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Abstract—We compare the most common reduced-form models used for
emissions forecasting, point out shortcomings, and suggest improvements.
Using a U.S. state-level panel data set of CO2 emissions, we test the perfor-
mance of existing models against a large universe of potential reduced-form
models. We find that leading models in the literature, as well as models
selected based on an emissions per capita loss measure or different in-
sample selection criteria, perform significantly worse compared to the best
model chosen based directly on the out-of-sample loss measure defined over
aggregate emissions.

I. Introduction

THE possibility of global climate change and its con-
sequences pose a significant environmental threat to

humanity over the next century and beyond. The Intergovern-
mental Panel on Climate Change (IPCC) predicts an increase
in globally averaged surface temperatures ranging from 1.1◦C
to 6.4◦C by the end of this century (IPCC, 2007). The main
trace gas from anthropogenic sources partially responsible
for this warming is CO2, which accounts for approximately
half of the radiative forcing. Its share is predicted to rise to
two-thirds over this century (IPCC, 2001a).1

Forecasts of future trace gas emissions serve two main
purposes. First, emissions of greenhouse gases partially
determine their atmospheric concentrations, which are the
crucial input to global circulation models used to predict
impacts on surface warming and precipitation trends. Second,
individual countries use business-as-usual (BAU) forecasts
to calculate expected costs of emission reductions in future
periods.2 Since the lion’s share of anthropogenic CO2 emis-
sions in industrialized countries stems from the combustion
of fossil fuels, potential reductions in emissions are closely
tied to economic activity. A higher level of anticipated emis-
sions in a future period raises the expected costs of emissions
reductions relative to a predetermined baseline (for example,
the 1990 emissions as in the Kyoto Protocol). Producing opti-
mal forecasts of global and country-level emissions therefore
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1 The main greenhouse gases in addition to CO2 are methane (CH4), nitro-
gen oxides (NOx), nitrous oxide (N2O), ozone (O3), and halocarbons such
as CFCL3 and CF2CL2.

2 Business-as-usual forecasts, which are sometimes referred to as base-
line forecasts, are predictions of future realizations for sequences that are
potentially affected by policies, in the absence of additional policies. They
serve as a point of comparison for predictions assuming policy interven-
tion. One example relevant to this paper is the business-as-usual forecasts
of U.S. CO2, emissions in the absence of federal climate regulation, which
can then be compared to forecasts under more or less aggressive federal
climate policy scenarios.

has a direct effect on predicted warming trends as well as
the optimal policy decisions made, such as whether to sign
and ratify a global climate accord. Further, potentially biased
predictions of trends in warming and precipitation due to sub-
optimal forecasts of emissions will result in biased estimates
of the expected benefits from preventing global warming
and therefore have an indirect effect on the policy adoption
decision.

BAU forecasts of national and global CO2 emissions are
calculated using a variety of modeling approaches, drawing
on data disaggregated across sectors or space. The science and
engineering literature employs large-scale simulation mod-
els (IPCC, 2001b; U.S. Energy Information Administration,
2004). The related branch of the economics literature uses
economy-wide input output tables to construct computable
general equilibrium models with varying degrees of sec-
toral detail (Garbaccio, Ho, & Jorgenson, 1999; Böhringer
& Welsch, 2004). A less data-intensive approach to forecast-
ing emissions in the economics literature uses reduced-form
models based on the environmental Kuznets curve (EKC)
hypothesis to construct BAU paths (Schmalensee, Stoker, &
Judson, 1998; Holtz-Eakin & Selden, 1995).

Existing applications of these models have three main
drawbacks. First, there are no published versions of the mod-
els that use a given model’s ability to predict out of sample in
the specification and parameterization process. All existing
studies have parameterized the models according to varying
measures of in-sample fit, which can be suboptimal when
a given model is used for forecasting (Diebold & Mariano,
1995). Second, the chosen models appear to be selected by
searching over a narrow space of specifications or parameter-
izations. This is important, since in-sample selection criteria,
such as the Akaike or Schwarz information criteria, are con-
sistent only if the model space contains the true model.
Finally, the econometric reduced-form models are usually
estimated using per capita emissions, which is equivalent to
minimizing a per capita measure of estimation loss. If one
is interested in predicting aggregate emissions (Schmalensee
et al., 1998; Holtz-Eakin & Selden, 1995), the loss function
of interest should be defined over aggregate forecast error.

We make three specific contributions to the literature on
carbon emissions forecasting. First, rather than considering
only an ad hoc subset, we estimate over 27,000 different
reduced-form models arising from possible permutations of
a very limited standard set of explanatory variables used in
forecasting carbon dioxide emissions at the national level.
When we select a “best model” from a forecasting per-
spective, we use a statistical test of model superiority that
accounts for the often neglected effect of data snooping,
which may result in selecting a best model by chance. Second,
we demonstrate the consequences of selecting forecasting
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models based on different objective performance measures
varying in the validation horizon (in sample versus out of
sample) and aggregation over which the forecast loss function
is defined (per capita versus aggregate emissions). Finally, we
compare our forecasts to those based on classic benchmark
specifications found in the literature.

In our analysis, we make use of a state-level panel data
set for U.S. CO2 emissions covering the years 1960 to 2001.
The United States has been the leading emitter of CO2 since
1870 (Marland, Boden, & Andres, 2004). It has recently been
overtaken by the People’s Republic of China as the leading
emitter (Auffhammer & Carson, 2008). Constructing BAU
forecasts for U.S. CO2 emissions is of crucial importance,
since the United States has neither ratified the Kyoto Protocol
nor independently implemented a federal program to reduce
emissions. Previous administrations have repeatedly cited the
high anticipated costs of carbon reductions as a reason for not
joining a global accord. If suboptimal forecast models falsely
predict high emissions, this would result in artificially high
expectations of abatement costs at a future date. Our paper
outlines a rather simple strategy to construct optimal U.S.
CO2 emissions forecasts from a forecaster’s perspective. A
growing literature shows that forecasting the aggregate by
exploring variation at a smaller geographic scale may result
in superior forecasts (Marcellino, Stock, & Watson, 2003;
Giacomini & Granger, 2004). We follow this approach by
forecasting emissions at the state level and aggregating them
up to the national level to exploit these forecasting efficiency
gains.

To preview the results, we find that benchmark models
from the literature are outperformed by 25% of the mod-
els in our universe. We show that the choice of performance
measure is consequential and argue the need for a shift in
the emission forecasting literature toward criteria based on
out-of-sample ability to predict total emissions versus the
standard approach of selecting per capita models based on in-
sample fit. The best model selected according to loss defined
over per capita emissions predicts 2011 emissions to be 4%
lower compared to the best model based on loss defined over
aggregate emissions. The difference is equivalent to 5% of
1990 U.S. emission levels. To put this number in perspective,
under the Kyoto Protocol, the United States made a nonbind-
ing promise of emission reductions of 7% relative to 1990.3
The carbon emission forecast of our best model predicts emis-
sions 100 million tons of carbon lower than the average of
studies from the IPCC’s Special Report on Emissions Sce-
narios for the year 2010, suggesting that these scenarios may
on average overstate the 2010 level of emissions.

The next section provides a brief review of the literature.
Section III discusses the data, model universe, and model
selection criteria. Section IV provides estimation results and
the data snooping tests. Section V concludes.

3 The United States never ratified the Kyoto Protocol and is therefore not
bound to engage in these emissions reductions.

II. Background and Literature Review

There are two distinctly different approaches to modeling
emissions of CO2. The first is a structural general or partial
equilibrium modeling approach in which an often sizable set
of free parameters is fixed by judgment and calibration. The
second approach employs reduced-form econometric models
where a small number of parameters is calibrated to historical
data solely based on the goodness of model fit.

Structural modeling is the predominant approach in the
natural science and engineering literature. The organizing
framework of these models is based on the I = P ·A ·T iden-
tity (Ehrlich & Holdren, 1971). This identity decomposes
Impact (emissions) into Population, Affluence (per capita
GDP), and a Technology index. IPAT models imply that
emissions increase monotonically in population and afflu-
ence and decrease with beneficial technological progress. The
more recent engineering literature has focused on modeling
the technological change component of the IPAT model. This
has involved fine-tuning structural parameters to accurately
emulate real data. The most important examples of this class
of modeling underlie the IPCC’s (2001b) Special Report on
Emission Scenarios (SRES). The six official simulation mod-
els used to produce emission scenarios are the AIM, ASF,
IMAGE, MESSAGE, MARIA, and MiniCAM models. These
complex simulation models link socioeconomic scenarios
to energy-economic and land equilibrium models to arrive
at regional emission scenarios, which are then aggregated
to a global emissions trajectory for each scenario. Another
example of this type of model at the national level is the
Energy Information Administration’s NEMS model.4 The
IPCC, for political reasons, neither publishes country-level
forecasts nor evaluates its own aggregate scenarios’ forecast
performance.

Structural models are also found in the economics litera-
ture. Computable general equilibrium (CGE) models decom-
pose variation in emissions at the sector level by making use
of nationally aggregated input-output matrices. A large litera-
ture addresses using CGE models to predict carbon emissions
for developed and developing countries (Böhringer, Conrad,
& Löschel, 2003). This approach to modeling emissions is
popular in policy circles, since one can easily simulate the
impacts of different policy instruments and shocks to the
economy on resulting changes in emissions. These models,
while often used to draw out of sample predictions, are not
forecasting models since they are not calibrated according to
their ability to predict out of sample. Further, these models
require a large amount of data, which in many countries are
provided at very infrequent intervals (China’s input-output
tables are provided every five years, for example).

4 The EIA uses the NEMS model to forecast the national energy system
and CO2 emissions, which are published in the “Annual Energy Outlook.”
Since these forecasts are provided by an agency of the U.S. government,
they are considered the official forecasts. The EIA conducts an annual out-
of-sample evaluation of its forecasts, but it is not used to reparameterize the
NEMS model. For a discussion of the NEMS model forecast evaluation,
see O’Neill and Desai (2005) or Auffhammer (2007).
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The second branch of the economics literature has focused
on reduced-form models. The econometric literature on fore-
casting emissions is largely based on early work by Grossman
and Krueger (1993) and Selden and Song (1994), who look at
the in-sample relationship between air pollutants and income.
The focus of this literature is the empirical finding of an
inverse-U relationship between emissions and ambient con-
centrations of pollutants and per capita income, which is
known as the environmental Kuznets curve. The existence
of such a relationship has been at the center of the debate sur-
rounding trends in emissions of local and global pollutants
from developing and developed countries alike.

The main criticisms of this model, as Copeland and Tay-
lor (2004) and Arrow et al. (1995) point out, is that this
reduced-form specification does not separate the income
effect from other factors driving emissions. Recent work by
Millimet, List, and Stengos (2003) and Harbaugh, Levinson,
and Wilson (2002) casts doubt on the robustness of the EKC
specification for local air pollutants. The empirical evidence
is mixed on whether an in-sample turning point exists for the
odorless and invisible gas CO2 (Lieb, 2004). Aldy (2005)
correctly points out that the existence of a negative mar-
ginal propensity to emit (MPE) carbon at the highest levels
of income has large consequences for out-of-sample carbon
forecasts.

Schmalensee et al. (1998) use a flexible version of the
environmental Kuznets curve specification to forecast emis-
sions of CO2 out of sample. Holtz-Eakin & Selden (1995)
before them used a simple quadratic income term to imple-
ment such an inverse-U relationship for CO2 emissions. Both
papers use in-sample fit to select their forecasting model,
which may lead to suboptimal out-of-sample performance
(McCracken & West, 2004). Both use the same source of
data, although the latter observe emissions over a shorter time
period. Holtz-Eakin and Selden (1995) found a diminishing
MPE only at the highest levels of income, which is a finding
consistent with the most recent studies by Vollebergh, Melen-
berg, and Dijkgraaf (2009) and Azomahou, Laisney, and Van
(2006). Schmalensee et al. (1998), however, find evidence of
a negative MPE.

The major advantage of the reduced-form models from a
practical perspective is that they have lower data require-
ments, which allows the use of longer time series and
facilitates the analysis for countries where the structural
approach is infeasible. Most important, they avoid the need
of their structural counterparts for a large number of para-
metric assumptions to be made. The difference between the
structural and reduced-form approach to forecasting emis-
sions is similar to the debate on macroeconomic forecasting
from the 1970s and 1980s. The outcome from that debate was
an abandonment of large-scale structural models in favor of
much simpler econometric models due to their ability to better
predict series of interest out of sample (Wallis, 1989).

The literature on econometric forecasting model selection
can be divided into three approaches. The first and most com-
monly practiced approach is a sequential model selection

approach, by which one starts with a general unrestricted
model (GUM) based on the largest set of potential regressors
and then selects the “best” forecasting model by sequential
testing of zero parameter restrictions. In order to circum-
vent the issue of path dependence, encompassing tests and
model selection criteria are applied to select from compet-
ing models in order to obtain a parsimonious representation.
Specification of the GUM is a crucial step in this approach. If
relevant predictors are excluded from the GUM, the chosen
forecasting model may result in suboptimal forecasts.

An alternate approach to constructing forecast models is
the diffusion index approach of Stock and Watson (2002).
If one has a large number of relevant predictors relative to
the length of the time series, one constructs principal compo-
nents from the space of covariates in a first stage, which are
then included with lags of the dependent variable in a second
stage. Model selection happens by the use of an information
criterion. Finally, one could apply Bayesian shrinkage esti-
mation to a most general model and shrink the coefficients
toward 0.

Regardless of the adopted approach to model selection, the
fact that one observes only a single realization of any time
series means a danger that the observed predictive power
of the chosen model may be due to chance rather than true
forecasting ability of the model. An additional problem is
that in practice, most specification searches in practice are
not systematic and cannot hope to be comprehensive. This
issue, commonly referred to as data snooping, describes any
situation in which data are used repeatedly for inference or
model selection, but the reuse of the data is not accounted for
in inference tests.5 The reason for oversight of this issue in
applied studies was the lack of an easily implementable and
broadly applicable way of accounting for the impact of spec-
ification searches on inference tests. We make use of a recent,
generally applicable method from the financial econometrics
literature for testing the null hypothesis that the best model
encountered during a specification search has no predictive
superiority over a benchmark model (White, 2000; Hansen,
2005).

III. Model Selection and Data

A. The Model Universe

The potential set of variables that drive the emissions of
CO2 is very large. The literature on modeling emissions using
reduced-form models has focused on a small subset of these
variables (Schmalensee et al., 1998; Holtz-Eakin & Selden,
1995; Yang & Schneider, 1998). We define our model uni-
verse over this modest set of standard variables used in the
literature. Specifically, we have collected state-level data for
income, population density, and several categorical variables.
The general model considered in this paper takes two forms,

5 The problem of data snooping has been long understood and was pointed
out by Cowles (1933) and Leamer (1978). It has been brought to wide
attention by Lo and MacKinley (1990).
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which vary by the information set considered. The first set of
forecasts, which we call indirect forecasts for the remainder
of the paper, are based on the following equation:

ci,t = ρici,t−1 + f (incomepci,t) + g(pdensi,t)

+ si + γt + εi,t , (1)

where ci,t are per capita carbon emissions for state i in year
t, incomepci,t is per capita real personal income, pdensi,t is
population density, si is a state fixed effect, and γt is a year
fixed effect. f (·) and g(·) are flexible functional forms, imple-
mented as either higher-order polynomials or splines. εi,t is
assumed to be a stationary ergodic error term. The models
based on equation (1) allow a lag of the dependent variable,
yet the right-hand-side variables enter contemporaneously,
which will require forecasts of the right-hand-side variables
for the future period of interest (t + τ).6

The second set of forecasts, which we call direct forecasts
for the remainder of the paper, are based on the following
equation:

ci,t = ρici,t−τ + f (incomepci,t−τ) + g(pdensi,t−τ)

+ si + γt + εi,t . (2)

Models based on this general specification differ from speci-
fication 1 in that all information on the additional covariates
used to predict emissions in period t +τ is based on informa-
tion available in period t. This approach therefore does not
require us to make forecasts of any right-hand-side variables.

Starting with these admittedly basic two general models,
we sequentially impose restrictions to arrive at a large but
finite number of specifications. Table 1 gives an overview of
all the variations of equations (1) and (2) that we consider. The
unique possible permutations produce a model universe of
27,216 different specifications for this limited set of explana-
tory variables.7 The functional form for income f (·) varies
from a linear income term up to a fifth-order polynomial,
as well as a spline on income with the number of segments
varying from three to ten. The functional form of population
density g(·) varies from a linear to a quadratic polynomial.
In order to model shocks common to all states for a given
year, which include technological change, we include year
fixed effects. A more parsimonious approach to proxy for
technical change is to include a time trend instead of year

6 Details on how the indirect forecasts are computed are given in
section IIIE.

7 There are two reasons that we did not include further explanatory vari-
ables. First, for the indirect forecasts, each additional regressor requires
projections to conduct a true out-of-sample forecasting exercise. We
obtained quasi-official projections for population, but as we show is the
case for income, it would be difficult to obtain such projections for other
variables like oil prices or heating degree days that do have an influence
on carbon emissions. Forecasting regressors out of sample adds prediction
error in models where they are included, thus making it potentially less
likely that those models are selected. Second, our model universe based on
the sparse set of variables is still manageable computationally, but large
enough to demonstrate the core findings of this paper. It is also in the spirit
of a reduced-form model approach with its lower data requirements to use
a limited set of covariates.

Table 1.—Summary of Variations That Generate the Model Universe

for Indirect and Direct Forecasts

Variations of main variables
Income per capita (incomepci,t/incomepci,t−τ) up to the fifth-order

polynomial
Population density (pdensi,t/pdensi,t−τ) up to the second-order

polynomial
Income splines with 3 to 10 segments

Variations addressing temporal and spatial heterogeneity
State fixed effects or state dummies for coastal, oil or gas producing,

and coal producing
Year fixed effects
Linear or logarithmic time trend
Energy crisis dummies (1973–1975, 1979–1981, 1990–1991)

Further variations
Levels or logs
Including regressor lags (pdensi,t−1/pdensi,t−τ−1 and

incomepci,t−1/incomepci,t−τ−1)

Including lagged dependent variables (ci,t−1/ci,t−τ)

fixed effects.8 We allow logarithmic as well as linear trends,
both of which are found in the literature. The set of specifica-
tions without time fixed effects has the advantage of needing
to estimate many fewer parameters. However, these specifi-
cations do not control for year-specific shocks common to
all states. We therefore allow the inclusion of high-energy-
price regimes called crisis dummies in these specifications.
Further, in specifications without state fixed effects, we can
allow the inclusion of dummies proxying for relevant differ-
ences in unobservables across states, such as whether a state
is oil or gas producing, coal producing, or located at the coast.

Models (1) and (2) are dynamic models, which allow
lagged emissions to affect current emissions. Emissions of
CO2 originate from a durable capital stock, which turns over
slowly. A static model imposes the implicit restriction that
current income and population are the only factors driving
emissions. Houthakker and Taylor (1970) outline a simple
model in energy demand, where the partial adjustment of
a durable capital stock results in lagged emissions affect-
ing current emissions.9 We include state-specific lagged per
capita emissions, which proxy for this more flexible capital
adjustment process. We also allow a distributed lag process

8 In the forecasting context, year fixed effects are problematic, since they
need to be forecast out of sample and therefore add another layer of esti-
mation uncertainty. Models in our universe with year fixed effects vary
by the year (1971–1973) in which we allow a structural break to occur
when we estimate a time trend around the fixed-effect coefficients to get
out-of-sample forecasts. See section IIIE.

9 As Nickell (1981) points out, the inclusion of a pooled lagged depen-
dent variable in fixed-effects models is problematic and leads to biased
coefficient estimates. Judson and Owen (1999) use Monte Carlo techniques
to show that a least-squares dummy variables (LSDV) in this setting out-
performs the alternative GMM estimator. We estimate all models, which
include a lagged dependent variable, using the simple LSDV estimator.
The previous literature has not explored heterogeneity in the lag coeffi-
cient, which allows state-specific differences in the speed of adjustment.
We compared otherwise identical models with pooled and heterogeneous
lag coefficients. The heterogeneous models for our sample on average show
a 10% improvement in aggregate MSFE. This finding is, of course, sample
specific. Since the coefficients in these forecasting models have no causal
interpretation, concerns about bias are mute.
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Table 2.—In-Sample and Out-of-Sample Criteria Used for Model Selection

In-sample

Akaike information criterion (AIC) ln(
∑50

i=1

∑2001
t=1960

e2
it
n ) + 2k

n

Schwarz information criterion (SIC) ln(
∑50

i=1

∑2001
t=1960

e2
it
n ) + k

n ln(n)

R2 1 −
∑50

i=1
∑2001

t=1960 e2
it∑50

i=1
∑2001

t=1960(yi−ȳ)2

R̄2 1 − n−1
n−k (1 − R2)

Out-of-sample
Per capita mean square forecast error 1

n

∑2001−(n−1)−τ
t=2001−τ

∑50
i=1(ci,t+τ − ĉi,t+τ)

2

Aggregate mean square forecast error 1
n

∑2001−(n−1)−τ
t=2001−τ

∑50
i=1(popi,t+τ · ci,t+τ − popi,t+τ · ĉi,t+τ)

2

of income and population density, since these factors may
take several periods to affect emissions. All of these pos-
sible combinations are included in levels and logarithmic
form to allow a multiplicative data-generating process of the
regression equation.

B. Model Selection

The model selection criterion is the crucial factor in the
search for an optimal forecasting model. Existing studies in
this literature select models using the R2, Akaike, or Schwarz
information criteria or by performing batteries of joint sig-
nificance tests on the vector of estimated parameters to arrive
at a “best” specification. The main drawback of this strategy
is that the forecasting model is selected based on in-sample
fit, when the stated goal is to predict emissions out of sample.
If the goal is to choose a model with superior out-of-sample
predictive ability, one should conduct an out-of-sample pre-
diction experiment to see which model minimizes the cost
from out-of-sample forecast error. An explicit statement of
the different selection criteria helps to clarify this notion.
Anticipating our empirical application, in-sample fitting cri-
teria are based on the sample equivalent of the population
disturbance (εit) for state i at time t from the general unre-
stricted model. We denote its sample counterpart eit and call
it the residual. Table 2 shows the formulas for calculating
different standard measures of in-sample fit.

Rather than selecting a model specification that fits best in
sample, we conduct the following out-of-sample prediction
experiment. In order to compare models based on predic-
tive ability τ years out of sample, we use all information
up to period t and predict carbon emissions in period t + τ.
In the case of indirect forecasts, we need projections of all
right-hand-side variables used in the different model speci-
fications.10 These are then used together with the coefficient
estimates from a regression using the sample up to year t to
calculate the indirect models’ prediction for the year t + τ.11

10 In section IIIE, we discuss in detail how we get the projections for the
different explanatory variables.

11 This calculation is simple for all regressions in the universe estimated
in levels. When we estimate the state-level emissions in logs, we need
to transform the predicted log per capita emissions back to levels using
the exponential function before we compare them to the actual emission

For direct forecasts we do not need projections of the regres-
sors and can calculate the prediction for the year t + τ using
lagged variables. Now we can compare the model’s predic-
tion with the actual emissions for state i in year t + τ and can
calculate the forecast error (ci,t+τ − ĉi,t+τ). We then square
the forecast errors and sum over the fifty U.S. states to get
the model’s forecast error for t + τ. We repeat this procedure
for n years starting with t = 2001 − τ moving backward
through time. We now calculate the average over the n peri-
ods to get the model’s mean square forecast error (MSFE)
as defined at the bottom of table 2. This prediction experi-
ment gets us an out-of-sample predictive ability measure for
each model, which we can use as a selection criterion for
how well models will predict τ periods into the future. In our
experiment, we chose both n and τ equal to 10. The choice
for τ = 10 was made for two reasons. First, this time span
is equivalent to the number of years between the signing of
the Kyoto Protocol and the year prior to the beginning of the
first commitment period. The second reason is the trade-off
between the length of the forecast horizon τ and the number
of repeated out-of-sample forecasts n that we can do in the
prediction experiment given the limited number of years in
the data set.12 It would be desirable to have a larger number
of repeated forecasts n for each model in order to increase the
external validity of the prediction experiment and to increase
the forecast horizon if one is interested in doing forecasts
more than ten years into the future. We acknowledge the fact
that one might potentially get a different “best” model if the
time period used to evaluate the predictions changed signifi-
cantly. We cannot meaningfully test for this, given the short
time series.

The bottom of table 2 shows that the loss function can be
defined over the forecast error for per capita emissions or
aggregate emissions. In the latter case, state-level per capita
values are multiplied by the state’s population to get aggre-
gate emissions before the prediction error is calculated. This

using the formulas of table 2. For the logarithmic specification, we use the
Goldberger (1968) correction to get our point forecasts in levels.

12 Even with the given choice of n and τ of 10, we are stretching the data,
leaving only 11 years of in-sample data for the earliest model forecasts in
the prediction experiments for direct models, which use lagged variables.
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has the effect of more heavily weighting errors in the popu-
lous states such as California instead of giving a large weight
to errors in sparsely populated high per capita emitters like
Wyoming or North Dakota. Model selection based on a loss
function defined over aggregate U.S. emissions will result
in a model that most accurately predicts total U.S. carbon
emissions, which is the stated goal.

C. The Benchmark Models

We chose a set of benchmark models that fulfill two
important purposes. First, they are used to contrast the point
forecasts of the best-performing model from our search with
standard specifications from the literature. Second, we use the
benchmarks in order to formally test the predictive superior-
ity of benchmarks against the best model from our model
universe using the Hansen (2005) reality check bootstrap
test (RC) data snooper method. This method compares the
best-performing forecasting model from the given model
universe to a benchmark (White, 2000; Hansen, 2005). In
the original application, Sullivan, Timmermann, and White
(1999) compare a large number of technical trading rules
to the benchmark of holding cash. The benchmark works
as an orientation that makes the performance of the best
model quantifiable. We choose two highly cited specifica-
tions of the reduced-form literature (Schmalensee et al.,
1998; Holtz-Eakin & Selden, 1995) and one basic decompo-
sition model from the structural literature (Yang & Schneider,
1998). Schmalensee et al. (1998) propose the following
specification:

ln(cit) = si + γt + F(ln(incomepcit)) + εit ,

where the variables are the same as before and F(·) represents
a piecewise linear function with ten segments.13 The model
specification that Holtz-Eakin & Selden (1995) used is

ln(cit) = si + γt + α1 ln(incomepcit)

+ α2(ln(incomepcit))
2 + εit .

This model corresponds to the most traditional EKC spec-
ification.14 As a last benchmark, we use the nonstochastic
structural identity of Yang & Schneider (1998):15

13 Schmalensee et al. (1998) use four model specifications. We adopt the
specification they refer to as ten-segment income spline and linear trend
model as our benchmark. To get out-of-sample forecasts of the year fixed
effects, we follow Schmalensee et al. (1998) and regress the year fixed
effects on a two-piece spline function that allows a structural break in the
time trend at 1970: γt = α0 + α1t + α2(t − 1970) · 1{t≥1970}.

14 Holtz-Eakin & Selden (1995) use the last in-sample period time fixed
effect coefficient as the time dummy in their projections.

15 This identity can be thought of as carbonit = populationit ×
GDPpercapita × EnergyIntensity × CarbonIntensity. To obtain forecasts
for CO2 emissions using this decomposition, one multiplies the base-year
emissions with the estimated growth rates of the four factors of the identity.
We therefore needed forecasts of energy and carbon intensity in addition
to population and income predictions. For energy and carbon intensity, we
followed Yang and Schneider (1998) and used predictions for developed
countries based on the IPCC (1992) energy production data.

carbonit = populationit

× incomeit

capitait
× energyit

incomeit
× carbonit

energyit
.

D. Data

Blasing, Broniak, and Marland (2004) provide a data set of
CO2 emissions for the fifty states and Washington, D.C., for
the years 1960 to 2001, which results in a balanced panel of
2,100 observations.16 This is the longest and most complete
CO2 emissions data set for a single country at a subna-
tional level of aggregation. They used consumption data for
coal, petroleum, and natural gas from the EIA State Energy
Data Report to calculate carbon emissions.17 The data do not
account for carbon oxidized during gas flaring or from the
calcining of limestone during manufacture of cement or for
carbon from bunker fuels.18 Emissions are reported in mil-
lion metric tons of carbon. We test the panel of per capita
emissions for a unit root and reject the null of a unit root
using a Levin-Lin-Chu test and the Im-Pesaran-Shin test at
the 1% level. We therefore do not include any specifications
in differences.

Income data are taken from the U.S. Bureau of Economic
Analysis. We deflate personal income by state into 2001 U.S.
dollars. Population data are taken from Blasing et al. (2004).
Data on land area of each state were obtained from the U.S.
Department of Commerce. We collected qualitative variables
for whether a state is located at the coast or is oil/gas or
coal producing. Finally, we construct three dummies for the
energy crises (1973–1975, 1979–1981, and 1990 to 1991)
to reflect their temporary shocks on the system. We err on
the side of including an additional year after the recovery
of oil prices, as the immediate effects of the shock are still
echoing. As Marcellino et al. (2003) point out, if there is a
sufficient degree of heterogeneity in state-level series, con-
structing forecasts of the aggregate by summing up state-level
forecasts may result in improved forecasts over forecasting
the aggregate directly.

Figure 1 displays per capita emissions for 1960 and 2000
and their growth rates for all fifty states and Washington,
D.C. The series display tremendous cross-sectional as well
as time series variability. The state-level income series dis-
play a similar degree of variability along both dimensions.
Average per capita income over the sample period and states
is $21,289, with a standard deviation of $5,668. In 2001, the
poorest state, Mississippi, had an average income of $21,595,
which is only 50% of that of the richest state, Connecticut,
with $42,657. By using data for a single country that are col-
lected using consistent definitions and procedures, we avoid

16 In our empirical analysis, we will concentrate on the fifty U.S. states
and omit Washington, D.C.

17 For petroleum, the data include energy production and transportation in
each state, as well as oxidized carbon emissions from other end uses such
as the production of plastics, fabrics, or lubricants.

18 Those neglected sources together account for approximately 4% of the
total carbon emissions. See Holtz-Eakin & Selden (1995).
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Figure 1.—Per Capita CO2 Emissions and Annual Growth Rate, by State

The bars show state per capita emissions for 1960 and 2000. The line shows the average annual growth rate in per capita emissions for all fifty states and Washington, D.C., between 1960 and 2000. States are ordered
by their 2000 per capita emissions.

concerns that potential nonlinearities of emissions in income
are due to lower measurement error in wealthier countries,
which may result in an “artificial” EKC.

E. Explanatory Variable Projections

Projections of all right-hand-side variables are required for
the indirect forecasts based on equation (1). The required pro-
jections of the covariates in our experiment use all available
information up to period t to make a forecast of the covariate
for period t + τ. Here we require only forecasts of state-level
per capita income and population density, yet indirect models
using a more comprehensive set of covariates would require
forecasts of these additional variables.

There exist several state-level population projections made
by the U.S. Census Bureau over the course of the past 25
years that we can use to calculate the projected population
density variable. The state population projections we use for
forecasts into the future beyond 2001 are based on the Cen-
sus Bureau, Population Division projections.19 The forecasts
use information up to 2000 Census to make population pro-
jections up to 2030. The earlier Census Bureau population
projections by Wetrogan (1983) are used for our prediction
experiments. These projections use all available information

19 The State Interim Population Projections are published on http://www
.census.gov/population/www/projections/projectionsagesex.html. We use a
piecewise cubic interpolation to get the missing years 2002–2004.

up to 1980 to make population projections for the following
twenty years.20

Unlike the data for population, we were unable to find
suitable historic state-level income projections for the United
States ten years out of sample. Thus, for each state, we gener-
ate projections using a method similar to that of Auffhammer
& Carson (2008), which implicitly controls for the correlation
between population and income. We assume that the income
growth rate ξt and population growth rate φt for a given state
are jointly distributed as f (ξt , φt) ∼ N2(μξ, μφ, σ2

ξ, σ2
φ, ρ) and

can be characterized in and out of sample by this bivariate nor-
mal distribution. The distribution is parameterized by using
the in-sample estimated mean and standard deviation of the
population growth rate as well as its correlation coefficient
with income growth—μ̂φ, σ̂φ, and ρ̂, respectively. μ̂ξ and σ̂2

ξ

are the in-sample mean income growth rate and its variance
at the state level.

In order to obtain a value for ξt+τ given a value of φt+τ from
the population projections, we use the expected value of the
conditional marginal distribution fφ(ξt+τ). Using the method-
ology above, we construct an income series that covaries with
population growth but also has a random component based
on the variance of the historical income growth rate.

Projections of the income and population series are suf-
ficient to conduct out-of-sample forecasts for all indirect
models in our universe. For indirect models without lagged

20 We use a piecewise cubic interpolation to get the missing years between
1990 and 2000.
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dependent variables, calculating the forecasts is straight-
forward. For the indirect models, which contain a lagged
dependent variable on the right hand side, we calculate car-
bon emissions in period t + τ using the expression ĉi,t+τ =∑τ−1

k=0 xi,t+τ−k β̂ρ̂k
i + ci,t ρ̂

τ
i .

Finally different time and space covariates are included in
most models. The inclusion of the time-invariant state fixed
effects and state dummies for coastal, oil/gas and coal in the
out-of-sample forecast is straightforward. For models that
include a linear or logarithmic time trend, we continue these
trends into the out-of-sample periods. Models that include
year fixed effects create more of a challenge, since one does
not know the value of the year fixed effect for future periods.
Holtz-Eakin & Selden (1995) set the time fixed effect equal
to the last in the sample year, while Schmalensee et al. (1998)
attempt to forecast them out of sample, as discussed in note
12. Following the latter approach, we examined a variety of
specifications forecasting the time fixed effects out of sample
by allowing the breaking point to vary:

γ̂t = α0 + α1t<B + α3t≥B. (3)

This is a regression of the estimated in-sample time fixed
effects on an intercept and a linear time trend, which is
allowed to break at year B. The year for the structural break B
varies in our model universe from 1971 to 1973 for different
model specifications.

F. The Reality Check Bootstrap Test

Once we have chosen the best-performing model based on
any of the model selection strategies outlined in section IIIB,
we would like to know with some confidence that the model
encountered in our specification search has predictive supe-
riority over, for example, our benchmark models. Traditional
out-of-sample prediction tests such as Diebold and Mari-
ano (1995) and West (1996) allow for the comparison of
two competing models under different sets of assumptions.
However, these and other traditional predictive ability tests
ignore dependence between the results for different forecast-
ing models. Hansen (2005) provides a test that incorporates
the dependence of results across forecasting models into a
comprehensive bootstrap-based test. We improves on the
earlier technique provided by White (2000), which assigns
too much weight to poorly performing models with high
variances. This is problematic in applied studies such as
ours, where the range of models spans many such poorly
performing models.

The so-called reality check bootstrap Test (RC) tests the
null hypothesis that the best model encountered in the spec-
ification search has no predictive superiority over a given
benchmark model, taking the initial search over models into
account.21 As such, it accounts for the possibility that the
best-performing model is selected by chance. To obtain the
distribution of the test statistic, which is based on the relative

21 The RC test methodology is summarized in more detail in Appendix A.

performance of the benchmark to the best model, we use a
bootstrap approach incorporating all models. The resulting
p-value provides an objective measure of the extent to which
the apparently good results of the best model accord with the
sampling variation of the searched universe (White, 2000).

IV. Results

A. Out-of-Sample Prediction Experiment

We calculate the out-of-sample MSFE for all 27,216 mod-
els in our universe according to the method described in
section IIIB. We use both the per capita and the aggregate
MSFE selection criteria given in table 2 with τ = 10 periods
ahead and n = 10 forecasts for each of the models. Thus, the
earliest of our forecasts use all information up until 1982 to
forecast carbon emissions for the year 1992, while the latest
forecast used in the calculation of MSFE uses information
up to 1991 to predict emissions in 2001. We then use all the
information until 2001 to calculate future predicted emissions
for each model to 2011.

In figure 2 we plot the historical CO2 emissions from 1960
to 2001 and the density for the 5th to the 95th percentile of
point forecasts for models in our universe until 2011. The
top panel displays the distribution of point forecasts for the
indirect models, which require forecasts of the right-hand-
side variables. The bottom panel displays the distribution for
the direct models. The two panels are different from a tra-
ditional predictive density, since they display the range of
point forecasts from the universe of models instead of giv-
ing readers an understanding of the degree of confidence for
each forecast. Each shade represents 5% of the point forecast
distribution and displays the corresponding range of point
forecasts across models. Figure 2 also shows the predictions
of the two models, which minimize aggregate mean square
forecast error (dashed line) and per capita mean squared fore-
cast error (solid line). Since our objective is to forecast total
U.S. carbon emissions, the preferred criterion is aggregate
mean squared forecast error, as discussed in section IIIB.
Therefore, any unqualified references in the remainder of this
paper to the “best model” refer to the best model based on
the aggregate MSFE selection criterion.

Figure 2 demonstrates how large the variation is in fore-
casts from the individual models in our universe. A substantial
number of models predict extremely large increases in carbon
emissions, while more than 6% of the models predict emis-
sions in 2011 lower than those in 2001. This large variation in
model performance is also suggested by the range of MSFE
for the models in the universe, which ranges from 503 to 19
million. It is not surprising to have so many poorly perform-
ing models given the large number of possible specifications.
In practice, some of these specifications may be judged to be
inferior a priori by the modeler and therefore never be esti-
mated. The strength of the approach in this paper is that we
minimize the degree to which a priori judgment is used to
decide which models to include in the model universe to be
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Figure 2.—Density of Point Forecasts for All Models and Best Out-of-Sample Models

The figure 2 shows historical CO2 emissions from 1960 to 2001 and the density for the 5th to the 95th percentile of point forecasts for models in our universe until 2011. Each shade represents 5% of the distribution.
The figure also shows the predictions of the two models, which minimize aggregate mean square forecast error (dashed line) and per capita mean squared forecast error (solid line).

searched over. The assumption that the true model is included
in our universe is therefore more viable here than if we were
to preselect models to be used for comparison.

Comparing the set of indirect and direct forecasts in their
out-of-sample test performance reveals an interesting find-
ing. The indirect forecasts dominate the direct forecasts in the
MSFE rankings. There is no direct model among the top 100
based on per capita MSFE or based on the aggregate MSFE.
This suggests that in our case, the extra information con-
tained in the out-of-sample projections of the right-hand-side
variables is valuable and improves forecast performance.

Figure 2 also shows that the model selected according to
the per capita criterion predicts lower emissions for the year
2011 at 1,624 million tons compared to the best model, with
1,689 million tons of carbon. The difference of 65 million
tons of carbon is equivalent to 4% lower emissions than the
best model predicts or to 5% of 1990 U.S. carbon emissions.

The per capita model is less parsimonious compared to
the best model. It includes a linear and a quadratic income
term as well as lagged right-hand-side variables. Both models
include a linear population variable. Both selected models are
dynamic in nature, employing a lag structure of one period’s
carbon emissions, which is consistent with the nature of an

installed durable capital stock. This is especially important in
the carbon context, since carbon-emitting capital (as in power
plants) is extremely durable.

We formally test the superior predictive ability of the best
model over the per capita MSFE model using the Hansen
(2005) test. The RC test strongly rejects the null hypothe-
sis that the best model has no predictive superiority over the
benchmark per capita best model at the 1% level. This finding
provides statistical evidence that using a per capita loss cri-
terion when interested in the aggregate outcome of the series
leads to selection of an inferior model specification.

B. Performance of In-Sample Criteria

Next, we compare the forecasting performance of models
chosen by in-sample selection criteria with that of the best
model. We choose the best model in sample based on four
selection criteria: the Akaike information criterion (AIC),
Schwarz information criterion (SIC), R2, and R̄2.

Figure 3 shows the predicted emissions trajectories of
the models selected by the in-sample selection criteria, with
the best model forecast as comparison. The simple R2 and
adjusted R2 selected models perform poorly in our prediction
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Figure 3.—Forecasts from Models Selected According to In-Sample Criteria

The figure 3 shows historical CO2 emissions from 1960 to 2001 and the out-of-sample predictions of the models, which were selected based on the different in-sample criteria. The dashed line shows the predictions
of the best aggregate model, which minimize aggregate mean square forecast error.

Table 3.—Aggregate and Per Capita MSFE and Reality Check

Bootstrap Test Results for Best In-Sample Models

Tested Benchmarks: AIC BIC Adjusted R2 Simple R̄2

MSFE aggregate CO2 4,667 4,311 5,664 6273
MSFE per capita CO2 306 277 361 379
Hansen’s RC p-value 0.004 0.006 0.000 0.000

Aggregate and per capita mean square forecast errors for the best models according to the different in-
sample selection criteria. The reality check bootstrap test (RC) tests the best model’s predictive superiority
using each of the four in-sample selected models in turn as a benchmark.

experiment, as seen in table 3. They predict 2011 emission
levels 5% and 3% below those of the best model, according
to the per capita MSFE measure.22 The SIC and AIC criteria
choose models that also predict a lower emissions path com-
pared to the best model. They lie, respectively, 6% and 2%
under the 2011 best model predictions.

As table 3 shows, we formally reject the null hypothesis
that the best model fails to outperform the models selected
based on the four in-sample fitting criteria. For all four mod-
els, the test rejects at the 1% level that the best MSFE model is
not superior to each of them in its predictive ability to forecast
aggregate U.S. carbon emissions. These results suggest that
using in-sample selection criteria is likely to be suboptimal
when the goal is to forecast aggregate emissions.

22 Both criteria select indirect forecast models with nonparsimonious
specifications. Nonparsimony, especially for higher-order terms, indirectly
punishes the models’ forecasting performance, as each variable adds
estimation uncertainty when variables need to be projected out-of-sample.

C. Performance of Benchmark Models from the Literature

We now compare the performance of the best model with
the performance of the three benchmark models found in
the literature, which we discussed in section IIIC. Figure 4
shows the predictions from the three benchmarks and from
the best model. We see that while the Holtz-Eakin & Selden
(1995) model predicts a sharp downturn in carbon emis-
sions, the Yang & Schneider (1998) model predicts a sharp
increase of emissions. The Schmalensee et al. (1998) pre-
dictions lie closest to the best model among the three, with
predicted emissions for the year 2011 of 1.74 billion tons of
carbon.

When running the formal RC test, we again reject the null
hypothesis that the best model has no superior predictive abil-
ity over the benchmark in all three cases. The results are
presented in table 4, where we also present the MSFEs for
each model. We can see why the null is strongly rejected
for all three benchmark models, as their MSFEs from the
out-of-sample experiment are much higher than that of the
best-performing model. Furthermore, we find that the bench-
mark based on the model of Schmalensee et al. (1998) is
outperformed by over 6,700, or about 25% of the models in
our universe.

Also included in table 4 are the results of the RC test,
with the best model itself as a benchmark. With the best
model taken out as the benchmark, the best model encoun-
tered in the specification search is the model with the
second-lowest aggregate MSFE in our model universe. That
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Figure 4.—Forecast Comparison of Benchmark Models from the Literature with the Best Model

Historical CO2 emissions from 1960 to 2001 and the out-of-sample predictions of the benchmark models from the literature. The dashed line shows the predictions of the best model based on aggregate emissions.

Table 4.—Aggregate and Per Capita MSFE and Reality Check

Bootstrap Test Results for Benchmark Models from the Literature

Tested Benchmarks

Schmalensee, Holtz-Eakin Yang and Best
Stoker and Judson and Selden Schneider Model

MSFE aggregate CO2 3,163 2,701 2,215 503
MSFE per capita CO2 456 559 195 86
Hansen’s RC p-value 0.000 0.000 0.000 0.940

Aggregate and per capita mean square forecast errors for well-known specifications from the reduced-
form literature. The RC tests the best model’s predictive superiority using each of the three models from
the literature as the benchmark.

means we are effectively testing the null hypothesis that
the second-best model in the model universe has no predic-
tive superiority over the best model. The resulting p-value
of 0.94 shows clearly that, as we would expect, we can-
not reject the null in this case. Furthermore, we find in a
RC test where we use the second-best model as the bench-
mark that the null hypothesis is not rejected; that is, the
best and the second-best model are too close to statistically
conclude that the best model has a better predictive ability.
This indicates that we may have multiple models in the uni-
verse that are similar in their predictive ability to the best
model.23

23 We can run RC tests for all models in our universe, each individually as
the test’s benchmark, to see which models perform close to the best model.
That way, we identified a set of nonrejectable models for which, when used
as a benchmark, the Hansen p-value of the RC test is larger than 10%. The
evenly weighted forecast average over all nonrejectable models based on
the aggregate MSFE predicts 2011 emission of 1,608 million tons.

D. Benefits from Disaggregation

A large, emerging literature shows possible significant
benefits from disaggregation of the data series used to fore-
cast an aggregate (Marcellino et al., 2003; Auffhammer &
Steinhauser, 2007). In order to check whether we get similar
benefits from disaggregation, we run the following exper-
iment. We use our best model specification based on the
aggregate MSFE criterion and calculate its MSFE in such
a way that it is comparable with a MSFE derived from an
aggregate series. For each out-of-sample forecast, we first
aggregate emissions across states to get aggregate U.S.-level
CO2 emissions instead of calculating the forecast error at the
state level. We then subtract the model’s forecast from the
actual CO2 emissions before the error is squared and repeat
this experiment as before for ten time periods. This results in
an MSFE of 1,414 for our best model.

As we did for the disaggregate model specifications, we
now construct a ten-year-ahead forecasts for all feasible spec-
ifications using aggregate data on the national level.24 The
model with the smallest forecast error among these out-
of-sample experiment forecasts has an MSFE of 3,651. At
a forecast horizon of ten years out, we therefore get an
improvement in MSFE of 61% for our best model when using
disaggregate data compared to the best-performing model
under aggregate U.S. data.

24 This is possible only for a subset of 1,632 unique models that do not
use state-specific variables or time fixed effects.
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E. Comparison to other U.S. Carbon Forecasts

Using the Emission Scenario Database developed for the
IPCC’s Special Report on Emissions Scenarios, we can com-
pare our predictions to scenario outcomes of previous studies
under similar “no intervention” assumptions.25 These mostly
structural studies produce 71 forecasts for the United States
under scenarios classified as no intervention.26

The different emission estimates of all studies for the
United States for the year 2010 range from 1.30 to 2.36
billion tons of carbon, with a mean of 1.77. For the same
year, our best model selected on aggregate emission loss
predicts 1.67 billion tons.27 Our forecast suggests emissions
might be 100 million tons of carbon lower on average than
what existing scenarios predict. This estimate is 5.6% less
than the IPCC database average or a 7.4% difference with
respect to 1990 U.S. emissions levels. A difference of such
magnitude in projected business-as-usual emission would
significantly overstate the costs of committing to a given
emissions-reduction scheme.

The exercise above compares our forecasts to a rival set of
forecasts for a future date. We cannot verify which actual does
better. We conduct another exercise using forecasts made in
the past and compare them to actual observed emissions data.
For a subset of the studies in the IPCC Emission Scenarios
Database (Morita, 1999), which were updated before the year
2000, we can use the forecast for the year 2000 and compare
them with the forecast from our best model and the actual
CO2 emissions in that year. This is the case for 40 of the 71
scenarios. They were on average done in 1995 and predicted
BAU emissions for the year 2000 of 1,591 million metric
tons of carbon. Comparing this to the predictions of our best
models based on 1990 information using a longer ten-year
horizon, we predict 1,548 million tons of carbon emission
for the United States in 2000. So for the year 2010, we find
that the best-models predictions are lower than the average of
the IPCC forecasts—in this case by 43 million tons, or 3%.
The actual emissions in the year 2000 were 1,554 million tons
of carbon. Our best model is about 0.4% off, while the IPCC
database average, with an average horizon of five years, is
about 2.4% off.

V. Conclusion

Reduced-form econometric models are an important alter-
native to more complex structural models for forecasting
carbon emissions. While structural models are an essential

25 The database was assembled by Morita (1999) at the Center for
Global Environmental Research at the National Institute for Environ-
mental Studies and made available on its Web site under http://www
.cger.nies.go.jp/scenario/index.html.

26 Among these studies are IPCC IS92 scenarios, results from the Energy
Modeling Forum, Nordhaus’s RICE model, reports from the U.S. Energy
Information Administration, and many others.

27 Forty seven of the 71 models predict larger emissions, while 24 predict
a lower carbon output for the United States. Interestingly, the EIA Energy
Outlook from May 1996 predicts an almost identical level of 1.66 billion
tons.

tool for policy simulations, reduced-form models have some
significant advantages if we are interested in noninterven-
tion scenarios, for example, as input to global circulation
models or as baseline to evaluate abatement commitments.
Lower data requirements for reduced-form models allow for
the use of longer time series and facilitate the analysis for
countries where the structural approach is infeasible. How-
ever, the existing reduced-form literature on forecasting CO2

emissions is characterized by a wide variety of conflict-
ing specifications and resulting point forecasts. The primary
source of this inconsistency among forecasts is the tendency
to conduct a model search over a very limited set of the
theoretically and empirically feasible models. Further, the
confidence with which the superiority of a preferred model
is claimed can be questioned due to a lack of accounting for
model search in performance testing. This omission leaves
open the strong possibility that identification of a best model
was the result of a chance alignment of the model with the
observed data rather than it being the best model of the
underlying data-generating process.

The empirical application part of this paper provides fore-
casts of U.S. CO2 emissions based on the best-performing
model selected from a large universe of over 27,000 models.
We use Hansen’s (2005) reality check bootstrap test to for-
mally compare models based on their predictive abilities,
taking the data snooping or data mining of the model search
into account. The test statistics show that the best model from
our search significantly outperforms existing benchmark
models found in the literature.

A more general contribution of this paper is to highlight
the importance of the choice of model selection criterion.
For most policy and climate modeling purposes, the output
of interest is a forecast of aggregate carbon emissions. The
existing literature has instead relied on in-sample ability to
predict per capita emissions. We first demonstrate how the use
of in-sample selection criteria leads to choosing inferior per-
forming models when one is interested in the out-of-sample
predictive ability. We select best models using four of the
most popular in-sample performance criteria: R2, R̄2, SIC,
and the AIC. We then compare the performance of these
four models against our model universe on the basis of out-
of-sample performance. All four models selected based on
in-sample performance are significantly outperformed by the
best model in our universe.

We next show how the use of a loss function defined over
per capita emissions rather than total emissions can lead to
poor performance when the objective is to forecast total emis-
sions. We find that the point forecasts of the best model
selected on the basis of per capita loss are 4% lower by 2011
and diverge quickly from the trajectory predicted by the best
model selected on the basis of minimizing a loss function
defined over aggregate emissions. Furthermore, the reality
check bootstrap Test confirms that the per capita model has
significantly inferior predictive ability.

While much of the contribution of this paper is with respect
to model selection, from a policy perspective, the contribution
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of interest is an improved reduced-form carbon forecast.
Since forecasts for CO2 emissions serve as important inputs
to global climate models as well as inputs to benefit-cost
studies, suboptimal forecasts may have real consequences
for future global climate agreements. For example, nations
with downward-biased projections of their business-as-usual
emissions will underestimate the costs of committing to
a given emissions-reduction scheme and might commit to
overly stringent goals. Of course, the opposite is also possi-
ble, where countries may be reluctant to join an agreement
based on upwardly biased projections of their BAU emis-
sions, which will overstate the costs of committing to a
given emissions reduction scheme. Our results suggest a 5.6%
lower carbon dioxide emission prediction (or 7.4% in terms of
1990 U.S. emissions) than the average from the IPCC Emis-
sion Scenario Database for 2010. This is a large difference
in context of the 7% of emission reductions relative to 1990
level the United States agreed to under the Kyoto Protocol.
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APPENDIX A

The Reality Check Bootstrap Test

First developed by White (2000) and later modified by Hansen (2005),
the reality check bootstrap test allows undertaking data snooping or data
mining with a degree of confidence that one will not mistake results gen-
erated by chance for genuinely good results.28 The test gives a measure of
confidence that the encountered model’s predictive ability is not just a fluke
of our model search. The null hypothesis, that the best model encountered
during the specification search has no predictive superiority over a given
benchmark model, takes the form

H0 : max
k=1,...,L

E[fk] ≤ 0,

where E[fk] = f̄k = n−1
∑

t f̂k,t+τ and f̂k,t+τ = ∑50
i=1 −(ci,k,t+τ −

X̂i,k,t+τβ̂i,k,t)
2 + (ci,0,t+τ − X̂i,0,t+τβ̂i,0,t)

2. X̂i,k,t+τ includes all projected right-
hand-side variables of a model k at the out-of-sample period t + τ for state
i, β̂i,k,t is an estimate that incorporates all information up to period t, and
ci,t+τ is the actual realization of the dependent variable—carbon emissions,
in our case. The model k = 0 is the benchmark model so that under the null
hypothesis, we expect the benchmark to outperform the best of all models
contained in the universe. The alternative is that the best model is superior
to the benchmark. This formulation of f̂k,t+τ is based on an MSFE selection
criterion, but other criteria could be chosen. Hansen (2005) suggests a stu-
dentized test statistic and shows its improved power properties compared
to White’s former statistic. The Hansen test statistic takes the form

T RC = max
k=1,...,L

n1/2 f̄k√
var(n1/2 f̄k)

.

The difficulty in finding the distribution for T RC is overcome by a boot-
strap implementation. The bootstrap resamples the f̂k,t+τ to construct a
distribution for T RC and obtain the p-value of the test statistic. We used
the stationary bootstrap of Politis and Romano (1994) with a block length
of 4 and B = 500 resamples. The resampled statistic is in accordance with
MSFE criteria computed as

f̄k,b = n−1
∑

t

f̂k,θb,t+τ ∀b = 1, . . . , B,

where, in our case, n = 10 and t = 1982, . . . , 1991. We seek the distribu-
tion of the test statistics under the null hypothesis, so we impose the null
by recentering the bootstrap variables. White (2000) proposes centering
about f̄k and shows that the distribution of f̄k∗ = maxk=1,...,L f̄k is properly
approximated by

T RC∗
u,b = max

k=1,...,L
n1/2(f̄k,b − f̄k) ∀b = 1, . . . , B.

28 Hansen (2005) refers to his variation of the test as superior predic-
tive ability (SPA) test. We will keep using the name reality check (RC)
throughout.

Hansen demonstrates that this most conservative approach gives too much
power to poorly performing models with high variances in f̄k . The poorly
performing models can dominate the right-hand tail of the distribution when
a large, negative f̄k is subtracted from a much less negative resampled f̄k,b.
We find this to be a problem for our large range of models and their varying
performances in our model universe. Poor models shift the distribution of
the test statistic so far to the right that even for a perfectly predicting model,
we could not reject the null. Hansen (2005) proposes that failure to center
the poorly performing high-variance models around the mean presents an
alternative distribution for f̄k∗ :

T RC∗
c,b = max

k=1,...,L
n1/2 f̄k,b − f̄k · 1{f̄k≥−Ak }

v̂ar(n1/2 f̄k)
∀b = 1, . . . , B,

where Ak = 1/4n−1/4
√

v̂ar(n1/2 f̄k) and v̂ar(n1/2 f̄k) = B−1
∑

b(n
1/2 f̄k,b −

n1/2 f̄k)
2. To calculate the RC p-value, we sort the values T RC∗

c,b , denote them
as an order statistic T RC∗

c,1 , T RC∗
c,2 , . . . , T RC∗

c,B , and find the N for which T RC∗
c,N ≤

T RC < T RC∗
c,N+1. The reality check bootstrap p-value is now defined as

pc = 1 − N/B.

Alternatively one could fit a suitable density model to the order statistic
and get the p-value from the fitted distribution.

APPENDIX B

Model Specifications

Here we spell out in detail the model specifications of selected models
described in sections IVA and IVB. Following the same notation as used in
equation (1) and throughout the paper, the specification of the best model
based on the aggregate MSFE is

ln(ci,t) = α0 + ρi ln(ci,t−1) + α1 ln(pdensi,t) + α2oili + εi,t , (4)

where ln(ci,t) are log per capita carbon emissions for state i in year t, pdensi,t
is population density, α0 is the coefficient of a constant term, oili is one for
oil- or gas-producing states i, and εi,t is assumed to be a stationary ergodic
error term.

The model with the lowest per capita MSFE has the following specifi-
cation:

ln(ci,t) = α0 + ρi ln(ci,t−1) + α1 ln(incomepci,t) + α2(ln(incomepci,t))
2

+ α3 ln(pdensi,t) + α4 ln(incomepci,t−1)

+ α5(ln(incomepci,t−1))
2 + α6 ln(pdensi,t−1)

+ α7crisist + α8coali + εi,t ,

with the variables as defined above and where ln(incomepci,t) is log per
capita real personal income for state i in year t; crisist is a vector of three
time-varying dummies that switch to 1 for the years 1973–1975, 1979–
1981, or 1990–1991, respectively; and coali is 1 for coal-producing states.
The other variables are defined as in equation (4).

Now we turn to the models selected based on in-sample information
criteria. The model performing best according to the Schwarz information
criterion has the following specification:

ln(ci,t) = α0 + ρi ln(ci,t−1) + α1 ln(incomepci,t) + α2(ln(incomepci,t))
2

+ α3coastali + γt + εi,t ,

where coastali is a dummy variable that is 1 for coastal states and γt is a
year fixed effect.

The model with the lowest Akaike information criterion value has the
following specification,

ln(ci,t) = α0 + ρi ln(ci,t−1) + F6(ln(incomepci,t)) + α1coastali

+ α2oili + γt + εi,t ,

where F6(·) represents a spline (piecewise linear) function with six
segments and the other variables are defined as above.


