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We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-
level atoms in a waveguide. Our calculation reveals two-polariton eigenstates that have a highly irregular
wave function in real space. This indicates the Bethe ansatz breakdown and the onset of quantum chaos, in
stark contrast to the conventional integrable problem of two interacting bosons in a box.We identify the long-
range waveguide-mediated coupling between the atoms as the key ingredient of chaos and nonintegrability.
Our results provide new insights in the interplay between order, chaos, and localization in many-body
quantum systems and can be tested in state-of-the-art setups of waveguide quantum electrodynamics.
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Introduction.—Arrays of superconducting qubits or cold
atoms coupled to a waveguide have recently become a
promising new platform for quantum optics [1–7]. The
arrays can be used for storing [8] and generating quantum
light [7,9–11] and even for a future “quantum internet” [12].
Moreover, qubit arrays are a new type of quantum simulator
for the problems of many-body physics [13–19]. One of the
most fundamental problems in physics is the competition
between order and chaos, or many-body localization and
thermalization. This competition is already a subject of active
studies [20,21]: from celestial mechanics to atomic, nuclear
[22], and condensed matter [23–25] physics and even to
quantum paradoxes in black holes [26,27]. Despite the large
diversity of these systems, the consideration is typically
limited to excitations with parabolic dispersions and short-
range coupling. Arrays of atoms in a waveguide present a
unique platform to probe unexplored boundaries of quantum
chaos and integrability in a system with strong interactions,
long-range waveguide-mediated coupling, and intrinsically
nonparabolic dispersion of excitations.
Here, we demonstrate that even a seemingly simple

problem of just two photons interacting with a periodic
finite array of two-level atoms in a waveguide [Fig. 1(a)]
may provide important general insights into quantum
chaos. In this setup, the coupling of photons to atoms
leads to the formation of polaritons. Polaritons repel each
other since a single two-level atom cannot host two reso-
nant photons at the same time [28]. This is strongly remini-
scent of an exactly solvable (integrable) one-dimensional
model of two bosons in a box that demonstrates fermio-
nization in the limit of strong repulsion [29–31]. The
integrability can be broken when the interaction becomes
nonlocal [32] or there is an external potential [33] or if the
bosons acquire different masses [34], which can be mapped
to an irrational-angle billiard [35]. Since the considered

polaritons are locally interacting equivalent bosons and
there is no external potential, the integrability should persist
at the first glance. Indeed, fermionized two-polariton states
have been recently revealed by Zhang and Mølmer [36].
However, we later uncovered [37,38] a very different kind
of two-polariton state that has a broad Fourier spectrum and

FIG. 1. (a) Schematics of a two-photon state in array of atoms
in a waveguide. (b) Schematics of single-polariton dispersion
curve ωðkÞ. Two polaritons pairs with small and large wave
vectors corresponding to chaotic and integrable states are
indicated. (c),(d) Wave vectors of two-polariton states with the
same total energy and momentum for the case of (c) parabolic and
(d) nonparabolic ∝ −1=k2 single-particle dispersion. Black
curves shows the isoenergy contour ωðk1Þ þ ωðk2Þ ¼ const.
Slanted lines illustrate the total momentum conservation,
k1 þ k2 ¼ const. Green circle in (d) corresponds to the complex
k1;2, with real part lying outside the isoenergy contour.

PHYSICAL REVIEW LETTERS 126, 203602 (2021)

0031-9007=21=126(20)=203602(6) 203602-1 © 2021 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.126.203602&domain=pdf&date_stamp=2021-05-21
https://doi.org/10.1103/PhysRevLett.126.203602
https://doi.org/10.1103/PhysRevLett.126.203602
https://doi.org/10.1103/PhysRevLett.126.203602
https://doi.org/10.1103/PhysRevLett.126.203602


cannot be reduced to a product of several single-particle
states. This hints that the problem is nonintegrable by the
Bethe ansatz, but the mechanism and consequences of
nonintegrability remain unclear.
In this Letter, we find chaotic two-polariton eigenstates

that differ from previously studied regular two-polariton
states [37,38] and fermionized states [36]. We show that the
mechanism of chaotization is very general and applicable to
various many-body setups with nonparabolic dispersion of
excitations. In a nutshell, the mechanism can be understood
by analyzing the conservation of energyωðk1Þþωðk2Þ¼2ε
and center of mass momentum k1 þ k2 ¼ K for two
interacting polaritons, as shown in Figs. 1(c) and 1(d).
In a conventional system with parabolic dispersion ω ∝ k2,
there exist just two pairs of particles with given total energy
2ε and momentum K. These two pairs can be found from
the intersection of the isoenergy curve k21 þ k22 ¼ const
[circle in Fig. 1(c)] with the isomomentum line k1 þ k2 ¼
const [blue line in Fig. 1(c)]. However, the dispersion of
polaritons is strongly nonparabolic, resulting from the
avoided crossing of light dispersion ωðkÞ ¼ ck with the
atomic resonance at ω ¼ ω0 [see Fig. 1(b)] [37,39,40].
Specifically, for the intermediate part of the lower polariton
branch away from the Brillouin zone edge, one has ωðkÞ ∝
−1=k2 [37], and the isoenergy curve ωðk1Þ þ ωðk2Þ ¼
const acquires a more complicated hyperbolic shape
[Fig. 1(d)] instead of the circle in Fig. 1(c). There exist
four pairs of polaritons with a given total energy and
momentum [blue line in Fig. 1(d)] instead of two pairs in
Fig. 1(c). For nonparabolic dispersion, isoenergy equations
ωðk1Þ þ ωðk2Þ ¼ const can have complex-conjugate sol-
utions for k1;2 even with real total momentum and energy
[see red line and green point in Fig. 1(d) that lies outside the
real part of the isoenergy contour]. We prove below that the
combination of polariton-polariton interactions with polar-
iton reflections from the array edges, when k1;2 → −k1;2,
makes the number of single-particle states with the same
total energy and momentum arbitrarily large. We have
found a chaotic nonlinear map that governs the distribution
of wave vector k and thus drives chaotic two-polariton
states.
Regular and irregular two-photon states.—We

consider N periodically spaced qubits in a one-dimensional
waveguide, characterized in the Markovian approxi-
mation by the Hamiltonian H ¼ P

N
m;n¼1Hm;nb

†
mbn þ

ðχ=2ÞPN
n¼1 b

†
nb

†
nbnbn, where Hmn ≡ −iΓ0eiφjm−nj, m; n ¼

1…N. Here, bm are the annihilation operators for the
bosonic excitations of the qubits, φ is the phase acquired
by light between neighboring qubits, and the parameter Γ0

is the radiative decay rate of a single qubit. The
Hamiltonian is non-Hermitian due to the radiative losses,
and the coupling strength does not decay with
distance. We consider subwavelength regime when
φ ∼ 1=N ≪ 1. In the limit of large anharmonicity, when

χ=Γ0 → ∞, the Schrödinger equation for the double-
excited states

P
m;n ψmnb

†
nb

†
mj0i reads as follows (see also

Refs. [37,41,42] and the Supplemental Material [43])

Hnn0ψn0m þ ψnn0Hn0m − 2δnmHnn0ψn0n ¼ 2εψnm; ð1Þ

with ψnm ¼ ψmn, and n;m ¼ 1…N. Here, the first two
terms describe the propagation of the first and second
polaritons, respectively. The third term accounts for their
repulsion, enforcing ψnn ¼ 0.
Figure 2 presents three characteristic eigenstates, with

the energies increasing from left to right, calculated
numerically for an array with N ¼ 120 qubits. The top
row shows Fourier transforms jPnm ψnme−ikxn−ikxmj2 and
the bottom row presents the real-space probability densities
jψnmj2. The state in Figs. 2(a) and 2(d) can be understood
from the analytical model where each one of the two
polaritons induces an effective periodic potential for the
other one [38]. It has a regular structure with sharp
localized features in real space [Fig. 2(d)] and a relatively
broad distribution in the Fourier space with many discrete
peaks concentrated along the isoenergy contour of a non-
interacting polariton pair [37],

Γ0 sinφ
cos k1 − cosφ

þ Γ0 sinφ
cos k2 − cosφ

¼ 2ε; ð2Þ

shown by the cyan curves in Figs. 2(a)–2(c). As such, the
state in Figs. 2(a) and 2(d) consists of many single-particle
states and clearly cannot be described by a simple Bethe
ansatz, although it has a regular real-space wave function.
The state in Figs. 2(b) and 2(e) is very different, and wewill
term it as a chaotic state. While it is hard to give a
mathematically precise definition of chaotic states in a
finite discrete system, we stress that the state shown in
Fig. 2(b) has a highly irregular wave function in real
space, and, at the same time its Fourier spectrum shown in
Fig. 2(e) is broad and relatively homogeneous along the
isoenergy contour. This is in accordance with the Berry
hypothesis for chaotic states [48]. Finally, in Figs. 2(c) and
2(f) we show the fermionized two-polariton state [36]. The
state is regular in real space, has eight distinct peaks in the
Fourier space, and is well described by the Bethe ansatz
ψnm ¼ ψmn ∝ cos k1ðn − 1

2
Þ cos k2ðm − 1

2
Þ − ðn ↔ mÞ for

n > m. The coexistence of the fermionized regular
eigenstates [Figs. 2(c) and 2(f)] with regular eigenstates
[Figs. 2(a) and 2(d)] and chaotic eigenstates [Figs. 2(b) and
2(e)] for the same Hamiltonian and the same parameters is
rather surprising. Our central goal is to explain this result
and to identify the origin of the apparent chaotic character
of the wave function in Figs. 2(b) and 2(e).
Bethe ansatz and its breakdown.—It is inconvenient to

start directly from the Schrödinger equation [Eq. (1)] since
the corresponding Hamiltonian matrix is dense due to long-
range couplings. Instead, we use the fact that the inverse
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matrix H−1 is tridiagonal and change the basis as ψ ¼
H−1ΨH−1 [49] to obtain an equivalent sparse equation [37]

ðH−1Ψþ ΨH−1Þnm − 2δnmðΨH−1Þnn
¼ 2εðH−1ΨH−1Þnm: ð3Þ

We now try to solve it using a Bethe ansatz:

Ψmn ¼
X

K;q

AK;qeiKðmþnÞþiqjm−nj=2; ð4Þ

where AK;q are the coefficients and the summation goes
over particular values of the center of mass motion wave
vector K ¼ ðk1 þ k2Þ=2 and the relative motion wave
vector q ¼ k1 − k2 that are determined below. Each term
of the ansatz Eq. (4) shall satisfy Eq. (3) at all m, n except
for the diagonal region jm − nj ¼ 0, 1 and the array
boundaries m;n¼1;N. That is fulfilled if k1;2¼K�q=2
lies on the isoenergy contour [Eq. (2)].
First, we consider an infinite array, where the center

of mass wave vector K is a good quantum number.
Substituting k1;2 ¼ K � q=2 in the dispersion equation
[Eq. (2)], we find four inequivalent values of the relative
motion wave vector qðKÞ for any value of K. The values of
q can be both real and complex (explicit expressions are
given in the Supplemental Material). Real-valued solutions
can be found from the intersection of the line k1 þ k2 ¼ K,
describing all states with given total momentum, with the
isoenergy contour [Eq. (2)] [see Fig. 1(d)]. These four
solutions can be combined in Eq. (4) to satisfy Eq. (3) as

shown in the Supplemental Material, which finishes the
construction of the Bethe ansatz in the infinite system.
However, this procedure breaks down for a finite array.
In a finite array, photons can reflect from the boundaries.

To accommodate the boundaries, one should include
in the Bethe ansatz the reflected waves with the wave
vectors k̃1;2 ¼ −k1;2. After the reflection of one of
the two photons, the new center of mass wave vector is
K̃¼ðk̃1þ k̃2Þ=2¼�ðk1−k2Þ=2¼�q=2. Thus, we obtain a
nonlinear map,

K → K̃ ¼ � 1

2
qðKÞ; ð5Þ

that generates new pairs of wave vectors K and qðKÞ that
must be included in the Bethe ansatz [Eq. (4)]. All the
generated plane waves should be combined to satisfy
the Schrödinger equation at the boundaries [50,51]. The
inability to do so would indicate that the system is non-
integrable. However, the considered two-polariton problem
offers one more scenario of the Bethe ansatz breakdown.
Namely, the map [Eq. (5)] can generate an arbitrarily large
number of wave vectors, rendering the whole Bethe ansatz
construction impractical.
In the three columns of Fig. 3, we explore the map for

different ranges of wave vectors k1;2 that feature regular,
chaotic, and fermionic two-polariton states. We start with
Fig. 3(a), which corresponds to the situation of Fig. 2(a),
where k1 ≪ π; k2 ≫ k1 and the isoenergy contour is almost
flat. The subsequent reflections (red lines) and the map

FIG. 2. (a),(b),(c) Fourier transforms and (d),(e),(f) real-space wave functions of several characteristic two-polariton states. (a),(d)
Regular nonintegrable state; (b),(e) irregular chaoticlike state; (c),(f) fermionized state. The calculation has been performed for N ¼ 120
qubits and φ ¼ 0.02. Cyan curves in (a)–(c) show the isoenergy contours [Eq. (2)]. Energy is measured in units of Γ0.
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qðKÞ evaluation (intersection of the isoenergy contour with
the blue lines k1 þ k2 ¼ const) yield two “chainsaws” of
almost equidistant points. Figure 3(a) shows a specific
cycle with just 21 points, but the length of cycle can be
arbitrarily large, even though the corresponding real-space
wave functions look regular. The set of wave vectors
obtained in Fig. 3(a) explains the Fourier transform of
the wave function in Fig. 2(a). It is instructive to rewrite the
map [Eq. (5)] as a quadratic form depending on cosK and
cos K̃. For φ ≪ 1, the map can be presented as

ðcosK − cos K̃Þ2 − φΓ0

ε
ðcosK cos K̃ − 1Þ ¼ 0: ð6Þ

Figure 3(d) shows the same iterations as Fig. 3(a) for the
K → K̃ map [Eq. (6)].
Another scenario is realized when k1 and k2 are both

close to the Brillouin zone edge π. The polariton dispersion
is then almost parabolic [36], and the isoenergy contours
[Eq. (2)] reduce to slightly deformed circles centered at
k1;2 ¼ �π [see Figs. 3(c) and 3(f)]. As such, the map
[Eq. (5)] generates just eight inequivalent points, similar to
the traditional Bethe ansatz [52]. This explains the fer-
mionic states [36] shown in Fig. 2(c). However, this
consideration fails for intermediate values of wave vectors
since it takes into account only two real values of q for each
center of mass wave vector and ignores two other (com-
plex) values. When the evanescent waves with complex q,

K are taken into account, the maps [Eqs. (5), (6)] can
generate infinite ergodic trajectories. In order to build an
ergodic trajectory, we use the fact that the map [Eq. (6)]
provides two values of cos K̃ for each value of cosK. By
choosing between these two values, we can build an infinite
trajectory that turns around the points cosK ¼ cos K̃ ¼ �1
and never repeats itself, as shown in Fig. 3(e). By
construction, this trajectory includes evanescent waves,
where j cosKj > 1 and the polariton wave vectors k1;2 ¼
K � q=2 are complex. This is also seen in Fig. 3(b),
where green points represent complex k1;2 that do not lie
on the real isoenergy contour. Such trajectories lead to a
dense irregular distribution of wave vectors in the Fourier
space and explain the formation of chaotic states [Figs. 2(b)
and 2(e)].
In order to examine the transition from regular to chaotic

states in more detail, we plot in Fig. 4 the number of points
generated by the map [Eq. (5)] depending on the initial
polariton wave vector k1 for k2 ¼ k1 þ 0.4. Three distinct
ranges of wave vectors can be identified. In the range
0 ≤ k1 ≲ 1.3, the map generates cycles of type shown in
Figs. 3(a) and 3(d). The points in Fig. 4 group into “lines”
that correspond to cycles with different numbers of loops
made around the ellipse in Fig. 3(d). For example, the red
curve n ¼ ffiffiffi

2
p

π=k1 shows the approximate number of
points for a one-loop cycle. In our calculation, we neglected
strongly evanescent waves with jImqj > Imq� ¼ 1, assum-
ing that their contribution to the wave function is exponen-
tially weak. Such a cutoff leads to a steep decrease in the
number of generated points for k1 ≳ 1.5 (the results are not
qualitatively sensitive to the cutoff value). Only a small
number of wave vectors are generated, which corresponds

(a) (b) (c)

(d) (e) (f)

FIG. 3. Examples of subsequent application of the map
[Eq. (5)] for different initial wave vectors: (a) regular 21-cycle,
starting with k1 ¼ 0.8, k2 ¼ 0.5; (b) ergodic infinite cycle starting
with k1 ¼ 1.33, k2 ¼ 1.73; (c) 8-cycle in fermionic regime
starting with k1 ¼ 2.2, k2 ¼ 3.8. Red lines correspond to the
reflection of one of the polaritons from the boundary; blue lines
describe the wave vector exchange due to polariton-polariton
interaction. Green points in (b) show real parts of complex wave
vectors. For (b),(c), the vectors k1;2 are reduced to the Brillouin
zone 0 ≤ k1;2 ≤ 2π before the vector K ¼ ðk1 þ k2Þ=2 is calcu-
lated. Black lines show the isofrequency contours [Eq. (2)]. The
bottom panels (d)–(f) show the same cycles as in (a)–(c) for the
equivalent map [Eq. (6)], tracing the evolution of the center-of-
mass wave vector K.

FIG. 4. Number of points n generated by the map [Eq. (5)]
depending on the starting wave vector k1 for k2 ¼ k1 þ 0.4. We
used 100 iterations for each of the 1.6 × 105 starting values of
k1 ¼ 0.4…π − 0.4 (white line in the inset). Only the points below
the threshold jImqj < 1 have been included in the map. Red curve
shows the analytical dependence n ¼ ffiffiffi

2
p

π=k1. Inset shows the
dependence of n on both starting wave vectors k1 and k2 varying
near the center of the Brillouin zone. The grid step is 8 × 10−3,
and 70 iterations were made for the inset.
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to the fermionized states of the type shown in Figs. 3(c) and
3(f). Finally, there is a narrow peak in the transition region,
centered at around k1 ≈ 1.4, corresponding to the chaotic
states of the type shown in Figs. 3(b) and 3(e). The inset of
Fig. 4 shows the same number of generated points,
depending on the values of both initial wave vectors k1
and k2. The calculation also reveals two distinct regions of
fermionic and regular states, with a narrow chaotic region
in between.
To summarize, we have obtained a nonlinear map

describing polariton-polariton interactions. The number
of nonevanescent waves generated by this map is a good
predictor of whether a given quantum state is regular
nonintegrable, chaotic, or integrable fermionized. Our
findings apply to various two-particle systems and will
hopefully also be useful for many-body setups. The
tomography of chaotic states would require exciting
and probing each qubit individually rather than through
the waveguide mode [6,53], which seems feasible
for modern superconducting processors with N ≳ 10
qubits [54].

The work of A. V. P. and A. N. P. (calculation and
analytical description of the chaotic states) was funded
by the Russian Science Foundation Project No. 20-12-
00194. A. V. P. also acknowledges the support from the
Russian President Grant No. MK-4191.2021.1.2.

*Corresponding author.
poddubny@coherent.ioffe.ru

[1] D. Roy, C. M. Wilson, and O. Firstenberg, Colloquium:
Strongly interacting photons in one-dimensional continuum,
Rev. Mod. Phys. 89, 021001 (2017).

[2] D. E. Chang, J. S. Douglas, A. González-Tudela, C.-L.
Hung, and H. J. Kimble, Colloquium: Quantum matter built
from nanoscopic lattices of atoms and photons, Rev. Mod.
Phys. 90, 031002 (2018).

[3] A. F. van Loo, A. Fedorov, K. Lalumiere, B. C. Sanders, A.
Blais, and A. Wallraff, Photon-mediated interactions be-
tween distant artificial atoms, Science 342, 1494 (2013).

[4] N. V. Corzo, J. Raskop, A. Chandra, A. S. Sheremet, B.
Gouraud, and J. Laurat, Waveguide-coupled single collec-
tive excitation of atomic arrays, Nature (London) 566, 359
(2019).

[5] M. Mirhosseini, E. Kim, X. Zhang, A. Sipahigil, P. B.
Dieterle, A. J. Keller, A. Asenjo-Garcia, D. E. Chang, and
O. Painter, Cavity quantum electrodynamics with atom-like
mirrors, Nature (London) 569, 692 (2019).

[6] J. D. Brehm, A. N. Poddubny, A. Stehli, T. Wolz, H.
Rotzinger, and A. V. Ustinov, Waveguide bandgap engineer-
ing with an array of superconducting qubits, npj Quantum
Mater. 6, 10 (2021).

[7] A. S. Prasad, J. Hinney, S. Mahmoodian, K. Hammerer, S.
Rind, P. Schneeweiss, A. S. Sørensen, J. Volz, and A.
Rauschenbeutel, Correlating photons using the collective
nonlinear response of atoms weakly coupled to an optical
mode, Nat. Photonics 14, 719 (2020).

[8] P. M. Leung and B. C. Sanders, Coherent Control of Micro-
wave Pulse Storage in Superconducting Circuits, Phys. Rev.
Lett. 109, 253603 (2012).

[9] H. Zheng, D. J Gauthier, and H. U. Baranger, Waveguide-
QED-Based Photonic Quantum Computation, Phys. Rev.
Lett. 111, 090502 (2013).

[10] H. Zheng and H. U. Baranger, Persistent Quantum Beats and
Long-Distance Entanglement from Waveguide-Mediated
Interactions, Phys. Rev. Lett. 110, 113601 (2013).

[11] A. Johnson, M. Blaha, A. E. Ulanov, A. Rauschenbeutel, P.
Schneeweiss, and J. Volz, Observation of Collective
SuperStrong Coupling of Cold Atoms to a 30-m
Long Optical Resonator, Phys. Rev. Lett. 123, 243602
(2019).

[12] H. J. Kimble, The quantum internet, Nature (London) 453,
1023 (2008).

[13] M. Laakso and M. Pletyukhov, Scattering of Two Photons
from Two Distant Qubits: Exact Solution, Phys. Rev. Lett.
113, 183601 (2014).

[14] C. Noh and D. G. Angelakis, Quantum simulations and
many-body physics with light, Rep. Prog. Phys. 80, 016401
(2017).

[15] K. G. L. Pedersen and M. Pletyukhov, Few-photon scatter-
ing on Bose-Hubbard lattices, Phys. Rev. A 96, 023815
(2017).

[16] T. Shi, Y.-H. Wu, A. González-Tudela, and J. I. Cirac,
Effective many-body Hamiltonians of qubit-photon bound
states, New J. Phys. 20, 105005 (2018).

[17] K. Xu, J.-J. Chen, Y. Zeng, Y.-R. Zhang, C. Song, W. Liu,
Q. Guo, P. Zhang, D. Xu, H. Deng, K. Huang, H. Wang, X.
Zhu, D. Zheng, and H. Fan, Emulating Many-Body Locali-
zation with a Superconducting Quantum Processor, Phys.
Rev. Lett. 120, 050507 (2018).

[18] Z. Wang, T. Jaako, P. Kirton, and P. Rabl, Supercorrelated
Radiance in Nonlinear Photonic Waveguides, Phys. Rev.
Lett. 124, 213601 (2020).

[19] I. Iorsh, A. Poshakinskiy, and A. Poddubny, Waveguide
Quantum Optomechanics: Parity-Time Phase Transitions in
Ultrastrong Coupling Regime, Phys. Rev. Lett. 125, 183601
(2020).

[20] L. D. Faddeev, The new life of complete integrability, Phys.
Usp. 56, 465 (2013).

[21] J. E. Moore, A perspective on quantum integrability in
many-body-localized and Yang–Baxter systems, Phil.
Trans. R. Soc. A 375, 20160429 (2017).

[22] V. E. Bunakov, Quantum signatures of chaos or quantum
chaos? Phys. At. Nucl. 79, 995 (2016).

[23] D. Ullmo, Many-body physics and quantum chaos, Rep.
Prog. Phys. 71, 026001 (2008).

[24] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol,
From quantum chaos and eigenstate thermalization to
statistical mechanics and thermodynamics, Adv. Phys. 65,
239 (2016).

[25] M. Aßmann, J. Thewes, D. Fröhlich, and M. Bayer,
Quantum chaos and breaking of all anti-unitary symmetries
in Rydberg excitons, Nat. Mater. 15, 741 (2016).

[26] J. Maldacena, S. H. Shenker, and D. Stanford, A bound on
chaos, J. High Energy Phys. 08 (2016) 106.

[27] T. Morita, Thermal Emission from Semiclassical Dynamical
Systems, Phys. Rev. Lett. 122, 101603 (2019).

PHYSICAL REVIEW LETTERS 126, 203602 (2021)

203602-5

https://doi.org/10.1103/RevModPhys.89.021001
https://doi.org/10.1103/RevModPhys.90.031002
https://doi.org/10.1103/RevModPhys.90.031002
https://doi.org/10.1126/science.1244324
https://doi.org/10.1038/s41586-019-0902-3
https://doi.org/10.1038/s41586-019-0902-3
https://doi.org/10.1038/s41586-019-1196-1
https://doi.org/10.1038/s41535-021-00310-z
https://doi.org/10.1038/s41535-021-00310-z
https://doi.org/10.1038/s41566-020-0692-z
https://doi.org/10.1103/PhysRevLett.109.253603
https://doi.org/10.1103/PhysRevLett.109.253603
https://doi.org/10.1103/PhysRevLett.111.090502
https://doi.org/10.1103/PhysRevLett.111.090502
https://doi.org/10.1103/PhysRevLett.110.113601
https://doi.org/10.1103/PhysRevLett.123.243602
https://doi.org/10.1103/PhysRevLett.123.243602
https://doi.org/10.1038/nature07127
https://doi.org/10.1038/nature07127
https://doi.org/10.1103/PhysRevLett.113.183601
https://doi.org/10.1103/PhysRevLett.113.183601
https://doi.org/10.1088/0034-4885/80/1/016401
https://doi.org/10.1088/0034-4885/80/1/016401
https://doi.org/10.1103/PhysRevA.96.023815
https://doi.org/10.1103/PhysRevA.96.023815
https://doi.org/10.1088/1367-2630/aae4a9
https://doi.org/10.1103/PhysRevLett.120.050507
https://doi.org/10.1103/PhysRevLett.120.050507
https://doi.org/10.1103/PhysRevLett.124.213601
https://doi.org/10.1103/PhysRevLett.124.213601
https://doi.org/10.1103/PhysRevLett.125.183601
https://doi.org/10.1103/PhysRevLett.125.183601
https://doi.org/10.3367/UFNe.0183.201305b.0487
https://doi.org/10.3367/UFNe.0183.201305b.0487
https://doi.org/10.1098/rsta.2016.0429
https://doi.org/10.1098/rsta.2016.0429
https://doi.org/10.1134/S1063778816060053
https://doi.org/10.1088/0034-4885/71/2/026001
https://doi.org/10.1088/0034-4885/71/2/026001
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1038/nmat4622
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1103/PhysRevLett.122.101603


[28] K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E.
Northup, and H. J. Kimble, Photon blockade in an optical
cavity with one trapped atom, Nature (London) 436, 87
(2005).

[29] E. H. Lieb and W. Liniger, Exact analysis of an interacting
Bose gas. I. The general solution and the ground state, Phys.
Rev. 130, 1605 (1963).

[30] J. B. McGuire, Study of exactly soluble one-dimensional
n-body problems, J. Math. Phys. (N.Y.) 5, 622 (1964).

[31] M. Gaudin, Boundary energy of a Bose gas in one
dimension, Phys. Rev. A 4, 386 (1971).

[32] M.W. Beims, C. Manchein, and J. M. Rost, Origin of chaos
in soft interactions and signatures of nonergodicity, Phys.
Rev. E 76, 056203 (2007).

[33] D. L. Shepelyansky, Chaotic delocalization of two interact-
ing particles in the classical Harper model, Eur. Phys. J. B
89, 157 (2016).

[34] M. Van Vessen, M. C. Santos, B. K. Cheng, and M. G. E.
da Luz, Origin of quantum chaos for two particles interact-
ing by short-range potentials, Phys. Rev. E 64, 026201
(2001).

[35] G. Casati and T. Prosen, Mixing Property of Triangular
Billiards, Phys. Rev. Lett. 83, 4729 (1999).

[36] Y.-X. Zhang and K. Mølmer, Theory of Subradiant States of
a One-Dimensional Two-Level Atom Chain, Phys. Rev.
Lett. 122, 203605 (2019).

[37] J. Zhong, N. A. Olekhno, Y. Ke, A. V. Poshakinskiy, C. Lee,
Y. S. Kivshar, and A. N. Poddubny, Photon-Mediated
Localization in Two-Level Qubit Arrays, Phys. Rev. Lett.
124, 093604 (2020).

[38] A. V. Poshakinskiy, J. Zhong, Y. Ke, N. A. Olekhno, C. Lee,
Y. S. Kivshar, and A. N. Poddubny, Quantum Hall phases
emerging from atom–photon interactions, npj Quantum Inf.
7, 34 (2021).

[39] E. L. Ivchenko, Excitonic polaritons in periodic quantum-
well structures, Sov. Phys. Solid State 33, 1344 (1991),
http://mi.mathnet.ru/rus/ftt/v33/i8/p2388.

[40] A. Albrecht, L. Henriet, A. Asenjo-Garcia, P. B. Dieterle, O.
Painter, and D. E. Chang, Subradiant states of quantum bits
coupled to a one-dimensional waveguide, New J. Phys. 21,
025003 (2019).

[41] T. Caneva, M. T. Manzoni, T. Shi, J. S. Douglas, J. I. Cirac,
and D. E. Chang, Quantum dynamics of propagating

photons with strong interactions: A generalized input–out-
put formalism, New J. Phys. 17, 113001 (2015).

[42] Y. Ke, A. V. Poshakinskiy, C. Lee, Y. S. Kivshar, and A. N.
Poddubny, Inelastic Scattering of Photon Pairs in Qubit
Arrays with Subradiant States, Phys. Rev. Lett. 123, 253601
(2019).

[43] See Supplemental Materials, which include Refs. [44–47],
at http://link.aps.org/supplemental/10.1103/PhysRevLett
.126.203602 for the derivation details and auxiliary calcu-
lation results.

[44] Y.-X. Zhang, C. Yu, and K. Mølmer, Subradiant bound
dimer excited states of emitter chains coupled to a one
dimensional waveguide, Phys. Rev. Research 2, 013173
(2020).

[45] A. V. Poshakinskiy and A. N. Poddubny, Biexciton-
mediated superradiant photon blockade, Phys. Rev. A 93,
033856 (2016).

[46] A. A. Abrikosov, Electron scattering on magnetic impurities
in metals and anomalous resistivity effects, Phys. Phys. Fiz.
2, 5 (1965).

[47] E. L. Ivchenko, Optical Spectroscopy of Semiconductor
Nanostructures (Alpha Science International, Harrow,
2005).

[48] M. V. Berry, Regular and irregular semiclassical wavefunc-
tions, J. Phys. A 10, 2083 (1977).

[49] A. N. Poddubny, Quasiflat band enabling subradiant two-
photon bound states, Phys. Rev. A 101, 043845 (2020).

[50] M. T. Batchelor, The Bethe ansatz after 75 years, Phys.
Today 60, No. 1, 36 (2007).

[51] J. M. Zhang, D. Braak, and M. Kollar, Bound States in the
Continuum Realized in the One-Dimensional Two-Particle
Hubbard Model with an Impurity, Phys. Rev. Lett. 109,
116405 (2012).

[52] S. Longhi and G. Della Valle, Tamm–Hubbard surface states
in the continuum, J. Phys. Condens. Matter 25, 235601
(2013).

[53] E. Kim, X. Zhang, V. S. Ferreira, J. Banker, J. K. Iverson, A.
Sipahigil, M. Bello, A. González-Tudela, M. Mirhosseini,
and O. Painter, Quantum Electrodynamics in a Topological
Waveguide, Phys. Rev. X 11, 011015 (2021).

[54] Y. Ye et al., Propagation and Localization of Collective
Excitations on a 24-Qubit Superconducting Processor, Phys.
Rev. Lett. 123, 050502 (2019).

PHYSICAL REVIEW LETTERS 126, 203602 (2021)

203602-6

https://doi.org/10.1038/nature03804
https://doi.org/10.1038/nature03804
https://doi.org/10.1103/PhysRev.130.1605
https://doi.org/10.1103/PhysRev.130.1605
https://doi.org/10.1063/1.1704156
https://doi.org/10.1103/PhysRevA.4.386
https://doi.org/10.1103/PhysRevE.76.056203
https://doi.org/10.1103/PhysRevE.76.056203
https://doi.org/10.1140/epjb/e2016-70225-1
https://doi.org/10.1140/epjb/e2016-70225-1
https://doi.org/10.1103/PhysRevE.64.026201
https://doi.org/10.1103/PhysRevE.64.026201
https://doi.org/10.1103/PhysRevLett.83.4729
https://doi.org/10.1103/PhysRevLett.122.203605
https://doi.org/10.1103/PhysRevLett.122.203605
https://doi.org/10.1103/PhysRevLett.124.093604
https://doi.org/10.1103/PhysRevLett.124.093604
https://doi.org/10.1038/s41534-021-00372-8
https://doi.org/10.1038/s41534-021-00372-8
http://mi.mathnet.ru/rus/ftt/v33/i8/p2388
http://mi.mathnet.ru/rus/ftt/v33/i8/p2388
http://mi.mathnet.ru/rus/ftt/v33/i8/p2388
https://doi.org/10.1088/1367-2630/ab0134
https://doi.org/10.1088/1367-2630/ab0134
https://doi.org/10.1088/1367-2630/17/11/113001
https://doi.org/10.1103/PhysRevLett.123.253601
https://doi.org/10.1103/PhysRevLett.123.253601
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.203602
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.203602
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.203602
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.203602
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.203602
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.203602
https://doi.org/10.1103/PhysRevResearch.2.013173
https://doi.org/10.1103/PhysRevResearch.2.013173
https://doi.org/10.1103/PhysRevA.93.033856
https://doi.org/10.1103/PhysRevA.93.033856
https://doi.org/10.1103/PhysicsPhysiqueFizika.2.5
https://doi.org/10.1103/PhysicsPhysiqueFizika.2.5
https://doi.org/10.1088/0305-4470/10/12/016
https://doi.org/10.1103/PhysRevA.101.043845
https://doi.org/10.1063/1.2709557
https://doi.org/10.1063/1.2709557
https://doi.org/10.1103/PhysRevLett.109.116405
https://doi.org/10.1103/PhysRevLett.109.116405
https://doi.org/10.1088/0953-8984/25/23/235601
https://doi.org/10.1088/0953-8984/25/23/235601
https://doi.org/10.1103/PhysRevX.11.011015
https://doi.org/10.1103/PhysRevLett.123.050502
https://doi.org/10.1103/PhysRevLett.123.050502

