Chemiluminescence detection of cannabinoids and related compounds with acidic potassium permanganate

Brendan J. Holland, a Paul S. Francis, a*x Bingshan Li, b Takuya Tsuzuki, b Jacqui L. Adcock, a Neil W. Barnett a and Xavier A. Conlan a*x

This is the first report of chemiluminescence from the reaction of cannabinoids with acidic potassium permanganate, which we have applied to the high performance liquid chromatography (HPLC) determination of cannabidiol (CBD) in industrial-grade hemp. The intensities of the light-producing reactions with two commercially available cannabinoïd standards were compared to that of seven model phenolic analytes. Resorcinol, representing the parent phenolic moiety of the cannabinoïd class, was shown to react with the permanganate reagents in a manner more similar to phenol than to its hydroxyphenol positional isomers, pyrocatechol and hydroquinone. Alkyl substituents on the phenolic ring, however, have a considerable impact on emission intensity that is dependent upon the position of the groups and the composition of the permanganate reagent. This analytical approach has potential for the determination of other cannabinoïds including Δ9-tetrahydrocannabinol in drug-grade cannabis. Copyright © 2012 John Wiley & Sons, Ltd.

Keywords: chemiluminescence; cannabinoids; cannabis; cannabidiol; cannabigerol; THC

Introduction

Chemiluminescence (the emission of light from an electronically excited product of a chemical reaction) has been exploited as a highly sensitive mode of detection for many pharmaceuticals and controlled drugs,[1–6] including opioids (e.g. morphine,[9] heroin[10]), tranquillizers (e.g. lorazepam,[11] nitrazepam[12]) stimulants (e.g. methamphetamines,[13] cocaine[14]), and hallucinogens (e.g. psilocin,[15] phenylcyclidine[16]). In contrast, there has been very little study of chemiluminescence reactions with cannabinoïds (the terpenophenolic secondary plant metabolites largely responsible for the bioactivity of cannabis[17]). Over 90 different cannabinoïds have been identified,[17] with the five major compounds reported to be cannabinoïl (CBN), Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), cannabigerol (CGB) and cannabichromene (CBC) (Figure 1).[18] The first isolated was CBN,[19] a degradation product of the psychoactive cannabinoid present in drug-grade cannabis.[20] CBD is the most concentrated cannabinoïd in nondrug varieties.[21]

In 1972, Monforte et al.[22] published a brief note of their observation that ethanolic extracts of hashish and solutions of its major constituents (CBN, CBD, and THC) inhibited the haemoglobin-catalyzed chemiluminescence reaction of luminol and hydrogen peroxide, but this approach has not been further explored. Over a decade later, Abbott[23] investigated the chemiluminescence reactions of acidic potassium permanganate with illicit drugs and related molecules, including CBD. Subsequent studies showed that permanganate reagents generate an intense emission (emanating from an electronically excited Mn(III) species)[24] with many phenolic compounds,[4] but Abbott did not observe a significant response for CBD, in comparison with the large signal obtained for the phenolic opioid morphine.[7,23]

We recently gained insight into the vast differences in intensity elicited by different phenols and related compounds with this reagent by comparing the responses for nine hydroxyl/amino disubstituted benzene positional isomers.[25] In each case, the light-producing pathway of the meta-substituted compound was found to be far slower (resulting in much lower chemiluminescence intensities in flow analysis systems) than that of the ortho or para isomers. Furthermore, we have shown that an initial partial reduction of permanganate reagents can be used to generate relatively high concentrations of the key Mn(III) precursor to the emitter (Figure 2),[26,27] resulting in considerable increases in reaction rates and chemiluminescence intensities. This effect is most prominent for otherwise slow-reacting analytes, such as phenols without additional hydroxyl, alkoxyl or amino substituents (e.g. synephrine and tyrosine), or phenols with those substituents in the meta position (e.g. resorcinol and fenoterol).[25–27]

Considering that cannabinoïds contain meta-substituted dihydroxybenzene groups or cyclic alkoxyl analogues (Figure 1), an examination of the chemiluminescence reactions of these and related compounds with permanganate offers not only a novel approach for their detection, but also a greater understanding of the relationship between analyte structure and chemiluminescence intensity with this widely utilized reagent.

* Correspondence to: Paul S. Francis or Xavier A. Conlan, School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong, Victoria 3220, Australia. E-mail: paul.francis@deakin.edu.au; xavier@deakin.edu.au

a Centre for Biotecnology, Chemistry and Systems Biology, School of Life and Environmental Sciences, Deakin University

b Centre for Material and Fibre Innovation, Deakin University
Experimental

Flow injection analysis (FIA)

A simple two-line FIA manifold was constructed as previously described. The analytes were injected (70 μl) into a carrier stream, which merged at a T-piece with the acidic potassium permanganate to form the flow-cell. Both lines were pumped at a flow rate of 3.5 ml min⁻¹. The flow-cell was mounted flush against the window of a photomultiplier tube (Electron Tubes model 9828SB; ETP, NSW, Australia) encased in a light-tight housing and powered by a stable power supply at 950 V. Chemiluminescence intensities were documented with a chart recorder and measured manually using peak height. Details of the stopped-flow experiments are included as electronic supporting information.

High performance liquid chromatography (HPLC)

Chromatographic analysis was carried out using an Agilent Technologies 1200 Series liquid chromatography system, equipped with a solvent degasser, quaternary pump and autosampler (Agilent Technologies, Vic, Australia). Agilent Chemstation software was used for system control and data acquisition. Chemiluminescence detection was employed using the manifold described above, by replacing the carrier stream (and injection valve) with the exit line from the column. The chemiluminescence reagent was propelled at 1.2 ml min⁻¹ using a Gilson Minipuls 3 peristaltic pump (John Morris Scientific, NSW, Australia). An analogue-to-digital interface box (Agilent) was used to convert detector signals. Extract solutions were filtered through a 0.45 μm nylon membrane prior to HPLC analysis. All separations were carried out using an Agilent Eclipse XDB-C18 column (5 μm, 96%), pyrocatechol, phenol, thiosulfate (anhydrous), sodium polyphosphate (crystals, +80 mesh, 96%), pyrocatechol, phenol, t-butylcatechol, resorcinol,

Extraction from hemp

Samples were prepared by solvent extraction from hemp leaf powder prepared as follows: industrial-grade hemp leaf (Commins Stainless Manufacturing Farm, Whitton, NSW, Australia) was collected and stored at room temperature, washed under water and dried at 60 °C, and then ground into a powder and passed through a 368 μm screen. Cannabinoids were extracted from 5 g of the powder with 300 ml of solvent (ethyl acetate, hexane, chloroform, ethanol or petroleum ether) for 1.5 h at boiling temperature using a Soxhlet apparatus. Another 300 ml of solvent was added and the extraction repeated for another hour. The two extracts were combined and then evaporated to dryness under vacuum at 40 °C, and stored at 4 °C until use.

Reagents

Standard solutions of CBD and CBG were sourced from Sapphire Bioscience (NSW, Australia). Potassium permanganate and ethanol were obtained from Chem Supply (SA, Australia). Sodium thiosulfate (anhydrous), sodium polyphosphate (crystals, +80 mesh, 96%), pyrocatechol, phenol, t-butylcatechol, resorcinol, and Anal Drug Testing and Analysis

B. J. Holland et al.
hydroquinone, orcinol and olivetol were supplied by Sigma-Aldrich (NSW, Australia). Methanol, petroleum ether (40–60 °C) and sulfuric acid (98%) were supplied by Merck (Vic, Australia). HPLC-grade methanol and ammonium formate were supplied by Ajax (NSW, Australia).

The standard permanganate reagent was prepared daily by dissolution of sodium polyphosphate (10 g L⁻¹) in water, adding potassium permanganate (1.0 mM) and adjusting to pH 2.5 using sulfuric acid. The enhanced permanganate reagents were prepared by dissolution of sodium polyphosphate (10 g L⁻¹) in water, adding potassium permanganate (1.9 mM), adjusting to pH 2.5 and then adding sodium thiosulfate (0.6 or 1.0 mM), using a small volume of a 0.1 M solution.

Results and discussion

Our initial investigations into the use of permanganate chemiluminescence for this application were conducted with seven readily available model analytes (Figure 3). Three dihydroxybenzene isomers – resorcinol, hydroquinone, and pyrocatechol – were included for direct comparison to our previous study,[25] and because resorcinol represents the parent phenolic moiety of the cannabinoid class. Phenol was included to test our previous postulation that the light producing pathways of meta-substituted dihydroxybenzene derivatives (e.g. resorcinol,[25] fenoterol,[27] and by extension, cannabinoids) with this reagent are similar to that of phenols without hydroxyl/ amino groups. We selected orcinol, olivetol and t-butylcatechol to gain insight into the effects of the alkyl substituents on the phenolic ring of cannabinoid compounds. In initial experiments, stock analyte solutions (1 x 10⁻³ M) were prepared in methanol and diluted to 1 x 10⁻⁵ M in water.

The chemiluminescence intensities for each analyte upon reaction with the standard reagent and two ‘enhanced’ permanganate reagents containing relatively high concentrations of Mn(III) (optimized for related phenolic compounds in our previous study)[27] were established using FIA methodology (Figure 4). Responses for resorcinol were similar to phenol, where both exhibited very low signals with the standard reagent (white columns), but far greater enhancement than pyrocatechol and hydroquinone when the reagents containing Mn(III) were used (grey and black columns). An examination of the chemiluminescence intensity over time using stopped-flow instrumentation (Figures S1a and S1b; electronic supporting information) confirmed that in both cases the enhancement was largely a consequence of a significant increase in the rate of the otherwise slow light-producing reaction with the standard reagent. The use of the enhanced reagent improved the limits of detection for phenol and resorcinol from 1 x 10⁻⁹ M to 8 x 10⁻⁹ M, which is superior to most values reported for these compounds with permanganate chemiluminescence,[30–35] and equivalent to those of a procedure incorporating pre-concentration of the analyte within a solid-phase reactor prior to chemiluminescence detection.[36]

The responses for t-butylcatechol showed a similar trend to that of pyrocatechol and hydroquinone, where the relatively large signals with the standard reagent were only enhanced by 4- to 9-fold by increasing the concentration of Mn(III) in the reagent. The absolute intensities, however, were much higher for t-butylcatechol than the other analytes (NB: the data for t-butylcatechol in Figure 4 was obtained using an order of magnitude lower concentration). In contrast, the presence of alkyl groups at the C5 position of orcinol and olivetol reduced the chemiluminescence signal with the enhanced permanganate reagents (compared to resorcinol).

The cannabinoid standards used in this study (cannabidiol (CBD) and cannabigerol (CBG), Figure 1) were less soluble in aqueous solution than the model compounds, and therefore subsequent comparisons were conducted with the analyte stocks (1 x 10⁻³ M) prepared in methanol and then diluted with 1:1 methanol:water. A carrier stream of 1:1 methanol:water was also employed. Under these conditions, the same general trends were observed for the chemiluminescence responses, but the absolute signals were larger (Figure 5). Although the alkyl groups at the C5 position in orcinol and olivetol caused a reduction in the chemiluminescence response with the enhanced permanganate reagents (compared to resorcinol), the additional alkyl moieties at the C2 position in CBD and CBG imparted a large (~50-fold) increase in intensity with the standard permanganate reagent, similar to the effect of the alkyl group in t-butylcatechol (Figures S1 and S2) and partially ameliorated the effect of the pentyl group on the response with the enhanced reagent.

Under the separation conditions described in the experimental section, the elution time for CBD was 32.8 min and the limit of detection was 1 x 10⁻⁶ M. The CBG standard was found to co-elute with CBD, but a preliminary examination of the hemp-leaf extracts using mass spectrometry revealed the absence of any

![Figure 3. Structures of the seven model compounds: phenol (PH), hydroquinone (H), resorcinol (R), pyrocatechol (PC), t-butylcatechol (TBC), orcinol (OR) and olivetol (OL).](image-url)
significant concentration of CBG in the sample. Ethyl acetate and ethanol were found to extract similar quantities of CBD from the sample, which were higher than the concentrations extracted by the other three solvents. Figure 6 shows the chromatograms obtained for the ethyl acetate extract of a male hemp leaf sample, comparing the standard and enhanced permanganate reagents. In agreement with the FIA results, greater signal intensities for CBD were obtained with the permanganate reagents.

To determine the concentration of CBD in the hemp leaf extracts, a linear calibration was prepared using 10 standard solutions between 5×10^{-5} M and 5×10^{-4} M ($R^2 = 0.9999$) (Figure S3). The concentration found in male and female hemp leaf extracts was 2.0×10^{-4} M and 2.2×10^{-4} M, which equated to 0.75% and 0.83% CBD (by mass) in the original dried leaf samples. While it should be noted that the quantification of neutral cannabinoids is complicated by the degree that their acidic precursors are converted to the target analytes during extraction, these values are well within the range reported by de Meijer and co-workers (0.55% to 1.8%) for dried leaf powders from 62 non-drug phenotype cannabis samples from a diverse range of sources.[37]

Conclusion

The meta-substituted dihydroxybenzene, resorcinol, was shown to react with the permanganate reagents in a more similar manner to unsubstituted phenol, rather than pyrocatechol or hydroquinone, for which simple oxidation pathways to benzoquinone products are available. The alkyl groups at the C2 and C5 positions of the cannabinoid benzene ring have very different effects on chemiluminescence intensity with acidic potassium permanganate. The pentyl group at C5 reduced the response with the enhanced reagent, whereas the larger alkyl moiety at C2 increased the intensity by approximately 50-fold (Figure 2).

The chemiluminescence reaction of cannabinoids with acidic potassium permanganate was successfully applied to the HPLC determination of CBD in industrial-grade hemp, which gave a result consistent with previous findings. This analytical approach could be extended to other cannabinoids, such as THC in drug-grade cannabis.

References

Chemiluminescence detection of cannabinoids with acidic potassium permanganate

