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We use the probability of error as a measure of distinguishability between two
pure and two mixed symmetric coherent states in the context of continuous variable
quantum cryptography. We show that the two mixed symmetric coherent states (in
which the various components have the same real part) never give an eavesdropper
more information than two pure coherent states.

1. INTRODUCTION

The security of coherent state continuous variable quantum key distribution (CV-
QKD) [1,2] is fundamentally based on the inability of an eavesdropper to perfectly dis-
tinguish between non-orthogonal quantum states [3]. In this paper, we look at how much
information a potential eavesdropper can gain when trying to distinguish between two
pure coherent states as opposed to distinguishing between two mixed coherent states.
This is of particular interest in CV-QKD protocols, such as post-selection {2]), where it
is important to determine if an eavesdropper obtained more information in the case of
distinguishing between pure coherent states or distinguishing between two mixed states.

2. PROBABILITY OF ERROR

In our analysis, we will use the probability of error (PE) measure to distinguish be-
tween quantum states. We point out that one could potentially consider other distin-
guishability measures such as the Kolmogorov distance, the Bhattacharyya coefficient
and the Shannon distinguishability (for a review of these measures see [4]). However, as
we shall see the probability of error measure has a number of useful properties and can
be directly calculated for the quantum states we consider in our analysis.

We consider the distinguishability between two general quantum states that are de-
scribed by the two density matrices go and p;. It was originally shown by Helstrom [5] that
the probability of error between these two density matrices is minimized by performing
an optimal positive operator-valued measure (POVM) {3]. In this case, the probability of
error for the distinguishing between two general quantum states can be expressed as [4]
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where PE(pg, p1) € [0,1/2] and A; are the eigenvalues of the matrix jo — p1. We note that
when the two states are indistinguishable the probability of error is PE = 1/2. On the
other hand, in the case when the two states are completely distinguishable the probability
of error is PE = 0.
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Figure 1: (a) Phase space representation of two pure coherent states and (b) two mixed
coherent states. (c) The difference in information rates between the two pure states
and two mixed states in terms of the amplitude and phase quadratures, where I i, =

I(me pPl) - I(pmm pm1)~

3. DISTINGUISHING PURE AND MIXED COHERENT STATES

We now look at distinguishing between two coherent states using the previously defined
probability of error. A coherent state is defined as |a) = DJ0) where D = exp(aal — 0*a)
is the displacement operator. It is also a minimum uncertainty state and is an eigenstate
of the annihilation operator a, 1.e. ala) = ala) [6], where o is the amplitude of the
electromagnetic wave. Any two coherent states |a) and |5) are always non-orthogonal
and only approach orthogonality (i.e. {&|8) — 0) when |a — (| > 1 where the magnitude
is [{a|B){? = exp(—|a — B}?). In the following analysis we will define a coherent state
displace in the amplitude and phase quadratures [6], by an amount x and p respectively,
as |a) = |z + ip). Consequently, we can write the density operators of two pure coherent
states ppo and pp1 that we consider here as

Ppo = |2 +ip)(x + ip| ()
pp1 = | — z +ip){—z + ip|
In our analysis we also consider two mixed coherent states, i.e. an equally weighted
mixture of coherent states mirrored in the phase quadrature and with both mixtures

having the same amplitude component. The density operators corresponding to these
two mixed states, g0 and p,1, are defined as

o = 1o+ i) (2 + 19l + |1 = ip) s — i) )
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Pm1 = 51 ~x +ip){~r +1ip| + | — x — ip){—x — ip|)

Figure (la) and Fig. (1b) give a two-dimensional phase space illustration of the two
pure coherent states and the two mixed coherent states defined by Eq. (2) and Eq. (3)
respectively.

According to Eq. (1) we need to determine the eigenvalues of A= po— p1 for both the
two pure states and two mixed states. To do this we write A in its matrix representation
which can be expanded in terms of the orthogonal Fock or number states |n) defined
as [6] |n) = (&")"/V/n!|0) where a' is the creation operator of a harmonic oscillator and
n € [0,00). For example, the coherent state |x + ip) written in terms of this Fock basis
is |z + ip) = exp[—|x + ip|?/2] ©(x + ip)"/v/nl|n). Once A is written in matrix form we
can then numerically determine its eigenvalues. In this Fock state expansion the inner
product of an arbitrary coherent state with a Fock state is given by

o]0 i) = EEE Lo+ 7)) (®
(x + ipim) = (—ji\/:%%p—)riexp(*%(xz +p%) (5)

where |n) and |m) are Fock states. Calculating the general matrix coefficients for the case
of the two pure coherent states we obtain

ol = 2P iy — )~ (—at P -] (O

Similarly for the two mixed state case we find

(WA misea = "B EZ T (@t i) = i)™ + (@ = 0o+ i)
~ (a4 ip) (=2 —ip)" — (=2 — i)z + ip)"] (™)

Numerically we calculate the eigenvalues of Eq. (6) and Eq. (7) up to certain values of n
and m. Then according to Eq. (1) this will give us the probability of error in distinguishing
between two quantum states. Now having numerically calculated PE we would like to
interpret this in terms of the information gained from using the distinguishing measure.

4. SHANNON INFORMATION

In the context of CV-QKD it is important to determine how much Shannon information
an eavesdropper can obtain by distinguishing between two (pure or mixed) quantum
states. The information obtained by distinguishing between two states can be calculated
using the Shannon information formula for a binary symmetric channel [7] I = 1 +
PElogs PE+(1—PE)logs(1— PE). Figure (1c) shows the difference between the Shannon
information obtained by distinguishing between two coherent states I(pp,, pp,) compared
with distinguishing between two mixed states I(pm,, pm,). This information difference is
defined as Iyain = I(Ppos Pp1) — I (Pmg+ Py ). Figure (1c) plots Iy, in terms of the amplitude
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and phase quadrature displacements of the pure and mixed states defined in Eq. (3) and
Eq. (4), respectively. Here we have expanded up to 50 Fock states, i.e. n =m = 50.

There are two main features of this plot. Firstly, we notice that, given our distin-
guishability measure and initial configuration of coherent states in phase space, two mixed
states never give more information than two pure states, i.e. I(Pmo; fm1) < I(fp0, fp1)-
Secondly, there is a flat region where the information gain is zero, i.e. the information
from distinguishing between two mixed states is the same as that of two pure states. This
means as we move the states further apart in the amplitude quadrature (while keeping
the phase quadrature fixed), the probability of error and information gain both tend to
zero. The same result occurs when the amplitude quadrature is fixed while varying the
phase quadrature. In this case the states become more mixed when separated leading to
a higher entropy. This leads to the two mixed states “behaving” like two pure states, and
again, resulting in an information gain of zero.

5. CONCLUSION

In conclusion, we have shown that a CV-QKD protocol where an eavesdropper needs
to distinguish between two pure coherent states, rather than two mixed coherent states
(where the various mixtures have the same amplitude component), the eavesdropper will
never get more information from the two mixed coherent states. We showed this using the
probability of error as the distinguishability measure along with the Shannon information
formula.
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We used a continuous-variable measurement scheme to experimentally probe the
second-order temporal coherence g(? (1) of quantum states of light at sidebands to
the carrier field. By preparing an appropriately displaced squeezed state, we were
able to observe strong photon anti-bunching down to ¢ (0) = 0.11 % 0.18.

1. INTRODUCTION

For more than fifty years, the Hanbury-Brown Twiss (HBT) interferometer has been
used to investigate the second-order coherence of light [1], and to observe photon anti-
bunching of nonclassical light sources [2-4]. We apply a technique for measuring the
second-order coherence ¢ of optical fields, that complements previous studies and pro-
vides a link between discrete-variable (DV) and continuous-variable (CV) quantum optics.
Our scheme is based on the HBT interferometer, but uses homodyne detection in each
arm, to make CV measurements of the quadrature amplitudes over a range of sideband
frequencies. At no point is it necessary to make time-resolved detections of single-photons.
The ¢g® function is constructed from the set of time-averaged correlations between the
amplitude/phase quadratures. Homodyne detection offers high bandwidth, and excellent
immunity to extraneous optical modes. We used the scheme to measure the temporal
second-order coherence g® (r) of displaced squeezed states, which can exhibit behavior
ranging from photon anti-bunching to super-bunching, provided that the state is suffi-
ciently pure, and the squeezing weak. Using our modified HBT interferometer, and ex-
ploiting the high stability and low optical loss of our experimental setup, we could prepare
and measure displaced squeezed states that clearly demonstrated photon anti-bunching,.

Preparation of a HBT interferometer with
displaced squeezad state homodyne dstection {Xe}
OPA 98:2 » W m&‘ 50.50 .

i 50:50
A2 PBS H |
Variable ;
Attenuation b
sJso:50 WP«é
E R =

Figure 1: Schematic of the experimental setup.
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2. THEORY

The second-order coherence of a single optical mode @ as measured after the beam-

splitter of a HBT inteferometer is
g(z)(f) _ (5T(t + T)E(t +7)ét(t)é(t))
(01(£)b(t)) (¢! (t)e(t))

where b= (a+9)/v2 and é= (&—?)/+/2 with © a vacuum mode. Anti-bunching occurs
when g™ (0)<¢®(7#0). The opposite inequality holds true for photon bunching.

; (1)

squeezing parameter {1}

-0.6 -0.4 -0.2 [0} 0.2 0.4 0.6
displacement [o]

Figure 2: The ¢®(0) parameter space for a displaced squeezed state with squeezing r
and displacement «. Regions exhibiting photon anti-bunching are marked progressively
darker, with contours giving the precise values.

In the CV regime, we use a pair of homodyne detectors to measure correlations between
the field quadratures of amplitude X = a + a', or phase X, = —i(a — a'). Upon re-
expressing Eq. (1) in terms of these we find

S0y = St + TPRI0) 2 5 (K0 + -
(X5 (1)?) = 2)(Z(Xi(t)?) - 2)
with 4,7 = +,— and k¥ = b,c. Each correlation or variance term can be measured inde-
pendently by recording the output of the homodyne detectors, and a value for ¢ (7) con-
structed accordingly. Applying the coherence function Eq. (1) to a weakly squeezed and
weakly displaced vacuum state, we transform the operator @ with D' (a)S! (r)&S'(r)f)(a) =
o+acoshr—al sinh r, where D and S are the unitary displacement and squeezing oper-
ators respectively. In an experiment, one selects a particular frequency mode via a filter
function, which transforms the operators according to a(7)=N 3 20, a., f(w)ef™dw where
f(w) is the filter and N=f*°_ f(w)?dw for normalization. Choosing f(jw| < Q)=1 and zero

elsewhere gives the commutation relations [a(0),a!(7)] = [a(7), a'(0)] = sinc(Q27), which,
when applied to Eq. (1), becomes
2
@ (r)= ———-1——2 {<a2— 1sinc(QT)sinh(2r))
(sinhz(r)+a2) 2
+ 2(1 + sinc(Q27)) a® sinh?(r) + (1 + sinc?(Q7)) sinh"(r)} . (3)
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This function for 7=0 is plotted in Fig. 2 where bunching or anti-bunching statistics can be
found with the correct choice of » and a. The stronger cases occur for states approaching
the vacuum state o =7 =0 for which ¢!®(0) is undefined. Eq. (3) is specific to pure states,
but can be generalized for any Gaussian state having variances V], V,, and mean o, as
measured at the input to the HBT interferometer (see Fig. 1). Although not shown here,
this equation was used for making theoretical predictions that were based on the set of

measurements {V,1; Vio; ain }-

3. EXPERIMENT

A schematic is shown in Fig. 1 with: OPA optical parametric amplifier, A/2 half-
wave plate, PBS polarizing beam-splitter, x:y beamsplitter with transmission x, H1/H2
homodyne detectors, LO local oscillator, AM amplitude modulator, w function generator,
WNG white noise generator, @ mixer, LP low pass filter.

Essentially, a displaced squeezed state was prepared from the ouput of a controlled
OPA (A=1064 nm) and weakly interfered with a coherent state. This was sent to the
modified HBT interferometer, consisting of two homodyne detectors that measured the
correlations between the quadratures amplitudes, which were used to construct ‘¥ (7).

4. RESULTS AND DISCUSSION

T 1.5F fiiy
3.0 o (i) ~ (i)
i 5’1.0F strp gt e e o whia S R P
25 3 B
.
s b ’
& 2.0+ : .
=) i
1.5¢ i
f
1.0 | et e st R
L. L i L L 1 L ] 0.0 1
5 4 3 2 1 0 1 2 3 4 5 -5 -4 -3 -2 -1 1] 1 2 3 4 5
time delay T time delay T

Figure 3: Experimental measurement of ¢ (7) with normalized time delay 7 in units of
bandwidth (7/Q =8.3 us). (i) displaced squeezed state, (ii) coherent state, (iii) biased
thermal state, curves are theoretical predictions.

Photon anti-bunching statistics from a displaced squeezed state were confirmed by
the experimental results. Fig. 3(i) shows how the measured value of ¢g‘¥(0) varied as a
function of time delay 7. A squeezed state was prepared and measured to have {V;}=
0.902(1); V;; = 1.137(1)} which was then displaced by a;, = 0.257(1). This state yielded
gP(0) = 0.44(22) for zero time delay. As 7 was increased, ¢'¥(7) approached unity;
thereby fulfilling the requirement for photon anti-bunching ¢ (0) <g¢® (7).

Shown in Fig. 4(i), displaced squeezed states present their most interesting behavior
when g™ (0) is plotted along a range of displacements. Super-bunching statistics were
measured (see inset) from the prepared state {V,[=0.901(3); V,;=1.136(1); 2;,=0.001(2)}
which produced g (0)=28(10). Increasing «, still further, the state found a minimum
value corresponding to anti-bunching ¢(®(0) = 0.41(12) before approaching one.

Aiming to observe stronger anti-bunching, we prepared a squeezed state having higher
purity {Vi Vi, = 0.890(2) x 1.129(2) = 1.005(3)}. The g‘¥(0) of this state was measured
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Figure 4: Experimental measurement of g (0) as a function of displacement . (i)
displaced squeezed state, (ii) weak displaced squeezed state, (iii) coherent state, (iv)
biased thermal state, curves are theoretical predictions.

for a range of displacements; Fig. 4(ii). The minimum value occured at s, = 0.252(2)
which yielded g (0)=0.11(18).

We characterized our HBT interferometer with two test states. A coherent state should
produce g'®(7) =1 independent of a;,, which was confirmed for 7=0 in the measurement
Fig. 4(iii), and also for variable 7 in Fig. 3(ii). We prepared a biased thermal-state
{Vif =14.60(2); Vig =1.025(8); aiin = 0.258(1)} and measured ¢‘®(0) in Fig. 4(iv). This
matched the prediction of ¢®(0)~3 for small displacments (ai,~1), as did the study for
variable 7 in Fig.3(iii). The results from both test state measurements agreed with the
theoretical predictions, and validated our HBT interferometer.
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The properties of Electromagnetically Induced Transparency (EIT) as a mecha-
nism for storing continuous variable information are investigated. Quantum infor-
mation benchmarks analogous to other quantum information protocols are defined
and used to distinguish between quantum and classical memories. We develop an
analytical and numerical model of information storage using EIT. In our model we
consider the effects of ground state decoherence and the associated atomic quantum
noise to identify the experimental parameters required to outperform any classi-
cal memory. We also approach the problem experimentally by demonstrating the
slowing of modulation sidebands encoded on an optical beam. We demonstrate a
reduction of the group velocity of ¢/30000 of the amplitude and phase quadratures
of a continuous wave optical beam using EIT in a thermal rubidium vapor cell and
measure the conditional variance of this system.

1. INTRODUCTION

One of the milestones towards quantum computation is a device that allows the storage
of quantum information. Following theoretical proposals {1], electromagnetically induced
transparency has become the subject of much interest for controlled atomic storage of
quantum states of light. Two optical fields, a weak probe and a strong control beam,
driving two transitions of a Lambda structure in atoms, set up a extremely narrow trans-
parency window. Associated with this sharp feature is a large decrease of the group
velocity of the probe light via steep dispersion. By switching off the control field when
the pulse is compressed within the medium, information encoded on the probe remains
mapped onto the atomic ground states coherence and can be retrieved by switching the
control field back on. Our work aims at quantifying the capabilities of such a scheme for
storing continuous variable information.

2. BENCHMARKS

The storage of optical information will be investigated from a quantum informatic
perspective. Signal-transfer coefficients T', and conditional variances V.., have been used
in the past as a state independent measure to analyse the effectiveness of teleportation
experiments {2,3]. It was shown in Ref . [2] that the quantum regime can be reached with
the use of entanglement when 7' > 1 and V' < 1 simultaneously. We propose to use these
quantities to analyze the effectiveness of EIT as a quantum memory.
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Figure 1: (a) (1) General schematic for characterizing an optical memory. A pair of EPR
entangled beams are encoded with amplitude and phase quadrature information. One
of these beams is stored and readout from the optical memory whilst the other is being
propagated in free space. A joint measurement is then used to measure the quantum
correlations between the two beams. (2) A classical teleporter scheme used as an optical
memory. (3) Quantum memory using EIT.(b) The TV diagram.

Fig. 1 (a) shows the schematic of our quantum memory benchmark. The efficiency
of our EIT quantum memory is compared to the performance of the well known classical
teleporter set-up, when used as a quantum memory [2,4]. The conditional variances and
signal transfer coefficients are defined respectively as

<X1§Xoiu >|2 ,R'oiu
Vi = Voo — L*-Vi—t and T* = R;tt (1)

where Rfut /in 18 the signal-to-noise ratio of the output/input field. The performances of
the system on both conjugate observables is evaluated using V and T defined respectively
by

V=yyViV;and T=TV+T" (2)

Ccv " CV

Fig. 1(b) shows the plot of a TV-diagram. A classical memory cannot overcome the
T > 1orV < 1 limits. By tuning the feedfoward gain, g, a classical memory will in
fact perform at best at the “classical limit” curve. With quantum resources such as
entanglement or with the use of a quantum memory both 7" > 1 and V < 1 limits can
be overcome, and the protocol can perform in region (C), corresponding to the quantum
regime.

When a quantum memory system does not generate excess noise, its performance
is described by the linear loss limit line. The evolution of 7 and V as a function of
the linear loss and possible excess noise introduced by the memory is also plotted. The
linear loss line and the dotted lines (1) to (3) describe the TV performance with varying
transmittivities where each of the lines differs to the previous by one quantum of excess
noise.
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3. MODELING OF QUANTUM INFORMATION STORAGE WITH EIT

We perform numerical simulations to determine whether EIT can store continuous
variable information better than the quantum limit. The atomic structure is approximated
by a 3-level Lambda system, where the two ground states are degenerate.

We consider the simultaneous storage of both quadratures of the probe field when
amplitude and phase modulations are encoded within the EIT bandwidth and evaluate
the amount of loss and excess noise on the output field using stochastic simulations in the
positive-P representation [5] of the field. The probe beam is treated as a general quantized
field with longitudinal spatial dependence z, and the coupling beam as a classical field.
Decoherence terms are also introduced to account for elastic and non-elastic collisions.

Signal transfer Coefficient

Decoherence rate {KHz)

Figure 2: (a) Stochastic simulations showing the storage of the amplitude quadrature
of a modulated pulse. (b) Total signal transfer coefficient T as a function of the deco-
herence rate for storage times 7 = 1,0.1,0.01,0.001 ms in the linear loss regime. For
7=1,0.1,0.01,0.001 ms the quantum memory requires v5<0.33,0.5,0.7, 1.1 kHz respec-
tively. We used numbers from the 87Rb line.

Fig. 2 (a) shows the results of this simulation showing the propagation of the amplitude
quadrature of the modulated pulse through the cell. The calculation of the variance of
the output field reveals that only 25 % of the signal is absorbed with small amounts of
excess noise introduced in the storage process.

A simple analytical treatment of light storage using EIT shows a good agreement with
this model. When the control field is turned off and on abruptly, an exact analytical
expression of the losses in the medium in the presence of elastic collisions can be found.
This allows to graph the evolution of the signal transfer coefficient T as a function of
the decoherence rate (Fig. 2 (b)). Under small decoherence values, our result shows that
EIT can be used to store continuous variable information better than the quantum limit
defined by T = 1.
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4. CONDITIONAL VARIANCE MEASURE OF EIT AS A DELAY LINE

The noise performance of EIT as a quantum delay line for continuous variables is
experimentally analyzed [6]. A delay of ¢/30000 was measured for both quadratures of
the field. The conditional variance between the input and output beams is then evaluated
as described in Fig. (3) (a). The subtracted signal between the input and output is
minimized with variable gain G(w) and time delay 7(w). The results are shown Fig. 3(b).
The VE(w) found using a beamsplitter to simulate the passive loss of the EIT system
are the datasets labelled (ii). EIT data (i) is well above the passive loss benchmark (ii),
showing that excess noise is added to the delayed probe beam. For certain frequencies
however, correlations are preserved better than any classical delay line with a conditional
variance dropping below 1. The no-cloning limit was however not overcome due to the
excess noise at low frequencies, where the linear losses are smaller.

E Rb cell b) | ©
(@) A4 L (b)

Spectrum
analyser

skl

100 200 300 400 100 200 300 400

Sideband frequency (kHz)

Figure 3: (a) Schematic of the experiment used to measure the conditional variance CV.
(b) CV measurements for the two quadratures. (A) Amplitude quadrature; (B) phase
quadrature. The data point groups represent the (i) EIT CV and (ii) beam-splitter
benchmark CV. The output homodyne locking error is responsible for the error bars.
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