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Abstract. We prove the existence and asymptotic expansion of a large class of solutions to
nonlinear Helmholtz equations of the form (\Delta  - \lambda 2)u = N [u], where \Delta =  - 

\sum 
j \partial 

2
j is the Laplacian

on \BbbR n, \lambda is a positive real number, and N [u] is a nonlinear operator depending polynomially on u and
its derivatives of order up to order two. Nonlinear Helmholtz eigenfunctions with N [u] = \pm | u| p - 1u
were first considered by Guti\'errez [Math. Ann., 328 (2004), pp. 1--25]. We show that for suitable
nonlinearities and for every f \in Hk+4(\BbbS n - 1) of sufficiently small norm, there is a nonlinear Helmholtz
function taking the form u(r, \omega ) = r - (n - 1)/2(e - i\lambda rf(\omega )+ e+i\lambda rb(\omega )+O(r - \epsilon )), as r \rightarrow \infty , \epsilon > 0,
for some b \in Hk(\BbbS n - 1). Moreover, we prove the result in the general setting of asymptotically conic
manifolds. The proof uses an elaboration of anisotropic Sobolev spaces defined by Vasy [A minicourse
on microlocal analysis for wave propagation, in Asymptotic Analysis in General Relativity, London
Math. Soc. Lecture Note Ser. 443, Cambridge University Press, Cambridge, 2018, pp. 219--374],
between which the Helmholtz operator \Delta  - \lambda 2 acts invertibly. These spaces have a variable spatial
weight \sansl \pm , varying in phase space and distinguishing between the two ``radial sets"" corresponding to
incoming oscillations, e - i\lambda r, and outgoing oscillations, e+i\lambda r. Our spaces have, in addition, module
regularity with respect to two different ``test modules"" and have algebra (or pointwise multiplication)
properties that allow us to treat nonlinearities N [u] of the form specified above.
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1. Introduction. In this article we prove the existence and asymptotic expan-
sion of a large class of solutions to nonlinear Helmholtz equations of the form

(1.1) (\Delta  - \lambda 2)u = N [u],

where \Delta =  - 
\sum 

j \partial 
2
j is the Laplacian on \BbbR n with the sign convention that it is positive

as an operator, \lambda is a positive real number, and N [u] is a nonlinear operator that is
a polynomial in u, u and their derivatives of order up to two. Such equations are of
interest in part because, for certain nonlinearitiesN [u], they furnish standing waves for
nonlinear evolution equations, that is, solutions that are time-harmonic. Indeed this
is the case whenever N [ei\theta u] = ei\theta N [u] for all \theta \in \BbbR . For example, if N [u] = \alpha | u| 2qu,
then \Psi (z, t) = u(z)ei\lambda 

2t solves the nonlinear Schr\"odinger equation

(1.2)  - i\partial t\Psi = \Delta \Psi  - \alpha | \Psi | 2q\Psi ,
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NONLINEAR HELMHOLTZ EIGENFUNCTIONS 6181

while if N [u] = | \nabla u| 2u, then v(z, t) = u(z)ei\lambda t solves the nonlinear wave equation

(1.3) (\partial 2
t +\Delta )v = | \nabla v| 2v.

In this article, we will study the existence and asymptotic behavior of ``small""
solutions to (1.1). Moreover, we shall do this not just for the standard Laplacian on
\BbbR n but for potential and/or metric perturbations of this Laplacian and even more
generally for the Laplacian on asymptotically conic manifolds. However, in this intro-
duction we shall mostly discuss the flat Euclidean case, as our results are new even
in this setting.

Since the linearization of this equation at u = 0 is just the standard Helmholtz
equation,

(1.4) (\Delta  - \lambda 2)u = 0,

it is intuitively clear that nonlinear eigenfunctions which are small in an appropriate
sense should behave similarly to linear Helmholtz eigenfunctions. The structure of
these is well known. The space of Helmholtz eigenfunctions of polynomial growth is
parametrized by distributions on the ``sphere at infinity,"" \BbbS n - 1. Given f \in C\infty (\BbbS n - 1),
there is a unique Helmholtz eigenfunction satisfying (in standard polar coordinates,
r = | z| , \omega = z/| z| )
(1.5)

(\Delta  - \lambda 2)u0 = 0, u0 = r - (n - 1)/2
\Bigl( 
e - i\lambda rf(\omega ) + e+i\lambda rb0(\omega ) +O(r - 1)

\Bigr) 
, as r \rightarrow \infty ,

where b0 \in C\infty (\BbbS n - 1) is determined by f . (In fact, in the simple case of the flat
Laplacian, b0(\omega ) = i(n - 1)f( - \omega ), but in the presence of metric or potential pertur-
bations, b0 is not so explicit and is indeed related to the scattering matrix of the
perturbed operator.) We call f the ``incoming data"" or ``incoming radiation pattern""
for the eigenfunction u, while b0 is referred to as the ``outgoing data"" or ``outgoing
radiation pattern."" It is an arbitrary choice whether to parametrize eigenfunctions
by their incoming or their outgoing data; each determines the other.

1.1. Main results. Our main result, at least as it applies to the flat Laplacian
on \BbbR n, is that small nonlinear eigenfunctions can be parametrized in a similar way.
We state our result first for the equation (with a reminder that \Delta \geq 0 is the positive
Laplacian)

(1.6) (\Delta  - \lambda 2)u = \alpha uq1uq2 , \lambda > 0, \alpha \in \BbbC .

Theorem 1.1 (main theorem, Euclidean case). Let n \geq 2, q1, q2 \in \BbbN 0, p =
q1 + q2, and assume that

(1.7) (p - 1)
n - 1

2
> 2.

Let k be an integer greater than (n  - 1)/2. There exist \epsilon , \epsilon \prime > 0 sufficiently small,
such that for every f \in Hk+4(\BbbS n - 1) with \| f\| Hk+4(\BbbS n - 1) < \epsilon , there is a solution u to
(1.6), satisfying

(1.8) u = r - (n - 1)/2
\Bigl( 
e - i\lambda rf(\omega ) + e+i\lambda rb(\omega ) +O(r - \epsilon \prime )

\Bigr) 
, as r \rightarrow \infty ,

for some b \in Hk(\BbbS n - 1). The O(r - \epsilon \prime ) remainder can be taken either in the space
Hk(\BbbS n - 1) or, using Sobolev embeddings, in a pointwise sense.
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6182 J. GELL-REDMAN, A. HASSELL, J. SHAPIRO, AND J. ZHANG

Moreover, uniqueness holds in the following sense. Fix a C\infty function \chi (r) equal
to zero for r small and 1 for r large, and let \ell =  - 1/2  - \delta for any \delta satisfying
0 < \delta \leq (4p) - 1. Let u - = \chi (r)r - (n - 1)/2e - i\lambda rf(\omega ). Then given f with \| f\| Hk+4(\BbbS n - 1)

sufficiently small, there is exactly one nonlinear eigenfunction u of the form (1.8)

with the property that u  - u - has small norm in the Hilbert space H2,\ell ;1,k+1
+ defined

in (2.34).

Remark 1.2. The solution is a scattering type solution, not an L2 solution. From
the Pohozaev identity, it is known that the sign of the right-hand side (RHS) of (1.6)
plays an important role in the existence of finite energy solutions to (1.6), while the
sign of the RHS of (1.6) plays no role in Theorem 1.1.

Remark 1.3. The nonlinearity above can be of the form \pm | u| p - 1u if p is odd, but
not if p is even, since the nonlinear term is required to be polynomial.

Remark 1.4. As mentioned above, \Psi (z, t) = u(z)ei\lambda 
2t is a global-in-time solution

which solves (1.2) but it is time-periodic without any decay. This is quite different
from the classical finite-energy solution to (1.2).

Our proof of Theorem 1.1 principally makes use of the asymptotically conic struc-
ture of \BbbR n near infinity; in particular it uses neither the translation symmetries of \BbbR n

nor exact formulae for resolvent kernels. The more general version of our main result
is valid in the setting of asymptotically conic manifolds. To prepare for the definition
of such spaces, let us recall that, given a compact Riemannian manifold (\bfitN , g\bfitN ), the
metric cone over \bfitN is the Riemannian manifold (0,\infty )r \times \bfitN with metric of the form
dr2 + r2g\bfitN .

We define an asymptotically conic manifold to be the interior M\circ of a compact
manifold with boundary M , with Riemannian metric g taking a particular form near
the boundary. To specify this, let x be a boundary defining function for \partial M (that
is, the boundary \partial M is given by x = 0, where x vanishes to first order at \partial M and
x > 0 on M\circ ) and let y = (y1, . . . , yn - 1) be local coordinates on \partial M extended to a
collar neighborhood \{ x \leq c\} of the boundary, where c > 0 is some small fixed positive
number. We assume that the metric g has the property that, near any point on \partial M ,
there are coordinates (x, y1, . . . , yn - 1) as above such that, in this coordinate patch, g
takes the form

(1.9) g =
dx2

x4
+

h(x, y, dy)

x2
,

where h is a smooth (0, 2)-tensor that restricts to a metric on \partial M . This definition is
better understood by passing to the variable r = 1/x, which goes to infinity at the
boundary of M . The metric then takes the form

(1.10) g = dr2 + r2h

\biggl( 
1

r
, y, dy

\biggr) 
.

If h is independent of x for small x, then this is precisely a conic metric for large
r, where g\bfitN = h(0, y, dy). More generally, it is asymptotic to this conic metric
(smoothness of h in x is equivalent to having an asymptotic expansion in powers of
1/r as r \rightarrow \infty ). In particular, the metric is always complete, as the boundary is at
r = \infty , which is an infinite distance from any interior point. Thus, we can think of an
asymptotically conic manifold as a complete noncompact Riemannian manifold that
is asymptotic, at infinity, to the ``large end of a cone,"" but having no conic singularity
(as a true cone usually does at r = 0). Such spaces have curvature tending to zero
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NONLINEAR HELMHOLTZ EIGENFUNCTIONS 6183

at infinity, and local injectivity radius tending to infinity, so balls of a fixed size are
asymptotically Euclidean as their center tends to infinity.

Particular instances of asymptotically conic manifolds include flat Euclidean space,
or any compact metric perturbation of the flat metric on Euclidean space. In this case,
M is the radial compactification of \BbbR n, given by the union of \BbbR n with the ``sphere at
infinity,"" \BbbS n - 1. Connected sums of such manifolds are also asymptotically conic. The
topology and geodesic dynamics on such manifolds can be intricate. For example,
any convex co-compact hyperbolic manifold can have its metric modified near infinity
to be asymptotically conic; while this is an artificial construction, it provides a very
large class of asymptotically conic spaces with complicated topology and hyperbolic
trapped set.

Theorem 1.5 (main theorem, asymptotically conic case). Let (M\circ , g) be an
asymptotically conic manifold of dimension n, and let V be a conormal short range
potential, that is, a smooth potential on M\circ satisfying estimates near infinity of the
form

(1.11)
\bigm| \bigm| \bigm| (rDr)

kD\alpha 
y V (r, y)

\bigm| \bigm| \bigm| \leq C\langle r\rangle  - \gamma for all k \geq 0, \alpha \in \BbbN n - 1

for some \gamma > 1. Let H = \Delta g + V , where \Delta g is the Laplace--Beltrami operator
on (M\circ , g). Let N(u, u,\nabla u,\nabla u,\nabla (2)u,\nabla (2)u) be a sum of monomial terms, each of
which has degree not less than p, in u and u and their derivatives up to order two,
with coefficients smooth on M , and assume that p satisfies (1.7). Let k be an integer
greater than (n  - 1)/2. There exist \epsilon , \epsilon \prime > 0 sufficiently small, such that for every
f \in Hk+4(\partial M) with \| f\| Hk+4(\partial M) < \epsilon , there is a function u on M\circ satisfying

(H  - \lambda 2)u = N(u, u,\nabla u,\nabla u,\nabla (2)u,\nabla (2)u)

with asymptotics

(1.12) u = r - (n - 1)/2
\Bigl( 
e - i\lambda rf(\omega ) + e+i\lambda rb(\omega ) +O(r - \epsilon \prime )

\Bigr) 
, as r \rightarrow \infty ,

for some b \in Hk(\partial M). Moreover, uniqueness holds in the same sense as in Theo-
rem 1.1.

Remark 1.6. We first clarify the meaning of a ``monomial of degree not less than
p in u and u and their derivatives up to order two, with coefficients smooth on M .""
These derivatives are understood to be taken with respect to a frame of vector fields
that are uniformly bounded with respect to the metric g. Thus, as r \rightarrow \infty we could
take \partial r and r - 1\partial yj

, for example; these are the natural analogues of the gradient in
the Euclidean sense, written with respect to polar coordinates. For example, if p = 3,
then on Euclidean \BbbR n the nonlinear term N could take the form

| u| 2u+ | \nabla u| 2u+ | \nabla (2)u| 2u+
\partial 2u

\partial z21

\partial u

\partial z2
u2 + u5.

Remark 1.7. The first result along the lines of Theorem 1.1 was obtained by
Guti\'errez [11]. Curiously, the set of pairs (n, p) treated in that paper is almost disjoint
to ours: it covers the case n = 3, 4 and p = 3, for example, but higher n and p are
excluded, while our method works most easily with large n and p. In fact, in view of
the condition (1.7) in our two theorems we can treat p \geq 6 when n = 2, p \geq 4 when
n = 3, p \geq 3 when n = 4, 5, and p \geq 2 for n \geq 6. We discuss previous literature more
fully below.
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6184 J. GELL-REDMAN, A. HASSELL, J. SHAPIRO, AND J. ZHANG

1.2. Strategy of the proof. The basic strategy of our proof of Theorem 1.1
is a fixed point argument which is similar to [11]. Given incoming data f , Guti\'errez
formed the linear eigenfunction u0 and showed that the map

(1.13) \Phi : u \mapsto \rightarrow u0 + (\Delta  - (\lambda + i0)2) - 1\alpha | u| p - 1u

is a contraction map on some Banach space, provided that the norm of u is sufficiently
small. Guti\'errez used Lq spaces, for example, L4, when p = 3 and n = 3, 4. Given
u \in L4, it is clear that the cubic term | u| 2u lies in L4/3, while uniform resolvent
bounds of Kenig, Ruiz, and Sogge [20] and the restriction estimates of Stein and
Tomas [29] are used to show that the outgoing resolvent maps L4/3 back to L4. The
fixed point of \Phi is a nonlinear eigenfunction, as one sees by applying \Delta  - \lambda 2 to both
sides, and it has the same incoming data as u0.

In our approach, we use polynomially weighted L2-based Sobolev spaces, with
an anisotropic weight. Vasy [32] has shown how to construct two families of Hilbert
spaces between which \Delta  - \lambda 2 maps as a bounded invertible operator :

(1.14) \Delta  - \lambda 2 : \scrX s,\sansl \pm  - \rightarrow \scrY s - 2,\sansl \pm +1.

In (1.14), the space \scrY s,\sansl \pm = Hs,\sansl \pm is a variable order L2-based Sobolev space. The
index s \in \BbbR is a regularity parameter, specifying how many derivatives are locally
in L2, while \sansl \pm is a variable spatial weight, which varies ``microlocally,"" i.e., in phase
space T \ast \BbbR n. The weight \sansl + is chosen so that u \in \scrX s,\sansl + , localized in frequency close to
the incoming radial oscillation e - i\lambda r, decays at least as r - (n - 1)/2 - \delta with \delta > 0 fixed
but small, while near the outgoing radial oscillation ei\lambda r, slower decay, as r - (n - 1)/2+\delta ,
is permitted. The weight \sansl  - has the opposite property: the decay must be faster than
r - (n - 1)/2 near the outgoing radial oscillation but can be slower near the incoming
radial oscillation.

This means that, for the + sign, the ``outgoing"" expansion at infinity typical of
generalized eigenfunctions is permitted, while the ``incoming"" expansion is not, while
for the  - sign, the situation is reversed. This is consistent with the statement that
the inverse map to (1.14) is, for the + sign, the outgoing resolvent (\Delta  - (\lambda + i0)2) - 1,
and for the  - sign, the incoming resolvent (\Delta  - (\lambda  - i0)2) - 1, meaning that solutions
(\Delta  - \lambda 2)u = f \in \scrS (\BbbR n) with u \in \scrX s,\sansl \pm admit asymptotic expansions of the form

u = r - (n - 1)/2e\pm i\lambda r
\infty \sum 
j=0

r - jvj , vj \in C\infty (\BbbS n - 1).

The domain of (1.14) is defined by an a priori regularity condition

(1.15) \scrX s,\sansl \pm := \{ u \in Hs,\sansl \pm : (\Delta  - \lambda 2)u \in Hs - 2,\sansl \pm +1\} .

The exponents (s  - 2, \sansl \pm + 1) reflect the order (2, 0) of the operator P , as well as
the ellipticity of P at fiber-infinity and the fact that P is of real principal type at
spatial-infinity, leading to a loss of one order of decay in the spatial regularity \sansl \pm . It
is a tautology that \Delta  - \lambda 2 is a bounded operator from \scrX s,\sansl \pm to Hs - 2,\sansl \pm +1. What is
not obvious is that this is an invertible map, a result due to Vasy [33] with methods
going back to Melrose [24], and of which we give a detailed proof below. The inverse
operator depends on the choice of sign \pm (the choice giving either the incoming or
outgoing resolvent), and as in the work of Guti\'errez, although a choice must be made,
the only effect of this choice is to determine whether one prescribes the incoming data
f in the main theorems or the outgoing data b.
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One thus obtains an inverse mapping R(\lambda + i0) : Hs - 2,\sansl ++1  - \rightarrow Hs,\sansl + , but this is
not enough to solve nonlinear problems. Given that our nonlinear term is assumed
to be polynomial, we need to work with spaces of functions with good algebra (or
multiplicative) properties. The spaces \scrX s,\sansl \pm and \scrY s,\sansl \pm = Hs,\sansl \pm are not suitable for
this purpose, even (surprisingly) for large s. Recall that, for s > n/2, Hs,0, the
standard Sobolev space of order s forms an algebra, i.e., Hs,0 \cdot Hs,0 \subset Hs,0. If we
include spatial weights, then (at least for constant weights), these combine additively,
in the sense that we have for \ell 1, \ell 2 \in \BbbR , Hs,\ell 1 \cdot Hs,\ell 2 \subset Hs,\ell 1+\ell 2 . However, our
weights are typically negative---indeed, they are forced to be so to obtain bijectivity
of \Delta  - \lambda 2---so this will not lead to a mapping \Phi on a fixed space, as in (1.13); indeed,
the nonlinear operation must gain one order of spatial decay to account for the loss
of one order in the action of the resolvent inverting (1.14).

To do this, we work with spaces with additional regularity with respect to the
differential operators with coefficients that grow linearly at infinity but which annihi-
late the outgoing oscillation ei\lambda r. These are generated by the operators r(\partial r - i\lambda ) and
purely angular differential operators \partial yj . This type of regularity condition is precisely
the ``module regularity"" introduced by the second author together with Melrose and
Vasy in [14] and used by Hintz and Vasy [15] to solve a semilinear wave equation. Thus

for s, \ell \in \BbbR , \kappa , k \in \BbbN 0 we define L2-based Sobolev spaces Hs,\ell ;\kappa ,k
+ in which s is the

order of differentiability in the usual sense, i.e., relative to constant coefficient vector
fields, \ell is the decay rate relative to L2, \kappa is the order of ``module"" differentiability just
described, and k is the order of differentiability with respect to the smaller module of
purely angular derivatives. Crucially, provided \kappa \geq 1 and  - 3/2 < \ell <  - 1/2 we can
take the spatial weight \ell to be constant and retain the invertibility of \Delta  - \lambda 2. Indeed,
the module regularity---which is asymmetric with respect to the incoming and out-
going oscillations, e\pm i\lambda r---enforces additional vanishing of the incoming oscillations,
and we arrive at a refinement of the mapping property (1.14), namely, we obtain in
Theorem 2.4 below an invertible map

(1.16) \Delta  - \lambda 2 : \scrX s,\ell ;\kappa ,k
+  - \rightarrow \scrY s - 2,\ell +1;\kappa ,k

+ ,

where \scrY s,\ell ;\kappa ,k
+ = Hs,\ell ;\kappa ,k

+ and, analogously to (1.15), the \scrX s,\ell ;\kappa ,k
+ are given by

\scrX s,\ell ;\kappa ,k
+

..= \{ u \in Hs,\ell ;\kappa ,k
+ : (\Delta  - \lambda 2)u \in Hs - 2,\ell +1;\kappa ,k

+ \} .

We continue to denote the inverse map to (1.16) byR(\lambda +i0), as it is just the restriction

of the inverse of (1.14) to \scrY s - 2,\ell +1;\kappa ,k
+ within an appropriate choice of \scrY s - 2,\sansl ++1.

For \kappa \geq 1 and \kappa + k > n/2, we are in the ``Sobolev algebra"" range, and it turns
out these spaces satisfy improved multiplicative properties in comparison to Hs,\sansl \pm 

spaces. For example, we have the following containment, which we prove in section
2.5:

(1.17)
\Bigl( 
Hs,\ell ;\kappa ,k

+

\Bigr) p

\subset H
s,p\ell +(p - 1)n/2 - \kappa ;\kappa ,k
+ .

Thus, in contrast to the additivity of weights for products of standard weighted
Sobolev spaces Hs,\ell , the spatial weight of a p-fold product of distributions in the
module regularity space can be larger (i.e., more decaying) than \ell even when \ell is neg-
ative. We require a gain of one in the weight, so that we can apply the inverse map to
(1.16). Since we must take \ell <  - 1/2, that requires that p( - 1/2 - \delta )+(p - 1)n/2 - \kappa \geq 
( - 1/2 - \delta ) + 1 for sufficiently small \delta , or equivalently,  - p/2 + (p - 1)n/2 - \kappa > 1/2.
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6186 J. GELL-REDMAN, A. HASSELL, J. SHAPIRO, AND J. ZHANG

Clearly, to obtain the biggest possible range of (n, p) we should take \kappa as small as
possible; however, we require \kappa to be at least 1 in order to distinguish between the
incoming and outgoing oscillations, and so that we can take \ell constant (which we
require in order to prove (1.17)). See Remark 2.6 and Corollary 3.10. For this reason,
we take \kappa = 1 below. This leads to condition (1.7). On the other hand, for p suffi-
ciently large with respect to n, there is no need for the small module. In this case, we
need \kappa > n/2 so that we are still in the Sobolev algebra range for such \kappa , provided

one has \ell + 1 \leq p\ell + (p - 1)n
2  - \kappa (see (4.7) below) for \ell <  - 1/2, which amounts to

replacing (1.7) with the stronger condition

(p - 1)
n - 1

2
> \kappa + 1 for \kappa >

n

2
.

For example, the stronger condition excludes n = 3, p = 4 as well as n large, p = 2
which are allowed by (1.7).

For small incoming data f \in Hk+4(\partial M), k sufficiently large, and \kappa = 1, we

obtain our nonlinear eigenfunction using a contraction map on the space Hs,\ell ;1,k+1
+ .

However, the nonlinear eigenfunction, or even the linear eigenfunction u0, does not
lie in this space as its incoming oscillations do not have the required decay. To deal
with this, we decompose u0, the linear eigenfunction with incoming data f , into two
terms, u0 = u++u - , where u - contains the leading incoming oscillation (which is the

obstruction to membership in Hs,\ell ;1,k+1
+ ). Consequently, the term u+ lies in Hs,\ell ;1,k+1

+

but u - does not. (Indeed, one can think of u+ as a sum of purely outgoing terms
plus the lower order incoming terms, with additional decay, comprising u0.) We seek
a nonlinear eigenfunction satisfying

u = u0 + (\Delta  - (\lambda + i0)2) - 1N [u],

where N [u] is the nonlinear term. Notice that, since the resolvent gains us two orders
of smoothness, according to (1.16), N can involve derivatives of u up to order 2.
Subtracting u - from both sides we have the equivalent equation

u - u - = u+ + (\Delta  - (\lambda + i0)2) - 1N [u],

and now defining w = u - u - we obtain

w = u+ + (\Delta  - (\lambda + i0)2) - 1N [u - + w].

Thus, it suffices to show that the map

(1.18) \Phi (w) := u+ + (\Delta  - (\lambda + i0)2) - 1N [u - + w]

is a contraction on Hs,\ell ;1,k+1
+ when the norm of w in this space is sufficiently small,

which we show provided the norm of f in Hk+4, k > (n - 1)/2, is sufficiently small.

Remark 1.8. In both Theorems 1.1 and 1.5, it is vital to take \lambda strictly positive.
Indeed our entire approach, following Vasy [32, 33], is based on spaces of functions

\scrX s,\ell \pm ;\kappa ,k
\pm that distinguish between the incoming oscillations, e - i\lambda r, and the outgoing

oscillations, e+i\lambda r, which would coincide when \lambda vanishes. The equation Hu = N [u]
for \lambda = 0 is of a different character and, from a technical point of view, is more closely
related to the ``b-calculus"" used in, say, [32, 8, 15], than the scattering calculus used
here (see section 2).
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1.3. Previous literature. Standing wave solutions to nonlinear Schr\"odinger
equations have been studied for a long time. The first studies were on finite-energy
solutions, where the linearization at u = 0 is the operator \Delta + \lambda 2 with \lambda > 0; this
problem is of a different character, as the linearization at u = 0 is an invertible
operator. See [1, 2, 27] for classical work on this subject on Euclidean space, and
[3, 23] for more recent works on hyperbolic and rotationally symmetric manifolds.
The more recent literature is vast and we make no attempt to review it.

The first paper to study nonlinear Helmholtz eigenfunctions seems to be [11] by
Guti\'errez, already discussed earlier in this introduction. She showed that for the
cubic nonlinearity and in dimensions 3 and 4, there are nonlinear eigenfunctions with
arbitrary small incoming data f \in L2(\BbbS n - 1). We note in passing that the restriction
and uniform Sobolev estimates of [10, 9] allow one to extend Guti\'errez's method to
all asymptotically conic manifolds.

The result of [11] is a perturbative result from the zero solution, as is ours here.
On the other hand, Evequoz and Weth [5] used mountain pass techniques to find
nonperturbative solutions far from the zero solution. These approaches have been
extended in various ways in [22, 21]. In [4] the topology of the zero level sets of
bounded real solutions to (\Delta  - 1)u+ u3 = 0 are studied.

In the microlocal analysis literature, the underlying theory of real principal type
propagation in the setting of ``scattering"" pseudodifferential operators was developed
by Melrose in [24]. The scattering calculus itself appeared earlier (at least on Euclid-
ean space) in work of H\"ormander and Parenti (see, for example, [28]). A Fredholm
theory for nonelliptic operators was developed by Vasy [32] on anisotropic Sobolev
spaces (a precursor is Faure and Sj\"ostrand [6]). This is elaborated and explained
in detail in his lecture notes [33]. His method applies to operators that are of real
principal type, except for manifolds of radial points which have a particular structure.
The first author with Haber and Vasy [8] used this Fredholm framework to study the
Feynman propagator on asymptotically Minkowski spaces and showed that the semi-
linear wave equation with polynomial nonlinearity is solvable for small data, using a
setup very similar to that considered here. This latter result is an extension of a more
fundamentally microlocal setting of a previous result of Hintz and Vasy [15]. Indeed,
the latter two authors have developed a robust microlocal analysis framework that
they use to study quasilinear wave equations in various noncompact settings (see in
particular [16, 17, 13]). In a recent series of papers [34, 30, 31], Vasy considers ``second-
microlocal"" regularity for the Helmholtz operators, both at a fixed finite energy and
near zero energy, which is very similar to our module regularity here. He proves map-
ping properties for the resolvent that overlap with our result on the invertibility of
the Helmholtz operator on spaces with module regularity in Theorem 2.4 below.

1.4. Outline of this paper. In section 2 we review the theory of pseudodiffer-
ential operators with variable order and define anisotropic Sobolev spaces. We discuss
the geometry of the bicharacteristic flow of \Delta  - \lambda 2 at spatial infinity and define the
radial sets. We also discuss module regularity and define the corresponding spaces
of functions. Finally, we consider algebra properties of these spaces with sufficient
module regularity.

In section 3 we prove the invertibility of \Delta  - \lambda 2 acting between spaces as in
(1.16). The proof of this is at least implicitly contained in works of Vasy, particularly
his lecture notes [33], but it is not explicitly written out for this operator. Since,
in addition, this is quite recently developed technology and not standard, we have
decided to give at least some of the details to make the paper more self-contained.
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In section 4 we prove the main theorems, using the technical preparation of the
previous two sections.

1.5. Future directions. Theorem 1.5 shows that there is a well-defined ``non-
linear scattering matrix"" with domain Hk+4(\BbbS n - 1), mapping into Hk(\BbbS n - 1). In the
linear case, the scattering matrix preserves the Sobolev order; in fact, it is a Fourier
integral operator of order zero, associated to the antipodal map on the sphere, or in
the more general context of an asymptotically conic manifold, geodesic flow at time
on the boundary \pi [25]. One of the referees asked whether the nonlinear scattering
matrix likewise preserves Sobolev regularity. This question is beyond the scope of
the current article but is an ongoing research project by some of the authors. More
generally, we think that this paper provides an effective set of tools for investigation
of the microlocal properties of the nonlinear scattering matrix.

Another natural question is whether Theorems 1.1 and 1.5 tell us anything about
closely related nonlinear evolution equations, such as the nonlinear Schr\"odinger, wave,
or Klein--Gordon equations with nonlinearity of the same structure. As far as we
know, the results in this paper do not directly imply any results about such equations.
However, the methods can certainly be applied to such equations, and this is another
ongoing research project of the authors.

A third direction would be to attempt to include fractional values of \kappa . In prin-
ciple, the multiplication result (1.17) or Lemma 2.4 only requires \kappa > 1/2, provided
one can make sense of a fractional power of a module. It seems possible that the
calculus of operators from [34, 31] could allow one to do this, by allowing the symbols
of operators in the module to have singularities at the zero section of the scattering
cotangent bundle at spatial infinity. Were this possible, it would further extend the
range of (n, p) that could be treated.

2. Scattering calculus. In this section, we discuss the technical tools that we
need for the proof of the main theorems. We begin by discussing the pseudodifferential
operators---the scattering calculus---used in the proof, on \BbbR n, and extend this in the
following subsection to asymptotically conic manifolds. We refer to [33] and [24] for
more detailed treatment of the scattering calculus.

2.1. The scattering calculus on \BbbR n. Throughout this paper, we denote Euclid-
ean coordinates on \BbbR n by z = (z1, . . . , zn) and their dual coordinates by \zeta = (\zeta 1, . . . , \zeta n).
We use the Japanese bracket \langle z\rangle to denote (1+ | z| 2)1/2. The Fourier transform, with
H\"ormander's normalization, will be denoted \scrF , with inverse \scrF  - 1:

(2.1) \scrF f(\zeta ) =

\int 
e - iz\cdot \zeta f(z) dz, \scrF  - 1 \~f(z) = (2\pi ) - n

\int 
eiz\cdot \zeta \~f(\zeta ) d\zeta .

We denote  - i\partial /\partial zj by Dzj and use multi-index notation D\alpha 
z , \alpha = (\alpha 1, . . . , \alpha n) \in \BbbN n

for higher order derivatives, in the standard way.
Pseudodifferential operators on \BbbR n are defined via their symbols, which are func-

tions on T \ast \BbbR n. For sufficiently decaying symbols, say, a(z, \zeta ) \in \scrS (T \ast \BbbR n), the cor-
responding pseudodifferential operator (defined by left quantization) is the operator
with kernel

(2.2) Op(a)(z, z\prime ) := (2\pi ) - n

\int 
ei(z - z\prime )\cdot \zeta a(z, \zeta ) d\zeta .

This definition is extended to a larger class of symbols by integration by parts.
The scattering calculus is obtained by letting a lie in a (scattering) symbol class
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Ss,\ell (T \ast \BbbR n). For fixed real numbers s and \ell this symbol class is defined by the esti-
mates

(2.3) \forall \alpha , \beta \in \BbbN n, \exists C\alpha ,\beta < \infty such that
\bigm| \bigm| \bigm| D\alpha 

z D
\beta 
\zeta a(z, \zeta )

\bigm| \bigm| \bigm| \leq C\alpha ,\beta \langle z\rangle \ell  - | \alpha | \langle \zeta \rangle s - | \beta | .

This is a rather restrictive class of symbols in which z and \zeta are treated symmetrically:
differentiation in \zeta leads to decay in \zeta and differentiation in z leads to decay in z.
It is in the H\"ormander class of symbols [19, sect. 18.4] relative to the slowly varying
metric

dz2

\langle z\rangle 2
+

d\zeta 2

\langle \zeta \rangle 2
.

The class of pseudodifferential operators of order (s, \ell ) is by definition the class of
operators obtained from symbols a \in Ss,\ell (T \ast \BbbR n) as above and is denoted \Psi s,\ell 

\mathrm{s}\mathrm{c} (\BbbR n).
These pseudodifferential operators form a bifiltered algebra; concretely, the compo-
sition of an operator in \Psi s1,\ell 1

\mathrm{s}\mathrm{c} (\BbbR n) with an operator in \Psi s2,\ell 2
\mathrm{s}\mathrm{c} (\BbbR n) is an operator in

\Psi s1+s2,\ell 1+\ell 2
\mathrm{s}\mathrm{c} (\BbbR n). The symbol of the composition Op(a) \circ Op(b) is given by

c(z, \zeta ) = eiDy\cdot D\eta a(z, \eta )b(y, \zeta )
\bigm| \bigm| \bigm| 
y=z,\eta =\zeta 

and has an asymptotic expansion

(2.4) c(z, \zeta ) \sim 
\sum 
\alpha 

i| \alpha | D\alpha 
\zeta a(z, \zeta )D

\alpha 
z b(z, \zeta )/\alpha !

Given this formula, and the decay of derivatives from (2.3), it is clear that the
principal symbol, which for a \in Ss,\ell (T \ast \BbbR n) is its equivalence class in

Ss,\ell (T \ast \BbbR n)/Ss - 1,\ell  - 1(T \ast \BbbR n),

is multiplicative under composition. Notice that, unlike in the usual pseudodifferential
calculus, here the principal symbol is well defined up to symbols decaying (a full integer
order) faster in z, as well as decaying (a full integer order) faster in \zeta . That means
that the principal symbol is, in effect, completely well-defined at infinity for all finite
frequencies \zeta and not just asymptotically as | \zeta | \rightarrow \infty , at least in the case of classical
symbols (discussed below).

We elaborate on this point. It is convenient in the scattering calculus to view
symbols on the compactification of T \ast \BbbR n. We have already mentioned in the intro-
duction the radial compactification \BbbR n of \BbbR n. This is obtained via the diffeomorphism
\varphi : \BbbR n \rightarrow \BbbB n from \BbbR n to its unit ball, given by

z \mapsto \rightarrow \varphi (z) =
z

1 + \langle z\rangle 
\in \BbbB n.

The closure of the image of this map is obviously the closed unit ball \BbbB n, and the map
realizes \BbbR n as the interior of this compact manifold with boundary. In keeping with
standard notation we write \BbbR n \simeq \BbbB n, where the notation indicates that we keep in
mind the identification between points in \BbbR n with points in the ball \BbbB n. We similarly
radially compactify the fiber copy of \BbbR n. Thus, we may understand the behavior
of symbols by pulling them back via \varphi  - 1 \times \varphi  - 1 to \BbbR n \times \BbbR n. This is particularly
helpful for classical symbols, which by definition take the form \langle z\rangle \ell \langle \zeta \rangle sC\infty (\BbbR n \times \BbbR n)
(such functions automatically satisfy the symbol estimates (2.15)). The class of such
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symbols is denoted Ss,\ell 
\mathrm{c}\mathrm{l} (T

\ast \BbbR n). In particular, for classical symbols of order (0, 0), the
symbol is continuous up to the boundary of \BbbR n\times \BbbR n, and the principal symbol can be
viewed as the boundary value of this symbol. Notice that this has two ``components,""
one a function at fiber-infinity, that is, on \BbbR n \times \BbbS n - 1, and one at ``spatial infinity,""
that is, at \BbbS n - 1 \times \BbbR n. More generally, for an operator A with classical symbol a
of order (s, 0) (such as our Helmholtz operator \Delta g  - \lambda 2), the principal symbol is
conveniently viewed as the combination of a fiber component, \sigma fi\mathrm{b}\mathrm{e}\mathrm{r},s,0(A)(z, \zeta ), which
is homogeneous in \zeta of degree s (and is hence determined by \zeta restricted to any sphere),
and a base (or spatial) component, \sigma \mathrm{b}\mathrm{a}\mathrm{s}\mathrm{e},s,0(A)(\omega , \zeta ), where \omega is the limiting value
of z/| z| on the sphere at infinity, and \zeta \in \BbbR n. These have an obvious compatibility
relation at the ``corner,"" where | z| and | \zeta | are both infinite. In particular, for the
Helmholtz operator, the principal symbol is given by

\sigma fi\mathrm{b}\mathrm{e}\mathrm{r},2,0(\Delta  - \lambda 2)(z, \zeta ) = | \zeta | 2g ..=
\sum 
i,j

gij\zeta i\zeta j ,

\sigma \mathrm{b}\mathrm{a}\mathrm{s}\mathrm{e},2,0(\Delta  - \lambda 2)(\omega , \zeta ) = | \zeta | 2g  - \lambda 2.

It is important to understand that the base symbol need not be homogeneous in the
fiber variable and indeed is not homogeneous for the Helmholtz operator.

Suppose A \in \Psi s,\ell 
\mathrm{s}\mathrm{c} (\BbbR n) has a classical symbol. The elliptic set of A, Ells,\ell (A) =

Ell(A), is the open subset of \partial (\BbbR n \times \BbbR n) consisting of those points near which the
principal symbol is at least as big as c\langle z\rangle \ell \langle \zeta \rangle s for some c > 0. Its complement in
\partial (\BbbR n \times \BbbR n) is called the characteristic variety, \Sigma s,\ell (A) = \Sigma (A). The Helmholtz
operator \Delta g  - \lambda 2 is elliptic at fiber-infinity, and thus the characteristic variety is
contained in the component at spatial infinity and is given by

(2.5) \Sigma (\Delta g  - \lambda 2) = \{ (\omega , \zeta ) \in \BbbS n - 1 \times \BbbR n | | \zeta | g = \lambda \} .

We also define the operator wavefront set or microlocal support, WF\prime (A) of A, to be
the complement of the set of points \sansq \in \partial (\BbbR n \times \BbbR n) such that, in a neighborhood U
of \sansq , the full symbol a(z, \zeta ) satisfies (2.3) for all s, \ell \in \BbbR . Thus, intuitively speaking,
A is microlocally of order  - \infty in both the fiber and base senses away from WF\prime (A).

Returning to the composition formula (2.4), it is straightforward to see from
this that the commutator of two pseudodifferential operators A \in \Psi s1,\ell 1

\mathrm{s}\mathrm{c} (\BbbR n) and
B \in \Psi s2,\ell 2

\mathrm{s}\mathrm{c} (\BbbR n) is an operator [A,B] in \Psi s1+s2 - 1,\ell 1+\ell 2 - 1
\mathrm{s}\mathrm{c} (\BbbR n), with principal symbol

given by the Poisson bracket of the symbols a and b of these operators:

(2.6) \sigma \mathrm{p}\mathrm{r}([A,B]) = \{ a, b\} mod Ss1+s2 - 2,\ell 1+\ell 2 - 2(T \ast \BbbR n).

We also recall that the Poisson bracket is given in terms of the Hamilton vector fields
by

(2.7) \{ a, b\} = Ha(b) =  - Hb(a), Ha =
\sum 
j

\Bigl( \partial a

\partial \zeta j

\partial 

\partial zj
 - \partial a

\partial zj

\partial 

\partial \zeta j

\Bigr) 
.

This is conceptually important for us in relation to the Fredholm estimates in sec-
tion 3. In the elliptic region, these Fredholm estimates are easy to obtain, but in a
neighborhood of the characteristic variety of \Delta g  - \lambda 2, they are obtained from posi-
tive commutator estimates, that is, from operators whose commutator with \Delta g  - \lambda 2

has positive principal symbol microlocally. Equation (2.7) shows that this amounts
to finding symbols b such that Hp(a) is positive, where p = | \zeta | 2g  - \lambda 2 is the symbol
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of the Helmholtz operator. This then motivates considering the properties of the
Hamilton vector field of p, and its flow lines (known as bicharacteristics), within the
characteristic variety \Sigma (\Delta g  - \lambda 2).

The Hamiltonian vector field Hp for p = | \zeta | 2  - \lambda 2, the symbol of the Euclidean
Helmholtz operator, is given by

\.z = 2\zeta , \.\zeta = 0.

We would like to view this on the compactification \BbbR n\times \BbbR n and investigate its behavior
in a neighborhood of \Sigma (\Delta  - \lambda 2). To do this, we use polar coordinates, (r, \omega ), as before,
and then choose arbitrary local coordinates y on a patch of the sphere \BbbS n - 1. We also
write x = r - 1, which serves as a boundary defining function for spatial infinity. Let
(\nu , \eta ) be the dual coordinates to (r, y). In these coordinates, the full symbol p of
\Delta  - \lambda 2 takes the form

p(r, y, \nu , \eta ) = \nu 2  - i(n - 1)r - 1\nu + r - 2bk\eta k + r - 2hjk\eta j\eta k  - \lambda 2,

where hjk = hjk(y) is the dual metric corresponding to the standard round metric
h = hjk(y), on \BbbS n - 1, bk = Dyj

hjk +hjkDyj
log(

\sqrt{} 
| deth| ), and we use the summation

convention. We now make the change of variables to \mu j = r - 1\eta j as these quantities
have uniformly bounded length as r \rightarrow \infty . In terms of (\mu , \nu ) the full symbol is

p(r, y, \nu , \mu ) = \nu 2  - i(n - 1)r - 1\nu + r - 1bk\mu k + hjk\mu j\mu k  - \lambda 2,

and we see that the principal symbol at spatial infinity is

(2.8) \nu 2 + hjk\mu j\mu k  - \lambda 2 = \nu 2 + | \mu | 2y  - \lambda 2,

where | \mu | 2y := hjk\mu j\mu k is the metric function on T \ast \BbbS n - 1. Thus the characteristic set
\Sigma satisfies

(2.9) \Sigma = \{ x = 0, \nu 2 + | \mu | 2y = \lambda 2\} .

In the canonical coordinates (r, y; \nu , \eta ) we easily compute the Hamilton vector
field of the principal symbol:

(2.10)

\.r = 2\nu , \.yl = 2r - 2hlk\eta k,

\.\nu = 2r - 3hjk\eta j\eta k, \.\eta l =  - r - 2 \partial h
jk

\partial yl
\eta j\eta k.

Changing to the variable \mu , and writing x = r - 1, the equations become

(2.11)

\.x =  - 2\nu x2, \.yj = 2xhjk\mu k,

\.\nu = 2xhjk\mu j\mu k, \.\mu l =  - 2x\nu \mu l  - x
\partial hjk

\partial yl
\mu j\mu k.

It is clear that this vector field vanishes to first order as x \rightarrow 0. Dividing by x we
obtain a rescaled Hamilton vector field that we denote by \sansH p, taking the form

(2.12)

\.x =  - 2\nu x, \.yj = 2hjk\mu k,

\.\nu = 2hjk\mu j\mu k, \.\mu l =  - 2\nu \mu l  - 
\partial hjk

\partial yl
\mu j\mu k.
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\scrR  - 

\scrR +\sansl + =  - 1
2
 - \delta 

\sansl + =  - 1
2
+ \delta 

\mu 

\nu 

Fig. 1. The bicharacteristic flow in the characteristic set \Sigma (P ) = \{ x = 0, \nu 2 + | \mu | 2y = \lambda 2\} with

P = \Delta  - \lambda 2.

In the coordinates (x, y, \nu , \mu ) this is a smooth vector field on the compactification.
See Figure 1. We can write it using derivative notation as follows:

(2.13) \sansH p =  - 2\nu (x\partial x +R\mu ) + 2| \mu | 2y\partial \nu +H\BbbS n - 1 ,

where H\BbbS n - 1 is the Hamilton vector field of the round metric h on T \ast \BbbS n - 1 and R\mu =
\mu \cdot \partial \mu is the radial vector field on the fibers of T \ast \BbbS n - 1. In these coordinates, and on \Sigma ,
we have \sansH p =  - 2\nu R\mu +2| \mu | 2y\partial \nu +H\BbbS n - 1 . We can check directly that \sansH p(\nu 

2+ | \mu | 2y) = 0
and that \sansH p vanishes precisely on the two ``radial sets""

(2.14) \scrR \pm ..= \{ | \mu | y = 0 = x, \nu = \pm \lambda \} .

Remark 2.1. Notice that the incoming radial set \scrR  - is a source, and the outgoing
radial set \scrR + a sink, for the rescaled Hamilton vector field \sansH p. Note, also, that the
coefficient of x\partial x in \sansH p is \pm \lambda at \scrR \pm , hence always nonzero. This nonvanishing has
the important consequence that we can find operators with positive commutators at
\scrR \pm , despite \sansH p vanishing there. In this sense the radial sets are ``nondegenerate.""

Up to this point, we have taken the spatial weight \ell to be constant. To consider
variable order spaces, we allow the spatial weight to itself be a classical symbol \sansl 
of order (0, 0) (variable weights will always be written in sans-serif). Choosing an

arbitrary small positive number \bfitdelta , we define the symbol class Ss,\sansl 
\bfitdelta (T \ast \BbbR n) by the

estimates
(2.15)

\forall \alpha , \beta \in \BbbN n, \exists C\alpha ,\beta < \infty such that
\bigm| \bigm| \bigm| D\alpha 

z D
\beta 
\zeta a(z, \zeta )

\bigm| \bigm| \bigm| \leq C\alpha ,\beta \langle z\rangle \sansl  - (1 - \bfitdelta )| \alpha | +\bfitdelta | \beta | \langle \zeta \rangle s - | \beta | .

These are symbol estimates of type (1  - \bfitdelta , \bfitdelta ) in the z variable (in the sense of
H\"ormander), which are slightly ``worse"" than the standard estimates of type (1, 0).
The reason for including this small loss is that the ``classical"" symbols corresponding
to a variable order take the form \langle z\rangle \sansl \langle \zeta \rangle s times a C\infty function on \BbbR n \times \BbbR n, and these
symbols incur logarithmic losses when differentating \sansl .

Changing to these symbol classes makes essentially no difference since we can
take \bfitdelta arbitrarily small, while the pseudodifferential calculus, as is well known, works
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with inessential changes provided \bfitdelta < 1/2. The only differences are that the principal
symbol takes values in Ss,\ell (T \ast \BbbR n)/Ss - 1+\bfitdelta ,\ell  - 1+\bfitdelta (T \ast \BbbR n) instead of

Ss,\ell (T \ast \BbbR n)/Ss - 1,\ell  - 1(T \ast \BbbR n),

and the commutator [A,B] above will have order \Psi s1+s2 - 1+\bfitdelta ,\ell 1+\ell 2 - 1+\bfitdelta 
\mathrm{s}\mathrm{c} (\BbbR n) instead

of \Psi s1+s2 - 1,\ell 1+\ell 2 - 1
\mathrm{s}\mathrm{c} (\BbbR n).

2.2. The scattering calculus on asymptotically conic manifolds. We now
work in the setting of asymptotically conic manifolds. Thus, let M be a compact
manifold with boundary, and M\circ its interior. Let x be a boundary defining function
for M (meaning \partial M = \{ x = 0\} , x vanishes simply at \partial M , and x > 0 on M\circ ), and y
coordinates on a patch O of \partial M , extended to a collar neighborhood \{ x < c\} of \partial M ,
where c > 0 is fixed and small. Given a scattering metric g on M\circ , we call (x, y)
an ``adapted coordinate system"" near a boundary point (0, y0) with y0 \in O provided
that g takes the form (1.9) in this coordinate system on the patch O. This condition
determines a metric h on the boundary \partial M , such that g is asymptotic to the conic
metric dr2+ r2h as r \rightarrow \infty , where r := 1/x, as is clear from the equivalent expression
(1.10).

We now define scattering pseudodifferential operators of order (s, \ell ) on M\circ . We
do this by mimicking the behavior of scattering symbols of order (s, \ell ) on \BbbR n. To do
this, we choose a diffeomorphism \chi from a small open set O \subset \partial M to an open set
O\prime \subset \BbbS n - 1, where \BbbS n - 1 is viewed as the set of vectors of unit length in \BbbR n. We then
consider the diffeomorphism

(2.16) (x, y) \mapsto \rightarrow \chi (y)

x
= r\chi (y) \in \BbbR n.

One can check that the norm of the derivative of this map is uniformly bounded, where
we measure with respect to the metric g on M\circ and with respect to the Euclidean
metric on \BbbR n. We now define suitable cotangent variables that are uniformly bounded
(with respect to the dual metric g\ast ). Let (\nu , \eta ) be the dual variables to coordinates
(r, y), and define \mu = r - 1\eta = x\eta as we did in the previous section. Then \nu is the
symbol of Dr =  - x2Dx and \mu j is the symbol of r - 1Dyj

= xDyj
; since (x2\partial x, x\partial yj

)
clearly form a uniformly bounded, uniformly nondegenerate frame of functions with
respect to the metric g, these are uniformly bounded and uniformly nondegenerate
linear coordinates on the cotangent bundle, with respect to the dual metric g\ast . We
define scattering symbols of order (s, \ell ) on T \ast M\circ to be functions a satisfying usual
symbolic estimates of order s away from \partial M , and near the boundary satisfies

(2.17)
\bigm| \bigm| \bigm| (xDx)

jD\alpha 
yD

k
\nu D

\beta 
\mu a(x, y, \nu , \mu )

\bigm| \bigm| \bigm| \leq Cj,k,\alpha ,\beta x
 - \ell \langle (\nu , \mu )\rangle s - k - | \beta | 

for all \alpha , \beta \in \BbbN n - 1. We will denote the class of such symbols by Ss,\ell (\mathrm{s}\mathrm{c}T \ast M). Scat-
tering pseudodifferential operators A \in \Psi s,\ell 

\mathrm{s}\mathrm{c} (M) are defined as follows: using the local
diffeomorphism (2.16), the symbol is mapped (using the induced map on the cotangent
bundle) to a symbol of order (s, \ell ) on T \ast \BbbR n; we then quantize to a pseudodifferential
operator when (z, z\prime ) are in the range of this diffeomorphism and pull back to M\circ 

by the same map (2.16). By covering M\circ with a finite number of coordinate charts
and using a partition of unity, we get a globally defined operator. This quantization
procedure (that is, the precise way of relating symbols a and opeartors A) depends
on the choice of charts, partition of unity, etc, but all choices lead to the same op-
erator modulo an operator in \Psi s - 1,\ell  - 1

\mathrm{s}\mathrm{c} (M) so this is of no importance. To complete
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\mathrm{s}\mathrm{c}T \ast M

\mathrm{s}\mathrm{c}T \ast 
\partial MM = \{ x = 0\} 

M \times \{ \nu = 0\} 

\scrR  - , \sansl + =  - 1/2 + \delta 

\scrR +, \sansl + =  - 1/2 - \delta 

Fig. 2. The radial sets in the compactified cotangent bundle. Only the \nu -direction of each fiber
is depicted. In the case M\circ = \BbbR n, scT \ast 

\partial MM = \partial \BbbR n \times \BbbR n.

the picture, we include in \Psi s,\ell 
\mathrm{s}\mathrm{c} (M) all kernels K(z, z\prime ) that are smooth and rapidly

decreasing, with all derivatives, as the distance between z and z\prime tends to infinity in
M\circ . This definition is equivalent to the definition of the scattering pseudodifferential
operators defined in [24] using the ``scattering double space.""

We see in (2.17) that there are two types of vector fields (in terms of their behavior
near the boundary) that play a role in M . First, there are the b-vector fields, which by
definition are smooth vector fields that at the boundary are tangent to M . These are
generated over C\infty (M) by x\partial x and \partial yj near the boundary and govern the regularity of
scattering symbols in the spatial coordinates (x, y) (this is called conormal regularity
in the microlocal literature). Second, there are the scattering vector fields, which are
just x times b-vector fields, so generated by x2\partial x and x\partial yj

. These have the property
of generating, over C\infty (M), all smooth vector fields on M that are uniformly bounded
with respect to g. Scattering differential operators of order (s, 0), s \in \BbbN , are precisely
differential operators of order s that, near the boundary, can be written in terms
of scattering vector fields with C\infty (M)-coefficients. In the case that (M\circ , g) is flat
Euclidean space, we can take the constant coefficient vector fields \partial zj as generators
of the scattering vector fields. Both will play a role in our analysis; the s parameter
in our pseudodifferential calculus is regularity with respect to scattering vector fields,
while b-vector fields define module regularity (measured by the \kappa and k parameters,
as discussed in the introduction).

Similarly to the Euclidean case, we can compactify the cotangent bundle T \ast M\circ 

in a way that mimics the compactification \BbbR n \times \BbbR n above. We have (by assumption)
a compactification M of M\circ . In the interior of M\circ , we can compactify each cotangent
fiber radially. It only remains to say how the fibers are compactified in the limit as we
approach the boundary. Following Melrose [24], we work on the scattering cotangent
bundle, denoted \mathrm{s}\mathrm{c}T \ast M over M , which over the interior is naturally isomorphic to the
usual cotangent bundle and has the property that, near \partial M , using adapted coordinate
system (x, y), the corresponding coordinates (\nu , \mu ) (as defined above) are linear coor-
dinates on the fibers of this bundle that remain valid uniformly up to the boundary
\partial M . Compactifying each fiber radially gives us a compactification, denoted \mathrm{s}\mathrm{c}T \ast M ,
analogous to the cylinder in Figure 2. This is a manifold with corners of codimension
two. Clearly x is a boundary defining function at spatial infinity. Let \rho denote a
boundary defining function for fiber-infinity---we may take \rho = \langle (\nu , \mu )\rangle  - 1 when x is
small. We will call (x, y, \nu , \mu ) adapted coordinates on the scattering cotangent bundle
over the neighborhood \{ x < c, y \in O\} of (0, y0) \in \partial M .
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We then can consider the subspace of operators A with ``classical"" symbols a of
order (s, \ell ) that take the form x - \ell \rho  - s times a smooth function on \mathrm{s}\mathrm{c}T \ast M . The class of

such symbols will be denoted Ss,\ell 
\mathrm{c}\mathrm{l} (

\mathrm{s}\mathrm{c}T \ast M). For such operators, the principal symbol
can be defined similarly to the classical case on \BbbR n. Supposing for simplicity that
\ell = 0, we have a symbol at fiber-infinity, \sigma fi\mathrm{b}\mathrm{e}\mathrm{r},s,0(A), which is a function on \mathrm{s}\mathrm{c}T \ast M
homogeneous of degree s on each fiber, and a symbol at spatial infinity, \sigma \mathrm{b}\mathrm{a}\mathrm{s}\mathrm{e},s,0(A),
which is the symbol a restricted to x = 0, a function on the scattering cotangent
bundle restricted to \partial M (which we denote \mathrm{s}\mathrm{c}T \ast 

\partial MM). These functions are well-defined,
that is, they depend only on A, not on the particular quantization. The two symbols
have the compatibility condition that \sigma \mathrm{b}\mathrm{a}\mathrm{s}\mathrm{e},s,0(A) is asymptotically homogeneous of
degree s, that is, \rho s\sigma \mathrm{b}\mathrm{a}\mathrm{s}\mathrm{e},s,0(A) has a limit at \rho = 0 and agrees at the corner, x = \rho = 0,
with the limiting value of \rho s\sigma fi\mathrm{b}\mathrm{e}\mathrm{r},s,0(A).

Now let P denote the operator \Delta g + V  - \lambda 2 on M\circ , where \Delta g is the (positive)
Laplacian with respect to g and V is a short-range conormal potential as in Theo-
rem 1.5. (The positive real number \lambda will be fixed throughout.) Then the principal
symbols of P , in adapted coordinates (x, y, \nu , \mu ) near the boundary, are

(2.18) \sigma fi\mathrm{b}\mathrm{e}\mathrm{r},2,0(P ) = \nu 2 + hjk(y)\mu j\mu k

and

(2.19) \sigma \mathrm{b}\mathrm{a}\mathrm{s}\mathrm{e},2,0(P ) = \nu 2 + hjk(y)\mu j\mu k  - \lambda 2.

This looks very similar to the form of the base symbol of the flat Laplacian on \BbbR n---
compare with (2.8). It follows that the characteristic variety is given by (2.9), just as
in the flat case. Moreover, exactly the same computation can be made as in the flat
case to deduce that the Hamilton vector field of p, the symbol of P , takes the form

(2.20) \sansH p =  - 2\nu (x\partial x +R\mu ) + 2| \mu | 2y\partial \nu +H\BbbS n - 1 + xW,

where W is a b-vector field (that is, tangent to x = 0). That is, the Hamilton vector
field takes the same form as (2.13), up to a error xW . In particular, the radial
sets, where the Hamilton vector field vanishes, take the same form (2.14) as in the
Euclidean case. This means that the microlocal analysis of the operator P is no more
complicated than that of the flat Laplacian on \BbbR n and means that, from this point of
view, Theorem 1.5 is a very natural generalization of Theorem 1.1.

Our last topic to discuss is variable order scattering pseudodifferential operators.
This is completely analogous to the case of variable order operators on \BbbR n. We allow
the spatial weight to be a classical symbol \sansl of order (0, 0) on \mathrm{s}\mathrm{c}T \ast M and allow a \bfitdelta 
loss in the symbol estimates. Thus, (2.17) is replaced by

(2.21)
\bigm| \bigm| \bigm| (xDx)

jD\alpha 
yD

k
\nu D

\beta 
\mu a(x, y, \nu , \mu )

\bigm| \bigm| \bigm| \leq Cj,k,\alpha ,\beta x
 - \sansl  - \bfitdelta (j+k+| \alpha | +| \beta | )\langle (\nu , \mu )\rangle s - k - | \beta | 

and the rest of the theory proceeds as in the Euclidean case.

2.3. Sobolev spaces of variable order. We begin with the Euclidean case.
The Sobolev spaces Hs,\ell (\BbbR n), for s, \ell \in \BbbR , are the usual weighted Sobolev spaces
defined by

Hs,\ell (\BbbR n) = \{ f \in \scrS \prime (\BbbR n) | \langle D\rangle s\langle z\rangle \ell f \in L2(\BbbR n)\} .

Here \langle D\rangle s is the Fourier multiplier, given by \scrF  - 1\langle \zeta \rangle s\scrF . These can be equivalently
defined by the condition that f \in Hs,\ell (\BbbR n) if and only if Af \in L2 for all A \in \Psi s,\ell 

\mathrm{s}\mathrm{c} (\BbbR n);
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it is enough to require this for just one A that is ``totally elliptic,"" that is, both its
symbol at fiber-infinity and at spatial infinity are everywhere elliptic, or equivalently,
Ell(A) = \partial (\BbbR n \times \BbbR n). Then the space of Schwartz functions, \scrS (\BbbR n), and the space of
tempered distributions, \scrS \prime (\BbbR n), can be characterized as the intersection, resp., union,
of Sobolev spaces Hs,\ell (\BbbR n) over all s and \ell .

We use a similar characterization to define the Sobolev spaces for variable orders:
if \sansl is a variable order as as defined above, we say that f \in Hs,\sansl (\BbbR n) if Af \in L2 for all
A \in \Psi s,\sansl 

\mathrm{s}\mathrm{c} (\BbbR n); again, it is enough to require this for one totally elliptic operator. If in
addition, A is invertible, with A - 1 \in \Psi  - s, - \sansl 

\mathrm{s}\mathrm{c} (\BbbR n), then the norm of f in Hs,\sansl (\BbbR n) can
be taken to be \| Af\| L2 .

The Sobolev spaces for an asymptotically conic manifold are defined analogously:
we say f \in Hs,\sansl (M\circ ) if Af \in L2 for all A \in \Psi s,\sansl 

\mathrm{s}\mathrm{c} (M). Pseudodifferential operators
of variable order act on Sobolev spaces with variable order in the expected way: if
A \in \Psi s,\sansl 

\mathrm{s}\mathrm{c} (M), then A is a bounded linear map fromHs\prime ,\sansl \prime (M\circ ) toHs\prime  - s,\sansl \prime  - \sansl (M\circ ). Also,
the dual space of Hs,\sansl (M\circ ) is H - s, - \sansl (M\circ ). The duality between these two spaces
can be realized by choosing any invertible A \in \Psi s,\sansl 

\mathrm{s}\mathrm{c} (M). Then for u \in Hs,\sansl (M\circ ),
v \in H - s, - \sansl (M\circ ) we define

(u, v) ..= \langle A - 1u,A\ast v\rangle L2 .

It is easy to check that this pairing is independent of the particular invertible operator
A \in \Psi s,\sansl 

\mathrm{s}\mathrm{c} (M).
We shall denote the intersection, resp., union, of all the Sobolev spaces Hs,\ell (M\circ )

by \scrS (M\circ ), resp., \scrS \prime (M\circ ); these spaces are sometimes denoted \.C\infty (M), resp., C - \infty (M)
in other works.

We now define the spaces \scrX s,\sansl + and \scrY s,\sansl + . We have already discussed in the
introduction that \scrY s,\sansl + is precisely the variable order Sobolev space Hs,\sansl + as defined
above, for a variable spatial weight \sansl + with specific properties on \Sigma (P ). First, we
require that, for some small \delta > 0,

(2.22)
\sansl + takes values in [ - 1/2 - \delta , - 1/2 + \delta ]

and is equal to  - 1/2\mp \delta in a neighborhood of \scrR \pm .

This ensures elements of \scrY s,\sansl +
+ are permitted to have outgoing oscillations of the form

r - (n - 1)/2ei\lambda r but not incoming oscillations of the form r - (n - 1)/2e - i\lambda r. Second, we
require that

(2.23) \sansl + is nonincreasing along the Hamilton flow of P within \Sigma (P ).

Since bicharacteristics within \Sigma (P ) start at \scrR  - and end at \scrR +, these two conditions
are compatible. We also define

(2.24) \sansl  - =  - 1 - \sansl +.

This automatically means that \sansl  - has analogous properties to \sansl + with the incoming
and outgoing radial sets swapped. In particular, we have

(2.25)

\sansl  - takes values in [ - 1/2 - \delta , - 1/2 + \delta ],

is equal to  - 1/2\pm \delta in a neighborhood of \scrR \pm ,

and is nondecreasing along the Hamilton flow of P within \Sigma (P ).
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Remark 2.2. Condition (2.23) is imposed so that regularity of approximate so-
lutions of Pu = 0 can be propagated from the incoming radial set \scrR  - toward the
outgoing radial set \scrR +(\lambda ), as we show in the following section.

We then define the spaces \scrX s,\sansl \pm by

(2.26) \scrX s,\sansl \pm ..= \{ u \in Hs,\sansl \pm | Pu \in Hs - 2,\sansl \pm +1\} 

with norm

(2.27) \| u\| 2\scrX s,\sansl \pm = \| u\| 2
Hs,\sansl \pm + \| Pu\| 2

Hs - 2,\sansl \pm +1 .

2.4. Test modules and Sobolev spaces with module regularity. We next
introduce the ``test modules"" with respect to which we will assume further differen-
tiability. A test module \scrM , as defined in [14], is a subspace of \Psi 1,1

\mathrm{s}\mathrm{c} (\BbbR n), or \Psi 1,1
\mathrm{s}\mathrm{c} (M)

in the general case, that is closed under commutators, contains the identity, and is a
module over \Psi 0,0

\mathrm{s}\mathrm{c} . (Here we adapt the definition of [14] slightly to allow order 1 in
the fiber as well as the spatial slot, as is convenient here.) We shall also work only
with finitely generated modules \scrM , which have the form

\scrM =

\biggl\{ N\sum 
j=0

CjAj | Cj \in \Psi 0,0
\mathrm{s}\mathrm{c} (M)

\biggr\} 
,

for some fixed finite set A0 = Id, A1, . . . AN \subset \Psi 1,1
\mathrm{s}\mathrm{c} (M), the generators of the module,

which should be closed under taking commutators in the sense that

[Aj , Ak] =

N\sum 
l=0

EjklAl Ejkl \in \Psi 0,0
\mathrm{s}\mathrm{c} (M).

The most important modules for us will be the modules \scrM \pm defined by the
characteristic condition

(2.28) \scrM \pm := \scrM \pm \lambda = \{ A \in \Psi 1,1
\mathrm{s}\mathrm{c} : \sigma \mathrm{b}\mathrm{a}\mathrm{s}\mathrm{e},1,1(A) vanishes at \scrR \pm \} ,

where \scrR \pm are the radial sets in (2.14). Analytically, the significance of these two
modules is that the generators of the module \scrM +, resp., \scrM  - , annihilate the cor-
responding radial oscillation, e+i\lambda r, resp., e - i\lambda r (as discussed in section 1.2). They
are examples of what will become (for us) a useful general class of modules \scrM \gamma also
defined by a characteristic condition given in terms of a real parameter \gamma . Recalling
the coordinates (x, y, \nu , \mu ), defined near the boundary \partial M = \{ x = 0\} with respect to
local coordinates y on an open set O \subset \partial M , with (x, y) adapted coordinates on M ,
let

\scrR \gamma = \{ x = 0, | \mu | y = 0, \nu = \gamma \} .
We then define

(2.29) \scrM \gamma := \{ A \in \Psi 1,1
\mathrm{s}\mathrm{c} : \sigma \mathrm{b}\mathrm{a}\mathrm{s}\mathrm{e},1,1(A) vanishes at \scrR \gamma \} .

Writing Diff1,1 \subset \Psi 1,1
\mathrm{s}\mathrm{c} for the subspace of differential operators, one can choose a

generating set for these modules containing three types of operators,
(i) AN \in Diff1,1(M) and

AN = r(Dr  - \gamma ) =  - xDx  - \gamma 

x
on x < c,

where \{ x < c\} is our fixed collar neighborhood of \partial M ,
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(ii) Aj \in Diff1,1(M), j = 1, . . . , N1, which are purely angular in the sense that
they are in the C\infty (M) linear span of the Dyi

for some coordinates (yi) on
\partial M and adapted coordinates (x, y) on M , and last

(iii) A\prime 
k \in Diff1(M\circ ), k = 1, . . . , N2, which are supported in \{ x > c/2\} , so in

particular A\prime 
k \in \Psi 1, - \infty 

\mathrm{s}\mathrm{c} ,
and using these one has

(2.30) \scrM \gamma 
..=

\biggl\{ 
C0 +

N1\sum 
j=1

CjAj +

N2\sum 
k=1

C \prime 
kA

\prime 
k + CNAN | C0, Cj , Ck, CN \in \Psi 0,0

\mathrm{s}\mathrm{c} (M)

\biggr\} 
.

Here N1 +N2 + 1 = N , i.e., there are N + 1 total generators including A0 = Id. (To
be overly concrete, one can cover the boundary with m total coordinate charts Oq

with coordinates y
(q)
i , i = 1, . . . , n - 1, q = 1, . . .m, with the (y

(q)
i ) coordinates on Oq,

and let Aj = \chi q\partial y(q)
j

for the \chi q a partition of unity subordinate to the Oq, and then

choose the A\prime 
k to be any finite family of vector fields for which, for all \sansq \in T \ast M\circ with

x(\sansq ) > c, there is an A\prime 
k with \sigma (A\prime 

k)(\sansq ) \not = 0.) In the case \gamma = 0, these generators form
a basis (over C\infty (M)) of the b-vector fields, that is, all vector fields tangent to the
boundary of M . (In the case of \BbbR n, this includes all constant coefficient vector fields
times a factor r.)

We note in particular the Aj and A\prime 
k are all elements of \scrM \gamma . (This is not a

requirement for test modules in other contexts, e.g., [12].) The operators AN in (i)
and Aj in (ii) taken together have the feature that for any point \sansq \in \Sigma 2,0(P ) \setminus \scrR \gamma 

there is an element A =
\sum 

CAN +
\sum N1

j=1 CjAj in the module that is elliptic at \sansq , i.e.,
such that \sigma 1,1(A)(\sansq ) \not = 0. Indeed, using adapted coordinates (x, y, \nu , \mu ) for one of our
coordinate charts Oq and writing \sansq = (0, y, \nu , \mu ), \nu 2 + | \mu | 2 = \gamma 2, if \mu \not = 0, then we
can choose a vector field \scrV := \chi ciDyi

with \sigma \partial M (\scrV )(\sansq ) \not = 0, where this is the standard
symbol of a vector field on a closed manifold, \chi is supported in Oq, and ci \in \BbbR . Then
\sigma \mathrm{b}\mathrm{a}\mathrm{s}\mathrm{e},1,1(\scrV ) = \sigma \mathrm{b}\mathrm{a}\mathrm{s}\mathrm{e},1,0(r

 - 1\scrV ) = \chi 
\sum 

ci\mu i, and thus

\sigma \mathrm{b}\mathrm{a}\mathrm{s}\mathrm{e},1,1(\scrV ) = \chi ci\mu i,

in particular \sigma \mathrm{b}\mathrm{a}\mathrm{s}\mathrm{e},1,1(\scrV )(q) \not = 0. Similarly

\sigma \mathrm{b}\mathrm{a}\mathrm{s}\mathrm{e},1,1(AN ) = \nu  - \gamma ,

so AN is elliptic on the whole of \scrR \gamma \prime for \gamma \prime \not = \gamma .

For any \gamma \in \BbbR , we can then define the weighted Sobolev spacesHs,\ell ;\kappa 
\scrM \gamma 

with module

regularity of order \kappa \in \BbbN with respect to \scrM \gamma . These consist of functions in Hs,\ell that
remain in this space under the application of any \kappa elements in \scrM \gamma . For \gamma = \pm \lambda ,

these spaces will be denoted Hs,\ell ;\kappa 
\pm for brevity. A distribution u will lie in Hs,\ell ;\kappa 

\scrM \gamma 
if

\chi u \in Hs+\kappa , where \chi \in C\infty (M\circ ) is supported in \{ x > c/2\} and identically one on
\{ x \geq c\} , and if, for any adapted coordinate system (x, y),

(r(Dr  - \gamma ))jD\beta 
yu \in Hs,\ell whenever j + | \beta | \leq \kappa .

To impart the structure of a Hilbert space to Hs,\ell ;\kappa 
\scrM \gamma 

we use the generators \sansA j , j =

0, . . . , N of \scrM \gamma , where the \sansA j run over all the Aj and A\prime 
k in the definition of \scrM \gamma 

above. Then, using standard multi-index notation \sansA \alpha = \sansA \alpha 0
0 \cdot \cdot \cdot \sansA \alpha N

N , \alpha \in \BbbN N+1, we
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define

(2.31)

Hs,\ell ;\kappa 
\scrM \gamma 

..=
\bigl\{ 
u \in Hs,\ell : \sansA \alpha u \in Hs,\ell whenever | \alpha | \leq \kappa 

\bigr\} 
,

\| u\| 2
Hs,\ell ;\kappa 

\scrM \gamma 

..=
\sum 
| \alpha | \leq \kappa 

\| \sansA \alpha u\| 2Hs,\ell .

In particular, when \gamma = \pm \lambda , we define

(2.32) Hs,\ell ;\kappa 
\pm 

..= Hs,\ell ;\kappa 
\scrM \pm \lambda 

.

As well as the modules\scrM \gamma , we shall need to consider the smaller module\scrN \subset \scrM \gamma 

(for any \gamma ) generated only by the purely angular and purely interior derivatives, i.e.,
in the notation preceding (2.30), only the generators A0 = Id, the purely angular Aj

for j = 1, . . . , N1 and the interior A\prime 
k, k = 1, . . . , N2,

(2.33) \scrN =

\biggl\{ 
C0 +

N1\sum 
j=1

CjAj +

N2\sum 
k=1

C \prime 
kA

\prime 
k | Cj , C

\prime 
k \in \Psi 0,0

\mathrm{s}\mathrm{c} (M)

\biggr\} 
.

In direct analogy with Hs,\ell ;\kappa 
\scrM \gamma 

, writing the generators of \scrM \gamma as \sansA j , j = 0, . . . , N and

those of \scrN as \sansB k, k = 0, . . . , N - 1, we define u \in Hs,\ell ;\kappa ,k
\scrM \gamma 

if an only if u| x>c \in Hs+\kappa +k,

and for any adapted coordinate system (x, y) we have

(2.34)

Hs,\ell ;\kappa ,k
\scrM \gamma 

..= \{ u \in Hs,\ell : \sansA \alpha \sansB \beta u \in Hs,\ell , | \alpha | \leq \kappa , | \beta | \leq k\} ,

\| u\| 2
Hs,\ell ;\kappa ,k

\scrM \gamma 

..=
\sum 

| \alpha | \leq \kappa ,| \beta | \leq k

\| \sansA \alpha \sansB \beta u\| 2Hs,\ell .

In particular, for \gamma = \pm \lambda , we put

(2.35) Hs,\ell ;\kappa ,k
\pm 

..= Hs,\ell ;\kappa ,k
\scrM \pm \lambda 

.

Notice that we have the simple relation between these spaces.

Lemma 2.1. Let \gamma , \gamma \prime \in \BbbR .

(2.36) Hs,\ell ;\kappa ,k
\scrM \gamma \prime = ei(\gamma 

\prime  - \gamma )rHs,\ell ;\kappa ,k
\scrM \gamma 

.

Proof. This follows directly from the relation (Dr - \gamma \prime )ei(\gamma 
\prime  - \gamma )ru = ei(\gamma 

\prime  - \gamma )r(Dr - 
\gamma )u.

We also note without proof the simple mapping property of scattering pseudodif-
ferential operators on these spaces.

Lemma 2.2. Let A \in \Psi m,\ell \prime 

\mathrm{s}\mathrm{c} (M). Then A is a bounded operator

(2.37) A : Hs,\ell ;\kappa ,k
\pm \rightarrow Hs - m,\ell  - \ell \prime ;\kappa ,k

\pm .

The modules \scrM \pm and \scrN enjoy important positivity properties at the radial sets,
which we describe now. Returning to the general situation for a moment, let \scrM 
be any test module, generated by A0 = Id, A1, . . . , AN , and let P be the Helmholtz
operator on \BbbR n or the generalized Helmholtz operator on M\circ .
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Definition 2.3. We say \scrM is P -positive at the subset S \subset \Sigma (P ) if there exist
Cjk \in \Psi 1,0

sc (M) and C \prime 
j \in \Psi 0,1

sc (M) with

(2.38) ir[Aj , P ] =

N\sum 
k=0

CjkAk + C \prime 
jP

with

(2.39) \sigma 1,0(Cjk) = 0 on S \forall 0 < k \not = j

and

(2.40) Re\sigma 1,0(Cjj) \geq 0 on S.

Similarly we say that \scrM is P -negative at S if (2.40) holds with the reversed inequality.
We say that \scrM is P -critical at S if it is both P -positive and P -negative, that is, if
(2.40) is replaced by the stronger condition

(2.41) Re\sigma 1,0(Cjj) = 0 on S.

Notice that there is no sign condition on the symbol of the operator C \prime 
j in either case.

Lemma 2.3. The module \scrM + is P -positive at \scrR +\cup \scrR  - , while \scrM  - is P -negative
at \scrR + \cup \scrR  - . The module \scrN is P -critical at \scrR + \cup \scrR  - .

Proof. The operator P takes the form near the boundary

(2.42) D2
r  - i(n - 1)r - 1Dr + r - 2Q+ r - 2 \~Q+ V  - \lambda 2,

whereQ is a differential operator of order 2 in the tangential derivatives, \partial yj with coeff-

icients smooth on M , and \~Q \in Diff2,0
\mathrm{s}\mathrm{c} , i.e., r - 2 \~Q is a scattering differential operator

which vanishes to second order. Consider first the commutators with generators of
\scrN . The commutator of \Delta g with Dyj

leads to an operator of the form r - 2 times a
tangential differential operator of order 2, depending smoothly on r - 1. Multiplying
by r we obtain an operator of the form r - 1 times a tangential differential operator of
order 2. This is a sum of terms of the form CjkAk for 1 \leq k \leq n - 1, where Ak = Dyk

;
Cjk is equal to

\sum 
l blr

 - 1Dyl
, where bl \in C\infty (M); in this case we take C \prime 

j = 0. Since

the symbol of r - 1Dyl
vanishes at \scrR \pm , this satisfies the conditions of the lemma and

shows the P -criticality of \scrN . The commutators of Dyj
with V are acceptable using

(1.11).
It remains to consider the commutator of r(Dr \pm \lambda ) with P . The argument is

similar for each sign, so we just consider the case of r(Dr  - \lambda ), which, along with the
module \scrN , generates \scrM +. We find that
(2.43)

ir[r(Dr  - \lambda ), P ] = ir
\bigl[ 
r(Dr  - \lambda ), D2

r  - i(n - 1)r - 1Dr + r - 2Q+ r - 2 \~Q+ V
\bigr] 

= ir
\bigl[ 
rDr, D

2
r  - i(n - 1)r - 1Dr + r - 2Q+ r - 2 \~Q

\bigr] 
+ ir\lambda 

\bigl[ 
D2

r  - i(n - 1)r - 1Dr + r - 2Q+ r - 2 \~Q, r
\bigr] 
+ r2\partial rV

= r
\Bigl( 
 - 2(D2

r  - i(n - 1)r - 1Dr + r - 2Q) + r - 1Q\prime 
\Bigr) 
+ r\lambda (2Dr + r - 1Q\prime \prime ) + r2\partial rV

=  - 2rP + 2\lambda r(Dr  - \lambda ) + r - 1(Q\prime +Q\prime \prime ) + r2\partial rV.

Here, Q\prime and Q\prime \prime are both scattering differential operators of order (2, 0). Notice that
the principal terms of P , aside from the \lambda 2 term, are all homogeneous of order  - 2 in r
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to leading order, which gives rise to the factor of  - 2 in front of P after commutation
with r\partial r. Examining the last line of (2.43), we see that this takes the required form
(2.38) since

\bullet the diagonal term Cjj in (2.40) is 2\lambda > 0,
\bullet the remainder terms r - 1(Q\prime + Q\prime \prime ) + r2\partial rV are of the form Cj0A0, where
A0 = Id and Cj0 has negative boundary order (using (1.11)), and hence
satisfy (2.39).

By analogy with the spaces \scrX s,\sansl + and \scrY s,\sansl + , we define

(2.44) \scrY s,\ell ;\kappa ,k
+ = Hs,\ell ;\kappa ,k

+

and

(2.45) \scrX s,\ell ;\kappa ,k
+

..= \{ u \in Hs,\ell ;\kappa ,k
+ | Pu \in Hs - 2,\ell +1;\kappa ,k

+ \} 

with norm

(2.46) \| u\| 2\scrX s,\ell ;\kappa ,k
+

= \| u\| 2
Hs,\ell ;\kappa ,k

+

+ \| Pu\| 2
Hs - 2,\ell +1;\kappa ,k

+

.

The main technical result of this paper is the following mapping property of the
Helmholtz operator P on these spaces with module regularity.

Theorem 2.4. Let s, \ell \in \BbbR , and assume \ell \in ( - 3/2, - 1/2). For any natural
numbers \kappa \geq 1, k \geq 0, the map

(2.47) P : \scrX s,\ell ;\kappa ,k
\pm  - \rightarrow \scrY s - 2,\ell +1;\kappa ,k

\pm 

is an isomorphism of Hilbert spaces. In particular the inverse map, i.e., the outgoing
(+), resp., incoming ( - ), resolvent is bounded as a map

(2.48) R(\lambda \pm i0) : Hs - 2,\ell +1;\kappa ,k
\pm  - \rightarrow Hs,\ell ;\kappa ,k

\pm .

We defer the proof to section 3.

2.5. Multiplicative properties of weighted Sobolev spaces with module
regularity. We prove multiplicative properties of weighted Sobolev spaces on \BbbR n, or
more generally on asymptotically conic manifolds, with additional module regularity.
We use the module \scrM 0 generated by b-vector fields, as that gives us the best multi-
plicative properties, and deduce more general multiplicative properties as a corollary.

Lemma 2.4. Let \ell , \ell \prime \in \BbbR , s, \kappa , k \in \BbbN 0. If \kappa \geq 1 and k \geq (n - 1)/2, multiplication
on C\infty 

c (M) extends to a bounded bilinear map

(2.49) Hs,\ell ;\kappa ,k
\scrM 0

\cdot Hs,\ell \prime ;\kappa ,k
\scrM 0

 - \rightarrow H
s,\ell +\ell \prime +n/2;\kappa ,k
\scrM 0

.

Before the proof, we make some remarks concerning spaces of distributions on \BbbR n

whose regularity in an L2-based Sobolev sense is a given order, \kappa , with some additional
order k of regularity only in certain directions. Write \BbbR n = \BbbR d \times \BbbR n - d, z = (z\prime , z\prime \prime ),
where z\prime \in \BbbR d and z\prime \prime \in \BbbR n - d. Define

(2.50) \scrY \kappa ,k
d (\BbbR d \times \BbbR n - d) = \{ u : \langle \zeta \rangle \kappa \langle \zeta 

\prime \prime 
\rangle k\^u \in L2\} 

with \zeta = (\zeta \prime , \zeta \prime \prime ). Thus distributions in \scrY \kappa ,k
d have \kappa total derivatives in L2 and an

additional k derivatives in z\prime \prime in L2. For our purposes, below we extend this definition
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to the case where one factor is a closed manifold \bfitN of dimension n - d; for \kappa , k \in \BbbN 0,
and d\mu N a measure on \bfitN ,

\scrY \kappa ,k
d (\BbbR d

z \times \bfitN ) = \{ u \in L2(\BbbR d
z \times \bfitN , dz d\mu N ) : D\alpha 

z Au \in L2(\BbbR d
z \times \bfitN , dz d\mu N )

\forall | \alpha | \leq \kappa , A \in Diffk+\kappa  - | \alpha | (\bfitN )\} ,

and below we will take d = 1 and \bfitN = \partial M .
We will use the following lemma, which is proven in [15, Lemma 4.4].

Lemma 2.5. Let \kappa , k \in \BbbR . If \kappa > d/2 and k \geq (n  - d)/2, then \scrY \kappa ,k
d (\BbbR d

z \times \bfitN ) is
an algebra.

Proof of Lemma 2.4. First, we suppose \ell = \ell \prime = s = 0. Let u, v \in C\infty 
c (M\circ ), and

let \chi = \chi (x) \in C\infty (M) be a cutoff function, identically one near the boundary, and
supported in the collar neighborhood \{ x < c\} . We decompose the product uv as

uv = (1 - \chi 2)uv + \chi 2uv = (1 - \chi 2)uv + (\chi u)(\chi v)

and bound the H
0,n/2;\kappa ,k
\scrM 0

norm of both pieces.

Since \kappa +k > n/2 and 1 - \chi 2 has compact support, the standard algebra property

forH\kappa +k(M\circ ), along with the equivalence of theH\kappa +k andH0,\~\ell ;\kappa ,k
\scrM 0

norms (any \~\ell \in \BbbR )
on a fixed compact subset of M\circ , yields

\| (1 - \chi 2)uv\| 
H

0,n/2;\kappa ,k
\scrM 0

\leq C\| u\| H0,0;\kappa ,k
\scrM 0

\| v\| H0,0;\kappa ,k
\scrM 0

.

On the other hand, u1
..= \chi u, v1 ..= \chi v are supported in the collar neighborhood

of \partial M , so can be viewed as belonging to C\infty 
c ([0, c)\times \partial M). The functions

\~u(t, y) = u1(e
t, y), \~v(t, y) = v1(e

t, y)

are then defined for (t, y) \in \BbbR \times \partial M . Taking into account that xDx = Dt if x = et,
we see that

(2.51) \| x - n/2(xDx)
jD\beta 

yw\| L2([0,c)x\times \partial M ; x - 1 - ndxd\mu ) = \| Dj
tD

\beta 
y \~w\| L2(\BbbR t\times \partial M ;dtd\mu )

for all w \in C\infty 
c ([0, c)\times \partial M). Using Lemma 2.5 and (2.51), a short calculation shows

\| u1v1\| H0,n/2;\kappa ,k
\scrM 0

\leq C\| u1\| H0,0;\kappa ,k
\scrM 0

\| v1\| H0,0;\kappa ,k
\scrM 0

,

completing the proof of Lemma 2.4 for the case \ell = \ell \prime = s = 0.

One then proves the general case of \ell , \ell \prime \in \BbbR , s \in \BbbN using H0,\~\ell ;\kappa ,k
\scrM 0

= x
\~\ell H0,0;\kappa ,k

\scrM 0

(any \~\ell \in \BbbR ) and the Leibniz rule.

The following corollary follows from Lemmas 2.4 and 2.1.

Corollary 2.5. Let s \in \BbbN and let \gamma 1, \gamma 2, . . . , \gamma p+1 be real parameters. Then
provided \kappa \geq 1 and k \geq (n  - 1)/2, pointwise multiplication of functions in C\infty 

c (M)
induces a bounded multilinear map

(2.52) Hs,\ell 1;\kappa ,k
\scrM \gamma 1

\cdot Hs,\ell 2;\kappa ,k
\scrM \gamma 2

\cdot \cdot \cdot Hs,\ell p;\kappa ,k
\scrM \gamma p

 - \rightarrow Hs,\ell ;\kappa ,k
\scrM \gamma p+1

,

where

(2.53) \ell = \ell 1 + \ell 2 + \cdot \cdot \cdot + \ell p +
(p - 1)n

2
 - \kappa .
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Proof. When all \gamma j = 0, the result follows from applying Lemma 2.4 p - 1 times,
and indeed this gives a better result without the loss of \kappa on the right side of (2.53).

In general, we use Lemma 2.1 to write an element of uj of H
s,\ell j ;\kappa ,k
\scrM \gamma j

as ei\gamma jr times an

element wj of H
s,\ell j ;\kappa ,k
\scrM 0

. The product of the uj is then the product of the wj , which lies

inHs,\ell +\kappa ;\kappa ,k
\scrM 0

, times the exponential factor ei\gamma 
\prime r, where \gamma \prime = \gamma 1+\cdot \cdot \cdot +\gamma p. Using Lemma

2.1 once more, we see that the product of the uj is in fact an element of Hs,\ell +\kappa ;\kappa ,k
\scrM \gamma p+1

times the exponential ei(\gamma 
\prime  - \gamma p+1)r. Finally, multiplication by an exponential in r leads

to a loss of \kappa in the spatial weight since we incur a factor of r each time the operator
r(Dr  - \gamma ) is applied to the exponential factor.

Remark 2.6. It is because of this loss of \kappa in the spatial weight in (2.53) that we
work below with spaces where \kappa is as small as possible, namely, \kappa = 1.

3. Proof of Theorem 2.4. The organization of this section is as follows. We
first prove the invertibility of P acting between variable order spaces, as in (1.14). We
then use this to prove the invertibility on the spaces with extra module regularity, as
in Theorem 2.4. The proof of invertibility is achieved by first proving that the map in
question is Fredholm and then establishing the triviality of the kernel and cokernel.
The Fredholm property is established by patching together microlocal estimates of
various sorts. In the elliptic region, we use a very standard elliptic estimate; on
the characteristic variety, we use a standard positive commutator estimate, where
the Hamilton vector field is nonvanishing, and radial-point estimates originating with
Melrose at the radial sets, where the Hamilton vector field vanishes.

Theorem 3.1 (see [33, Prop. 5.28]). Let \sansl \pm \in S0,0
\mathrm{c}\mathrm{l} (\mathrm{s}\mathrm{c}T \ast M) (that is, let them

be classical scattering symbols of order (0, 0) on M , see section 2) satisfy conditions
(2.22), (2.23), and (2.24). Let s \in \BbbR . Then the map (1.14) is invertible.

As just mentioned, the strategy is first to prove that the map (1.14) is Fredholm.
We will prove the following.

Lemma 3.1. Suppose \sansl \pm \in S0,0(\mathrm{s}\mathrm{c}T \ast M) satisfying the conditions in Theorem 3.1,
let s \in \BbbR be arbitrary, and let M,N be such that M < min\{ s, 2  - s\} and N <
min\{ \sansl +, \sansl  - \} = 1/2 - \delta . Then there is a C > 0 so that for all u \in \scrX s,\sansl \pm ,

(3.1) \| u\| s,\sansl \pm \leq C
\Bigl( 
\| Pu\| s - 2,\sansl \pm +1 + \| u\| M,N

\Bigr) 
.

Moreover, estimates (3.1) for both signs \pm imply that the map (1.14) (for either sign)
is Fredholm.

To motivate the microlocal estimates below, we briefly explain why the estimates
(3.1) imply the Fredholm statement. For definiteness, we consider only the + sign, so
we are considering

(3.2) P : \scrX s,\sansl +  - \rightarrow \scrY s - 2,\sansl ++1.

The estimate in (3.1) implies that the kernel (3.2) is finite dimensional by a standard
argument. Indeed, on the kernel of P we have \| u\| s,\sansl + \leq C \| u\| M,N , and the contain-

ment Hs,\sansl + \subset HM,N is compact, proving that the kernel must be finite dimensional.
To show that the range is closed, consider a sequence uj in \scrX s,\sansl + in the subspace

orthogonal to the kernel of P , for which Puj converges to some f \in H
s - 2,\sansl ++1
+ . Then
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we apply (3.1) to uj and observe that the \| uj\| M,N norms must be uniformly bounded,

for if not, then one can pass to a subsequence where \| uj\| M,N tends to infinity, rescale

the uj to \^uj that \| \^uj\| M,N is fixed to be 1, and show, using the compact embedding

Hs,\sansl + \subset HM,N again, that a subsequence of the \^uj converges to a limit v such that
Pv = 0. This implies that v = 0 since the uj were chosen orthogonal to the kernel of
P , and this is a contradiction since it would imply convergence of the subsequence to
zero also in the weaker norm HM,N , where the norm was fixed to be 1.

Having thus observed that the \| uj\| M,N quantities are uniformly bounded, it

follows from (3.1) that the \| uj\| s,\sansl + quantities are uniformly bounded. Using the

compactness of the inclusion Hs,\sansl + \subset HM,N once again we can extract a subsequence
convergent in the HM,N norm, and applying (3.1) we obtain convergence in the Hs,\sansl +

norm (since the Puj are converging in H
s - 2,\sansl ++1
+ ). Thus we obtain a limit u for this

subsequence, and hence Puj converges to Pu. So f = Pu is in the range, proving the
closedness of the range.

The last step is finite dimensionality of the cokernel. The cokernel can be iden-
tified with those v \in (Hs - 2,\sansl ++1)\ast = H2 - s, - 1 - \sansl + with Pv = 0, using the formal
self-adjointness of the operator P . Now recall from (2.24) that  - 1  - \sansl + is precisely
\sansl  - . So it suffices to prove that the kernel of P acting on H2 - s,\sansl  - is finite dimensional.
But this follows from the estimate (3.1) for the opposite sign  - , exactly as above.
This completes the proof that the estimate (3.1), for both signs, implies the Fredholm
property of the map (1.14) for the + sign (and the argument for the  - works in an
exactly similar manner).

3.1. Microlocal estimates. In this section we review the specific microlocal
estimates that we shall use to prove the estimate (3.1), which we shall refer to as the
``Fredholm estimate.""

The first type of estimate is an elliptic estimate that applies on the elliptic set of
P . This is very familiar from the theory of elliptic pseudodifferential operators. The
only novelty is that it applies here to the full elliptic set in the sense of the scattering
calculus, and thus, everywhere on the boundary of \mathrm{s}\mathrm{c}T \ast M away from \Sigma (P ).

Proposition 3.2 (microlocal elliptic regularity [33, Cor. 5.5]). Let u \in \scrS \prime and
let Q1, G1 \in \Psi 0,0

\mathrm{s}\mathrm{c} be such that WF\prime (Q1) \subset Ell(G1)\cap Ell(P ). Assume G1Pu \in Hs - 2,\sansl .
Then Q1u \in Hs,\sansl , and for all M,N \in \BbbR , there is a constant C > 0 such that if
u \in HM,N , then

(3.3) \| Q1u\| s,\sansl \leq C (\| G1Pu\| s - 2,\sansl + \| u\| M,N ) .

Thus, on the elliptic set, P , as an operator of order (2, 0), acts microlocally with
no loss of derivatives or spatial order; u is in Hs,\sansl microlocally on the elliptic set Ell(P )
if and only if Pu is in Hs - 2,\sansl microlocally.

On the characteristic set \Sigma (P ), wherever the Hamilton vector field Hp is nonvan-
ishing, we have propagation of singularities (as it is conventionally called---though it
is more accurately called ``propagation of regularity""). In the following proposition we
specialize to the variable order \sansl + defined in section 2.3, although only the condition
(2.23) is necessary for the following result. Propagation of singularities goes back to
H\"ormander's paper [18] and was first used at spatial infinity in the scattering calculus
by Melrose [24], who viewed it as a microlocal version of the Mourre estimate [26].
The version we state is from [33, Thm. 5.4].
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Proposition 3.3 (propagation of singularities/regularity estimate). Let u \in \scrS \prime 

and let Q2, Q
\prime 
2, G2 \in \Psi 0,0

\mathrm{s}\mathrm{c} . Assume WF\prime (Q2) \subseteq Ell(G2). Moreover, assume that

(3.4)
for every \alpha \in WF\prime (Q2) \cap \Sigma (P ), there is a point \alpha \prime \in Ell(Q\prime 

2)

and a forward bicharacteristic segment \gamma from \alpha \prime to \alpha such that \gamma \subseteq Ell(G2).

If Q\prime 
2u \in Hs,\sansl + and G2Pu \in Hs - 2,\sansl ++1, then Q2u \in Hs,\sansl + , and for all M,N there is

C > 0 such that if u \in HM,N , then

(3.5) \| Q2u\| s,\sansl + \leq C
\Bigl( 
\| Q\prime 

2u\| s,\sansl + + \| G2Pu\| s - 2,\sansl ++1 + \| u\| M,N

\Bigr) 
.

That is, if u is in Hs,\sansl microlocally near a point \alpha \prime \in \Sigma (P ), if \alpha is another point on
the bicharacteristic \gamma through q, and if Pu is sufficiently regular (namely, in Hs - 2,\sansl +1)
along \gamma between \alpha \prime and \alpha , then the regularity ``propagates"" to \alpha , in the sense that
u is in Hs,\sansl at \alpha , provided, in the case of a variable order \sansl , that \sansl is nonincreasing
between \alpha \prime and \alpha in the direction of bicharacteristic flow. (If a variable weight is
nondecreasing in the direction of bicharacteristic flow, as is the case with \sansl  - , then
regularity propagates in the opposite direction.)

Neither of these estimates gives any information at the radial sets, which are the
locations within \Sigma (P ) where the Hamilton vector field vanishes. At these sets, we
have the following radial point estimates, which come in two versions, one below and
one above the spatial regularity level  - 1/2 that is critical for the behavior of solutions
of Pu = 0. We only state these for constant spatial weight, which suffices as we have
assumed that \sansl \pm are constant in a neighborhood of the radial sets. We also have
stated this proposition with \sansl + in mind, and thus the below threshold result applies
at the outgoing radial set \scrR +, while the above threshold result applies at the incoming
radial set \scrR  - ; for the other weight \sansl  - , the roles of the incoming and outgoing radial
sets switch. It will help in understanding the statements below to recall that \scrR + is
a sink, and \scrR  - a source, for the bicharacteristic flow, and all bicharacteristics inside
\Sigma (P ) start at \scrR  - and end at \scrR +. Again, these estimates were first made by Melrose
in [24, sect. 9].

Proposition 3.4 (see [33, Prop. 5.27]).
(i) Below threshold regularity radial point estimate: Assume \ell <  - 1/2. Let

Q3, Q
\prime 
3, G3 \in \Psi 0,0

\mathrm{s}\mathrm{c} . Let U,U \prime denote two open neighborhoods of \scrR + with
U \Subset U \prime \Subset \mathrm{s}\mathrm{c}T \ast 

\partial MM , and assume U \subset Ell(Q3) \subset WF\prime (Q3) \subset Ell(G3) \subset U \prime .
Assume that WF\prime (Q\prime 

3) is contained in U \prime \setminus U and that
(3.6)

for every \alpha \in WF\prime (Q3) \cap (\Sigma (P ) \setminus \scrR +), there is a point \alpha \prime \in Ell(Q\prime 
3)

and a forward bicharacteristic segment \gamma from \alpha \prime to \alpha such that \gamma \subseteq Ell(G3).

If Q\prime 
3u \in Hs,\ell and G3Pu \in Hs - 2,\ell +1, then Q3u \in Hs,\ell , and for all M,N

there is C > 0 such that if u \in HM,N , then

(3.7) \| Q3u\| s,\ell \leq C
\Bigl( 
\| Q\prime 

3u\| s,\ell + \| G3Pu\| s - 2,\ell +1 + \| u\| M,N

\Bigr) 
.

(ii) Above threshold regularity: Assume \ell , \ell \prime >  - 1/2 and s, s\prime \in \BbbR . Let U - \Subset 
scT \ast M be a sufficiently small neighborhood of \scrR  - . Then for all Q4, G4 \in \Psi 0,0

\mathrm{s}\mathrm{c}

such that
\scrR  - \subset Ell(Q4) \subset WF\prime (Q4) \subset Ell(G4) \subset U - ,
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if G4Pu \in Hs - 2,\ell +1 and G4u \in Hs\prime ,\ell \prime , then Q4u \in Hs,\ell . Moreover, for all
M,N , there is C > 0 so that if u \in HM,N , then

(3.8) \| Q4u\| s,\ell \leq C
\Bigl( 
\| G4u\| s\prime ,\ell \prime + \| G4Pu\| s - 2,\ell +1 + \| u\| M,N

\Bigr) 
.

3.2. Fredholm estimate. In this subsection we explain how to piece together
the microlocal estimates to produce a global estimate. See also Vasy [33, sect. 5.4.6],
where this piecing together of estimates is discussed in terms of wavefront sets.

We first note that if U \prime and U - are chosen small enough such that \sansl + is constant,
equal to  - 1/2  - \delta near U \prime and  - 1/2 + \delta near U - , and if we choose r to be equal to
these respective values in (3.7) and (3.8), then we can deduce the estimates with the
variable weight \sansl +, as follows:

(3.9) \| Q3u\| s,\sansl + \leq C
\Bigl( 
\| Q\prime 

3u\| s,\sansl + + \| G3Pu\| s - 2,\sansl ++1 + \| u\| M,N

\Bigr) 
and

(3.10) \| Q4u\| s,\sansl + \leq C
\Bigl( 
\| G4u\| s\prime ,r\prime + \| G4Pu\| s - 2,\sansl ++1 + \| u\| M,N

\Bigr) 
.

This is because the ``microlocal difference"" between, say, the norms \| Q3u\| s, - 1/2 - \delta 

and \| Q3u\| s,\sansl + is disjoint from the microlocal support of Q3, so the difference can be

controlled by \| u\| M,N for arbitrary M and N ; exactly the same argument applies to
each of the other terms in these two estimates.

We then combine the estimates (3.3), (3.5), (3.9), and (3.10), noting that we may
assume that Q1 + Q2 + Q3 + Q4 = Id. In addition, we may assume that Q\prime 

2 = Q4

and Q\prime 
3 = Q2, as these satisfy the propagation conditions in (3.4) and (3.6). We add

up these estimates, building in a large multiple of the second estimate and an even
larger multiple of the fourth. Thus, for a constant C equal to the maximum constant
in the four estimates (3.3), (3.5), (3.7), and (3.8), we have

(3.11)

\| u\| s,\sansl + \leq \| Q1u\| s,\sansl + +K\| Q2u\| s,\sansl + + \| Q3u\| s,\sansl + +K2\| Q4u\| s,\sansl +
\leq C

\Bigl( 
\| G1Pu\| s - 2,\sansl + + \| u\| M,N +K

\Bigl( 
\| Q4u\| s,\sansl + + \| G2Pu\| s - 2,\sansl ++1 + \| u\| M,N

\Bigr) 
+ \| Q2u\| s,\sansl + + \| G3Pu\| s - 2,\sansl ++1 + \| u\| M,N

+ K2
\Bigl( 
\| G4u\| s\prime ,\ell \prime + \| G4Pu\| s - 2,\sansl ++1 + \| u\| M,N

\Bigr) \Bigr) 
.

Next, we estimate the Q2 and Q4 terms on the RHS as just done, by using (3.5),
resp. (3.10). Noting that estimating the Q2 term produces an additional Q4 term,
we again estimate using (3.10). So, finally, we obtain, for a new larger constant C
(noting that s\prime is arbitrary),

(3.12) \| u\| s,\sansl + \leq C
\Bigl( 
\| Pu\| s - 2,\sansr ++1 + \| u\| M,N + \| G4u\| s\prime ,r\prime 

\Bigr) 
.

Now, to handle the G4 term, choose \ell \prime =  - 1/2+\delta /2 and M < s\prime < s. By Sobolev
space interpolation, for appropriate \eta \in (0, 1),

\| G4u\| s\prime , - 1/2+\delta /2 \leq \| G4u\| 1 - \eta 
s, - 1/2+\delta \| G4u\| \eta M,N .

We can replace the norm \| G4u\| s, - 1/2+\delta with \| G4u\| s\prime ,\sansl + since \sansl + =  - 1/2 + \delta on the

microlocal support of G4 (which is contained in U - ). Then, by Young's inequality,

\| G4u\| 1 - \eta 
s,\sansl +

\| G4u\| \eta M,N \leq \epsilon \| u\| s,\sansl + + C(\epsilon ) \| u\| M,N
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for arbitrary \epsilon > 0 provided C(\epsilon ) is sufficiently large. The \epsilon \| u\| s,\sansl + term can be

absorbed into the RHS of (3.12) and the other term is a multiple of \| u\| M,N . This
yields the Fredholm estimate (3.1).

3.3. Invertibility on variable order spaces. We now prove Theorem 3.1
using the result of Lemma 3.1. Given that the map (1.14) is Fredholm, it only
remains to show that the kernel and cokernel are both trivial. In fact, due to the
formal self-adjointness of the operator P , this amounts to showing that if Pu = 0,
and either u \in Hs,\sansl + or Hs,\sansl  - , then u = 0. As the argument is essentially the same in
both cases, we only consider the case that u \in Hs,\sansl + .

So, assume that u \in Hs,\sansl + and Pu = 0. Then, u is in Hs, - 1/2+\delta microlocally
in a neighborhood of \scrR  - , i.e., u is above threshold near \scrR  - . Therefore, we can
apply Proposition 3.4, part (ii), and deduce that u is in Hs,L for arbitrarily large L
microlocally near \scrR  - . The propagation theorem, Proposition 3.3, then shows that
u is in Hs,L for arbitrary L everywhere on \Sigma except, possibly, at \scrR +. The elliptic
estimate implies that, in fact, u is microlocally trivial except possibly at \scrR +, in the
sense that if A is such that WF\prime (A) is disjoint from \scrR +, then Au \in \scrS , i.e., Au \in HS,L

for all S and L.
We can thus apply [24, Prop. 12], which tells us that if u has a wavefront set

contained in \scrR +, and Pu \in \scrS , then u has the form1

u = r - (n - 1)/2ei\lambda r
\infty \sum 
j=0

r - jvj(y), r \rightarrow \infty , where vj \in C\infty (\partial M).

On the other hand, the ``boundary pairing"" lemma [24, Prop. 13] shows that the
leading coefficient v0 in the expansion of u satisfies

 - 2i\lambda 

\int 
\partial M

| v0| 2 = 2Re

\int 
M

uPu.

Since the RHS is zero, v0 \equiv 0, and thus u \in H\infty , - 1/2+\delta (M) for \delta small enough.
Thus, u is above threshold decay at both radial sets. It is a key point that this is
impossible, unless u vanishes identically. To see this, we apply Proposition 3.4, part
(ii) (at the outgoing rather than incoming radial set), with \ell arbitrary. Since Pu = 0,
this implies that u is also microlocally trivial at \scrR +, i.e., u itself is Schwartz. Finally,
we can apply a unique continuation theorem, e.g., [19, Thm. 17.2.8], or alternatively
[7], to deduce that u \equiv 0. This completes the proof of Theorem 3.1.

Remark 3.5. The fact that P - 1 on these variable order spaces is equal to the
action of the outgoing resolvent is shown in [24, sect. 11] or [30].

3.4. Module regularity. The next step is to adapt the argument above to the
module regularity spaces Hs,\ell ;\kappa ,k

+ instead of variable order spaces Hs,\sansl + . We shall
prove each of the microlocal estimates above in the module regularity setting.

Proposition 3.6 (microlocal elliptic regularity---module version). Let u \in \scrS \prime 

and let Q1, G1 \in \Psi 0,0
\mathrm{s}\mathrm{c} be such that WF\prime (Q1) \subset Ell(G1) \cap Ell(P ). Assume G1Pu \in 

Hs - 2,\ell ;\kappa ,k
+ . Then Q1u \in Hs,\ell ;\kappa ,k

+ , and for all M,N \in \BbbR , there is a constant C > 0
such that if u \in HM,N , then

(3.13) \| Q1u\| s,\ell ;\kappa ,k \leq C (\| G1Pu\| s - 2,\ell ;\kappa ,k + \| u\| M,N ) .

1The fact that there is a leading term in this expansion---which is all we need here---follows from
the argument in section 4 of the present paper, which is modeled on the proof of [24, Prop. 12].
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Proof. We prove this by induction on (\kappa , k). For (\kappa , k) = (0, 0) this is just Propo-
sition 3.2. Now assume, for a given (\kappa , k) that the result is true for all (\kappa \prime , k\prime ) < (\kappa , k)
in the sense that \kappa \prime \leq \kappa , k\prime \leq k and (\kappa \prime , k\prime ) \not = (\kappa , k). Then, for generators A1, . . . , Am

of \scrM + and B1, . . . , Bl of \scrN , we have

(3.14) A1 \cdot \cdot \cdot AmB1 \cdot \cdot \cdot BlQ1u = Q1A1 \cdot \cdot \cdot AmB1 \cdot \cdot \cdot Blu

+

m\sum 
j=1

A1 \cdot \cdot \cdot [Aj , Q1] \cdot \cdot \cdot AmB1 \cdot \cdot \cdot Blu+

l\sum 
j=1

A1 \cdot \cdot \cdot AmB1 \cdot \cdot \cdot [Bj , Q1] \cdot \cdot \cdot Blu.

We can shift the commutator factors to the left of the product modulo double com-
mutator factors, shift the double commutator factors to the left modulo triple com-
mutator factors, and so on. Notice that all of these multiple commutator factors are
order (0, 0), with microlocal support no bigger than WF\prime (Q1), hence contained in the
elliptic set of G1. Note first that G1PA1 \cdot \cdot \cdot AmB1 \cdot \cdot \cdot Blu \in Hs - 2,\ell . Indeed this can
be seen by writing the operator in terms of commutators as

(3.15) G1PA1 \cdot \cdot \cdot AmB1 \cdot \cdot \cdot Bl = A1 \cdot \cdot \cdot AkB1 \cdot \cdot \cdot BlG1P

+

m\sum 
j=1

A1 \cdot \cdot \cdot [G1P,Aj ] \cdot \cdot \cdot AmB1 \cdot \cdot \cdot Bl +

l\sum 
j=1

A1 \cdot \cdot \cdot AmB1 \cdot \cdot \cdot [G1P,Bj ] \cdot \cdot \cdot Bl,

so using that [G1P,Aj ], [G1P,Bj ] \in \Psi 2,0, we can therefore apply Proposition 3.2 to
obtain

(3.16)
\| A1 \cdot \cdot \cdot AmB1 \cdot \cdot \cdot BlQ1u\| s,\ell \lesssim \| G1PA1 \cdot \cdot \cdot AmB1 \cdot \cdot \cdot Blu\| s - 2,\ell 

+ commutator terms + \| u\| M,N ,

and we can perform a similar process as above, shifting the commutator factors to
the left modulo double commutator factors, shifting those to the left modulo triple
commutator factors, and so on. Each of these multiple commutator factors are order
(2, 0). Substituting into (3.16) we obtain

\| A1 \cdot \cdot \cdot AmB1 \cdot \cdot \cdot BlQ1u\| s,\ell \lesssim \| A1 \cdot \cdot \cdot AmB1 \cdot \cdot \cdot BlG1Pu\| s - 2,\ell 

+
\sum 

\| \~C\bullet 
\prod 

A\bullet 
\prod 

B\bullet u\| s,\ell +
\sum 

\| C\bullet 
\prod 

A\bullet 
\prod 

B\bullet u\| s - 2,\ell + \| u\| M,N ,

(3.17)

where C\bullet \in \Psi 2,0
\mathrm{s}\mathrm{c} and \~C\bullet \in \Psi 0,0

\mathrm{s}\mathrm{c} are multicommutators with wavefront set contained
in WF\prime (Q1), and we have fewer than \kappa + k factors of the A\bullet and the B\bullet in total. The
other terms in (3.16) are estimated similarly. We thus obtain
(3.18)

\| A1 \cdot \cdot \cdot AmB1 \cdot \cdot \cdot BlQ1u\| s,\ell \lesssim \| G1Pu\| s - 2,\ell ;\kappa ,k +
\sum 

(\kappa \prime ,k\prime )<(\kappa ,k)

\| G\prime u\| s,\ell ;\kappa \prime ,k\prime + \| u\| M,N ,

where G\prime is chosen so that WF\prime (Q1) \subset Ell(G\prime ) \subset WF\prime (G\prime ) \subset Ell(G1) and WF(I  - 
G\prime ) \cap WF\prime (Q1) = \varnothing . These conditions imply that G\prime C = C modulo an operator
of order ( - \infty , - \infty ) which contributes to the \| u\| M,N term. We apply the inductive
assumption to the term G\prime u, where G\prime now plays the role of Q1, and arrive at

(3.19) \| A1 \cdot \cdot \cdot AkB1 \cdot \cdot \cdot BlQ1u\| s,\ell \lesssim \| G1Pu\| s - 2,\ell ;\kappa ,k + \| u\| M,N .

After summing over all possible choices of the A1, . . . , Am and the B1, . . . , Bl we
obtain (3.13).
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Proposition 3.7 (propagation of regularity estimate---module version). Let
u \in \scrS \prime and let Q2, Q

\prime 
2, G2 \in \Psi 0,0

\mathrm{s}\mathrm{c} . Assume WF\prime (Q2) \subseteq Ell(G2)\setminus (\scrR +\cup \scrR  - ). Moreover,

assume that (3.4) holds. If Q\prime 
2u \in Hs,\ell ;\kappa ,k

+ and G2Pu \in Hs - 2,\ell +1;\kappa ,k
+ , then Q2u \in 

Hs,\ell ;\kappa ,k
+ , and for all M,N there is C > 0 such that if u \in HM,N , then

(3.20) \| Q2u\| s,\ell ;\kappa ,k \leq C
\Bigl( 
\| Q\prime 

2u\| s,\ell ;\kappa ,k + \| G2Pu\| s - 2,\ell +1;\kappa ,k + \| u\| M,N

\Bigr) 
.

Remark 3.8. Here we included the extra assumption that WF\prime (Q2) is disjoint
from the radial sets, so that the modules\scrM + and\scrN both become elliptic onWF\prime (Q2),
in the sense that at each point of WF\prime (Q2) there exists a module element of \scrN (and
hence also \scrM +) that is elliptic. (It was not necessary to include this assumption in
Proposition 3.3, but we could have done so as the proposition gives no information at
the radial sets.)

Proof. When the modules are elliptic the proof becomes almost trivial. We note
that the module norm \| \cdot \| s,\ell ;\kappa ,k is equivalent, microlocally on WF\prime (Q2), to the \| \cdot 
\| s+\kappa +k,\ell +\kappa +k norm. So the proposition is actually equivalent to the previous one,
with a shift in orders s and \ell by \kappa + k.

In the next proposition, all operators have microlocal support in a compact region
of \mathrm{s}\mathrm{c}T \ast M by assumption, thus disjoint from fiber-infinity. Hence the differential order
is irrelevant for both the operators and the spaces. We write it \ast to emphasize this
irrelevance.

Proposition 3.9 (radial point estimates---module version).
(i) Below threshold regularity radial point estimate: Assume \ell <  - 1/2. Let

Q3, Q
\prime 
3, G3 \in \Psi 0,0

\mathrm{s}\mathrm{c} . Let U,U \prime denote two open neighborhoods of \scrR + with
U \Subset U \prime \Subset \mathrm{s}\mathrm{c}T \ast 

\partial MM , and assume that U \subset Ell(Q3) \subset WF\prime (Q3) \subset Ell(G3) \subset 
U \prime . Assume that WF\prime (Q\prime 

3) is contained in U \prime \setminus U and that (3.6) holds. If

Q\prime 
3u \in H\ast ,\ell ;\kappa ,k

+ and G3Pu \in H\ast ,\ell +1;\kappa ,k
+ , then Q3u \in H\ast ,\ell ;\kappa ,k

+ , and for all
M,N there is C > 0 such that if u \in HM,N , then

(3.21) \| Q3u\| \ast ,\ell ;\kappa ,k \leq C
\Bigl( 
\| Q\prime 

3u\| \ast ,\ell ;\kappa ,k + \| G3Pu\| \ast ,\ell +1;\kappa ,k + \| u\| M,N

\Bigr) 
.

(ii) Above threshold regularity: Assume \ell , \ell \prime >  - 1/2. Let U - \Subset scT \ast 
\partial MM be a

sufficiently small neighborhood of \scrR  - . Then for all Q4, G4 \in \Psi 0,0
\mathrm{s}\mathrm{c} such that

\scrR  - \subset Ell(Q4) \subset WF\prime (Q4) \subset Ell(G4) \subset U - ,

if G4Pu \in H\ast ,\ell +1;\kappa ,k
+ and G4u \in H\ast ,\ell \prime ;\kappa ,k

+ , then Q4u \in H\ast ,\ell ;\kappa ,k
+ . Moreover,

for all M,N , there is C > 0 so that if u \in HM,N , then

(3.22) \| Q4u\| \ast ,\ell ;\kappa ,k \leq C
\Bigl( 
\| G4u\| \ast ,\ell \prime ;\kappa ,k + \| G4Pu\| \ast ,\ell +1;\kappa ,k + \| u\| M,N

\Bigr) 
.

Moreover, all of the above holds with H\ast ,\ell ;\kappa ,k
+ ,\scrR \pm replaced by H\ast ,\ell ;\kappa ,k

 - ,\scrR \mp .

Proof. In this case, the argument is more elaborate than the previous two proofs
and relies on the construction of a positive commutator. The key fact we use is
Lemma 2.3, that is, the P -positivity/criticality of the modules \scrM \pm and \scrN . It is very
similar to the argument from [14, sect. 6], where test modules were introduced. To
avoid a long exposition about test modules and how positive commutator estimates
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6210 J. GELL-REDMAN, A. HASSELL, J. SHAPIRO, AND J. ZHANG

are used to prove module regularity, we will use section 6 of [14] as a basis and only
indicate the minor differences that arise in the present case.

We fix a basis A0 = Id, . . . , AN of the module \scrM +, where AN = r(Dr  - \lambda ) and
the rest form a basis for \scrN . We use the notation A\alpha , \alpha = (\alpha 1, . . . , \alpha N ) a multi-index,
for the operator

A\alpha 1
1 . . . A\alpha N

N

and A\alpha ,\ell for the operator r\ell A\alpha . Given (\kappa , k), we consider A\alpha , where | \alpha | = \kappa + k and
\alpha N \leq \kappa , that is, there are at least k module elements in the product A\alpha ,\ell lying in the
small module \scrN . Such A\alpha , as \alpha ranges over such all multi-indices of length \kappa + k,
together with Id form a basis for \scrM \kappa 

+\scrN k, the vector space of sums of products of \kappa 
elements of \scrM + and k elements of \scrN , as a module over \Psi 0,0

\mathrm{s}\mathrm{c} .
We prove the estimate by induction on (\kappa , k), the module orders. For \kappa = k = 0

the result is precisely Proposition 3.4. We now assume inductively that the result
has been proved for all (\kappa \prime , k\prime ) < (\kappa , k), that is, (\kappa \prime , k\prime ) such that \kappa \prime \leq \kappa , k\prime \leq k and
(\kappa \prime , k\prime ) \not = (\kappa , k).2

The positive commutator estimate arises from the following operator identity,
which is essentially (6.16) in [14]. In the following, Q is arbitrary, but we will choose
it to be an operator which is microlocally equal to the identity on WF\prime (Q3), and with
WF\prime (Q) \subset Ell(G3). In the following identity, the Cjk are defined by the commutators
of P with basis elements Aj , as in (2.38).

(3.23)

i[A\ast 
\alpha ,\ell +1/2Q

\ast QA\alpha ,\ell +1/2, P ] = A\ast 
\alpha ,\ell Q

\ast 

\left(  C0 + C\ast 
0 +

N\sum 
j=1

\alpha j(Cjj + C\ast 
jj)

\right)  QA\alpha ,\ell 

+
\sum 

| \beta | =k,\beta \not =\alpha 

A\ast 
\alpha ,\ell Q

\ast C\alpha \beta QA\beta ,\ell +
\sum 

| \beta | =k,\beta \not =\alpha 

A\ast 
\beta ,\ell Q

\ast C\ast 
\alpha \beta QA\alpha ,\ell 

+ A\ast 
\alpha ,\ell Q

\ast E\alpha ,\ell + E\ast 
\alpha ,\ell QA\alpha ,\ell +A\ast 

\alpha ,\ell +1/2i[Q
\ast Q,P ]A\alpha ,\ell +1/2

+

N\sum 
j=1

A\ast 
\alpha ,\ell Q

\ast E\prime 
\alpha ,\ell +1P + PE\prime 

\alpha ,\ell +1
\ast 
QA\alpha ,\ell ,

where

\sigma \mathrm{b}\mathrm{a}\mathrm{s}\mathrm{e},0(C0)| \scrR +
=  - \lambda (2\ell + 1),

\sigma \mathrm{b}\mathrm{a}\mathrm{s}\mathrm{e},0(C\alpha \beta )| \scrR + = 0, C\alpha \beta \in \Psi 1,0
\mathrm{s}\mathrm{c} (M),

E\alpha ,\ell = r\ell E\alpha , E\prime 
\alpha ,\ell +1 = r\ell +1E\prime 

\alpha , E\alpha , E
\prime 
\alpha \in \scrM \kappa \prime 

+\scrN k\prime 
, (\kappa \prime , k\prime ) < (\kappa , k).

(3.24)

This coincides with [14, eq. (6.16)] except for the last line, which arises from the C \prime 
jP

terms in (2.38).3 Note that in our case, C \prime 
j is only nonzero for j = N , that is, for the

r(Dr  - \lambda ) module element, when it is equal to 2r. The P factor can be commuted to
be either at the left or the right of the composition, at the cost of commutator terms
which can be absorbed in the second last line. The r factor in C \prime 

N accounts for the
increase of growth from r\ell to r\ell +1 in the E\prime terms in the last line.

2Technically, the inductive estimate has to be for a slightly different operator \~Q3 in place of Q3,
with slightly larger elliptic set and microlocal support.

3Notice that no vanishing condition is imposed on the C\prime 
j term in (2.38), unlike in [14]. The

vanishing condition on C\prime 
j is not required; instead we use the extra order of vanishing of Pu, to order

\ell + 1 instead of \ell , to estimate the terms involving C\prime 
jP below.
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NONLINEAR HELMHOLTZ EIGENFUNCTIONS 6211

The key point above is that the symbol of C0, arising from the  - 2\nu r\partial r component
of minus the Hamilton vector field from (2.20) hitting the r\ell factor, has a definite sign
near \scrR +---positive for \ell less than the threshold exponent  - 1/2. Moreover, the P -
positivity of the modules \scrM + and \scrN means that the diagonal operators Cjj have
nonnegative symbols at \scrR +---cf. (2.40). Similarly, the off-diagonal terms C\alpha \beta vanish
at \scrR + due to (2.39). Now, we define a matrix C \prime = (C \prime 

\alpha \beta ) of operators, as the indices
\alpha , \beta vary over multi-indices of length k, as follows: for \alpha \not = \beta ,

C \prime 
\alpha \beta = C\alpha \beta + C\ast 

\beta \alpha 

and on the diagonal, we define

(3.25) C \prime 
\alpha \alpha = C0 + C\ast 

0 +

N\sum 
j=1

\alpha j(Cjj + C\ast 
jj).

Thus, due to (3.24), the symbol of C \prime at \scrR + is diagonal with positive entries, and
it is therefore positive as an matrix, provided that the microlocal support of Q is
sufficiently close to \scrR + (which we arrange below). This means that we can write

Q\ast C \prime Q = Q\ast (B\ast B +G)Q,

where B is a matrix of operators of order (\ast , 0) and G a matrix of operators of order
(\ast , - 1). For a function u we also write Au for (QA\alpha ,\ell u), regarded as a column vector
indexed by multi-indices \alpha of length m. Thus, in this compact notation we can write
the first two lines on the RHS of (3.23) as A\ast (B\ast B+G)A. We similarly use compact
notation for norms and inner products, e.g.,

\| Au\| 2 = \langle Au,Au\rangle :=
\sum 
\alpha 

\langle QA\alpha ,\ell u,QA\alpha ,\ell u\rangle .

We now assume that the neighborhood U \prime of \scrR + is sufficiently small that the
symbol of C \prime is invertible on U \prime . We choose Q so that Q is equal to the identity
microlocally on U and such that the commutator of any pseudodifferential operator
with Q has microlocal support contained in Ell(Q\prime 

3). To do this, we take the full
symbol of Q to be identically 1 in U , and to be identically zero outside U \prime , such that
along each bicharacteristic it transitions from 1 to 0 on the elliptic set of Q\prime 

3, a set
which is always met before exiting U \prime due to (3.6) and the condition Ell(G3) \subset U \prime .

Now we follow the argument of the proof of [14, Prop. 6.7]. We let u\prime be an

element of H\ast ,\ell ;\kappa ,0
+ . From (3.23) we have, in matrix notation,

(3.26) \sum 
| \alpha | =k

\bigl\langle 
u\prime , i[A\ast 

\alpha ,\ell +1/2Q
\ast QA\alpha ,\ell +1/2, P ]u\prime \bigr\rangle 

= \| BAu\prime \| 2 + \langle Au\prime , GAu\prime \rangle +
\sum 
| \alpha | =k

\bigl( 
\langle QA\alpha ,\ell u

\prime , E\alpha ,\ell u
\prime \rangle + \langle E\alpha ,\ell u

\prime , QA\alpha ,\ell u
\prime \rangle 
\bigr) 

+
\sum 
| \alpha | =k

\langle A\alpha ,\ell u
\prime , FA\alpha ,\ell u

\prime \rangle +
\sum 
| \alpha | =k

\bigl( 
\langle QA\alpha ,\ell u

\prime , E\prime 
\alpha ,\ell +1Pu\prime \rangle + \langle E\prime 

\alpha ,\ell +1Pu\prime , QA\alpha ,\ell u
\prime \rangle 
\bigr) 
.

Here F = r1/2[Q\ast Q,P ]r1/2 \in \Psi \ast ,0
\mathrm{s}\mathrm{c} has an operator wavefront set contained in Ell(Q\prime 

3).
We can therefore write F = Q\prime 

3F
\prime Q\prime 

3 + E, where F \prime has order (0, 0) and E has
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6212 J. GELL-REDMAN, A. HASSELL, J. SHAPIRO, AND J. ZHANG

order ( - \infty , - \infty ). Using this, and also employing the elementary inequality 2ab \leq 
\epsilon a2 + \epsilon  - 1b2, we deduce an estimate for \| BAu\prime \| :

(3.27)

\| BAu\prime \| 2 \leq 2
\sum 
\alpha 

\bigm| \bigm| \bigm| \langle QA\alpha ,\ell +1/2u
\prime , QA\alpha ,\ell +1/2Pu\prime \rangle 

\bigm| \bigm| \bigm| 
+ 4\epsilon \| Au\prime \| 2 + \epsilon  - 1

\Bigl( 
\| GAu\prime \| 2 +

\sum 
\alpha 

\bigl( 
\| E\alpha ,\ell u

\prime \| 2 + \| E\prime 
\alpha ,\ell +1Pu\prime \| 2

\bigr) \Bigr) 
+ \| F \prime \| 

\sum 
\alpha 

\| Q\prime 
3A\alpha ,\ell u

\prime \| 2 + C\| u\prime \| 2M,N .

We next estimate the commutator term, that is, the first term on the RHS. (This
is not done in [14], since there it was assumed that Pu\prime is Schwartz.) We can commute
a power of r1/2 through Q, at the cost of commutator terms of order (\ast , - 1). This
gives us

\langle QA\alpha ,\ell +1/2u
\prime , QA\alpha ,\ell +1/2Pu\prime \rangle = \langle QA\alpha ,\ell u

\prime , QA\alpha ,\ell +1Pu\prime \rangle + \langle E\prime \prime 
\alpha ,\ell u

\prime , QA\alpha ,\ell +1Pu\prime \rangle ,

where E\prime \prime 
\alpha ,\ell = r\ell E\prime \prime 

\alpha , E
\prime \prime 
\alpha \in \scrM \kappa \prime 

+\scrN k\prime 
for some (\kappa \prime , k\prime ) < (\kappa , k). Therefore

2
\bigm| \bigm| \bigm| \langle QA\alpha ,\ell +1/2u

\prime , QA\alpha ,\ell +1/2Pu\prime \rangle 
\bigm| \bigm| \bigm| \leq \epsilon \| QA\alpha ,\ell u

\prime \| 2+\| E\prime \prime 
\alpha ,\ell u

\prime \| 2+(1+\epsilon  - 1)\| QA\alpha ,\ell +1Pu\prime \| 2.

Summing over \alpha and combining this with (3.27) we have

(3.28)

\| BAu\prime \| 2 \leq 5\epsilon \| Au\prime \| 2 + \| E\prime \prime 
\alpha ,\ell u

\prime \| 2

+ \epsilon  - 1
\Bigl( 
\| GAu\prime \| 2 +

\sum 
\alpha 

\bigl( 
\| E\alpha ,\ell u

\prime \| 2 + 2\| QA\alpha ,\ell +1Pu\prime \| 2 + \| E\prime 
\alpha ,\ell +1Pu\prime \| 2

\bigr) \Bigr) 
+ C

\sum 
\alpha 

\| Q\prime 
3A\alpha ,\ell u

\prime \| 2 + C\| u\prime \| 2M,N .

The terms proportional to 5\epsilon can be absorbed in the LHS, up to a term of the form
C\| u\prime \| 2M,N . In fact, on the microlocal support of Q, B has a microlocal inverse,

which we will denote B - 1 (despite not being an actual inverse of B). So we have
A = B - 1BA + E\prime , where E\prime has order ( - \infty , - \infty ). Then, estimating B - 1 by its
operator norm, we can absorb the \| Au\prime \| 2 terms provided \epsilon is small compared to
\| B - 1\| , while the E\prime term only contributes a multiple of \| u\prime \| 2M,N .

We now notice that GA can be treated as being in \scrM \kappa \prime 

+\scrN k\prime 
for (\kappa \prime , k\prime ) < (\kappa , k)

since G has order (\ast , - 1). So this term, as well as the E\alpha ,\ell and E\prime \prime 
\alpha ,\ell terms, can be

estimated using the inductive assumption. In exactly the same way, we can commute
the Q to the right of the A\alpha ,\ell +1 factor and then replace it with G3. Similarly, Q\prime 

3 can
be moved to the right of the A\alpha ,\ell . After these manipulations, we obtain the estimate

(3.29) \| Q3u
\prime \| 2\ast ,\ell ;0,k \leq C

\Bigl( 
\| G3Pu\prime \| 2\ast ,\ell +1;0,k + \| Q\prime 

3u
\prime \| 2\ast ,\ell ;0,k + \| u\prime \| 2M,N

\Bigr) 
.

Now we let u\prime = u\prime (\eta ) := (1 + \eta r) - 1u, u \in H\ast ,\ell ;0,k - 1
+ for \eta > 0 tending to zero.

Then u\prime \in H\ast ,\ell ;0,k
+ for each \eta > 0, so the above computation is valid. Assuming that

Q\prime 
3u \in H\ast ,\ell ;0,k

+ and G3Pu \in H\ast ,\ell +1;0,k
+ , then the RHS of (3.29) stays bounded as

\eta \rightarrow 0. Therefore, the LHS also stays bounded, and using the strong convergence of
(1 + \eta r) - 1 to the identity as in [14, Lem. 4.3], we see that we obtain estimate (3.29)
also with u\prime = u.
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We next turn to the proof of (3.22). This works quite differently in relation to
the two modules. At the incoming radial set \scrR  - , the module \scrM + is elliptic, while
\scrN is characteristic. The effect of the \kappa th power of the module \scrM + is thus just to
increase the spatial order \ell by \kappa . So, without loss of generality, we may assume that
\kappa = 0.

We then employ a very similar argument to the one above. Notice that, instead of
having \sigma \mathrm{b}\mathrm{a}\mathrm{s}\mathrm{e},0(C0) =  - \lambda (2\ell +1) at the radial set, as above, we now have \sigma \mathrm{b}\mathrm{a}\mathrm{s}\mathrm{e},0(C0) =
\lambda (2\ell + 1). On the other hand, now \ell >  - 1/2, so the 2\ell + 1 factor has also switched
sign, so this symbol remains positive at the radial set (now \scrR  - ). Using the fact that
the module \scrN is P -critical, we find that the matrix C \prime in this case is again positive
definite at the incoming radial set. Then we run the same argument as above, with
the following twist: In this case, the F term arising from [Q\ast Q,P ] has the same sign
as C \prime , namely, it is positive, as it arises from minus the (rescaled) Hamilton vector
field \sansH p hitting \sigma (Q)2. Taking \sigma (Q) to be a function only of | \mu | h at x = 0 we see
from (2.20) that  - \sansH p(\sigma (Q)2) is nonnegative. Since this has the same sign as that of
C \prime , to leading order, we can discard this term up to a lower order term. This lower
order term requires the presence of \| G4u\| \ast ,\ell \prime ,k on the RHS of the estimate; at first
sight it appears that we could take \ell \prime = \ell  - 1/2 (and then iterate to reduce \ell \prime as much
as we like), but the regularization required to justify the estimate requires that \ell \prime is
greater than the threshold value of  - 1/2. See the proof of [33, Prop. 5.26], between
(5.61) and (5.62), for the details of the standard regularization step.

This proves the proposition for H\ast ,\ell ;\kappa ,k
+ . For the space H\ast ,\ell ;\kappa ,k

 - , where the index
\kappa now indicates module regularity with respect to \scrM  - , a similar argument applies.
Here, it is important that the module \scrM  - is P -negative at the radial sets. In this
case, the below threshold estimate is localized near \scrR  - . In this case the symbol of
C0 in (3.23) switches sign, due to the switch of sign of \nu in (2.20). The fact that \scrM  - 
is P -negative means that the symbol of the Cjj terms also switch sign, and hence
the matrix C \prime is negative definite, rather than positive definite, near \scrR  - . Then the
argument proceeds as above. Similar remarks apply to the above threshold case.

Corollary 3.10. Suppose \ell \prime , \ell >  - 3/2 and \kappa \geq 1. Then, under the same as-
sumptions as in part (ii) of Proposition 3.9, we have (3.22).

Proof. This follows since the module \scrM + is elliptic at \scrR  - . So when \kappa \geq 1, the
estimate (3.22) is equivalent to the same estimate with \ell , \ell \prime increased by \kappa , and \kappa set
to zero. Under the assumption that \ell \prime , \ell >  - 3/2 and \kappa \geq 1 this puts us in the range
of applicability of part (ii) of Proposition 3.9.

3.5. Invertibility on module regularity spaces. Our final piece of prepara-
tion for the proof of Theorem 2.4 is the following result relating our module regularity
spaces to variable order spaces.

Lemma 3.2. Assume \sansl + \in C\infty (\mathrm{s}\mathrm{c}T \ast M) satisfies (2.22) and (2.23). Then for \epsilon < \delta 
and \ell =  - 1/2 - \epsilon ,

(3.30) \kappa \geq 1 \Rightarrow Hs,\ell ;\kappa ,k
+ \subset Hs,\sansl + .

Proof. Since Hs,\ell ;\kappa ,k
+ \subset Hs,\ell ;1,0

+ , to show (3.30), it suffices to assume \kappa = 1 and

k = 0. Let U be a small neighborhood of \scrR + near which \sansl + =  - 1/2 - \delta , and let \~U \Subset U
be a smaller neighborhood of \scrR +. For each \sansq \in \mathrm{s}\mathrm{c}T \ast M \setminus \~U , there is an element A\sansq of
\scrM +, elliptic on a neighborhood U\sansq of \sansq . Form a partition of unity subordinate to the
cover of \mathrm{s}\mathrm{c}T \ast M , consisting of U and finitely many of the U\sansq , say, U\sansq 1 , . . . , U\sansq m . We
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take \{ Q\sansq j\} mj=1, Q \in \Psi 0,0
\mathrm{s}\mathrm{c} to be the corresponding left quantizations of the microlocal

cutoffs that comprise the partition of unity. Clearly, Qu \in Hs,\ell , since u \in Hs,\ell . Thus
Qu \in Hs,\sansl + since, on WF\prime (Q), we have \sansl + =  - 1/2 - \delta <  - 1/2 - \epsilon = \ell .

On the other hand, by the assumption of module regularity, each A\sansq ju \in Hs,\ell .
Because A\sansq j is order (1, 1) and WF\prime (Q\sansq j ) \subset Ell(Aqj ), microlocal elliptic regularity
(Proposition 3.2) asserts that Q\sansq ju \in Hs+1,\ell +1. Then we note that Hs+1,\ell +1 \subset Hs,\sansl +

since \ell + 1 = 1/2 - \epsilon \geq  - 1/2 + \delta = max \sansl + for \delta sufficiently small.

Remark 3.11. The point of this lemma is that the different behavior at the in-
coming and outgoing radial sets is enforced by the module regularity instead of by
a variable weight function, due to the fact that the module \scrM + is elliptic at the
incoming radial set \scrR  - but characteristic at the outgoing radial set \scrR +.

We are now in a position to prove Theorem 2.4.

Proof of Theorem 2.4. Let s \in \BbbR , \ell \in ( - 3/2, - 1/2), \kappa \geq 1, and k be given. We
first combine the estimates (3.13), (3.20), (3.21), and (3.22) (in the latter case, for
\ell \in ( - 3/2, - 1/2), as allowed by Corollary 3.10). This is done exactly as in section 3.2,

so we do not repeat the argument. We obtain, for u \in HM,N such that Pu \in Hs,\ell ;\kappa ,k
+ ,

that u \in Hs,\ell ;\kappa ,k
+ and

(3.31) \| u\| s,\ell ;\kappa ,k \leq C
\Bigl( 
\| Pu\| s - 2,\ell ;\kappa ,k + \| u\| M,N

\Bigr) 
.

We next use Lemma 3.2 to assert that Hs,\ell ;\kappa ,k
+ \subset Hs,\sansl + , provided \ell is sufficiently close

to  - 1/2. The proof of Lemma 3.2 may be trivially modified to show Hs - 2,\ell +1;\kappa ,k
+ \subset 

Hs - 2,\sansl ++1. Thus we have the following diagram:

(3.32) \scrX s,\sansl + P // \scrY s - 2,\sansl ++1

\scrX s,\ell ;\kappa ,k
+

?�

OO

\scrY s - 2,\ell +1;\kappa ,k
+ .
?�

OO

Our goal is to show that the restriction of P to \scrX s,\ell ;\kappa ,k
+ yields a bijection \scrX s,\ell ;\kappa ,k

+ \rightarrow 
\scrY s - 2,\ell +1;\kappa ,k
+ . Injectivity follows immediately since the top row is an injective map.

To show surjectivity, we suppose f \in \scrY s - 2,\ell +1;\kappa ,k
+ = Hs - 2,\ell +1;\kappa ,k

+ . In, particular f \in 
Hs - 2,\sansl ++1. So, by surjectivity of the top row there is u \in \scrX s,\sansl + with Pu = f . Then,
thanks to (3.31), we see that, provided (M,N) are sufficiently small, u \in Hs,\ell ;\kappa ,k

+ . As

a bounded bijection, the map \scrX s,\ell ;\kappa ,k
+ \rightarrow \scrY s - 2,\ell +1;\kappa ,k

+ is automatically a Hilbert space
isomorphism.

4. Proof of the main theorem. In this section, we find a nonlinear eigen-
function with prescribed incoming data by finding a fixed point of the map in (1.18),

which we shall show is a contraction map on the space \scrX 2,\ell ;1,k+1
+ . Here and below

we fix s = 2, and let k be any integer strictly larger than (n  - 1)/2. We also put
\ell =  - 1/2 - \delta for some fixed \delta with 0 < \delta \leq (4p) - 1 \leq 1/8.

4.1. Linear eigenfunction. Fix f \in Hk+4(\partial M). Define

u - (r, y) := \chi (r)r - (n - 1)/2e - i\lambda rf(y),

where \chi is a cutoff function, supported in r > R, and identically 1 for r \geq 2R. By
inspection, we see that u - \in H2,\ell ;1,k+1

 - . Moreover, it is clear that if \| f\| Hk+4(\partial M) is
sufficiently small, then \| u - \| H2,\ell ;1,k+1

 - 
is small.
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NONLINEAR HELMHOLTZ EIGENFUNCTIONS 6215

Moreover, by direct calculation via (2.42), we have

(4.1) (Pu - )(r, y) = \~\chi (r)r - (n+3)/2e - i\lambda rg(r, y), x = r - 1,

where \~\chi is another cutoff function, equal to 1 on supp\chi and supported in r > R, and
g(r, y) is a smooth function of r - 1 with values in Hk+2(\partial M). The key point is the
gain of two powers of r - 1 as r \rightarrow \infty . It follows that

Pu - \in H0,\ell +2;1,k+1
 - .

Now we want to view this as an element of H0,\ell +1;1,k+1
+ ; to accommodate the \scrM +-

module regularity of order \kappa = 1, we lose one order of vanishing as discussed at the
end of the proof of Corollary 2.5. Thus

Pu - \in H0,\ell +1;1,k+1
+ = \scrY 0,\ell +1;1,k+1

+ .

Next, we define

(4.2) u+ := R(\lambda + i0)(Pu - ),

which belongs to \scrX 2,\ell ;1,k+1
+ by the mapping property (2.48) of Theorem 2.4. We also

put
u0 := u - + u+

and notice that Pu0 = 0.

4.2. Contraction mapping on \bfscrX \bftwo ,\ell ;\bfone ,\bfitk +\bfone 
+ . We return to the discussion of

section 1.2. There, it was explained how finding a nonlinear eigenfunction amounts
to finding a fixed point of the map \Phi given by

(4.3) \Phi (w) = u+ +R(\lambda + i0)
\bigl( 
N [u - + w]

\bigr) 
.

Let us check that a fixed point w provides us with a nonlinear eigenfunction
u := u - + w. Adding u - to both sides of (4.3), we obtain
(4.4)
\Phi (w)+u - = w+u - = u++u - +R(\lambda + i0)

\bigl( 
N [u - +w]

\bigr) 
= u0+R(\lambda + i0)

\bigl( 
N [u - +w]

\bigr) 
.

Thus,

(4.5) u = u0 +R(\lambda + i0)
\bigl( 
N [u]

\bigr) 
.

Now we apply P to both sides. This annihilates u0 and we find that Pu = N [u], as
claimed.

We now show that \Phi is a contraction mapping on \scrX 2,\ell ;1,k+1
+ , provided \| f\| Hk+4(\partial M)

is sufficiently small (and hence \| u - \| H2,\ell ;1,k+1
+

is small), and provided that w is small.

The first thing to check is that \Phi is a mapping on this space.
We observed above that u+ \in H2,\ell ;1,k+1

+ , so it remains to show R(\lambda + i0)(N [u - +
w]) belongs to this space, provided w does.

Recall that the nonlinear expression N [v] is a sum of monomial terms, each of
which is a product of \~p \geq p factors of the form Qv or Qv, where Q is a scattering dif-
ferential operator of order (2, 0). (In the case of \BbbR n it just means a combination of the
usual coordinate partial derivatives multiplied by C\infty (M) functions; see Remark 1.6.)
It follows that N [u - +w] is a finite sum of products of such factors. We have already
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6216 J. GELL-REDMAN, A. HASSELL, J. SHAPIRO, AND J. ZHANG

seen that u - lies in H2,\ell ;1,k+1
 - , and w by assumption lies in H2,\ell ;1,k+1

+ . Also, we notice

that complex conjugation is an involution between H2,\ell ;1,k+1
 - and H2,\ell ;1,k+1

+ . Using
these facts along with Lemma 2.2, we conclude N [u - + w] is a sum of products of

factors, each of which lies in H0,\ell ;1,k+1
 - or H0,\ell ;1,k+1

+ . Applying Corollary 2.5, we find

that the product lies in H0,\ell \prime ;1,k+1
+ , provided that for all \~p \geq p,

(4.6) \ell \prime \leq \~p\ell +
(\~p - 1)n

2
 - 1.

We would like to know when this product is in H0,\ell +1;1,k. This is the case provided
that

(4.7) \ell + 1 \leq \~p\ell +
(\~p - 1)n

2
 - 1 \Leftarrow \Rightarrow 2 \leq (\~p - 1)\ell +

(\~p - 1)n

2
.

Since \ell \geq  - 5/8, the RHS is increasing in \~p. So it is only necessary to demand (4.7)
for \~p = p. Since \ell =  - 1/2 - \delta and 0 < \delta \leq (4p) - 1, it is straightforward to check that
a sufficient condition for (4.7) is

(4.8) 2 < (p - 1)
n - 1

2
,

which is precisely condition (1.7). When this holds, we automatically have

(4.9) 5/2 \leq (p - 1)
n - 1

2

since n and p are integers. In fact, in anticipation of Proposition 4.1, we note that we
can take \ell \prime = 3/4 in (4.6).

Next, we verify that \Phi is a contraction on a small ball in \scrX 2,\ell ;1,k+1
+ , provided the

prescribed incoming data f is small in Hk+4(\partial M). We have

(4.10) \Phi (w1) - \Phi (w2) = R(\lambda + i0)
\bigl( 
N [u - + w1] - N [u - + w2]

\bigr) 
.

Since N is a sum of monomials, each of degree \~p \geq p, the second factor on the RHS
is a sum of terms of the form Q(w1 - w2) or its complex conjugate, times a monomial
of degree at least p - 1 in various Q\prime u - , Q

\prime \prime w1, or Q
\prime \prime \prime w2 or their complex conjugates,

where the Q, Q\prime , and Q\prime \prime \prime are scattering differential operators of order (2, 0).
Let \eta > 0 be a small parameter, to be chosen later. By direct calculation, we see

that the map

(4.11) f \mapsto \rightarrow u - , u - = \chi (r)r - (n - 1)/2e - i\lambda rf(y)

is a bounded map from Hk+4(\partial M) to H2,\ell ;1,k+1
 - , so we may assume that the norm of

u - in H2,\ell ;1,k+1
 - is sufficiently small, say, \leq \eta . Supposing w1 and w2 are also less than

\eta in H2,\ell ;1,k+1
+ -norm, and combining this with Corollary 2.5 and our argument in the

preceding paragraph, we find that N [u - + w1] - N [u - + w2] is a finite number, say,

c(p), of terms, each of which is in H0,\ell +1;1,k+1
+ , with norm in this space bounded by

C\| w1  - w2\| H2,\ell ;1,k+1
+

\Bigl( 
\| u - \| H2,\ell ;1,k+1

 - 
+ \| w1\| H2,\ell ;1,k+1

+
+ \| w2\| H2,\ell ;1,k+1

+

\Bigr) p - 1

.

Applying R(\lambda + i0), the inverse of P acting boundedly \scrY 0,\ell +1;1,k+1
+ \rightarrow \scrX 2,\ell ;1,k+1

+ , the

norm of \Phi (w1) - \Phi (w2) in \scrX 2,\ell ;1,k+1
+ is at most \| w1 - w2\| H2,\ell ;1,k+1

+
times c(p)C\| R(\lambda +

i0)\| (3\eta )p - 1.
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It follows that provided \eta is chosen small enough so that c(p)C\| R(\lambda +i0)\| (3\eta )p - 1

is strictly less than 1, the map \Phi is a contraction on the ball of radius \eta centered at the
origin in \scrX 2,\ell ;1,k+1

+ . By the contraction mapping theorem, we deduce the existence of

a fixed point w \in \scrX 2,\ell ;1,k+1
+ . In view of the previous discussion, this furnishes us with

a nonlinear eigenfunction u - + w.

4.3. Outgoing boundary data. Continuing the proof of Theorem 1.5, we show
that w, the fixed point of \Phi given incoming data f , has zero incoming boundary data
and well-defined outgoing boundary data.

Proposition 4.1. Let k > (n  - 1)/2, and let u = u - + w be the nonlinear
eigenfunction constructed above given f \in Hk+4(\partial M). Then u has an asymptotic
expansion at infinity of the form

(4.12) u = r - (n - 1)/2
\Bigl( 
e - i\lambda rf(y) + ei\lambda rb(y) +O(r - \epsilon \prime )

\Bigr) 
, r \rightarrow \infty ,

for some \epsilon \prime > 0, where b \in Hk(\partial M).

Proof. We know that Pu = N [u] \in H
0,3/4;1,k+1
+ , in view of the discussion below

(4.8), and have observed that Pu - \in H0,\ell +2;0,k+1
+ .

The proof is therefore completed by the following lemma.

Lemma 4.1. Let \gamma be as in Theorem 1.5. Suppose 1/2  - \gamma < \ell <  - 1/2, k >

(n - 1)/2, and that w \in H2,\ell ;1,k+1
+ satisfies the equation

(4.13) Pw = F, F \in H0,\ell \prime ;0,k
+ (M)

for some \ell \prime > 1/2. Then limr\rightarrow \infty r(n - 1)/2e - i\lambda rw(r, \cdot ) exists in Hk(\partial M). Letting
b \in Hk(\partial M) denote the limit, we have

(4.14) r(n - 1)/2e - i\lambda rw(r, \cdot ) - b = O(r - \epsilon \prime ) in Hk(\partial M), r \rightarrow \infty ,

for \epsilon \prime > 0 sufficiently small.

Remark 4.2. Since Hk(\partial M) embeds into C(\partial M), due to the assumption k >
(n - 1)/2, this also shows that we have the asymptotic (4.14) pointwise in y \in \partial M .

Proof. It suffices to decompose w = w+ + w - , where

r(n - 1)/2e - i\lambda rw+(r, \cdot ) - b = O(r - \epsilon \prime ) in Hk(\partial M), r \rightarrow \infty ,

and
r(n - 1)/2e+i\lambda rw - (r, \cdot ) = O(r - \epsilon \prime ) in Hk(\partial M), r \rightarrow \infty .

We do this by choosing a pseudodifferential cutoff B \in \Psi 0,0
\mathrm{s}\mathrm{c} such that B is microlo-

cally equal to the identity near a neighborhood U of the outgoing radial set \scrR + and
microlocally equal to zero outside some slightly larger neighborhood U \prime , i.e., for some
open neighborhoods U \subset U \prime of \scrR + we have WF\prime (I  - B) \cap U = \varnothing ,WF\prime (B) \subset U \prime .
Then we set

(4.15) w+ = Bw, w - = (Id - B)w.

From (4.13) we get

(4.16) Pw+ = P (Bw) = BF + [P,B]w.
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We claim that the RHS is in H
0,1/2+\epsilon ;0,k
+ for some \epsilon > 0. Certainly this is true for the

term BF since F \in H0,\ell \prime ;0,k
+ and B \in \Psi 0,0

\mathrm{s}\mathrm{c} . For the term [P,B]w, we claim

(4.17) [P,B] = r - 2A

for some A \in \scrM +. Since w \in H2,\ell ;1,k+1
+ , this would imply Aw \in H2,\ell ;0,k+1

+ , and so

[P,B]w = r - 2Aw \in H2,\ell +2;0,k+1
+ \subseteq H

0,1/2+\epsilon ;0,k
+ for \epsilon sufficiently small. But (4.17)

follows immediately for U \prime sufficiently small since r2[P,B] has order (1, 1) and is
microsupported in U \prime \setminus U . Therefore it is characteristic at \scrR +, which is a sufficient
condition for an operator of order (1, 1) to belong to \scrM +.

Write \~w+ = \chi (r)r(n - 1)/2e - i\lambda rw+, where \chi is supported in r > R and identically
1 near r \geq 2R. We assume R is large enough so that the support of \chi is contained
in the collar neighborhood \{ x < c\} of the boundary. Our first goal is to show that
\~w+(r, y) has a limit b(y) in Hk(\partial M) and that \~w+(r, y)  - b(y) = OHk(\partial M)(r

 - \epsilon \prime ) as
r \rightarrow \infty . To do this, we write the operator P in the form (2.42):

(4.18) P = D2
r  - i(n - 1)r - 1Dr + r - 2Q+ r - 2 \~Q+ V  - \lambda 2,

where Q is a second order differential operator involving only tangential Dyj
deriv-

atives, and \~Q is a scattering differential operator of order (1, 0). We substitute this
expression for P into (4.16) and rearrange to obtain

(4.19)
\Bigl( 
Dr + \lambda 

\Bigr) \Bigl( 
Dr  - \lambda  - i(n - 1)

2r

\Bigr) 
w+

= BF + [P,B]w +
i(n - 1)

2r2
(r(Dr  - \lambda ))w+ +

\Bigl( n - 1

2r2
 - r - 2Q - r - 2 \~Q - V

\Bigr) 
w+.

Each term on the right side of (4.19) is in H
0,1/2+\epsilon ;0,k
+ for \epsilon small enough. For the V

term this follows from Lemma 2.4 and (2.36), since V \in H
s, - n/2+\gamma \prime ;\kappa ,k
\scrM 0

for all \gamma \prime < \gamma 
and any \kappa , k. For the remaining terms, this follows from (4.13), our observation that

[P,B]w \in H2,\ell +2;0,k
+ , and that w+ has scattering regularity of order 2, \scrM + module

regularity of order 1 and \scrN module regularity of order k+1. Moreover, the operator
Dr + \lambda is elliptic everywhere except at the set \{ \nu =  - \lambda \} ; in particular, it is elliptic
on WF\prime (B), provided that U \prime is taken sufficiently small. Thus we may invert this
operator microlocally, obtaining

(4.20)
\Bigl( 
Dr  - \lambda  - i(n - 1)

2r

\Bigr) 
w+ \in H0,1/2+\epsilon ;0,k.

Now, observing that

Dr \~w+ = \chi (r)r(n - 1)/2e - i\lambda r
\Bigl( 
Dr  - \lambda  - i(n - 1)

2r

\Bigr) 
w+ + (Dr\chi )r

(n - 1)/2e - i\lambda rw+,

we find that

Dr \~w+ \in H0,1/2+\epsilon  - (n - 1)/2;0,k \Leftarrow \Rightarrow Dr \~w+ \in rn/2 - 1 - \epsilon L2
\bigl( 
([R,\infty ), rn - 1dr);Hk(\partial M)

\bigr) 
,

where we used the support property of Dr\chi for the inclusion in H0,1/2+\epsilon  - (n - 1)/2;0,k

of the second term. We can express this with respect to the measure dr as follows:

(4.21) Dr \~w+ \in r - 1/2 - \epsilon L2
\bigl( 
([R,\infty ), dr);Hk(\partial M)

\bigr) 
\subseteq r - \epsilon \prime L1

\bigl( 
([R,\infty ), dr);Hk(\partial M)

\bigr) 
.
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We note that, since \~w+ is locally H1 in r with values in Hk(\partial M), it is in fact contin-
uous in r with values Hk(\partial M). By (4.21), we can integrate to infinity to find

b(y) =

\int \infty 

R

\partial r\prime \~w+(r
\prime , y) dr\prime 

is well-defined as an element of Hk(\partial M). Moreover,

\~w+(r, y) - b(y) =  - 
\int \infty 

r

\partial r\prime \~w+(r
\prime , y) dr\prime = OHk(\partial M)(r

 - \epsilon \prime ).

A very similar argument can be applied to the w - term. We define \~w - =
\chi (r)r(n - 1)/2ei\lambda rw - and compute as above. However, we switch the sign of \lambda in
(4.19) to obtain

(4.22)
\Bigl( 
Dr  - \lambda 

\Bigr) \Bigl( 
Dr + \lambda  - i(n - 1)

2r

\Bigr) 
w - 

= (Id - B)F  - [P,B]w+
i(n - 1)

2r2
(r(Dr+\lambda ))w - +

\Bigl( n - 1

2r2
 - r - 2Q - r - 2 \~Q - V

\Bigr) 
w - .

Note that w - = (I  - B)w \in H2,\ell ;1,k+1
+ since B has scattering order 0, 0 and I  - B

is characteristic on the outgoing radial set. Hence the fourth term on the RHS lies

in H
0,1/2+\epsilon ;0,k
+ . Moreover, for the third term, r(Dr + \lambda )w - = r(Dr + \lambda )(I  - B)w \in 

H2,\ell ;0,k+1 since r(Dr + \lambda )(I  - B) \in \scrM + (it is characteristic on the outgoing radial
set.) Hence the third term on the the right side belongs to H0,1/2+\epsilon ;0,k, and so as in
the analysis of w+ above we conclude that the whole of the RHS lies in this space.
We may assume that Dr  - \lambda is elliptic on the microsupport of Id  - B, so we may
invert it microlocally to obtain

(4.23)
\Bigl( 
Dr + \lambda  - i(n - 1)

2r

\Bigr) 
w - \in H

0,1/2+\epsilon ;0,k
+ .

Now, observing that

Dr \~w - = r(n - 1)/2ei\lambda r
\Bigl( 
Dr + \lambda  - i(n - 1)

2r

\Bigr) 
w - + (Dr\chi )r

(n - 1)/2ei\lambda rw - ,

we find that

Dr \~w - \in r - 1/2 - \epsilon L2
\bigl( 
([R,\infty ), dr);Hk(\partial M)

\bigr) 
\subset r - \epsilon \prime L1

\bigl( 
([R,\infty ), dr);Hk(\partial M)

\bigr) 
.

The rest of the argument can be followed to obtain a limit

b - (y) = lim
r\rightarrow \infty 

\~w - (r, y)

in Hk(\partial M) with

\~w - (r, y) - b - (y) = OHk(\partial M)(r
 - \epsilon \prime ).

This is only possible if b - vanishes identically. Indeed, otherwise w - would fail to be
in H2, - 1/2; however, since WF\prime (Id - B)\cap \scrR + = \varnothing and the module \scrM + is elliptic off
\scrR +, (Id - B)w \in H2,\ell +1. This completes the proof of the lemma.
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4.4. Uniqueness. To complete the proof of Theorem 1.5, we show that the
solution u obtained above is unique in the following sense.

Proposition 4.3. Suppose that (1.7) is satisfied, that the nonlinearity N satisfies
the conditions of Theorem 1.5, and that f is sufficiently small in Hk+4(\partial M), so that
the proof above of the existence of a nonlinear eigenfunction u with incoming data f
is valid. Let u - be given in terms of f by (4.11).

Then the solution u is unique in the following sense. Let u1, u2 satisfy Pui =
N [ui] and assume ui  - u - = wi both lie in H2,\ell ;1,k+1

+ . Then there exists \eta > 0 such
that

\| f\| Hk+4(\partial M) , \| w1\| H2,\ell ;1,k+1
+

, \| w2\| H2,\ell ;1,k+1
+

< \eta =\Rightarrow u1 = u2.

Proof. Let u1 and u2 be nonlinear eigenfunctions as in the proposition. It suf-
fices to show that the corresponding wi are both fixed points of the map \Phi , since a
contraction map has only one fixed point.

We first note that the wi are in \scrX 2,\ell ;1,k+1
+ . Indeed, recall that u - \in H2,\ell ;1,k+1

 - ,

and wi is by assumption in H2,\ell ;1,k+1
+ , so, as we saw above, this means that N [ui] =

N [u - + wi] \in H0,\ell +1;1,k+1
+ . Then, because Pu - \in H0,\ell +1;1,k+1

+ , we have

Pwi =  - Pu - +N [ui] \in H0,\ell +1;1,k+1
+ . This confirms that wi \in \scrX 2,\ell ;1,k+1

+ .
Next, from

P (u - + wi) = N [ui],

we apply R(\lambda + i0) and note that R(\lambda + i0)Pwi = wi since wi \in \scrX 2,\ell ;1,k+1
+ , while by

definition R(\lambda + i0)Pu - =  - u+. Therefore,

 - u+ + wi = R(\lambda + i0)N [u - + wi]

and this rearranges to \Phi (wi) = wi for each i. Since \Phi has a unique fixed point, the
proof is complete.
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