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Abstract

This work discusses the issue of approximation in point set matching. In general, one may have two classes of approximations when
tackling a matching problem: (1) an algorithmic approximation which consists in using suboptimal procedures to infer the assignment, and
(2), a representational approximation which involves a simplified and suboptimal model for the original data. Matching techniques have
typically relied on the first approach by retaining the complete model and using suboptimal techniques to solve it. In this paper, we show
how a technique based on using exact inference in simple Graphical Models, an instance of the second class, can significantly outperform
instances of techniques from the first class. We experimentally compare this method with well-known Spectral and Relaxation methods,
which are exemplars of the first class. We have performed experiments with synthetic and real-world data sets which reveal significant
performance improvement in a wide operating range.
! 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The point set matching problem consists in finding cor-
respondences between two point sets, which may be one-
to-one or also many-to-one [1,2], and arises in a variety of
real-world vision tasks such as stereo vision, registration,
model-based object recognition and the like. In any real vi-
sion problem we are faced with inexact point set matching,
or matching under structural corruption, which is known
to be an NP-hard problem [3]. As a result, one must rely
on approximate techniques that derive the “best” assign-
ment in some suboptimal sense. Major representatives of
proposed techniques are spectral [4,5] and relaxation label-
ing methods [6,9]. These families of techniques consist in
encoding all the available information into a complete data
model (such as the complete distance matrix) and subse-
quently using approximate algorithms to derive the assign-
ment. Several limitations have been reported with respect to
spectral methods when structural corruption is present and
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with respect to relaxation methods when matching large
point sets [1,4,7,8].

This paper shows how a different approach leads to an
alternative method that overcomes many of the limitations
existent in some spectral and relaxation approaches. Essen-
tially, instead of using a complete data model and an approx-
imate algorithm, we use the opposite. By using the point
matching principle introduced in Ref. [2], we model the
structure of points by several sparse representations that de-
liberately disregard particular subsets of relational informa-
tion that is actually available. In other words, we approxi-
mate the data model. The reason for this becomes clear in
the next step: by taking advantage of this sparsity, we are
able to apply optimal algorithms to derive the best assign-
ment (what is not possible with the complete data model).

For performance evaluation, we have conducted exper-
iments with synthetic and real-world data sets, where we
compared the results of our approximate models with those
obtained with traditional versions of spectral and relaxation
methods, namely the Shapiro and Brady spectral method
[5] and the Rosenfeld et al. relaxation method [9,10]. Re-
sults indicate that the accuracy obtained with the described
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models significantly exceeds that obtained by the alternative
techniques in a wide operating range, either under structural
corruption by point position jitter or under augmentation of
the point set sizes.

2. Problem definition

We consider the problem, in R2, of finding the subset
of an S-sized point set (the codomain pattern) that best
matches another point set (the domain pattern) having T
points, where T !S. There may or may not exist distortions
due to noise, but if there are, we assume no prior knowl-
edge of the type of noise. We restrict the matching to be in-
variant up to isometries, so we do not consider scaling. The
only constraint enforced in the mapping is that it must be a
total function: every point in the domain pattern must map
to one point in the codomain pattern (but the opposite may
not hold).

3. Benchmarks

In order to evaluate the performance of our models, we
perform experimental comparison with some standard solu-
tions available in the literature. Specifically, we will focus
on techniques for point pattern matching that take into ac-
count exclusively the pairwise distances between points as
features. This is so because of two reasons. First, as men-
tioned above, we are considering the isometric version of the
problem. Second, and of special importance, is the fact that
in order to accomplish a fair comparison we must ensure
that the different techniques are not provided with different
prior information. Of course specialized techniques can be
designed which take advantage of constraints that may be
known to appear in specific application domains, but they
are not interesting for our purposes since our aim consists in
comparing different “principles” of solution in the general
case, not in a specific application.

3.1. Spectral methods

One class of solution to graph matching problems in gen-
eral, and point pattern matching in particular, is that based on
the spectral analysis of the adjacency matrix or alternatively
of the Laplacian matrix of a given point set [1,4,5,11,12]. The
basic idea common to most methods consists in performing
spectral analysis in each of the adjacency matrices (or Lapla-
cian matrices) and comparing the eigenvalues/eigenvectors
using some matching criteria. An early and standard rep-
resentative of these techniques is the Shapiro–Brady (SB)
method [5]. In this method, the adjacency matrix A is com-
puted by exponentiating the Euclidean distance matrix so as
to obtain entries that are higher for closer points:

Aij = exp
(
−dij /2!2

)
, (1)

where dij is the Euclidean distance between points i and j,
and ! is usually heuristically chosen. Then, singular value
decomposition is performed

A = V DV T, (2)

where V = (F1, . . . , Fm)T. The rows of V (Fi’s), which cor-
respond to the eigenvectors of A, are seen as feature vectors.
The SVD is performed both for the adjacency matrix of the
first pattern (A) and that of the second pattern (A′), so that
we have also V ′ = (F

′
1, . . . , F

′
m)T. The final operation then

consists in comparing the feature vectors for the different
patterns,

Zij =
∥∥∥Fi − F

′
j

∥∥∥
2

2
. (3)

Corresponding feature vectors in the two patterns may ap-
pear with opposite orientation, so a sign correction stage
must be implemented, and the simplest way of doing that is
using a majority rule [5].

Clearly, for different pattern sizes the spaces will have dif-
ferent dimensionality, and the algorithm, as originally pro-
posed, is not suited for this case. Although very heuristic,
this algorithm is extremely fast for standards of matching
algorithms (O(T 3), where T is the size of the domain and
codomain patterns—they must be the same, otherwise the
dimensions of F and F ′ are different and the last step, Eq.
(3), cannot be accomplished). Also, it encodes all the pair-
wise distances in the point patterns. In the wording of this
paper, it uses an “optimal representation”, since the amount
of information that is made available to this algorithm is
complete—under the assumption of handling isometric in-
variances only. However, this approach clearly uses an “ap-
proximate algorithm” for performing the matching, since for
example different matrices can have the same spectrum.

3.2. Relaxation methods

In probabilistic relaxation labeling (PRL), each point in
the domain pattern is seen as a “site” and each one in the
codomain pattern is seen as a possible “label” for each site.
The fundamental idea of PRL is to update the probability of
assigning label k to site i by taking into account the compat-
ibility of its neighboring assignments. The global compati-
bility or support that the neighbors of i pass to i at iteration
r is then somehow aggregated over versions of individual
compatibilities c at iteration r. This is the common princi-
ple in many versions of PRL [6,9,10,13,14], with the basic
difference being in how the support function is designed. In
this paper we focus on a standard version of PRL described
in Ref. [9], whose support function is given by

q
(r)
ik = 1

|Ni |
∑

j∈Ni

S∑

l=1

c(i, k; j, l)p
(r)
j l , (4)

whereNi is the set of neighbors of vertex i, qik is the support
that the assignment i → k receives from the neighbors of i
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and pjl is the probability of the assignment j → l. For the
particular case where the graph is fully connected and all
vertices are neighbors we have

q
(r)
ik = 1

T − 1

∑

j &=i

S∑

l=1

c(i, k; j, l)p
(r)
j l . (5)

The probability that i should be assigned to k is then updated
based on the support q

(r)
ik

p
(r+1)
ik = p

(r)
ik q

(r)
ik∑S

k=1 p
(r)
ik q

(r)
ik

. (6)

The algorithm is thus an iterative one. At each iteration r,
the probabilities p

(r)
ik , for all i and k, are updated (what can

indeed be done in parallel). The algorithm stops when a fixed
maximum number of iterations has been reached or when
it reaches a fixed point. At this stage, we simply assign to
each site i the label k∗ such that pik∗ > pik, ∀k &= k∗.

The algorithm is clearly an heuristic optimization proce-
dure. First, it is iterative, and there is no principled way of
estimating how many iterations should be used for a particu-
lar problem size. Second, it is dependent on the initialization
of the probabilities pik . If we are lucky to initialize the prob-
abilities in such a way that the maximum of the matching
similarity is close to the initialized solution, the algorithm
may converge in a reasonable amount of iterations. On the
other hand, if this is not the case and the complexity of the
problem is high (if T and/or S are not small), the amount of
iterations needed in order to find the optimal solution may
be so large that it is simply not feasible to wait the required
time. Third, even if the algorithm converges in a reasonable
amount of iterations, the fixed point is only guaranteed to
be a local optimum [10]. The computational complexity of
the algorithm described above is O(T 2S3) per iteration.

Note that, although this is an approximate algorithm, like
the SB spectral method, it also can use all the pairwise
distances as features, so it qualifies as using an “optimal
representation”, in our parlance. In the next section we de-
scribe an alternative approach, which consists in inverting
this reasoning: we will present suboptimal representations
for the point pattern matching problem; however, in these
suboptimal representations, we will see that optimal algo-
rithms can run in polynomial time.

4. Approximating the problem

Here we show how the method first introduced in Ref. [2]
can be used to generate, in a systematic way, a number of
approximate models for the isometric point pattern matching
problem. First, we review the method by describing how the
problem can be written as a weighted graph matching prob-
lem. Then we present the idea of solving approximately the
weighted graph matching problem by using sparse Graphi-
cal Models. In the sequel, we describe how such Graphical

Models are designed (the potential functions and the edge
connectivity).

4.1. Point pattern matching as weighted graph matching

Let the cardinalities of the domain and codomain pat-
tern sets be denoted, respectively, by T and S. The rela-
tive Euclidean distance between a pair {di1 , di2} of points
in the domain pattern is denoted as yd

i1i2
. Analogously for

the codomain pattern, we have that yc
k1k2

is the distance be-
tween points ck1 and ck2 . The first idea in this point pattern
matching technique is the following: if the Euclidean dis-
tance matrices (EDMs) of two point sets are the same under
some permutation, the point sets are isometric [15]. As a re-
sult, isometry can be tested by comparing the first EDM with
all permutations of the second EDM. The problem of EDM
comparison can be cast as one of weighted graph matching.
Each point di in the domain is associated with a vertex of
a graph Gd , and each point ck in the codomain is associ-
ated with a vertex of a graph Gc. The weight between a pair
of vertices is the entry in the EDM for the corresponding
pair, so the graphs are in principle fully connected. As a re-
sult, point pattern matching can be then posed as a weighted
graph matching problem, where the purpose consists in find-
ing the map f that minimizes the following function:

UT (f ) =
T∑

i=1

T∑

j=1

D
(
yd
ij , y

c
f (i)f (j)

)
. (7)

Here UT (f ) is the “total” cost to be minimized (the reason
for calling it “total” will be clear later), and D(·, ·) is some
dissimilarity measure between distances. Note that the ar-
guments of D(·, ·) represent the entries in the EDMs under
the permutation induced by f.

Weighted graph matching for general fully connected
graphs is NP-hard [8]. In the following we show how this
problem can be equivalently written as one of inference
over a fully connected Graphical Model. Then we introduce
the idea of approximating the fully connected model with
sparse models where exact inference is feasible.

4.2. Weighted graph matching as inference in graphical
models

Following Ref. [2], the model formulation consists, ini-
tially, in defining each of the T vertices in Gd as a random
variable that can assume S possible values (discrete states),
corresponding to the vertices in Gc. Note that in this for-
mulation the solution to the problem (the best match) cor-
responds to finding the most likely (the best) realization of
the set of random variables (or MAP estimate of the entire
random field). The challenge then consists in (i) designing
a probability distribution whose MAP solution minimizes
Eq. (7) and (ii) computing this MAP solution efficiently.
It is not difficult to show that a fully connected pairwise



T.S. Caetano, T. Caelli / Pattern Recognition 39 (2006) 552–561 555

di1

di2

ck1

ck2

yi1i2
d

yi1i2
d

yk1k2

c

yk1k2

c

Fig. 1. An example of a pairwise mapping. An appropriate potential
function should penalize more severely mappings for which |yd

i1i2
−yc

k1k2
|

is higher.

Markov random field1 with local potential functions given
by Vij =− log "ij (xi, xj )=D(yd

ij , y
c
f (i)f (j)) does minimize

UT (f ), so that (i) is easy to solve:

p(f ) = 1
Z

∏

(i,j)

"ij

(
Xi = xf (i), Xj = xf (j)

)
(8)

= 1
Z

exp



−
∑

(i,j)

Vij

(
Xi = xf (i), Xj = xf (j)

)




= 1
Z

exp



−
T∑

i=1

T∑

j=1

D
(
yd
ij , y

c
f (i)f (j)

)


 (9)

∝ exp(−UT (f )), (10)

and maximizing p(f ) becomes equivalent to minimizing
UT (f ). However, in fully connected Graphical Models the
problem of exact MAP computation is intractable, which
gives us no hint to solve (ii). The basic idea presented in
this paper consists in approximating the cost function UT

(thus modifying the solution for (i) actually) with simpler
cost functions, defined over subsets of pairwise distances
which induce tractable graphs, where exact inference can be
performed in polynomial time.

In order to further specify such sparse Graphical Models,
it is necessary to define (i) the potential functions and (ii)
the edge connectivity of the models [16]. Next we describe
the types of potential functions that we consider.

4.3. Potential functions

Fig. 1 illustrates a pairwise map and a possible measure
which is relevant in order to construct the potential functions
(|yd

i1i2
− yc

k1k2
|).

Since each node in the domain graph can map to S differ-
ent nodes in the codomain graph, each pair of nodes can map
to S2 different pairs. Fig. 2 illustrates the nuclear structure

1 In this paper, Markov random fields and Graphical Models are
synonyms, since we consider exclusively undirected Graphical Models.

x1

Xi Xj

xS

x1

xS

Fig. 2. The nuclear structure of the graphical model.

of our model: a pairwise clique, where each random variable
(node) represents a point in the domain graph which in turn
can assume a set of S possible realizations (which themselves
correspond to points in the codomain graph).

The sample space for this clique has S2 elements, corre-
sponding to all possible combinations that a pair of points
in the domain graph can map to in the codomain graph. A
potential function is a function that associates a positive real
number to each element of the sample space. In our case,
the only requirement is that the potential function must obey
the general condition that edge similarity is indirectly pro-
portional to the difference of edge lengths, as illustrated in
Fig. 1.

Formally, we can specify the potential function, for each
pair {Xi, Xj } in Gd , as

"ij = "ij (Xi, Xj )

= 1
Z





S(yd
ij , y

c
11) . . . S(yd

ij , y
c
1S)

...
. . .

...

S(yd
ij , y

c
S1) . . . S(yd

ij , y
c
SS)



 , (11)

where Z is a normalization constant that equals the sum of
all elements in the matrix, in order to keep "ij compatible
with a probability distribution. S is a similarity function
that measures the compatibility of the two arguments. We
use here the Gaussian function,

S(yd
ij , y

c
kl) = exp

[
− 1

2!2

∣∣∣yd
ij − yc

kl

∣∣∣
2
]

. (12)

Such a proximity measure is needed in order to model the
uncertainty due to the presence of noise. Obviously, its max-
imal value must be attained at zero noise (yd

ij = yc
kl).

Having specified the potential functions, the edge con-
nectivity of the graphical model remains to be determined:
which nodes will be neighbors in the model?

4.4. Edge connectivity

As mentioned previously, our approach consists in approx-
imating the original cost function UT in such a way that the
induced Graphical Model becomes tractable. By “tractable”
we simply mean a model where exact probabilistic infer-
ence (in our case, MAP computation) can be performed in
polynomial time.

In order to select such models, one must be aware of which
topologies will lead to feasible inference. The algorithm for
exact inference in arbitrary Graphical Models, known as the
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Fig. 3. Examples of k-trees. Left: a 1-tree (typically called a “tree”).
Center: a 2-tree. Right: a 3-tree. The nodes in circled regions are examples
of maximal cliques (which have size 2, 3 and 4, respectively).

Junction Tree algorithm, has exponential complexity which
depends on the tree-width of the graph (precisely, it is equal
to the tree-width plus one, which is the size of the maximal
clique of an optimal triangulation2 of the graph). If the tree-
width is bounded (independent of the number of nodes), the
exponent will be fixed and the computational complexity
will be polynomial [16].

Given this fact, our strategy becomes a simple one: choos-
ing cost functions Upartial that take into account only relative
distances that conform to the edge connectivity of a graph
which is already triangulated and has small tree-width (by
choosing a graph which is already triangulated we avoid the
issue of finding an optimal triangulation). In our case, we
will restrict ourselves to the class of k-tree graphs, which
have tree-width of size k. A k-tree is a graph that one ob-
tains by doing the following procedure: (i), start with the
complete graph with k vertices; (ii), add a new node and
connect it with (and only with) k existent nodes that form
a complete subgraph (a k-clique); (iii), repeat (ii) as many
times as wanted.

Following this definition, we conclude that a 1-tree is what
is generally simply called a “tree”. Fig. 3 shows examples
of a 1-tree, a 2-tree and a 3-tree. In this paper, these are the
types of k-trees that will be considered, which will induce
fixed exponential complexity of 2, 3 and 4, respectively.

Accordingly, the resulting cost function that will be actu-
ally minimized will be

UGkt
d
(f ) =

∑

i,j |(i,j)∈Ekt
d

D
(
yd
ij , y

c
f (i)f (j)

)
, (13)

where Gkt
d = (V,Ekt

d ) is the subgraph of Gd induced by
the edge set Ekt

d (kt stands for k-tree). What differs for each
model is precisely Ekt

d : for a 1-tree model it consists of a
set of edges forming a 1-tree, and similarly for 2-tree and
3-tree models.

Fig. 4 shows examples of Probabilistic Graphical Models
for point pattern matching that have topologies given by k-
trees, for different values of k.

2 A triangulation of a graph is a graph obtained by adding edges to
the original graph such that every cycle of length greater than 3 in the
new graph has a chord (an edge connecting non-consecutive nodes in the
cycle). An optimal triangulation is a triangulation whose maximal clique
size is minimum among all possible triangulations. Finding an optimal
triangulation for arbitrary graphs is an NP-complete problem [16].
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Fig. 4. Graphical Models for approximate point matching. Top: a 1-tree;
Center: a 2-tree; Bottom: a 3-tree. Each of the T nodes is a random variable
representing a point in the domain graph. Each variable can assume S
possible realizations, corresponding to points in the codomain graph.

Note that these models deliberately disregard much of the
relative distance information that is actually available. This
is necessary in order to assure tractability.3

Given the edge connectivity and the pairwise potential
functions, the model is defined. The last step then consists
in inferring what is the most likely joint realization of all the
random variables for the given edge connectivity and set of
potentials of the model. This is precisely the MAP inference
problem in this model, whose solution represents the best
assignment in the point set matching task and is described
in what follows.

4.5. MAP computation

The Junction Tree framework consists in a set of general-
ized dynamic programming algorithms for exact inference
in arbitrary graphical models [16,17]. Here we use HUGIN,
an algorithm from this framework, in order to find the opti-
mal MAP estimate for the models in Fig. 4. A Junction Tree
of a graph is another graph where (i) the nodes correspond
to the maximal cliques of the former graph and (ii) the edge
connectivity is such that the running intersection property is

3 In a companion paper, we will show however that k-trees are in
some sense “optimal”—their MAP solutions are the same as those of the
fully connected model—for matching problems in Euclidean spaces of
dimension k − 1 when there is no jitter. For example, for matching in
R2, a 3-tree model has the same MAP solutions as the fully connected
model in the noiseless case.
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X1 X2

X1 X2
X1 X2

X1 X2 X3

X1 X2 X3 X4

X1 X2 X3 X1 X2 X3

X1 X2 X3 X5 X1 X2 X3 XT-1 X1 X2 X3 XT

X1 X2 X4 X1 X2 XT_1 X1 X2 XT

X1 X3 X1 XT-1 X1 XT

X1 X1

Fig. 5. The Junction Trees obtained from the models in Fig. 4.

satisfied. This property states that all the nodes in the path
between any two nodes in the Junction Tree must contain
the intersection of these two nodes. It is known that the
condition for the existence of a Junction Tree is that the
graph must be triangulated (chordal) [17].

Fig. 5 shows Junction Trees obtained from the models in
Fig. 4. The nodes of the Junction Trees are denoted by circles
in which are listed the variables of the original graph that
correspond to the respective maximal cliques. The rectangles
are the so-called separators, that contain the intersection
of the nodes to which they are linked. Both the nodes and
the separators are endowed with “clique potentials”, and the
optimization process consists in updating these potentials,
as explained below.

The algorithm essentially works in two steps: initializa-
tion and message-passing. During initialization, the clique
potential of each separator (#) is set to unity and the clique
potential of each node ($) is introduced (see Section 4.3).
These last clique potentials are assembled as an element-
by-element product of the pairwise potentials (see Eq. (11))
in the respective clique. For example, for the 3-tree model,
$(xi, xj , xk, xl) = "(xi, xj )"(xi, xk)"(xi, xl). Note that in
our case each potential is a table (an n-dimensional ta-
ble, where n is the number of variables in the node or
separator).

The second step is the message-passing scheme, which
involves a transfer of information between two nodes V and
W in a systematic way until every pair of nodes in the Junc-
tion Tree has participated in the process [16]. This operation

is defined by the following equations:

#∗
S = max

V \S
$V (14)

and

$∗
W = #∗

S

#S
$W , (15)

where we used standard notation for the current and up-
dated (∗) versions of the separator potentials (#) and the
clique potentials ($). The first equation is a maximization
over all subconfigurations in $V that do not involve the
variables which are common to #S and $V . The second is
simply a normalization step necessary to keep $W consis-
tent with the updated version of #S (division and multipli-
cation between tables are performed element-by-element).
The above potential update rules must respect the follow-
ing protocol: a node V can only send a message to a node
W when it has already received messages from all its other
neighbors. If this protocol is respected and the equations
are applied until all clique nodes have been updated, the
algorithm assures that the resulting potential in each node
and separator of the Junction Tree is proportional to the
(global) maximum a posteriori probability distribution of the
set of enclosed variables [16]. The constant of proportion-
ality is guaranteed to be the same for every node, what im-
plies that the mode of the local potentials will correspond
to the MAP estimate. In our particular case, we need the
maximum probability for each variable, what can be ob-
tained by maximizing out the remaining three variables in
each of the nodes. The indexes for which the final potentials
are maximum are considered the vertices in Gc to which
the corresponding vertices in Gd must be assigned. The
computational complexity of the Junction Tree algorithm is
O(T Sk+1), where k + 1 is the size of the maximal clique of
the graph (the number of variables in the largest node of the
Junction Tree).

5. Experiments and results

We have carried out two sets of experiments, one with
synthetic point sets and another with real-world data. In both
of them, we compare results of the Junction Tree algorithm
in 1-tree, 2-tree and 3-tree models (which we denote respec-
tively by JT2, JT3 and JT4 due to the size of the maximal
clique in each of these models) with those of probabilis-
tic relaxation labeling, as described in Ref. [9] (denoted as
PRL) and those of the spectral method of Shapiro and Brady
[5] (denoted as SB). These last two methods encode all the
pairwise distances in their model representation, whereas
our method only encodes those distances that correspond to
the edge connectivity of the given Graphical Model (1-tree,
2-tree or 3-tree). On the other hand, our approach uses a
two-pass, dynamic programming procedure which is non-
iterative and optimal, whereas the other two are based on ap-
proximate and heuristic algorithms. Results show how these
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Fig. 6. Performances of JT4, JT3, JT2, PRL and SB when jitter increases, for various sizes of T (S = T ). For JT methods and PRL, the Gaussian kernel
(Eq. (12)) is used, with ! = 0.4. For the SB method, ! = 0.4.

different approximation principles affect accuracy in point
set matching.

5.1. Synthetic data

In the experiments with synthetic data, we generated ran-
dom points according to a bivariate uniform distribution in
the interval x=[0, 1], y=[0, 1]. The k-trees used where pre-
cisely given by the edge connectivity of the models shown
in Fig. 4, but the assignment of which point in the domain
pattern corresponds to which node in the model was ran-
dom. The number of iterations in PRL was set to 200, which
is much higher than in many typical implementations [6].
We performed two experiments, one with equal point set
sizes (for various sizes) and varying jitter, and the other with
fixed jitter (for various jitter levels) and increasing size of
the codomain pattern.

In the first experiment, we matched point sets of sizes
(T , S) equal to (15, 15), (20, 20), (25, 25) and (30, 30),
and analyzed the performance robustness with respect to
varying position jitter. Results over 200 trials are shown
in Fig. 6.

In the second experiment, we held constant the size of
the domain point set (10 nodes) and varied the size of the
codomain point set (from 10 to 35 nodes in steps of 5). This
was performed for several different levels of noise. In this
experiment, we only compared JT4, JT3, JT2 and PRL, since
SB is not suited for graphs with different sizes. Results over
200 trials are shown in Fig. 7.

5.2. Real-world data

In the real-world experiments, we performed comparisons
of the algorithms using the CMU “house” sequence, avail-
able in Ref. [18]. Fig. 8 shows examples of the images con-
tained in the dataset. Like in the synthetic experiments, the
k-trees follow the edge connectivities given by Fig. 4 and
the selection of which points correspond to which nodes was
random. The number of iterations in PRL was also set to 200.

In total, 30 landmark points were manually marked in
each of the 111 images in the database. Then we run the five
algorithms (JT4, JT3, JT2, PRL and SB) in all pairs sepa-
rated by 10, 20, . . . , 100 frames. This was done for the fol-
lowing sizes (T , S): (15, 30), (20, 30), (25, 30) and finally
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Fig. 7. Performances of JT4, JT3, JT2 and PRL when the size of the codomain pattern increases, for various levels of jitter (std). The Gaussian kernel
(Eq. (12)) is used, with ! = 0.4.

Fig. 8. Images from the CMU house data set (from left to right and top to bottom: images 1, 21, 41, 61, 81 and 101).

(30, 30) (SB was only run for (30, 30)). The average value
for each separation in each of these four experiments was
then recorded. Fig. 9 presents the results obtained.

6. Discussion

The synthetic experiments show that, when matching
point sets of equal sizes, the Junction Tree models do not

improve over PRL. However, it is interesting to note that
even the simplest model (JT2), which basically takes into
account only T − 1 relative distances in the domain pattern,
instead of the whole set of T (T −1)/2 distances used by the
SB method, improves over SB in the range of low jitter, as
seen from Fig. 6. This is a clear example that a method that
oversimplifies the problem but solves optimally the resulting
problem may outperform another which tries to solve the
original problem with an heuristic procedure. In Fig. 7, the
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Fig. 9. Results for the “CMU house” dataset. For JT methods and PRL, the Gaussian kernel (Eq. (12)) is used, with != 0.4. For the SB method, != 0.4.

advantage of JT methods over the alternative ones becomes
clear. As the size of the codomain pattern increases—for a
fixed size of the domain pattern—the robustness of JT4 and
JT3 are by far superior to that of PRL. It is also clear from
this figure that, for very small jitter (std = 1, top left graph
in Fig. 7), even JT2 outperforms PRL when the ratio be-
tween the two point set sizes increases. This is yet another
example of the point made in this paper: a technique from
the “second class” can be much superior than one of the
“first class”, even when the degree of problem approxima-
tion is severe. For higher jitter, however, it is clear that JT2
collapses (the problem approximation in this case becomes
extreme). We believe it is worth repeating: the graphs in
Fig. 7 show the relative performances between a technique
that takes into account all the relative pairwise distances
between the points (PRL) and techniques that use, respec-
tively, only T − 1, 2T − 3 and 3T − 6 (so, O(T ) instead of
O(T 2)) relative distances in the domain pattern (see Fig. 4).

The real-world experiments to some extent reflect the be-
havior observed in the synthetic ones. However, notice that
baseline separation is not properly an analogous to jitter.
Overall, it is clear how PRL is sensitive to the ratio between
the sizes of the patterns, whereas all JT models are almost

insensitive. For patterns of equal sizes, there is basically no
observable reason to choose any JT model over PRL, unless
the baseline is really small. Note of course that the isomet-
ric assumption is only reasonable for small baselines, but
nevertheless we decided to compute how all the methods
would perform for large baseline as well (all methods rely
purely on Euclidean distances, so this is supposed to be a
fair comparison).

It is interesting to observe how small is the difference be-
tween JT3 and JT4 compared to that from JT2 to JT3, in
general. This may give us hints as to which model to se-
lect in practical applications, when trading-off accuracy and
computational burden is a recurrent issue. This is so because
the complexity of the Junction Tree algorithm is O(T Sk+1),
where k + 1 is the size of the maximal clique, and as a re-
sult the cost of switching from JT2 to JT3 and to JT3 to JT4
increases by a factor of S. Also, it is clear that the approx-
imation procedure is quite general and k-trees with greater
value of k can be used. However, in our implementations we
found this is not computationally attractive (the complex-
ity for example goes to O(T S5) for a JT5 model). At this
point, however, it is relevant to mention that all JT4 mod-
els for matching problems in the plane are in some sense
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sufficient. Indeed, it can be shown that this technique can
be generalized to matching in any dimension, where then a
“JTn” model will be sufficient for matching in Rn−2. This
is however the theme of another paper.

7. Conclusion

In this work, we have investigated how different sources
of approximation affects the performance of point set match-
ing methods. Usual approaches to point set matching, such
as spectral and relaxation-based methods, encode all the
available information in the model representation, but rely
on approximate algorithms for deriving the assignment. Our
method, in contrast, consists in approximating the problem
itself such that the resulting representation is suitable for the
use of optimal algorithms for finding the match. The method
consists in modeling the relational features of a point set in
a Graphical Model where the underlying graph structure is
sparse and allows for optimal MAP computation in polyno-
mial time. Experiments were performed both with synthetic
and real-world data sets, which indicate that the proposed
“approximate model-optimal algorithm” approach is a viable
alternative to other “optimal model-approximate algorithm”
approaches, over a wide operating range.
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