Prevalence of Heterophoria and Associations with Refractive Error, Heterotropia and Ethnicity in Australian School Children

Jody F. Leone¹
Elaine Cornell¹
Ian G. Morgan²
Paul Mitchell¹
Annette Kifley³
Jie Jin Wang³
Kathryn A. Rose¹

1. Discipline of Orthoptics, Faculty of Health Sciences, University of Sydney, Australia.
2. ARC Centre of Excellence in Vision Science, School of Biology, The Australian National University, Canberra, Australia.
3. Department of Ophthalmology (Centre for Vision Research, Westmead Millennium Institute, Westmead Hospital), University of Sydney, Westmead, Australia.

Corresponding author and reprint requests:
Dr Kathryn Rose
Discipline of Orthoptics, Faculty of Health Sciences, University of Sydney (Cumberland Campus),
PO Box 170,
Lidcombe NSW 1825, Australia.
Email: k.rose@usyd.edu.au

Word Count: 2607

The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article to be published in BJO editions and any other BMJPGL products to exploit All subsidiary rights, as set out in our licence (http://group.bmj.com/products/journals/instructions-for-authors/licence-forms).
ABSTRACT

Aims: To establish the prevalence of heterophoria and its association with refractive error and ethnicity in a population-based study of Australian school children.

Methods: The Sydney Myopia Study is a stratified, random cluster (school-based) sample of 4093 students (examined: 2003-2005). Two samples aged 6 (n=1692) and 12 years (n=2289) without heterotropia were included. Prevalent heterophoria was assessed using cover un-cover and prism bar alternate cover testing at 33cm and 6m distance fixation. Cycloplegic auto-refraction (1% cyclopentolate) was performed. Significant refractive error was defined as ≤-0.50SE and ≥+2.00SE.

Results: Exophoria was highly prevalent at near fixation (age 6: 58.3%, age 12: 52.2%). Orthophoria predominated at distance fixation (age 6: 85.4%, age 12: 90.9%). Hyperopia was associated with esophoria at near (age 6: odds ratio [OR] 1.7, 95% confidence interval (CI) 1.1-2.8, age 12: OR 2.9, CI 1.1-2.8) and distance fixation (age 6: OR 9.7, CI 3.5-26, age 12: 9.6 OR, CI 4.2-22). Myopia was associated with exophoria at near (OR 2.1, CI 1.5-2.7) and distance fixation (OR 3.1, CI 2.1-4.4) for 12 year old children only. Exophoria was more frequent in children of East Asian than European Caucasian origins, even after adjusting for refraction; at near (age 6: OR 1.4, CI 1.0-2.0, age 12: OR 1.4, CI 1.0-1.9) and distance (age 12: OR 1.7, CI 1.1-2.7).

Conclusion: Contrary to other studies, exophoria, not orthophoria, was predominant for near. Exophoria was more prevalent in children of East Asian origin. Longitudinal studies are needed to establish if incident heterotropia is preceded by heterophoria.

Word Count Abstract only: 250

Key Words: Strabismus/Phoria, Exotropia/Exophoria/Esotropia/Esophoria, Refractive Errors, Ethnic Groups, Epidemiology
Heterophoria is a latent deviation of the eyes that is only revealed when fusional vergence is disrupted, allowing the eyes to assume their position of rest. Upon resumption of binocular viewing, fusional vergence is used to return the eyes to alignment. Heterophoria is categorised by the direction of movement of the eyes when they are dissociated; esophoria describes an inward horizontal movement, while exophoria is an outward movement. Orthophoria is the absence of any movement on dissociation. Dissociative vertical movements of the eyes, either upwards (hyperphoria) or downwards (hypophoria) are infrequent, but can sometimes occur in combination with horizontal heterophoria’s.

While heterophoria is generally without symptoms, poorly controlled heterophoria may lead to symptoms such as headache, blurred vision, diplopia or confusion, with the possibility of a manifest intermittent heterotropia. Failure to compensate for a heterophoria will result in a heterotropia, but the failure of compensation does not depend on the size of the heterophoria, but rather on inadequate fusional reserves.

There have been differences in the reported prevalence and distribution of heterophoria at near. However, previous studies of children are in agreement that orthophoria predominates at distance fixation, with a relatively tight (leptokurtic) distribution. Heterophoria prevalence has been reported for European Caucasian populations, but there are no reports for East Asian samples. Factors reported to be associated with heterophoria include age and gender. While a relationship between heterophoria and refractive error has often been claimed, studies specifically investigating this link have reported no association, or no direct relationship between the amount of ametropia and heterophoria. In this paper, we aim to document the prevalence of heterophoria and its subtypes in a large school-based sample of Australian school-aged children and to examine its associations.

MATERIALS AND METHODS

The Sydney Myopia Study was a school-based, cross sectional, survey of refraction and eye health in 4093 Sydney schoolchildren during 2003-2005. Detailed study methods have been described elsewhere. Schools were randomly selected using a stratified cluster sampling design.

All tests of ocular alignment were performed by orthoptists. Corneal reflections (Hirschberg test) were observed, followed by a cover/uncover test. Children with manifest heterotropia were excluded from analysis. In all other children, a slow alternate cover test (using a Clement Clarke Ltd. occluder, Haag-Streit, UK) was performed to fully dissociate the eyes and reveal any heterophoria. At 33cm, the Clement Clark fixation stick, with standardised detailed targets was used. Initially the target was briefly moved sideways to ensure unioocular fixation. The child was also asked to describe detail within the target, older children read the reduced Snellens optotypes. At 6 m, a detailed picture was used. If a child wore glasses, both the prevalent heterophoria (without glasses) and the presenting heterophoria (with habitual glasses worn) were assessed. Heterophoria size was measured using the alternate prism cover test using Luneau prism bars in 2 prism dioptre (PD) steps, and classified as ≥2PD of esophoria, exophoria, or hyperphoria. Orthophoria was defined as a heterophoria between >2PD and <2PD. In this study, prevalent heterophoria was analysed unless specified otherwise. Heterophoria assessment was not performed using best corrected glasses, as this would induce a short-term change in heterophoria.
Cycloplegic autorefraction was performed on all children (RK-F1 Auto Ref-Keratometer; Canon, Tokyo, Japan) using amethocaine (0.5%) instilled 2 minutes prior to 1 drop each of cyclopentolate (1%) and tropicamide (1%) and repeated after 5 minutes. Autorefraction was performed an average 25 minutes after the instillation of the last drops. Cycloplegia was assessed by pupil diameter ≥6mm and no reaction to light or accommodative target. Clinically significant refractive error was defined for myopia as ≤-0.50SE and for hyperopia if spherical equivalent refraction was ≥+2.00SE.

Data were entered into a Microsoft Access database (Microsoft, Redmond, WA). All statistical analysis was performed using Statistical Analysis System software, version 8.2 (SAS Institute, Cary, NC). The proportion of children with orthophoria, exophoria and esophoria was adjusted for cluster by schools. These rates are compared between age samples and demographic subgroups using chi-square tests for independence. Among children with heterophoria, mean PD of heterophoria were compared between age samples using two-sample t-tests. Polytomous logistic regression with a generalised logit link was used to compare the odds of having heterophoria between children in different refractive and demographic subgroups. All odds ratios are unadjusted unless otherwise stated. In these analyses, orthophoria was used as the reference response category.

Approval for the study was obtained from the Human Research Ethics Committee, University of Sydney; the Department of Education and Training in New South Wales; Catholic Education Office and private schools. The study adhered to the tenets of the declaration of Helsinki. Informed written consent from at least one parent and verbal assent from each child were obtained prior to examination.

RESULTS

Two age cohorts, 1740 students in Year 1 (mean age 6.7 years, age range 5.5 to 8.1 years, standard deviation [SD] 0.42 years) and 2353 students in Year 7 (mean age 12.7 years, age range 11.1 to 14.4 years, SD 0.44 years) were examined, with response rates among eligible 6- and 12-year old children of 77.6% and 75.3%, respectively. Among the children included in this study, 50.7% of the 6-year old children were boys, as were 50.8% of the 12-year old children. Most children were of European Caucasian (63.4% of the 6- and 60.0% of the 12-year old children) or East Asian ethnicity (17.3% of the 6- and 14.9% of the 12-year old children). Other ethnic groups were too small to permit meaningful analysis. Of 1740 children aged 6 years, we excluded 48 (2.8%) children with heterotropia of whom 26 had esotropia, 14 exotropia, 7 microtropia and 1 child had VIth cranial nerve palsy.17 Of 2353 children aged 12 years, we excluded a similar proportion children with heterotropia (2.7% n=64), of whom 21 had esotropia, 27 exotropia, and 16 had a microtropia.18

Prevalence of Heterophoria

Figure 1 shows prevalence of heterophoria for the two age groups for near and distance fixation. At near fixation, exophoria was the most frequently occurring prevalent heterophoria (that is without glasses), present in 58.3% of the 6-year old and 52.2% of the 12-year old children. At distance fixation, 85.4% of the 6-year old and 90.9% of the 12-year old children were orthophoric. Esophoria was rare at distance fixation (1.0%, 1.3% for ages 6 and 12 respectively) and had a low prevalence at near fixation (9.2%, 10.4% for ages 6 and 12 respectively), see Figure 1. There was a trend towards an increasing proportion of orthophoria
in the older age group, and significantly less exophoria in the older age group (7.8%) compared with the younger age group (13.5%), at distance fixation \((p = 0.007)\) (Figure 1). There was no significant difference found between the age groups in the other forms of heterophoria at either distance. Vertical heterophoria was detected in a small number of children at both near \((n=9, 0.2\%)\) and distance \((n=4, 0.1\%)\), mostly co-existing with a horizontal heterophoria. There were no significant gender differences in heterophoria, apart from 6-year old girls having more exophoria at near fixation \((OR 1.4, 95\% CI 1.1-1.7)\).

Size of Prevalent Heterophoria

Figure 2 shows the distribution of heterophoria for the two age groups for near and distance fixation. A Kolmogorov-Smirnov goodness-of-fit test showed that the size (measured in PD) of horizontal prevalent heterophoria at both distances and in both age groups was not normally distributed \((p<0.0001)\). The distribution of near heterophoria for both age groups was mildly leptokurtic and skewed towards exophoria (kurtosis: 1.6 in children aged 6 years and 5.3 in children aged 12 years). Distance heterophoria was markedly leptokurtic and mildly skewed towards exophoria for both age groups (kurtosis: 20.2 in children aged 6 years and 38.5 in children aged 12 years) (Figure 2).

The average magnitude of prevalent heterophoria at near fixation was lower in the 12-year old (exophoria: 3.9PD, esophoria: 3.8PD) than in the 6-year old children (exophoria: 4.9PD \(p<0.0001\), esophoria: 4.4PD \(p=0.01\)). However, the difference was not clinically significant, at only around 1PD. There was no significant age difference in prevalent heterophoria size noted for distance fixation.

Large Prevalent Heterophoria

A small number of children, 82 (4.9%) aged 6 and 74 (3.2%) aged 12, had a large prevalent heterophoria (that is \(\geq 10PD\), maximum 25 PD), usually at near (80.7% of cases aged 6 and 85.1% aged 12 years). The remainder were either at distance only (8.4% of cases aged 6 and 6.8% aged 12 year) or at both near and distance fixation (10.8% of cases aged 6 and 8.1% aged 12 years). In children with large heterophoria aged 12, 45.6% had a significant refractive error in comparison to 17.4% of those without large heterophoria \((p<0.0001)\). However, in children with large heterophoria aged 6, the proportion with refractive error was not significantly different (19% with large heterophoria, 13.4% without, \(p=0.16\)).

Relationship between Prevalent Heterophoria, Refractive Error and Ethnicity

The proportion of children aged 6 with hyperopia was 12.1%, and myopia 1.4%. In the children aged 12 the proportion with hyperopia was lower (4.3%) but myopia was higher (12.3%). Table 1 shows the association between heterophoria and refractive error for the two age groups. Significant associations were found between cycloplegic refractive error and prevalent heterophoria (measured without glasses), for both near (6 year-old children: \(p=0.03\), 12 year-old children: \(p<0.0001\)) and distance fixation (both age groups: \(p<0.0001\)). While esophoria was rare, children with hyperopia were significantly more likely than those without refractive error to have esophoria at near (age 6: OR 1.7; age 12: OR 2.9) and distance (age 6: OR 9.7; age 12: OR 9.6) (Table 1). The proportion of children with myopia and esophoria at near was less than 1% of the total sample, and 8.6% of the myopic population. In the older children, those with myopia were significantly more likely than those without refractive error...
to be exophoric at near and distance (Table 1). This association was not evident in the younger children, in whom very few had myopia.

Table 2 shows the prevalence between ethnicity and heterophoria for the two age groups. East Asian children were significantly more likely than European Caucasian children to be exophoric at near, in both 6 year (OR 1.4, 95% CI 1.1-1.9) and 12 year groups (OR 1.8, 95% CI 1.5-2.5), and at distance in the 12 year group (OR 2.7, 95% CI 1.9-4.1) (Table 2). After adjusting for refractive error, gender and age, these ethnicity associations with exophoria at near, remained significant for both children aged 6 years (adjusted OR 1.4, 95% CI 1.0-2.0) and 12 years (adjusted OR 1.4, 95% CI 1.0-1.9), and the association with exophoria at distance remained significant for the 12 year-old group (adjusted OR 1.7, 95% CI 1.1-2.7). Average inter-pupillary distance (IPD) in European Caucasian and East Asian children was not significantly different at age 6 years (56.2mm, 56mm respectively, $p=0.4$). While the average IPD in children aged 12 years is larger, there was still no significant difference between European Caucasian (59.7mm) and East Asian children (60.1mm) ($p=0.7$).
Table 1 Number, proportion and odds ratios for prevalent heterophoria (without glasses) among children aged 6 and 12 years with different refractive status by myopia and hyperopia.

<table>
<thead>
<tr>
<th></th>
<th>At Near</th>
<th>Orthophoria reference group</th>
<th>Esophoria</th>
<th>Exophoria</th>
<th>At Distance</th>
<th>Orthophoria reference group</th>
<th>Esophoria</th>
<th>Exophoria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (%)</td>
<td>(%)</td>
<td>OR (95% CI)</td>
<td>n (%)</td>
<td>OR (95% CI)</td>
<td>n (%)</td>
<td>(%)</td>
<td>OR (95% CI)</td>
</tr>
<tr>
<td>Age 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No significant refractive error†</td>
<td>474 (33)</td>
<td>122 (8)</td>
<td>1.0</td>
<td>852 (59)</td>
<td>1.0</td>
<td>1224 (86)</td>
<td>7 (0.5)</td>
<td>1.0</td>
</tr>
<tr>
<td>Myopia‡</td>
<td>5 (21)</td>
<td>1 (4)</td>
<td>0.8 (0.1-6.7)</td>
<td>18 (75)</td>
<td>2.0 (0.7-5.4)</td>
<td>20 (91)</td>
<td>0 (-)</td>
<td>-</td>
</tr>
<tr>
<td>Hyperopia§</td>
<td>66 (33)</td>
<td>29 (14)</td>
<td>1.7 (1.1-2.8)</td>
<td>107 (53)</td>
<td>0.9 (0.6-1.3)</td>
<td>163 (82)</td>
<td>9 (5)</td>
<td>9.7 (3.5-26)</td>
</tr>
<tr>
<td></td>
<td>Overall p for association = 0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No significant refractive error†</td>
<td>742 (39)</td>
<td>195 (10)</td>
<td>1.0</td>
<td>961 (51)</td>
<td>1.0</td>
<td>1743 (93)</td>
<td>20 (1)</td>
<td>1.0</td>
</tr>
<tr>
<td>Myopia‡</td>
<td>72 (26)</td>
<td>13 (5)</td>
<td>0.7 (0.4-1.3)</td>
<td>192 (69)</td>
<td>2.1 (1.5-2.7)</td>
<td>228 (83)</td>
<td>0 (-)</td>
<td>-</td>
</tr>
<tr>
<td>Hyperopia§</td>
<td>36 (37)</td>
<td>27 (28)</td>
<td>2.9 (1.7-4.8)</td>
<td>34 (35)</td>
<td>0.7 (0.4-1.2)</td>
<td>82 (84)</td>
<td>9 (9)</td>
<td>9.6 (4.2-22)</td>
</tr>
<tr>
<td></td>
<td>Overall p for association <0.0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† No significant refractive error defined as spherical equivalent >-0.5SE to < +2.00SE
‡ Myopia defined as: spherical equivalent ≤-0.5SE
§ Hyperopia defined as: spherical equivalent ≥+2.00SE

The significant odds of esophoria rather than orthophoria was increased in those with hyperopia compared to those with no significant refractive error.

The significant odds of exophoria rather than orthophoria was increased in those with myopia compared to those with no significant refractive error.
Table 2 Prevalent heterophoria (without glasses) prevalence in children aged 6 and 12 years attending the Sydney Myopia Study, by ethnicity.

<table>
<thead>
<tr>
<th></th>
<th>Esophoria</th>
<th>Exophoria</th>
<th>Orthophoria reference group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>% (95% CI*)</td>
<td>P†</td>
</tr>
<tr>
<td>AT NEAR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>European Caucasian</td>
<td>119</td>
<td>11.1 (8.8-13.4)</td>
<td></td>
</tr>
<tr>
<td>East Asian</td>
<td>8</td>
<td>2.7 (1.1-4.4)</td>
<td>0.001</td>
</tr>
<tr>
<td>Age 12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>European Caucasian</td>
<td>166</td>
<td>12.2 (10.5-13.8)</td>
<td></td>
</tr>
<tr>
<td>East Asian</td>
<td>17</td>
<td>5.0 (3.5-6.6)</td>
<td>0.04</td>
</tr>
<tr>
<td>AT DISTANCE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>European Caucasian</td>
<td>16</td>
<td>1.5 (0.7-2.3)</td>
<td></td>
</tr>
<tr>
<td>East Asian</td>
<td>1</td>
<td>0.4 (0.0-0.9)</td>
<td>0.2</td>
</tr>
<tr>
<td>Age 12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>European Caucasian</td>
<td>21</td>
<td>1.6 (1.0-2.1)</td>
<td></td>
</tr>
<tr>
<td>East Asian</td>
<td>2</td>
<td>0.6 (0.0-1.4)</td>
<td>0.2</td>
</tr>
</tbody>
</table>

*Confidence intervals adjusted for cluster sampling
†p values compare the likelihood of esophoria or exophoria rather than orthophoria when comparing children of East Asian ethnicity versus children of European Caucasian ethnicity. For esophoria at distance, numbers were too small for a meaningful statistical comparison.
The Impact of Habitual Glasses on the Measure of Heterophoria

There were 35 children aged 6 years and 300 children aged 12 years who wore glasses habitually. Of those who had a small heterophoria (<10PD) (30 aged 6, 269 aged 12), only a small proportion had a substantial change (>4PD) in heterophoria size with their glasses (6.7% age 6 and 10.4% age 12). However, for those who had a large heterophoria (≥10PD) (5 aged 6, 31 aged 12) this proportion was much higher (2 aged 6 [40%], 13 aged 12 [41.9%]). In most cases, the change with glasses diminished the size of the heterophoria (85% age 6 and age 12). However, seven children developed a significantly larger heterophoria (>4PD) when wearing their glasses. In all cases the glasses worn were not appropriate for the direction of their prevalent heterophoria, three become more exophoric when wearing their hyperopic prescription, and four became more esphoric when wearing their myopic prescription.

Heterophoria and Heterotropia

Figure 3 compares the proportions of heterophoria with heterotropia for the two age groups. 62 children were found to have heterotropia on cover test examination. While esophoria was uncommon for both age groups, esotropia was the predominant heterotropia, particularly for constant heterotropias. For intermittent heterotropias, the proportion of esotropia was lower (6 years 35%, 12 years 25.7%), and more closely resembled the proportion of esophoria for both near (6 years 13.6%, 12 years 16.6%) and distance (6 years 7% and 12 years 14.6%). However, in absolute numbers, the number of children with detectable heterophoria was much higher than the number of those with heterotropia (Figure 3).

DISCUSSION

Consistent with other studies, we found that orthophoria was the main phoric state at distance fixation and the distribution of heterophoria size was leptokurtic. In our population the distribution was skewed towards exophoria in both the 6 and 12 year-old children. This was true for both major ethnic groups in the sample – European Caucasian and East Asian. This tight distribution of heterophoria at distance around orthophoria suggests an active biological process of orthophorisation, as previously postulated. This is likely to result from the eyes being aligned for distance viewing of parallel light rays using tonic vergence.

While many studies of similarly aged children have reported that orthophoria is the most frequent state for near fixation, we found that esophoria predominated. After stratification, this finding persisted in the European Caucasian and East Asian populations. However, the children of East Asian ethnicity had significantly more esophoria and less esophoria than European Caucasian children, even after adjustment for refractive error. This parallels the high prevalence of predominantly intermittent exotropia in East Asian populations. Wider IPD has been attributed to East Asian populations, and it has been suggested that this may be linked to a higher prevalence of esophoria. However, in our population there was no statistical difference in IPD measures between European Caucasian and East Asian children. There must be another mechanism, not yet identified, contributing to more exophoria amongst East Asian children.

Heterophoria measured without wearing glasses was associated with refractive error. Esophoria was associated with hyperopia for both age groups, and this parallels the well known association between esotropia and hyperopia and may be due to the need for greater
accommodative efforts to overcome hyperopia. Acting in concert with convergence, this tendency impacts on ocular alignment, causing an esodeviation.13 Exophoria was associated with myopia, but only in the 12 year age group. This association may be due to a reduced demand for accommodation. Again, it parallels the association between intermittent exotropia, particularly convergence weakness type21 and myopia. While lack of accommodative effort may not in itself cause the ocular divergence, it may allow both eyes to assume a physiological position of rest, that is, slightly divergent. The orthophoric state may require slight amounts of accommodative convergence to maintain a parallel position of the eyes.1

While they are very small in number, those with myopia and near esophoria are important clinically, because it has been reported that progressive additional lenses can significantly reduce myopic progression in this group.24 This may help to reduce the development of pathological myopia, especially since this group is more prone to increased progression.25

Clinical experience in the area of intermittent exotropia shows that it may be preceded by a large exophoria which has decompensated and there is the expectation that intermittent esotropia may be preceded by an esophoria. In order to determine if decompensation of pre-existing heterophoria is the major developmental pathway for the appearance of some heterotropias, particularly intermittent heterotropias, then longitudinal studies of heterophoria and incident heterotropia in children will be needed to establish this link.
ACKNOWLEDGMENTS
We thank the parents and children who participated in this study, and the principals and teachers who helped to facilitate it. We also thank the many health professionals who assisted in data collection, and the teams involved in data entry.

Competing interests: None declared.

Funding: Funding for the Sydney Myopia Study was provided by a grant from the Australian National Medical & Health Research Council (ID 253732) and the Vision Co-operative Research Centre. I. Morgan’s contribution was supported by a grant from the Australian Research Council (COE561903). J. Leone holds a National Health and Medical Research Council Biomedical (Dora Lush) Postgraduate Research Scholarship (Scholarship ID 457173). Neither sponsor participated in the design or conduct of the study, collection, analysis or interpretation of the data, or in the preparation, review, or approval of the manuscript.

FIGURE LEGENDS

Figure 1 Percentage of different types of prevalent heterophoria (without glasses) in children aged 6 and 12 years, at near and at distance. The only significant differences, when comparing percentages between the two age groups occurred only at distance fixation for orthophoria (p=0.01), and for exophoria (p=0.007).

Figure 2 Bar graphs demonstrating the distribution of prevalent heterophoria (measured at near and distance fixation) in PD (prism dioptres) for all children aged 6 and 12 years (negative values indicate exophoria and positive values indicate esophoria).

Figure 3 Proportions of horizontal heterophoria in comparison to proportions of intermittent, constant and all heterotropia in children aged 6 and 12 years.
REFERENCES

Figure 1 Percentage of different types of prevalent heterophoria (without glasses) in children aged 6 and 12 years, at near and at distance. The only significant differences, when comparing percentages between the two age groups occurred only at distance fixation for orthophoria (p=0.01), and for exophoria (p=0.007).
Figure 2 Bar graphs demonstrating the distribution of prevalent heterophoria (measured at near and distance fixation) in PD (prism dioptres) for all children aged 6 and 12 years (negative values indicate exophoria and positive values indicate esophoria).
Figure 3 Proportions of horizontal heterophoria in comparison to proportions of intermittent, constant and all heterotropia in children aged 6 and 12 years.

6 year old children

12 year old children