye, H.; Zheng, Y.; Wang, H.; Luwang, T.; and Jiang, Y.-G., 2018. Dense dilated
network for few shot action recognition. In ACM ICMR, 379–387. (cited on pages
12, 164, and 166)

Yacoob, Y. and Black, M. J., 1998. Parameterized modeling and recognition of
activities. ICCV, (1998), 120–128. (cited on page 88)

Yan, A.; Wang, Y.; Li, Z.; and Qiao, Y., 2019. PA3D: Pose-action 3D machine for
video recognition. In CVPR. (cited on page 77)

Yan, S.; Xiong, Y.; and Lin, D., 2018. Spatial Temporal Graph Convolutional Networks
for Skeleton-Based Action Recognition. In AAAI. (cited on pages xxix, 2, 4, 8, 21,
23, 24, 26, 27, 30, 31, 33, 35, 36, 38, 89, 104, 109, 110, 112, 120, 122, 124, 126, 130, 133,
134, 150, 166, 174, and 182)

BIBLIOGRAPHY 243

Yang, C.-H. H.; Tsai, Y.-Y.; and Chen, P.-Y., 2021. Voice2series: Reprogramming
acoustic models for time series classification. In Proceedings of the 38th International
Conference on Machine Learning, vol. 139 of Proceedings of Machine Learning Research,
11808–11819. PMLR. (cited on page 145)

Yang, J.; Dong, X.; Liu, L.; Zhang, C.; Shen, J.; and Yu, D., 2022a. Recurring the
transformer for video action recognition. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 14063–14073. (cited on page 7)

Yang, L.; Huang, Y.; Sugano, Y.; and Sato, Y., 2022b. Interact before align: Leveraging
cross-modal knowledge for domain adaptive action recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 14722–14732.
(cited on page 10)

Yang, X. and Tian, Y., 2012. EigenJoints-based Action Recognition Using Naive-Bayes-
Nearest-Neighbor. In CVPR, 14–19. (cited on pages 3, 20, 21, 22, and 23)

Yang, X. and Tian, Y., 2014a. Effective 3D action recognition using eigenjoints. J. Vis.
Comun. Image Represent., 25, 1 (2014), 2–11. doi:10.1016/j.jvcir.2013.03.001. (cited on
page 88)

Yang, X. and Tian, Y., 2014b. Super Normal Vector for Activity Recognition using
Depth Sequences. In CVPR, 804–811. (cited on pages 21 and 22)

Yeffet, L. and Wolf, L., 2009. Local trinary patterns for human action recognition.
ICCV, (2009), 492–497. (cited on pages 46 and 67)

Yu, X.; Zhuang, Z.; Koniusz, P.; and Li, H., 2020. 6DoF object pose estimation via
differentiable proxy voting regularizer. In BMVC. BMVA Press. (cited on pages 12
and 164)

Zanfir, M.; Leordeanu, M.; and Sminchisescu, C., 2013. The moving pose: An
efficient 3D kinematics descriptor for low-latency action recognition and detection.
ICCV, (2013). doi:10.1109/ICCV.2013.342. (cited on page 108)

Zatsiorsky, V. M., 1997. Kinematic of human motion. Human Kinetics Publishers,
(1997). (cited on page 88)

Zhang, C.; Tian, Y.; Guo, X.; and Liu, J., 2017a. DAAL: Deep Activation-based
Attribute Learning for Action Recognition in Depth Videos. CVIU, (2017), 37–49.
(cited on page 22)

Zhang, C.; Zou, Y.; Chen, G.; and Gan, L., 2019a. PAN: persistent appearance
network with an efficient motion cue for fast action recognition. In MM, 500–509.
ACM, Nice, France. doi:10.1145/3343031.3350876. https://doi.org/10.1145/3343031.
3350876. (cited on page 68)

Zhang, H. and Koniusz, P., 2019. Power normalizing second-order similarity network
for few-shot learning. In WACV, 1185–1193. (cited on pages 89 and 164)

https://doi.org/10.1145/3343031.3350876
https://doi.org/10.1145/3343031.3350876

244 BIBLIOGRAPHY

Zhang, H.; Koniusz, P.; Jian, S.; Li, H.; and Torr, P. H. S., 2021a. Rethinking class
relations: Absolute-relative supervised and unsupervised few-shot learning. In
CVPR, 9432–9441. (cited on pages 12 and 164)

Zhang, H.; Li, H.; and Koniusz, P., 2022a. Multi-level second-order few-shot learning.
IEEE Transactions on Multimedia, (2022). (cited on pages 12 and 164)

Zhang, H.; Song, Y.; and Zhang, Y., 2019b. Graph convolutional lstm model for
skeleton-based action recognition. In 2019 IEEE International Conference on Multimedia
and Expo (ICME), 412–417. doi:10.1109/ICME.2019.00078. (cited on page 120)

Zhang, H.; Zhang, J.; and Koniusz, P., 2019c. Few-shot learning via saliency-guided
hallucination of samples. In CVPR, 2770–2779. IEEE, Long Beach California. (cited
on pages 65 and 68)

Zhang, H.; Zhang, L.; Qi, X.; Li, H.; Torr, P.; and Koniusz, P., 2020a. Few-shot
action recognition with permutation-invariant attention. In European Conference on
Computer Vision (ECCV). (cited on pages 12, 13, 15, 89, 146, 147, 164, and 166)

Zhang, J.; Shi, X.; Xie, J.; Ma, H.; King, I.; and Yeung, D.-Y., 2018a. Gaan: Gated
attention networks for learning on large and spatiotemporal graphs. In UAI, 339–349.
AUAI Press. (cited on page 124)

Zhang, J.; Shum, H. P. H.; Han, J.; and Shao, L., 2018b. Action Recognition From
Arbitrary Views Using Transferable Dictionary Learning. In TIP, 4709–4723. (cited
on pages 20 and 22)

Zhang, J.; Wang, L.; and Zhou, L., 2020b. Beyond covariance: Sice and kernel based
visual feature representation. IJCV, (2020). doi:10.1007/s11263-020-01376-1. (cited
on page 88)

Zhang, J.; Xie, W.; Wang, C.; Tu, R.; and Tu, R., 2022b. Graph-aware transformer for
skeleton-based action recognition. The Visual Computer, (2022). (cited on page 8)

Zhang, J.; Zhang, T.; Dai, Y.; Harandi, M.; and Hartley, R., 2018c. Deep unsu-
pervised saliency detection: A multiple noisy labeling perspective. In CVPR, 1–10.
IEEE, Salt Lake City,UT,USA. (cited on pages 65 and 68)

Zhang, P.; Lan, C.; Xing, J.; Zeng, W.; Xue, J.; and Zheng, N., 2017b. View adaptive
recurrent neural networks for high performance human action recognition from
skeleton data. In ICCV. (cited on pages xxxi, 10, 109, 164, 167, and 178)

Zhang, P.; Lan, C.; Xing, J.; Zeng, W.; Xue, J.; and Zheng, N., 2019d. View adaptive
neural networks for high performance skeleton-based human action recognition.
IEEE TPAMI, 41, 8 (2019), 1963–1978. (cited on pages xxxi, 10, 11, 164, 167, and 178)

Zhang, P.; Lan, C.; Zeng, W.; Xing, J.; Xue, J.; and Zheng, N., 2020c. Semantics-
guided neural networks for efficient skeleton-based human action recognition. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). (cited on
pages 8 and 121)

BIBLIOGRAPHY 245

Zhang, Q.; Wang, T.; Zhang, M.; Liu, K.; Shi, P.; and Snoussi, H., 2021b. Spatial-
temporal transformer for skeleton-based action recognition. In 2021 China Automa-
tion Congress (CAC), 7029–7034. doi:10.1109/CAC53003.2021.9728206. (cited on
page 8)

Zhang, S.; Luo, D.; Wang, L.; and Koniusz, P., 2020d. Few-shot object detection
by second-order pooling. In ACCV, vol. 12625 of Lecture Notes in Computer Science,
369–387. Springer. (cited on pages 89, 121, and 164)

Zhang, S.; Murray, N.; Wang, L.; and Koniusz, P., 2022c. Time-rEversed diffusioN
tEnsor Transformer: A new TENET of Few-Shot Object Detection. In ECCV. (cited
on pages 12, 121, and 164)

Zhang, S.; Wang, L.; Murray, N.; and Koniusz, P., 2022d. Kernelized few-shot object
detection with efficient integral aggregation. In CVPR, 19207–19216. (cited on
pages 12, 121, and 164)

Zhang, S.; Zhou, J.; and He, X., 2021c. Learning implicit temporal alignment for
few-shot video classification. CoRR, abs/2105.04823 (2021). https://arxiv.org/abs/
2105.04823. (cited on page 13)

Zhang, X.; Xu, C.; and Tao, D., 2020e. Context aware graph convolution for skeleton-
based action recognition. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). (cited on pages 8 and 121)

Zhang, Y.; Li, J.; Wu, G.; Zhang, H.; Shi, Z.; Liu, Z.; and Wu, Z., 2021d. Tem-
poral transformer networks with self-supervision for action recognition. CoRR,
abs/2112.07338 (2021). https://arxiv.org/abs/2112.07338. (cited on pages 1 and 124)

Zhang, Y.; Wu, B.; Li, W.; Duan, L.; and Gan, C., 2021e. Stst: Spatial-temporal
specialized transformer for skeleton-based action recognition. In Proceedings of the
29th ACM International Conference on Multimedia, MM ’21 (Virtual Event, China,
2021), 3229–3237. Association for Computing Machinery, New York, NY, USA. doi:
10.1145/3474085.3475473. https://doi.org/10.1145/3474085.3475473. (cited on pages
8 and 133)

Zhang, Y.; Zhu, H.; Meng, Z.; Koniusz, P.; and King, I., 2022e. Graph-adaptive
rectified linear unit for graph neural networks. In Proceedings of the ACM Web Confer-
ence 2022, WWW ’22 (Virtual Event, Lyon, France, 2022), 1331–1339. Association for
Computing Machinery, New York, NY, USA. doi:10.1145/3485447.3512159. (cited
on page 160)

Zhang, Y.; Zhu, H.; Song, Z.; Koniusz, P.; and King, I., 2022f. Costa: Covariance-
preserving feature augmentation for graph contrastive learning. ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD), (2022). https://doi.org/10.
1145/3534678.3539425. (cited on pages 122 and 160)

https://arxiv.org/abs/2105.04823
https://arxiv.org/abs/2105.04823
https://arxiv.org/abs/2112.07338
https://doi.org/10.1145/3474085.3475473
https://doi.org/10.1145/3534678.3539425
https://doi.org/10.1145/3534678.3539425

246 BIBLIOGRAPHY

Zhang, Y.; Zhu, H.; Song, Z.; Koniusz, P.; and King, I., 2023. Spectral feature
augmentation for graph contrastive learning and beyond. In AAAI. (cited on page
122)

Zhang, Z., 2012. Microsoft kinect sensor and its effect. IEEE MultiMedia, 19, 2 (2012),
4–10. doi:10.1109/MMUL.2012.24. (cited on page 2)

Zhang, Z.; Wang, C.; Xiao, B.; Zhou, W.; Liu, S.; and Shi, C., 2013. Cross-view action
recognition via a continuous virtual path. In 2013 IEEE Conference on Computer
Vision and Pattern Recognition, 2690–2697. doi:10.1109/CVPR.2013.347. (cited on
pages 10 and 11)

Zhao, X.; Wang, S.; Li, S.; and Li, J., 2012. A comprehensive study on third order
statistical features for image splicing detection. In Digital Forensics and Watermarking,
243–256. (cited on page 89)

Zheng, N.; Wen, J.; Liu, R.; Long, L.; Dai, J.; and Gong, Z., 2018. Unsupervised
Representation Learning with Long-Term Dynamics for Skeleton Based Action
Recognition. In AAAI, 2644–2651. (cited on pages 21, 22, and 23)

Zhou, Y.; Li, C.; Cheng, Z.-Q.; Geng, Y.; Xie, X.; and Keuper, M., 2022. Hypergraph
transformer for skeleton-based action recognition. arXiv preprint arXiv:2211.09590,
(2022). (cited on page 8)

Zhou, Y.; Ni, B.; Hong, R.; Wang, M.; and Tian, Q., 2015. Interaction part mining: A
mid-level approach for fine-grained action recognition. CVPR, (2015). (cited on
page 89)

Zhu, A.; Ke, Q.; Gong, M.; and Bailey, J., 2023. Adaptive local-component-aware
graph convolutional network for one-shot skeleton-based action recognition. In
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV), 6038–6047. (cited on pages 1 and 15)

Zhu, H. and Koniusz, P., 2021a. REFINE: Random RangE FInder for network
embedding. CIKM, (2021). (cited on page 89)

Zhu, H. and Koniusz, P., 2021b. Simple spectral graph convolution. In International
Conference on Learning Representations (ICLR). (cited on pages 89, 147, 165, 167, 168,
and 171)

Zhu, H. and Koniusz, P., 2021c. Simple spectral graph convolution. In International
Conference on Learning Representations. (cited on page 120)

Zhu, H. and Koniusz, P., 2022. EASE: Unsupervised discriminant subspace learning
for transductive few-shot learning. CVPR, (2022). (cited on pages 12 and 164)

Zhu, H.; Sun, K.; and Koniusz, P., 2021a. Contrastive laplacian eigenmaps. Advances
in Neural Information Processing Systems, 34 (2021). (cited on pages 120, 160, and 165)

BIBLIOGRAPHY 247

Zhu, L.; Sevilla-Lara, L.; Tran, D.; Feiszli, M.; Yang, Y.; and Wang, H., 2019.
FASTER recurrent networks for video classification. CoRR, abs/1906.04226 (2019).
http://arxiv.org/abs/1906.04226. (cited on page 191)

Zhu, L. and Yang, Y., 2018. Compound memory networks for few-shot video
classification. In ECCV. (cited on page 166)

Zhu, W.; Lan, C.; Xing, J.; Zeng, W.; Li, Y.; Shen, L.; and Xie, X., 2016. Co-occurrence
Feature Learning for Skeleton based Action Recognition using Regularized Deep
LSTM Networks. AAAI, (2016). (cited on pages 11, 22, and 23)

Zhu, W.; Liang, S.; Wei, Y.; and Sun, J., 2014. Saliency optimization from robust
background detection. In CVPR, 2814–2821. IEEE, Columbus, OH, USA. doi:
10.1109/CVPR.2014.360. (cited on page 68)

Zhu, X.; Toisoul, A.; Pérez-Rúa, J.; Zhang, L.; Martínez, B.; and Xiang, T., 2021b.
Few-shot action recognition with prototype-centered attentive learning. CoRR,
abs/2101.08085 (2021). https://arxiv.org/abs/2101.08085. (cited on page 14)

Zhu, Y.; Huang, G.; Xu, X.; Ji, Y.; and Shen, F., 2022. Selective hypergraph con-
volutional networks for skeleton-based action recognition. In Proceedings of the
2022 International Conference on Multimedia Retrieval, ICMR ’22 (Newark, NJ, USA,
2022), 518–526. Association for Computing Machinery, New York, NY, USA. doi:
10.1145/3512527.3531367. https://doi.org/10.1145/3512527.3531367. (cited on pages
1, 133, and 134)

Zilin, G.; Jiangtao, X.; Qilong, W.; and Peihua, L., 2019. Global second-order
pooling convolutional networks. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). (cited on pages 121 and 129)

Zoph, B.; Vasudevan, V.; Shlens, J.; and Le, Q. V., 2018. Learning transferable
architectures for scalable image recognition. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). (cited on pages 65 and 67)

Zuffi, S. and Black, M. J., 2013. Puppet flow. IJCV, 101, 3 (2013), 437–458. (cited on
pages 86 and 89)

http://arxiv.org/abs/1906.04226
https://arxiv.org/abs/2101.08085
https://doi.org/10.1145/3512527.3531367

	Acknowledgments
	Abstract
	Contents
	Introduction
	Motivation
	Action Recognition Benchmarks and Evaluations
	Action Recognition on Videos
	Action Recognition on Skeletons
	Multi-modal and Multi-view Action Recognition
	One- and Few-shot Action Recognition
	Thesis Outline and Contributions
	Publications

	A Comparative Review
	Introduction
	Related Work
	Analyzed and Evaluated Algorithms
	Experimental Setting
	Benchmark Datasets
	Evaluation Settings
	Evaluation Measure
	Optimisation of Hyperparameters for HDG

	Experimental Results
	MSRAction3D, 3D Action Pairs, CAD-60, and UWA3D Activity Datasets
	NTU RGB+D Dataset
	UWA3D Multiview Activity II Dataset

	Discussions
	Single-view versus cross-view
	Influence of camera views in cross-view evaluation
	Depth-based features versus skeleton-based features
	Handcrafted features versus deep learning features
	`Quo Vadis, action recognition?'

	Conclusion

	Hallucinating IDT Descriptors and I3D Optical Flow Features
	Introduction
	Related Work
	Background
	Descriptor Encoding Schemes
	Pooling a.k.a. Aggregation
	Power Normalization
	Count Sketches

	Approach
	BoW/FV Hallucinating Streams
	High Abstraction Features
	Optical Flow Features
	Combining Hallucinated BoW/FV/OFF and HAF
	Objective and its Optimization

	Experiments
	Datasets and Evaluation Protocols
	Data Pre-processing
	Evaluations

	Conclusions

	Statistical Moment and Subspace Descriptors
	Introduction
	Related Work
	Approach
	Statistical Motivation
	Positional Embedding
	Object Detection Features
	Saliency Detection Features
	Hallucinating Streams/High Abstr. Features
	Objective Function

	Experiments
	Datasets and Evaluation Protocols
	Evaluations

	Conclusions

	Tensor Representations
	Introduction
	Related Work
	Preliminaries
	Tensor Notations
	Kernel Linearization
	Equivalence between Polynomial Kernels and the Dot-product of Tensors

	Proposed Approach
	Statistical Motivation
	Problem Formulation
	Sequence Compatibility Kernel
	Dynamics Compatibility Kernel
	Sequence Compatibility Kernel `Plus' (SCK+)
	Dynamics Compatibility Kernel `Plus' (DCK+)

	Experiments
	Datasets
	Experimental Setup
	Sequence compatibility kernel.
	Dynamics compatibility kernel.
	SCK and DCK vs. the state of the art.
	SCK+ and DCK+ vs. the state of the art.

	Linearizing Dynamics Compatibility Kernel
	Positive Definiteness of SCK and DCK
	Computational Complexity
	What is (Tensor) Eigenvalue Power Normalization?
	Conclusions

	3Mformer: Multi-order Multi-mode Transformer
	Introduction
	Related Work
	Background
	Approach
	Model Overview
	Coupled-mode Self-Attention
	Multi-order Multi-mode Transformer
	Multi-order Pooling (MP) Module
	Temporal block Pooling (TP) Module
	Model Variants

	Visualization of 3Mformer.

	Experiments
	Datasets and Protocols
	Skeleton Data Preprocessing
	Experimental Setup
	Ablation Study
	Comparisons with the State of the Arts

	Additional Results and Discussions
	Ablations of MP
	Learning the short-term temporal patterns
	Why 3Mformer works and when does it fail?
	Model Complexity
	Limitation and Future Work

	Conclusions

	Uncertainty-DTW
	Introduction
	Similarity learning with uDTW
	Derivation of uDTW

	Related Work
	Pipeline Formulations
	Few-shot Action Recognition
	Time Series Forecasting and Classification

	Experiments
	Fréchet Mean of Time Series
	Classification of Time Series
	Forecasting the Evolution of Time Series
	Few-shot Action Recognition

	Effectiveness of SigmaNet
	Hyperparameters Evaluation
	Evaluation of sigma
	Evaluation of k and y of SigmaNet
	Evaluation of b
	Evaluation of warping window width

	Network Configuration and Training Details
	Skeleton Data Preprocessing
	Network Configuration
	Linear Graph Network (S2GC)
	k-NN classifier with SoftMax
	Training Details

	Additional Evaluations for Few-shot Action Recognition
	Conclusions

	Temporal-Viewpoint Transportation Plan
	Introduction
	Related Works
	Background
	Approach
	Experiments
	Ablation Study
	Comparisons With the State-of-the-Art Methods

	Network configuration and training details
	Network configuration
	Training details
	Skeleton Data Preprocessing

	Backbone selection and hyperparameter evaluation
	Backbone selection
	Evaluations of viewpoint alignment
	Evaluations w.r.t@汥瑀瑯步渠. a
	Evaluations w.r.t@汥瑀瑯步渠. the number of layers L
	Evaluation of stride for viewing angles

	More baselines on NTU-60
	Inference Time
	Drawbacks/Limitations
	Conclusions

	Summary and Future Work
	Summary and Contributions
	Video-based Action Recognition
	Skeleton-based Action Recognition
	Few-shot Skeletal Action Recognition

	Future Work

	Appendices
	Datasets and their statistics
	Evaluation Protocols
	Few-shot action recognition protocols (the small-scale datasets)
	One-shot protocol on NTU-60
	Few-shot multiview classification on NTU-120

	Visualizations of Forecasting the Evolution of Time Series
	Visualizations on Barycenters
	Visualizations on JEANIE and FVM

