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Abstract: We have carried out a comprehensive study of dispersion and absorption effects on An-

derson localization in one-dimensional metamaterial stacks and have shown that the field is delocal-

ized in μ or ε-near-zero media at normal incidence.
c© 2009 Optical Society of America

OCIS codes: (290.4210) Multiple scattering(140.0140); (160.3918) Metamaterials.

1. Introduction

Anderson localization is a fundamental and general phenomenon of wave propagation in random media [1]. Despite

considerable efforts, the theoretical framework of Anderson localization in higher dimensions (D > 1) is far from

complete, especially in the case of classical waves where the effects of absorption, gain, and polarization are of signif-

icance. In contrast, the one-dimensional case (D = 1) has been studied extensively for both quantum mechanical and

classical waves, and it has been proved that scalar waves are localized for every wavelength and for any disorder [2].

Recently, we have studied localization in the presence of metamaterials and have shown that in stacks of alter-

nating layers of normal materials and metamaterials, localization is suppressed at long wavelengths for disorder in

the dielectric permittivity of the layers. That paper [3], however, did not taken into accounts the effects of dispersion.

This contribution extends our previous work and presents a comprehensive theoretical and computational study of the

effects of dispersion and absorption on localization properties in the the presence of metamaterials.
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Fig. 1. The geometry of the problem

2. Model and the Theoretical Consideration

We consider one-dimensional stacks composed of homogeneous metamaterial layers only or normal material layers

only, as well as stacks of alternating layers of metamaterials A and normal material B (mixed stacks) (see Fig.1). In

all cases, the dielectric permittivity and the magnetic permeability are [4]:

ε(ω) = 1 −
ω2

ep − ω2
eo

ω2 − ω2
eo + iγω

, μ(ω) = 1 −
ω2

mp − ω2
mo

ω2 − ω2
mo + iγω

(1)

where we take fmp = 10.95GHz, fmo = 10.05GHz, fep = 12.8GHz, feo = 10.3GHz and γ = 10MHz (f = ω/2π),

and where ω = 2πf . For the given model, the refractive index is negative in the range of frequencies 10.40GHz <
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f < 10.95GHz (see the inset of Fig.2). At frequency f = 10.95GHz, the magnetic permittivity changes sign (from

negative to positive) when γ = 0, and so the metamaterial changes its character from double negative to single

negative. Below, we show that such changes have a profound effect on Anderson localization. The thicknesses of the

layers are given by d = 0.003m, which is comparable to the experimental set up in Ref.[4]. The disorder is introduced

by randomizing the resonance frequencies ωeo or ωfo. Arising from this is an exponential decay of the field amplitudes,

induced by disorder, with a decay length known as the localization length l which is calculated from

lT = − 2N

〈ln |TN |2〉 , (2)

where TN is the stack amplitude transmission coefficient that is computed by recurrence relations [3]. Extending our

asymptotic analysis [5] to accommodate dispersion and absorption, we may express the localization length according

to
1
l

= −Re 〈ln t〉 − Re
〈r〉2

1 − 〈t2〉 ,
1
l

= −Re 〈ln t〉 − |〈r〉2| + Re
(
〈r〉2〈t2〉∗

)

1 − |〈t2〉|2 , (3)

where the left and right expressions respectively correspond to metamaterial and mixed stacks. Here, 〈ln t〉, 〈r〉 and

〈t2〉 are ensemble averages of the logarithm of the transmission, the reflection and the square of the transmission for a

single layer, where the single layer is embedded in a homogeneous medium with average parameters ε and μ.

3. Results

As a representative example of our results, we plot in Fig. 2 the localization length as a function of frequency for

normal incidence and for a metamaterial stack with disordered dielectric permittivity, where the resonance frequency

ωeo is disordered according to a uniform distribution within 0.5% of its average value. The upper curve corresponds

to the case of zero absorption. The localization length increases as the frequency approaches the value fmp at which μ
vanishes. We show that at the frequency fmp, the Furstenberg theorem is not applicable and that the field is delocalized

10.4 10.5 10.6 10.7 10.8 10.9 11.0
100

101

102

103

104

105

106

107

108

f �GHz�

lT 10.4 10.5 10.6 10.7 10.8 10.9 11.0

�6

�4

�2

0

f �GHz�

Ν

Fig. 2. The localization length l versus frequency f at normal incidence θa = 0 for a metamaterial stack without absorbtion (top curve) and at the

presence of absorbtion (bottom curve). The red curves represent the numerical calculations and the blue curves are the theoretical predictions (3)

and they are in excellent agreement. Inset: the real part of the metamaterial refractive index layer (red curve) and the imaginary part (green line).

even in one dimension. We have calculated the transfer matrix Tn of a layer and have shown that Tn has a single

eigenvector v = [1 1]T , which is independent of the disorder of ε at f = fmp. These findings violate the applicability

of the Furstenberg theorem, which requires that the transfer matrices should contain at least two elements with no

common eigenvectors [2]. The absorption has a strong effect on localization (bottom curve) and must be reduced in

order to observe the delocalization.

In summary, we have carried out a comprehensive study of the dispersion and absorption effects on the Anderson

localization. The presentation will show a number of examples that illustrate the effects of polarization on localization

at the presence of dispersive metamaterials and the suppression of the localization at the presence of the dispersion.
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