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We present ab initio calculations of photoionization thresholds and cross sections of the negatively charged
nitrogen-vacancy (NV) center in diamond. We consider photoionization from the ground 3A2 and the excited 3E
states. After the ionization from the 3E level, we show that the NV center transitions into the metastable 4A2

electronic state of the neutral defect. We reveal how spin polarization of NV− gives rise to spin polarization
of the 4A2 state, explaining electron spin resonance experiments. We obtain smooth curves of photoionization
cross sections as a function of energy by employing dense k-point meshes for the Brillouin-zone integration
together with the band unfolding technique to rectify the distortions of the band structure induced by the artificial
periodicity of the supercell approach. Our calculations provide a comprehensive picture of photoionization
mechanisms of NV−. They will be useful in interpreting and designing experiments on charge-state dynamics at
NV centers. In particular, we offer a consistent explanation of recent results of spin-to-charge conversion of NV
centers.
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I. INTRODUCTION

Over the past two decades, the nitrogen-vacancy (NV) cen-
ter in diamond [1] has become a key platform [2] for testing
and eventually implementing various quantum technologies.
Most technology-ready applications have been in quantum
sensing [3], but progress in quantum communication [4] and
quantum computing [5,6] has been eminent too. The spin of
the negatively charged NV center can be polarized and read
out optically [7]. It has been established that optical excitation
can lead to the photoionization of NV− whereby an electron
from the NV center is excited to the conduction band, and
NV− is converted to NV0 [8–10]. In many situations this is
a detrimental process for the operation of NV−, and it has
to be avoided by carefully choosing experimental parame-
ters. Photoionization is also disadvantageous for the potential
operation of diamond lasers based on NV centers [11] as it
competes with stimulated emission.

However, deliberate photoionization of NV− can also be
beneficial. In particular, it has been used to develop the so-
called photocurrent detection of magnetic resonance [12–14].
Photoionization of NV centers is also used for spin readout via
spin-to-charge conversion [15–17]. Lastly, excitation to the
conduction band plays an essential role in a proposed protocol
to couple two remote NV centers using spatial stimulated
Raman adiabatic passage [18].
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The atomic structure of the NV center is shown in Fig. 1(a).
The energy-level diagram in Fig. 1(b) depicts the electronic
states of NV−: spin-triplet states 3A2 and 3E and metastable
spin singlets 1E and 1A1. It has been established that pho-
toionization of NV− can occur either via a one-photon or a
two-photon mechanism [8–10]. In a single-photon ionization,
an electron from the 3A2 ground state is directly promoted to
the conduction band. The threshold for the process has been
experimentally determined to be ∼2.6 eV in Ref. [10] and
∼2.7 eV in Ref. [19]. The second mechanism is a sequential
process of a two-photon absorption [8–10]. In this case, the
NV center is first excited to the 3E state; the zero-phonon
line (ZPL) of this transition is EZPL = 1.945 eV [1]. Subse-
quently, the NV center is ionized from the 3E state. In most
practical situations, both when photoionization is beneficial or
detrimental, the latter process is most important [8–10]. These
two processes do not exhaust all the possibilities. After the
absorption of the first photon, the NV center can undergo an
intersystem crossing (ISC) to the singlet 1A1 level (Fig. 1) [1].
This is a short-lived state with a lifetime of 0.1 ns [20] from
which there is a mostly nonradiative transition to the 1E sin-
glet. The latter is a long-lived state with a lifetime 150–450 ns
[21], enabling photoionization from this level via the absorp-
tion of the second photon. This is the third photoionization
mechanism. Photoionization from the singlets was invoked
previously [22], but the mechanism of the process was not
investigated in detail in the literature.

Experimental measurements of photoionization cross sec-
tions and thresholds for the NV center are not straightforward,
in particular regarding the photoionization from the excited
state 3E . The first difficulty is related to the fact that light can
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FIG. 1. (a) Atomic structure of the nitrogen-vacancy center in
diamond. (b) Electronic level diagram of NV−. Energies of the ZPL
between the triplets and the singlets are indicated. Spin splitting of
3A2 and 3E states are not to scale.

induce both the transition NV− → NV0 (ionization) and the
transition NV0 → NV− (recombination), often making it hard
to disentangle the two processes [8–10]. Moreover, as already
mentioned, for the NV center in the excited triplet state, pho-
toionization competes with stimulated emission whereby the
NV center returns back to the ground state [11,23], marring
the experimental handle of the photoionization process even
further. To the best of our knowledge, neither absolute pho-
toionization cross sections from 3A2,

3E , and 1E states nor
photoionization thresholds from 3E and 1E states have yet
been determined experimentally.

In this paper, we address the photoionization thresholds
and absolute photoionization cross sections using ab initio
calculations. In the two-photon ionization, the intradefect ab-
sorption precedes the ionization step. Therefore, we calculate
the cross section for that process as well. We also report
calculations for the cross section of the stimulated emission
from the 3E state.

This paper is organized as follows. In Sec. II, we discuss
the mechanism of photoionization of NV− centers in more
detail. We give the expressions for photoionization thresholds,
cross sections, as well as cross sections for intradefect ab-
sorption and stimulated emission. In Sec. III, we discuss the
particulars of the electronic structure and introduce computa-
tional methods and approximations to calculate cross sections
and photoionization thresholds. We present the results of cal-
culations and their analysis in Sec. IV. The consequences of
our paper to the physics of NV centers are discussed in Sec. V.
Finally, Sec. VI concludes our paper.

The target groups of our paper are: (i) a broad community
working on the physics and applications of color centers and
(ii) theorists interested in the development of computational
methodologies for point defects in solids. The first group can
skip a technical Sec. III. In the paper, we use ε for photon
energies and E for electron energies.

II. NV CENTER PHOTOIONIZATION MECHANISMS

A. Photoionization thresholds

A threshold for photoionization corresponds to an electron
being excited to the conduction-band minimum (CBM). In the
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FIG. 2. Band structure of bulk diamond calculated using the
HSE density functional (see Sec. III for details about computational
methods). The shaded area corresponds to the band gap. The pho-
toionization threshold is determined by electrons being excited to the
CBM that occurs between � and X points.

case of diamond, the CBM occurs along the �-X line in the
Brillouin zone as shown in Fig. 2.

1. Photoionization from the 3A2 state

The ground state of NV−, 3A2, is described by an electron
configuration a2

1e2 (a1 and e label irreducible representations
of single-particle levels [1]). ms = ±1 spin sublevels of the
triplet manifold can be described by single Slater determi-
nants. The ms = 1 state is illustrated in Fig. 3(a); in the ket
notation it can be written as |a1ā1exey〉, where “bar” indicates
spin-down electrons. Ionization is a process whereby one
electron from the e level is excited to the conduction band,
turning NV− into NV0 [red dotted arrow in Fig. 3(a)]. After
NV− is ionized, it transitions into the 2E ground state of the
neutral center with electron configuration a2

1e1. The photoion-
ization process can be depicted using the energy-level diagram
of the entire system, i.e., NV− or NV0 plus an electron at
the CBM as shown in Fig. 4. The photoionization threshold
from the 3A2 state IP(3A2) has been measured experimentally
by Aslam et al. [10]. Careful study of charge conversion

FIG. 3. Photoionization of the NV− center in the single-electron
picture. (a) Electronic configuration of the ms = 1 spin sublevel of
the 3A2 state. (b) Electronic configuration of the ms = 1 spin sublevel
of the Ex component of the 3E manifold. Red arrows show one
possibility of photoionization whereby an ey electron is excited to
the conduction band (see the text for a more in-depth discussion).
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FIG. 4. Photoionization of NV− from 3A2,
3E , and 1E states.

Horizontal lines indicate the energy of the entire system: black for
NV− and blue for NV0 plus an electron at the CBM. Red arrows
indicate possible photoionization mechanisms, and EZPL is the ZPL
energy of the triplet transition.

dynamics as a function of wavelength and intensity of laser
illumination provided the value IP(3A2) = 2.6 eV; the error
bar of this value can be assumed to be ∼0.1 eV [10]. A
similar value of 2.7 eV has been obtained in Ref. [19] from
the fit of the measured photoionization cross section to an
analytical formula. Previous theoretical calculations yielded
values IP(3A2) = 2.64 eV [24] and 2.74 eV [19], in excellent
agreement with both experiments.

2. Photoionization from the 3E state

Compared to the photoionization from the ground state, the
physics of the photoionization from the 3E state is presently
less understood. The electronic configuration of the 3E state
is a1

1e3. The ms = 1 spin sublevel of the Ex orbital component,
|a1exeyēy〉, is illustrated in Fig. 3(b). Removing one electron
from the e level [red dotted arrow in Fig. 3(b)] yields the
configuration a1

1e2. The lowest-energy state with this configu-
ration is the spin-quartet 4A2 state of NV0. Therefore, the final
state of NV0 after the photoionization is the metastable state
4A2 and not the ground-state 2E as it was sometimes assumed
[9]. The energy-level diagram for this photoionization process
is shown in Fig. 4: the initial state is NV− in the 3E state,
whereas the final state is NV0 in the 4A2 state plus an electron
in the conduction band.

The expression for the threshold of photoionization IP(3E )
can be read from Fig. 4:

IP(3E ) = IP(3A2) − EZPL + [E (4A2) − E (2E )]. (1)

The equation above enables the determination of the threshold
for the photoionization from the 3E state. Unfortunately, the
energy difference [E (4A2) − E (2E )] between the two states of
NV0 is not known experimentally. Therefore, the experimen-
tal value of IP(3E ) cannot be deduced from this relationship.
Even though the experimental values of IP(3A2) and EZPL

are known, to benefit from possible cancellation of errors in
theoretical calculations, in this paper we will calculate all the
quantities that appear in Eq. (1) using the same computational
setup, described in Sec. III.

Apart from the 4A2 state, there are other NV0 states with the
electron configuration a1e2. The second lowest-energy state
is 2A2 [1]. Using the equation similar to Eq. (1), we can

determine the experimental threshold for the photoionization
via this process to be about 2.8 eV. This is outside the range
of energies we consider in this paper, and this process will be
not be analyzed further.

3. Photoionization from the 1E state

Unlike ms = ±1 spin sublevels of the triplet states, the two
components of the orbital doublet 1E are described by mul-
tideterminant wave functions as discussed in, e.g., Ref. [25].
However, as in the case of 3A2, the electronic configuration of
the 1E state is a2

1e2. Therefore, after photoionization NV cen-
ter transitions to the 2E ground state of the neutral defect with
electronic configuration a2

1e1. It is straightforward to deduce
the photoionization threshold from the 1E state (Fig. 4),

IP(1E ) = IP(3A2) − [E (1E ) − E (3A2)]. (2)

The energy difference [E (1E ) − E (3A2)] has not yet been
measured directly. However, the analysis of the ISC between
the 3E and the 1A1, as well as the knowledge of the ZPL
energy between the two singlets, enables one to determine this
energy difference to be about 0.38 eV [26]. As a result, IP(1E )
can be estimated to be 2.2 ± 0.1 eV.

B. Photoionization cross sections

The general theory of optical absorption in semiconductors
is given in a number of textbooks, e.g., Refs. [27,28]. Let
σ̃ph(ε) be the photoionization cross section as a function of
photon energy ε in the absence of lattice relaxation. It is given
by (cf. Eq. (10.2.4) in Ref. [28]):

σ̃ph(ε) =4π2α

3nD
ε
∑

j

r2
i jδ(ε − Ei j ). (3)

Here α is the fine-structure constant, and nD = 2.4 is the
refractive index of diamond. Label i denotes the initial state
�i, and the sum runs over all final states � j ; Ei j = Ej − Ei is
the energy difference between the two states. �ri j are transition
dipole moments (we will also call them optical matrix ele-
ments), discussed in Sec. III B. We consider the absorption of
light by an ensemble of randomly oriented NV centers. This
is the reason for the appearance of the factor 1/3 in Eq. (3).

Vibrational broadening is introduced by replacing δ(ε) in
Eq. (3) with normalized spectral functions of electron-phonon
coupling A(ε), which also includes the contribution of the
dynamical Jahn-Teller effect [29] (see Refs. [30,31] for a more
thorough discussion). In this case, we can write the actual
cross section as a convolution,

σph(ε) = ε

∫ ∞

−∞

1

ε′ σ̃ph(ε′)A(ε − ε′)dε′. (4)

Temperature dependence of the photoionization cross section
occurs mainly via the temperature dependence of the spectral
functions A(ε). In the remainder of the paper, we will assume
a T = 0 K limit for these functions.

C. Cross section of the intradefect absorption
and stimulated emission

As discussed in Sec. I, photoionization from the 3E state
competes with stimulated emission, returning NV− to the
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ground-state 3A2. The cross section of stimulated emission
(the process 3E → 3A2) is given by an expression:

σst (ε) = 4π2α

3nD
εr2

i jA(EZPL − ε). (5)

Here ri j is the optical matrix element for the transition 3A2 →
3E , EZPL = 1.945 eV, and A(ε) is the spectral function of
electron-phonon coupling for stimulated emission, identical
to that of spontaneous emission (luminescence).

Another important parameter needed to understand the
whole two-step photoionization process is the cross section
for intradefect absorption 3A2 → 3E . Its cross section is given
by

σintra (ε) = g
4π2α

3nD
εr2

i jA(ε − EZPL). (6)

Here A(ε) is a spectral function of electron-phonon coupling
for the absorption 3A2 → 3E , and g = 2 is the orbital degen-
eracy factor of the final-state 3E .

III. THEORY AND METHODS

A. Electronic structure methods

Calculations have been performed within the framework
of density functional theory (DFT). For the geometry op-
timization as well as the calculation of excitation energies
and ionization thresholds, we used the hybrid exchange-
correlation functional of Heyd, Scuseria, and Ernzerhof (HSE)
[32]. In this functional, a fraction a = 1/4 of screened Fock
exchange is admixed to the semilocal exchange based on the
generalized gradient approximation in the form of Perdew,
Burke, and Ernzerhof (PBE) [33]. As discussed below, to
obtain converged photoionization cross sections, we have to
perform integration on a dense k-point grid in the Brillouin
zone. Unfortunately, such calculations are computationally
too expensive if performed with the HSE functional. For
this purpose, the optical matrix elements have been calcu-
lated using the PBE functional. Our calculations for selected
transitions have shown that HSE and PBE matrix elements
differ by less than 10%. We used the projector augmented-
wave approach with a plane-wave energy cutoff of 500 eV.
Calculations have been performed with the Vienna Ab initio
Simulation Package [34].

The HSE functional provides a very good description
of diamond, yielding the band gap of Eg = 5.34 eV (ex-
perimental value of 5.46 eV) and the lattice constant a =
3.548 Å (experimental value of 3.567 Å). Geometry relax-
ation of the NV center has been performed using 4 × 4 × 4
supercells [35] with 512 atomic sites and a single � point
for the Brillouin-zone sampling. Ionization potential from
ground-state IP(3A2) has been determined from computed
charge-state transition levels as discussed in, e.g., Ref. [35],
with finite-size electrostatic corrections of Ref. [36]. Spectral
functions of electron-phonon coupling A(ε) that appear in
Eq. (4) have been calculated following the methodology of
Ref. [31] (see Sec. I of the Supplemental Material [37] for a
more detailed discussion). Spectral functions for absorption
and stimulated emission in Eqs. (5) and (6) have been taken
from Ref. [31].

The energies of excited states 3E and 4A2 that appear in
Eq. (1) have been calculated using the delta-self-consistent-
field (	SCF) method [38], first applied to the NV center by
Gali et al. [39]. In order to calculate the energy of the 3E state,
the spin-minority electron in the a1 level is promoted to the
e level. The total energy of the 4A2 state was calculated by
setting the spin projection to ms = +3/2. The 	SCF method
typically performs very well when (i) the state is described by
a single Slater determinant, and (ii) the state has a different
spin and/or orbital symmetry from the ground state [38]. This
is indeed the case for 3E and 4A2 states with spin projections
ms = ±1 and ms = ±3/2, respectively.

B. The nature of electronic states and calculations of optical
matrix elements

The initial electronic state �i that enters in the calculation
of the matrix element �ri j in Eq. (3) represents the entire solid
with an embedded negatively charged defect. The final state
� j represents the solid with a neutral defect plus an excited
electron in the conduction band. The optical transition be-
tween �i and � j must overall be spin conserving.

In this formulation, the optical matrix element �ri j and
energy difference Ei j should be calculated for many-electron
states �i and � j . The calculation of the matrix elements for
multielectron wave functions is a computationally difficult
problem, and we will use approximations as described below.

1. Photoionization from the 3A2 state

Let us first assume that NV− is initially in the ms = 1
spin sublevel. As already discussed above, this state can be
described by a single Slater determinant |�i〉 = | 3A2; 1〉 =
|a1ā1exey〉 [Fig. 3(a)]. The final state of the entire system that
has the same spin is |� j〉 = |(2Ex/y; 1

2 ) ⊗ φc〉 = |a1ā1ex/yφc〉.
It is an antisymmetrized product of NV0 in the 2E state with
the spin projection ms = 1

2 , | 2Ex/y; 1
2 〉 = |a1ā1ex/y〉, and a

spin-up electron in the conduction band with the wave func-
tion φc. This state has well-defined spin quantum numbers
S = 1 and ms = 1.

Let Ô = ∑
i �ri be the many-electron dipole operator. To

simplify the calculation of matrix elements, we will assume
that all single-electron orbitals from which many-electron
wave functions are formed are the same in the initial and the
final states; the final state differs from the initial one by a sin-
gle occupied orbital, which corresponds to an electron in the e
state being excited to the conduction band. Such simplification
allows to adopt the Slater-Condon rule and reduce the matrix
element calculated for many-body wave functions to a matrix
element between the two Kohn-Sham states,

�ri j ≡ 〈
3A2; 1

∣∣Ô∣∣(2Ex/y; 1
2

) ⊗ φc
〉 = 〈ey/x|�r|φc〉. (7)

As the final state is an orbital doublet, we can calculate, for
example, only the transition to the Ex state and multiply the
final result by the degeneracy factor g = 2. The reasoning for
the ms = −1 sublevel is analogous with the only difference
being that the spin-down electron is excited to the conduction
band.
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For ms = 0, the final state is a combination of two spin
states of the 2E manifold,

|� j〉 = 1√
2

∣∣(2Ex/y; 1
2

) ⊗ φ̄c
〉 + 1√

2

∣∣(2Ex/y; − 1
2

) ⊗ φc
〉
.

Here 1/
√

2 are Clebsch-Gordan coefficients of spin wave
functions, producing the state with S = 1 and ms = 0. The
squares of Clebsch-Gordan coefficients determine the proba-
bility of finding NV0 in one of the ms = ±1/2 substates after
photoionization. The resulting optical matrix element is the
same as for ms = ±1 spin sublevels.

2. Photoionization from the 3E state

For photoionization from the excited state, consider
the ms = 1 spin sublevel with the wave function |�i〉 =
| 3Ex/y; 1〉 = |a1exeyēy/x〉. The state of the entire system im-
mediately after the ionization is:

|� j〉 =
√

3

2

∣∣(4A2; 3
2

) ⊗ φ̄c
〉 − 1

2

∣∣(4A2; 1
2

) ⊗ φc
〉
. (8)

This state has well-defined spin properties (total spin
S = 1 and spin projection ms = 1). In the equation
above, |(4A2; 3

2 ) ⊗ φ̄c〉 = |a1exeyφ̄c〉 and |(4A2; 1
2 ) ⊗ φc〉 =

1/
√

3(|ā1exeyφc〉 + |a1ēxeyφc〉 + |a1exēyφc〉) are antisym-
metrized products of wave functions describing NV0 in the
4A2 state (with ms = 3/2 or ms = 1/2) and an electron in the
conduction band (with ms = ±1/2). The matrix element for
photoionization can then be shown to be as follows:

ri j = 2√
3
〈ey/x|�r|φc〉.

Equation (8) implies that after the photoionization, the rela-
tive probabilities of finding NV0 in ms = 3/2 and 1/2 spin
sublevels of the 4A2 state are 3/4 and 1/4, respectively. Anal-
ogous reasoning as above holds for the photoionization from
the ms = −1 spin sublevel of the 3E state with the only differ-
ence that the final spin states are ms = −3/2 and ms = −1/2.

For the photoionization from the ms = 0 sublevel, the op-
tical matrix element is the same as for ms = ±1 states. In this
case, there is an equal probability to find NV0 in ms = ±1/2
spin sublevels of the 4A2 state.

Relative transition probabilities between spin sublevels of
3E and 4A2 manifolds are summarized in Fig. 5.

3. Photoionization from the 1E state

The two orbital components of the 1E state can be writ-
ten as | 1Ex〉 = 1/

√
2(|a1ā1exēx〉 − |a1ā1eyēy〉) and | 1Ey〉 =

1/
√

2(|a1ā1ēxey〉 − |a1ā1exēy〉) [41]. Immediately after the
photoionization the spin-singlet wave function of the entire
system is:

|� j〉 = 1√
2

∣∣(2Ex/y; 1
2

) ⊗ φ̄c
〉 − 1√

2

∣∣(2Ex/y; − 1
2

) ⊗ φc
〉
.

The optical matrix element for this transition can be shown
to be the same as for the transition from the 3A2 state, i.e.,
〈ex/y|�r|φc〉 and the degeneracy factor g = 2.

Due to the multideterminant nature of 1E , applying 	SCF
procedure to calculate its energy is not straightforward. From

FIG. 5. Spin physics of the photoionization from the 3E state.
Numbers near arrows show relative probabilities of the transition dur-
ing photoionization. The ms = +1 (−1) spin sublevel transitions into
either the ms = +3/2 (−3/2) or the ms = +1/2 (−1/2) sublevel of
the 4A2 manifold with different probabilities. The ms = 0 sublevel
transitions to the ms = ±1/2 sublevels with equal probabilities. Spin
sublevels are separated by zero-field splittings D(3E ) = 1.42 GHz
[1] and D(4A2) = 1.69 GHz [40].

the theoretical standpoint, there is no consensus regarding the
position of this state above the 3A2 ground state [1]. How-
ever, as discussed in Sec. II A 3, the energy difference of
[E (1E ) − E (3A2)] = 0.38 eV was obtained in Ref. [26]. The
main focus of the current paper is photoionization from the
triplet states, so in the case of photoionization from 1E , our
calculations will be more approximate. To make calculations
possible, we will assume that optical matrix elements are
identical to those of the photoionization from the 3A2 state. In
addition, we will use the same spectral function A(ε) as for the
ground state, ignoring the occurrence of the Jahn-Teller effect
in the 1E state. The resulting cross section is nearly identical
to the 3A2 state with the only difference being that the energies
appearing in Eqs. (3) and (4) differ for the two processes.

4. Calculation of optical matrix elements and transition energies

Applying the Slater-Condon rule enables us to evaluate the
transition dipole moment �ri j for Kohn-Sham states ψi and ψ j

rather than many-electron states �i and � j . Optical matrix el-
ements are calculated as �ri j = 〈ui|i �∇�k|u j〉, where ui and u j are
lattice-periodic parts of wave functions ψi and ψ j . Equation
(3) is often alternatively formulated in terms of momentum
matrix elements [27], defined as �pi j = im(ε/h̄)�ri j .

When replacing the many-electron formulation with the
formulation based on Kohn-Sham states, Ei j in Eq. (3) is the
difference between the Kohn-Sham eigenvalues of the defect
state and the perturbed bulk state. Since the smallest value
of Ei j does not necessarily correspond to photoionization
thresholds obtained from total energy calculations [IP(3A2) or
IP(3E )], we apply a rigid shift so that calculated cross sections
are consistent with thresholds. As discussed in Sec. III B 3,
the calculations for the 1E state are more approximate. In this
case, we use Kohn-Sham states of the 3A2 ground state, but the
rigid shift of energies corresponds to the estimated threshold
IP(1E ).

C. The choice of the charge state

When replacing many-electron wave functions � with
single-particle ones ψ , an important issue arises regarding
the charge state for calculating single-particle energies and
single-particle Kohn-Sham states.
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On the one hand, since a negatively charged defect is the
one that is being ionized, performing calculations for a defect
in the q = −1 charge state could seem natural. However,
whereas the defect wave functions are represented correctly
in this charge state, conduction-band wave functions are not.
Indeed, final state ψ j is a conduction-band state perturbed
by the neutral defect but not a negative one. As a result
of long-range Coulomb interactions, these perturbations are
much more significant for the negatively charged defect.

On the other hand, supercell calculations of the neutral
NV center adequately capture perturbations to the conduction
bands. Still, these calculations do not give a totally accurate
account of the initial defect state. The question is then: Which
of the two calculations is more accurate? We can expect
that, in comparison to delocalized bulk states, localized defect
states are less affected by the charge on the defect. Following
the methodology of Ref. [42], we estimated overlap integrals
between defect levels in the case of the neutral and the nega-
tively charged defect. Our result shows that more than 99% of
the wave-function character of the localized states is preserved
when the charge state changes. We conclude that performing
calculations in the neutral charge state is a much more accu-
rate approximation. This approximation will be employed in
this paper.

D. Brillouin-zone integration and supercell effects

In the supercell formulation, one obtains an appropriately
normalized cross section if one replaces the sum over j in
Eq. (3) with the sum over k points of the Brillouin zone of
the supercell via

∑
j → 1/N

∑
n,�k , where N is the number of

uniformly distributed k points and n runs over all conduction
bands states for a fixed �k. Matrix elements �ri j are calculated
between the defect state and the perturbed conduction-band
state (normalized in the supercell) for the same �k. In practice,
the sum is performed in the irreducible wedge of the Brillouin
zone.

To converge the cross-section σph(ε) for a given supercell,
a very dense k-point mesh is required. Increasing the mesh in
self-consistent calculations of supercells becomes computa-
tionally very expensive even at the PBE level. Charge density
converges much faster as the k-point mesh is increased.
Thus, we performed self-consistent calculations using the 6 ×
6 × 6 Monkhorst-Pack k-point mesh for the charge density.
Photoionization cross sections have been calculated by per-
forming non-self-consistent calculations using much denser
14 × 14 × 14 meshes. This way, one obtains photoionization
cross sections of a periodically repeated array of NV centers
(albeit correctly normalized per one absorber).

The artificial periodicity of the supercell approach gives
rise to two undesirable effects: (i) defect-defect interac-
tion and (ii) spurious perturbation of conduction-band states.
Aspect (i) affects defect wave functions. To check the conver-
gence of these wave functions as a function of the supercell
size, one can, for example, calculate the optical matrix ele-
ment �ri j [Eqs. (5) and (6)] for the transition between a1 and
e levels of the NV center. The comparison of 4 × 4 × 4 and
5 × 5 × 5 supercells shows that matrix elements calculated in
these two supercells differ by less than 3%.

FIG. 6. (a) Unfolded band structure of conduction-band states,
perturbed by the NV center, along the �–X path. The color indicates
a relative spectral weight (dark blue is zero); see Ref. [43] for more
details. (b) The band structure of bulk diamond folded to the first
Brillouin zone of the 4 × 4 × 4 supercell along the �-X path of the
supercell.

Effect (ii), however, is more subtle. Periodically repeated
NV centers form a superlattice, and one could expect the
formation of subbands and the opening of “minigaps” in the
same way it occurs in traditional semiconductor superlattices.
This is indeed what we observe. In Fig. 6(a), we show the
band structure of the 4 × 4 × 4 supercell unfolded [43] onto
the Brillouin zone of a primitive diamond cell. For illustration
purposes, we choose the band structure of a neutral NV in
the 4A2 state. In Fig. 6(a), one can identify discontinuities in
the band structure. To understand why these discontinuities
form at specific energies and k vectors, in Fig. 6(b) we show
the band structure of bulk diamond folded onto the Brillouin
zone of the 4 × 4 × 4 supercell. Such folding introduces de-
generacies at the band crossing points and Brillouin-zone
boundaries. When perturbations, such as the potential of
periodically repeated NV centers, are present, these degen-
eracies are removed, explaining the formation of minigaps in
Fig. 6(a). Apart from the density of states (DOS), we find that
the values of optical matrix element �ri j are also affected by
artificial periodicity. We observe jumps of r2

i j across the mini
gaps. These jumps can be explained using the textbook picture
of the behavior of electronic wave functions close to the band
gap in pristine solids via the formation of standing electronic
waves (see, e.g., Fig. 3 in Chap. 7 of Ref. [44]). The wave
function on one edge of the minigap has a vanishing weight
on the NV center, and �ri j of the transition to this state tends
to zero. The wave function on the other edge has maximum
weight on the NV center, and �ri j pertaining to that state attains
a finite value. We conclude that artificial periodicity affects
both the energies of conduction-band states and the values of
optical matrix elements. This is the origin of our observed
slow convergence of calculated cross sections as a function
of the supercell (not shown), even when the Brillouin-zone
integration is already converged.

In this paper, we use the following ad hoc solution to this
problem. (i) Each perturbed conduction-band state of the de-
fect supercell is unfolded to the Brillouin zone of the primitive
cell using the methodology of Ref. [43]. Each k point of the
Brillouin zone of the defect supercell unfolds onto several
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k points of the Brillouin zone of the primitive cell. (ii) We
take the k vector with the highest spectral weight and find
the bulk state with the same k, which is closest in energy
(typical differences <0.08 eV). This is the energy that we
use in Eq. (3). In this way, we get rid of the discontinuities
of the conduction-band state energies. The procedure also
yields the band index n. In the case of degeneracy, this k
point is assigned to multiple n’s. (iii) For a given perturbed
conduction-band state, the value of the optical matrix element
r2

i j is averaged in the Brillouin zone of the primitive cell.
The averaging is performed for each n separately, taking the
average of the points situated closer than 	rk = 0.57 nm−1 in
the reciprocal space. This smears the jumps of the optical ma-
trix elements across minigaps. The overall procedure results
in smooth values of σph(ε) as a function of ε. The effect of
such smoothing is illustrated in Sec. II of the Supplemental
Material [37].

E. Local-field effects

In the expressions for photoionization cross-sections (3),
(5), and (6), we have omitted so-called local-field effects
[27,28]. These effects appear due to the scattering of light on
the defect, which can result in the electric field on the defect
site being different from that in the bulk. Historically, these ef-
fects have been included phenomenologically by multiplying
the cross sections by an enhancement factor (Eeff/E0)2; Eeff is
the electric field on the defect site, whereas E0 is the electric
field in the bulk. Classical considerations lead to various mod-
els [27,28] from which the so-called Onsager model typically
performs best, even though it slightly overestimates the en-
hancement factor (see Table 10.3 in Ref. [28]). In the Onsager
model, the ratio between fields is given by

Eeff

E0
= 3ε∞

2ε∞ + 1
, (9)

where ε∞ is the dielectric constant of diamond. Using ε∞ =
5.7, we obtain (Eeff/E0) = 1.38.

An alternative method to estimate local-field effects is em-
pirical. Radiative emission rate for the 3E → 3A2 transition is
given via

�rad = 1

τrad
=

(Eeff

E0

)2 nDE3
ZPLr2

i j

3πε0c3h̄4 . (10)

Here ε0 is vacuum permittivity, and ri j is the transition dipole
moment for the transition 3E → 3A2. Comparing the value
calculated without local-field effects with the experimen-
tal result can provide an estimate for (Eeff/E0). Employing
the PBE functional, our calculated radiative lifetime without
local field effects is τrad = 12.2 ns (using the experimen-
tal ZPL energy), in perfect accord with the experimental
value τ = 12 ns [1]. This yields (Eeff/E0) ≈ 1.01. We con-
clude that the Onsager model overestimates the value of
(Eeff/E0), as for F -centers in alkali halides [28]. Note,
however, that the theoretical value (and, therefore, possi-
ble differences with experiment) are affected not only by
the inclusion/exclusion of local fields, but also by other
approximations that we employed (density functionals and
calculations of matrix elements using Kohn-Sham states).
Regardless, we estimate that in the case of NV centers

TABLE I. Thresholds for photoionization from the 3A2,
3E , and

1E states of NV− (in eV). The experimental result for IP(3A2) is
taken from Refs. [10,19]. The value of IP(1E ) has not been measured
directly but deduced as described in the text (shown in italic).

IP(3A2) IP(3E ) IP(1E )

Theory 2.67 1.15
Experiment 2.6a, 2.7b 2.2

aReference [10].
bReference [19].

(Eeff/E0) is in the range of 1–1.4, and very likely close to
1. In the remainder of this paper we will, therefore, set the
enhancement factor (Eeff/E0)2 to 1.

IV. RESULTS

A. Excitation energies and photoionization thresholds

We obtain the value IP(3A2) = 2.67 eV for the pho-
toionization threshold from the ground-state 3A2, close to
previously published ab initio results of 2.64 eV [24] and 2.74
[19]. All calculated thresholds are in very good agreement
with the experimental values of 2.6 eV [10] and 2.7 eV [19].
This establishes an error bar of about 0.1 eV for the agreement
of ab initio calculations with experimental data.

The ZPL energy of the intradefect transition 3A2 → 3E
is found to be E (3E ) − E (3A2) = 1.996 eV. This is again
in agreement with previous calculations [39] and the exper-
imental value of 1.945 eV, exhibiting an accuracy better than
0.1 eV. Finally, for the energy difference [E (4A2) − E (2E )],
we obtain the value of 0.48 eV. As discussed in Sec. II A,
the experimental energy difference is not available. Previ-
ous calculations based on the diagonalization of the Hubbard
Hamiltonian (albeit with a rather small basis) [45] yielded a
value of 0.68 eV for the vertical transition (i.e., keeping the
atoms fixed in the geometry of the 2E ) state. Including our
calculated relaxation energy of 0.12 eV, we obtain a corrected
value of 0.56 eV, in good agreement with our result. Eventu-
ally, using Eq. (1), we find the photoionization threshold from
the 3E state IP(3E ) = 1.15 eV. Calculated and experimental
thresholds for photoionization from 3A2,

3E , and 1E states are
summarized in Table I. For the determination of IP(1E ), see
Sec. II A 3.

B. Cross sections

Before we present the results for NV centers, let us first
briefly review some aspects regarding the existing knowledge
of photoionization cross sections of deep defects in solids
[27]. The overall shape of the function σ̃ph(ε) depends on
the specifics of the defect wave function and of the bulk
conduction-band structure. Over the years, many analytical
and semi-analytical models of photoionization of deep defects
have been developed [27]. Most of these models use the
formulation based on the momentum matrix element �pi j =
im(ε/h̄)�ri j , which we will follow in this section.

For the conduction band with a parabolic dispersion close
to the CBM, the photoionization threshold corresponds to the
excitation to the CBM with the electronic density of states
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FIG. 7. Photoionization cross sections from (a) the 3A2 and (b) the 3E state of NV−. Blue lines: cross sections σ̃ph(ε) without vibrational
broadening [Eq. (3)]; red lines: actual cross sections σph(ε) [Eq. (4)]; dashed lines show σ̃ph calculated using a constant momentum matrix
element in Eq. (3) and DOS corresponding to a parabolic band (see text). The insets show the spectral function of electron-phonon coupling
A(ε).

D(E ) ∼ (E − ECBM)1/2. In this situation, there are two limit
cases regarding the dependence of the momentum matrix ele-
ment �pi j on 	�k, where 	�k is the quasimomentum measured
with respect to the value at the CBM. One limit corresponds
to a system where the character of the defect wave function
is essentially the same as the character of bulk states near the
CBM. In this case, one obtains [27] �pi j ∼ 	�k, which yields
the cross section (without electron-phonon coupling) close to
the threshold σ̃ph(ε) ∼ (ε − εth )3/2. Here εth is the threshold
for photoionization, e.g., IP(3A2), IP(3E ), or IP(1E ) from
Table I. One could say that the transition from the defect state
to the bulk state at the CBM is dipole-forbidden. The widely
used Lucovsky model describes such a scenario [46]. Another
limit describes a dipole-allowed transition to the CBM. This
happens, for example, when the defect state has p character,
whereas the conduction-band states have s character or vice
versa. In this case �pi j is constant for small 	�k [27], and one
obtains σ̃ph(ε) ∼ (ε − εth )1/2 close to the absorption edge.

The photoionization cross section σ̃ph(ε) for the ground-
state 3A2 is shown in Fig. 7(a) (blue solid line). δ functions
in Eq. (3) have been replaced by Gaussians with width σ =
30 meV. We find that near the threshold σ̃ph(ε) ∼ (ε − εth )1/2,
indicating that the transition to the band edge is dipole allowed
and the momentum matrix element near the CBM attains a
constant value (see Sec. III of the Supplemental Material
[37]). σ̃ph(ε) pertaining to this constant value of the momen-
tum matrix element and DOS corresponding to a parabolic
band is also shown in Fig. 7(a) (dashed line). Parabolic
dispersion is characterized by effective electron masses m‖
and m⊥. In our calculations, we used our obtained theoretical
values m‖ = 1.66me and m⊥ = 0.32me that are in good agree-
ment with experimental ones [47]. At larger photon energies,
σ̃ph(ε) starts to deviate from the (ε − εth )1/2 behavior because
the DOS of conduction-band states departs from that of the
parabolic band and momentum matrix elements begin to differ
from the value at the threshold [37]. For example, visible
features at 3.35 eV for the photoionization from the 3A2

state and at 1.85 eV for the photoionization from the 3E
are van Hove singularities reflecting the transition to the
conduction-band states at the X point. Lastly and most
importantly, Fig. 7(a) shows the actual photoionization
cross-section σph(ε) (dark red line) that includes the effects of
vibrational broadening; the inset depicts the spectral function
of electron-phonon coupling A(h̄ω) [31,37]. Vibrational
broadening shifts the weight of the cross section to higher
energies, and σph(ε) no longer exhibits the square-root
behavior close to the absorption edge. In passing, we note that
the results regarding a constant value of pi j around the CBM
confirm the assumptions and the value of the momentum
matrix element used in our recent calculations on NV centers
in diamond nanowires [18].

Calculated cross sections for the photoionization from the
3E state are shown in Fig. 7(b). The behavior of σ̃ph(ε) as
a function of photon energy ε (blue line) can be explained
similar to the ground state. In short: (i) close to the threshold
σ̃ph(ε) ∼ (ε − εth )1/2 (dashed line); (ii) at larger photon ener-
gies σ̃ph(ε) starts to deviate from this functional form because
the electronic DOS departs from that of the parabolic band and
momentum matrix elements can no longer be assumed con-
stant; (iii) actual photoionization cross-section σph(ε), which
includes the vibrational broadening, exhibits a blueshift with
respect to σ̃ph(ε) (dark red line).

The main results of the current paper are presented in
Fig. 8. The photoionization cross section from the excited-
state 3E (solid blue line) is shown together with the calculated
cross sections for stimulation emission σst (ε) from the
excited-state 3E [Eq. (5), dark red line], absorption from the
ground-state 3A2 [Eq. (6), orange line], and photoionization
cross section from the 1E state (dashed blue line). Photoion-
ization cross section from the 3A2 state is not shown. The
result for σst (ε) is in good agreement with the one presented
by Nair et al. in Ref. [23]. In that paper, the value of the
cross section was deduced from the expression identical to
Eq. (5), but using the experimental value of the optical matrix
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FIG. 8. Calculated cross section as a function of photon energy. Solid blue: photoionization from the excited-state 3E , σph; dark red:
stimulated emission, σst ; orange: intradefect absorption, σintra; dashed blue: photoionization from the singlet state 1E . Photoionization
thresholds from 3E and 1E are indicated (estimated error bar 0.1 eV), together with the experimental values of the ZPL energy for NV−

and NV0.

element and the experimental spectral function A(h̄ω). The
optical matrix element was calculated from the experimental
value of the spontaneous emission rate as in Eq. (10).

V. DISCUSSION

In this Section we discuss the consequences of our findings
for the physics and technology of NV centers.

A. Ensembles vs single NV centers

Up to now, we have considered the optical processes in an
ensemble of randomly oriented NV centers. The analysis can
be extended to single NVs. This is important for the compari-
son with available experimental data as many experiments are
performed on single centers.

Stimulated emission and intradefect absorption correspond
to the transition 3A2 ↔ 3E ; in the single-electron picture this
is a a1 ↔ e transition. Group theory dictates that a1 ↔ e
electrical dipole transitions are polarized perpendicularly to
the defect axis, hereafter also called z axis. As a result, cross
sections for absorption and stimulated emission depend on the
orientation of NV centers with respect to the polarization of
laser radiation. As an example, consider [111] diamond and
an NV center along the (111) direction. It can be shown that
for such NV center σst (ε) and σintra (ε) are by a factor 3/2
larger than those given by Eqs. (5) and (6) and presented in
Fig. 8.

The situation is a bit more complex in the case of photoion-
ization. The CBM of diamond comprises six valleys along
the 〈100〉 family of directions in the reciprocal lattice. The
presence of the NV center lowers the point-group symmetry
from Td to C3v . Upon restriction to the C3v point group, the six
valleys form linear combinations that result in two a1 single-
electron states and a set of two e doublets. As in the case
of stimulated emission and intradefect absorption, excitation

of an electron from an e defect level to a conduction-band
state of a1 symmetry is polarized perpendicularly to the z axis.
However, excitation to a conduction-band state of e symme-
try can be polarized both perpendicularly to the z axis and
along the z axis. We conclude that transition dipole moments
pertaining to the photoionization from 3E , 3A2, and 1E states
can have all spatial directions. This is confirmed by our actual
calculations. We find that photoionization cross sections for
light polarized in the xy plane are about two times larger than
for light polarized along the z axis. As an example, let us
again consider [111] diamond and a single NV along the (111)
direction. In this case, it can be shown that the photoionization
cross-section σph(ε) is by a factor ∼6/5 larger than the value
for ensembles presented in Figs. 7 and 8.

The analysis above shows that different NV centers can
behave differently. The specific situation will depend on the
exact experimental realization and has to be considered sep-
arately. However, our data for ensembles, together with the
information provided in this section, can always be used to
obtain the relevant information about a specific single NV. A
detailed analysis of photoionization of single NV centers will
be published elsewhere.

B. Existing understanding of the photoionization of NV centers

DFT calculations of absorption cross sections from the
ground-state 3A2 have been previously reported in Ref. [19].
Our work differs in the following aspects: (i) We present
absolute values for σph(ε), whereas in Ref. [19] the cross
section has been determined in arbitrary units. (ii) The issues
regarding the Brillouin-zone integration and supercell size
convergence (see Sec. III D) had not been fully dealt with
in Ref. [19], which yielded spurious oscillations of the cross
section (Fig. 3 in Ref. [19]). (iii) The coupling to phonons was
included in our calculations via the spectral function A(h̄ω).
In contrast, this coupling was omitted in Ref. [19].
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The mechanism of the photoionization process from the
excited-state 3E has been first analyzed by Siyushev et al. [9].
These authors suggested the following two-step process: (i)
The electron is first excited to the conduction band, yielding
an intermediate electronic state; (ii) an Auger process takes
place in this intermediate state whereby an electron from
the conduction-band transitions to the a1 level, whereas an
electron from the e level is excited to the conduction band.
Let us discuss these two steps separately.

The intermediate state suggested in Ref. [9] is NV0 in
the 4A2 electronic state plus an electron in the conduction
band. This is evident from the electronic configuration shown
in the third panel of Fig. 4(a) in Ref. [9]. Thus, the state
right after photoionization is the same as the one identified
in our paper, even though the nature of the state was not
recognized in Ref. [9]. The following question is then: What
happens next? Siyushev et al. suggested that the Auger pro-
cess takes place, whereby NV0 transitions to the ground-state
2E with the calculated rate ∼1 ns−1. If we take an electron
diffusion constant in diamond D ≈ 50 cm2 s−1 [48], we can
estimate that the emitted electron travels a distance of about
2000 nm within the first nanosecond. At variance, calculations
of Ref. [9] have been performed assuming that the electron
remains a few nanometers within the defect during the capture
process. Effectively, calculations assumed exceedingly large
effective electron densities ∼3 × 1020 cm−3 (one electron
per computational supercell). Thus, we conclude: (i) Auger
capture rates have been significantly overestimated in these
calculations. (ii) Even these overestimated rates indicate that
electrons leave the defect site during the computed capture
time. Although we do not exclude the Auger process at all,
our analysis indicates that this process is highly unlikely.
Instead, as we propose in the current paper, the photoexcited
electron leaves the defect center, and the NV center remains
in the metastable 4A2 electronic state of NV0. Analysis of
subsequent processes taking place in the neutral charge state
are beyond the scope of this paper.

C. 4A2 as a state of NV0 directly after photoionization

The fact that after the photoionization from the 3E state NV
centers transition into the metastable 4A2 state of NV0 has im-
portant consequences for charge dynamics of NV centers. As
mentioned above, in Ref. [40] Felton et al. observed a strong
ESR a signal attributed to the 4A2 state. The existence of the
signal implies spin polarization in the 4A2 manifold that has
hitherto been unexplained. Here we propose an explanation
for the observed spin polarization.

In Sec. III B 2 we discussed the spin physics of the
photoionization from the 3E state. Figure 5 summarizes tran-
sitions from different sublevels of the 3E manifold of NV− to
spin sublevels of the 4A2 manifold of NV0. Numbers indicate
relative transition probabilities from a given state. In particu-
lar, if the defect is initially in the ms = +1 (−1) spin sublevel,
the likelihood of the transition to the ms = +3/2 (−3/2) sub-
level is 3/4, whereas that to the ms = +1/2 (−1/2) sublevel
is 1/4. If the initial spin state is ms = 0, NV0 can be found
in either of the ms = ±1/2 spin states of the 4A2 manifold
with equal probability after the ionization. Importantly, if
NV− is initially spin unpolarized (occupation of different spin

sublevels is the same), then there is no spin polarization of the
4A2 state after photoionization.

In Ref. [40], the electron spin resonance (ESR) signal of
the 4A2 state was only observed for laser wavelengths above
the ZPL of NV0 center 2.156 eV. For such illumination, the
NV center is constantly switching between the negative and
the neutral state [8,10]. When the NV center is in the negative
charge state, intrinsic processes within the electronic states
of NV− lead to a preferential population of the ms = 0 spin
sublevel in the 3A2 and the 3E spin triplets [1]. Thus, photoion-
ization mostly occurs from the ms = 0 sublevel of the 3E state.
As per transition probabilities shown in Fig. 5, ms = ±1/2
spin sublevels of 4A2 are preferentially occupied after the
photoionization. Zero-field splitting D(4A2) = 1.69 GHz [40]
separates ms = ±1/2 and ms = ±3/2 spin sublevels and thus
the population of ms = ±1/2 sublevels gives rise to a strong
ESR signal. We take the experimental results of Ref. [40] as
an indirect confirmation of our proposal regarding the involve-
ment of the 4A2 state in the photoionization from the 3E state.
Simply put, the spin polarization of the 4A2 state of NV0 found
in Ref. [40] directly stems from the spin polarization of NV−.

D. Photodynamics of NV centers: comparison with selected
experiments

Turning now to our calculated cross sections and their rel-
evance to the photophysics of NV centers, we emphasize that
the body of experimental work on charge-state dynamics at
NV centers is large. To consistently interpret all of that work,
the knowledge of photoionization of NV− is often insufficient,
and the understanding of similar processes for NV0 is needed.
This is especially true for steady-state experiments, where,
depending on the wavelength of laser(s), the NV center can
constantly switch between the two charge states. As the study
of NV0 is beyond the scope of the current paper, we will
focus only on a few selected experiments that we are now
able to explain using our data. It is important to stress at
the outset that the quality of samples in these studies is cru-
cial. We discuss only experiments performed on high-quality
bulk samples and will not mention numerous experiments
performed on nanodiamonds. The existence of surfaces and
possibly various surface defects make the charge-state dynam-
ics of NV centers in nanodiamonds highly complex and not
always reproducible.

Our calculations can be most directly compared to the ex-
periments by Hacquebard and Childress [49]. In that work, the
authors used green (531-nm) and infrared (766-nm) picosec-
ond laser pulses to monitor charge-state dynamics of single
NV centers in [111] diamond. By modeling their experimental
data, the authors could extract relative rates of different transi-
tions. In particular, σst/σph was found to be close to 13 for the
766-nm (1.618-eV) excitation. Unfortunately, the orientation
of the NV center was not specified in that study. Assuming that
the NV center was along the (111) direction and considering
the prefactors for NV centers along this direction (Sec. V A),
we obtain from Fig. 8 a value σst/σph ≈ 10 for ε = 1.618 eV.
We find that the agreement between our calculations and the
results of Hacquebard and Childress is rather good.

Another important set of experiments that we can now ex-
plain is spin-to-charge conversion upon dual-beam excitation
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FIG. 9. The ratio of the photoionization cross section and the
cross section for stimulated emission σph/σst as a function of photon
energy.

at cryogenic temperatures [50,51]. One narrow laser is used
in these protocols to resonantly excite NV− in a preselected
spin state, e.g., ms = 0. Another laser pulse is then used to
photoionize the defect from the 3E state. In order not to dis-
turb other spin states, the photoionization is performed with
sub-ZPL illumination. In the work of Irber et al., efficient
photoionization was obtained using a visible laser emitting at
642 nm (1.93 eV) [50]. At variance, Zhang et al. used a NIR
laser emitting at 1064 nm (1.17 eV) [51]; the overall scheme
reached high spin readout fidelities, implying effective pho-
toionization. These results naturally prompt the question: Are
these two energies, 1.17 eV and 1.93 eV, special?

We can now answer this question using the results of our
calculations. As the angle between single NV centers and the
polarization of the ionizing pulse was not known exactly, we
use our calculated data for ensembles for semiquantitative
analysis. In Fig. 9, we plot the ratio of the photoionization
cross section and that for stimulated emission as a function
of photon energy. One can identify two regions where pho-
toionization of NV− with sub-ZPL photons is most efficient
(σph/σst > 1 ): (i) just above the threshold energy of 1.15 eV
but below ∼1.3 eV; (ii) just below the ZPL of 1.945 eV. These
are exactly the two energy ranges for which the photoioniza-
tion was successful in the experiments of Refs. [50,51]. We
note, however, that the exact value of σph/σst in these two
energy windows depends quite sensitively on possible errors

in our calculated value of IP(3E ). Despite this, we conclude
that our calculations provide a consistent explanation of the
results of Refs. [50,51]. Our results point to photon energies
where spin-to-charge conversion with sub-ZPL illumination is
most efficient.

VI. CONCLUSIONS

This paper presented ab initio calculations of photoioniza-
tion thresholds and cross-sections σph(ε) for the negatively
charged nitrogen-vacancy center in diamond. From the point
of view of computational materials science, our paper in-
troduced a methodology to calculate photoionization cross
sections. We employed an integration on a dense k-point
mesh together with band unfolding to obtain smooth func-
tions σph(ε) over the entire energy range. The methodology
is directly applicable to other point defects, including quan-
tum defects [52]. From the point of view of NV physics, we
showed that right after the photoionization from the 3E state,
the NV− transitions into the 4A2 state of NV0. This explains
spin polarization observed in electron spin resonance experi-
ments of the 4A2 state. We determine that the photoionization
threshold from the 3E state is 1.15 eV. Calculated cross sec-
tions helped us interpret recent experiments on spin-to-charge
conversion based on dual-beam excitation [50,51]. Our paper
provides important knowledge about charge-state dynamics of
NV centers that has hitherto been missing.
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