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ABSTRACT

Any asymptotic mean stationary mobility model generates, at the
network layer, a route process that satisfies the Asymptotic Equipar-
tition Partition Theorem of Information Theory. This permits an
information theoretic lower bound for network layer control infor-
mation.

By recasting the mobility problem as a Dynamical System, we
provide a unique and rigorous examination of mobility models and
routing protocols. In particular, new results on stationary and er-
godic properties of common mobility models – via two useful gen-
eralizations – are provided. The important concept ‘perfect simu-
lation’ for reliable, and repeatable, results is formalized. A fixed
to variable length encoding lemma – of independent interest – for
asymptotically mean stationary sources is developed. Finally, a
lower bound on network layer control information is presented.

1. INTRODUCTION

It is well known that decode-and-forward communication strategies
for wireless networks are, in general, not scalable. This result was
originally provided by Gupta et al. in [1]. Recent works [2–6] gen-
eralize [1] by allowing more complex protocol models, however,
each work assumes the network is physically stationary. Gross-
glauser et al. in [7, 8] showed that under certain circumstances the
limits of [1] can be increased by exploiting node movement. Ja-
far [9] demonstrates that node movement is not always beneficial to
network throughput.

We contend that mobile wireless network size – in addition to
being constrained by throughput e.g. [1] – is also limited by network
layer control information. The history of protocol information at the
network layer is short [10–13]. We present a definition of network
layer control information that generalizes these works to include a
wide class of probabilistic mobility models and deterministic rout-
ing protocols. Protocol control information was originally defined
by Gallager in [14] at the Medium Access Control (MAC) Layer.

Section 2 presents the dynamical systemmodel for probabilistic
node movement. This model – the subject of Ergodic Theory – is
appropriate for any probabilistic, or deterministic, dynamical sys-
tem. Asymptotic mean stationary (AMS), stationary and ergodic
mobility models are defined. The AMS condition for a General-
ized Random Waypoint Mobility Model is proven and the Random
Waypoint Mobility Model is shown to be AMS and variable-length
ergodic. In Section 3, the concept of perfect simulation is shown to
produce a stationary system from an AMS mobility model. Section
4 develops a model for deterministic protocols and demonstrates
how AMS mobility models induce AMS ‘routing process’. Our
main result – a lower bound on network layer control information
– is then proven using the AMS properties of the routing process.
In Section 5 we conclude the paper. All proofs are banished to the
appendix.
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Government’s Backing Australia’s Ability initiative, in part through the Aus-
tralian Research Council

2. NODE MOVEMENT: DYNAMICAL SYSTEMMODEL
Consider a finite collection of nodesV = {v1, . . . ,v|V |}, where each
node is located within a discrete finite state-space S . Assume S is
a collection of points from 2, so the Euclidean distance between
any two points is defined. Let si(t) !

(
ji(t),ki(t)

)
denote the lo-

cation of node vi in S at time t and define the node position vec-
tor ωt !

(
s1(t), . . . ,s|V |(t)

)
. For the node position vector, define

the node position space Ω ! S |V | = S × · · ·×S . As ωt evolves in
time, it drives physical and network layer change. Let nodes move
‘instantaneously’ at times n = 0,1, . . . and define the node position
vector space ΩN !

{
ωN−10 : ωn ∈ Ω, n = 0, . . . ,N− 1

}
. Where

ωnm = (ωm, . . . ,ωn), for any non-negative integers m≤ n, denotes a
particular sample path1.

The movement of nodes in S is a discrete random process
X∞ = X0,X1, . . . with finite alphabet Ω. Write the joint distribu-
tion of the random (n−m)-vectorXnm, as µnm(ωnm) = Pr

{
Xnm =ωnm

}
,

where ωnm ∈ Ω(n−m). The distribution of X∞, is the set of all joint
distributions for all integers n≥ m≥ 0.

Mobility models are constructed by first specifying an initial
node position distribution, µ0(ω0) = Pr

{
X0 =ω0

}
. Movement after

the initial placement is defined by2, c.f. [16]

µN−10
(
ωN−10

)
= µ0(ω0)µ1(ω1|ω0) · · ·µN−1

(
ωN−1|ωN−20

)
(1)

The mobility model description, e.g. (1), and the underlying
space, e.g. Ω, are not important. What is important is the distribu-
tion of X∞. An alternative description is given by the probability
measure of a dynamical system.

Define the node position sequence space Ω∞ !
{
ω∞ : ωn ∈

Ω, ∀n ∈
}
where ω∞ = ω0,ω1, . . . and = 0,1, . . . is the non-

negative integers. The cylinder set determined by ωnm, is the set[
ωnm

]
=

{
ω̂∞ ∈Ω∞ : ω̂i = ωi, i= m,m+1, . . . ,n

}
.

The joint probability (1) on ΩN generated directly by the mo-
bility model uniquely extends, via the Kolmogorov Extension The-
orem [17, 18], to a unique probability measure µ on the sequence
space Ω∞: µ is called the Kolmogorov measure. If S is ‘closed’ this
offers no restriction to the mobility model – Appendix Remark 1.
The Kolmogorov Extension Theorem ensures µ

(
[ωnm]

)
= µnm

(
ωnm

)
,

∀n,m : n ≥ m ≥ 0. Let F (Ω∞) denote the σ-algebra generated by
the set of all cylinder sets. The probability space (Ω∞,F (Ω∞) ,µ)
is then suitable for any mobility model on a ‘closed’ discrete space.

In (1) it is clear how the process evolves over time. The left
shift (time) transform T : Ω∞ → Ω∞ represents the action of time
in Ω∞. Tω∞ = T (ω0,ω1,ω2, . . .) = ω1,ω2, . . ., ∀ω∞ ∈ Ω∞ and
T−1A=

{
ω∞ : Tω∞ ∈ A

}
, ∀A ∈ F (Ω∞).

Let Π0
(
ω∞

)
=Π0

(
ω0,ω1,ω2, . . .

)
= ω0. Then X∞ defined by

the mobility model (1) can be rewritten as

X∞ = {Xn}∞n=0 =
{
Π0

(
Tnω∞

)}∞
n=0

(2)

1In networking literature, c.f. [15], this sample path is referred to as a
mobility trace since it ‘records’ the location of nodes from time m to time n.

2Note (1) is without loss of generality.



The quadruple (Ω∞,F (Ω∞) ,µ,T ) defines a Dynamical System
and leads us to view any ‘network operation’ that is entirely spec-
ified by ω, as a measurable function taking values from F (ω∞) to
some ‘decision space’ R. We have constructed the dynamical sys-
tem model on a random process (1), however the Ergodic Theory
model for a dynamical system is far more general c.f. [17–22].

The model (2) is suitable for the simulation-based analysis of
mobility models. For example, suppose we simulate a mobility
model and get ωN−10 as the output. The sample path ωN−10 has
been randomly chosen with probability µ

(
[ωN−10 ]

)
from |ΩN | pos-

sibilities. We make repeated time-based measurements, f : ΩN →
R⊆ , samples, which we use to draw conclusions about the aver-
age behavior of either the sample path or the routing protocol. The
sample averages are given by

〈
f
〉
N =

1
N

N−1
∑
n=0

f
(
TnωN−10

)
(3)

Example 1 (Protocol Failures). Let A ⊂ Ω be a set of node loca-
tion vectors where the routing protocol fails. For example, A could
be the set of position vectors where the source is disconnected from
the sink. To estimate the probability of protocol failure due to A,
choose f to be the indicator function,

f
(
ωN−10

)
= 1A

(
ωN−10

)
=

{
1, if ω0 ∈ A
0, Otherwise. (4)

Under (4), (3) becomes the relative frequency of protocol failures
on ωN−10 . The function f is a discrete random variable.

More generally and analogous to the definition of X∞ in (3), a
random process of measurements { fn}∞n=0 is given by

{
fn

}∞
n=0 =

{
f
(
Tnω∞

)}∞
n=0

(5)

where f is measurable3 with domain Ω∞ and range R ⊆ .
The sequence { fn} is a random process, therefore {

〈
f
〉
N}∞N=0

is a random process. The first concern of any asymptotic study of
mobility models and routing, is to provide necessary conditions for
(3) to converge4 N→ ∞.

In (Ω∞,F (Ω∞) ,µ,T ), the Kolmogorov measure µ induced by
the mobility model, has ergodic properties with respect to the mea-
surement f if

〈
f
〉(
ω∞

)
= lim

N→∞

1
N

N−1
∑
n=0

f
(
Tnω∞

)
, f :Ω∞→R ⊆

exists almost everywhere (a.e.)5.

Example 2 (Stationary Node Locations). Consider the limiting
relative frequency of each6 ω ∈Ω. Choose |Ω| indicator functions

1ω
(
ω̂∞

)
=

{
1, if ω̂0 = ω
0, Otherwise. ∀ω ∈Ω

Let limN→∞ω
N−1
0 =ω∞ denote the limiting output of the simulator,

then
〈
1ω

〉(
ω∞

)
= lim

N→∞

1
N

N−1
∑
n=0

1ω
(
Tnω∞

)
(6)

3Measurable function: Let F (R∞) be a σ-field of ‘routing events.’ Then
f−1(B) ∈ F (Ω∞), ∀B ∈ F (R∞).

4Convergence: The limit of a sequence of measurements fn exists iff
limsupn→∞ fn = liminfn→∞ fn, c.f. [18, Page 70].

5Almost everywhere: let F = {ω∞ :
〈
f
〉
(ω∞) exists}, then µ(F) = 1.

Ergodic Property: [18, Chapter 6].
6If the network consisted of only one node, then the limiting relative

frequency of each ω ∈Ω is the relative frequency of the nodes location.

If the mobility model possess ergodic properties with respect
{1ω(·)}ω∈Ω, the simulator will a.e. produce a sequence ω∞ for
which the limit (6) exists. We are then justified to approximate
the limit

〈
1ω

〉
(ω∞) with

〈
1ω

〉
N(ω∞), for some sufficiently large

N. Specifically, for any ε > 0, there exists some N0, such that for
all N > N0,

∣∣〈1ω
〉
−

〈
1ω

〉
N
∣∣ ≤ ε. A necessary requirement for a

mobility model to possess a stationary location distribution is that it
possess ergodic properties with respect to {1ω(·)}ω∈Ω.

More generally, we should consider the limiting properties of
any measurable event A. This leads us to consider the set of all
indicator functions {1A(·)}A∈F (Ω∞).

Observation 1. If (Ω∞,F (Ω∞) ,µ,T ) has ergodic properties with
respect to {1A(·)}A∈F (Ω∞), then7 it possess ergodic properties with
respect to all bounded functions, and the limit

lim
N→∞

1
N

N−1
∑
n=0

µ
(
T−nA

)
= Eµ

[〈
1A

〉
(ω∞)

]
= µ(A)

exists a.e. for all A ∈ F (Ω∞). Moreover, µ(·) is a unique stationary
probability measure with respect to T .

The dynamical system (Ω∞,F (Ω∞) ,µ,T ) is asymptotically
mean stationary8 (AMS) if it possess ergodic properties with re-
spect to {1A(·)}A∈F (Ω∞). The measure µ induced by the mobil-
ity model is called asymptotically mean stationary, with stationary
mean µ.

Observation 1 shifts our attention from mobility models with
stationary node locations, c.f. [16, 24–31], to the general class of
AMS mobility models. Since AMS mobility models possess er-
godic properties with respect to all bounded functions, they are use-
ful for testing asymptotic properties of protocols. The following
lemma is necessary for the proof of Theorem 1 and is potentially of
independent interest.
Lemma 1 (Variable Length Encoding). A variable length en-
coding of an asymptotically mean stationary process produces an
asymptotically mean stationary process as the output.
Example 3 (GRWPMM). The RandomWaypoint Mobility Model
(RWPMM) is common in the literature, c.f. [30]. Consider a gener-
alize discrete-space version (GRWPMM) where the waypoint selec-
tion process is any AMS random process9. Assume S is aMj×Mk
regular lattice.

A nodes movement is statistically independent of all other
nodes, so it is sufficient to describe the movement of a single node.
Let Sn = ( jn,kn) denote the location of the node at time n, where
jn ∈ {1,2, . . . ,Mj} and kn ∈ {1,2, . . . ,Mk}. Let W∞ =W0,W1, . . .
denote the sequence of waypoints and letWw = ( jw,kw) denote the
current waypoint. At each time shift T , the node moves toward the
current waypoint using the rules

Sn+1 =






( j+1,k), if sn = ( j,k), j < jw
( j−1,k), if sn = ( j,k), j > jw
( j,k+1), if sn = ( j,k), j = jw, k < kw
( j,k−1), if sn = ( j,k), j = jw, k > kw

When the node reaches the waypoint ( jw,kw), the process is re-
peated with the next waypointWw+1.
Theorem 1 (GRWPMM). The Generalized Random Waypoint
Mobility Model is an asymptotically mean stationary mobility
model.
Corollary 1.1 (RWPMM). The Random Walk and Random Way-
point are asymptotically mean stationary mobility models.

Sample averages (3) for the GRWPMM converge a.e., thus en-
suring the existence of a unique stationary10 mean µ. The RWPMM

7Combine [18, Lemmas 6.2.1 and 6.2.2 & Corollaries 6.2.1 and 6.2.2].
8AMS processes: [23], and [18, Page 131].
9The waypoints in the RWPMM are selected i.i.d. (uniform) from S .
10Sometimes called a steady-state distribution, c.f. [29].



is AMS with respect to T , but is not stationary with respect to T –
it is variable length stationary. The GRWPMM forms a wide class
random waypoint mobility models that includes the Random Walk
Mobility Model (RWMM).

3. PERFECT SIMULATION

The existence of stationary means for node locations, and transients
caused by convergence to these stationary means, has lead to the
following works [24, 28–30]. Navidi et. al. [30] suggests that if µ
is not known, one should run the simulation for a sufficiently long
time before taking protocol measurements. Intuitively, this ‘warm
up’ allows the node location distribution, and any function thereof,
to converge to something close to µ and thus removes ‘inconsis-
tencies’ caused by finite sample averages of transient distributions.
Conversely if the stationary mean is known, Navidi et. al. [30],
Yoon et. al. [29, Section 5], and Boudec et. al. [26], suggest one
should ‘create’ a stationarymobility model by selecting initial node
locations11 values from their respective stationary means.

Consider an AMS mobility model where the stationary mean
µ(·) is not know. Warm the mobility model up for Nw time steps
and sample for Ns steps. Repeat for a large number of trials.

Lemma 2 (WarmUp). Fix c=NW −NS constant. Then if Nw→∞,
the sample average of any event A ∈ F (Ω∞) is equal to its station-
ary mean µ(A).

The warm up process creates a ‘new’ dynamical system
(Ω∞,F (Ω∞) ,µ,T ) where the measure µ induced by the mobility
model is replaced by µ. Conversely, suppose the stationary mean
µ(·) is known. Select the initial distribution equal to the station-
ary mean µ and obtain (Ω∞,F (Ω∞) ,µ,T ). A perfect simulation, or
sound mobility model, is the dynamical system (Ω∞,F (Ω∞) ,µ,T )
obtained from (Ω∞,F (Ω∞) ,µ,T ) by either the warm up or ran-
domized start process.

The mean stationary measure µ is T -invariant, µ(A) =
µ
(
T−1A

)
, ∀A ∈ F (Ω∞). This, together with the concept of a per-

fect simulation together, motivate a formal definition of a station-
ary mobility model. The Kolmogorov measure µ induced by the
mobility model is T-invariant (or stationary) if µ(A) = µ

(
T−1A

)
,

∀A ∈ F (Ω∞).
The transient nature of AMS mobility models, c.f. [28–30], is

considered ‘harmful’ to reliable, reproducible, results.

Observation 2. The limiting sample average
〈
f
〉
(ω∞) of an AMS

mobility model (Ω∞,F (Ω∞) ,µ,T ) is equal to that of its associated
stationary system (Ω∞,F (Ω∞) ,µ,T ).

Potential errors resulting from the transient nature of the mo-
bility model can be neutralized by choosing N sufficiently large.
If N is limited in size by simulation complexity, convergence of
sample averages cannot be guaranteed and one should consider
(Ω∞,F (Ω∞) ,µ,T ).

Let F = {ω∞ :
〈
f
〉
(ω∞) exists}, then ω∞ ∈ F ⇔ ω∞ ∈ T−1F

and F is an invariant set under T . I.e. it does not change under T .
More generally, A∈F (Ω∞) is T-invariant if T−1A= A. A mobility
model is ergodic12 if µ(A) is 0 or 1 for all invariant sets.

In ergodic systems, sample averages converge a.e. to a con-
stant. Thus one sequence ω∞ ∈ A where A = T−1 and µ(A) = 1, is
sufficient to describe asymptotic behavior of protocols.

Lemma 3. The Random Walk Mobility Model is ergodic. The Ran-
dom Waypoint mobility model is variable length ergodic13

11Including other parameters of interest, e.g. speed.
12Ergodicity: [18, Chapter 6.7].
13We conject that the Random Waypoint Mobility Model is ergodic. The

final version of the paper will have this conjecture resolved. See [32].

4. ROUTING AS A RANDOM PROCESS
We now demonstrate that any routing protocol that imposes a de-
terministic mapping of the node position sequence space to some
route sequence space, ensures the resulting route process inherits
the AMS properties of the mobility model. It then follows that any
AMS mobility model satisfies the Asymptotic Equipartition (AEP)
Theorem at the network layer. Well known noiseless source coding
techniques are then used to proved our main result of an information
theoretic lower bound on network-layer control overhead.

Consider a network of |V | nodes with one source vs and one
sink vt . Since vs only communicates with vt , ω∞ is the only input
driving the routing process. Let the movement of nodes be defined
by some AMS mobility model and let {Routes} be the set of ‘route
decisions’ connecting vs and vt . For example, the set {Routes}
might consist of all possible paths connecting vs to vt . Label each
element of {Routes}with an element ofR =

{
r1,r2, . . . ,r|R|

}
⊂ .

Define f : Ω∞ → R such that for each ω∞ ∈ Ω∞, f (ω∞) = r rep-
resents the ‘routing decision’ of the routing protocol. For example,
the route f (ω∞) = r may be a ‘least cost route’ that was chosen via
an optimization problem, c.f. [33]. Then f defines a random process
of route decisions

R∞ =
{
Rn

}∞
n=0 =

{
F(ω∞)n

}∞
n=0 =

{
f
(
Tnω∞

)}∞
n=0 (7)

F :Ω∞→R∞ is called a stationary coder if F(TΩω∞) = TRF(r∞),
where TR is the left shift on the route spaceR. TR(r0,r1,r2, . . .) =
r1,r2, . . .. The theory of stationary coders can be found in any in-
troductory text on Ergodic Theory, c.f. [17, 18].

We define a stationary routing protocol to be any routing pro-
tocol that generates a stationary coder F : Ω∞ → R∞. If F is a
stationary routing protocol, then R∞ is a stationary encoding of µ.
The Kolmogorov measure η of the routing process induced by the
mobility model µ and transported by the stationary routing protocol
F , is given by

η(A) = µ(F−1A), ∀A ∈ F (R∞) (8)
The dynamical system (R∞,F (R∞) ,η,TR) describes the routing
process in the same way as (Ω∞,F (Ω∞) ,µ,T ) describes the mo-
bility model. We define AMS, stationary and ergodic routing pro-
cesses in exactly the same way as we did for (Ω∞,F (Ω∞) ,µ,T ).
Observation 3. A stationary routing protocol operating on an AMS
mobility model produces an AMS routing process. A stationary
routing protocol operating on a stationary mobility model produces
a stationary routing process. A stationary routing protocol operat-
ing on an AMS ergodic mobility model produces an AMS ergodic
routing process process. In short, a stationary routing protocol in-
herits or preserves the statistical properties of the mobility model.

In general, a routing protocol will only depend on a finite num-
ber of inputs, f (ω∞) = f (ω̂∞), where ωd−m = ω̂d−m. In such cases,
f is called a sliding block code with memory m and delay d. The
theory of sliding block codes is developed in [34, Page 169] and
[35, Page 644]. If d > 0, then the routing system is non-causal. If
m> 0 then the routing protocol has memory, i.e. the current routing
decision will depend on the current and past m node locations. A
protocol that depends only on the current node locations is called
instantaneous. The least cost routing protocol (via Dijkstra’s Algo-
rithm) is an instantaneous stationary coding of ω∞.
Lemma 4. If a mobility model possess a stationary node location
distribution and the routing protocol is instantaneous, then the mo-
bility model must be asymptotically mean stationary.

Consider a dynamical system (Ω∞,F (Ω∞) ,µ,T ) and coding F
that describe the mobility model and routing protocol respectively.
The N-th order route entropy is

H(N)
η (R) =

1
N
Hµ

({
f T n(ω∞)

}N−1
n=0

)

= − 1
N ∑

ωN−10 ∈ΩN

µ
(
[ωN−10 ]

)
log2µ

(
[ωN−10 ]

)



and the entropy rate is

Hη(R) = limsup
N→∞

H(N)
η (R)

Theorem 2 (Control Information Lower Bound). Consider an
AMS model together with a stationary routing protocol. Then
Hη(R) is a lower bound on routing overhead.

5. CONCLUSION
The entropy rate of the AMS route process, Theorem 2, provides
an information theoretic lower bound on network layer control in-
formation for any AMS mobility model. This control information
must be transmitted as overhead in some form to ensure reliable
routing decisions at the network layer. The result rests on the ap-
plication several results from Ergodic and Information Theory. We
define a class of AMS mobility models, where the asymptotic sta-
tionarity of measurable events is guaranteed. AMS mobility mod-
els are most useful for the simulation based analysis of networks,
since time-averaged results converge almost everywhere. We define
and prove the AMS property for a Generalized Random Waypoint
Mobility Model – the RandomWalk and RandomWaypoint Mobil-
ity Models being special cases. The proof rests on a Lemma that
demonstrates the AMS properties of a variable-length encoding of
an AMS process. Perfect simulation, or sound mobility models, are
discussed and shown to be the stationary system associated with
an AMS mobility model. We define Ergodic Mobility Models and
prove ergodicity, and variable length ergodicity, for the Random
Walk and Random Waypoint Mobility Models respectively.

A determinsitic routing protocol was shown to induce a station-
ary coding of the underlying mobility models. The resulting route
decision process was defined and shown to inherit AMS, stationary
and ergodic properties from the mobility model. Gray’s [23] exten-
sion of the Asymptotic Equipartition Theorem (AEP) to one-sided
AMS process shows the AEP holds at the network layer when the
mobility models is AMS and the routing protocol is stationary. A
well known source coding result is then used to lower bound control
overhead.

This work concerns mobility models operating on discrete-
finite state-spaces, however, each result may be extended to more
general state-space models.

Appendix.
Remark 1 (Kolmogorov Extension Theorem). The alphabet of node
movement is finite therefore, the Kolmogorov Extension Theorem
holds if (9) is satisfied [17]

µN−10
(
ωN−10

)
= ∑

ωN∈Ω
µN0

(
ωN0 ), ωN−10 ∈ΩN (9)

Consider ωN−10 with probability µN−10
(
ωN−10

)
given by (1). Let

A =
{
ω̂N0 ∈ Ω

N+1 : ω̂n = ωn, n = 0,1,2, . . . ,N−1
}
. If the state-

space is closed14 the sample path ωN0 must ‘move’ into A and (9)
must hold.
Proof: 1 (Outline Theorem 1). LetW∞ =W0,W1,W2, . . . denote the
waypoint process. The waypoint process in the RWPMM is i.i.d.,
therefore Corollary 1.1 follows immediately. Let E∞ = E0,E1, . . .
be the (epoch) process recording the start and end points to each
epoch. E∞ is a memoryless coding of W∞ of delay one with al-
phabet S2. f (W0,W1,W2, . . .) = (W0,W1), and E∞ =

{
En

}∞
n=0 ={

f (Tnw∞)
}∞
n=0. A stationary coding of an AMS process yields

and AMS process [34, Lemma 4.2.3]. Therefore, E∞ is AMS.
The node moves between waypoints in a deterministic fashion.

Thus for each pair (s, ŝ) ∈ S×S , there exists a vector of ‘transition’
positions describing the nodes position over the epoch. The length

14I.e. A node may not move out of S .

of this vector depends on the distance L(s, ŝ) between s and ŝ. The
Node Location Process X∞ is therefore a fixed to variable length
coding of E∞. By Lemma 1, X∞ is AMS. "
Proof: 2 (Outline Lemma 1). Suppose µ is AMS with respect to
T ∗ with stationary mean µ∗. Then µ∗ asymptotically dominates µ,
µ∗ , µ. By definition µ∗ is T ∗-invariant and therefore AMS with
respect to T [23, Example 6]. Where T ∗ = TL(s,ŝ) and L(s, ŝ) < ∞,
∀ŝ,s ∈ S . Then µ, µ∗ for some stationary mean µ. Since µ, µ∗,
then µ, µ and by [23, Theorems 3 & 4] µ is AMS with respect to
T – its stationary mean is µ. "
Proof: 3 (Warm Up Lemma 4). The sample average of any event
A ∈ F (Ω∞) with warm up is given by

〈
1A

〉Nw+Ns
Nw (ω∞) =

1
Ns

Nw+Ns−1
∑
n=Nw

1A(Tnω∞) (10)

Let Nw→ ∞, n= j+Nw and hold N = Nw−Ns constant, then (10)
becomes

〈
1A

〉Nw+Ns
Nw (ω∞) = lim

Nw→∞

1
Nw−N

Nw−N
∑
j=0

1A(T j+Nwω∞)

= lim
Nw→∞

1
Nw

Nw
∑
j=0
1AT j(TNwω∞

)

=
〈
1A

〉(
TNwω∞

)

=
〈
1A

〉(
ω∞

)

which gives the expectation

Eµ
[〈
1A

〉Nw+Ns
Nw (ω∞)

]
= µ(A)

"
Proof: 4 (Outline Lemma 4). The σ-field F induced by an in-
stantaneous routing protocol is generated by cylinder sets that ex-
tend only over one time instance. That is, [ωmm] for m ≥ 0. Since
F ⊆ F (Ω), where F (Ω) is the σ-field generated by {ω}ω∈Ω, the
mobility model is AMS if it has a stationary node location distribu-
tion. "
Proof: 5 (Outline Lemma 3). Ergodicity of the Random Walk Mo-
bility Model follows directly from the irreducibility of its transition
matrix. I.e. the Random Walk Mobility Model is ergodic iff its
transition matrix is irreducible. Variable length ergodicity of the
Random Waypoint Mobility Model follows directly from the fact
that it is a variable-length encoding of a AMS ergodic source (the
epoch process). The epoch process is AMS and ergodic since it is a
stationary coding of a stationary and ergodic process (the waypoint
process is i.i.d.). "
Proof: 6 (Outline Theorem 2). The entropy rate of a one-sided finite
alphabet AMS process is well known to be a lower bound for com-
pressibility, c.f. [34]. The theorem then follows if the route process
generated by a stationary protocol on a AMS mobility model is a
one-sided finite alphabet AMS process. This is true by Observation
3. "
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[4] Aleksander Jovičić, Pramod Viswanath, and Sanjeev R.
Kulkarni, “Upper Bounds to Transport Capacity of Wireless
Networks,” IEEE Trans. Inform. Theory, vol. 50, no. 11, pp.
2555–2565, November 2004.

[5] Michael Gastpar and Martin Vetterli, “On the Capacity of
Large Gaussian Relay Networks,” IEEE Trans. Inform. The-
ory, vol. 51, no. 3, pp. 765–779, March 2005.

[6] O. Leveque and I.E.Telatar, “Information Theoretic Upper
Bounds on the Capacity of Large Extended Ad-hoc Wireless
Networks,” IEEE Trans. Inform. Theory, vol. 51, no. 3, pp.
858–865, March 2005.

[7] Matthias Grossglauser and David N. C. Tse, “Mobility in-
creases the capacity of ad hoc wireless networks,” IEEE/ACM
Trans. Networking, vol. 10, no. 4, pp. 477–486, August 2002.

[8] Suhas N. Diggavi, Matthias Grossglauser, and David N. C.
Tse, “Even one-dimensional mobility increases the capacity
of wireless networks,” IEEE Trans. Inform. Theory, vol. 51,
no. 11, pp. 3947–3954, November 2005.

[9] Syed Ali Jafar, “Too Much Mobility Limits the Capacity of
Wireless Ad Hoc Networks,” IEEE Trans. Inform. Theory,
vol. 51, no. 11, pp. 3954–3965, November 2005.

[10] Roy Timo and Leif Hanlen, “MANETs: Routing Overhead
and Reliability,” in Proceedings IEEE Vehicular Technology
Conference, VTC, Melbourne, Australia, May 2006.

[11] Oskari Ajanki and Antti Knowles, “Connection State Over-
head in a Dynamic Linear Network,” arXiv.org/0510077/ v1,
October 2005, Submitted to IEEE Transactions on Informa-
tion Theory.

[12] Nianjun Zhou and Alhussein A. Abouzeid, “Information-
theoretic lower bounds on the routing overhead in mobile ad-
hoc networks,” in Proceedings IEEE International Symposium
on Information Theory, ISIT, 29 june – 4 July 2003, p. 455.

[13] Nianjun Zhou and Alhussein A. Abouzeid, “Routing in ad-
hoc networks: A theoretical framework with practical impli-
cations,” in Proceedings IEEE Annual Joint Conference of the
IEEE Computer and Communications Societies, INFOCOM,
March 2005, pp. 1240–1251.

[14] Robert G. Gallager, “Basic limits on protocol information in
data communication networks,” IEEE Trans. Inform. Theory,
vol. 22, no. 4, pp. 385–398, July 1976.

[15] T. Camp, J. Boleng, and V. Davies, “A Survey of Mobility
Models for Ad Hoc Network Research,” Wireless Commu-
nications and Mobile Computing, vol. 2, no. 4, pp. 483–502,
September 2002.

[16] Christian Bettstetter, Hannes Hartenstein, and Xavier Pérez-
Costa, “Stochastic Properties of the Random Waypoint Mo-
bility Model,” ACM/Kluwer Wireless Networks, Special Issue
on Modeling & Analysis of Mobile Networks., vol. 10, no. 5,
pp. 555–567, September 2004.

[17] Paul C. Shields, The Ergodic Theory of Discrete Sample
Paths, vol. 13 of Graduate Studies in Mathematics, Ameri-
can Mathematical Society, 1996.

[18] Robert M. Gray, Probability Random Processes, and Ergodic
Properties, Springer Verlag, 2001 (Revision 1987).

[19] Peter Walters, An Introduction to Ergodic Theory, Graduate
Texts in Mathematics. Springer-Verlag, 1982.

[20] I.P. Cornfeld, S.V. Fomin, and Ya. G. Sinai, Ergodic Theory,
Number 245 in A Series of Comprehensive Studies in Mathe-
matics. Springer-Verlag, 1982.

[21] Donald S. Ornstein, Ergodic Theory, Randomness, and Dy-
namical Systems, Yale Mathematical Monographs. Yale Uni-

versity Press, 1974.
[22] Paul C. Shields, “The Interactions Between Ergodic Theory

and Information Theory,” IEEE Trans. Inform. Theory, vol.
44, no. 4, pp. 2079–2093, October 1998.

[23] R. M. Gray and J. C. Kieffer, “Asymptotically Mean Station-
ary Measures,” Journal of Annals of Probability, vol. 8, no. 5,
pp. 962–973, October 1980.

[24] M. McGuire, “Stationary Distributions of Random Walk Mo-
bility Models for Wireless Ad Hoc Networks,” in Proceedings
of the 6th ACM international symposium on Mobile ad hoc
networking and computing, May 2005, pp. 90–98.

[25] C. Bettstetter, “Mobility Modeling inWireless Networks: Cat-
egorization, Smooth Movement, and Border Effects,” ACM
SIGMOBILE Mobile Computing and Communications Re-
view, vol. 5, no. 3, pp. 55–66, July 2001.

[26] Jean-Yves Le Boudec and Milan Vojnović, “The random
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