Bis(acetylacetonato)ruthenium(II) complexes containing alkynyldiphenylphosphines. Formation and redox behaviour of $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}\right)_{2}\right](\mathrm{R}=\mathrm{H}, \mathrm{Me}, \mathrm{Ph})$ complexes and the binuclear complex cis-[\{Ru(acac) $\left.\left.\left.)_{2}\right\}_{2}\left(\mu-\mathbf{P h}_{2} \mathbf{P C} \equiv \mathbf{C P P h}_{2}\right)\right\}_{2}\right]$

Martin A. Bennett,* Matthew J. Byrnes \dagger and Anthony C. Willis
Received 15th December 2006, Accepted 2nd March 2007
First published as an Advance Article on the web 19th March 2007
DOI: 10.1039/b618365d

Abstract

Two equivalents of $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}(\mathrm{R}=\mathrm{H}, \mathrm{Me}, \mathrm{Ph})$ react with thf solutions of cis-[$\left.\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2} \text {-alkene }\right)_{2}\right]$ (acac $=$ acetylacetonato; alkene $=\mathrm{C}_{2} \mathrm{H}_{4}, \mathbf{1} ; \mathrm{C}_{8} \mathrm{H}_{14}, \mathbf{2}$) at room temperature to yield the orange, air-stable compounds trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}\right)_{2}\right](\mathrm{R}=\mathrm{H}$, trans $-3 ; \mathrm{Me}=$ trans $-4 ; \mathrm{Ph}$, trans -5$)$ in isolated yields of $60-98 \%$. In refluxing chlorobenzene, trans-4 and trans-5 are converted into the yellow, air-stable compounds $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}\right)_{2}\right](\mathrm{R}=\mathrm{Me}, c i s-\mathbf{4} ; \mathrm{Ph}, c i s-5)$, isolated in yields of $c a$. 65%. From the reaction of two equivalents of $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}$ with a thf solution of $\mathbf{2}$ an almost insoluble orange solid is formed, which is believed to be trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right]_{n}($ trans-6 $)$. In refluxing chlorobenzene, the latter forms the air-stable, yellow, binuclear compound cis- $\left[\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right\}_{2}\right]($ cis- $\mathbf{6})$. Electrochemical studies indicate that cis-4 and cis-5 are harder to oxidise by $c a .300 \mathrm{mV}$ than the corresponding trans-isomers and harder to oxidise by $80-120 \mathrm{mV}$ than cis-[Ru(acac) $\left.)_{2} \mathrm{~L}_{2}\right]\left(\mathrm{L}=\mathrm{PPh}_{3}, \mathrm{PPh}_{2} \mathrm{Me}\right)$. Electrochemical studies of cis- 6 show two reversible $\mathrm{Ru}^{\mathrm{II} / I I I}$ oxidation processes separated by 300 mV , the estimated comproportionation constant $\left(K_{\mathrm{c}}\right)$ for the equilibrium cis- $\mathbf{6}^{2+}+$ cis- $\mathbf{6} \rightleftharpoons 2\left(\right.$ cis- $\left.\mathbf{6}^{+}\right)$being $c a .10^{5}$. However, UV-Vis spectra of cis- $\mathbf{6}^{+}$and cis $-\mathbf{6}^{2+}$, generated electrochemically at $-50^{\circ} \mathrm{C}$, indicate that cis- $\mathbf{6}^{+}$is a Robin-Day Class II mixed-valence system. Addition of one equivalent of AgPF_{6} to trans- $\mathbf{3}$ and trans- $\mathbf{4}$ forms the green air-stable complexes trans-3 $\cdot \mathrm{PF}_{6}$ and trans-4 $\cdot \mathrm{PF}_{6}$, respectively, almost quantitatively. The structures of trans-4, cis-4, trans-4 $\cdot \mathrm{PF}_{6}$ and cis- $\mathbf{6}$ have been confirmed by X-ray crystallography.

Introduction

The bifunctionality of alkynyldiphenylphosphines, $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}$, has provided a happy hunting ground for coordination and organometallic chemists for almost forty years. Although these compounds behave mainly as P-donors towards most transition metal centres, there are also many cases in which the $\mathrm{P}-\mathrm{C}$ (acetylide) bond is cleaved, leading to complexes containing $\mu-\mathrm{PPh}_{2}$ and $\mu-\mathrm{C} \equiv \mathrm{CR}$ ligands. Further, $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}$ ligands can bridge metal centres through the phosphorus and alkyne functions, the alkyne can coordinate to a pair of metal atoms while the phosphorus atom remains free, and the alkyne can also undergo condensation with CO and other unsaturated fragments. ${ }^{1-22} \operatorname{Bis}(d i p h e n y l p h o s p h i n o) a c e t y l e n e ~(d p p a), ~$ $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}$, behaves mainly as either a monodentate ($\kappa-P$) or a bridging bidentate ($\mu_{2}-P$) P-donor, ${ }^{2,23-32}$ although a few examples of coordination via the alkyne function have also been established. ${ }^{1,20,33-35}$ In the μ_{2}-mode, dppa has been widely used to link metal complexes or clusters, but only a few studies of

[^0]electronic communication between redox-active centres bridged by dppa have been reported. ${ }^{36-38}$

We have shown that the alkene ligands of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\right.\right.$ alkene) ${ }_{2}$] [alkene $=$ ethylene (1), cyclooctene (2); acac $=2,4-$ pentadionato] are easily displaced by ligands (L), such as tertiary phosphines, phosphites, pyridine or tert-butyl isocyanide, to give trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$ as the kinetic products, which then usually isomerise to the more stable cis-products on heating. ${ }^{39}$ Although the displacements undoubtedly occur stepwise, mono-alkene complexes $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}\right.\right.$-alkene $\left.)(\mathrm{L})\right]$ have been isolated only for $\mathrm{L}=$ $\mathrm{SbPh}_{3}, \mathrm{MeCN}, \mathrm{NH}_{3}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, \mathrm{PPr}_{3}{ }_{3}$ and $\mathrm{PCy}_{3} .{ }^{40,41}$ All of these complexes undergo reversible one-electron oxidations, without trans-cis interconversion; the resulting ruthenium(III) cationic complexes can either be isolated or generated electrochemically and detected by UV-Vis and ESR spectroscopy. ${ }^{40-42}$

We report here on the reactions of various $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}$ ligands, and of dppa, with $\mathbf{1}$ or $\mathbf{2}$, and on the redox behaviour of the resulting complexes. Most previous examples of non-cluster ruthenium complexes containing $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}$ and dppa are half-sandwhich complexes such as $\left[\mathrm{RuClCp} *\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPh}\right)_{2}\right],{ }^{43}$ $\left[\mathrm{RuCl}_{2}\left(\eta^{6}\right.\right.$-arene $\left.)\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}\right)\right]$ (arene $=$ benzene, para-cymene or mesitylene), ${ }^{44-46} \quad\left[\mathrm{RuCl}\left(\eta^{6}-p-\mathrm{cym}\right)\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}\right)_{2}\right]^{+},{ }^{46} \quad$ and $\left[\left\{\operatorname{RuCl}_{2}\left(\eta^{6}-p-\mathrm{cym}\right)\right\}_{2}(\mu-\mathrm{dppa})\right] .{ }^{45} \quad$ Coordination complexes $\left[\mathrm{RuCl}(\text { bipy })_{2}(\kappa-P-\mathrm{dppa})\right]^{+}$and $\left[\left\{\mathrm{RuCl}(\text { bipy })_{2}\right\}_{2}(\mu-\mathrm{dppa})\right]^{2+}$ are also known. ${ }^{47,48}$

Table $1{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral data for compounds $\mathbf{3 - 6} \mathbf{6}^{a, b}$

Compound	acac					$\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}$		
	${ }^{1} \mathrm{H}$		${ }^{13} \mathrm{C}$					
	CH_{3}	CH	CH_{3}	CH	$C=\mathrm{O}$	${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}$	${ }^{31} \mathrm{P}$
trans-3	1.39	4.36	27.2	100.3	185.5	$\begin{aligned} & 7.73-7.26(20 \mathrm{H}, \mathrm{~m}, \mathrm{Ph}) ; \\ & 3.49\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{PH}}=2.4 \mathrm{~Hz},\right. \\ & \mathrm{C} \equiv \mathrm{C} H) \end{aligned}$	$\begin{aligned} & 132.7\left(\mathrm{t},{ }^{2+4} J_{\mathrm{PC}}=6.6 \mathrm{~Hz}, o-\mathrm{C},\right. \\ & \left.\mathrm{PPh}_{2}\right) ; 132.0\left(\mathrm{t},{ }^{1+3} J_{\mathrm{PC}}=20 \mathrm{~Hz}, i-\mathrm{C},\right. \\ & \left.\mathrm{PPh}_{2}\right) ; 129.6\left(\mathrm{~s}, p-\mathrm{C}, \mathrm{PPh}_{2}\right) ; 128.1 \\ & \left(\mathrm{t},{ }^{3+5} J_{\mathrm{PC}}=4.5 \mathrm{~Hz}, m-\mathrm{C}, \mathrm{PPh}_{2}\right) ; \\ & 97.7\left(\mathrm{~d},{ }^{2+4} J_{\mathrm{PC}}=4.2 \mathrm{~Hz}, \mathrm{C} \equiv C \mathrm{H}\right) ; \\ & 79.0\left(\mathrm{t},{ }^{1+3} J_{\mathrm{PC}}=30 \mathrm{~Hz}, C \equiv \mathrm{CH}\right) \end{aligned}$	22.8
trans-4	1.42	4.43	27.4	99.9	185.6	$\begin{aligned} & 7.77-7.30(20 \mathrm{H}, \mathrm{~m}, \mathrm{Ph}) ; \\ & 2.20\left(6 \mathrm{H}, \mathrm{~s}, \mathrm{C} \equiv \mathrm{CCH}_{3}\right) \end{aligned}$	$\begin{aligned} & 133.4\left(\mathrm{t},{ }^{1+3} J_{\mathrm{PC}}=20 \mathrm{~Hz}, i-\mathrm{C}, \mathrm{PPh}_{2}\right) ; \\ & 132.7\left(\mathrm{t}{ }^{2+4} J_{\mathrm{PC}}=6.3 \mathrm{~Hz}, o-\mathrm{C},\right. \\ & \left.\mathrm{PPh}_{2}\right) ; 129.2\left(\mathrm{~s}, p-\mathrm{C}, \mathrm{PPh}_{2}\right) ; 127.9 \\ & \left(\mathrm{t},{ }^{3+5} \mathrm{~J}_{\mathrm{PC}}=4.1 \mathrm{~Hz}, m-\mathrm{C}, \mathrm{PPh}_{2}\right) ; \\ & 107.5\left(\mathrm{~s}, \mathrm{C} \equiv C \mathrm{CH} \mathrm{H}_{3}\right) ; 72.4(\mathrm{t}, \\ & \left.{ }^{1+3} J_{\mathrm{PC}}=35 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{CCH}_{3}\right) ; 6.0(\mathrm{~s}, \\ & \left.\mathrm{C} \equiv \mathrm{CCH}_{3}\right) \end{aligned}$	21.9
trans-5	1.37	4.50	27.5	100.3	186.0	$7.84-7.30$ (30H, m, Ph)	$\begin{aligned} & 132.9\left(\mathrm{t},{ }^{2+4} J_{\mathrm{PC}}=6.5 \mathrm{~Hz}, o-\mathrm{C},\right. \\ & \left.\mathrm{PPh}_{2}\right) ; 132.1(\mathrm{~s}, i-\mathrm{C}, \mathrm{Ph}) ; 129.6(\mathrm{~s}, \\ & p-\mathrm{C}, \mathrm{Ph}) ; 129.5(\mathrm{~s}, p-\mathrm{C}, \mathrm{Ph}) ; 128.8 \\ & (\mathrm{~s}, o-\mathrm{C}, \mathrm{Ph}) ; 128.1\left(\mathrm{t},{ }^{3+5} J_{\mathrm{PC}}=\right. \\ & 4.4 \mathrm{~Hz}, m-\mathrm{C}, \mathrm{PPh}) ; 108.9(\mathrm{~m}, \\ & \mathrm{C} \equiv C \mathrm{Ph}) ; 83.6(\mathrm{~m}, C \equiv \mathrm{CPh}) \end{aligned}$	22.1
cis-4	1.32, 2.07	5.33	27.2, 28.6	99.5	185.4, 187.2	$\begin{aligned} & 7.90-7.10(20 \mathrm{H}, \mathrm{~m}, \mathrm{Ph}) \\ & 2.02\left(6 \mathrm{H}, \mathrm{vt}, \mathrm{~J}_{\mathrm{PH}}=1.2 \mathrm{~Hz}\right. \\ & \left.\mathrm{C} \equiv \mathrm{CCH}_{3}\right) \end{aligned}$	$\begin{aligned} & 137.5\left(\mathrm{t},{ }^{1+3} J_{\mathrm{PC}}=26 \mathrm{~Hz}, i-\mathrm{C}, \mathrm{PPh}_{2}\right) ; \\ & 136.7\left(\mathrm{t}{ }^{1+3} J_{\mathrm{PC}}=22 \mathrm{~Hz}, i-\mathrm{C}, \mathrm{PPh}_{2}\right) ; \\ & 132.5 \text { and } 132.1\left(\text { each t, }{ }^{2+4} J_{\mathrm{PC}}=\right. \\ & \left.5.5 \mathrm{~Hz} ; o-\mathrm{C}, \mathrm{PPh}_{2}\right) ; 128.7(\mathrm{~s}, p-\mathrm{C}, \\ & \left.\mathrm{PPh}_{2}\right) ; 127.6 \text { and } 127.2(\text { each } \mathrm{t}, \\ & \left.{ }^{3+5} J_{\mathrm{PC}}=5.0 \mathrm{~Hz}, \mathrm{~m}-\mathrm{C}, \mathrm{PPh}_{2}\right) ; 107.9 \\ & \left.\mathrm{t}^{2},{ }^{2+4} J_{\mathrm{PC}}=5.5 \mathrm{~Hz}, \mathrm{C} \equiv C \mathrm{CH}_{3}\right) ; 72.8 \\ & \left(\mathrm{~m}, C \equiv \mathrm{CCH}_{3}\right) ; 5.8\left(\mathrm{~s}, \mathrm{C} \equiv \mathrm{CCH}_{3}\right) \end{aligned}$	39.8
cis-5	1.38, 2.02	5.23	27.3, 28.5	99.5	184.6, 187.4	7.94-7.08 (30H, m, Ph)	$137.2\left(\mathrm{t},{ }^{1+3} J_{\mathrm{PC}}=26.2 \mathrm{~Hz}, i-\mathrm{C}\right.$, $\left.\mathrm{PPh}_{2}\right) ; 136.4\left(\mathrm{t},{ }^{1+3} J_{\mathrm{PC}}=22.9 \mathrm{~Hz}\right.$, i-C, $\left.\mathrm{PPh}_{2}\right) ; 132.5\left(\mathrm{t},{ }^{2+4} J_{\mathrm{PC}}=5.5 \mathrm{~Hz}\right.$; $o-\mathrm{C}, \mathrm{PPh}_{2}$); 132.0 (s, $o-\mathrm{C}, \mathrm{Ph}$); 131.9 (t, ${ }^{2+4} J_{\mathrm{PC}}=5.7 \mathrm{~Hz} ; o-\mathrm{C}, \mathrm{PPh}_{2}$); 129.5 (s, i-C, Ph); 128.9 and 128.8 (each s, $p-\mathrm{C}, \mathrm{Ph}) ; 127.7\left(\mathrm{t},{ }^{3+5} J_{\mathrm{PC}}=\right.$ $5.0 \mathrm{~Hz}, m-\mathrm{Ph}) ; 109.1\left(\mathrm{~d},{ }^{2+4} J_{\mathrm{PC}}=\right.$ 5.0, $\mathrm{C} \equiv C \mathrm{Ph}$); $84.3(\mathrm{~m}, C \equiv \mathrm{CPh})$	40.3
cis-6	1.45, 1.65	5.02	27.6, 27.7	99.6	184.5, 187.4	8.16-8.10 (16H, m, o-Ph); 7.25-6.99 (24H, m, m - and p-Ph)	$\begin{aligned} & 135.9\left(\mathrm{t},{ }^{1+3} J_{\mathrm{PC}}=24 \mathrm{~Hz} ; i-\mathrm{C}, \mathrm{PPh}_{2}\right) ; \\ & 135.4\left(\mathrm{t}{ }^{2+4} J_{\mathrm{PC}}=5.5 \mathrm{~Hz}, o-\mathrm{C},\right. \\ & \left.\mathrm{PPh}_{2}\right) ; 133.9\left(\mathrm{t},{ }^{1+3} J_{\mathrm{PC}}=24 \mathrm{~Hz} ; i-\mathrm{C},\right. \\ & \left.\mathrm{PPh}_{2}\right) ; 132.0\left(\mathrm{t},{ }^{2+4} J_{\mathrm{PC}}=5.2 \mathrm{~Hz}\right. \\ & \left.o-\mathrm{C}, \mathrm{PPh}_{2}\right) ; 129.6 \text { and } 128.6(\text { each s, } \\ & \left.p-\mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ; 127.6 \text { and } 127.5(\text { each } \\ & \left.\mathrm{t},{ }^{3+5} J_{\mathrm{PC}}=4 \mathrm{~Hz} ; m-\mathrm{C}, \mathrm{PPh}_{2}\right) ; 104.8 \\ & \left(\mathrm{~m}, \mathrm{C} \equiv C \mathrm{PPh}_{2}\right) \end{aligned}$	43.1

${ }^{a}$ Measured in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature. ${ }^{b}$ Abbreviations: ${ }^{1+3} J={ }^{1} J+{ }^{3} J,{ }^{2+4} J={ }^{2} J+{ }^{4} J, i=$ ipso, $o=$ ortho, $m=$ meta, $p=$ para.

Scheme 1

Results

The preparation of the bis(alkynyldiphenylphosphine) ruthenium(II) complexes is summarised in Schemes 1 and $2 .{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR data are listed in Table 1; selected infrared bands, mass spectrometric data, and elemental analyses are given in Table 2.

Scheme 2

Ruthenium(II) complexes

Addition of two equivalents of $\mathrm{Ph}_{2} \mathrm{C} \equiv \mathrm{CR}(\mathrm{R}=\mathrm{H}, \mathrm{Me}, \mathrm{Ph})$ to a thf solution of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2} \text {-alkene }\right)_{2}\right]\left(\right.$ alkene $=\mathrm{C}_{2} \mathrm{H}_{4}, \mathbf{1} ;{ }^{40}$ $\mathrm{C}_{8} \mathrm{H}_{14}, \mathbf{2}^{39}$) at room temperature gives the orange, air-stable solids trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}\right)_{2}\right](\mathrm{R}=\mathrm{H}$, trans $-3 ; \mathrm{Me}=$ trans $-4 ;$ Ph , trans-5), which have been isolated in yields of $60-98 \%$. These

Table 2 Elemental analyses, selected infrared bands, and mass spectral data for compounds 3-6

Compound	IR spectra ${ }^{\text {a }}$		Microanalysis: Found (Calc.)			m / z (Assignment, \% relative intensity) ${ }^{\text {b }}$
	acac	Other	\%C	\%H	\%P	
trans-3	1568, 1511	2035 (C \equiv C)	63.31 (63.42)	4.97 (5.04)	8.68 (8.61)	$\begin{aligned} & 720.2(\mathrm{M}, 65) ; 621.3(\mathrm{M}-\mathrm{acac}, 10) ; 510.2 \\ & (\mathrm{M}-\mathrm{L}, 100) \end{aligned}$
trans-4	1568, 1512	2198 (C引C)	63.98 (64.25)	5.61 (5.39)	8.41 (8.28)	$\begin{aligned} & 748.4(\mathrm{M}, 50) ; 649.3(\mathrm{M}-\mathrm{acac}, 10) ; 523.2 \\ & (\mathrm{M}-\mathrm{L}, 100) \end{aligned}$
cis-4	1574, 1514	2200 (C \equiv C)	64.54 (64.25)	5.43 (5.39)	8.33 (8.28)	$\begin{aligned} & 748.1(\mathrm{M}, 100) ; 649.1(\mathrm{M}-\mathrm{acac}, 25) ; 523.2 \\ & (\mathrm{M}-\mathrm{L}, 35] \end{aligned}$
trans-5	1567, 1512	2172 (C \equiv C)	68.67 (68.88)	5.22 (5.09)	7.00 (7.10)	$\begin{aligned} & 872.2(\mathrm{M}, 20) ; 773.1(\mathrm{M}-\mathrm{acac}, 5) ; 586.1 \\ & (\mathrm{M}-\mathrm{L}, 100) \end{aligned}$
cis-5	1574, 1515	2171 (C \equiv C)	67.74 (68.88)	5.08 (5.09)	-	$\begin{aligned} & 872.2\left(\mathrm{M}^{+}, 35\right) ; 774.2(\mathrm{M}-\mathrm{acac}, 5) ; 586.1 \\ & (\mathrm{M}-\mathrm{L}, 12) \end{aligned}$
trans-6	1564, 1510	-	64.24 (62.33)	4.95 (4.94)	-	
cis-6	1573, 1514	$2131(\mathrm{C} \equiv \mathrm{C})^{\text {c }}$	61.18 (62.33)	4.95 (4.95)	-	1387.8 (M, 75); 1288.7 (M - acac, 23)
trans-3. $\mathrm{PF}_{6}\left(0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$	1538, 1520	$\begin{aligned} & 2059(\mathrm{C} \equiv \mathrm{C}) \\ & 841\left(\mathrm{PF}_{6}\right) \\ & 558\left(\mathrm{PF}_{6}\right) \end{aligned}$	50.52 (50.98)	4.11 (4.11)	10.40 (10.24)	720.2 (M, 25); 510.2 (M - L, 100)
trans-4. PF_{6}	1520	2201 (C引C)	53.61 (53.82)	4.55 (4.52)	10.71 (10.41)	$\begin{aligned} & 748.2(\mathrm{M}, 30), 649.1(\mathrm{M}-\mathrm{acac}, 10) ; 524.1 \\ & (\mathrm{M}-\mathrm{L}, 100) \end{aligned}$
		$\begin{aligned} & 840\left(\mathrm{PF}_{6}\right) \\ & 558\left(\mathrm{PF}_{6}\right) \end{aligned}$				

${ }^{a}$ Measured as KBr disc. ${ }^{b}+\mathrm{ve} \mathrm{FAB}$ mass spectrum. ${ }^{c}$ Raman spectrum.
orange solids are almost insoluble in thf, benzene or toluene but readily form air-stable solutions in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$. Heating solutions of trans-4 and trans-5 in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ at reflux under an inert atmosphere causes isomerisation to the yellow, air-stable complexes cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}\right)_{2}\right](\mathrm{R}=\mathrm{Me}$, cis-4; Ph , cis5), isolated in yields of $c a .65 \%$. These are much more soluble than the corresponding trans-isomers in most organic solvents, giving yellow, air-stable solutions. Heating a solution of trans-3 gives several unidentified products as shown by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy; this reaction has not been studied further.

Addition of two equivalents of dppa to a thf solution of freshly prepared $\mathbf{2}$ initially results in a clear orange solution, which, when stirred overnight, deposits an orange-red solid that is insoluble in all common organic solvents. Since its elemental analysis corresponds approximately to the formula $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right]$, the solid is probably a polymer or oligomer, trans-6, similar to the compounds obtained from the reaction of 2 with dppe or dppp. ${ }^{39}$ There are no bands in the $2300-1600 \mathrm{~cm}^{-1}$ region of the IR spectrum assignable to $v(\mathrm{C} \equiv \mathrm{C})$. From a suspension of trans6 in refluxing $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ the yellow, air-stable, binuclear compound cis- $\left[\left\{\mathrm{Ru}(\mathrm{acac})_{2}\right\}_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)_{2}\right]$ (cis-6) can be isolated in ca. 40\% yield.
The positive ion FAB mass spectra of complexes 3-6 (Table 2) display the parent molecular ion peak, which, in the case of $\mathbf{6}$, is the most abundant peak in the spectrum; generally, however, the most abundant peak corresponds to the loss of one $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}$ group from the molecular ion and a peak due to the loss of one acac group is also observed.

The IR spectra exhibit two intense bands at $c a .1570$ and $1510 \mathrm{~cm}^{-1}$ characteristic of bidentate O-bonded acac (Table 2). Except in the case of cis-6, the spectra also show a strong absorption in the region of $2200-2035 \mathrm{~cm}^{-1}$, corresponding to $v(\mathrm{C} \equiv \mathrm{C})$ for an uncoordinated alkyne. The small increases in $v(\mathrm{C} \equiv \mathrm{C})$ relative to the values for the free ligands $(\Delta v(\mathrm{C} \equiv \mathrm{C})=3$, 12, 14, 14 and $5 \mathrm{~cm}^{-1}$ for trans-3, trans-4, cis-4, trans-5 and cis-5, respectively) are consistent with the reduced delocalisation of the
phosphorus atom lone pair into the $\mathrm{C} \equiv \mathrm{C} \pi^{*}$-orbitals. ${ }^{5}$ The Raman spectrum of cis-6 shows a band of medium intensity at $2131 \mathrm{~cm}^{-1}$ assignable to the symmetric $\mathrm{C} \equiv \mathrm{C}$ vibration, which lies in the range $2143-2109 \mathrm{~cm}^{-1}$ found for a range of μ-dppa complexes. ${ }^{49-52}$

As previously noted, ${ }^{39}$ the geometric isomers of $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$ complexes are easily distinguished by NMR spectroscopy. The ${ }^{1} \mathrm{H}$ NMR spectra of the trans-isomers of $\mathbf{3 - 5}$ show singlets at approximately $\delta 4.5$ and 1.4 for the acac CH_{3} and CH protons, respectively, whereas the spectra of the cis-isomers of $\mathbf{4}$ and $\mathbf{5}$, and cis- $\mathbf{6}$, contain a pair of singlets for the inequivalent acac CH_{3} protons, and the singlet due to the acac CH protons appears characteristically at higher frequency ($\delta c a .5$). Likewise, the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the trans-isomers of $\mathbf{3}-\mathbf{5}$ display one acac CH_{3} resonance, whereas cis-4, cis-5 and cis-6 show two. In addition, there is one $\mathrm{C}=\mathrm{O}$ resonance at $\delta c a .185$ in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the trans-isomers, whereas there are two in the spectra of the cis-isomers. All the complexes show singlet ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonances, those for the cis-isomers being characteristically ca. 20 ppm to high frequency of those for the trans-isomers. Although cis- $\mathbf{6}$ could exist in principle as geometric isomers $(\Delta \Delta / \Lambda \Lambda$ and $\Delta \Lambda / \Lambda \Delta)$, the NMR spectra indicate that only one isomer is present in solution.

The resonances due to the alkynyl C_{α} atoms in 3-5 can be found (with some difficulty because the complexes tend to crystallise) in the region of $\delta 80$; they are triplets in trans- $\mathbf{3}$ and trans- $\mathbf{4}$, a poorly resolved multiplet in trans-5, and a six-line multiplet in cis-4 and $c i s-5$. In the case of $c i s-6$, the six-line multiplet due to \equiv C occurs at δ 104.5. In all these compounds C_{α} represents the X part of an $\mathrm{AA}^{\prime} \mathrm{X}$ spin system $\left(\mathrm{A}={ }^{31} \mathrm{P}\right)$ and the different patterns probably reflect the fact that $J\left(\mathrm{AA}^{\prime}\right)($ trans $) \gg J\left(\mathrm{AA}^{\prime}\right)($ cis $) .{ }^{39}$ The chemical shifts of C_{α} are close to those of the free ligands (Table 3), as is to be expected if, as indicated by the vibrational data (see above), the alkynes are not coordinated. The NMR evidence alone is not decisive, however, because in the chelate alkyne complexes cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(o-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CR}\right)\right]\left(\mathrm{R}=\mathrm{H}, \mathrm{Ph}, \mathrm{SiMe}_{3}\right)$, the chemical shifts of the alkyne carbon atoms differ only slightly from those

Table $3{ }^{13} \mathrm{C}$ Chemical shifts for the acetylenic carbon atoms in compounds 3-5 ${ }^{a}$

Compound	$\delta \mathrm{C}_{\alpha}$	$\delta \mathrm{C}_{\beta}$	$\delta \mathrm{C}_{\beta}-\delta \mathrm{C}_{\alpha}$
trans-3	79.0	97.7	18.7
trans-4	72.4	107.5	35.1
trans-5	83.6	108.9	25.3
cis-4	72.8	107.9	35.1
cis-5	84.3	109.1	24.8
$\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CH}^{b}$	96.6	111.1	15.5
$\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}^{b}$	76.4	106.1	29.7
$\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPh}^{b}$	86.6	108.1	21.5

${ }^{a}$ Measured in $\mathrm{CD}_{2} \mathrm{Cl}_{2} .{ }^{b}$ Measured in $\mathrm{C}_{6} \mathrm{D}_{6}$ and taken from ref. 20.
of the free ligands. ${ }^{53}$ The chemical shift difference of the alkynyl carbon atoms $\delta \mathrm{C}_{\beta}-\delta \mathrm{C}_{\alpha}$ has been used as a measure of the polarisation of the triple bond as a consequence of P-coordination. ${ }^{4,5}$ The data in Table 3 indicate that, in the $\left\{\mathrm{Ru}(\mathrm{acac})_{2}\right\}$ complexes as in $\left.\mathrm{RuClCp} *\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPh}\right)_{2}\right]^{43}$ the polarisation is almost unchanged.

In complexes cis-4, cis-5 and cis-6, the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra show that the PPh_{2} phenyl groups are inequivalent, as would be expected because they are diastereotopic (cf. the methyl groups of cis- $\left.\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]^{39}\right)$. A similar observation has been made for the complexes $\left[\mathrm{MClCp} *\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CR}\right)_{2}\right]^{n+}(n=0, \mathrm{R}=$ $\mathrm{Ph}, \mathrm{M}=\mathrm{Ru} ; n=1, \mathrm{R}=\mathrm{Ph}, \mathrm{M}=\mathrm{Rh}, \mathrm{Ir})^{43}$ and $[\mathrm{RuCl}(p-$ cym $\left.)\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}\right)_{2}\right]^{+}\left(\mathrm{R}=\mathrm{Bu}^{t} \text { and various aryl groups }\right)^{46}$ but incorrectly ascribed to restricted rotation about the $\mathrm{Ru}-\mathrm{P}$ bonds.

The structural conclusions drawn from spectroscopic data have been confirmed by X-ray crystallography in the cases of trans-4, cis-4 and cis-6 (see below).

Electrochemistry

The cyclic and ac voltammograms of compounds 3-5 each show one fully reversible $E_{1 / 2}\left(\mathrm{Ru}^{\text {II/III }}\right)$ couple between +0.0 and +0.5 V ($v s . \mathrm{Ag} / \mathrm{AgCl}$) at room temperature. The $E_{1 / 2}$ values are listed and compared with the potentials of the corresponding isomers of $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]\left[\mathrm{L}=\mathrm{PMe}_{3}, \mathrm{PMePh}_{2}, \mathrm{PPh}_{3}\right.$ and $\left.\mathrm{P}(\mathrm{OMe})_{3}\right]$ in Table 4. As in the latter series, ${ }^{42}$ the cis-isomers of $\mathbf{4}$ and $\mathbf{5}$ are harder to oxidise than the corresponding trans-isomers by about 300 mV . Further, both cis- and trans-alkynyldiphenylphosphine complexes

Table 4 Reduction potentials $E_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right)$ for complexes 3-6 ${ }^{a}$

Complex	$E_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right) / \mathrm{V}$	$\Delta E_{1 / 2(\text { cis }) \text { (rrams }}{ }^{\text {b }} / \mathrm{V}$
trans-3	+0.16	-
trans-4	+0.09	0.36
cis-4	+0.45	
trans-5	+0.12	0.37
cis-5	+0.49	
cis-6	+0.60 and +0.90	-
trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{c}$	+0.07	0.30
cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{\text {c }}$	+0.37	
trans $-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right]^{\text {c }}$	+0.04	0.33
cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PMePh}_{2}\right)_{2}{ }^{\text {c }}\right.$	+0.37	
trans - $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PMe}_{3}\right)_{2}\right]^{\text {c }}$	+0.00	0.26
$c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PMe}_{3}\right)_{2}\right]^{c}$	+0.26	
trans-[Ru(acac) $\left.)_{2}\left(\mathrm{P}\{\mathrm{OMe}\}_{3}\right)_{2}\right]^{c}$	+0.22	0.48
cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{P}\{\mathrm{OMe}\}_{3}\right)_{2}\right]^{c}$	+0.70	

are harder to oxidise, by as much as 80 mV , than their counterparts $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]\left(\mathrm{L}=\mathrm{PPh}_{3}, \mathrm{PMePh}_{2}\right)$. The electron-withdrawing effect of the alkynyl substituents relative to that of methyl or phenyl probably causes the ligands $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}(\mathrm{R}=\mathrm{Me}, \mathrm{Ph})$ to be somewhat stronger π-acceptors than PPh_{3} or PMePh_{2}, thus stabilising the oxidation state $\mathrm{Ru}(\mathrm{II})$ relative to $\mathrm{Ru}(\mathrm{III})$.

The cyclic and ac voltammograms of the binuclear complex cis6 show two reversible oxidation potentials at +0.60 and +0.90 V ($v s . \mathrm{Ag} / \mathrm{AgCl}$) which are attributed to the sequential oxidation of both ruthenium metal centres, i.e., $\mathrm{Ru}^{\mathrm{II} / \mathrm{II}} \rightarrow \mathrm{Ru}^{\mathrm{II} / I I I} \rightarrow \mathrm{Ru}^{\mathrm{III} / I I I}$. Of all of the $\left\{\mathrm{Ru}(\mathrm{acac})_{2}\right\}$ compounds containing π-acceptor ligands studied thus far, only the binuclear dinitrogen complex cis$\left[\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{P}^{i} \mathrm{Pr}_{3}\right)\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right](+0.30 \mathrm{~V}$ and $+0.90 \mathrm{~V}(v s . \mathrm{Ag} / \mathrm{AgCl})$ at $\left.-50^{\circ} \mathrm{C}\right)^{41}$ has shown more than one oxidation potential in the range between $0.0-1.5 \mathrm{~V}$ and none shows evidence for a $\mathrm{Ru}(\mathrm{III}) \rightarrow$ $\mathrm{Ru}(\mathrm{IV})$ oxidation process. ${ }^{40-42,54,55}$ The first oxidation process for cis$\mathbf{6}$ is $c a .150 \mathrm{mV}$ higher than the corresponding potentials found for cis- $\mathbf{4}$ and cis-5, probably as a consquence of the π-acceptor ability of μ-dppa, which stabilises $\mathrm{Ru}(\mathrm{II})$.
Since the potentials for the stepwise oxidation of cis- $\mathbf{6}$ differ by more than $250 \mathrm{mV},{ }^{56}$ the difference of $E_{1 / 2}$ values obtained from cyclic voltammetry or ac voltammetry can be related to the comproportionation constant K_{c}, as shown in eqn (1). The derived value of $c a .10^{5}$ indicates that the mono-cationic species cis- $\mathbf{6}^{+}$is either a Class II or Class III mixed-valence system according to the Robin-Day classification.

$$
\begin{gather*}
2 \mathrm{Ru}^{\mathrm{II} / I I \mathrm{II}} \stackrel{K_{\mathrm{c}}}{\rightleftarrows} \mathrm{Ru}^{\mathrm{II/II}}+\mathrm{Ru}^{\mathrm{III} / \mathrm{II}} \\
K_{\mathrm{c}}=\exp \left(\Delta E_{1 / 2} 25.69\right) \tag{1}
\end{gather*}
$$

Electrochemical studies of the two-electron reduction of $\left[\left\{\mathrm{Ru}_{3}(\mathrm{CO})_{11}\right\}_{2}(\mu\right.$-dppa $\left.)\right]$ suggest that there is little, if any, electronic communication between the $\left\{\mathrm{Ru}_{3}(\mathrm{CO})_{11}\right\}$ groups, although the fast reactions that occur after reduction prevent a precise estimate. ${ }^{37}$ Similar studies of the bridged complex $\left[\left\{\mathrm{Ru}_{3} \mathrm{O}(\mathrm{OAc})_{6}{ }^{-}\right.\right.$ (py) $\left.\}_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]_{2}$ show two $\left[\mathrm{Ru}_{3}{ }^{\mathrm{II}, I I, I I I}\right]$ oxidation processes separated by 130 mV and two $\left[\mathrm{Ru}_{3}{ }^{\mathrm{II}, I I I I I I}\right]$ reduction processes separated by 95 mV , corresponding to K_{c} values of 158 and 40 , respectively. ${ }^{38}$ The bridged bis(dithiolene) cobalt complex $\left[{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right]_{2}\left[\left\{\left(\mathrm{R}_{2} \mathrm{C}_{2} \mathrm{~S}_{2}\right)_{2} \mathrm{Co}\right\}_{2}(\mu\right.$-dppa $\left.)\right]\left(\mathrm{R}=\mathrm{CF}_{3}\right)(140 \mathrm{mV})$ also has two reversible one-electron oxidation processes separated by 140 mV corresponding to a K_{c} value of $233 .{ }^{36}$ The greater electronic communication mediated by dppa between the metal centres in cis- $\mathbf{6}^{+}$may be a consequence of the pronounced π-donor ability of $\mathrm{Ru}^{\text {II }}$ when it is surrounded by non π-acceptor ligands such as $\mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}$ and acac. ${ }^{57}$

The electronic spectra (UV-Vis) of complexes trans-4, cis-4 and cis- 6 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing $0.5 \mathrm{M}\left[{ }^{[} \mathrm{Bu}_{4} \mathrm{~N}\right] \mathrm{PF}_{6}$ show characteristic bands assigned to the $\mathrm{Ru}^{I I} \rightarrow$ acac π^{*} transition (MLCT) as well as the acac $\pi \rightarrow \pi^{*}$ transitions (Table 5). These spectra are similar to those previously reported for other $\left\{\mathrm{Ru}(\mathrm{acac})_{2}\right\}$ compounds containing π-acceptor ligands. ${ }^{40,41,53,58}$ Above ca. $30000 \mathrm{~cm}^{-1}$ the $\pi \rightarrow \pi^{*}$ transitions of the phenyl rings overlap the acac transitions. When a potential of $c a .+0.40 \mathrm{~V}$ ($v s . \mathrm{Ag} / \mathrm{AgCl}$) is applied to a solution of trans-4 at $c a .-50{ }^{\circ} \mathrm{C}$, the characteristic bands gradually disappear and are replaced by bands at $14900(\varepsilon \sim$ $\left.1300 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right), 32100\left(\varepsilon \sim 21700 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ and $34200(\varepsilon \sim$ $\left.19500 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right) \mathrm{cm}^{-1}$. After the solution has been exhaustively

Table 5 Principal electronic band maxima $\left(\mathrm{cm}^{-1}\right)$ and molar absorptivities $\left(\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ for ruthenium(II) and in situ electrogenerated ruthenium(III) complexes ${ }^{a}$

Compound	MLCT or LMCT	acac $\pi \rightarrow \pi^{*}$
trans-4	$28100(\sim 5900), 27000($ sh $)$	$35900(\sim 15500)$
cis-4	$30000(\sim 6900)$	$36700(\sim 14400)$
cis-6	$31700(\sim 12700)$	$36300(\sim 23400)$
trans-4	$14900(\sim 1300), 32100(\sim 21700)$	$34200(\sim 19500)$
cis $^{+} \mathbf{4}^{+}$	$15000(\sim 2300)$	$33500(\sim 8500)$
cis $^{2+} \mathbf{6}^{2+}$	$13800(\sim 4400), 16200(\sim 4400)$	$33300(\sim 16500)$
${ }^{\text {a }}$ Measured in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at ca. $-60{ }^{\circ} \mathrm{C}$.		

oxidised, the original spectrum can be regenerated by application of a potential of $c a .-0.20 \mathrm{~V}$ ($v s . \mathrm{Ag} / \mathrm{AgCl}$). During both the oxidation and reduction processes, isosbestic points are observed, indicating the presence of only two absorbing species in solution. Similar changes occur during the anodic bulk electrolysis of a solution of cis-4 under an applied potential of $c a .+0.75 \mathrm{~V}$ (vs. $\mathrm{Ag} / \mathrm{AgCl}$) (see Table 5). The original spectrum is again regenerated after cathodic bulk electrolysis of the electrogenerated solution of $c i s-\mathbf{4}^{+}$, indicating that this process also is fully reversible.

The electronic spectra (UV-Vis) of cis-6 is very similar to that of cis-4, the absorptions at $31700 \mathrm{~cm}^{-1}\left(\varepsilon \sim 12700 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ and $36300 \mathrm{~cm}^{-1}\left(\varepsilon \sim 23400 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ being assigned to the $\mathrm{Ru}^{\text {II }}$ MLCT and acac $\pi \rightarrow \pi^{*}$ transitions respectively. Bulk anodic electrolysis of a solution of cis -6 at $-50^{\circ} \mathrm{C}$ under a potential of $+0.75 \mathrm{~V}(v s . \mathrm{Ag} / \mathrm{AgCl})$, results in the gradual loss of these bands and the formation of bands associated with cis- $\mathbf{6}^{+}$, which displays the characteristic $\mathrm{Ru}^{\text {III }} \rightarrow$ acac π^{*} transitions (MLCT) at $13800\left(\varepsilon \sim 2100 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ and $16200\left(\varepsilon \sim 2100 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right) \mathrm{cm}^{-1}$. However, no intervalence charge transfer (IVCT) band could be detected between $6000-10000 \mathrm{~cm}^{-1}$, either because its molar absorption coefficent is very small or because it lies outside the spectral window used here $\left(<6000 \mathrm{~cm}^{-1}\right)$. These observations, together with the electrochemical data, suggest that cis- $\mathbf{6}^{+}$has a localised structure i.e., it is a Robin-Day Class II mixed valence compound. Application of a potential of $+1.10 \mathrm{~V}(v s . \mathrm{Ag} / \mathrm{AgCl})$ to the electrogenerated solution of cis- $\mathbf{6}^{+}$formed in situ doubles the intensity of the $\mathrm{Ru}^{\text {III }} \rightarrow$ acac π^{*} transitions. The band positions above $30000 \mathrm{~cm}^{-1}$ also change presumably because there is now only one chromophore $v i z$. $\mathrm{Ru}^{\text {III/III }}$ instead of $\mathrm{Ru}^{\text {II/III }}$. The changes in the electronic spectrum after both anodic electrolytic processes are fully reversible upon reduction. Isosbestic points occur for each electro-oxidation and subsequent reduction, suggesting that only two absorbing species are present during each process.

Chemical oxidation

From the addition of a slight excess of AgPF_{6} to an orange solution of trans- $\mathbf{3}$ or trans- $\mathbf{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature the green complexes trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CR}\right)_{2}\right]\left[\mathrm{PF}_{6}\right](\mathrm{R}=\mathrm{H}$, trans3. PF_{6}; Me , trans-4. PF_{6}) can be isolated in yields of $c a .90 \%$. These have been fully characterised and the structure of trans-4 $\cdot \mathrm{PF}_{6}$ has been confirmed by a single crystal X-ray study. Addition of $c a$. one equivalent of AgPF_{6} to cis- $\mathbf{3}$ or cis-4 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gives deep blue solutions but we have been unable to isolate the resulting oxidation products, presumably cis-3. PF_{6} and cis-4 $\cdot \mathrm{PF}_{6}$, as pure crystalline solids.

Table $6 g$-Values for compounds trans-3. $\cdot \mathrm{PF}_{6}$ and trans-4 $\cdot \mathrm{PF}_{6}{ }^{a}$

Compound	g_{1}	g_{2}	g_{3}
trans-3 $\cdot \mathrm{PF}_{6}$	2.27	2.23	1.86
trans-4 $\cdot \mathrm{PF}_{6}$	2.26	2.22	1.86
trans $-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6}{ }^{b}$	2.28	2.23	1.84
cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6}{ }^{6}$	2.40	2.08	1.84

${ }^{a}$ Recorded in $0.5 \mathrm{M}^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{NPF}_{6} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 4.7 K . ${ }^{b}$ Recorded in 1: 1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-toluene at 120 K , taken from ref. 54 .

The positive FAB mass spectra of trans-3. PF_{6} and trans-4 $\cdot \mathrm{PF}_{6}$ both display the molecular ion peak (Table 2) though in each case the most abundant ion is associated with the loss of one phosphine ligand. The IR spectra of both solids show either two bands or one strong band with a shoulder on the high energy side between $1560-1510 \mathrm{~cm}^{-1}$, due to bidentate O-bonded acac, and bands at ca. $840 \mathrm{~cm}^{-1}$ and ca. $558 \mathrm{~cm}^{-1}$ due to PF_{6}. A strong absorption assigned to $v(\mathrm{C} \equiv \mathrm{C})$ (uncoordinated) is found at $2059 \mathrm{~cm}^{-1}$ and $2201 \mathrm{~cm}^{-1}$ for trans-3. PF_{6} and trans-4. PF_{6}, respectively, representing an increase of $24 \mathrm{~cm}^{-1}$ for trans-3. PF_{6} and only $3 \mathrm{~cm}^{-1}$ for trans-3. PF_{6} from the values in the parent $\mathrm{Ru}(\mathrm{II})$ complexes.
Cyclic and ac voltammograms show that the $E_{1 / 2}\left(\mathrm{Ru}^{\text {III/II }}\right)$ potentials of complexes trans-3. PF_{6} and trans-4 $\cdot \mathrm{PF}_{6}$ do not differ from those of the parent $\mathrm{Ru}(\mathrm{II})$ complexes, hence the chemical oxidation is not accompanied by geometrical rearrangement. Further, the ESR spectra of trans-3. PF_{6} and trans-4. PF_{6} in a frozen glass in $0.5 \mathrm{M}\left[{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right] / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 4.7 K show three g values, shown in Table 6 and may be considered as pseudo-axial with two relatively close resonances (g_{1} and g_{2}). Not surprisingly, the g-values for trans- 3^{+}and trans- $\mathbf{4}^{+}$do not differ significantly from those reported for trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$, but are significantly different from those of cis-[Ru(acac) $\left.)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+} .{ }^{54}$

Molecular structures

The structures of complexes trans-4, cis-4, trans-4. PF_{6} and cis6 have been confirmed by single crystal X-ray crystallography; the molecular structures and selected metrical data are presented in Fig. 1-4 and Tables 7-10, respectively. The ruthenium atoms $\mathrm{Ru}(1)$ in trans-4 and trans-4. PF_{6} lie on an inversion centre. There are two pairs of independent molecules in the unit cell for cis-4, one of which shows some disorder in its alkynyl groups. In all the complexes, the coordination geometry about the metal centre is close to octahedral. The Ru-O distances in trans-4, cis-4 and cis-6 lie within the narrow range of $2.051(3)$ to $2.104(4) \AA$ observed in other $\mathrm{Ru}(\mathrm{II})-$ acac complexes, ${ }^{39-41,53,58}$ the $\mathrm{Ru}-\mathrm{O}$ distances trans to the P atoms are $c a .0 .03 \AA$ longer than those trans to the acac O atoms corresponding to the expected trans-influences. The $\mathrm{Ru}-$ O distances characterising the coordination of the acac groups in trans-4. PF_{6} are similar to those reported in the orthorhombic and monoclinic forms of $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right] .^{59,60}$ These distances are $c a$. $0.05 \AA$ shorter than those in trans-4, which confirms the expected stronger coordination of the acac^{-}anion in the higher oxidation state.

The Ru-P distances in cis-4 (2.26 \AA, av.) are significantly less than that in trans-4 (2.3330 (7) A), again reflecting the expected trans-influences of P and acac O . Similar bond lengths were

Fig. 1 Molecular structure of trans-4. Ellipsoids represent 30\% probability levels. Hydrogen atoms have been omitted for clarity. Asterisked atom labels indicate atoms that have been generated by the symmetry operation ($1-x, 1-y, 1-z$).

Fig. 2 Molecular structure of one of the molecules of cis-4. Ellipsoids represent 30% probability levels. Hydrogen atoms have been omitted for clarity.
observed in cis- and trans-[Ru(acac $\left.)_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right] .{ }^{39}$ The Ru-P distance in trans-4. $\mathrm{PF}_{6}, 2.393(1) \AA$, is $0.06 \AA$ greater than in trans4, perhaps indicating of the smaller π-back-bonding ability of $\mathrm{Ru}^{\text {III }}$.

The $\mathrm{C} \equiv \mathrm{C}$ bond lengths in all four structures are close to $1.18 \AA$. They are similar to those found in many alkynyldiphenylphosphine complexes and significantly less than that found in free dppa $(1.207(5) \AA) .{ }^{61}$ In trans-4, cis-4 and trans-4. PF_{6} the alkynyl groups are slightly distorted from linearity, the $\mathrm{P}-\mathrm{C} \equiv \mathrm{C}$ bond angles being in the range 173 to 179°. A similar bending has been observed in other alkynyldiphenylphosphine complexes, e.g., trans $-\left[\mathrm{Pd}(\mathrm{SCN})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{C}^{t} \mathrm{Bu}\right)_{2}\right]\left(174^{\circ}\right)^{62}$ and cis- $[\mathrm{Pt}(\mathrm{SCN})(\mathrm{NCS})$ $\left.\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{C}^{t} \mathrm{Bu}\right)_{2}\right]\left(168^{\circ}, 176^{\circ}\right),{ }^{63}$ and in free dppa. ${ }^{61}$

Fig. 3 Molecular structure of trans-4 $\cdot \mathrm{PF}_{6}$. Ellipsoids represent 30% probability levels. Hydrogen atoms and the PF_{6} anion have been omitted for clarity. Asterisked atom labels indicate atoms that have been generated by the symmetry operation $(1-x, 1-y, 1-z)$.

Fig. 4 Molecular structure of cis-6. Ellipsoids represent 30% probability levels. Hydrogen atoms have been omitted for clarity.

Table 7 Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for compound trans-4

$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.3330(7)$	$\mathrm{Ru}(1)-\mathrm{O}(2)$	$2.063(2)$
$\mathrm{Ru}(1)-\mathrm{O}(1)$	$2.060(2)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.185(4)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{P}(1)^{a}$	180.0	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)^{a}$	180.0
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)^{a}$	$91.27(6)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$93.34(7)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)$	$88.73(6)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)^{a}$	$86.66(7)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$90.22(6)$	$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(2)^{a}$	180.0
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)^{a}$	$89.78(6)$	$\mathrm{P}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$174.5(3)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$179.6(4)$		

${ }^{a}$ Atoms generated by the symmetry operation $(1-x, 1-y, 1-z)$.

The crystal of cis $\mathbf{6}$ contains only the homochiral $(\Delta \Delta / \Lambda \Lambda)$ isomer, which is presumably the only isomer present in solution. The Ru-P distances are close to those in cis-4. The two octahedra have different orientations, the dihedral angle between the

Table 8 Selected distances (\AA) and angles $\left({ }^{\circ}\right)$ for compound cis- 4

$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.249(1)$	$\mathrm{Ru}(2)-\mathrm{P}(3)$	$2.259(1)$
$\mathrm{Ru}(1)-\mathrm{P}(2)$	$2.265(1)$	$\mathrm{Ru}(2)-\mathrm{P}(4)$	$2.254(2)$
$\mathrm{Ru}(1)-\mathrm{O}(1)$	$2.063(3)$	$\mathrm{Ru}(2)-\mathrm{O}(5)$	$2.056(3)$
$\mathrm{Ru}(1)-\mathrm{O}(2)$	$2.088(3)$	$\mathrm{Ru}(2)-\mathrm{O}(6)$	$2.095(3)$
$\mathrm{Ru}(1)-\mathrm{O}(3)$	$2.059(3)$	$\mathrm{Ru}(2)-\mathrm{O}(7)$	$2.069(3)$
$\mathrm{Ru}(1)-\mathrm{O}(4)$	$2.098(3)$	$\mathrm{Ru}(2)-\mathrm{O}(8)$	$2.104(4)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.183(6)$	$\mathrm{C}(66)-\mathrm{C}(67)$	$1.177(6)$
$\mathrm{C}(26)-\mathrm{C}(27)$	$1.180(6)$	$\mathrm{C}(511)-\mathrm{C}(521)$	$1.18(2)$
		$\mathrm{C}(522)(\mathrm{C}(532)$	$1.20(2)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$	$94.20(5)$	$\mathrm{P}(3)-\mathrm{Ru}(2)-\mathrm{P}(4)$	$94.30(5)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)$	$91.3(1)$	$\mathrm{P}(3)-\mathrm{Ru}(2)-\mathrm{O}(5)$	$90.6(1)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$174.3(1)$	$\mathrm{P}(3)-\mathrm{Ru}(2)-\mathrm{O}(6)$	$176.8(1)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$93.5(1)$	$\mathrm{P}(3)-\mathrm{Ru}(2)-\mathrm{O}(7)$	$92.0(1)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$90.1(1)$	$\mathrm{P}(3)-\mathrm{Ru}(2)-\mathrm{O}(8)$	$92.6(1)$
$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{O}(1)$	$89.91(9)$	$\mathrm{P}(4)-\mathrm{Ru}(2)-\mathrm{O}(5)$	$92.4(1)$
$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$91.0(1)$	$\mathrm{P}(4)-\mathrm{Ru}(2)-\mathrm{O}(6)$	$88.8(1)$
$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$92.82(9)$	$\mathrm{P}(4)-\mathrm{Ru}(2)-\mathrm{O}(7)$	$91.8(1)$
$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$174.2(1)$	$\mathrm{P}(4)-\mathrm{Ru}(2)-\mathrm{O}(8)$	$172.8(1)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$91.2(1)$	$\mathrm{O}(5)-\mathrm{Ru}(2)-\mathrm{O}(6)$	$90.0(1)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$174.3(1)$	$\mathrm{O}(5)-\mathrm{Ru}(2)-\mathrm{O}(7)$	$174.9(1)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$86.0(1)$	$\mathrm{O}(5)-\mathrm{Ru}(2)-\mathrm{O}(8)$	$85.5(1)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$83.8(1)$	$\mathrm{O}(6)-\mathrm{Ru}(2)-\mathrm{O}(7)$	$87.2(1)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$85.0(1)$	$\mathrm{O}(6)-\mathrm{Ru}(2)-\mathrm{O}(8)$	$84.3(1)$
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$90.9(1)$	$\mathrm{O}(7)-\mathrm{Ru}(2)-\mathrm{O}(8)$	$89.9(1)$
$\mathrm{P}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	$175.8(5)$	$\mathrm{P}(3)-\mathrm{C}(511)-\mathrm{C}(521)$	$173(1)$
$\mathrm{P}(2)-\mathrm{C}(26)-\mathrm{C}(27)$	$176.4(5)$	$\mathrm{P}(3)-\mathrm{C}(512)-\mathrm{C}(522)$	$173(2)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$178.8(6)$	$\mathrm{C}(511)-\mathrm{C}(521)-\mathrm{C}(67)$	$177.2(5)$
		$\mathrm{C}(512)-\mathrm{C}(522)-\mathrm{C}(531)$	$177(2)$
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	$178.9(6)$	$\mathrm{C}(66)-\mathrm{C}(67)-\mathrm{C}(68)$	$180(2)$

Table 9 Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for compound trans4. PF_{6}

$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.393(1)$	$\mathrm{Ru}(1)-\mathrm{O}(2)$	$2.003(3)$
$\mathrm{Ru}(1)-\mathrm{O}(1)$	$2.011(3)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.185(6)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{P}(1)^{a}$	180.0	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)^{a}$	180.0
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)^{a}$	$90.36(8)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$90.3(1)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)$	$89.64(8)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)^{a}$	$89.7(1)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$88.88(9)$	$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(2)^{a}$	180.0
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(8)^{a}$	$91.12(9)$	$\mathrm{P}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$178.9(5)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$179.3(6)$		

${ }^{a}$ Atoms generated by the symmetry operation $(1-x, 1-y, 1-z)$. planes defined by the atoms $\mathrm{Ru}(1), \mathrm{P}(1)$ and $\mathrm{P}(2)$, and $\mathrm{Ru}(2)$, $\mathrm{P}(3)$ and $\mathrm{P}(4)$, being ca. 46°. A similar arrangement is found in the complexes $\left[\mathrm{Pt}_{2} \mathrm{X}_{4}(\mu \text {-dppa })_{2}\right]\left(\mathrm{X}=\mathrm{Cl},{ }^{29} \mathrm{I}_{2}^{29} \mathrm{C}_{6} \mathrm{~F}_{5}{ }^{32}\right)$ and $\left[\left\{\mathrm{Mo}(\mathrm{CO})_{4}\right\}_{2}(\mu \text {-dppa })_{2}\right],{ }^{25}$ which gives the complex a characteristic "bow-tie" appearance, whereas in $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{4}(\mu \text {-dppa) })_{2}\right]^{29}$ the tenmembered ring is planar. Viewed along the $\mathrm{Ru}-\mathrm{Ru}$ axis, the two octahedra are essentially eclipsed and the μ-dppa ligand defined by atoms $\mathrm{P}(1)$ and $\mathrm{P}(3)$ is almost linear [angles $\mathrm{P}(1)-\mathrm{C}(11)-\mathrm{C}(12)$ and $\mathrm{P}(3)-\mathrm{C}(12)-\mathrm{C}(11)$ are both 178°], whereas the second μ-dppa ligand shows a slight concave bowing, the angles $\mathrm{P}(2)-\mathrm{C}(25)-\mathrm{C}(26)$ and $\mathrm{P}(4)-\mathrm{C}(26)-\mathrm{C}(25)$ each being 170°. However, the linear μ dppa shows the greater strain at its phosphorus atoms as judged by the departure of the $\mathrm{Ru}-\mathrm{P}-\mathrm{C}$ valence angles from the ideal tetrahedral value $\left[\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(11) 119.7(1)^{\circ} ; \mathrm{Ru}(2)-\mathrm{P}(3)-\mathrm{C}(12)\right.$ $\left.121.9(1)^{\circ}\right]$ cf the values for the concave μ-dppa $[\mathrm{Ru}(1)-\mathrm{P}(3)-\mathrm{C}(25)$ $\left.112.4(2)^{\circ} ; \mathrm{Ru}(2)-\mathrm{P}(4)-\mathrm{C}(26) 114.1(1)^{\circ}\right]$.

Table 10 Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for compound cis-6

$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.265(1)$	$\mathrm{Ru}(2)-\mathrm{P}(3)$	$2.269(1)$
$\mathrm{Ru}(1)-\mathrm{P}(2)$	$2.051(3)$	$\mathrm{Ru}(2)-\mathrm{P}(4)$	$2.261(1)$
$\mathrm{Ru}(2)-\mathrm{O}(5)$	$2.065(3)$		
$\mathrm{Ru}(1)-\mathrm{O}(1)$	$2.090(3)$	$\mathrm{Ru}(2)-\mathrm{O}(6)$	$2.088(3)$
$\mathrm{Ru}(1)-\mathrm{O}(2)$	$2.068(3)$	$\mathrm{Ru}(2)-\mathrm{O}(7)$	$2.056(3)$
$\mathrm{Ru}(1)-\mathrm{O}(3)$	$2.091(3)$	$\mathrm{Ru}(2)-\mathrm{O}(8)$	$2.097(3)$
$\mathrm{Ru}(1)-\mathrm{O}(4)$	$1.179(6)$	$\mathrm{C}(25)-\mathrm{C}(26)$	$1.190(6)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$92.04(4)$	$\mathrm{P}(3)-\mathrm{Ru}(2)-\mathrm{P}(4)$	$94.43(4)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$	$\mathrm{P}(3)-\mathrm{Ru}(2)-\mathrm{O}(5)$	$91.61(9)$	
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)$	$173.97(9)$	$\mathrm{P}(3)-\mathrm{Ru}(2)-\mathrm{O}(6)$	$172.26(9)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$91.10(9)$	$\mathrm{P}(3)-\mathrm{Ru}(2)-\mathrm{O}(7)$	$90.7(1)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$95.85(9)$	$\mathrm{P}(3)-\mathrm{Ru}(2)-\mathrm{O}(8)$	$91.93(9)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$98.94(9)$	$\mathrm{P}(4)-\mathrm{Ru}(2)-\mathrm{O}(5)$	$92.06(9)$
$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{O}(1)$	$88.6(9)-\mathrm{O}(2)-\mathrm{O}(6)$	$92.64(9)$	
$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$92.60(9)$	$\mathrm{P}(4)-\mathrm{Ru}(2)-\mathrm{O}(2)-\mathrm{O}(7)$	$91.15(9)$
$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$95.36(9)$	$\mathrm{P}(4)-\mathrm{Ru}(2)$	
$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$170.26(9)$	$\mathrm{P}(4)-\mathrm{Ru}(2)-\mathrm{O}(8)$	$173.51(9)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$92.1(1)$	$\mathrm{O}(5)-\mathrm{Ru}(2)-\mathrm{O}(6)$	$91.3(1)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$174.7(1)$	$\mathrm{O}(5)-\mathrm{Ru}(2)-\mathrm{O}(7)$	$175.9(1)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$85.1(1)$	$\mathrm{O}(5)-\mathrm{Ru}(2)-\mathrm{O}(8)$	$86.5(1)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$84.6(1)$	$\mathrm{O}(6)-\mathrm{Ru}(2)-\mathrm{O}(7)$	$86.0(1)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$79.9(1)$	$\mathrm{O}(6)-\mathrm{Ru}(2)-\mathrm{O}(8)$	$81.1(1)$
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$90.2(1)$	$\mathrm{O}(7)-\mathrm{Ru}(2)-\mathrm{O}(8)$	$90.1(1)$
$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(11)$	$119.7(1)$	$\mathrm{Ru}(2)-\mathrm{P}(3)-\mathrm{C}(12)$	$121.9(1)$
$\mathrm{Ru}(1)-\mathrm{P}(2)-\mathrm{C}(25)$	$112.4(2)$	$\mathrm{Ru}(2)-\mathrm{P}(4)-\mathrm{C}(26)$	$114.1(1)$
$\mathrm{P}(1)-\mathrm{C}(22)-\mathrm{C}(12)$	$178.3(4)$	$\mathrm{P}(2)-\mathrm{C}(25)-\mathrm{C}(26)$	$170.1(4)$
$\mathrm{P}(3)-\mathrm{C}(12)-\mathrm{C}(11)$	$177.9(4)$	$\mathrm{P}(4)-\mathrm{C}(26)-\mathrm{C}(25)$	$169.7(4)$

Conclusions

We have reported in this paper P-donor alkynyldiphenylphosphine complexes of ruthenium(II) containing acetylacetonate as co-ligand, $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]\left(\mathrm{L}=\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CH}, \mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CCH}_{3}\right.$, or $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPh}$), which can be isolated in trans- or cis-isomeric forms. The trans-isomers undergo reversible one-electron oxidation to the $\mathrm{Ru}^{\text {III }}$ level more easily than the cis-isomers. A comparison of the metrical data for trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CCH}_{3}\right)_{2}\right]^{0,+}$ (trans-4, $\mathbf{4}^{+}$) shows the effect of one-electron redox on the metalligand bond lengths. In cis- $\left[\left\{\operatorname{Ru}(\mathrm{acac})_{2}(\mu-\mathrm{dppa})\right\}_{2}\right]$, cis- $\mathbf{6}$, two molecules of the dppa bridge a pair of $c i s-\left\{\operatorname{Ru}(\mathrm{acac})_{2}\right\}$ fragments, only the homochiral $\Delta \Delta / \Lambda \Lambda$ isomer being present. cis $\mathbf{6}$ undergoes two, successive one-electron oxidations; cis- $\mathbf{6}^{+}$is classed as a Robin-Day Class II mixed valence system, showing that electron delocalisation via dppa can occur.

Experimental

All operations were carried out under a dry argon atmosphere using standard Schlenk techniques unless otherwise stated. All solvents were dried by standard methods and distilled under nitrogen. The starting ruthenium(II) complexes $\mathbf{1},{ }^{40} \mathbf{2}^{39}$ and the alkynyldiphenylphosphines $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}(\mathrm{R}=\mathrm{H}, \mathrm{Me}, \mathrm{Ph})^{64}$ were prepared according to the literature procedures; $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}$ (dppa) was obtained from Fluka and used as received.
NMR spectra were recorded at $20.5{ }^{\circ} \mathrm{C}$ on either a Varian Gemini 300 BB or a Varian VXR 300 spectrometer (${ }^{1} \mathrm{H}$ at $300 \mathrm{MHz},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ at 75.4 MHz and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ at 121.4 MHz). The chemical shifts (δ) for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ are given in ppm referenced to the residual protons and the carbon atoms of the deuterated solvents; ${ }^{31} \mathrm{P}$ chemical shifts are referenced to external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$. Coupling constants (J) are given in Hertz. IR spectra were recorded on either Perkin-Elmer 1800 FT or Perkin-Elmer Spectrum One instruments as KBr disks. The Raman spectrum of cis- $\mathbf{6}$ was collected
on a Renishaw Raman system 2000 with a HeNe laser (SpectraPhysics, model 127) emitting at 632.8 nm or a Renishaw NIR laser diode emitting at 780 nm . Fast atom bombardment (FAB) mass spectra were measured on a VG ZAB2-SEQ mass spectrometer using either 3-nitrobenzyl alcohol or (3-nitrophenyl)octyl ether as the matrix. Microanalyses were performed in-house. Electrochemical measurements in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and electronic spectra were recorded in the range $6000-45000 \mathrm{~cm}^{-1}$ as previously described; ${ }^{40,41,58}$ the $E_{1 / 2}{ }^{-}$ value for the ferrocenium/ferrocene couple on the electrochemical set-up was +0.55 V vs. $\mathrm{Ag} / \mathrm{AgCl}$. Continuous wave X-band ESR spectra were collected on a Bruker ESP 300e spectrometer with a rectangular TE102 cavity and a frequency counter for accurate g value measurements. The following settings were used: modulation frequency $50-100 \mathrm{kHz}$, microwave power 2.0 mW (sufficiently low to avoid sample saturation), modulation amplitude 5 G , time constant 0.33 s , and sweep time 330 s . The temperature was lowered to 4.7 K with liquid helium and an Oxford Instrument cryostat.

Preparations

(1) trans-[Ru(acac) $\left.\mathbf{2}_{2}\left(\mathrm{Ph}_{2} \mathbf{P C} \equiv \mathbf{C H}\right)_{2}\right]$ (trans-3). A clear solution of 1 prepared from $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right](260 \mathrm{mg}, 0.65 \mathrm{mmol})$ in THF (20 ml) was stirred with $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CH}(275 \mathrm{mg}, 1.31 \mathrm{mmol})$ for 1 h ; within 5 min of mixing a fine orange precipitate had formed. An orange solid was isolated after evaporating the mixture to dryness and washing with n -hexane $(3 \times 10 \mathrm{ml}) .357 \mathrm{mg}(79 \%)$ of trans3 was isolated by filtration and air-dried. A small amount of the orange solid was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and n -pentane vapour was allowed to diffuse into the solution resulting in large orange crystals.
(2) trans-[Ru(acac) $\left.)_{2}\left(\mathrm{Ph}_{2} \mathbf{P C} \equiv \mathbf{C M e}\right)_{2}\right]($ trans-4). This was prepared as outlined above for trans-3 from $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right](260 \mathrm{mg}$, $0.65 \mathrm{mmol})$ and $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}(305 \mathrm{mg}, 1.36 \mathrm{mmol})$. The yield of the orange, air-stable solid trans-4 was $482 \mathrm{mg}(98 \%)$. Its physical properties were similar to those of trans-3. X-Ray quality crystals were grown by vapour diffusion of n-pentane into an orange $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution.
(3) trans- $\left[\mathrm{Ru}(\mathbf{a c a c})_{2}\left(\mathrm{Ph}_{2} \mathbf{P C} \equiv \mathbf{C P h}\right)_{2}\right]$ (trans-5). This was prepared similarly to trans $\mathbf{- 3}$ from $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right](208 \mathrm{mg}, 0.52 \mathrm{mmol})$ and $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPh}(1.05 \mathrm{mmol})$. The yield of the orange, air-stable solid trans-5 was 278 mg (61%).
(4) cis-[Ru(acac) $\left.)_{2}\left(\mathrm{Ph}_{2} \mathbf{P C} \equiv \mathbf{C M e}\right)_{2}\right]($ cis-4). An orange solution of trans $-4(232 \mathrm{mg}, 0.31 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}(5 \mathrm{ml})$ was refluxed for 1 h , during which time the colour changed from orange to yellow. The yellow residue obtained after the solvent had been removed in vacuo was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ forming a yellow solution to which n-hexane (25 ml) was carefully added. The bright yellow, micro-crystalline solid that deposited overnight was separated by filtration, washed with n-hexane ($c a .5 \mathrm{ml}$) and airdried to give $151 \mathrm{mg}(65 \%)$ of cis-4. It is stable towards air and forms yellow, air-stable solutions in benzene, toluene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$.
(5) cis-[Ru(acac) $\left.)_{2}\left(\mathrm{Ph}_{2} \mathbf{P C} \equiv \mathbf{C P h}\right)_{2}\right]($ cis-5). This was prepared as outlined above for cis $-\mathbf{4}$ from trans $-5(120 \mathrm{mg}, 0.14 \mathrm{mmol})$. The yield of bright yellow cis- 5 was $80 \mathrm{mg}(67 \%)$. The compound has similar physical properties to those reported for cis-4.
(6) trans-[\{Ru(acac) $\left.)_{2}(\mu \text {-dppa) }\}_{\mathrm{n}}\right] \quad$ (trans-6). Solid dppa $(400 \mathrm{mg}, 1.01 \mathrm{mmol})$ was added to a THF solution of 2 prepared from $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right](200 \mathrm{mg}, 0.51 \mathrm{mmol})$ and the mixture was stirred overnight. The initially orange clear solution deposited an orange solid trans-6 ($325 \mathrm{mg}, 90 \%$), which was isolated by filtration and washed several times with n-hexane. Free $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}$ was detected in the washings by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy but no attempt was made to quantify it.
(7) \quad cis- $\left\{\left\{\mathbf{R u}(\mathbf{a c a c})_{2}\left(\mu-\mathbf{P h}_{2} \mathbf{P C} \equiv \mathbf{C P P h}_{2}\right)\right\}_{2}\right]$ (cis-6). A suspension of trans- $6(157 \mathrm{mg}, 0.23 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}(20 \mathrm{ml})$ was heated to $150{ }^{\circ} \mathrm{C}$ for 3 h , giving a clear yellow solution. The solvent was removed in vacuo at room temperature and the yellow residue was dissolved in a small amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; the solution was then layered with n-hexane (20 ml). The yellow solid cis- $6(63 \mathrm{mg}, 40 \%$) was isolated by filtration and washed with n-hexane. It is air-stable and readily forms air-stable solutions in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$.
(8) trans-[Ru(acac) $\left.)_{2}\left(\mathrm{Ph}_{2} \mathbf{P C} \equiv \mathbf{C H}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$ (trans-3. PF_{6}). Addition of $\mathrm{AgPF}_{6}(50 \mathrm{mg}, 0.20 \mathrm{mmol})$ to a solution of trans $\mathbf{3}$ ($100 \mathrm{mg}, 0.14 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ resulted in an immediate colour change from orange to blue-green, and a grey metallic mirror deposited on the flask wall. The solution was stirred for 30 min and filtered through Celite. Solvent was removed in vacuo leaving a green solid, which was dissolved in a small amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and carefully layered with n-pentane. The green crystalline solid trans-3. PF_{6} ($98 \mathrm{mg}, 89 \%$) was isolated by filtration.
(9) trans-[Ru(acac) $)_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}_{2}\right]\left[\mathrm{PF}_{6}\right] \quad$ (trans-4 $\left.\cdot \mathrm{PF}_{6}\right)$. This was prepared similarly to trans-3 $\cdot \mathrm{PF}_{6}$ from $\mathrm{AgPF}_{6}(52 \mathrm{mg}$, 0.21 mmol) and trans $-4(65 \mathrm{mg}, 0.09 \mathrm{mmol}) .70 \mathrm{mg}(90 \%)$ of the green crystalline solid trans-4 $\cdot \mathrm{PF}_{6}$ was isolated containing some X-ray quality crystals.

X-Ray crystallography

Measurements for trans-4, trans-4. PF_{6} and cis-6 were made on a Rigaku AFC6R diffractometer with graphite-monochromated $\mathrm{Cu}-\mathrm{K} \alpha$ radiation $(\lambda=1.54178 \AA)$; those for cis- 4 were made on a Rigaku AFC6S diffractometer with graphite-monochromated Mo-K α radiation $(\lambda=0.71069 \AA)$. Selected crystal data and details of data collection are in Table 11. The structures were solved by direct methods (SIR 92) ${ }^{65}$ and expanded by use of Fourier techniques (DIRDIF94). ${ }^{66}$ Non-hydrogen atoms were refined anisotropically by full-matrix least squares. Hydrogen atom coordinates were refined but their isotropic B-values were held fixed. Difference maps obtained before hydrogen atoms had been included did not give clear evidence for a single preferred orientation for the acac methyl groups in every case. The Hatoms were therefore added in the same orientation as in the other structures, but CHECKCIF revealed some very short intermolecular $\mathrm{H} \cdots \mathrm{H}$ contacts between some of these atoms. These methyl groups were therefore reorientated, thereby reducing the problems. The changes therefore seemed to be warranted. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecule in cis-4 was disordered over two unequally populated orientations. The carbon atom and one of the chlorine atoms of the major orientation were refined with anisotropic displacement factors, while the corresponding chlorine atom of the minor orientation was assigned an isotropic B-value equal to B_{eq} of the chlorine atom in the major orientation; the carbon atom in the minor orientation could not be be located. Disorder was

Table 11 Crystal and refinement data for trans-4, cis-4, trans-4 $\cdot \mathrm{PF}_{6}$ and cis- $\mathbf{6}^{a}$

	trans-4	cis-4	trans-4. PF_{6}	cis-6
Empirical formula	$\mathrm{C}_{40} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Ru} .2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{C}_{80} \mathrm{H}_{80} \mathrm{O}_{8} \mathrm{P}_{4} \mathrm{Ru}_{2} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{C}_{42} \mathrm{H}_{44} \mathrm{Cl}_{4} \mathrm{~F}_{6} \mathrm{O}_{4} \mathrm{P}_{3} \mathrm{Ru} .2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{C}_{22} \mathrm{H}_{68} \mathrm{O}_{8} \mathrm{P}_{4} \mathrm{Ru}_{2} .0 .5 \mathrm{CH}_{2} \mathrm{Cl}_{2} .0 .5 \mathrm{C}_{6} \mathrm{H}_{14}$
Formula weight	917.64	1580.48	1062.60	1472.9 边
Crystal system	Triclinic	Triclinic	Triclinic	Monoclinic
Space group	$P \overline{1}$ (no. 2)	$P \overline{1}($ no. 2)	$P \overline{1}$ (no. 2)	$P \overline{2} / n($ no. 14)
Crystal colour, habit	Orange, block	Yellow, hexagonal prism	Green, rhomboid	Yellow, cuboid
a / \AA	10.247(1)	16.317(4)	9.7900 (9)	12.096(4)
b / \AA	11.045(3)	16.469(6)	11.1192(8)	22.508(4)
c / \AA	11.720(2)	18.975(4)	11.1518(9)	27.778(3)
$a /{ }^{\circ}$	117.21(2)	65.46(2)	104.946(6)	90
$\beta 1^{\circ}$	94.27(2)	66.17(2)	93.248(7)	102.41(2)
$\gamma /{ }^{\circ}$	107.61(1)	60.76(2)	97.520(7)	90
V / \AA^{3}	1088.3(5)	3915(2)	1157.6(2)	7386(3)
Z	1	2	1	4
$D_{\text {calc }} / \mathrm{g} \mathrm{cm}^{-3}$	1.400	1.340	1.524	1.324
μ / cm^{-1}	$63.16\left(\mathrm{CuK}_{a}\right)$	$5.88\left(\mathrm{MoK}_{a}\right)$	$64.07\left(\mathrm{CuK}_{a}\right)$	48.76 ($\left.\mathrm{CuK}_{a}\right)$
T/K	193	296	193	193
Crystal dimensions/mm	$0.20 \times 0.12 \times 0.10$	$0.52 \times 0.24 \times 0.16$	$0.08 \times 0.07 \times 0.07$	$0.25 \times 0.18 \times 0.15$
$F(000)$	470	1628	539	3032
$2 \theta_{\max } /{ }^{\circ}$	120.0	55.1	120.1	120.0
Number of reflections measured	3425	18715	3678	11280
Number of unique reflections ($R_{\text {int }}$)	3241 (0.039)	18081 (0.030)	3443 (0.031)	10940
Used reflections	$3026[I>2 \sigma(I)]$	$9045[I>2 \sigma(I)]$	$2737[I>2 \sigma(I)]$	$8826[I>3 \sigma(I)]$
R; R_{W}	0.028; 0.035	0.042, 0.044	0.036, 0.041	0.039, 0.044
Goodness of fit	1.63	1.54	1.36	1.15
$\rho_{\text {max }}, \rho_{\text {min }} / \mathrm{e} \AA^{-3}$	0.49, -0.43	0.70, -0.54	0.55, -0.46	1.07, -0.61

${ }^{a}$ Definitions: $R=\sum\left\|F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}} \| / \sum\right| F_{\mathrm{o}}\right| ; R_{w}=\left[\sum w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \sum w\left|F_{\mathrm{o}}{ }^{2}\right|^{1 / 2} ; w=\left[\sigma^{2}\left(F_{\mathrm{o}}\right)+0.25 p^{2} F_{\mathrm{o}}{ }^{2}\right]^{-1} ; \operatorname{GOF}=\left[\sum w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} /\left(N_{\mathrm{o}}-\right.\right.\right.\right.$ $\left.N_{\mathrm{v}}\right)^{1 / 2} ; N_{\mathrm{o}}=$ used reflections, $N_{\mathrm{v}}=$ number of variables.
also evident from the anisotropy of the carbon atoms in one of the $\mathrm{C} \equiv \mathrm{CCH}_{3}$ units of cis-4; each atom was split over two sites and the relative occupancy of the two orientations was refined. All the calculations were carried out with the TEXSAN software package, ${ }^{67}$ except for the refinement of cis- $\mathbf{6}$, which was carried out with the use of CRYSTALS. ${ }^{68}$ Neutral atom scattering factors, ${ }^{69}$ the values of Δf and $\Delta f^{\prime \prime}$, and mass attenuation coefficients ${ }^{70}$ were taken from standard compilations.

CCDC reference numbers 631384-631387.
For crystallographic data in CIF or other electronic format see DOI: 10.1039/b618365d

Acknowledgements

We thank Dr C. Cobley (ANU) for synthesising $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}(\mathrm{R}=$ $\mathrm{H}, \mathrm{Me}, \mathrm{Ph}$), Dr V. Otieno-Alego (University of Canberra) for the measurement of the Raman spectrum of cis-6, and Dr R. Webster (ANU) for the ESR measurements.

References

1 A. J. Carty, H. N. Paik and T. W. Ng, J. Organomet. Chem., 1974, 74, 279-288.
2 K. S. Wheelock, J. H. Nelson and H. B. Jonassen, Inorg. Chim. Acta, 1970, 4, 399-403.
3 A. J. Carty, Pure Appl. Chem., 1982, 54, 113-130.
4 E. Louattani and J. Suades, J. Organomet. Chem., 2000, 604, 234-240.
5 E. Louattani, A. Lledos, J. Suades, A. Alvarez-Larena and J. F. Piniella, Organometallics, 1995, 14, 1053-1060.
6 J. Forniés, E. Lalinde, A. Martín, M. T. Moreno and A. J. Welch, J. Chem. Soc., Dalton Trans., 1995, 1333-1340.

7 I. Ara, L. R. Falvello, S. Fernández, J. Forniés, E. Lalinde, A. Martín and M. T. Moreno, Organometallics, 1997, 16, 5923-5937.
8 J. P. H. Charmant, J. Forniés, J. Gómez, E. Lalinde, M. T. Moreno, A. G. Orpen and S. Solano, Angew. Chem., Int. Ed., 1999, 38, 30583061.

9 J. Forniés, A. García, J. Gómez, E. Lalinde and M. T. Moreno, Organometallics, 2002, 21, 3733-3743.
10 J. R. Berenguer, M. Bernechea, J. Forniés, A. García, E. Lalinde and M. T. Moreno, Inorg. Chem., 2004, 43, 8185-8198.

11 G. Hogarth and S. P. Redmond, J. Organomet. Chem., 1997, 534, 221227.

12 A. J. Carty, N. J. Taylor and D. K. Johnson, J. Am. Chem. Soc., 1979, 101, 5422-5424.
13 D. Nucciarone, S. A. MacLaughlin, N. J. Taylor and A. J. Carty, Organometallics, 1988, 7, 106-117.
14 A. A. Cherkas, L. H. Randall, S. A. MacLaughlin, G. N. Mott, N. J. Taylor and A. J. Carty, Organometallics, 1988, 7, 969-977.
15 D. K. Johnson, T. Rukachaisirikul, Y. Sun, N. J. Taylor, A. J. Canty and A. J. Carty, Inorg. Chem., 1993, 32, 5544-5552.
16 E. Sappa, G. Pasquinelli, A. Tiripicchio and M. Tiripicchio Camellini, J. Chem. Soc., Dalton Trans., 1989, 601-605.

17 W. Imhof, B. Eber, G. Huttner and C. Emmerich, J. Organomet. Chem., 1993, 447, 21-30.
18 R. S. Dickson, T. de Simone, R. J. Parker and G. D. Fallon, Organometallics, 1997, 16, 1531-1537.
19 I. Ara, J. Forniés, A. García, J. Gómez, E. Lalinde and M. T. Moreno, Chem.-Eur. J., 2002, 8, 3698-3716.
20 M. A. Bennett, C. J. Cobley, A. D. Rae, E. Wenger and A. C. Willis, Organometallics, 2000, 19, 1522-1533.
21 M. A. Bennett, J. Castro, A. J. Edwards, M. R. Kopp, E. Wenger and A. C. Willis, Organometallics, 2001, 20, 980-989.

22 M. A. Bennett, L. Kwan, A.D. Rae, E. Wenger and A. C. Willis, J. Chem. Soc., Dalton Trans., 2002, 226-233.
23 O. Orama, J. Organomet. Chem., 1986, 314, 273 and references cited therein.
24 G. Hogarth and T. Norman, J. Chem. Soc., Dalton Trans., 1996, 10771085.

25 G. Hogarth and T. Norman, Polyhedron, 1996, 15, 2859-2867 and references cited therein.
26 M. I. Bruce, M. L. Williams, J. M. Patrick and A. H. White, J. Chem. Soc., Dalton Trans., 1985, 1229-1234.
27 E. Sappa, J. Organomet. Chem., 1988, 352, 327-336.
28 C. J. Adams, M. I. Bruce, B. W. Skelton and A. H. White, J. Organomet. Chem., 1993, 447, 91-101.
29 W. Oberhauser, C. Bachmann, T. Stampfl and P. Brueggeller, Inorg. Chim. Acta, 1997, 256, 223-234.
30 M. J. Went, Polyhedron, 1995, 14, 465-481 and references cited therein.
31 E. Louattani, J. Suades, K. Urtiaga, M. I. Arriortua and X. Solans, Organometallics, 1996, 15, 468-471.
32 L. R. Falvello, J. Forniés, J. Gómez, E. Lalinde, A. Martín, F. Martínez and M. T. Moreno, J. Chem. Soc., Dalton Trans., 2001, 2132-2140.
33 B. C. Ward and J. L. Templeton, J. Am. Chem. Soc., 1980, 102, 15321538.

34 A. K. Powell and M. J. Went, J. Chem. Soc., Dalton Trans., 1992, 439445.

35 D. Rodewald, C. Schulzke and D. Rehder, J. Organomet. Chem., 1995, 498, 29-35.
36 R. H. Holm and G. R. Eaton, Inorg. Chem., 1971, 10, 805-811.
37 D. Osella and J. Hanzlik, Inorg. Chim. Acta, 1993, 213, 311-317.
38 J.-L. Chen, L.-Y. Zhang, Z.-N. Chen, L.-B. Gao, M. Abe and Y. Sasaki, Inorg. Chem., 2004, 43, 1481-1490.
39 M. A. Bennett, G. Chung, D. C. R. Hockless, H. Neumann and A. C. Willis, J. Chem. Soc., Dalton Trans., 1999, 3451-3462.
40 M. A. Bennett, M. J. Byrnes and A. C. Willis, Organometallics, 2003, 22, 1018-1028.
41 M. A. Bennett, M. J. Byrnes, G. Chung, A. J. Edwards and A. C. Willis, Inorg. Chim. Acta, 2005, 358, 1692-1708.
42 M. A. Bennett, M. J. Byrnes and I. Kovačik, J. Organomet. Chem., 2004, 689, 4463-4474 and references cited therein.
43 J. R. Berenguer, M. Bernechea, J. Forniés, J. Gómez and E. Lalinde, Organometallics, 2002, 21, 2314-2324.
44 M. Gaye, B. Demerseman and P. H. Dixneuf, J. Organomet. Chem., 1992, 424, 65-70.
45 I. Moldes, E. de la Encarnación, J. Ros, A. Alvarez-Larena and J. F. Piniella, J. Organomet. Chem., 1998, 566, 165-174.
46 J. R. Berenguer, M. Bernechea, J. Forniés, A. García and E. Lalinde, Organometallics, 2004, 23, 4288-4300.
47 B. P. Sullivan, D. J. Salmon and T. J. Meyer, Inorg. Chem., 1978, 17, 3334-3341.

48 D. Xu, J. Z. Zhang and B. Hong, J. Phys. Chem. A, 2001, 105, 79797988.

49 A. J. Carty and A. Efraty, Chem. Commun. (London), 1968, 15591561.

50 A. J. Carty and A. Efraty, Can. J. Chem., 1968, 46, 1598-1599.
51 W. A. Anderson, A. J. Carty and A. Efraty, Can. J. Chem., 1969, 47, 3361-3366.
52 A. J. Carty and A. Efraty, Inorg. Chem., 1969, 8, 543-550.
53 M. A. Bennett, G. A. Heath, D. C. R. Hockless, I. Kovačik and A. C. Willis, Organometallics, 1998, 17, 5867-5873.
54 L. Wallace, PhD Thesis, Australian National University, 1991.
55 D. Menglet, PhD Thesis, Australian National University, 1996.
56 D. E. Richardson and H. Taube, Inorg. Chem., 1981, 20, 1278-1285.
57 H. Taube, in Surveys of Progress in Chemistry, ed. A. J. Scott, Academic Press: New York, 1973, vol. 6, pp. 1-46.
58 M. A. Bennett, G. A. Heath, D. C. R. Hockless, I. Kovačik and A. C. Willis, J. Am. Chem. Soc., 1998, 120, 932-941.
59 T. S. Knowles, B. J. Howlin, J. R. Jones, D. C. Povey and C. A. Amodio, Polyhedron, 1993, 12, 2921.
60 T. S. Knowles, M. E. Howells, B. J. Howlin, G. W. Smith and C. A. Amodio, Polyhedron, 1994, 13, 2197.
61 J. C. J. Bart, Acta Crystallogr., Sect. B, 1969, 25, 489-497.
62 G. Beran, A. J. Carty, P. C. Chieh and H. A. Patel, J. Chem. Soc., Dalton Trans., 1973, 488-495.
63 Y. S. Wong, S. Jacobson, P. C. Chieh and A. J. Carty, Inorg. Chem., 1974, 13, 284-290.
64 C. Charrier, W. Chodkiewicz and P. Cadiot, Bull. Soc. Chim. Fr., 1966, 1002-1011.
65 A. Altomare, G. Cascarano, C. Giacovazzo and A. Guagliardi, J. Appl. Crystallogr., 1993, 26, 343-350.
66 P. J. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, R. de Gelder, R. Israel and J. M. M. Smits, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands, 1994.
67 TEXSAN, Single Crystal Structure Analysis Software, Version 1.8, Molecular Structure Corporation, The Woodlands, TX, 1997.
68 D J. Watkin, C. K. Prout, J. R. Carruthers, P. W. Betteridge and R. J. Cooper, CRYSTALS Issue 11, Chemical Crystallography Laboratory, Oxford, 2001.
69 International Tables for X-ray Crystallography, The Kynoch Press, Birmingham, England, vol. IV, Table 2.2A, 1974.
70 International Tables for X-ray Crystallography, Kluwer Academic, Dordrecht, 1992, vol. C.

[^0]: Research School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia. E-mail: bennett@rsc.anu.edu.au; Fax: +61 26125 3216; Tel: +61 261253639
 \dagger Present address: School of Chemistry, Monash University, Box 23, 3800 Clayton, Victoria Australia.

