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Abstract

Tools from geometry and topology can be applied in a wide variety of
settings. In particular, they are adept at exploring and summarising the
shape of data. By considering the shape of objects, we can answer questions
related to object reconstruction and classification problems. These problems
often face difficulty distinguishing signals from noise, which can be over-
come using ideas from persistent homology and computational geometry.
We first look at an application of geometry and topology to learning the ab-
stract structure of embedded stratified spaces and then consider an object
classification problem relating to human mesenchymal stem cells.
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Introduction

But in the end it’s only a passing
thing, this shadow; even
darkness must pass.

J. R. R. Tolkien, The Lord of the
Rings

This thesis can be split into two parts, with Chapters 1 and 2 forming the
first, and Chapter 3 the second. Chapter 1 presents an algorithm for learning
the abstract structure underlying an embedded graph |G|⊂ Rn given an ε-
sample P of |G|, as well as a method for modelling the embedding. Learn-
ing the abstract structure is extended to embedded 2-complexes |X|⊂ Rn

from ε-samples P in Chapter 2. Chapter 3 is a change in topic and pace,
which explores the use of persistent homology and persistence diagrams
to identify abnormal growth patterns in cultured human mesenchymal stem
cells.

While these topics seem disconnected, they can be considered two sides
of the same dice. In both settings, we are using tools from geometry and
topology to understand the shape of the data at hand. In Chapters 1 and 2
the end goal is to understand the abstract structure underlying a point cloud,
while in Chapter 3 we use shape to identify subpopulations.

All three chapters aim to be self-contained, and hence there is no back-
ground chapter in this thesis, and readers will find definitions from Chapter 1
repeated in Chapter 2.

People familiar with topological data analysis, computational topology
and computational geometry will notice that Chapters 1 and 2 are centred
on results that could be considered purely problems in computational geom-
etry. This is in part because when working with data sets, topological data
analysis often becomes computational geometry. In particular, this occurs
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2 INTRODUCTION

when we care about the extrinsic structure of the data within the ambient
space, rather than just the intrinsic topology and geometry. Exploring the
computational geometry aspects of these problems comes with benefits as
well as costs. While we are able to develop an algorithm that is more ef-
ficient in terms of time complexity, often the associated proofs about its
correctness are, to quote a supervisor, ‘gross’. This grossness stems from
the expressions which bound distances between various objects, as they do
not simplify to a ‘nice, neat, expression’. These expressions could be ap-
proximated to become ‘nicer’, without affecting the proofs, but then the
assumptions placed upon our underlying spaces become stricter.

Chapter 3 explores the use of geometric and topological tools to un-
derstand growth patterns in human mesenchymal stem cells. In particular,
we use morphological features of the cells to identify subgroups within ex-
perimental conditions. By identifying the sub-populations, we are able to
clean the data when investigating the impact of environmental conditions
on multi-potent cells in the future, as well as potentially having an unbiased
method for identifying unipotent cells. The cells were purchased, cultured
and imaged by Dr Florian Rehfeldt (Bayreuth University).



CHAPTER 1

Learning and Modelling Graphs

Instead of a stable truth, I choose
unstable possibilities.

Haruki Murakami, Killing
Commendatore

Increases in the quantity and complexity of collectable data have led to
the search for new methods for efficiently discovering and modelling their
underlying structures. The importance of dimensionality reduction of large
amounts of data grows with the embedding dimension. By expanding the
class of underlying structures which can be detected and modelled, we aim
to address some of the difficulties. To improve dimensionality reduction’s
efficiency and accuracy, we remove the manifold assumption where the di-
mension is constant and instead treat it as a stratified space, learning the
local dimension in the algorithm. We focus on one-dimensional stratified
spaces (i.e. graphs) and here provide a new method for dimensionality re-
duction and compression.

Manifold learning is a method of detecting and modelling structures un-
derlying data sets. There are numerous algorithms and theorems for learning
geometric and topological features of manifolds from (noisy) samples, such
as dimension or the manifold itself (see [10], [13], [14]). These algorithms
make assumptions about the manifold and the sampling procedure, often
in the form of curvature restrictions and conditions on the sample’s density
and noise. Unfortunately, these assumptions are not satisfied by point clouds
arising in many applications, such as geospatial transportation network data
of vehicle movement. We move towards resolving this problem by expand-
ing the set of allowable underlying structures to include stratified spaces. A
stratified space is a space described by gluing together (manifold) pieces,
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4 1. LEARNING AND MODELLING GRAPHS

called strata. There are no restrictions placed upon each stratum’s dimen-
sion, and the gluing can give rise to a variety of interesting and complex
local structures.

Bendich et al. ([2], [3]) describe an algorithm which, under certain con-
ditions, can identify if two points have been sampled from the same stratum
of a stratified space. This algorithm does not provide a method for learn-
ing the global abstract structure. In related work, Stolz et al. ([22]) present
an algorithm for detecting when points have been sampled from two inter-
secting manifolds which is a cruder splitting than the splitting into strati-
fied subspaces. They have some experimental verification but no theoretical
guarantees.

The closest previous work to this paper is [1], in which Aanjaneya et al.
consider reconstructing metric graphs to detect branch points and the graph
structure. There are a few crucial differences. They focus in on the recon-
struction of the metric, with input intrinsic distances on the metric graph
(plus noise) and the aim to reconstruct a metric graph that is homeomorphic
and close as metrics. This means that the theoretical guarantees are about
the lengths of edges in the metric graph instead of geometric conditions on
an embedding. Crucially, they do not need to consider vertices of degree 2

as in a metric space setting these are points on an edge.
In contrast, this chapter describes an algorithm for modelling a linear

embedding of a simple graph from a point cloud sample and provide theoret-
ical guarantees in terms of the geometric embedding that the graph structure
modelled is equivalent to the structure embedded.

Definition 1.0.1 (Graph). A graph G consists of

1. a set of vertices V = {vi}nv
i=1,

2. a set of edges E = {(vj1 , vj2)}ne
j=1.

For any graph G, the boundary operator ∂G : E → V × V , maps an
edge to the two boundary vertices. We can represent ∂G via the boundary
matrix B, which is the nv×ne matrix with B[i, j] = 1 if vi = vj1 or vi = vj2 ,
and 0 otherwise. Edges (vj1 , vj2) are open, and their boundary consists of
the two vertices.
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Given a graph G, we can embed it into Rn in numerous ways. We will
restrict to linear embeddings, such that at degree 2 vertices, the angle be-
tween edges is not π.

Definition 1.0.2 (Linear embedding). A linearly embedded graph

|G|= (G, ϕG) ⊂ Rn

is a graph G, and a map ϕG : G→ Rn, such that

1. on the vertex set V , ϕG is injective, and we denote ϕG(v) by v,
2. on E, ϕG is defined by linear interpolation: the embedding of an

edge (u, v) is the line segment joining ϕG(u) and ϕG(v), denoted
ϕG(u)ϕG(v) = uv,

3. embedded edges uv, u′v′ only intersect if they share a boundary ver-
tex, say v′ = v, and their intersection is ϕG(v).

We restrict our attention to embedded graphs |G| such that at a degree two
vertex v, the embedded edges, say uv, wv form an angle α ̸= π.

Please note that with an abuse of notation we will usually use v to denote
both the abstract vertex and the embedded location ϕG(v), and use uv to
denote both the abstract edge and the embedded image of that edge by ϕG. It
should always be clear from context whether we are referring to an element
in the abstract structure or to its image in Rn.

Throughout this paper, we use the following conventions. For two points
x, y ∈ Rn, ∥x−y∥ is the distance between x and y in the standard Euclidean
metric on Rn, ⟨x, y⟩ is the inner product of x and y. For a point x ∈ Rn and
a set Y ⊂ Rn, we set

d(x, Y ) := inf
y∈Y
∥x− y∥,

and for two sets X, Y ⊂ Rn,

d(X, Y ) := inf
x∈X,y∈Y

∥x− y∥.

Given a point x ∈ |G|, we can determine if x is on an edge, or is a vertex
by considering the intersection of |G| with a small ball around x. Consider
Br(x) for small r > 0. If x is a vertex, r is less than ∥x − w∥ for all
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vertices w ̸= x and there are no edges uw within r of x, then Br(x) ∩ |G|
is connected, and for each edge containing x, there is a unique point in
∂Br(x). If x is a degree 2 vertex, let the two points on ∂Br(x) be p and q,
then ̸ pxq < π. Now consider x ∈ uv for some embedded edge uv, and take
r < min {∥x− v∥, ∥x− u∥}. If there is some edge wz with d(x,wz) ≤ r,
then Br(x)∩ |G| is disconnected. Otherwise, Br(x)∩ |G| is connected, and
there are two points q, p in ∂Br(x)∩|G|, and ̸ pxw = π. This is an adaption
of the local homology of |G| at x.

We suppose that we do not have the entire embedded graph |G|, but only
a finite sample P . Furthermore, we expect noise so that P ̸⊆ |G|, and we
can only make statements about the distance between P and |G|. We restrict
to sufficiently dense samples P of |G| with bounded noise. Let dH(X, Y )

be the Hausdorff distance between two subsets X, Y of Rn,

dH(X, Y ) := max

{
sup
x∈X

d(x, Y ), sup
y∈Y

d(y,X)

}
.

We consider ε-samples of embedded graphs |G|.

Definition 1.0.3 (ε-sample). Let |G|⊂ Rn be an embedded graph. An ε-
sample P of |G| is a finite subset of Rn such that dH(|G|, P ) ≤ ε.

We can now state the aim of this chapter: given an ε-sample P of a
linearly embedded graph |G|, we want to 1) detect the graph structure G,
and then 2) model ϕG. This is a semi-parametric problem: the parameters
we need to learn are the number of vertices, the number of edges, and the
boundary operator. To do so, we need to decide if p is near a vertex v or far
away from all vertices for each p ∈ P . This partitions our sample P into
two subsets, which intuitively are P0 containing samples p which are near
a vertex, and P1 containing samples p which are not near any vertex. We
define P0 and P1 rigorously in Definition 1.2.5. In the process of partitioning
P , we approximate the local homology at each p ∈ P using radius r. This
requires choosing a scale for approximating |G| from P . The clusters in P0

and P1 correspond to vertices and edges in G respectively, and we can use
the minimal distance between clusters in P1 and P0 to learn the boundary
operator. Using this information, we model the embedding ϕG.
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A necessary but not sufficient condition for a point p to be near a vertex
is Br(p) ∩ |G| being connected. If it is disconnected, p is not near any
vertex, and if it is, we need to check the number of connected components
in Br(p) ∩ |G| to determine if p is near a vertex or not. As p is within ε of
|G|, r must be greater than ε to ensure Br(p) ∩ |G| is non-empty.

Fix R > ε. We first want to approximate BR(x)∩|G|, and then ∂BR(x)∩
|G| from P . We can approximate BR(p) ∩ |G| by considering samples
q ∈ P with ∥p − q∥≤ R. As P is an ε-sample of |G|, we can approxi-
mate ∂BR(p)∩ |G| by considering the samples in a spherical shell SR+ε

R−ε(p)

of inner radius R− ε, outer radius R + ε around p.
We model ϕG by aiming to reconstruct a probability measure ν which

is supported on |G|⊂ Rn. As recorded data has errors, we cannot directly
reconstruct ν, but instead construct an approximating measure νδ such that
νδ is equivalent to the Lebesgue measure, and supp(limδ→0νδ) = |G|. We
form νδ from a categorical mixture model of measures over the individual
strata pieces, with latent variables for strata assignment. We use a Gaussian
convolution for each individual strata piece to form our approximation of ν
with νδ. We derive a log-likelihood function which is maximised through
an Expectation-Maximisation algorithm (Algorithm 3).

In Section 1.1, we present and prove some geometric lemmas used through-
out Sections 1.2 and 1.3, then in Section 1.2 we define (R, ε)-local structure,
describe the (R, ε)-local structure of a vertex and of an edge, before provid-
ing conditions under which we can guarantee what (R, ε)-local structure a
sample p has. Section 1.3 presents the algorithm, relates it to the (R, ε)-local
structure, before proving that the abstract graph identified is equivalent to
the original one. Finally, Section 1.4 describes the modelling process used,
and contains some simulations.

1.1. Some Geometric Lemmas

As motivation for the formulas both in the definitions of local structure
and the geometric assumptions of the graphs’ embedding, we first prove
some geometric lemmas. Throughout our process, we consider ⟨x1−p, x2−
p⟩ for p, x1, x2 samples, and ∥p−x1∥, ∥p−x2∥∈ [R−ε, R+ε]. In particular,
if there are two clusters of points in the spherical shell around a sample p,
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all points (including p) are within ε of an edge uv, and x1 and x2 are from
different clusters, we wish to bound ⟨x1 − p, x2 − p⟩ from above.

Lemma 1.1.1. Fix R > 12ε > 0 and consider a sample p within ε of an
edge uv. Let H be the hyper-plane through p perpendicular to uv. Now
take x1, x2 within ε of edge uv such that ∥p−x1∥, ∥p−x2∥∈ [R− ε, R+ ε]

and x1, x2 are on different sides of H . Then

⟨x1 − p, x2 − p⟩ ≤ −R2 + 2Rε+ 7ε2.

Proof. By assumption ∥x1−p∥, ∥x2−p∥≥ R−ϵ. As x1, p, x2 are all within
ε of uv we know that ̸ (x1px2) ∈ [π − 2 arccos( 2ϵ

R−ϵ
), π]. Together we can

bound

⟨x1 − p, x2 − p⟩ = ∥x1 − p∥∥x2 − p∥cos ̸ (x1px2)

≤ (R− ϵ)2 cos

(
π − 2 arccos

(
2ϵ

R− ϵ

))
≤ (R− ϵ)2

(
2

(2ϵ)2

(R− ϵ)2
− 1

)
≤ −R2 + 2Rε+ 7ε2.

□

We want to distinguish points very close to a vertex of degree 2 as close
to a vertex, from points on an edge. This requires an upper bound on the
angle at any vertex of degree 2 within our geometric assumptions due to
the noise in sampling. The following geometric lemma motivates the upper
bound given in the next section.

Lemma 1.1.2. Fix R ≥ 12ε > 0. Take u, v, w ∈ Rn, and consider the line
segments uv, wv.

Let p, x1, x2 ∈ Rn be such that p and x1 are within ε of vw, x2 is within
ε of uv, and ∥x1 − p∥, ∥x2 − p∥∈ [R− ε, R + ε].

If either



1.1. SOME GEOMETRIC LEMMAS 9

1. ∥p− v∥< 4ε and

π/2 < ̸ uvw < π−arctan
(
R + 3ε

6ε

)
+arcsin

(
R2 − 4Rε− 9ε2

(R + ε)
√
R2 + 6Rε+ 34ε2

)
,

OR

2. ∥p− v∥< (R− ε)/2 and ̸ uvw ≤ π/2

then
⟨x1 − p, x2 − p⟩ > −R2 + 2Rε+ 7ε2.

Proof. Let p̃, x̃1, x̃2 be the projections of p, x1, x2 to uv ∪ wv. Without loss
of generality, we assume p̃, x̃1 ∈ wv ∪ v, and x̃2 ∈ uv. Then there are
ep, e1, e2 ∈ Rn with ∥eq∥, ∥e1∥, ∥e2∥≤ ε and

p = p̃+ ep

x1 = x̃1 + e1

x2 = x̃2 + e2.

Now consider the vectors x1 − p and x2 − p, we have:

⟨x1−p, x2−p⟩ = ⟨x̃1−p̃, x̃2−p̃⟩+⟨x̃1−p̃, e2⟩−⟨x̃1−p̃, ep⟩+⟨e1−ep, x2−p⟩.
(1.1)

We know that ep is perpendicular to vw and thus it is also perpendicular
to x̃1 − p̃, implying ⟨x̃1 − p̃, ep⟩ = 0. Further, we know that

∥x̃1 − p̃∥≤ ∥x1 − p∥≤ R + ε

as distances can only decrease when projecting onto vw. Hence, to bound
⟨x̃1 − p̃, e2⟩ we first split e2 = e′2 + e′′2 where e′2 is the projection of e2 into
the plane spanned by vu and vw. Note that e′′2 is perpendicular to x̃1− p̃ and
hence ⟨x̃1− p̃, e2⟩ = ⟨x̃1− p̃, e′2⟩. From here, we need to split the proof into
the two scenarios.

Assume we are in scenario 1: ∥p− v∥< 4ε and

π/2 < ̸ uvw < π−arctan
(
R + 3ε

6ε

)
+arcsin

(
R2 − 4Rε− 9ε2

(R + ε)
√
R2 + 6Rε+ 34ε2

)
.
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The angle between e′2 and x̃1 − p̃ is either ̸ uvw+ π/2 or ̸ uvw− π/2.
Recall that we assumed ̸ uvw ∈ (π/2, π), so

cos(̸ uvw − π/2) > 0 > cos( ̸ uvw + π/2)

and

⟨x̃1−p̃, e2⟩ = ⟨x̃1−p̃, e′2⟩ ≥ ∥x̃1−p̃∥∥e′2∥cos(̸ uvw+π/2) ≥ −ε(R+ε) sin ̸ uvw.

(1.2)
Combining (1.1) and (1.2) we see

⟨x1−p, x2−p⟩ ≥ ⟨x̃1− p̃, x̃2− p̃⟩− sin ̸ uvw(R+ε)ε− (R+ε)2ε. (1.3)

w

u

v

p

x2

x1

x̃2

x̃1
p̃

FIGURE 1.1. An example of scenario 1.

To bound ⟨x̃1− p̃, x̃2− p̃⟩ we use that ̸ x̃1p̃x̃2 = ̸ uvw+ ̸ vx̃2p̃, that the
sine rule says ∥x̃2−p̃∥sin(̸ x̃2vp̃) = ∥v−p̃∥sin ̸ uvw, and that cos ̸ vx̃2p̃ >

0, cos ̸ uvw < 0 and− sin2 ̸ uvw ≤ − sin ̸ uvw. Together these imply that

⟨x̃1 − p̃, x̃2 − p̃⟩ = ∥x̃1 − p̃∥∥x̃2 − p̃∥cos( ̸ uvw + ̸ vx̃2p̃)

= ∥x̃1 − p̃∥∥x̃2 − p̃∥cos ̸ uvw cos(̸ vx̃2p̃)− sin2 ̸ uvw∥v − p̃∥∥x̃1 − p̃∥

≥ (R + ε)(R + 3ε) cos ̸ uvw − sin ̸ uvw∥v − p̃∥(R + ε).

From the assumptions in this scenario that ∥v − p̃∥≤ 4ε, we can substi-
tute into (1.3) to get
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⟨x1 − p, x2 − p⟩

≥ (R + ε)(R + 3ε) cos ̸ uvw − 4ε(R + ε) sin ̸ uvw −Rε(2 + sin ̸ uvw)− (2 + sin ̸ uvw)ε2

= (R + ε)
√
R2 + 6Rε+ 34ε2 sin

(̸
uvw + arctan

(
R + 3ε

5ε

))
− 2εR− 2ε2.

From our assumptions on ̸ uvw

sin

(̸
uvw + arctan

(
R + 3ε

5ε

))
> − R2 − 4Rε+ ε2

(R + ε)
√
R2 + 6Rε+ 34ε2

.

Thus we conclude

⟨x1 − p, x2 − p⟩

> (R + ε)
√
R2 + 6Rε+ 34ε2

(
− R2 − 4Rε− 9ε2

(R + ε)
√
R2 + 6Rε+ 34ε2

)
− 2εR− 2ε2

= −R2 + 2Rε+ 7ε2.

Now assume we are in scenario 2: ∥v−p∥< (R−ε)/2 and ̸ uvw ≤ π/2.
To prove the claim in this scenario, we will need to further split into two

cases;

(i) ̸ x̃1p̃x̃2 ≤ π/2, and
(ii) ̸ x̃1p̃x̃2 > π/2.

In case (i) we have ⟨x̃1 − p̃, x̃2 − p̃⟩ ≥ 0 and thus

⟨x1 − p, x2 − p⟩ ≥ −3Rε− 3ε3 > −R2 + 2Rε+ 7ε2

as R > 12ε.
In case (ii), thinking of the inner product in terms of the projection of

vector x̃2 − p̃ onto x̃1 − p̃ we get
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⟨x1 − p, x2 − p⟩ ≥ −∥x̃1 − p̃∥∥v − p̃∥−3Rε− 3ε3

≥ −(R + ε)(R− ε)/2− 3Rε− 3ε3

= −R2/2− 3Rε− 5ε2/2

> −R2 + 2Rε+ 7ε2,

where in the final inequality we use that R > 12ε. □

To find sufficient conditions for detecting when a sample p is near a ver-
tex, we want each edge adjacent to that vertex to correspond to at least one
distinct cluster of points in the spherical shell around p. To avoid the clus-
ters around separate edges merging, we assume a lower bound on the angle
between the edges as part of our assumptions on the geometric embedding.
The following lemma motivates this choice of lower bound.

Lemma 1.1.3. Let u, v, w ∈ Rn, D > ε > 0, and let x1, x2 ∈ Rn satisfy

1. d(x1, uv), d(x2, uw) < ε, and
2. ∥x1 − v∥, ∥x2 − v∥> D.

If

̸ uvw > arccos

(
2D2 − 9ε2

2D2

)
+ 2arcsin

( ε

D

)
then ∥x1 − x2∥> 3ε.

Proof. The distance between x1 and x2 is minimised when

∥v − x1∥= D = ∥v − x2∥.

Furthermore we can observe that ̸ uvx1 = arcsin
(

d(x1,uv)
∥x1−v∥

)
≤ arcsin(ε/D).

Similarly ̸ uvx1 ≤ arcsin(ε/D). This implies

̸ x1vx2 ≥ ̸ uvw − ̸ uvx1 − ̸ wvx2 ≥ α− 2 arcsin(ε/D).

Combining we conclude
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∥x1 − x2∥2 ≥ ∥v − x1∥2+∥v − x2∥2−∥v − x1∥∥v − x2∥cos ̸ x1vx2

≥ 2D2 − 2D2 cos(α− 2 arcsin(ε/D))

≥ (3ε)2.

□

1.2. Determining Local Structure

Given an ε-sample P of an embedded graph |G|, we want to recover the
abstract graph G by approximating the local structure of |G| at each sample
p ∈ P . When approximating the local structure at a sample p, we regularly
consider the graph on a set of points, with edges (p, q) if ∥p − q∥≤ r, for
some fixed r ∈ R.

Definition 1.2.1. Let P ⊂ RN be a finite collection of points, and fix r > 0.
The graph at threshold r on P , Gr(P ), is the graph with vertices p ∈ P , and
edges (p, q) if ∥p− q∥≤ r.

For each p ∈ P , we will consider two graphs on points close to p: the
first approximates the connectedness of |G| intersected with a ball around p,
the second consists of points in a spherical shell around p. We call this pair
of graphs the (R, ε)-local structure of P at p.

Definition 1.2.2 ((R, ε)-local structure). Let P ⊂ Rn be an ε-sample of an
embedded graph |G| and fix R > 12ε. The (R, ε)-local structure of P at a
sample p ∈ P is the pair

(
G3ε(P ∩BR+ε(p)),G3ε(P ∩ SR+ε

R−ε(p))
)
.

We want to use the (R, ε)-local structure to approximate |G|∩BR(p) for
each p ∈ P , and use this to learn the structure of |G|. We will classify
samples as being near a vertex or not near a vertex by their (R, ε)-local
structure.

We now formalise what the (R, ε)-local structure is for points p ∈ P not
near any vertex v ∈ |G|. That is, points which have (R, ε)-local structure of
an edge.
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Definition 1.2.3 (Local structure of an edge). Let P be an ε-sample of a
linearly embedded graph |G|. A point p ∈ P has the (R, ε)-local structure
of an edge if either of the following hold:

1. G3ε(P ∩BR+ε(p)) is disconnected,
2. G3ε(P ∩ BR+ε(p)) is connected, G3ε(P ∩ SR+ε

R−ε(p)) has two con-
nected components c1, c2 with average points q1 and q2, and

⟨q1 − p, q2 − p⟩ ≤ −R2 + 2Rε+ 7ε2.

We now define the (R, ε)-local structure of a vertex.

Definition 1.2.4 (Local structure of a vertex). Let P be an ε-sample of a
linearly embedded graph |G|. A point p ∈ P has the (R, ε)-local structure
of a vertex if either of the following hold:

1. G3ε(P ∩BR+ε(p)) is connected, and the number of connected com-
ponents in G3ε(P ∩ SR+ε

R−ε(p)) is not 2,
2. G3ε(P ∩ BR+ε(p)) is connected, G3ε(P ∩ SR+ε

R−ε(p)) has two con-
nected components c1, c2 with average points q1 = 1

|c1|Σp∈c1p and
q2 =

1
|c1|Σp∈c2p, and

⟨q1 − p, q2 − p⟩ > −R2 + 2Rε+ 7ε2.

Next, we formally define P0 and P1.

Definition 1.2.5 (P0 and P1). Given an ε-sample P of a linearly embedded
graph |G|⊂ Rn, we define the partitioning sets P0 and P1 as follows:

P0 = {p ∈ P | p has the (R, ε)-local structure of a vertex.}

P1 = {p ∈ P | p has the (R, ε)-local structure of an edge.}

Remark 1.2.6. Note that a sample p ∈ P has either (R, ε)-local structure
of a vertex (R, ε)-local structure of an edge. Hence, the partitioning defined
in Definition 1.2.5 is disjoint.

As we use the connected components of G3ε(P ∩BR+ε(p)) and G3ε(P ∩
SR+ε
R−ε(p)) in the definition of the (R, ε)-local structure of p, we require some
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assumptions on |G| to ensure that we correctly identify when points are near
vertices or not. To ensure G3ε(P ∩ BR+ε(p)) is not disconnected for points
p near some vertex, we assume that the distance between a vertex v and any
edge uw, u,w ̸= v, is bounded below d(v, wv) > R+ R

2
+2ε. To ensure that

there are samples near edges which are not near any vertex, we additionally
assume that for every pair of vertices u, v, ∥u− v∥> 9R

2
+ 6ε.

We also place lower and upper bounds on the angles between edges. For
ease of notation, we will define two functions for these bounds.

Definition 1.2.7. Given R > 12ε, we set

Ψ(R, ε) := π − arctan

(
R + 3ε

6ε

)
+ arcsin

(
R2 − 4Rε− 9ε2

(R + ε)
√
R2 + 6Rε+ 34ε2

)
,

Φ(R, ε) := arccos

(
(R− ε)2 − 18ε2

(R− ε)2

)
+ 2arcsin

(
2ε

(R− ε)

)
.

To improve intuition of these functions, Figures 1.2 and 1.3 provide
graphs of them. Note they are effectively a function of R

ε
as they are in-

variant to scaling both R and ε by the same amount.

FIGURE 1.2. Graph of Ψ
(
R
ε
, 1
)
.

FIGURE 1.3. Graph of Φ
(
R
ε
, 1
)
.

Henceforth, we assume that all embedded graphs |G| satisfy the follow-
ing assumptions.

Assumption 1. Fix R ≥ 12ε > 0. We restrict to embedded graphs |G|=
(G, ϕG) satisfying the following.
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1. For all vertices u, v, ∥u− v∥> 9R
2
+ 6ε.

2. For a vertex v and an edge uw, with u,w ̸= v, d(v, uw) > 3R
2
+ 4ε.

3. For any pair of edges uv, xy with no common vertex, d(uv, xy) >

5ε.
4. For all pairs of edges uv, wv, ̸ uvw ≥ Φ(R, ε).
5. For all degree 2 vertices v with edges uv, wv, ̸ uvw ≤ Ψ(R, ε).

The propositions in this section are used to show that the clusters in P0

and P1 correspond bijectively with the vertices and edges of |G|. The first
proposition shows that for all samples p near a vertex v with deg(v) ̸= 2,
p has the (R, ε)-local structure of a vertex. The second and third prove
that samples near degree 2 vertices also have the (R, ε)-local structure of a
vertex. The final proposition shows that all samples p not near any vertex
have the (R, ε)-local structure of an edge.

Proposition 1.2.8. Let v be a vertex of |G|⊂ Rn with deg(v) ̸= 2, and let
P be an ε-sample of |G|. Then for all p ∈ P with ∥p− v∥≤ R−ε

2
, p has the

(R, ε)-local structure of a vertex.

Proof. We begin by considering deg(v) = 0. By Assumption 1 (1), ∥p −
v∥≤ ε, and for all q ∈ P∩B(p,R+ε), ∥q−v∥≤ ε. Thus G3ε (P ∩BR+ε(p))

is connected. Similarly, P ∩ SR+ε
R−ε(p) = ∅, and p has the (R, ε)-local struc-

ture of a vertex.
Next, assume deg(v) = 1. For the edge uv, let t0, t1, . . . , tm be consec-

utive points along uv with ∥t0 − v∥, ∥ti+1 − ti∥≤ ε and ∥p− tm∥= R + ε.
Then, there must be z0, z1, . . . , zm ∈ P with ∥ti − zi∥≤ ε. Note, these zi

may not be unique. Since ∥zi−zi+1∥≤ 3ε, and every sample in P ∩BR+ε(p)

is within 3ε of some zi, G3ε (P ∩BR+ε(p)) is connected.
If the number of clusters in G3ε(P ∩ SR+ε

R−ε(p)) is not 2, then p has the
(R, ε)-local structure of a vertex. Thus suppose that there are 2 connected
components. We will show that inner product condition between their aver-
ages will declare that p has the (R, ε)-local structure of a vertex.

Let x1, x2 ∈ P ∩ SR+ε
R−ε(p) be samples in the two connected components

c1 and c2. Observe that both x1 and x2 are within ε of the line segment uv.
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As ∥p − v∥≤ R−ε
2

, and x1, x2 are within ε of the same edge uv, x1 and
x2 are contained on the same side of hyper-plane H through p perpendicular
to vu.

We can observe that ̸ x1px2 ≤ 2 arccos
(

2ε
R−ε

)
< π/2, and thus

⟨x1 − p, x2 − p⟩ > 0 > −R2 + 2Rε+ 7ε2.

p

v

q2

q1

u

FIGURE 1.4. Both q1 and q2 are in the same half-space gen-
erated by the hyper-plane through p perpendicular to uv.

As this holds for all x1 ∈ c1, x2 ∈ c2, it also holds for the averages q1

and q2. Thus p has the (R, ε)-local structure of a vertex.
Finally, assume deg(v) ≥ 3. From analogous arguments as in the de-

gree 1 case we know that G3ε (P ∩BR+ε(p)) is connected.
Now consider SR+ε

R−ε(p). For each edge uv, there is a sample xuv ∈
SR+ε
R−ε(p). To show there are at least 3 connected components in G3ε(P ∩

SR+ε
R−ε(p)), we need only check that samples from different edges cannot

merge to be in the same connected component in G3ε(P∩SR+ε
R−ε(p)). By way

of contradiction suppose there were edges uv and wv and samples xu, xv ∈
P ∩ SR+ε

R−ε(p) within ε of uv and wv respectively such that ∥xu − xw∥≤
3ε. As ∥p − v∥≤ (R − ε)/2 and ∥p − xu∥, ∥p − xv∥≥ R − ε we know
∥v − xu∥, ∥v − xw∥> (R − ε)/2. This contradicts Lemma 1.1.3 as this
implies that ∥xu − xv∥> 3ε.

We conclude that G3ε(P ∩ SR+ε
R−ε(p)) has at least as many connected

components as the degree of v. Thus, p has the (R, ε)-local structure of a
vertex. □

Proposition 1.2.9. Let v be a vertex of |G|⊂ Rn with deg(v) = 2, with
edges uv, wv. Let P be an ε-sample of |G|. If ̸ uwv > π

2
, then for all p ∈ P

with ∥p− v∥≤ 4ε, p has the (R, ε)-local structure of a vertex.

Proof. As in the proof of Proposition 1.2.8, G2ε(P∩BR+ε(p)) is connected.
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For both edges uv, wv there is at least one sample in SR+ε
R−ε(P ), say quv

and qwv. By Lemma 1.1.3, for all q′ in SR+ε
Rε
∩ P , if d(q′, qwv) ≤ 3ε, then

∥q′− q∥> 3ε. Hence, each edge contributes at least 1 connected component
to G3ε(P ∩ SR+ε

R−ε(p)).
If there are more than 2, then p has the (R, ε)-local structure of a vertex.

We now assume there are 2 connected components c1, c2 (one per edge) in
G3ε(P ∩ SR+ε

R−ε(p)). Lemma 1.1.2 gives

⟨q1 − p, q2 − p⟩ > −R2 + 2Rε+ 7ε2,

and p has the (R, ε)-local structure of a vertex. □

Proposition 1.2.10. Let v be a vertex of |G|⊂ Rn with deg(v) = 2, with
edges uv, wv. Let P be an ε-sample of |G|. If ̸ uvw ≤ π

2
, then for all p ∈ P

with ∥p− v∥≤ R−ε
2

, p has the (R, ε)-local structure of a vertex.

Proof. As in the proof of Proposition 1.2.8, G2ε(P∩BR+ε(p)) is connected.
For both edges uv, wv there is at least one sample in SR+ε

R−ε(P ), say quv

and qwv. By Lemma 1.1.3, for all q′ in SR+ε
Rε
∩ P , if ∥q′ − qwv∥≤ 3ε, then

∥q′− q∥> 3ε. Hence, each edge contributes at least 1 connected component
to G3ε(P ∩ SR+ε

R−ε(p)).
If there are more than 2, then p has the (R, ε)-local structure of a vertex.

We now assume there are 2 connected components c1, c2 (one per edge) in
G3ε(P ∩ SR+ε

R−ε(p)).
Let x1 and x2 be points in c1 and c2. Without loss of generality, we have

d(x1, uv), d(x2, wv) ≤ ε.
From Lemma 1.1.2 we know that ⟨x1− p, x2− p⟩ < −R2 +2Rε+7ε2.

Since this inequality holds for all pairs x1, x2 in the connected components
c1 and c2 we know it also holds for the averages q1 and q2. Thus we conclude
p has the (R, ε)-local structure of a vertex.
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w

u

v

p

q2

q1

q̃2

q̃1
p̃

FIGURE 1.5

FIGURE 1.6. The case where ̸ uvw ≤ π
2
.

□

Proposition 1.2.11. Let p ∈ P be a sample with ∥p − v∥> 3R+ε
2

for all
vertices v ∈ |G|. Then p has the (R, ε)-local structure of an edge.

Proof. We begin by showing that if there is a sample q ∈ SR+ε
R−ε(p) ∩ P

with d(q, uv) > ε, then G3ε (BR+ε(p) ∩ P ) is disconnected. To prove this
suppose not. Then there exists x, y ∈ BR+ε(p) ∩ P such that d(x, uv) < ε,
d(y, uv) > ε and yet ∥x− y∥< 3ε.

This splits into two cases:

(i) d(y, wv) ≤ ε for some vertex w ̸= u (noting that this case covers an
edge wu as well),

(ii) d(y, wz) ≤ ε for vertices w, z ̸= u, v.

For case (i), first observe that ∥x − v∥, ∥y − v∥> R−ε
2

. We then get a
contradiction via Lemma 1.1.3 (with D = R−ε

2
) using Assumption 1 (4).

For case (ii) recall that Assumption 1 (3) implies d(uv, wz) > 5ε. How-
ever d(uv, wz) < d(uv, x) + ∥x− y∥+d(y, wz) ≤ 5ε which is a contradic-
tion.

We thus conclude that if there is some q ∈ SR+ε
R−ε(p)∩P with d(q, uv) >

ε then G3ε(P ∩BR+ε(p)) is disconnected and p has the (R, ε)-local structure
of an edge.

We can now assume that G3ε(P ∩ BR+ε(p)) is connected, and for all
q ∈ P ∩BR+ε(p), d(q, uv) ≤ ε. We need to show that there are two clusters
of samples in SR+ε

R−ε(p). Let n ∈ uv satisfy ∥p− n∥= R, and assume that n
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and q are on the same side of the hyper-plane H through p perpendicular to
uv. Now let p̃, q̃ be the projections of p and q respectively to uv.

We will split the analysis into the cases where ∥p̃ − q̃∥≤ ∥p̃ − n∥ and
where ∥p̃− q̃∥> ∥p̃− n∥.

v

p

p̃ n u

q̃
q

FIGURE 1.7. The case where ∥p̃− q̃∥< ∥p̃− n∥.

Consider ∥p̃ − q̃∥≤ ∥p̃ − n∥, as in Figure 1.7. Note that ∥p̃ − n∥≤ R

and ∥p̃− q̃∥≥
√

(R− ε)2 − (2ε)2 which implies

∥q − n∥2 = ∥q − q̃∥2+
(
∥p̃− n∥−∥p̃− q̃∥2

)
≤ ε2 +

(
R−

√
(R− ε)2 − 4ε2

)2
. (1.4)

Now consider ∥p̃−n∥< ∥p̃− q̃∥, such as in Figure 1.8. Here we use the
bounds ∥p̃− n∥≥

√
R2 − ε2 and ∥p̃− q̃∥≤ R + ε to say

∥q − n∥2 = ∥q − q̃∥2+(∥p̃− q̃∥−∥p̃− n∥)2

≤ ε2 +
(√

(R + ε)2 −
√
R2 − ε2

)2
. (1.5)

Algebraic manipulation shows that both (1.4) and (1.5) are bounded
from above by 4ε2 whenever R > 12ε.

v

p

p̃ n u

q
q̃

FIGURE 1.8. The case where ∥p̃− q̃∥> ∥p̃− n∥.

Thus, for all q on the same side of H as n with ∥p − q∥≤ R, we have
∥q − n∥≤ 2ε.
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As n ∈ uv, there is a sample qn ∈ P with ∥n − qn∥≤ ε. Importantly
since Bε(n) ⊂ SR+ε

R−ε(p) we can say that qn connects to all the P ∩ SR+ε
R−ε(p)

on the same side of H within G3ε

(
P ∩ SR+ε

R−ε(p)
)
.

Thus, on each side of H , we have a single cluster of points, which are
connected at 3ε. Thus, G3ε

(
P ∩ SR+ε

R−ε(p)
)

has two connected components.
Then, Lemma 1.1.1 implies that p has the (R, ε)-local structure of an edge.

□

1.3. Algorithm and Its Correctness

In this section, we present the algorithm from Skyler, and prove that
given P an ε-sample of an embedded graph |G|= (G, ϕG) satisfying As-
sumptions 1, the algorithm returns an isomorphic graph structure. The al-
gorithm partitions P into P0 and P1, such that for each p ∈ P0, p has the
(R, ε)-local structure of a vertex, and for each p ∈ P1, p has the (R, ε)-local
structure of an edge. We then detect the number of vertices, the number of
edges and the boundary operator. To obtain P0 and P1, we use the function
∆R,ε : P → {0, 1}, (Algorithm 1), such that if p has (R, ε)-local structure of
a vertex ∆R,ε(p) = 0 and if p (R, ε)-local structure of an edge, ∆R,ε(p) = 1.
Then, P0 = ∆−1

R,ε(0) and P1 = ∆−1
R,ε(1).

For each vertex v ∈ |G|, if deg(v) ̸= 2, Proposition 1.2.8 implies that for
all p ∈ P with ∥p− v∥≤ R

2
, ∆R,ε(p) = 0, while if deg(v) = 2, Propositions

1.2.9 and 1.2.10 imply that ∆R,ε(p) = 0, and Proposition 1.2.11 implies that
if ∥p− v∥> 3R

2
+ 2ε, ∆R,ε(p) = 1.

Lemma 1.3.1. Let x ∈ P0 and ∥x − v∥< 3R
2
+ ε for vertex v. Then y ∈

P0 is in the same connected component as x in G 3R
2
+2ε(P0) if and only if

∥y − v∥< 3R
2
+ ε.

Proof. By Proposition 1.2.11 P0 ⊂ P∩
{⋃

v∈V B 3R
2
+ε(v)

}
. Our embedding

assumptions require that for vertices v ̸= v′ we have ∥v− v′∥> 9R
2
+3ε and

hence no points in P ∩ B 3R
2
+ε(v

′) are within 3R
2
+ ε of those in B 3R

2
+ε(v

′).
This means they can not be connected in G 3R

2
+2ε(P0). This implies that the

entire connected component containing x must lie in B 3R
2
+ε(v). If ∥y−v∥>

3R
2
+ ε then it cannot be in the same connected component as x.

http://github.com/yossibokor/Skyler.jl
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We finally wish to show that ∥y − v∥< 3R
2

+ ε implies that x and y

are in the same connected component. Choose vertices uy and ux such
that d(y, uyv) < ε and d(x, uxv) < ε. Now let zy ∈ uv be the point 3ε
from v. We analogously define zx. As P is an ε-sample of |G| we have
samples py and px such that ∥py − zy∥< ε and ∥px − zx∥< ε. Note that
py, px ∈ P ∩ B4ε(v) and hence by Propositions 1.2.8 and 1.2.9 we know
that py, px ∈ P0. By construction ∥y − py∥, ∥py − px∥ and ∥px − x∥ are all
less that 3R

2
+ ε and hence y and x are in the same connected component in

G 3R
2
+2ε(P0). □

The above lemma shows the correspondence between vertices in G and
connected components in G 3R

2
+2ε(P0). Unfortunately the situation is less

clean for the connected components of G3ε(P1). Around each vertex v there
is a ‘grey area’, in which samples p can be placed in either P0 or P1. Due to
the size of this spherical shell, it is possible to obtain connected components
in G3ε(P1) which contain points only within such a grey area. We devote
the next few results to characterising the connected components of G3ε(P1).
We first show that every connected component of G3ε(P1) is close to only
one edge.

Proposition 1.3.2. Let [x] be a connected component of G3ε(P1). Then
there exists an edge uv such that d(y, uv) < ε for all y ∈ [x].

Proof. Since every sample in P is within ε of some edge it is sufficient to
show that if p, q ∈ P1 with d(p, uv) ≤ ε and ∥p−q∥≤ 3ε then d(q, uv) < ε.

As p ∈ P1, Propositions 1.2.8, 1.2.9 and 1.2.10 imply

1. for all vertices w ∈ |G| with deg(w) ̸= 2, ∥p− w∥> R−ε
2

,
2. for all vertices w with deg(w) = 2, ∥p− w∥≥ 4ε.

Without loss of generality, assume ∥p− v∥≤ ∥p− u∥. By Assumptions
1 (3) for all edges xy with x, y distinct from u, v, d(uv, xy) > 5ε. Hence,
d(p, xy) > 4ε, and for any sample q with d(q, xy) ≤ ε, ∥p − q∥> 3ε. If
deg(v) ̸= 2, then ∥p − v∥> R−ε

2
, and as |G| satisfies Assumptions 1 (4),

Lemma 1.1.3 implies ∥p− q∥> 3ε for all q ∈ P1 with d(q, uv) > ε.
Now assume that deg(v) = 2, and consider another edge wv. For

Φ(R, ε) ≤ ̸ uvw < π
2

we can apply Lemma 1.1.3 with D = R−ε
2

to see
that for all q ∈ P1 with d(q, wv) ≤ ε, ∥q,−p∥> 3ε. For π

2
≤ ̸ uvw ≤
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Ψ(R, ε), we apply Lemma 1.1.3 with D = 4ε and observe that π/2 >

arccos(23/32) + 2 arcsin(1/4) to conclude that d(q, wv) ≤ ε, ∥q − p∥>
3ε. □

There can be multiple connected component in G3ε(P1) near the same
edge. However there will only be one which contains a sample near the
midpoint of the edge. We wish to treat these differently and so we will give
them a name.

Definition 1.3.3. We say that the connected component of G3ε(P1) spans
the edge uv if it contains a point within ε of the midpoint of uv. Without
reference to the specific edge uv we say that the component is spanning.

Proposition 1.3.4. Let uv be an edge in G. There exists a unique connected
component Auv which spans uv. Auv contains samples in both B 3R+5ε

2
(u)

and B 3R+5ε
2

(v).
If [x] ̸= Auv is a connected component in G3ε(P1) within ε of uv then

either [x] ⊂ B 3R+ε
2

(u) or [x] ⊂ B 3R+ε
2

(v).

Proof. Let m denote the midpoint of uv.
Let t0, t1, . . . t2M be consecutive points along uv with ∥ti − ti+1∥< ε,

∥t0 − u∥= 3R+3ε
2

, tM = m, and ∥t2M − v∥= 3R+3ε
2

. There must be
z0, z1z2, . . . zM ∈ P such that ∥ti − zi∥< ε. Observe that ∥zi − u∥> 3R+ε

2

and ∥zi − v∥> 3R+ε
2

and so by Proposition 1.2.11 all the zi are in P1. Since
∥zi−zi+1∥< 3ε we know that all the zi lie in the same connected component
of G3ε(P1) which spans uv as zM is within ε of m.

To see this connected component is unique we need only observe that
any pair of samples in P1 both within ε of m are within 3ε of each other and
hence lie in the same connected component. Denote this unique connected
component by Auv.

Observe that ∥u− z0∥< 3R+3ε
2

+ ε and ∥v − z2M∥< 3R+3ε
2

+ ε.
Now suppose that [x] ̸= Auv is a connected component in G3ε(P1)

within ε of uv. Since [x] ̸= Auv, we have d([x], ti) > 2ε for all i and
hence

[x] ⊂ B 3R+ε
2

(u) ∪B 3R+ε
2

(v).
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As ∥u−v∥> 3R+ε
2

+ 3R+ε
2

+3ε we further conclude that [x] is contained
in only one of B 3R+ε

2
(u) or B 3R+ε

2
(v). □

In light of Proposition 1.3.4 we modify our partition of P , into P̃0 and
P̃1, see Definition 1.3.5 and Algorithm 2. We effectively want to move any
points in P1 that are not contained in a spanning connected component into
P0.

Definition 1.3.5 (P̃0 and P̃1). Let P be an ε-sample of an embedded graph
|G| satisfying Assumptions 1, and consider the sets P0 and P1 from Defi-
nition 1.2.5. Let Q0 be the connected components of G 3R

2
+2ε(P0), and Q1

the connected components of G3ε(P1), and define f : Q1 → {0, 1} by
f([q]) = 0 when there is only a single connected component [p] ∈ Q0 such
that d([p], [q]) < 3ε, and f([q]) = 1 otherwise.

We define P̃0 := P0 ∪
(⋃

f([x])=0[x]
)

and P̃1 :=
(⋃

f([x])=1[x]
)

.

Lemma 1.3.6. Let [x] ∈ Q1. Then f([x]) = 1 if and only is [x] spans an
edge, and f([x]) = 0 if and only if [x] ⊂ B 3R+ε

2
(v) for some vertex v.

Proof. If [x] spans an edge uv then by Proposition 1.3.2 we know that [x]
contains samples in both B 3R+5ε

2
(u) and B 3R+5ε

2
(v). Let xu ∈ [x] be the

sample closest to u. Note that ∥xu − u∥≤ 3R+5ε
2

. There must be some
sample pu ∈ P with ∥p− u∥∈< ∥u− xu∥ and ∥p− xu∥< 3ε. Now p ∈ P0

as otherwise it contradicts xu being the closest sample to u inside [x]. By
Lemma 1.3.1, [pu] ∈ Q0 is contained in B 3R+ε

2
(u).

Similarly we can show that there some xv ∈ [x] and pv ∈ P0 with
∥xv − pv∥≤ 3ε and [pv] ∈ Q0 contained in B 3R+ε

2
(v). By Lemma 1.3.1 [pu]

and [pv] are distinct and hence f([x]) = 1.
If [x] does not span any edge then by Proposition 1.3.2 we know there is

a vertex v such that [x] ⊂ B 3R+ε
2

(v). We then can appeal to Lemma 1.3.1 to
say that there is only one connected component in Q0 within 3ε of [x]. □

Let Q̃0 denote the connected components of G 3R
2
+2ε(P̃0) and let Q̃1 de-

note the connected components of G3ε(P̃1). We will see that characterisa-
tion of the elements of Q̃0 is the same as that of Q0. The elements of Q̃1 are
exactly those connected components that span some edge.
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Theorem 1.3.7. For each vertex v there exists a unique connected com-
ponent [x] ∈ G 3R

2
+2ε(P̃0) such that [x] ⊂ B 3R

2
+2ε(v). Every connected

component of G 3R
2
+2ε(P̃0) is of this form.

For each edge uv there exists a unique connected component [x] ∈
G3ε(P̃1) such that [x] spans uv. Furthermore every connected component
of G 3R

2
+2ε(P̃1) is of this form.

Proof. From Proposition 1.2.11 and Lemma 1.3.6 we know that P̃0 ⊂
⋃

v B 3R+ε
2

(v).

We can then effectively repeat the proof of Lemma 1.3.1 to show the analo-
gous result for P̃0.

To see the bijection between the vertices of G and Q̃0 observe that every
sample within 4ε of some vertex is in P0 ⊂ P̃0 and hence every vertex cor-
responds to some connected component, and observe that by Lemma 1.3.6
all points in P̃0 lie within 3R+ε

2
of some vertex.

The characterisation for connected components of G3ε(P̃1) follows di-
rectly from Proposition 1.3.2 and Lemma 1.3.6. □

Define the map F0 : Q̃0 → V by F0([x]) = argminv∈V {d([x], v)} and
F1 : Q̃1 → E by F1([x]) = argminuv∈E{d([x],midpt(uv)}.

That F0 and F1 are well-defined bijections follows directly from Theo-
rem 1.3.7. From Proposition 1.3.2 we further can say that if [q] ∈ Q̃1 and
[x] ∈ Q̃0 then the single linkage distance between [q] and [x] is less than 3ε

if and only if F0([x]) ∈ ∂G(F1([q]).

1.4. Vertex prediction

Thus far, the focus has been on finding the abstract structure of an em-
bedded graph |G|. We now aim to form a numerical scheme to estimate
the vertex locations of |G|⊂ Rn. In [4], a non-linear least-squares method
was proposed and used for embedded graph reconstruction. Empirical ob-
servation of this method showed vertex predictions were often not within
ε of the true embedded graph. A point of difficulty here was that data
that should belong to a one-dimensional strata piece was often assigned
to a zero-dimensional strata when nearby a vertex location. We utilise an
Expectation-Maximisation (EM) algorithm, which updates both the pre-
dicted vertex locations, and their strata assignments to correct this issue.
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Algorithm 1: ∆R,ε(p)

Data: An ε-dense sample P of an embedded graph |G|, a point
p ∈ P .

Result: 0 if p has local structure of a vertex, 1 if p has local
structure of an edge.

begin
Gp ←− {q ∈ P | ∥p− q∥≤ R + ε};
connect q, q′ ∈ Gp if ∥q − q′∥≤ 3ε;
if Gp is disconnected then

return 1
else

remove q ∈ Gp if ∥p− q∥≤ R− ε;
if number of connected components in Gp is not 2 then

return 0
else

find the midpoints q1, q2 of the connected components
c1 and c2;

if ⟨q1 − p, q2 − p⟩ > −R2 + 2Rε− 7ε2 then
return 0

else
return 1

To do this, we design a likelihood function with latent variables for strata
assignment so that we may reconstruct a probability measure over the em-
bedded graph from which our data is sampled. Ideally, we would reconstruct
a measure ν whose support is the embedded graph. Recorded data has errors
and makes it computationally infeasible to reconstruct ν directly. Instead,
we will formulate an approximating measure νδ which satisfies:

1. νδ is equivalent to Lebesgue measure,
2. supp(limδ→0 νδ) = |G|,

where the limit is meant in the weak sense. The first assumption gives ro-
bustness to measurement errors, and the second ensures that in ideal cir-
cumstances, we form a measure that is supported on the embedded graph.
There are many measures which obey these conditions, we choose a Gauss-
ian convolution model for each strata piece and combine all the strata pieces
together through a categorical mixture model.
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Algorithm 2: Abstract Structure
Data: Partition of P into P0 and P1.
Result: Partitions P̃0, P̃1, abstract graph G = (E, V ).
begin

E ←− ∅;
V ←− ∅;
P̃0 ←− P0;
P̃1 ←− P1;
for connected components [p] ∈ G 3R

2
+2ε(P0) do

add [p] to V

for connected components [q] ∈ G3ε(P1) do
Bq ←− ∅;
for [p] ∈ V do

if minp′∈[p],q′∈[q]∥p′ − q′∥≤ 3ε then
add [p] to Bq

if size(Bq) = 1 then
add all q′ ∈ [q] to P̃0 and remove them from P̃1

else
add Bq to E

return P̃0, P̃1, V, E

1.4.1. Embedded graph model. Let (Ω,F , µ) be a probability space,
that is Ω is a set, F is a σ-algebra of sets from Ω, and µ : F 7→ [0, 1] is a
normalised measure.

Definition 1.4.1. Given a probability space (Ω,F , µ) and a field with a σ-
algebra B, a measurable function f : (Ω,F , µ) 7→ (F,B) is a random vari-
able. A vector valued random element is a vector valued measurable func-
tion f̃ : (Ω,F , µ) 7→ (Rn,B(Rn)) given through f̃ = (f1, . . . , fn) where
each of the fi are random variables.

The expectation of a random variable is the integral, E(f) :=
∫
Ω
fdµ.

Given a sub-σ-algebra C ⊂ F , the conditional expectation of a random
variable f , E(f |C) ∈ L2(Ω,F , µ), is the unique function that satisfies

∫
B

E(f |C)dµ =

∫
B

fdµ,
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Algorithm 3: Expectation Maximisation for Vertex Location Pre-
diction

Data: |P | data points in n dimensions, N0 +N1 = N many strata
pieces.

Result: Predicted embedded graph vertex locations.
Input: Abstract graph structure.
begin

Initialise vertex locations V ;
Initialise |P |×N strata assignment matrix A ;
for si in strata pieces S = V ∪ E, xj in data points do

if xj ∈ si then
Ai,j ←− 1

else
Ai,j ←− 0

assign an error threshold σ ∈ R+;
Initialise πi =

∑
i Ai,j∑
i,j Ai,j

;

for iterations in EM-iterations do
for si in strata pieces S = V ∪ E, xj in data points do

assign Ai,j = E(1Zj=1|Xj = xj) through (1.10) ;

assign πi =
∑

i Ai,j∑
i,j Ai,j

;
assign V = argminV V → C(V,Π;σ) (1.9) through a hill
climbing optimiser such as gradient-descent;

for all B ∈ C. The expectation and conditional expectation of a vector val-
ued random element f̃ = (f1, . . . , fn) is defined component-wise through
each of the random variables fi, that is

E(f̃ |C) := (E(f1|C), . . . ,E(fn|C)) (1.6)

for all C ∈ B(Rn).

Above, we have adopted the standard notation B(Rn) for the Borel-σ-
algebra generated by the open sets in the standard topology on Rn. Let
Xj : (Ω,F , µ) 7→ (Rn,B(Rn)) be vector valued random elements and Zj :

(Ω,F , µ) 7→ ([N ], 2[N ]) be random variables for j ∈ {1, . . . , |P |}, where
[N ] := {1, . . . , N}, n is the dimension of the space to which the graph is
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embedded, |P | is the amount of recorded data points, and N the number of
strata in |G|. Let N0, N1 ∈ N0 be N0 and N1 are the number of zero and one
dimensional strata respectively, and so N = N0 +N1.

Enumerate the set of vertex locations as V := {vi}N0
i=1. For each i ∈

{N0 + 1, . . . , N} assign the pairing vi1 , vi2 ∈ {vi}N0
i=1 to be the vertices

that form the boundary ith strata piece. Assume that for each j the Zj are
independent and identically distributed, that each Xj is independent of Xi

and Zi for i ̸= j.
We place the following constraints on the random variables:

1. Zj ∼ Categorical(Π) with parameters Π := (π1, . . . , πN),
2. E(Xj|Zj = i) ∼ Normal(vj, σj) for j ∈ {1, . . . , N0},
3. E(Xj|Zj = i) = tjvi1 + (1− tj)vi2 + ε where tj ∼ Uniform([0, 1])

and
εj ∼ Normal(0, σi) for i ∈ {N0 + 1, . . . , N}.

The categorical random variables Zj represent which stratum a random
element Xj belongs to. The categorical distribution is defined on N many
categories, with the ith category having a probability of πi of being ob-
served. In our case, each πi represents approximately how many data points
belong to the ith stratum.

The distribution of E(Xj|Zj = i ∈ {N0 + 1, . . . , N}) = tvj1 + (1 −
t)vj2 + ε is

ρvi1 ,vi2 (x;σi) :=
1

(2πσ2
i )

n/2

∫ 1

0

e−∥x−(tvi1+(1−t)vi2 )∥
2
2/2σ

2
i dt, (1.7)

where ρ( · ; 0, σi) is a normal density in n dimensions with zero mean and
variance σ2

i . This can be obtained through noting that if νvi1 ,vi2 is uniform
measure on Lvi1 ,vi2

:= {y | y = tvi1 + (1 − t)vi2 , t ∈ [0, 1]}, then the
measure

νσi,vi1 ,vi2
= ρvi1 ,vi2 (x;σi)dx

is given through

νσi,vi1 ,vi2
= ρ(x; 0, σi)dx ∗ νvi1 ,vi2

=
1

(2πσ2
i )

n/2

∫ 1

0

e−∥x−(tvi1+(1−t)vi2 )∥
2
2/2σ

2
i dtdx,
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where ∗ represents the convolution operation over measures. Through this
convolution construction, we have the following proposition.

Proposition 1.4.2. Let ρvi1 ,vi2 and νvi1 ,vi2 be as given above, then:

1. ρvi1 ,vi2 ∈ C∞(Rn),
2. ρvi1 ,vi2dx is equivalent to Lebesgue measure,

3. and νσi,vi1 ,vi2

σi→0−−−→ νvi1 ,vi2 weakly.

The first two claims follow from Equation 1.7. The third is a result from
mollifier approximation theory, see [21] for details.

Corollary 1.4.3. Define σ := maxi σi and let νσ := µ(X−1
j ) be the push-

forward measure of µ through Xj , then

1. νσ ∼ dx,
2. supp(limσ→0 νσ) = |G|,
3. limσ→0 νσ(|G|) = 1,

where |G| is the embedded graph in Rn.

Proof. Write νσ through

νσ =

N0∑
i=1

πiρ(x; vi, σi)dx+
N∑

i=N0+1

πiρvj1 ,vj2 (x;σi)dx

=

N0∑
i=1

πi(δvi ∗ ρ(x; 0, σi)dx) +
N∑

i=N0+1

πi(νvi1 ,vi2 ∗ ρ(x; 0, σi)dx)

where δvi is the normalised measure: δvi(U) = 1 if vi ∈ U and zero other-
wise. Let |G| be the embedded graph and define |G|r:= {x | x ∈ Br(y), y ∈
|G|}, then

νσ(Rn \ |G|r) ≤
∫
Rn\|G|r

(
N0∑
i=1

πiδvi +
N∑

i=N0+1

πiνvi1 ,vi2

)
∗ ρ(x; 0, σ)dx

σ→0−−→ 0 for all r > 0.

□

Corollary 1.4.3 shows the push-forward measure ν has our desired prop-
erties for modelling an embedded graph |G|.
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1.4.2. Parameter re-estimation. We now form an Expectation Max-
imisation (EM) algorithm to find Maximum Likelihood Estimates (MLEs)
for the embedded graph’s vertex locations. Let P̃(Ω) be the space of prob-
ability measures over Ω. We are interested in reconstructing the measure µ

given evaluations of Xj and Zj for every j ∈ {1, . . . , n}. This forms the
following likelihood optimisation problem:

µ∗ := argsupη∈P̃(Ω)η

 ⋂
j∈{1,...,|P |}

X−1
j (Bh(xj)) ∩ Z−1

j (i)


for some small h > 0. For a single recorded datum:

η(X−1
j (Bh(xj)) ∩ Z−1

j (i)) = P(Xj ∈ Bh(xj) | Zj = i)P(Zj = i)

=

N0∏
i=1

(
πi

∫
Bh(xj)

ρ(x; vi, σi)dx

)1Zj=i N∏
i=N0+1

(
πi

∫
Bh(xj)

ρvj1 ,vj2 (x;σi)dx

)1Zj=i

.

Intersecting over all such data points, taking a logarithm, and evaluat-
ing the limit as h → 0 for the argument supremum yields the equivalent
optimisation:

argsupπi∈[0,1], vi∈Rn

|P |∑
j=1

( N0∑
i=1

1Zj=i(log(ρ(xj; vi, σi)) + log(πi))+ (1.8)

N∑
i=N0+1

1Zj=i(log(ρvi1 ,vi2 (xj;σi)) + log(πi))
)
.

We cannot observe accurately Zj for a recorded datum, although the
work in estimating the abstract graph structure gives an initial estimate for
this value. To dynamically update the prediction of this value, we will utilise
an EM-algorithm. Projection to the sub-σ-algebra σ(X1, . . . , Xn) and mak-
ing the assumption Zj ⊥ Xj̃ for j̃ ̸= j gives the following log-likelihood
function, which we aim to maximise:
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L(V,Π;σ) := (1.9)

1

|P |

|P |∑
j=1

( N0∑
i=1

E(1Zj=i|Xj ∈ Bh′(xj))(log(ρ(xj; vi, σi)) + log(πi))+

N∑
i=N0+1

E(1Zj=i|Xj ∈ Bh′(xj))(log(ρvi1 ,vi2 (xj;σi)) + log(πi))
)
,

where we currently view L as a function of the vertex locations V and as-
signment weights Π, with σ being a fixed value. Let the densities for each
k ∈ {1, . . . , N} strata be enumerated as {ρk}Nk=1. The individual terms of
the cost function are

lim
h′→0

E(1Zj=i|Xj ∈ Bh′(xj)) =
πiρi(xj)∑N

k=1 πkρk(xj)
(1.10)

log(ρ(x; vi, σi)) = −
d

2
log(2πσi)− ∥x− vi∥2/2σi.

log(ρvi1 ,vi2 (x;σi)) = log
(

erf
(
⟨vi1 − vi2 , vi1 + vi2 − 2x⟩+ ∥vi1 − vi2∥22

2
√
2∥vi1 − vi2∥2σi

)
− erf

(
⟨vi1 − vi2 , vi1 + vi2 − 2x⟩ − ∥vi1 − vi2∥22

2
√
2∥vi1 − vi2∥2σi

))
+
⟨vi1 − vi2 , vi1 + vi2 − 2x⟩2 − 4∥vi1 − vi2∥22∥(vi1 + vi2)/2− x∥22

8∥vi1 − vi2∥22σ2
i

− log(∥vi1 − vi2∥2) + log
(
2

1
2
(−d−1)π

1
2
− d

2σ1−d
i

)
.

Above, erf : R 7→ R is the standard error function given through

erf(x) =
2√
π

∫ x

0

exp(−t2)dt.

In Skyler, the analytic gradients of the log-likelhood function L are given.
Gradient clipping is used to bound our computations within machine accu-
racy for when σi or the evaluation of x 7→ ρvi1 ,vi2 (x;σi) is close to machine
precision. Our log-likelhood function is often not concave, for instance the
function (vi1 , vi2) 7→ ρvi1 ,vi2 (x;σi) obeys ρvi1 ,vi2 (x;σi) = ρvi2 ,vi1 (x;σi).

http://github.com/yossibokor/Skyler.jl
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It is necessary to have a good initialisation for the embedded graph mod-
elling to find an acceptable local optimum value for vertex prediction. In
our computations, we have found that the initial vertex modelling given by
the abstract graph structure yields vertex predictions with an error less than
the noise of the data, correcting the issue observed in [4]. We can complete
Algorithm 3 by noting that if Ai,j := limh′→0 E(1Zj=i|Xj ∈ Bh′(xj)), then
the function Π → L(V,Π;σ) is concave and has a unique maximum value
at π∗

i =
∑

j Ai,j∑
i,j Ai,j

. It can be seen that our model is a higher-dimension version
of Gaussian clustering as Algorithm 3 degenerates to this when N = N0.

Fixing a noise tolerance σ and solving the optimisation in Equation 1.8
by minimising the function (V,Π) → L(V, σ,Π) through an EM-algorithm
[12] gives Algorithm 3.

1.4.3. Numerical simulations. The conditions in Assumption 1 are not
the sharpest bounds, and other ratios of R and ε can also detect the correct
graph structure. We present the results of a few different ratios, for the same
0.1-sample P (Figure 1.9B) of the embedded graph (G, ϕG) ⊂ R3 (Figure
1.9A). There are 705 samples in P , and G has 5 vertices embedded as 1:
(0, 0, 0), 2: (4.6, 6.24, 0) 3: (4.86, 0.51, 3.47), 4: (−1.32, 6.29, 4), and 5:
(−4.23,−3.48,−3), and edges E = {(1, 5), (1, 3), (1, 4), (2, 4), (2, 3)}.

Table 1 shows the results with varying choices of ratio R
ε
. Comparing the

log-likelihood of the models obtained using R
ε
= 8 (−2.3712314714356437)

and R
ε
= 12 (−2.783827546761547), we see that while we have shown that

R ≥ 12ε is sufficient to prove correctness of the algorithm, smaller ratios
can also identify an isomorphic graph structure, and result in a higher log-
likelihood model. In practice, this suggests that we can improve the process
by first using R ≥ 12ε to obtain the correct structure, and then decreasing
the ratio to model the graph, stopping when we still obtain the correct graph
structure and maximise the log-likelihood.

1.5. Future directions

The algorithm presented in this chapter focuses on recovering and mod-
elling an embedded graph (G, ϕG) given an ε-sample P . Stratified spaces,
however, are not restricted to consisting of 0- and 1-dimensional pieces, nor
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Ratio Correct Log Likelihood v1 v2 v3 v4 v5

R/ε structure (Equation 1.9)

0
0
0

  4.6
6.24
0

 4.86
0.51
3.47

 −1.326.29
4

 −4.23−3.48
−3


4 No - - - - - -

6 Yes −33.183

0.00
0.03
0.01

  4.59
6.23
−0.02

 4.56
0.56
3.43

 −1.306.26
3.96

 −4.24−3.46
−3.02


8 Yes −32.97

0.00
0.02
0.01

 4.59
6.23
−.02

 4.86
0.56
3.42

 −1.296.26
3.96

 −4.22−3.45
−3.01


10 Yes −33.33

0.01
0.03
0.01

  4.59
6.22
−0.02

 4.86
0.56
3.42

 −1.266.24
3.95

 −4.193.42
−2.99


12 Yes −33.84

0.01
0.03
0.01

  4.59
6.23
−0.02

 4.86
0.56
3.42

 −1.266.24
3.95

 −4.14−3.38
−2.96


14 Yes −36.61

0.01
0.03
0.01

  4.59
6.26
−0.03

 4.86
0.56
3.43

 −1.266.23
3.95

 −4.00−3.27
−2.56


16 Yes −45.30

0.02
0.03
0.01

  4.58
6.27
−0.05

 4.56
0.56
3.43

 −0.703.70
2.33

 −3.96−3.22
−2.81


TABLE 1. Summary of the output of the algorithm for vari-
ous ratios R

ε
. Recall we wish to maximise Equation 1.9. The

last 5 columns are the vertex locations obtained.

are they restricted to being simplicial complexes. We can consider embed-
dings of CW complexes, where a stratum is embedded as a semi-algebraic
set.

While the algorithm in this chapter does not naively extend to higher
simplicial complexes or CW complexes, it provides a foundation on which
other algorithms can be based, and hence moves towards learning general
stratified spaces. The algorithm can be adapted to other cases and assump-
tions. For example, it can be adapted to learn the abstract structure of a
graph with non-linear edges and no degree 2 vertices. In particular, to re-
cover embedded CW complexes, we need to remove the assumption that
strata are embedded as convex hulls (linearity).

Focusing on increasing the dimension of the cells in the simplicial com-
plex, the next step is to allow 2-simplicies and partition an ε-sample P into
three parts P0, P1, and P2. One approach is a peeling argument: first we
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determine the points in P2, and then apply the current algorithm to P \P2 to
obtain P1 and P0. Complications with this include ensuring that points are
not over-assigned to P \ P2, as this can result in P \ P2 not being suitable
as input for the current algorithm. To appropriately partition P , we hope to
exploit the relationship between (R, ε)-local structure and local homology.
For graphs, we saw that the dimension 1 local homology at a point x con-
tains topological information, which corresponds to the number of points
in the intersection of the |G| with a ball of small radius r around x, and if
there are 2 points, their relative geometry providing more information. By
generalising the (R, ε)-local structure appropriately, we hope to see a corre-
spondence with the information contained in higher homology groups and
augment this with other geometrical information.

To remove the linearity assumption, we need to address a long standing
problem in computational algebraic geometry: learning algebraic varieties
from noisy samples. In [6], Breiding et al. develop an algorithm which
is robust to machine error but not sampling noise. The algorithm has also
been found to fail when given large data sets sampled from simple vari-
eties. These issues need to be overcome before we can remove the linearity
assumption.
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(A) Embedded graph |G|. (B) ε-sample P .

(C) R
ε = 4: 2 vertex and 1 edge cluster. (D) Model using R

ε = 4 in red.

(E) R
ε = 8: 5 vertex and 5 edge clusters. (F) Model using R

ε = 8 in red.

(G) R
ε = 12: 5 vertex and 5 edge clus-

ters. (H) Model using R
ε = 12 in red.

FIGURE 1.9



CHAPTER 2

Learning 2-complexes

Perhaps home is not a place but
simply an irrevocable condition.

James Baldwin, Giovanni’s
Room

Chapter 1 presents an algorithm for learning an abstract graph G and
modelling an embedding |G|⊂ Rn from an ε-sample P ⊂ Rn of |X|. A
natural question is how to extend Algorithms 1 and 2 to learn embeddings
|X|⊂ Rn of abstract complexes X from ε-samples P ⊂ Rn of |X|. This re-
quires identifying the total dimension of X , and the locally top dimensional
cells. In this chapter, we restrict to 2-complexes.

This chapter begins with Section 2.1, containing definitions of the main
objects and tools we use throughout the chapter. After this, Section 2.2 con-
sists of geometric lemmas used in Section 2.3, which considers the local ge-
ometry and topology we use to partition the sample P . Finally, Section 2.4
presents algorithms for recovering the abstract structure. Section 2.4 con-
tains a sequence of lemmas (Lemmas 2.4.10 to 2.4.25), which cover cases
used in Theorem 2.4.26, also known as the ‘Big Theorem’ of this chapter.

2.1. Definitions and Notations

We begin with some definitions and notations we use throughout this
article. We begin with the following definition of complex, following Defi-
nition 2.4 [8].

Definition 2.1.1 (Abstract Complex, Definition 2.4 [8]). An abstract simpli-
cial complex X consists of a pair (V (X),Σ(X)), with V (X) a finite set,
and Σ(X) a subset of the power set of V (X), such for all σ ∈ Σ(X) and
∅ ̸= τ ⊆ σ, we have τ ∈ Σ(X). We call V (X) the vertices, and Σ(X) the
simplices of X .

37



38 2. LEARNING 2-COMPLEXES

For ease of notation and to avoid confusion later in this paper, we will
use the following specialised definition for abstract simplicial complexes
with top dimension 2.

Definition 2.1.2 (Abstract 2-Complex). An abstract 2-complex X consists
of

1. a set V = V (X) of vertices,
2. a set E = {σ ∈ Σ(X) |σ contains 2 unique elements} of edges,
3. a set T = {σ ∈ Σ(X) |σ contains 3 unique elements} of triangles,

and an incidence operator I, which acts as follows: for any pair of cells
σ, τ ∈ X

I (σ, τ) =

1 if σ ⊊ τ

0 otherwise

We restrict ourselves to linear embeddings of 2-complexes X in Rn for
some n ≥ 3.

Definition 2.1.3 (Linear embedding of 2-complex). Fix n ≥ 3, then a lin-
ear embedding of a 2-complex X in Rn, (X,Θ), consists of an abstract
2-complex X and a map

Θ : X → Rn

such that

1. on vertices v ∈ V , Θ is injective,
2. on edges {u, v} ∈ E, Θ is defined by linear interpolation on Θ(u)

and Θ(v): Θ({u, v }) = uv is the line segment between Θ(u) and
Θ(v),

3. on triangles {u, v, w } ∈ E, Θ is defined by linear interpolation
on Θ(u), Θ(v) and Θ(w): Θ({u, v, w }) = △uvw is the triangle
with vertices Θ(u), Θ(v) and Θ(w), and Θ(u), Θ(v), Θ(w) are no
co-linear,

4. for any two cells σ, τ of X , we have Θ(σ) ∩Θ(τ) = Θ(σ ∩ τ).

We restrict our attention to embedded 2-complexes |X|Θ such that

5. if a vertex v is in the boundary of precisely two edges {v, u1} and
{v, u2}, then ̸ u1vu2 ̸= π,
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6. if an edge {v0, v1} is in the boundary of precisely two triangles
{v0, v1, u1} and {v0, v1, u2}, then v0, v1, u1, u2 are not co-planar.

We denote the image of Θ in Rn by |X|Θ.

We often talk about the boundary of a cell.

Definition 2.1.4 (Cell boundary). Let X be an abstract 2-complex, and take
a cell σ ∈ X . Then the boundary of τ , ∂τ , consists of the cells σ ∈ X such
that I(σ, τ) = 1.

An important property of a cell σ ∈ X , is whether it is locally maximal
or not.

Definition 2.1.5 (Locally maximal cell). Let σ be a cell in a 2-complex. We
say σ is locally maximal if there is no cell τ ∈ X, τ ̸= σ with σ ⊂ τ . That
is, there is no cell τ with σ in the boundary of τ .

Remark 2.1.6. Consider two cells σ, τ in a complex X , we say σ is a face
of τ if σ is in the boundary of τ , and we say σ is a co-face of τ if τ is in the
boundary of σ.

We can represent the incidence relationships of cells in X in a weighted
graph B.

Definition 2.1.7 (Incidence graph). Take an abstract 2-complex X . The
incidence graph B of X is the weighted graph with

1. a weight 0 node nv for each vertex v of X ,
2. a weight 1 node ne for each edge e = {u, v} of X ,
3. a weight 2 node nt for each triangle t = {u, v, w} of X ,
4. an edge between a weight 2 node nt and weight 1 node ne if e ⊂ t,
5. an edge between a weight 2 node nt and weight 0 node nv if v ∈ t,
6. an edge between a weight 1 node ne and weight 0 node nv if v ∈ e.

Abusing notation, we usually write |X| instead of |X|Θ or (X,Θ), use v
to denote both the abstract vertex and its embedded location Θ(v), uv to de-
note both the abstract edge and the embedded image Θ({u, v }), and△uvw

to denote both the abstract triangle and the embedded image Θ({u, v, w }).
Whether we are referring to an element of the abstract 2-complex or its im-
age in Rn should be clear from the context.
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As in Chapter 1, we use the following conventions in this chapter. Given
two points x, y ∈ Rn, ∥x− y∥ is the standard Euclidean distance between x

and y, for a point x ∈ Rn and a set Y ⊂ Rn, we set

d(x, Y ) := inf
y∈Y
∥x− y∥,

and for two sets X, Y ⊂ Rn, we set

d(X, Y ) := min

{
inf
x∈X

d(x, Y ), inf
y∈Y

d(y,X)

}
,

dH(X, Y ) := max

{
sup
x∈X

d(x, Y ), sup
y∈Y

d(y,X)

}
,

where dH is the Hausdorff distance.
We also consider thickenings of a subset X: we let

Xα := {p ∈ Rn | d(p,H) ≤ α}.

In proofs towards the end of this chapter, we use the weak feature size
of X to allow us to construct various isomorphisms.

Definition 2.1.8 (Weak feature size). Take X ⊂ Rn and let dX : Rn → R be
the distance to X function. Then the weak feature size of X is the infimum
of all critical values of dX .

At various moments in the algorithm, we consider the diameter of a set
of points.

Definition 2.1.9 (Diameter of a set of points). Let X ⊂ Rn be a finite subset
of points. The diameter of X , D(X), is the maximum distance between any
pair of points x, y ∈ X:

D(X) := maxx,y∈X∥x− y∥.

We use Br(p) to denote the ball of radius r centred at a point p ∈ Rn,
by ∂BR(p) we mean the boundary of such a ball, and let

Sk = {x ∈ Rn | ∥x∥ = 1}

denote the standard k-sphere. We also regularly consider points in a spher-
ical shell.
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Definition 2.1.10. Fix a < b, and let y be a point in Rn. The spherical shell
of radii a and b centered at p, Sb

a(p) is the set

{q ∈ Rn | a ≤ ∥q − p∥ ≤ b} .

We consider dihedral angles between two half-planes.

Definition 2.1.11. Let H1, H2 be two half-planes with a common boundary
line L. Then, the dihedral angle α between H1 and H2 is the angle formed
by two vectors v1 ∈ H1 and v2 ∈ H2 originating from the same point x ∈ L

such that both v1 and v2 are perpendicular to L.

We work with ε-samples P of the embedded 2-complex |X|, which are
defined analogous to Definition 1.0.3.

Definition 2.1.12 (ε-sample). Let |X|⊂ Rn be an embedded 2-complex. An
ε-sample P of |X| is a finite subset of Rn such that dH(|X|, P ) ≤ ε.

As in Chapter 1, we use the threshold graph on a set of points, recall
Definition 1.2.1.

Definition 2.1.13. Let P ⊂ RN be a finite collection of points, and fix r > 0.
The graph at threshold r on P , Gr(P ), is the graph with vertices p ∈ P , and
edges (p, q) if ∥p− q∥≤ r.

The objects we consider in this chapter are 2-dimensional, and so we
also use Čech complexes.

Definition 2.1.14 (Čech Complex). Let P ⊂ Rn be a finite set of points.
The Čech complex at scale δ, Čδ(P ) is the complex with j-cells {vi}ji=0 such
that the intersection

⋂j
i=0 Bδ(vi) is non-empty.

Now, we formalise the aim of this chapter. Given an ε-sample P of some
linearly embedded 2-complex |X|, we want to recover the abstract structure
of the 2-complex X . To do this, we need to learn the number of vertices,
the number of edges, and the number of triangles, as well as the incidence
relations between them. We achieve this by first deciding for each p ∈ P if
it is near a cell that is not locally maximal, or far away from all cells which
are not locally maximal. This partitions P into two subsets which intuitively
are PNLM containing samples p near non-locally maximal cells, and PLM
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containing samples p only near locally maximal cells. Rigorous definitions
of PNLM and PLM are in Definition 2.3.6. Part of this process involves
approximating the local homology at each p ∈ P using a radius r. This
requires a choice of scale at which to approximate |X| from P . Unlike in
Chapter 1, the relationship between clusters in PNLM and PLM to vertices,
edges and triangles is not direct. We can, however, still infer the incidence
operator.

2.2. New and Improved Geometric Lemmas

As in Section 1.1, we provide some geometric lemmas as motivation for
the definitions of local structures and the geometric assumptions we place
on the embeddings of a 2-complex. There are two parts to the definition of
the local structure of a point cloud P at a sample p: the first is a topological
condition relating to the homology of the samples in a spherical shell around
p, and the second relates to the geometry of these samples. The geometric
lemmas in this section allow us to distinguish between points near cells that
are not locally maximal and those that are only near locally maximal cells
when the topological structure of P at p does not, see Section 2.3.

We begin with a helpful lemma that bounds the distance between a point
in a spherical shell within ε of a ray and the point in the ray in the middle of
the shell.

Lemma 2.2.1. Let L ⊂ Rn be a ray originating at a point z, and fix

R ≥ 14ε > 0.

Let P ⊂ Rn have dH(P,L) ≤ ε and take p ∈ Rn with

∥p− z∥ ≤ R

2
.

Let x be the point in L with ∥x− p∥ = R. Then for all q ∈ SR+ε
R−ε(p) ∩ P

∥q − x∥ ≤
√
2ε.

Proof. Consider SR+ε
R−ε(p)∩L say C, and a point q ∈ SR+ε

R−ε(p) with d(L, q) ≤
ε. Let qL be the projection of q to L, pL the projection of p to L.

There are two cases we need to consider,

1. ∥x− qL∥ ≥ ∥qL − pL∥,
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2. ∥x− qL∥ < ∥qL − pL∥.

p

q

qL
x

pL

FIGURE 2.1. ∥x− qL∥ ≥ ∥qL − pL∥

p

q

qL

xpL

FIGURE 2.2. ∥x− qL∥ < ∥qL − pL∥

We begin with case 1.
We want to bound ∥x− q∥. Note that

∥q − x∥2 = ∥q − qL∥2 + ∥qL − x∥2,

∥qL − x∥ = ∥pL − x∥ − ∥pL − qL∥,

∥pL − qL∥2 = ∥q − p∥2 − (∥p− pL∥+ ∥q − qL∥)2 ,

∥pL − x∥2 = ∥x− p∥2 − ∥pL − p∥2.

Hence,

∥q − x∥2

= ∥q − qL∥2 + (∥pL − x∥ − ∥pL − qL∥)2

= ∥q − qL∥2 +
(√
∥q − p∥2 − ∥pL − p∥2 −

√
∥q − p∥2 − (∥p− pL∥+ ∥q − qL∥)2

)2

= ∥q − qL∥2+(√
∥q − p∥2 − ∥pL − p∥2 −

√
∥q − p∥2 − ∥p− pL∥2 − (∥q − qL∥2 + ∥p− pL∥∥q − qL∥)

)
.
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Let

A = ∥q − p∥2 − ∥p− pL∥2,

B = ∥q − qL∥2 + ∥p− pL∥∥q − qL∥.

As

∥q − p∥ ≤ R,

∥p− pL∥ ≤
R

2
,

∥q − qL∥ ≤ ε,

we have

A > (R− ε)2 − ε2

B < 3ε2

and so A > 4B
3

. Then

AB

3
>

4B2

9

A2 − AB > A2 − 4AB

3
+

4B2

9√
A(A−B) > A− 2B

3

−2
√

A(A−B) < −2A+
4B

3

2A−B − 2
√
A(A−B) <

B

3(√
A−
√
A−B

)2
<

B

3

Recall A > 4B
3

, thus

∥q − x∥2 = ∥q − qL∥+
(√

A−
√
A−B

)2
≤ ε2 +

B

3

≤ 2ε
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A similar calculation in case 2 gives a smaller bound, so

∥q − x∥ ≤
√
2ε.

□

Next, Lemma 2.2.2 , which motivates part 3 in Definition 2.3.4. The
lemma considers the distances between triples of points in SR+ε

R−ε(p) ∩ Hε

for some point p ∈ Hε, where Hε is the thickening of a plane H by ε, with
ε > 0.

Lemma 2.2.2. Consider an affine 2-hyperplane H ⊂ Rn and fix

R ≥ 14ε ≥ 0.

Let P ⊂ Rn be such that dH(P,H) ≤ ε, and take p with d(p,H) ≤ ε. Then,
for all q1 ∈ SR+ε

R−ε(p) ∩ P , there exists q2 ∈ SR+ε
R−ε(p) ∩ P with

∥q2 − q1∥ ≥ 2
√
R2 − ε2 − (1 +

√
2)ε.

Proof. First, let pH be the projection of p to H , and note that ∥pH−p∥ ≤ ε.
Take q1 ∈ SR+ε

R−ε(p)∩P . Let x1 be the point in ∂BR(p)∩H closest to q1, and
qH the projection of q1 to H . Note that pH , qH , x1 are co-linear, lying on the
ray L from pH , and ∥q1 − qH∥ ≤ ε. By Lemma 2.2.1, ∥q1 − x1∥ ≤

√
2ε.

As H ∩ ∂BR(p) is a circle with radius
√

R2 − ∥pH − p∥2, there is a
point x2 ∈ H ∩ ∂BR(p) such that ∥x2 − x1∥ = 2

√
R2 − ∥pH − p∥2. As

dH(p,H) ≤ ε, we have

∥x2 − x1∥ ≥ 2
√
R2 − ε2,

and as dH(P,H) ≤ ε, there is q1 ∈ P with ∥q1 − x1∥ ≤ ε. Hence

∥q2 − q1∥ ≥ 2
√
R2 − ε2 − (1 +

√
2)ε.

□

Now that we have a geometric property to test if a point p and the sam-
ples in SR+ε

R−ε(p) are from a subset of a plane. We want to understand what
conditions need to be placed on points near an edge in two triangles to guar-
antee this property does not hold. In particular, Lemma 2.2.3 motivates part
4 of Definition 2.3.5.
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For ease of reading, we let

Ψ(ε, R)

= arccos

(
(R + 2ε)2 +

(
3R
2
− ε
)2 − (2√R2 − ε2 −

(
2 + 2

√
2
)
ε
)2

2(R + 2ε)
(
3R
2
− ε
) )

.

The following lemma motivates the conditions we place on the dihedral
angle between two triangles with a common boundary edge uv (of degree 2).
This allows us to guarantee that the geometry of the samples in SR+ε

R−ε(p) for
a sample p near uv is not the same as the geometry of samples in SR+ε

R−ε(p)

when p is near a triangle but far away from its boundary.

Lemma 2.2.3. Consider two affine 2-half-planes H1, H2 ⊂ Rn whose bound-
aries are equal, say L, and fix R ≥ 14ε > 0. Let α be the dihedral angle
between H1 and H2. Let P be a set of points such that dH(P,H1∪H2) ≤ ε.
Further, take p such that d(p,H1) ≤ ε. If

d(L, p) ≤ R

2
− 2ε

and
α ∈ (0,Ψ(ε, R))

then there exist q1 ∈ SR+ε
R−ε(p) ∩ P such that for all q2 ∈ SR+ε

R−ε(p) ∩ P

∥q2 − q1∥ < 2
√
R2 − ε2 −

(
1 +
√
2
)
ε.

Proof. First, let H ′
1 be the half plane containing H1 with bounding line L′

such that D(L,L′) = ε, pH be the projection of p onto H ′
1 and pL the

projection of p to L. Then take x1 ∈ H1 such that ∥p− x1∥ = R and pH , pL

and x1 are co-linear. Take q1 ∈ P with ∥q1−x1∥ ≤ ε, so q1 ∈ SR+ε
R−ε(p)∩P .

Let q2 be a point in SR+ε
R−ε(p) ∩ P . There are two cases to consider:

d(q2, H
′
1) ≤ ε and d(q2, H2) ≤ ε.

If d(q2, H
′
1) ≤ ε, take x2 ∈ ∂BR(p) ∩ H ′

1 such that x2, pH and the
projection of q2 to H ′

1 are co-linear. Then by Lemma 2.2.1 ∥q2−x2∥ ≤
√
2ε.

Consider the triangle formed by x1, ph, x2. By assumption,

∥x̃− pH∥ <
R

2
< R− 7ε,

∥x2 − pH∥ = ∥x1 − pH∥ ≤ R.
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L

H1

pL

x1

x2

pH

x̃

FIGURE 2.3

Let R̂ =
√

R2 − ∥pH − p∥2. Then

∥x̃− pH∥ < R̂

∥x̃− pH∥ < R̂− 6ε

2R̂∥x̃− pH∥ < 2R̂2 − 12R̂ε

2R̂2 + 2R̂∥x̃− pH∥ < 4R̂2 − 4(1 +
√
2)R̂ε+ (1 +

√
2)ε

2R̂2 + 2R̂

(
∥x̃− pH∥

R̂

)
<
(
2R̂− (1 +

√
2)ε
)2

.

Further,

2R̂2 + 2R̂

(
∥x̃− pH∥

R̂

)
= ∥x1 − pH∥2 + ∥x2 − pH∥2 + 2∥x1 − pH∥∥x2 − ph∥ cos ̸ x2phx̃

= ∥x1 − pH∥2 + ∥x2 − pH∥2 − 2∥x1 − pH∥∥x2 − ph∥ cos ̸ x2phx1

= ∥x2 − x1∥2,

so

∥x2 − x1∥ <
√

R2 − ∥pH − p∥2 − (1 +
√
2)ε,

which implies

∥q2 − q1∥ < 2
√
R2 − ε2 − (2 + 2

√
2)ε.

Now assume d(q2, H2) ≤ ε. Let H ′
2 be the half-plane which contains

H2 and has boundary L′ with d(L,L′) = ε. As d(q2, H2) ≤ ε, then there is
x2 ∈ ∂BR(p) ∩H ′

2 with ∥q2 − x2∥ ≤
√
2ε. Hence,

∥x1 − x2∥ ≥ 2
√
R2 − ε2 − (2 + 2

√
2)ε.
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x2

pL

x1

pH

FIGURE 2.4. d(q2, H2) ≤ ε

If x2 ∈ H ′
2 \H2, then by a similar argument to above,

∥x1 − x2∥ ≥ 2
√
R2 − ε2 − (2 + 2

√
2)ε.

If x2 ∈ H2 ⊊ H ′
2, by the cosine rule we have

∥x2−x1∥2 = ∥x2−pL∥2+∥x1−pL∥2−2∥x2−pL∥∥x1−pL∥ cos ̸ x1pLx2.

Note ∥x1−pL∥ = ∥x1−pH∥+∥pH−pL∥, and ∥x2−x1∥ is bounded above
by the case when

̸ x1pLx2 = α,

∥x2 − pL∥ = R + 2ε,

∥x1 − pL∥ = ∥x1 − pH∥+ ∥pH − pL∥ =
3R

2
+ ε.

Hence, we have

∥x2 − x1∥ < (R + 2ε)2 +

(
3R

2
+ ε

)2

− (R + 2ε)

(
3R

2
+ ε

)
cosα.

By assumption, α ∈ (0,Ψ(ε, R)), and so

∥x2 − x1∥ < 2
√
R2 − ε2 −

(
2 + 2

√
2
)
ε,

which implies that

∥q2 − q1∥ < 2
√
R2 − ε2 −

(
1 +
√
2
)
ε.
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Hence, there is a q1 ∈ SR+ε
R−ε(p) ∩ P such that for all q2 ∈ SR+ε

R−ε(p) ∩ P

∥q2 − q1∥ < 2
√
R2 − ε2 −

(
1 +
√
2
)
ε.

□

Next, we investigate the geometry of points near a ray and half-plane, to
develop a test for points near not locally maximal cells.

There are several local structures that have the same topological struc-
ture: they consist of two connected components with no 1-cycles. In Chap-
ter 1, we used the angle between the centroids of the two connected compo-
nents to distinguish between points near a degree 2 vertex and points near
the interior of an edge. Unfortunately, this test is not sufficient after intro-
ducing triangles. If we first check for the presence of triangles, we can again
use the inner-product test. To test for the presence of triangles, we examine
the diameters of the two connected components.

So, we first bound the diameter of a set of samples only near a line.

Lemma 2.2.4 (Diameter of points near ray). Let L ⊂ Rn be a ray originat-
ing at a point z, and fix R > 14ε > 0. Let P ⊂ Rn have dH(P,L) ≤ ε and

take p ∈ Rn with d(L, p) ≤ ε and ∥p− z∥ ≤ R−ε
2

. Then
(
SR+ε
R−ε(p) ∩ P

) 3ε
2

has 1 connected component c, and the diameter is less than 2
√
2ε.

Proof. By Lemma 2.2.1, every q ∈ SR+ε
R−ε(p)∩P is with in

√
2ε of the point

x in L with ∥x − p∥ = R. Hence,
(
SR+ε
R−ε(p) ∩ P

) 3ε
2 consists of a single

connected component and it has diameter less than 2
√
2ε. □

The previous lemma bounds the diameter of a connected component
containing points with ε of an edge, that are within SR+ε

R−ε(p) for a sample p

near a vertex in the boundary of this edge. We need to guarantee that if p is
near the interior of an edge, it does not fail the diameter test. To ensure this,
we obtain the following as a corollary of Lemma 2.2.4.

Corollary 2.2.5. Let L ⊂ Rn be a line, and fix R > 3ε > 0. Let P ⊂ Rn

have dH(P,L) ≤ ε and take p ∈ Rn with d(L, p) ≤ ε and

∥p− z∥ ≤ R− ε

2
.
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p

x1

x2

z α

Then
(
SR+ε
R−ε(p) ∩ P

) 3ε
2 has 2 connected components c1, c2, and their diam-

eters are less than 2
√
2ε.

Proof. First note that SR+ε
R−ε(p) ∩ L consists of two connected components,

C1, C2, and the distance between them is R − ε. Hence, we can apply
Lemma 2.2.4, to C1 and C2 individually, obtaining a connected component
for each, say c1 and c2. Further, the diameters of c1 and c2 are less than
2
√
2ε. □

The following lemma guarantees that if there are samples in SR+ε
R−ε(p)

that are within ε of a triangle, the diameter test fails.

Lemma 2.2.6. Let L1, L2 ⊂ Rn be two rays originating at the same point z
with the angle α between in the interval[π

6
, π
)
,

and fix R ≥ 14ε > 0. Let T be the set between L1 and L2. Take p ∈ Rn with
d(T, p) ≤ ε and ∥p − x∥ ≤ R−ε

2
, and P ⊂ Rn with dH(P, T ) ≤ ε. Then,

there exist points q1, q2 in P with ∥q1 − p∥, ∥q2 − p∥ ∈ [R − ε, R + ε] such
that ∥q1 − q2∥ > 2

√
2ε, and q1, q2 are path connected. Furthermore, the

connected component containing q1 and q2 has diameter bigger than 2
√
2ε.

Proof. As ∥p− z∥ ≤ R−ε
2

, the intersection SR+ε
R−ε(p) ∩ T is not empty, con-

nected, andH1

(
SR+ε
R−ε(p) ∩ T

)
= 0. Further, the intersections SR+ε

R−ε(p)∩L1

and SR+ε
R−ε(p) ∩ L2 are also connected.

Now, let x1 be the point on L1 with ∥q1−p∥ = R and let x2 be the point
on L2 with ∥x2− p∥ = R. As SR+ε

R−ε(p)∩ T is path connected, x1 and x2 are
path connected in T .
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Consider the triangle△x1px2, we have

∥x1 − x2∥2 = ∥x1 − z∥2 + ∥x2 − z∥2 − 2∥x1 − z∥∥q2 − z∥ cosα

≥
(
R− R− ε

2

)2

+

(
R− R− ε

2

)2

− 2

(
R− R− ε

2

)2

cosα

= 2

(
R + ε

2

)2

(1− cosα).

Now, as dH(P, T ) ≤ ε, there are points q1, q2 ∈ P with

∥q1 − x1∥, ∥q2 − x2∥ ≤ ε.

Then by the triangle inequality

∥q1 − q2∥2 = 2

(
R + ε

2

)2

(1− cosα)− 2ε

> 2
√
2ε, as α ∈

[π
6
, π
)
.

□

2.3. Local Structures

To identify the abstract structure of the 2-complex, the algorithm in Sec-
tion 2.4 first partitions the sample P into sets PLM , containing samples that
are only near locally maximal cells, and PNLM , containing samples near
cells that are not locally maximal. The decision tree for if a point is in
PNLM or PLM is summarised in Figure 2.5. After this, we further partition
PLM and PNLM to infer the number of cells and their dimensions, as well
as the incidence operator.

Take an embedded 2-complex |X|⊂ Rn, fix (an appropriate) 0 < ε ≤ R

and take p ∈ Rn with d(|X|, p) ≤ ε. Consider the topological and geometric
structure of |X| in a neighbourhood of p, beginning with BR(p) ∩ |X|. If
BR(p) ∩ |X| is disconnected, we restrict to the connected component Cp

containing proj|X|(p). Then, we consider ∂BR(p) ∩ Cp. Let proj|X|(p) be
the projection of p to |X|, and let σp be the cell containing proj|X|(p). If σp
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is locally maximal and d(|∂σp|, p) > R, then ∂BR(p) ∩ Cp has one of the
following structures:

1. ∂BR(p)∩Cp is empty, in which case σp is a locally maximal vertex,
2. ∂BR(p) ∩ Cp is a pair of antipodal points, in which case σp is a

locally maximal 1-cell,
3. ∂BR(p) ∩ Cp is homotopic to S1 lying in a plane, in which case σp

is a 2-cell.

The above structures consist of two parts: we examine the topological
structure of ∂BR(p) ∩ Cp, and then look at its geometry. If p is within R of
some cell τp (possibly τp = σp) which is not locally maximal, then either the
topological structure or the geometric structure is not one of the above cases.
As such, we use a two-step process to decide if a given sample p is within
R of some not locally maximal cell τp: first, we examine the topological
structure of ∂BR(p)∩Cp by looking at its homology, and then if necessary,
we consider its geometric structure. We let

H•(p) := H• (∂BR(p) ∩ Cp) .

As we are restricting ourselves to 2-complexes, we focus on H0(p) and
H1(p).

Definition 2.3.1 (Local homology signature). Let |X|⊂ Rn be an embedded
2-complex, and fix R > ε > 0. Take a point p ∈ Rn with d(p, |X|) ≤ ε. The
local homology signature of |X| at p is

Sig(p) := (|H0(p)|, |H1(p)|) .

In the above cases, the local homology signature of |X| at p is as follows.

1. Sig(p) = (0, 0),
2. Sig(p) = (2, 0),
3. Sig(p) = (1, 1).

and so if Sig(p) is not equal to (0, 0), (2, 0) or (1, 1), then p is within R of a
cell τp which is not locally maximal. If Sig(p) is (0, 0) then p is within ε of a
degree 0 vertex. Unfortunately, if Sig(p) is either (2, 0) or (1, 1), we need to
examine the geometric structure of ∂BR(p)∩Cp. When Sig(p) = (2, 0), we
can distinguish between the case where σp is a locally maximal 1-cell and
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where σp is a vertex of degree 2 as follows: let the two points in ∂BR(p)∩Cp

be c1 and c2. If σp is a 1-cell, then ̸ c1pc2 = π, and other ̸ c1pc2 ̸= π. When
Sig(p) = (1, 1) we need to distinguish between if σq is a 2-cell, and if σp

is in the boundary of 2-cells. We can do so by checking if ∂BR(p) ∩ Cp is
contained in a plane: if it is, then σp is a 2-cell, if not σp is either an edge or
a vertex that is not locally maximal.

Recall that we are working with an ε-sample P of the embedded 2-
complex |X| instead of |X|. We want to approximate Sig(p) with P . As P
is an ε-sample, we can approximate ∂BR(p) ∩ Cp by first considering the
structure of BR+ε(p) ∩ P , then the structure of SR+ε

R−ε(p) ∩ P . Before we
define the (ε, R)-local structure of P at p (Definition 2.3.3), we need the
following notation.

Definition 2.3.2. Let P ⊂ Rn be a finite set of points. Then, rkδ,γk (P ) is
the rank of the map on the kth homology groups induced by the inclusion
P δ ↪→ P γ .

We can now formally define the (ε, R)-local structure of P at p.

Definition 2.3.3 ((ε, R)-local homology signature). Let P ⊂ Rn be an ε-

sample of an embedded 2-complex |X|, and fix R ≥ 14ε. Let C
3ε
2
p be sam-

ples in the same connected component of threshold graph G3ε (BR+ε(p) ∩ P )

as p. The (ε, R)-local homology signature Sigε,R(p) of P at a sample p is

Sigε,R(p) :=
(
rk

3ε
2
, 7ε
2

0

(
SR+ε
R−ε(p) ∩ C

3ε
2
p

)
, rk

3ε
2
, 7ε
2

1

(
SR+ε
R−ε(p) ∩ C

3ε
2
p

))
.

We now define the types of local structures, beginning with maximal
local structures.

Definition 2.3.4 (Maximal (ε, R)-local structure). Let P be an ε sample of

a linearly embedded 2-complex |X| and fix R ≥ 14ε. Let C
3ε
2
p be the set of

samples in the same connected component of (BR+ε(p) ∩ P )
3ε
2 as p. We say

the (ε, R)-local structure of P at p is maximal if any of the following hold:

1. Sigε,R(p) = (0, 0), in which case we say that the (ε, R)-local struc-
ture of P at p is maximal of dimension 0,

2. Sigε,R(p) = (2, 0), and the two connected components c1, c2 of(
SR+ε
R−ε(p) ∩ C

3ε
2
p

) 3ε
2

have diameters less than 5ε and mid-points q1
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and q2 such that

⟨q1 − p, q2 − p⟩ ≤ −R2 + 2Rε+ 7ε2,

in which case we say that the (ε, R)-local structure of P at p is
maximal of dimension 1,

3. Sigε,R(p) = (1, 1), and for all q1 ∈ SR+ε
R−ε(p)∩P, ∃q2 ∈ SR+ε

R−ε(p)∩P
with

∥q2 − q1∥ < 2
√
R2 − ε2 −

(
1 +
√
2
)
ε.

in which case we say that the (ε, R)-local structure of P at p is
maximal of dimension 2,

Next, we define not maximal (ε, R)-local stuctures.

Definition 2.3.5 (Not maximal (ε, R)-local structure). Let P be an ε sample

of a linearly embedded 2-complex |X| and fix R ≥ 14ε. Let C
3ε
2
p be the set

of samples in the same connected component of Č 3ε
2
(SR+ε(p) ∩ P ) as p. We

say that the (ε, R)-local structure of P at p ∈ P is not maximal if any of the
following hold:

1. Sigε,R(p) = (n, 0) for some n ∈ Z≥0, n ̸= 0, 2,
2. Sigε,R(p) = (1, n) for some n ∈ Z≥0, n ̸= 1,
3. Sigε,R(p) = (2, 0) and letting two connected components of(

SR+ε
R−ε(p) ∩ C

3ε
2
p

) 3ε
2

be c1, c2, either max {D(c1),D(c2)} ≤ 2
√
2ε and letting mid-points

of c1, c2 be q1, q2

⟨q1 − p, q2 − p⟩ > −R2 + 2Rε+ 7ε2,

4. Sigε,R(p) = (1, 1) and there exists q1 ∈ P ∩ SR+ε
R−ε such that for all

q2 ∈ P ∩ SR+ε
R−ε

∥q2 − q1∥ < 2
√
R2 − ε2 −

(
1 +
√
2
)
ε.

Having defined the two classes of (ε, R)-local structures, we can define
our initial partition.
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Definition 2.3.6 (PLM and PNLM ). Let P be an ε-sample of an embedded
2-complex |X|. We partition P into two sets PLM and PNLM defined as

PLM := {p ∈ P | the (ε, R)-local structure at of P at p is maximal.}

PNLM := {p ∈ P | the (ε, R)-local structure of P at p is not maximal.}

Remark 2.3.7. For all p ∈ P , P either has maximal (ε, R)-local structure
at p ∈ P or it does not. Hence, the partitioning of P into PLM and PNLM

defined in Definition 2.3.6 is disjoint.

Recall that the samples we are working with can contain noise, and we
use the homology of Č 3ε

2

(
SR+ε
R−ε(p) ∩ C

3ε
2
p

)
in the definition of (ε, R)-local

structure. Hence, we place assumptions on |X| to ensure that we correctly
detect when samples are near cells that are not locally maximal. As in Chap-
ter 1, we place assumptions on the distances between any two vertices u and
v, the distance between an edge uw and a vertex v ̸= u,w, the angle between
any pair of edges with a common boundary vertex. Additionally, we place
assumptions on the dihedral angle between any two 2-cells with common
boundary components. So that we can infer the incidence operator, we will
require an upper bound on the relationship between R and ε, and so we also
restrict our choice of R in terms of ε. We use the following notation in the
decision flow chart (Figure 2.5):

β = −R2 + 2Rε+ 7ε2,

γ = 2
√
R2 − ε2 −

(
1 +
√
2
)
ε.

To increase the readability of this chapter, we define the following func-
tions.

Definition 2.3.8. Fix R > 14ε > 0. We define the following functions:

1.

Ψ1(ε, R) = arccos

((
R
2
− ε
)2 − 18ε2(

R
2
− ε
)2

)

≥ arccos

(
(R− ε)2 − 18ε2

(R− ε)2

)
+ 2arcsin

(
2ε

(R− ε)

)
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p ∈ P

Sigε,R(p) = (0, 0)

Sigε,R(p) = (2, 0) Sigε,R(p) = (1, 1)

Sigε,R(p) = (n, 0) Sigε,R(p) = (1, n)

p has a maximal
(ε, R)-local structure of

dimension 0

P has non-maximal
(ε, R)-local structure

P has non-maximal
(ε, R)-local structure

max{diam(c1),
diam(c2)} ≤ 2

√
2ε

max{diam(c1),
diam(c2)} > 2

√
2ε

∀q1∃q2
∥q2 − q1∥ ≥ γ

∃q1∀q2
∥q2 − q1∥ < γ

⟨q1− p, q2− p⟩ > β

⟨q1− p, q2− p⟩ ≤ β

p has a non-maximal
(ε, R)-local structure

p has a maximal
(ε, R)-local structure of

dimension 1

p has a non-maximal
(ε, R)-local structure

p has a maximal
(ε, R)-local structure of

dimension 2

FIGURE 2.5. Flow chart for determining if the (ε, R)-local
structure of P at p is maximal or not. If maximal, what the
dimension is.

2.

Ψ2(ε, R) = π − arctan

(
R + 3ε

6ε

)
+ arcsin

(
R2 − 4Rε− 9ε2

(R + ε)
√
R2 + 6Rε+ 34ε2

)

3.

Ψ3(ε, R) = arccos

(
(R + 2ε)2 +

(
3R
2
− ε
)2 − (2√R2 − ε2 −

(
2 + 2

√
2
)
ε
)2

2(R + 2ε)
(
3R
2
− ε
) )
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FIGURE 2.6. Graph of Ψ1

(
1, R

ε

)
.

To improve intuition of these functions, Figures 2.6 to 2.8 provide graphs
of them. Note they are effectively a function of R

ε
as they are invariant to

scaling both R and ε by the same amount.
We now state the assumptions we place on |X|.

Assumption 2. Fix R ≥ 14ε > 0. We restrict to embedded 2-complexes
|X|= (X, π) which satisfy the following.

1. For all vertices u, v,

∥u− v∥ > 6(R + ε).

2. For a vertex v and edge uw with v ̸= u,w,

d(uw, v) > 6(R + ε)ε.

3. For a vertex v and a triangle△uwx with v ̸= u,w, x,

d(△uwx, v) > 6(R + ε).

4. For an edge uv and a triangle△wxy with v, u ̸= w, x, y,

d(△wxy, uv) > 6(R + ε).
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FIGURE 2.7. Graph of Ψ2

(
1, R

ε

)
.

FIGURE 2.8. Graph of Ψ3

(
1, R

ε

)
.

5. For any triangle△uvw,

̸ uvw, ̸ vwu, ̸ wuv ≥ π

6
.
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6. For any pair of edges uv, xy with no common vertex,

d(uv, xy) > 6(R + ε).

7. For any triangles△uwv,△xyz,

d(△uwv,△xyz) > 6(R + ε).

8. For any pair of edges uv, wv,

̸ uvw ≥ Ψ1(ε, R).

9. For all degree 2 vertices v with edges uv, wv and no triangle△uvw,

̸ uvw ≤ Ψ2(ε, R).

10. For any pair of triangles △uvw1,△uvw2, the dihedral angle be-
tween them is bounded below by Ψ1(ε, R).

11. For any pair of triangles △uvw1,△uvw2, with uv of degree 2, the
dihedral angle between them is bounded above by Ψ2(ε, R).

12. For any triangle △wwvw2 and edge uv the angle between uv and
and ray L in △w1vw2 at v is bounded below by Ψ1(ε, R) and the
radius of the largest circle inscribed by△uvw is at least 2R + 3ε.

13. For any vertex v such that

|H0 (BR(v) ∩ |X|) |= 1, and |H1 (BR(v) ∩ |X|) |= 1,

the angle between any two rays L1, L2 ∈ |X| at v is bounded above
Ψ3(ε, R).

Remark 2.3.9. The reasons behind some of the conditions in Assumption 2
are relatively clear, while others are a bit more obscure. In particular, the
roles of conditions 11 and 12 are not immediately clear. Condition 12 allows
us to detect the vertex v in our algorithms. In particular, it is used in Propo-
sition 2.3.14 show that we obtain Sigε,R = (n, •), n ≥ 2. Condition 13
allows us to detect which topologically looks similar to an edge of degree
2 or a triangle, and so we place restrictions on the formation of the cone,
potentially with fins, so that we can detect the vertex (Proposition 2.3.14).
This condition is equivalent to bounding the angle at v of the convex hull
which contains the triangles with vertex v.
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The following Propositions provide us with ‘regions’ near locally max-
imal i-cells σ (for i = 0, 1, 2), where we can guarantee that at any sample
in this region, the (ε, R)-local structure of P at p is maximal of dimension
i.

We begin with the region around a locally maximal vertex.

Proposition 2.3.10. Let v be a vertex of |X|⊂ Rn, which is locally maximal,
and let P be an ε-sample of |X|. Then, for all p ∈ P with ∥p − v∥ ≤ 4ε,
the (ε, R)-local structure of P at p is maximal of dimension 0.

Proof. As v is locally maximal, it is not in the boundary of any other cell,
and from Assumption 2 for all vertices u ̸= v, ∥u− v∥ > 6(R + ε), for all
edges uw with v ̸= u,w,

d(uv, v) > 6(R + ε),

and for all triangles△uwx with v ̸= u,w, x,

d(△uwx, v) > 6(R + ε).

Hence, any sample p ∈ P within 4ε of v is within ε of v. Thus,
(BR+ε(p) ∩ P )

3ε
2 consists of a single connected component, and SR+ε

R−ε(p)∩
P = ∅.

Thus, SR+ε
R−ε(p) ∩ P , Sigε,R(p) = (0, 0), and the (ε, R)-local structure of

P at p is maximal of dimension 0. □

Next, we bound the region near a locally maximal edge.

Proposition 2.3.11. Let uv be an edge of |X|⊂ Rn, which is locally maxi-
mal, and let P be an ε-sample of |X|. Then, for all p ∈ P with d(uv, p) ≤ ε,
and ∥p−u∥, ∥p−v∥ ≥ 3R

2
+ε, the (ε, R)-local structure of P at p is maximal

of dimension 1.

Proof. By Assumption 2, for any vertex w ̸= u, v

d(uv, w) > 6(R + ε),

for any edge wx, with w, x ̸= u, v,

d(uv, wx) > 6(R + ε),
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for any triangle△wxy, with w, x, y ̸= u, v,

d(△wxy, uv) > 6(R + ε),

and so the connected component C
3ε
2
p of (BR+ε(p) ∩ P )

3ε
2 which contains

p, contains only points q ∈ P with d(q, uv) ≤ ε.

Hence, Č 3ε
2

(
SR+ε
R−ε(p) ∩ C

3ε
2
p

)
consists of two connected components, c1

and c2. By Lemma 2.2.4, the diameters of c1 and c2 are less than 5ε . Let x1

and x2 be the centroids of c1 and c2. Then, applying Lemma 1.1.1,

⟨x1 − p, x2 − p⟩ ≤ −R2 + 2Rε+ 7ε2,

so the (ε, R)-local structure of P at p is maximal of dimension 1. □

Finally, we bound the region near (locally maximal) triangles.

Proposition 2.3.12. Let △uvw be an triangle of |X|⊂ Rn, and let P be
an ε-sample of |X|. Then, for all p ∈ P with d(△uvw, p) ≤ ε, and
d(∂△uvw, p) ≥ 3R

2
+ ε, the (ε, R)-local structure of P at p is maximal

of dimension 2.

Proof. From Assumption 2, for all triangles△xyz, with x, y, z ̸= u, v, w,

d(△uwv,△xyz) > 6(R + ε),

and hence the connected component C
3ε
2
p of Č 3ε

2
(BR+ε(p) ∩ P ) containing

p, consists only of samples q ∈ P with d(q,△uvw) ≤ ε, as the angle
between triangles is bounded below (Assumption 2).

First, we need to show that Sigε,R(p) = (1, 1), after which Lemma 2.2.2
implies that for all q1 ∈ SR+ε

R−ε(p) ∩ P , there exists q2 ∈ SR+ε
R−ε(p) ∩ P such

that

∥q2 − q1∥ ≥ 2
√
R2 − ε2 − (1 +

√
2)ε.
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As d(∂△uvw, p) > 3R
2
+ ε, we have the following inclusions

SR+ε
R−ε(p) ∩△uvw ↪→

(
SR+ε
R−ε(p) ∩ P

) 3ε
2

↪→
(
SR+ε
R−ε(p) ∩△uvw

) 5ε
2

↪→
(
SR+ε
R−ε(p) ∩ P

) 7ε
2

↪→
(
SR+ε
R−ε(p) ∩△uvw

) 9ε
2 .

By the bounds in Assumption 2 on the distances between a triangle and
cells not in its boundary, the weak feature size of SR+ε

R−ε(p)∩△uvw is greater
than 5ε, and so the inclusion maps induce isomorphisms

H•
(
SR+ε
R−ε(p) ∩△uvw

) ∼= H•

((
SR+ε
R−ε(p) ∩△uvw

) 5ε
2

)
∼= H•

((
SR+ε
R−ε(p) ∩△uvw

) 9ε
2

)
.

The above homology factors through
(
SR+ε
R−ε(p) ∩ P

) 3ε
2 and

(
SR+ε
R−ε(p) ∩ P

) 7ε
2

so we have

rk
3ε
2
, 5ε
2

•
(
SR+ε
R−ε(p) ∩ P

)
=
∣∣H•

(
SR+ε
R−ε(p) ∩△uvw

)∣∣ ,
and as

|H0

(
SR+ε
R−ε(p) ∩△uvw

)
|= 1, |H1

(
SR+ε
R−ε(p) ∩△uvw

)
|= 1,

it follows that Sigε,R(p) = (1, 1). Now we apply Lemma 2.2.2 and conclude
that the (ε, R)-local structure of P at p is maximal of dimension 2. □

Now, we obtain the regions around not locally maximal i-cells σ (i =
0, 1) in which we can guarantee that the (ε, R)-local structure of P at a
sample p in this region is not locally maximal. Again, we begin with non-
locally maximal vertices.

Remark 2.3.13. As we have restricted our considerations to 2-complexes,
every triangle σ is locally maximal; hence, we need only to consider vertices
and edges that are not locally maximal.

Proposition 2.3.14. Let v be a vertex of |X|⊂ Rn, which is not locally
maximal, and let P be an ε-sample of |X|. Then, for all p ∈ P with

∥p− v∥ ≤ R

2
− 2ε,
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the (ε, R)-local structure of P at p is not maximal.

Proof. There are several cases we need to consider, which we can classify
by the homology of ∂BR(v) ∩ |X|:

1. |H0 (∂BR(v) ∩ |X|)| = n, |H1 (∂BR(v) ∩ |X|)| = 0, n ̸= 2,
2. |H0 (∂BR(v) ∩ |X|)| = 2, |H1 (∂BR(v) ∩ |X|)| = 0,
3. |H0 (∂BR(v) ∩ |X|)| = 1, |H1 (∂BR(v) ∩ |X|)| = 1,
4. |H0 (∂BR(v) ∩ |X|)| = 1, |H1 (∂BR(v) ∩ |X|)| = n, n ≥ 2.

In each of these cases, the following argument holds. Let Cp be the
connected component of BR+ε(p) ∩ |X| which contains the projection of p

to |X|, and let C
3ε
2
p be the connected component of

(
SR+ε
R−ε(p) ∩ P

) 3ε
2 . As P

is a ε-sample of |X|, we have the following inclusions

SR+ε
R−ε(p) ∩△uvw ↪→

(
SR+ε
R−ε(p) ∩ P

) 3ε
2

↪→
(
SR+ε
R−ε(p) ∩△uvw

) 5ε
2

↪→
(
SR+ε
R−ε(p) ∩ P

) 7ε
2

↪→
(
SR+ε
R−ε(p) ∩△uvw

) 9ε
2 .

By the bounds in Assumption 2 on

• the angle betwen edges at a common vertex,
• the distance between vertices,
• the angles between triangles with a common vertex or edge,
• the distance between vertices and cells they do not intersect with,

the weak feature size of SR+ε
R−ε(p) ∩ C

3ε
2
p is greater than 5ε, and we have the

following isomorphism on homology induced by the inclusions above

H•
(
SR+ε
R−ε(p) ∩ |X|

) ∼= H•

((
SR+ε
R−ε(p) ∩ |X|

) 5ε
2

)
∼= H•

((
SR+ε
R−ε(p) ∩ |X|

) 9ε
2

)
.

The above homology factors through
(
SR+ε
R−ε(p) ∩ P

) 3ε
2 and

(
SR+ε
R−ε(p) ∩ P

) 7ε
2

so we have

rk
3ε
2
, 7ε
2

•
(
SR+ε
R−ε(p) ∩ P

)
=
∣∣H•

(
SR+ε
R−ε(p) ∩ |X|

)∣∣ .
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As ∥p− v∥ ≤ R
2
− 2ε, we have∣∣H•

(
SR+ε
R−ε(p) ∩ |X|

)∣∣ = |H• (∂BR(v) ∩ |X|)| ,

giving
rk

3ε
2
, 7ε
2

•
(
SR+ε
R−ε(p) ∩ P

)
= |H• (∂BR(v) ∩ |X|)| .

Case 1: |H0 (∂BR(v) ∩ |X|)| = n, |H1 (∂BR(v) ∩ |X|)| = 0, n ̸= 2

By the above, we have Sig(p) = (n, 0), n ̸= 2, and so the (ε, R)-local
structure of P at p is not maximal.

Case 2: |H0 (∂BR(v) ∩ |X|)| = 2, |H1 (∂BR(v) ∩ |X|)| = 0

By the above, we have Sig(p) = (2, 0). Let C2ε
p be the connected com-

ponent of Č 3ε
2

(
SR+ε
R−ε(p) ∩ P

)
containing p.

Assume that v is a face of some triangle △uvw. Then by the bounds
placed on angles between edges, and distances between edges without a
common face, edges and vertices which are not faces, and vertices and trian-
gles they are not a face of (see Assumption 2), and Lemma 2.2.6 at least one

connected component in
(
SR+ε
R−ε(p) ∩ C

3ε
2
p

) 3ε
2

has a diameter greater than

2
√
2ε. Thus, the (ε, R)-local structure of P at p is not maximal.
If v is only the face of edges, then by the bounds placed on angles be-

tween edges, and distances between edges without a common face, edges
and vertices which are not faces, and vertices and triangles they are not a
face of (see Assumption 2), both connected components come from two
edges uv and wv, Lemmas 1.1.2, 1.1.3 and 2.2.4 give that the (ε, R)-local
structure of P at p is not maximal.

Case 3: |H0 (∂BR(v) ∩ |X|)| = 1 |H1 (∂BR(v) ∩ |X|)| = 1

Again, we have Sig(p) = (1, 1) so there are at least three triangles hav-
ing v as a common vertex. Let pX be the closest point in |X| to p, and let
x1 ∈ ∂BR(p) ∩ |X| be colinear with v and pX , then there is q1 ∈ SR+ε

R−ε ∩ P

with ∥q1 − x1∥ ≤ ε.
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Now take any q2 ∈ SR+ε
R−ε ∩ P , and let x2 be the point in |X|∩∂BR(p)

closest to q2. Then from Lemma 2.2.1

∥q2 − x2∥ ≤
√
2ε.

Consider the rays L1, L2 from v through x1, x2 respectively, and assume
d(p, L1) ≤ ε.

x2

v

x1

pX

FIGURE 2.9. d(q2, H2) ≤ ε

We have

∥x1 − v∥ = ∥x1 − pX∥+ ∥pX − v∥ ≤ 3R

2
− 2ε,

∥x2 − v∥ ≤ R + ε,

and so

∥x2 − x1∥ = ∥x2 − v∥2 + ∥x1 − v∥2 − 2∥x2 − v∥∥x1 − v∥2 cos ̸ x1vx2

≤
(
3R

2
− 2ε

)2

+ (R + ε)2 −
(
3R

2
− 2ε

)
(R + ε) cosx1vx2.

By condition 13 in Assumption 2 the angle between them is bounded above
by Ψ3(ε, R), so

∥x2 − x1∥ ≤ 2
√
R2 − ε2 − (1 +

√
2)ε,

and so
∥q2 − q1∥ ≤ 2

√
R2 − ε2 − (2 + 2

√
2)ε.
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Thus, the (ε, R)-local structure of P at p is not maximal.

Case 4: |H0 (∂BR(v) ∩ |X|)| = 1, |H1 (∂BR(v) ∩ |X|)| = n, n ≥ 2

By the argument at the start of this proof, Sig(p) = (1, n), n ≥ 2 and so
the (ε, R)-local structure of P at p is not maximal. □

Next, we bound the region near edges that are not locally maximal.

Proposition 2.3.15. Let uv be an edge of |X|⊂ Rn, which is not locally
maximal, and let P be an ε-sample of |X|. Then, for all p ∈ P with
d(uv, p) ≤ R

2
− 2ε, the (ε, R)-local structure of P at p is not maximal.

Proof. If an edge uv is not locally maximal, then there is at least one trian-
gle△uvw.

We consider 3 cases:

1. there is a unique triangle△uvw with uv in the boundary,
2. there are exactly two triangles△uvw1 and△uvw2 with uv in their

boundaries,
3. there are three or more triangles △uvw1,△uvw2 and △uvw3 with

uv in their boundaries.

Recall that we restrict our attention to the connected components Cp, C
3ε
2
p

of SR+ε
R−ε(p) ∩ |X| and

(
SR+ε
R−ε(p) ∩ P

) 3ε
2 which contains p.

By the bounds in Assumption 2 on

• the angle betwen edges at a common vertex,
• the distance between edges that do not have a common face,
• the angles between triangles with a common edge,
• the distance between edges and cells they do not intersect with,

the weak feature size of Cp is greater than 5ε. Hence by the same argument
as at the start of the poof of Proposition 2.3.14,

Sigε,R(p) = (|H0 (∂BR(m) ∩ |X|)| , |H1 (∂BR(m) ∩ |X|)|) .

Thus, in cases 1 and 3, we get Sig(p) = (1, 0) and Sig(p) = (1, n) for
n ≥ 3 respectively.
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In case 2, we get Sig(p) = (1, 1), and so need to check the geometric
condition. By Lemma 2.2.3, there is a q1 ∈ SR+ε

R−ε(p) ∩ P such that for all
q2 ∈ SR+ε

R−ε(p) ∩ P

∥q2 − q1∥ < 2
√
R2 − ε2 − (1 +

√
2)ε,

and so the (ε, R)-local structure of P at p is not maximal.
Hence, in all 3 cases, the (ε, R) local structure of P at p is not maximal.

□

2.4. 2-Complex Algorithm and Correctness

In this section, we present a set of algorithms, which together, recover
the structure of X from an ε-sample P of an embedding (X,Θ) ⊂ Rn.
Theorem 2.4.26 states that given an ε-sample P of an embedded 2 complex
|X|= (X,ΘX) ⊂ Rn satisfying Assumption 2, we can recover the structure
of X using this algorithm. There is a sequence of lemmas (Lemmas 2.4.10
to 2.4.25), which culminates in the ‘big theorem’ (Theorem 2.4.26).

The algorithm partitions P into PLM and PNLM , such that for each p ∈
PLM the (ε, R)-local structure of P at p is maximal, and for each p ∈ PNLM

the (ε, R)-local structure of P at p is not maximal. We then detect the
number of vertices, the number of edges, the number of triangles and the
incidence operator. To obtain PLM and PNLM , we use

∆ε,R : P → {0, 1},

see Algorithm 4.
Let Cp be the samples q ∈ P in the connected component containing p

in the threshold graph

Gp = G3ε (BR+ε(p) ∩ P )

with ∥q − p∥ ∈ [R − ε, R + ε]. In the definitions of (ε, R)-local structure
(Definitions 2.3.4 and 2.3.5), we used

rk
3ε
2
, 7ε
2

•
(
SR+ε
R−ε(p) ∩ P

)
,
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which by the Nerve Lemma (Corollary 4G.3 [16]) is equal to the rank,RK•,
of the map

H•

(
Č 3ε

2

(
SR+ε
R−ε(p) ∩ Cp

))
→ H•

(
Č 7ε

2

(
SR+ε
R−ε(p) ∩ Cp

))
induced by the inclusion

Č 3ε
2

(
SR+ε
R−ε(p) ∩ P

)
↪→ Č 7ε

2

(
SR+ε
R−ε(p) ∩ P

)
.

Hence, ∆ε,R(p) returns 0 if the (ε, R)-local structure of P at P is not maxi-
mal, and returns 1 if it is maximal. Then,

PNLM = ∆−1
ε,R(0)

and
PNLM = ∆−1

ε,R(1).

Remark 2.4.1. We can appeal to the Nerve Lemma, as the balls used in
the construction of Č 3ε

2

(
SR+ε
R−ε(p) ∩ Cp

)
and Č 7ε

2

(
SR+ε
R−ε(p) ∩ Cp

)
lead us to

good covers of
(
SR+ε
R−ε(p) ∩ P

) 3ε
2 and

(
SR+ε
R−ε(p) ∩ P

) 7ε
2 respectively. To see

that these covers satisfy the ‘every non-empty intersection is contractible’
condition required to be a good cover, note that we are using the Čhech
complex, rather than the Viertoris-Rips complex. Combining this with the
linearity of the embedding and the assumptions placed on both ε and R, we
have covers that satisfy the Nerve Lemma.

After we have PLM , we use the function

Dε,R(p) : PLM → { 0, 1, 2 },

see Algorithm 5 to determine what dimension of (ε, R)-local structure each
sample in PLM has.

Recall that our end goal is to learn the combinatorial structure of X .
We begin by learning the number of triangles, locally maximal edges, and
locally maximal vertices. Consider the following three subsets of PLM :

PLM,2 = {p ∈ PLM | Dε,R(p) = 2} ,

PLM,1 = {p ∈ PLM | Dε,R(p) = 1} ,

PLM,0 = {p ∈ PLM | Dε,R(p) = 0} .
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Algorithm 4: ∆ε,R(p)

Data: An ε-dense sample P of an embedded 2-complex |X|, a
point p ∈ P .

Result: 0 if the (ε, R)-local structure of P at p is not maximal,
1 if the (ε, R)-local structure of P at p is maximal.

begin
Gp ←− {q ∈ P | ∥p− q∥≤ R + ε};
connect q, q′ ∈ Gp if ∥q − q′∥≤ 3ε;
Cp ←− {q ∈ Gp | q is path connected to p in Gp};
remove q ∈ Cp if ∥p− q∥ ≥ R− ε;
ifRK0 = 0 andRK1 = 0 then

return 1
else ifRK0 = 1 andRK1 ̸= 1 then

return 0
else ifRK0 = 1 andRK1 = 1 then

if ∀q1, q2 ∈ Cp, ∃q0 such that
∥q1 − q0∥, ∥q2 − q0∥, ∥q2 − q1∥ ∈ [

√
3(R2 − ε2),

√
3R]

then
return 1

else
return 0

else ifRK0 = 2 andRK1 = 0 then
if max {D(c1),D(c2)} ≤ 5ε then

if ⟨q1 − p, q2 − p⟩ > −R2 + 2Rε− 7ε2 then
return 1

else
return 0

else
return 0

else ifRK0 = n, n ̸= 0, 1, 2 andRK1 = 0 then
return 0

When partitioning P into PLM and PNLM , there is a grey region where
a sample p could be in either of these two sets. This presents a problem
for learning the combinatorics of X from the partitioning PLM and PNLM .
We can overcome this, by cleaning PLM . In particular, we clean PLM,2 and
PLM,1.
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Algorithm 5: Dε,R(p)

Data: An ε-dense sample P of an embedded 2-complex |X|, a
point p ∈ P such that the (ε, R)-local structure of P at p is
maximal.

Result: 0 if the (ε, R)-local structure of P at p is maximal of
dimension 0,
1 if the (ε, R)-local structure of P at p is maximal of
dimension 1,
2 if the (ε, R)-local structure of P at p is maximal of
dimension 2.

begin
Gp ←− {q ∈ P | ∥p− q∥≤ R + ε};
connect q, q′ ∈ Gp if ∥q − q′∥≤ 3ε;
Cp ←− {q ∈ Gp | q is path connected to p in Gp};
remove q ∈ Cp if ∥p− q∥≤ R− ε;
ifRK0 = 0 andRK1 = 0 then

return 0
else ifRK0 = 2, n ̸= 0, 1, 2 andRK1 = 0 then

return 1
else ifRK0 = 1, n ̸= 0, 1, 2 andRK1 = 1 then

return 2

We begin by introducing the notion of a connected component of Č 3ε
2
(PLM,1)

spanning an edge, and then introduce the notion of a connected component
of Č 3ε

2
(PLM,2) spanning a triangle.

Definition 2.4.2 (Spanning an edge). We say a connected component of
Č 3ε

2
(PLM,1) spans a locally maximal edge uv if it contains a sample p within

ε of the midpoint of uv.

Definition 2.4.3 (Spanning a triangle). We say a connected component of
Č 3ε

2
(PLM,2) spans a triangle△uvw if it contains a sample p within ε of the

midpoint of△uvw.

We require some geometric conditions on when a connected component
spans an edge or a triangle. For an edge, we will use the diameter of the
connected component as a condition.

Proposition 2.4.4. A connected component C of Č 3ε
2
(PLM,1) spans a locally

maximal edge uv if and only if D(C) ≥ 3R
2
− 2ε.
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Proof. Let C be a connected component of Č 3ε
2
(PLM,1) which spans a lo-

cally maximal edge uv, with midpoint muv. Then, there is a sample pm ∈ C

such that ∥pm −muv∥ ≤ ε.
To show thatD(C) ≥ 9R

2
, we show that there are two points xu, xy ∈ uv

such that

1. ∥u− xu∥ > 3R
2
+ 2ε,

2. ∥v − xv∥ > 3R
2
+ 2ε,

3. ∥xu − xv∥ ≥ 3R
2

.

Without loss of generality, we show that xu exists, and

∥xu −muv∥ ≥
3R

4
+ ε.

By Assumption 2, ∥u− v∥ ≥ 6(R + ε). As uv is a line segment, for all
η ∈ [0, 9R

4
+ 3ε] there is a point xη ∈ uv such that ∥xη − u∥ = η. Letting

η = 3R
2
+ 2ε, there is a point, namely xu such that ∥xu − u∥ = 3R

2
+ 2ε. As

P is an ε-sample, there is a sample pu such that ∥xu − pu∥ ≤ ε, and hence
∥pu − u∥ > 3R

2
+ ε. Thus, the (ε, R)-local structure of P at pu is maximal

of dimension 1.
We can repeat this argument for all η ∈ [3R

2
+2ε, 9R

4
+3ε], and obtain a

path of points xη ∈ uv and samples pη ∈ P connecting pu to pm.
This also holds when we replace u with v, and hence we have pu and pv.

Finally, we have

∥pu − pv∥ ≥∥xu − xv∥ − ∥pu − xu∥ − ∥pv − xv∥

≥ 3R

2
− 2ε,

and hence D(C) ≥ 3R
2
− 2ε.

Now, we show that if D(C) ≥ 3R
2
− 2ε, then C spans some locally

maximal edge.
If D(C) ≥ 3R

2
− 2ε, then there are points p, q ∈ C with

∥p− q∥ ≥ 3R

2
− 2ε.
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As P is an ε-sample of |X|, there are points xp, xq ∈ |X|, with

∥xp − p∥, ∥xq − q∥ ≤ ε.

Let mpq be the midpoint of xp and xq. As p and q are in the same
connected component of Č 3ε

2
(PLM,1), we know there is a sequence of points

{qi}mi=0 with q0 = p, qm = q and for all 0 < i ≤ m, ∥qi−qi−1∥ ≤ 3ε. Again,
P is an ε-sample of |X|, and as qi ∈ PLM,1, ∀0 ≤ i ≤ m, for each qi there
is some xi ∈ |X| which is on a locally maximal edge, and ∥qi − xi∥ ≤ ε.
From Assumption 2 and Proposition 2.3.11, there is a locally maximal edge,
say uv, such xi ∈ uv,∀0 ≤ i ≤ m. Let the midpoint of uv be xuv.

We now split into two cases:

I there is some i such that xi = xuv,
II for all i we have xi ̸= xuv.

Case I: The connected component C is a spanning connected compo-
nent, as it contains a sample which is within ε of the midpoint xuv of the
locally maximal edge uv.

Case II: As no qi is within ε of muv, we know that qi ∀0 ≤ i ≤ m are on
the same side of uv. That is, for all qi, without loss of generality,

∥qi − xuv∥ ≤ ∥qi − u∥ ≥ 3
√
3

2
R + 3ε

∥qm − v∥ ≥ 3R

2
+ ε.

Further, assume that

∥q0 −muv∥ ≤ ∥qm − xuv∥.

There is another sequence of points {x′
j}m

′
j=0 in uv with x′

0 = xm and
x′
m′ = xuv, and for 0 < j ≤ m′

∥x′
j − x′

j−1∥ ≤ ε.
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Then, there exists q′j ∈ P with

∥q′j − x′
j∥ ≤ ε

∥q′j − q′j−1∥ ≤ ε∀0 < j ≤ m′

∥q′j − v∥ ≥ 3R

2
+ ε.

By Assumption 2 and Proposition 2.3.11, q′j ∈ PLM,1 for all 0 ≤ j ≤ m′.
Hence, each q′j is in the same connected component C as qm.

Thus, C contains a sample q′m′ which is within ε of the midpoint of the
locally maximal edge uv. Hence, C is a spanning connected component.

Thus a component C of Č 3ε
2
(PLM,1) spans a locally maximal edge uv if

and only if D(C) ≥ 3R
2
− 2ε. □

Unfortunately, it is not immediately clear that such a test is suitable for
detecting components that span triangles. For instance, consider a complex
that consists of a single triangle, its three edges, and the three required ver-
tices. While heuristically, it is unlikely to occur, the sampling could lead to
2 connected components C1, C2 ∈ Č 3ε

2
(PLM,2): one which is far away from

the boundary of the triangle, and one that is surrounded by points in PNLM ,
both with large diameters. In fact, the one we wish to say is spanning,
say C1, will have a smaller diameter than the other one, C2. Note, how-
ever, that as C2 does not contain a sample p near the midpoint of △uvw,
if D(C1) ≤ D(C2), then C2 contains a non-contractible loop. However, a
sample p ∈ P near the midpoint m△uvw of a triangle△uvw is not near any
samples q /∈ PLM,2, and so we can exploit this fact to obtain a geometric
test.

Proposition 2.4.5. A connected component C of Č 3ε
2

spans a triangle△uvw

if and only if there is a point p ∈ C such that

BR
2
+ε(p) ∩ P ⊂ PLM,2.

Proof. First, let C be a connected component of Č 3ε
2

which spans some
triangle △uvw with midpoint m. As P is an ε-sample of X , there is a
sample pm ∈ P with ∥pm −m∥ ≤ ε. As the radius of the inscribed circle
of △uvw is at least 2R + 3ε, m is at least 2R + 3ε from ∂△uvw. Thus,
d(pm, ∂△uvw) ≥ 2R + 2ε.
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Hence, for all q ∈ BR
2
+2ε(p) ∩ P , d(q, ∂△uvw) ≥ 3R

2
+ ε, and so

q ∈ PLM,2.
Now, take p ∈ PLM,2 such that BR

2
+ε(p) ∩ P ⊂ PLM,2. Then, there

is some triangle △uvw with d(△uvw, p) ≤ ε. As p ∈ PLM,2, we know
that d(∂△uvw, p) > R

2
− ε. By assumption, for all q ∈ BR

2
+ε(p) ∩ P , we

have d(∂△uvw, q) > R
2
− ε. Recall that P is an ε-sample of |X|, so there

is a point x ∈ X such that ∥p − x∥ ≤ ε. As △uvw is convex, and every
BR

2
+ε(p) ∩ P ⊂ PLM,2, we have

d(∂△uvw, x) ≥ R

2
+ 2ε+

R

2
− 2ε = R.

Hence, is a point y ∈ BR
2
+2ε(p) ∩△uvw with

d(∂△uvw, y) ≥ R

2
+ 2ε,

and a sample q ∈ BR
2
+2ε(p) ∩ PLM,2 with ∥q − y∥ ≤ ε.

Now, we can construct a sequence of points {yi}mi=0 ⊂ △uvw such that
∥yi − yi−1∥ ≤ ε for 1 ≤ i ≤ m, and y0 = x, ym = y. Further, for each yi

there is a qi ∈ P with ∥qi − yi∥ ≤ ε, and qi ∈ PLM,2. Note, that this means
p and qm are in the same connected component C of Č 3ε

2
(PLM,2).

Finally, we construct a similar sequence of points {ỹj}m̃j=0 in |X| from y

to m△uvw with ỹ0 = y, ỹm̃ = m△uvw. Again, for each ỹj , there is a q̃j ∈ P

with ∥ỹj− q̃j∥ ≤ ε and q̃j ∈ PLM,2. Hence, the q̃j are in the same connected
component of Č 3ε

2
(PLM,2), and further, this connected component is C. □

We now have geometric conditions for determining if a connected com-
ponent of Č 3ε

2
(PLM,2)/Č 3ε

2
(PLM,1) spans a triangle/edge respectively. Next,

show that the locally maximal vertices of X are in bijection with connected
components of Č 3ε

2
(PLM,0), the locally maximal edges of X are in bijec-

tion with the spanning connected components of Č 3ε
2
(PLM,1), and that the

triangles of X are in bijection with the spanning connected components of
Č 3ε

2
(PLM,2).
We begin with the locally maximal vertices.

Proposition 2.4.6. The connected components of Č 3ε
2
(PLM,0) are in bijec-

tion with the set VLM of locally maximal vertices of X .
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Proof. Let VLM be the set of locally maximal vertices of X . Let v be a
locally maximal vertex, then by Proposition 2.3.10, ∀p ∈ P with ∥p− v∥ ≤
4ε, p ∈ PLM,0. In fact, by Assumption 2, any p ∈ P with ∥p − v∥ ≤ 4ε is
actually within ε of v. Hence, every p ∈ PLM,0 within ε of v are in the same
connected component of Č 3ε

2
(PLM,0).

Now, take a connected component C of Č 3ε
2
(PLM,0). Each p ∈ C is

within ε of a locally maximal vertex vp of X . By Assumption 2, every
locally maximal vertex v is at least 5ε away from any other cell of X , and
hence ∀p ∈ C, vp is the same.

Hence, the connected components of Č 3ε
2
(PLM,0) correspond bijectively

to the locally maximal vertices of X . □

Next, we show that the edge-spanning components are in bijection with
the locally maximal edges.

Proposition 2.4.7. The spanning components of Č 3ε
2
(PLM,1) are in bijection

with the set ELM of locally maximal edges of X .

Proof. Let ELM ⊂ E be the set of locally maximal edges in X . By Propo-
sition 2.4.4, a connected component C of Č 3ε

2
(PLM,1) spans an edge uv if

and only if it contains a sample p within ε of the midpoint m of uv.
If a connected component C is a spanning component, then there is some

locally maximal edge uv with midpoint m such that there is a sample p ∈ C

with ∥m− p∥ ≤ ε.
For any locally maximal uv ∈ ELM with midpoint m, there is some

sample p ∈ P such that ∥m− p∥ ≤ ε. Then, by Assumption 2 and proposi-
tion 2.3.11, p ∈ PLM,1, and so there is some spanning connected component
Cuv in Č 3ε

2
(PLM,1).

Now, consider a locally maximal edge uv′, v′ ̸= v, and take samples
p, q ∈ PLM,2 such that d(uv, p), d(uv′, q) ≤ ε. By Assumption 2, ∥p−q∥ >
6ε, and so p and q are in different connected components of Č 3ε

2
(PLM,1).

Finally, consider a locally maximal edge u′v′ such that uv and u′v′ do
not have a common vertex. Take samples p, q ∈ PLM,2 such that

d(uv, p), d(u′v′, q) ≤ ε.
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Again, by Assumption 2, ∥p − q∥ > 6ε, and so p and q are in different
connected components of Č 3ε

2
(PLM,1).

Hence, each connected component C only consists of samples p with
d(uv, p) ≤ ε for a single locally maximal edge uv.

Thus, the spanning connected components of Č 3ε
2
(PLM,2) are in bijec-

tion with the locally maximal edges of |X|. □

Finally, we show that the spanning components of Č 3ε
2
(PLM,2) are in

bijection with the triangles of X .

Proposition 2.4.8. The spanning components of Č 3ε
2
(PLM,2) are in bijection

with the set T of triangles in X .

Proof. From Proposition 2.4.5, a connected component C of Č 3ε
2
(PLM,2)

spans a triangle △uvw if and only if it contains a sample p within ε of the
midpoint m of△uvw.

As P is a ε-sample of |X|, for every△uvw with midpoint m, there is a
sample p ∈ P such that ∥p−m∥ ≤ ε. Hence, there is a spanning connected
component C in Č 3ε

2
(PLM,2).

Now, consider C a spanning component of Č 3ε
2
(PLM,2). Then, as P is a

ε-sample, there is some△uvw with midpoint m such that there is a sample
p ∈ C with ∥p−m∥ ≤ ε.

Consider two triangles △uvw, △u′v′w′, and take two samples p, p′ ∈
PLM,2 with

d(△uvw, p), d(△u′v′w′, p′) ≤ ε.

As p, p′ ∈ PLM,2, we know that

d(∂△uvw, p), d(∂△u′v′w′, p′) > R + ε,

and so by Assumption 2, ∥p− p′∥ > 6ε.
Hence, the spanning components of Č 3ε

2
(PLM,2) are in bijection with the

triangles of X . □

Having identified the locally maximal cells XLM of X , we could learn
the combinatorial structure of X by identifying the structure of XNLM from
PNLM , and combining this with what we know about XLM from PLM . The
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process in Chapter 1 could be applied, but this requires the existence of some
ε̃ such that PNLM is a ε̃-sample of XNLM satisfying Assumption 1. This
would impose stricter assumptions than Assumption 2, but after ensuring
these new assumptions are satisfied, works out of the box.

To avoid placing stricter assumptions on |X|, we use the idea of wit-
ness points to discover the combinatorics. For each sample p ∈ PNLM ,
we can examine the spanning connected components CLM of Č 3ε

2
(PLM,1)

and Č 3ε
2
(PLM,2) such that CLM ∩ BR+3ε (p) ̸= ∅. In particular, we can use

Dε,R(q) for some q ∈ CLM , to determine of what dimension the local struc-
ture is maximal. If there is a q in CLM ∩ SR+ε

R−ε (p) such that Dε,R(q) = 1,
then p is near a vertex.

If there are no connected components CLM which are (ε, R)-locally
maximal of dimension 1, then p only witnesses samples q ∈ PLM such
that the (ε, R)-local structure of P at q is maximal of dimension 2. Hence,
we need to understand the combinatorics of |X|\ (ELM ∪ VLM) where ELM

is the set of locally maximal edges and VLM the set of locally maximal ver-
tices.

In Assumption 2, we assumed that for any triangle△uvw,

̸ uvw, ̸ vwu, ̸ wuv ≥ π

6
.

This means that for any sample p ∈ PNLM with d(∂△uvw, p) < R + ε for
some △uvw, there is some sample q ∈ PLM,2 with d(△uvw, q) ≤ ε and
d(∂△uvw, p) ≥ R + ε, such that ∥q − p∥ ≤ 2

√
2(R+2ε)√
3−1

. Further, q is in a
triangle spanning component T .

Similarly, for any sample p ∈ PNLM with d(∂uv, p) < 3R
2
+ ε for some

edge uv, there is a sample q ∈ PLM,1 with d(∂uv, p) ≥ 3R
2
+ ε such that

∥q − p∥ ≤ 2
√
2(R+2ε)√
3−1

. Further, q is in an edge spanning component E .
This leads us to say a sample p ∈ PNLM witnesses a spanning connected

component C if
B 2

√
2(R+2ε)√
3−1

(p) ∩ C ̸= ∅.

For ease of reading, we set κ = 2
√
2√

3−1
.

Definition 2.4.9 (Witnessing a spanning component). Let P be an ε-sample
P of an embedded 2-complex |X| satisfying Assumption 2. Then a sample
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p ∈ PNLM witnesses an edge/triangle spanning component C if

Bκ(R+ε)(p) ∩ C ̸= ∅.

To determine the final combinatorial structure of X , we look at the local
neighbourhood of each p ∈ PNLM and look at both

B(R+2ε)κ(p) ∩ Č 3ε
2
(PLM,1)

B(R+2ε)κ(p) ∩ Č 3ε
2
(PLM,2) .

If

B(R+2ε)κ(p) ∩ Č 3ε
2
(PLM,1) ̸= ∅

then we know that p is near a vertex, and the spanning components E of
Č 3ε

2
(PLM,1) that p witnesses, share a boundary vertex. Further, if

B(R+2ε)κ(p) ∩ Č 3ε
2
(PLM,2) ̸= ∅

as well, then there are spanning components of Č 3ε
2
(PLM,2) that p wit-

nesses, which have a vertex in common with the edges.
If only

B(R+2ε)κ(p) ∩ Č 3ε
2
(PLM,2) ̸= ∅

we examine how many spanning components T are seen by p, as well
as if samples p ∈ PNLM that witness T , also witness any other spanning
components T ′. We use this information to partition PNLM into {Pi} in
Algorithm 8, with a final clean of the partitions, to account for some special
cases. As R ≤ 16ε, for all p ∈ PNLM there is some spanning connected
component C such that BR+ε

κ
(p) ∩ C ̸= ∅.

We then label each component Pi as follows, from Algorithms 10 and 11:

• −1 if Pi corresponds to 2 vertices,
• 0 if Pi corresponds to a vertex,
• 1 if Pi corresponds to a vertex and an edge,
• 2 if Pi corresponds to two vertices and an edge,
• 3 if Pi corresponds to just an edge,
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• 4 if Pi corresponds to two edges and a vertex,
• 5 if Pi corresponds to three edges and two vertices,
• 6 if Pi corresponds to three edges and a vertex,
• 7 if Pi corresponds to three edges and three vertices,
• 8 if Pi corresponds to three edges,
• 9 if Pi corresponds to two edges,

Algorithm 6: Spanning triangle components
Data: Parameters ε, R and PLM,1.
Result: The set of triangle spanning components.
begin

Initialise empty set T ;
Let C be the set of connected components of Č 3ε

2
(PLM,2);

for T ∈ C do
if ∃p ∈ C such that BR/2+ε(p) ∩ P ⊂ PLM,2 then

Add T to T ;

return T

Algorithm 7: Spanning edge components
Data: Parameters ε, R and PLM,1.
Result: The set of triangle spanning components.
begin

Initialise empty set E;
Let C be the set of connected components of Č 3ε

2
(PLM,2);

for E ∈ C do
if D(T ) ≥ 3R

2
− 2ε then

Add E to E;

return E

The following Lemma’s together show that Algorithms 8, 10 and 11
correctly partition PNLM and label the partitions Pi appropriately.

Lemma 2.4.10. Let uv be a locally maximal edge of X , such that u, v are
only faces of uv. Then, there is a unique partition P1 of PNLM which wit-
nesses E , where E is the edge spanning component corresponding to uv.
Further, P1 is assigned label −1 by Algorithms 10 and 11.
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Algorithm 8: Partitioning PNLM

Data: An ε-dense sample P of an embedded 2-complex |X|,
partitioned into PNLM , PLM,0, PLM,1, PLM,2.

Result: A partition {Pi} of PNLM , and for each Pi, two sets
SE(Pi), ST (Pi).

begin
For each p ∈ PNLM , find all the edge spanning components E
such that E ∩B(R+2ε)κ(p) ̸= ∅, and place them in SE(p);

Find all the triangle spanning components T such that
T ∩B(R+2ε)κ(p) ̸= ∅, and place them in ST (p);

Partition PNLM into {Pi } such that for each p, q ∈ Pi,
SE(p) = SE(q) and ST (p) = ST (q);

Assign SE(Pi) and ST (Pi) to each Pi;
for Pi and Pj with SE(Pj) ⊆ SE(Pi) and ST (Pj) ⊆ ST (Pi) do

if SE(Pj), ST (Pj) ̸= ∅ then
Merge Pj into Pi with labels SE(Pi), ST (Pi);

else if |ST (Pj)|≥ 2 and ∀p ∈ Pj such that
Sigε,R(p) = (n, 0), n ∈ Z≥0 then

Merge Pj into Pi with labels SE(Pi), ST (Pi);

return {Pi}, and SE(Pi), ST (Pi) for each Pi

Algorithm 9: Order {Pi}
Data: An ε-dense sample P of an embedded 2-complex |X|,

partition {Pi} of PNLM with two sets SE(Pi), ST (Pi) for
each Pi and partitions of PLM,0, PLM,1, PLM,2.

Result: Two sets P 1, P 2 ⊂ {Pi }.
begin

Initialise empty P 1 and P 2;
for Pi ∈ {Pi} do

if SE(Pi) ̸= ∅ then
Add Pi to P 1

else if ∃p ∈ Pi such that Sig(p) ̸= (1, n) then
Add Pi to P 1

else if |ST (Pi)|≠ 1 then
Add Pi to P 1

else
Add Pi to P 2

return P 1, P 2
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Algorithm 10: Classification of P 1

Data: An ε-dense sample P of an embedded 2-complex |X|, P 1,
and partitions of PNLM , PLM,0, PLM,1, PLM,2.

Result: A labeled list C, where the label for Pi is −1 if Pi

corresponds to 2 vertices, 0 if Pi corresponds to a vertex, 1
if Pi corresponds to a vertex and an edge, 2 if Pi

corresponds to two vertices and an edge, 3 if Pi

corresponds to just an edge.
begin

Initialise empty list C;
for Pi ∈ P 1 do

if |SE(Pi)|= 1 and ST (Pi) = ∅ then
if E /∈ SE(Pj)∀Pj ̸= Pi then

Add Pi to C with label −1;

else if ∃Pj ̸= Pi such that E ∈ SE(Pj) then
Add Pi to C with label 0;

else if SE(Pi) ̸= ∅ then
Add Pi to C with label 0;

else
for T ∈ ST (Pi) do

Let LN(T ) = {Pk | T ∈ ST (Pk)}
Let N(Pi) =

⋂
T ∈ST (Pi)

LN(T );
if N(Pi) = {Pi, Pk} then

Add Pi to C with label 1;
Add Pk to C with label 0, unless Pk is already in C;

else if N(Pi) = {Pi, Pk, Pl} then
Add Pi to C with label 3;
Add Pk to C with label 0, unless Pk is already in C;
Add Pl to C with label 0, unless Pl is already in C;

if ∃Pi ∈ P 1 \ C then
Add Pi to C with label 2;

return C

Proof. As uv is a locally maximal edge, there is a corresponding edge span-
ning component E . As u, v are not faces of any other cell σ ∈ X , by As-
sumption 2 and Propositions 2.3.11 and 2.3.14, the points p ∈ PNLM which
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Algorithm 11: Classification of P 2

Data: An ε-dense sample P of an embedded 2-complex |X|, P 2,
and partitions of PNLM , PLM,0, PLM,1, PLM,2, a labelled list
C obtained from Algorithm 10.

Result: A labelled list C
begin

for Pi ∈ P 2 do
if Pi /∈ C then

Let LN = {Pk | T ∈ ST (Pk)};
if LN ∩ P 2 = {Pi, Pk, Pl} then

Add Pi, Pk, Pl to C with label 3;

else if LN ∩ P 2 = {Pi, Pk} then
Add Pi to C with label 3;
Add Pl to C with label 4;

else if LN ∩ P 2 = {Pi} then
if LN = {Pi} then

Add Pi to C with label 7;

else if LN = {Pi, Pk} and Pk has label 0 then
Add Pi to C with label 5;

else if LN = {Pi, Pk} and Pk has label 2 then
Add Pi to C with label 4;

else if LN = {Pi, Pk, Pl} and Pk has label 0, Pl

label 1 then
Add Pi to C with label 4;

else if LN = {Pi, Pk, Pl} and Pk has label 1, Pl

label 2 then
Add Pi to C with label 3;

else if LN = {Pi, Pk, Pl} and Pk has label 0, Pl

label 0 then
Add Pi to C with label 6;

else if LN = {Pi, Pk, Pl, Pj} and Pk, Pl, Pj have
label 0 then

Add Pi to C with label 8;
else if LN = {Pi, Pk, Pl, Pj, Pm} and Pk, Pl, Pj

have label 0 and Pm has label 3 then
Add Pi to C with label 9;

return C
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Algorithm 12: Number of triangles, edges and vertices.
Data: An ε-dense sample P of an embedded 2-complex |X|,

partitions of PNLM , PLM,0, PLM,1, PLM,2 and the labelled
list C from Algorithm 11.

Result: The triangles, edges, and vertices in X .
begin

Initialise an empty weighted graph B;
∀ spanning components T of PLM,2, add weight 2 node to B,
labelled with T ;
∀ spanning components E of PLM,1, add weight 1 node to B,

labelled with E ;
∀ components V of PLM,0, add weight 0 node to B, labelled

with V;
for Pi ∈ C do

if Pi has label −1 then
Add 2 weight 0 nodes to B, labelled with Pi;

else if Pi has label 0 then
Add weight 0 node to B, labelled with Pi;

else if Pi has label 1 then
Add 2 weight 0 nodes to B, labelled with Pi;
Add weight 1 node to B, labelled with Pi;

else if Pi has label 2 then
Add weight 0 node to B, labelled with Pi;
Add weight 1 node to B, labelled with Pi;

else if Pi has label 3 then
Add two weight 0 nodes to B, labelled with Pi;
Add weight 1 node to B, labelled with Pi;

else if Pi has label 4 then
Add weight 1 node to B, labelled with Pi;

else if Pi has label 5 then
Add weight 0 node to B, labelled with Pi;
Add two weight 1 nodes to B, labelled with Pi;

else if Pi has label 6 then
Add two weight 0 nodes to B, labelled with Pi;
Add three weight 1 nodes to B, labelled with Pi;

else if Pi has label 7 then
Add three weight 0 nodes to B, labelled with Pi;
Add three weight 1 nodes to B, labelled with Pi;
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witness E do not witness any other edge spanning component E ′ or any tri-
angle spanning component T .

Thus, there is a single partition P1 of PNLM which contains all the sam-
ples p that witness E . By Assumption 2, there is no other partition P2 of
PNLM that witnesses E . Hence, P1 is assigned label −1. □

Lemma 2.4.11. Let uv be a locally maximal edge of X , such that u and/or
v is the face of some locally maximal cell σ ∈ X, σ ̸= uv. Then, there are
partitions P1, P2 of PNLM , which witness E , where E is the edge spanning
component corresponding to uv. Further, P1 and P2 are assigned label 0 by
Algorithms 10 and 11.

Proof. As uv is a locally maximal edge, there is a corresponding edge span-
ning component E . Without loss of generality, assume v is the face of some
locally maximal cell σ ̸= uv.

By Assumption 2 and Propositions 2.3.11, 2.3.12 and 2.3.14, there are
samples pu, pvv ∈ PNLM such that

∥pu − u∥, ∥pv − v∥ ≤ ε.

Further, there is a spanning connected component C which pv also wit-
nesses but pu does not witness. Hence, there are two partitions Pv, Pu which
witness E . By Assumption 2 and Algorithm 8, there are no other partitions
which witness E .

Hence, both Pv and Pu are labelled with 0 by Algorithms 10 and 11. □

Lemma 2.4.12. Let △uvw be a triangle of X , such that for all locally
maximal cells σ ∈ X with σ ̸= △uvw, we have

u, v, w /∈ σ.

Then, there is a unique partition P1 of PNLM which witnesses T , where
T is the edge spanning component corresponding to △uvw. Further, P1 is
given label 7 by Algorithms 10 and 11.

Proof. Let T be the triangle spanning component that corresponds to△uvw.
By Assumption 2 and propositions 2.3.10, 2.3.12 and 2.3.15, the samples
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p ∈ PNLM that witness T do not witness any spanning connected compo-
nent C ̸= T . By Assumption 2 and Algorithm 8 there is a unique connected
component P1 that witnesses T .

As P is an ε-sample of |X|, and from Propositions 2.3.10 and 2.3.15,
there are samples pu, pv, pw, puv, pvw, puw ∈ P1 such that

∥pu − u∥, ∥pv − v∥, ∥pw − w∥ ≤ ε,

d(uv, puv), d(vw, pvw), d(uw, puw) ≤ ε.

Hence, P1 is assigned label 7 by Algorithms 10 and 11. □

Lemma 2.4.13. Let △uvw be a triangle of X , such that there is some lo-
cally maximal cell σ ∈ X with σ ̸= △uvw, such that v ∈ σ, without loss
of generality, and for all locally maximal τ ∈ X, τ ̸= σ,△uvw, either
△uvw ∩ τ = v or△uvw ∩ τ = ∅.

Then, there are exactly two partitions P1, P2 of PNLM which witness T ,
where T is the edge spanning component corresponding to△uvw. Further,
P1 is given label 0 and P2 label 5 by Algorithms 10 and 11.

Proof. Let T be the triangle spanning component that corresponds to△uvw.
By Assumption 2 and Propositions 2.3.10 to 2.3.12 and 2.3.15, any span-
ning connected component C witnessed by samples p ∈ PNLM that witness
T corresponds to a locally maximal cell τ such that△uvw ∩ τ ̸= ∅.

We need to split into two cases:

1. there is a unique locally maximal cell τ ∈ X with△uvw ∩ τ = v

2. there are at least two locally maximal cells τ, σ ∈ X, τ ̸= σ with
△uvw ∩ τ = △uvw ∩ σ = v.

Case 1: We assumed there was a unique locally maximal τ with△uvw∩
τ = v, and hence, by Propositions 2.4.7 and 2.4.8 there is some spanning
component Cτ which corresponds to τ . By Assumption 2 and Proposi-
tions 2.3.10 to 2.3.12 and 2.3.15, in Algorithm 8 there is a single partition
P1 of PNLM which witnesses T and Cτ , and there is a unique partition P2

which witnesses just T . Further, P1 is assigned label 0 and P2 label 5 by
Algorithms 10 and 11.
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Case 2: From our assumptions, there are two locally maximal cells τ, σ ∈
X, τ ̸= σ such that

τ ∩△uvw = v = σ ∩△uvw.

By Propositions 2.4.7 and 2.4.8 there is some spanning component Cτ
which corresponds to τ , and some spanning component Cσ which corre-
sponds to σ.

By Assumption 2 and from Algorithm 8, there is a single partition P1 of
PNLM which witnesses T , Cτ , Cσ, and no partitions which witness a subset
of these spanning components. This holds, by induction, for any locally
maximal cell τ ′ ∈ X, τ ′ ̸= τ, σ with τ ′ ∩ △uvw = v. Similarly, there is a
single partition P2 of PNLM which witnesses only T . Further, P1 is assigned
label 0 and P2 label 5 by Algorithms 10 and 11. □

Lemma 2.4.14. Let △uvw be a triangle of X , such that there is some lo-
cally maximal cell σ ∈ X with σ ̸= △uvw, such that v ∈ σ, without loss
of generality, and for all locally maximal τ ∈ X, τ ̸= σ,△uvw, either
△uvw ∩ τ = uv or△uvw ∩ τ = ∅.

Then, there are exactly two partitions P1, P2 of PNLM which witness T ,
where T is the edge spanning component corresponding to△uvw. Further,
P1 is given label 0 and P2 label 5 by Algorithms 10 and 11.

Proof. Let T be the triangle spanning component that corresponds to△uvw.
By Assumption 2 and Propositions 2.3.10 to 2.3.12 and 2.3.15, any span-
ning connected component C witnessed by samples p ∈ PNLM that witness
T corresponds to a locally maximal cell τ such that△uvw ∩ τ ̸= ∅.

We need to split into two cases:

1. there is a unique locally maximal cell τ ∈ X with△uvw ∩ τ = uv

2. there are at least two locally maximal cells τ, σ ∈ X, τ ̸= σ with
△uvw ∩ τ = △uvw ∩ σ = uv.

Case 1: We assumed there was a unique locally maximal τ with△uvw∩
τ = uv, and hence, by Propositions 2.4.7 and 2.4.8 there is some span-
ning component Cτ which corresponds to τ . By Assumption 2, Proposi-
tions 2.3.10 to 2.3.12 and 2.3.15, in Algorithm 8 there is a single partition
P1 of PNLM which witnesses T and Cτ , and there is a unique partition P2
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which witnesses just T . Further, P1 is assigned label 1 and P2 label 4 by
Algorithms 10 and 11.

Case 2: From our assumptions, there are two locally maximal cells τ, σ ∈
X, τ ̸= σ such that

τ ∩△uvw = uv = σ ∩△uvw.

By Propositions 2.4.7 and 2.4.8 there is some spanning component Cτ
which corresponds to τ , and some spanning component Cσ which corre-
sponds to σ.

By Assumption 2 and from Algorithm 8, there is a single partition P1 of
PNLM which witnesses T , Cτ , Cσ, and no partitions which witness a subset
of these spanning components. This holds, by induction, for any locally
maximal cell τ ′ ∈ X, τ ′ ̸= τ, σ with τ ′ ∩ △uvw = v. Similarly, there is a
single partition P2 of PNLM which witnesses only T . Further, P1 is assigned
label 1 and P2 label 4 by Algorithms 10 and 11. □

Lemma 2.4.15. Let △uvw be a triangle of X , such that there are some
locally maximal cells σ1 ̸= σ2 ∈ X with σ1, σ2 ̸= △uvw, such that

σ1 ∩△uvw = v

σ2 ∩△uvw = u

and for all other locally maximal cells τ ∈ X , either

1. τ ∩△uvw = v,
2. τ ∩△uvw = u,
3. τ ∩△uvw = ∅.

Then, there are exactly three partitions P1, P2, P2 of PNLM which wit-
ness T , where T is the edge spanning component corresponding to△uvw.
Further, P1, P2 are given label 0 and P3 label 6 by Algorithms 10 and 11.

Proof. Let T be the triangle spanning component which corresponds to
△uvw. Then, the proof is an adaption of the proof of Lemma 2.4.13. By
combining the arguments at the two shared vertices, there are three parti-
tions P1, P2, P3 from Algorithm 8 which witness T , and there are spanning
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connected components C1, C2 such that P1 witnesses C1 but not C2, and P2

witnesses C2 but not C1. Further, P3 only witnesses T . Hence, P1, P2 are
labelled with 0 and P3 with 6. □

Lemma 2.4.16. Let △uvw be a triangle of X , such that there are some
locally maximal cells σ1 ̸= σ2 ∈ X with σ1, σ2 ̸= △uvw, such that

σ1 ∩△uvw = uv

σ2 ∩△uvw = v

and for all other locally maximal cells τ ∈ X , either

1. τ ∩△uvw = uv,
2. τ ∩△uvw = v,
3. τ ∩△uvw = ∅.

Then, there are exactly three partitions P1, P2, P2 of PNLM which wit-
ness T , where T is the edge spanning component corresponding to△uvw.
Further, P1 has label 0, P2 label 1 and P3 label 4 by Algorithms 10 and 11.

Proof. Let T be the triangle spanning component which corresponds to
△uvw. Then, the proof is an adaption of the proof of Lemmas 2.4.13
and 2.4.14. By combining the arguments there are three partitions P1, P2, P3

from Algorithm 8 which witness T , and there are spanning connected com-
ponents C1, C2 such that P1 witnesses C1 and C2, and P2 witnesses C2 but not
C1. Further, P3 only witnesses T . Hence, P1 is labelled with 0, P2 with 1

and P3 with 3. □

Lemma 2.4.17. Let △uvw be a triangle of X , such that there are some
locally maximal cells σ1 ̸= σ2 ∈ X with σi ̸= △uvw and σi ̸= σj for i ̸= j,
such that

σ1 ∩△uvw = uv

σ2 ∩△uvw = w
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and for all other locally maximal cells τ ∈ X , either

1. τ ∩△uvw = uv,
2. τ ∩△uvw = w,
3. τ ∩△uvw = ∅.

Then, there are exactly three partitions P1, P2, P2 of PNLM which wit-
ness T , where T is the edge spanning component corresponding to△uvw.
Further, P1 has label 0, P2 label 2 and P3 label 9 by Algorithms 10 and 11.

Proof. Let T be the triangle spanning component which corresponds to
△uvw. Then, the proof is an adaption of the proof of Lemmas 2.4.13
and 2.4.14. By combining the arguments there are three partitions P1, P2, P3

from Algorithm 8 which witness T , and there are spanning connected com-
ponents C1, C2 such that P1 witnesses C1 but not C2, and P2 witnesses C2 but
not C1. Further, P3 only witnesses T . Hence, P1 is labelled with 0, P2 with
2 and P3 with 9. □

Lemma 2.4.18. Let △uvw be a triangle of X , such that there are some
locally maximal cells σ1, σ2, σ3 ∈ X with σi ̸= △uvw and σi ̸= σj for
i ̸= j, such that

σ1 ∩△uvw = u

σ2 ∩△uvw = v

σ3 ∩△uvw = w

and for all other locally maximal cells τ ∈ X , either

1. τ ∩△uvw = u,
2. τ ∩△uvw = v,
3. τ ∩△uvw = w,
4. τ ∩△uvw = ∅.

Then, there are exactly four partitions P1, P2, P3, P4 of PNLM which wit-
ness T , where T is the edge spanning component corresponding to△uvw.
Further, P1, P2 and P3 are labelled with 0 and P4 with 8 by Algorithms 10
and 11.
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Proof. Let T be the triangle spanning component which corresponds to
△uvw. Then, the proof is an adaption of the proof of Lemmas 2.4.13
and 2.4.14. By combining the arguments there are three partitions P1, P2, P3, P4

from Algorithm 8 which witness T , and there are spanning connected com-
ponents C1, C2, C∋ such that P1 witnesses C1 but not C2, C3, P2 witnesses C2
but not C1, C3, and P2 witnesses C3 but not C1, C2. Further, P4 only witnesses
T . Hence, P1, P2 and P3 are labelled with 0 and P4 with 8. □

Lemma 2.4.19. Let △uvw be a triangle of X , such that there are some
locally maximal cells σ1, σ2, σ3 ∈ X with σi ̸= △uvw and σi ̸= σj for
i ̸= j, such that

σ1 ∩△uvw = uv

σ2 ∩△uvw = v

σ3 ∩△uvw = w

and for all other locally maximal cells τ ∈ X , either

1. τ ∩△uvw = uv,
2. τ ∩△uvw = v,
3. τ ∩△uvw = w,
4. τ ∩△uvw = ∅.

Then, there are exactly four partitions P1, P2, P3, P4 of PNLM which wit-
ness T , where T is the edge spanning component corresponding to△uvw.
Further, P1 is labelled with 1, P2, P3 with 0 and P4 with 9 by Algorithms 10
and 11.

Proof. Let T be the triangle spanning component which corresponds to
△uvw. Then, the proof is an adaption of the proof of Lemmas 2.4.13
and 2.4.14. By combining the arguments there are three partitions

P1, P2, P3, P4

from Algorithm 8 which witness T , and there are spanning connected com-
ponents C1, C2, C∋ such that P1 witnesses C1 but not C2, C3, P2 witnesses
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C1, C2 but not C3, and P2 witnesses C3 but not C1, C2. Further, P4 only wit-
nesses T . Hence, P1, P2 and P3 are labelled with 0 and P4 with 8. □

Lemma 2.4.20. Let △uvw be a triangle of X , such that there are some
locally maximal cells σ1, σ2, σ3 ∈ X with σi ̸= △uvw and σi ̸= σj for
i ̸= j, such that

σ1 ∩△uvw = uv

σ2 ∩△uvw = u

σ3 ∩△uvw = v

and for all other locally maximal cells τ ∈ X , either

1. τ ∩△uvw = uv,
2. τ ∩△uvw = u,
3. τ ∩△uvw = v,
4. τ ∩△uvw = ∅.

Then, there are exactly four partitions P1, P2, P3, P4 of PNLM which wit-
ness T , where T is the edge spanning component corresponding to△uvw.
Further, P1 is labelled with 3, P2, P3 with 0 and P4 with 4 by Algorithms 10
and 11.

Proof. Let T be the triangle spanning component which corresponds to
△uvw. Then, the proof is an adaption of the proof of Lemmas 2.4.13
and 2.4.14. By combining the arguments there are three partitions P1, P2, P3, P4

from Algorithm 8 which witness T , and there are spanning connected com-
ponents C1, C2, C∋ such that P1 witnesses C1 but not C2, C3, P2 witnesses
C1, C2 but not C3, and P2 witnesses C1, C3 but not C2. Further, P4 only wit-
nesses T . Hence, P1 is labelled with 3, P2, P3 with 0 and P4 with 4. □

Lemma 2.4.21. Let △uvw be a triangle of X , such that there are some
locally maximal cells σ1, σ2, σ3 ∈ X with σi ̸= △uvw and σi ̸= σj for
i ̸= j, such that
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σ1 ∩△uvw = uv

σ2 ∩△uvw = vw

σ3 ∩△uvw = v

and for all other locally maximal cells τ ∈ X , either

1. τ ∩△uvw = uv,
2. τ ∩△uvw = vw,
3. τ ∩△uvw = v,
4. τ ∩△uvw = ∅.

Then, there are exactly four partitions P1, P2, P3, P4 of PNLM which wit-
ness T , where T is the edge spanning component corresponding to△uvw.
Further, P1 is labelled with 0, P2, P3 with 1, and P3 with 3 by Algorithms 10
and 11.

Proof. Let T be the triangle spanning component which corresponds to
△uvw. Then, the proof is an adaption of the proof of Lemmas 2.4.13
and 2.4.14. By combining the arguments there are four partitions P1, P2, P3, P4

from Algorithm 8 which witness T , and there are spanning connected com-
ponents C1, C2, C∋ such that P1 witnesses C1, C2, C3, P2 witnesses C1, C2 but
not C3, and P3 witnesses C1, C3 but not C2. Further, P4 only witnesses T .
Hence, P1 is labelled with 0, P2, P3 with 1, and P3 with 3. □

Lemma 2.4.22. Let △uvw be a triangle of X , such that there are some
locally maximal cells σ1, σ2, σ3, σ4 ∈ X with σi ̸= △uvw and σi ̸= σj for
i ̸= j, such that

σ1 ∩△uvw = u

σ2 ∩△uvw = v

σ3 ∩△uvw = w

σ4 ∩△uvw = uv

and for all other locally maximal cells τ ∈ X , either
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1. τ ∩△uvw = u,
2. τ ∩△uvw = v,
3. τ ∩△uvw = w,
4. τ ∩△uvw = uv

5. τ ∩△uvw = ∅.

Then, there are exactly five partitions P1, P2, P3, P4, P5 of PNLM which
witness T , where T is the edge spanning component corresponding to△uvw.
Further, P1, P2, P3 are labelled with 0, and P4 with 8 by Algorithms 10
and 11.

Proof. Let T be the triangle spanning component which corresponds to
△uvw. Then, the proof is an adaption of the proof of Lemmas 2.4.13
and 2.4.14. By combining the arguments there are four partitions P1, P2, P3, P4

from Algorithm 8 which witness T , and there are spanning connected com-
ponents C1, C2, C∋, C∋ such that P1 witnesses C1 and not C2, C3, P2 witnesses
C1 and not C2, C3, and P3 witnesses C3 but not C1, C2. Further, P4 only wit-
nesses T . Hence, P1, P2, P3 are labelled with 0, and P4 with 8. □

Lemma 2.4.23. Let △uvw be a triangle of X , such that there are some
locally maximal cells σ1, σ2, σ3, σ4 ∈ X with σi ̸= △uvw and σi ̸= σj for
i ̸= j, such that

σ1 ∩△uvw = u

σ2 ∩△uvw = v

σ3 ∩△uvw = vw

σ4 ∩△uvw = uv

and for all other locally maximal cells τ ∈ X , either

1. τ ∩△uvw = u,
2. τ ∩△uvw = v,
3. τ ∩△uvw = w,
4. τ ∩△uvw = uv

5. τ ∩△uvw = vw

6. τ ∩△uvw = ∅.
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Then, there are exactly five partitions P1, P2, P3, P4, P5 of PNLM which
witness T , where T is the edge spanning component corresponding to△uvw.
Further, P1, P2 are labelled with 0, P3 with 1, and P4, P5 with 3 by Algo-
rithms 10 and 11.

Proof. Let T be the triangle spanning component which corresponds to
△uvw. Then, the proof is an adaption of the proof of Lemmas 2.4.13
and 2.4.14. By combining the arguments, there are five partitions

P1, P2, P3, P4, P5

from Algorithm 8 which witness T , and there are spanning connected
components C1, C2, C∋, C∋, C△ such that P1 witnesses C1, C2, C△ and not C3,
P2 witnesses C2 and not C1, C3, C4, P3 witnesses C2, C3 but not C1, C4, and P4

witnesses C4 but not C1, C2, C3. Further, P5 only witnesses T , and hence P4

only witnesses T . Hence, P1, P2 are labelled with 0, P3 with 1, and P4, P5

with 3. □

Lemma 2.4.24. Let △uvw be a triangle of X , such that there are some
locally maximal cells σ1, σ2, σ3, σ4, σ5 ∈ X with σi ̸= △uvw and σi ̸= σj

for i ̸= j, such that

σ1 ∩△uvw = u

σ2 ∩△uvw = v

σ3 ∩△uvw = w

σ4 ∩△uvw = uv

σ5 ∩△uvw = vw

and for all other locally maximal cells τ ∈ X , either

1. τ ∩△uvw = u,
2. τ ∩△uvw = v,
3. τ ∩△uvw = w,
4. τ ∩△uvw = uv

5. τ ∩△uvw = vw
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6. τ ∩△uvw = ∅.

Then, there are exactly five partitions P1, P2, P3, P4, P5, P6 of PNLM

which witness T , where T is the edge spanning component correspond-
ing to △uvw. Further, P1, P2, P3 are labelled with 0, P4, P5, P6 with 3 by
Algorithms 10 and 11.

Proof. Let T be the triangle spanning component which corresponds to
△uvw. Then, the proof is an adaption of the proof of Lemmas 2.4.13
and 2.4.14. By combining the arguments there are six partitions

P1, P2, P3, P4, P5, P6

from Algorithm 8 which witness T , and there are spanning connected com-
ponents C1, C2, C3, C4, C5 such that P1 witnesses C1, C4 and not C2, C3, C5, P2

witnesses C2, C4, C5 and not C1, C3, P3 witnesses C2, C3, C5 but not C1, C4, P4

witnesses C4 but not C1, C2, C3, C5, and P5 witnesses C5 but not C1, C2, C3, C4.
Further, P6 only witnesses T , and hence P1, P2, P3 are labelled with 0,
P4, P5, P6 with 3. □

Lemma 2.4.25. Let △uvw be a triangle of X , such that there are some
locally maximal cells σ1, σ2, σ3, σ4, σ5, σ6 ∈ X with σi ̸= △uvw and σi ̸=
σj for i ̸= j, such that

σ1 ∩△uvw = u

σ2 ∩△uvw = v

σ3 ∩△uvw = w

σ4 ∩△uvw = uv

σ5 ∩△uvw = vw

σ6 ∩△uvw = uw

and for all other locally maximal cells τ ∈ X , either

1. τ ∩△uvw = u,
2. τ ∩△uvw = v,
3. τ ∩△uvw = w,
4. τ ∩△uvw = uv,
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5. τ ∩△uvw = vw,
6. τ ∩△uvw = uw,
7. τ ∩△uvw = ∅.

Then, there are exactly six partitions P1, P2, P3, P4, P5, P6 of PNLM which
witness T , where T is the edge spanning component corresponding to△uvw.
Further, P1, P2, P3 are labelled with 0, P4, P5, P6 with 3 by by Algorithms 10
and 11.

Proof. Let T be the triangle spanning component which corresponds to
△uvw. Then, the proof is an adaption of the proof of Lemmas 2.4.13
and 2.4.14. By combining the arguments there are six partitions

P1, P2, P3, P4, P5, P6

from Algorithm 8 which witness T , and there are spanning connected com-
ponents C1, C2, C3, C4, C5, C6 such that P1 witnesses C1, C4, C6 and not C2, C3, C5,
P2 witnesses C2, C4, C5 and not C1, C3, C6, P3 witnesses C3, C5, C6 but not
C1, C2C4, P4 witnesses C4 but not C1, C2, C3, C5, C6, and P5 witnesses C5 but
not C1, C2, C3, C4, C6, and P6 witnesses C6 but not C1, C2, C3, C4, C5. Hence
P1, P2, P3 are labelled with 0, P4, P5, P6 with 3. □

Theorem 2.4.26. Let P be an ε-sample of an embedded 2-complex |X|⊂
Rn satisfying Assumption 2, and let B be the graph obtained from Algo-
rithm 12.

Then, we can complete B to be the incidence graph of X , to recover the
abstract structure.

Proof. From Propositions 2.4.6 to 2.4.8, we correctly identify the locally
maximal components of X . It remains to show that we correctly learn the
number of not locally maximal cells, and the incidence relationship.

For a locally maximal edge, we need to identify two vertices as its faces.
To do so, we must identify which partition(s) of PNLM correspond to these
vertices.

Take a spanning edge component E . Then there is some locally maximal
edge uv corresponding to E . There are two cases to consider:

A: uv is disconnected from every other part of X ,
B: uv is not disconnected every other part of X .
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Case A: From Propositions 2.3.10 to 2.3.12, 2.3.14 and 2.3.15 and As-
sumption 2, there is a single partition Pi ⊂ PNLM which contains points p
such that E ∩ B(R+ε)/κ+3ε(p) ̸= ∅. Hence, Pi contains samples p such that
either ∥v−p∥ ≤ 3R

2
+ε or ∥u−p∥ ≤ 3R

2
+ε, and Pi corresponds to u and v.

In this case, Pi is labelled with −1 in Algorithm 10. This occurs only when
uv is disconnected from the rest of |X|; hence, we infer the two boundary
vertices.

Case B: As uv is not disconnected, there is some locally maximal cell
σ ∈ X, σ ̸= uv such that either u or v is a vertex of σ. Without loss of
generality, let v ∈ σ. For the vertices u and v let the set of locally maximal
faces they see be S(u) and S(v), respectively. As X is a 2-complex, and uv

a locally maximal edge, σ /∈ S(u). Hence, there are two partitions, Pu, Pv,
which correspond to the vertices u and v, respectively. In this case, Pu and
Pv are labelled with 0 in Algorithm 10.

We now need to examine how we identify the faces of triangles.
For a triangle spanning component T , let PT be the set of partitions

Pi of PNLM such that d(T , Pi) ≤ 3ε. There are a few cases we need to
consider to ensure we correctly recover the structure of X:

1. |PT |= 1,
2. |PT |= 2,
3. |PT |= 3,
4. |PT |= 4,
5. |PT |= 5,
6. |PT |= 6.

Let the weight 2 node labelled with E be t.
Case 1 |PT |= 1: Let P1 be the single partition in PT .
This can only occur if the triangle △uvw corresponding to T does not

share any faces with another cell. Then, P1 corresponds to three edges and
three vertices and is correctly labelled with 7 by Algorithms 10 and 11. Let
the corresponding weight 1 nodes of B be e1, e2, e3 and the weight 0 nodes
be v1, v2, v3. We add an edge between t and e1, e2, e3, v1, v2, v3 and between
the following pairs:

(e1, v1), (e1, v2), (e2, v2), (e2, v3), (e3, v3), (e3, v1).



98 2. LEARNING 2-COMPLEXES

Case 2 |PT |= 2: Let PT = {P1, P2}.
This can only occur if the triangle △uvw corresponding to T shares

either a vertex, or an edge and two vertices with other triangles or locally
maximal edges. Thus, either P1 is labelled with 0 and P2 with 5, or P1 is
labelled with 2 and P2 with 4 by Algorithms 10 and 11.

If P1 has label 0 and P2 has label 5, we find the weight 0 node v1

with label P1 and the three weight 1 nodes e1, e2, e3 and two weight 0

nodes v2, v3 with label P2. Then, we add an edge between t and each of
e1, e2, e3, v1, v2, v3 and between the following pairs:

(e1, v1), (e1, v2), (e2, v2), (e2, v3), (e3, v3), (e3, v1).

If P1 has label 2 and P2 has label 4, we find the weight 1 note e1 and
two weight 0 node v1, v2 with label P1, the two weight 1 nodes e2, e3 and
one weight 0 nodes v3 with label P2. We add an edge between t and each of
e1, e2, e3, v1, v2, v3 and between the following pairs:

(e1, v1), (e1, v2), (e2, v2), (e2, v3), (e3, v3), (e3, v1).

Case 3 |PT |= 3: Let PT = {P1, P2, P3}.
This can only occur if the triangle△uvw corresponding to T shares ei-

ther two vertices, or two vertices and an edge with other triangles or locally
maximal edges. Thus, either P1 and P2 are labelled with 0 and P2 with 6; or
P1 is labelled with 0, P2 with 1 and P3 with 4; or P1 is labelled 0, P2 with 2

and P3 with 9 by Algorithms 10 and 11.
If P1, P2 have label 0 and P3 has label 6, we find the weight 0 node v1

with label P1, the weight 0 node v2 with label P2, the three weight 1 nodes
e1, e2, e3 and the weight 0 node v3 with label P3. Then add an edge between
t and each of e1, e2, e3, v1, v2, v3 and between following pairs:

(e1, v1), (e1, v2), (e2, v2), (e2, v3), (e3, v3), (e3, v1).

If P1 has label 0, P2 label 1 and P3 label 4, we find the weight 0 node v1
with label P1, the weight 0 node v2 with label P2, weight 1 node e1 with label
P2, the weight 0 node v3 with label P3, and the two weight 1 nodes e2, e3
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with label P3. Then add an edge between t and each of e1, e2, e3, v1, v2, v3
and between the following pairs:

(e1, v1), (e1, v2), (e2, v2), (e2, v3), (e3, v3), (e3, v1).

If P1 has label 0, P2 label 2 and P3 label 9, we find the weight 0 node v1
with label P1, the weight 0 node v2 and weight 1 node e1 with label P2, and
the weight 1 nodes e2, e3 and weight 0 node v3 with label P3. Then add an
edge between t and each of e1, e2, e3, v1, v2, v3 and between the following
pairs:

(e1, v1), (e1, v2), (e2, v2), (e2, v3), (e3, v3), (e3, v1).

Case 4 |PT |= 4: Let PT = {P1, P2, P3, P4}.
This can only occur if the triangle △uvw corresponding to T shares

three vertices, or three vertices and an edge, or three vertices and two edges
with other triangles or locally maximal edges. Thus, either P1, P2 and P3

are labelled with 0 and P4 with 8; or P1 is labelled with 1, P2, P3 with 0 and
P3 with 9; or P1 with 3, P2, P3 with 0 and P4 with 4; or P1 is labelled with
0, P2, P3 with 1, and P3 with 3 by Algorithms 10 and 11.

If P1, P2, P3 have label 0 and P4 has label 8, find the weight 0 node v1

with label P1, weight 0 node v2 with label P2, weight 0 node v3 with label
P3, and the three weight 1 nodes e1, e2, e3 with label P4. Then add an edge
between t and each of e1, e2, e3, v1, v2, v3 and between the following pairs:

(e1, v1), (e1, v2), (e2, v2), (e2, v3), (e3, v3), (e3, v1).

If P1 has label 1, P2, P3 have label 0, and P4 has label 9, find the weight
0 node v1 and weight 1 node e1 with label P1, weight 0 node v2 with label
P2, weight 0 node v3 with label P3, and the two weight 1 nodes e2, e3 with
label P4. Then add an edge between t and each of e1, e2, e3, v1, v2, v3 and
between the following pairs:

(e1, v1), (e1, v2), (e2, v2), (e2, v3), (e3, v3), (e3, v1).

If P1 has 3, P2, P3 label 0 and P4 label 4;, find the weight 1 node e1 with
label P1, weight 0 node v1 with label P2, weight 0 node v2 with label P3, and
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the two weight 1 nodes e2 and weight 0 node e3 with label P4. Then add an
edge between t and each of e1, e2, e3, v1, v2, v3 and between the following
pairs:

(e1, v1), (e1, v2), (e2, v2), (e2, v3), (e3, v3), (e3, v1).

If P1 has label 0, P2, P3 have label 1, and P4 has label 3, find the weight
0 node v1 with label P1, weight 0 node v2 and weight 1 node e1 with la-
bel P2, weight 0 node v3 and weight 1 node e3 with label P3, and the two
weight 1 nodes e2 with label P4. Then add an edge between t and each of
e1, e2, e3, v1, v2, v3 and between the following pairs:

(e1, v1), (e1, v2), (e2, v2), (e2, v3), (e3, v3), (e3, v1).

Case 5 |PT |= 5: Let PT = {P1, P2, P3, P4, P5}.
This can occur if the triangle △uvw corresponding to T shares three

vertices and two edges; or three vertcies and one edge with other triangles
or locally maximal edges. Thus, P1, P2 are labelled with 0, P3 with 1 and
P4, P5 with 3; or P1, P2, P3 are labelled with 0, P4 with 3 and P5 with 9 by
Algorithms 10 and 11.

If P1, P2 are labelled with 0, P3 with 1 and P4, P5 with 3 we find the
weight 0 node v1 with label P1, find the weight 0 node v2 with label P2, find
the weight 1 node e1 and weight 0 node v3 with label P3, find the two weight
1 nodes e2, e3 with label P4, and the two weight 1 nodes e2, e3 with label P5.
Then add an edge between t and each of e1, e2, e3, v1, v2, v3 and between ei

with label Pi and vj with label Pj if d(Pi, Pj).
If P1, P2, P3 are labelled with 0, P4 with 3 and P5 with 9 we find the

weight 0 node v1 with label P1, find the weight 0 node v2 with label P2, find
the weight 0 node v3 with label P3, find the weight 1 node e1 with label P4,
and the two weight 1 nodes e2, e3 with label P5. Then add an edge between
t and each of e1, e2, e3, v1, v2, v3 and between ei with label Pi and vj with
label Pj if d(Pi, Pj).

Case 6 |PT |= 6: Let PT = {P1, P2, P3, P4, P5, P6}.
This can only occur if the triangle △uvw corresponding to T shares

three vertices and two edges, or three vertices and three edges with other
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triangles or locally maximal edges. In either case, P1, P2, P3 are labelled
with 0, P4, P5, P6 with 3 by Algorithms 10 and 11.

So we find the weight 0 node v1 with label P1, find the weight 0 node v2
with label P2, find the weight 0 node v3 with label P3, find the weight 1 node
e1 with label P4, the weight 1 node e2 with label P5, and the weight 1 node
e3 with label P6. Then add an edge between t and each of e1, e2, e3, v1, v2, v3
and between ei with label Pi and vj with label Pj if d(Pi, Pj).

In each of these 6 cases, we have connected the weight 2 node t corre-
sponding to the cell τ to each weight 1 node e corresponding to an edge σe

of τ , as well as to each weight 0 node v corresponding to a vertex σv of τ .
Further, in the process, we also connect the weight 1 node e and weight 0
node v if σv is a vertex of σe.

We have shown that the weight 2 nodes of B correspond bijectively
to the triangles of X , the weight 1 nodes of B correspond bijectively to
the edges of X , and the weight 0 nodes of B correspond bijectively to the
vertices of X . We have also shown that for any pair of nodes n1, n2 with
corresponding cells σ1, σ2, there an edge between them if and only if σ1 ⊂
σ2 or σ2 ⊂ σ1.

Hence, B is the incidence graph of X . □

In this chapter, we have presented a method for learning the abstract
structure X underlying an embedded 2-simplicial complex |X|= (X,Θ)

(satisfying Assumption 2) from an ε-sample P . In Chapter 1, we also pre-
sented an algorithm for modelling the linear embedding of a graph. For
abstract 2-complexes, modelling the embedding is future work. In particu-
lar, to model embeddings that are not linear or where we allow for cells of
dimension 2, which are not triangles (along the lines of CW-complexes), we
need to develop the process for learning the faces of locally maximal cells
further.





CHAPTER 3

Classification of Human Mesenchymal Stem Cells

Now is a time for simplicity.
...for, dare I say it, kindness.

Margaret Edson, W;t (Vivian
Bearing Scene 12)

Cell biology relies heavily on microscopy methods to visualise the spec-
imens on various length scales from the tissue level to single cells and down
to the sub-cellular structures, eventually reaching single molecules. Despite
the tremendous technological advances in the last decades (for example, the
advent of super-resolution methods), methods for effectively analysing data
sets with an increasing number of cells are underdeveloped.

In this chapter, we present a method for quantitative analysis of the
shape of cultured stem cells and use it to analyse populations of these cul-
tured cells. The end goal of our analysis is to identify varying growth pat-
terns in experiments, due to the mechano-response of the cells to their mi-
croenvironment. Identifying subpopulations of cells is important, as quanti-
tative analysis of experiments with biological cells faces several problems,
including cell populations may be non-homogenous, and subsets of cells
may behave ‘abnormally’ due to either external or internal reasons (muta-
tions, stress, substrate impurities) [7, 11, 19]. We use persistent homology
to obtain a summary of the morphological features of biological cells. For
a pair of cells, we can use this summary to compare their growth patterns
and obtain a ‘measure’ of their (dis)similarity. Using this (dis)similarity for
each pair of cells, we can identify subpopulations that exhibit similar growth
patterns. There are many different ways of obtaining a summary, and com-
puting a similarity score. In this chapter, we use the persistence of sub-level
sets (Definition 3.1.1) of a radial distance function and then compute the
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2-Wasserstein distance (Definition 3.1.7) between the persistence diagrams
(Definition 3.1.3).

The mathematical methods presented in this chapter can be used to anal-
yse any data which can be represented by closed (simple) curves in R2. For
example, in [17, 23, 24], variations of persistent homology are used to iden-
tify sub-populations of animal bones, biological leaves and fonts.

Stem cells are objects which live in R3, but when cultured in experi-
mental conditions, their ‘thickness’ is negligible. Hence most analysis is
performed with 2-dimensional projections. Thus, we think of these cells as
objects in R2, and in particular, we think of them as closed simply connected
domains. An important geometric feature of these objects is their boundary,
or contour. Currently, our analysis focuses on the contour of each cell. The
task of extracting the contour of a cell from a microscopy image is challeng-
ing and scribed in [15]. We use the accompanying software FilamentSensor
to perform the image processing and extract the contour of each cell. We
extract the ‘centre’ of the cell from the aligned microscopy image of the
nucleus. This is then used as the anchor point for a radial filtration of the
contour. See Figure 3.1.

In this study, we examine the growth patterns of human mesenchymal
stem cells cultured on glass. Human mesenchymal stem cells (hMSCs) are
primary cells (cells isolated from live tissue) that can be collected in a va-
riety of methods. When collected from bone marrow, it is well known and
accepted that the sample will contain a small sub-population (roughly 5%)
which are other primary cells from the bone marrow [11, 19]. Simultane-
ously, there is an ongoing debate about the biological nature of the popula-
tion of human mesenchymal stem cells and their similarity to bone marrow
fibroblasts, making it hard to distinguish the main population of hMSCs
from the sub-population, which contains bone marrow fibroblasts [11, 19].
We examine the morphological features of the cultered cells containing hu-
man mesenchymal stem cells, bone marrow fibroblasts and other primary
cells, from microscopy images of fixed and immuno-stained cells to iden-
tify and classify these populations.

http://filament-sensor.de


3.1. PERSISTENT HOMOLOGY ON GRAPHS 105

(A) Microscopy image of a stem cell. (B) Microscopy image of nucleus.

(C) Plot of contour and the centre of the
mass of the cell indicated in orange.

FIGURE 3.1. Example pf the microscopy image of the cell
and nucleus, with a plot of the contour and the centre of the
cell.

3.1. Persistent Homology on Graphs

Given a microscopy image of a fixed and immuno-stained cell, we use
a graph G to represent the boundary in 2 dimensions. This graph is a list
of ordered vertices, V , with edges, E, between neighbouring vertices. Note
that G is connected and every vertex has degree 2, so G consists of precisely
one cycle. We extract morphological information using the persistence of
connected components of the sub-level sets of a radial function from the
centroid of the nucleus.

For a graph G, we say two vertices v1, v2 are in the same connected
component if there is a path γ from v1 to v2. For each connected component
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of G, we choose a representative vertex v and denote the set of vertices
v′ connected to v by [v]. We call the set { [v] for v ∈ G} the connected
components of G.

To use persistent homology on G, we need to define a filtration on G.
We begin by defining a family of filtered graphs.

Definition 3.1.1 (Sub-level Set). Let f be a function from a graph G to R,
and fix a ∈ R. The sub-level set Ga := f−1((−∞, a]) is the subset Va

of vertices v with f(v) ≤ a and the set of edges Ea between any pair of
neighbouring vertices which are both in Va. Note that for any

a ≤ b ∈ R

we have
f−1((−∞, a]) ⊆ f−1((−∞, b]),

and the sub-level sets form a sequence of nested graphs.

Remark 3.1.2. The above definition of sub-level sets is cell-wise constant,
rather than piecewise-linear one. The distance of a point on an edge to
the centre of the function is not the standard Euclidean distance in R2, but
instead the maximum of the distances of the two vertices. This is not an
issue, as the difference in these two values is bounded.

Given a nested sequence of graphs G0 ⊆ G1 ⊆ . . . ⊆ Gα, we can
examine the changes in connected components of the graphs as we progress
along the sequence. Consider some Gβ , and let Cβ :=

{
[vj]

β
}ni

j=1
be the

set of connected components in Gβ . We say a connected component [vj]
is born at time β if no vertex in [vj] it is in Cβ−1. We say [vj] dies at γ
where [vj] becomes path connected to a vertex born before γ. For any pair
β ≤ γ we can define a map Aγ

β : Cβ → Cγ . In the current setting, once a
connected component appears in Gβ , it is either present in Gγ for all β ≤ γ

or it merges with some other connected in Gγ for some γ > β.

Definition 3.1.3 (Persistence Diagram). Let f be a function from a graph
G to R, and let G = {Ga}a∈R. Let C =

⋃
a∈RCa be the set of connected

components across the sequence of graphs G. The persistence diagram,
D(G) of G is the multi-set of points (bj, dj) ∈ R2, where bj is the birth time
of [vj] ∈ C, and dj its death time.
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We can also define these filtrations, and persistence diagrams algebraically,
including persistence modules, as in [9].

Example 3.1.4. Let G be the following graph embedded in R2.

FIGURE 3.2. Graph G embedded in R2 for Example 3.1.4.

Consider the filtration in Figure 3.3, where we have set G0 = ∅.
Using integer steps as our filtration parameter, we obtain the persistence

diagrams in Figure 3.4.

The persistence diagram provides a summary of the changes in the con-
nected components as we progress along the sequence of graphs. Given two
sequences of graphs

G1 = G1
0 → G1

1 → . . . G1
α1

and

G2 = G2
0 → G2

1 → . . . G2
α2
,

with persistence diagrams D1 = D(G1), D2 = D(G2), we can use a
distance between D1 and D2 as a measure for the (dis)similarity between
G1 and G2. We use the Wasserstein distance as a metric on persistence
diagrams. In the definition of Wasserstein distance, we consider matchings
between persistence diagrams. Hence, we first define a matching.

Definition 3.1.5. Let D1, D2 be persistence diagrams. Then a matching γ

between D1, D2 is a bijective map Γ : D1 ∪ Λ → D2 ∪ Λ, with Λ infinitely
many copies of the diagonal points (x, x), x ∈ R≥0, as a reservoir of null
matches to make Γ bijective.
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(A) Filtration step 1 G1. (B) Filtration step 2 G2.

(C) Filtration step 3 G3. (D) Filtration step 4 G4.

(E) Filtration step 5 G5. (F) Filtration step 6 G6.

FIGURE 3.3. Example of a filtration on G.

x

y

(A) D0(G).

x

y

(B) D1(G).

FIGURE 3.4. D(G).

Remark 3.1.6. As matchings are bijective, whether we consider a function
from D1 to D2 or D2 to D1 does not matter.
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Definition 3.1.7 (Wasserstein Distance). Let X, Y ⊂ R2 be two multi-sets
of points. The 2-Wasserstein distance between X and Y is

W2(X, Y ) =

(
inf
Γ∈M

∑
x∈X

∥x− Γ(x)∥2
)1/2

,

where M is the set of matchings from X to Y .

3.2. Analysis

The data we have at hand consists of three sets of cells from the same
donor, purchased from Lonza (catalogue #: PT-2501). Each set was cultured
on glass for 24 hours, after which they were fixed, stained and imaged. We
treat these as four data sets in total, one for each set of cells, and then a
fourth combining the three experiments. The same analysis was performed
on all four sets.

Consider a set X of primary hMSCs from the same donor cultured in
the same experimental conditions. For a single cell, let G be the graph
representing its boundary. Further, let f be the radial function that returns
the distance to the centre of the cell. The persistence diagram of the sub-
level sets of f restricted to G provides a summary of the morphological
features of the cell.

Remark 3.2.1. We took the centre of the cell to be the centre of mass of the
nucleus.

Using the 2-Wasserstein distance, we construct a matrix M of pairwise
distances between each pair of cells x1 and x2 in X . Then we use standard
hierarchical clustering with average linkage to cluster the cells.

We do this with the three sets X1, X2, X3.

3.2.1. Data set X1. We begin by looking at the cells in X1, and seeing
if there are any distinct outliers with respect to the Wasserstein metric.

To validate the outlier identified when k = 2, we cluster again with
k = 3, and see the same cell, part1-031, is in its own cluster. We remove
part1-031, to obtain X ′

1 and then perform the clustering again, with k = 2.
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(A) With k = 2, embedded us-
ing multidimensional scaling. There
is a clear outlier with respect to
the Wasserstein distance between the
persistence diagrams.

(B) With k = 3, embedded us-
ing multidimensional scaling. There
is a clear outlier with respect to
the Wasserstein distance between the
persistence diagrams.

FIGURE 3.5. Clustering of cells in X ′
1.

There are 139 cells in X ′
1, with 132 in the main cluster, and 7 in the

second cluster, giving a sub-population of 5.035%. Examples of cells in the
sub-population are

1. part1-015, Figure 3.9,
2. part1-019, Figure 3.10,
3. part1-023, Figure 3.11,
4. part1-105, Figure 3.12.

We include images (microscopy and contour) of four of the cells in the
subpopulation, and then four contours of cells in the main group, see Fig-
ure 3.13.
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(A) Microscopy image of part1-031 identified in Figure 3.5.

(B) Plot of the boundary part1-015 with the centre marked.

FIGURE 3.6. ‘The protrusions are abnormally long and ad-
ditionally the kink points towards a potential fixation prob-
lem.’ F. Rehfeldt
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FIGURE 3.7. Clustering of cells in X ′
1 with k = 2, embed-

ded using multidimensional scaling.

FIGURE 3.8
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(A) Microscopy image of part1-015.

(B) Plot of the boundary part1-015 with the centre marked.

FIGURE 3.9. ‘Abnormal some filaments seem loose
(curved) and not properly attached.’ F. Rehfeldt
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(A) Microscopy image of part1-019.

(B) Plot of the boundary part1-019 with the centre marked.

FIGURE 3.10. ‘Cell itself o.k but extremely long protru-
sions (probably pinned at some spot).’ F. Rehfeldt
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(A) Microscopy image of part1-023.

(B) Plot of the boundary of part1-023 with the centre marked.

FIGURE 3.11. ‘Abnormal cell (two bodies) and some fixa-
tion problems (loose filaments).’ F. Rehfeldt
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(A) Microscopy image of part1-105.

(B) Plot of the boundary of part1-105 with the centre marked.

FIGURE 3.12. ‘Abnormal cell slightly curved/bent long fil-
ament that is probably not properly adhered.’ F. Rehfeldt
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(A) Plot of the boundary
of part1-007 with the centre
marked.

(B) Plot of the boundary of
part1-021 with the centre
marked.

(C) Plot of the boundary of
part1-047 with the centre
marked.

(D) Plot of the boundary
of part1-101 with the centre
marked.

FIGURE 3.13. Examples of normal cells in X ′
1.
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3.2.2. Data set X2. We begin by looking at the cells in X2, and see-
ing if there are any distinct outliers with respect to the Wasserstein metric.
Looking at Figure 3.14, there are no cells that appear to be outliers, and
so we take these two clusters as our main population and subpopulations.
There are 117 cells in X2, with 15 of these in the secondary cluster, giving
a subpopulation of 12.82%.

FIGURE 3.14. Clustering of cells in X2 with k = 2, em-
bedded using multidimensional scaling. There are no clear
outliers with respect to the Wasserstein distance between the
persistence diagrams.

Examples of cells in the subpopulation are:

• part2-067, Figure 3.15,
• part2-073, Figure 3.16,
• part2-097, Figure 3.17,
• part2-213, Figure 3.18.

We include images (microscopy and contour) of four of the cells in the
subpopulation, and then four contours of cells in the main group, see Fig-
ure 3.19.



3.2. ANALYSIS 119

(A) Microscopy image of part2-067.

(B) Plot of the boundary of part2-067 with the centre marked.

FIGURE 3.15. ‘Cell is o.k. but also clearly fixation prob-
lems are visible.’ F. Rehfeldt
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(A) Microscopy image of part2-073.

(B) Plot of the boundary of part2-073 with the centre marked.

FIGURE 3.16. ‘Clearly abnormal and also some fixation
problems.’ F. Rehfeldt
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(A) Microscopy image of part2-097.

(B) Plot of the boundary part2-097 with the centre marked.

FIGURE 3.17. ‘Cell looks o.k. but as several long protru-
sions.’ F. Rehfeldt
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(A) Microscopy image of part1-015.

(B) Plot of the boundary part1-015 with the centre marked.

FIGURE 3.18. ‘Kind of abnormal, fixation problems (bent
filaments) and very long protrusions.’ F. Rehfeldt
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(A) Plot of the boundary
of part2-085 with the centre
marked.

(B) Plot of the boundary of
part2-103 with the centre
marked.

(C) Plot of the boundary of
part2-139 with the centre
marked.

(D) Plot of the boundary
of part2-219 with the centre
marked.

FIGURE 3.19. Examples of normal cells in X2.
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3.2.3. Data set X3. We begin by looking at the cells in X3, and seeing
if there are any distinct outliers with respect to the Wasserstein metric. There
are two outliers identified in Figure 3.1, which we remove to obtain the set
X ′

3.

(A) Clustering of cells in X3

with k = 2, embedded using
multidimensional scaling. There
are two potential outliers.

(B) Clustering of cells in X3

with k = 2, embedded using
multidimensional scaling. There
are two outliers

FIGURE 3.20. Clustering of cells in X3 with k = 2 and
k = 3, validating the presence of two outliers.

We repeat the same process, Figure 3.21 and identify a further outlier,
which we remove to obtain X ′′

3 .
The same process on X ′′

3 with k = 2, produces no potential outliers,
and a clear subpopulation consisting of 14 cells, out of the remaining 137,
giving a sub-population of 10.22%.

Examples of the cells in the sub-population are

1. part3-051, Figure 3.23,
2. part3-127, Figure 3.24,
3. part3-219, Figure 3.25,
4. part3-231, Figure 3.26.

We include images (microscopy and contour) of four of the cells in the
subpopulation, and then four contours of cells in the main group, see Fig-
ure 3.27.
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(A) Clustering of cells in X ′
3

with k = 2, embedded using
multidimensional scaling. There
is a potential outlier.

(B) Clustering of cells in X ′
3

with k = 2, embedded using
multidimensional scaling. There
are two outliers

FIGURE 3.21. Clustering of cells in X ′
3 with k = 2 and

k = 3, validating the presence of an outlier.

FIGURE 3.22. Clustering of cells in X ′′
3 with k = 2, embed-

ded using multidimensional scaling.
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(A) Microscopy image of part3-051.

(B) Plot of the boundary of part3-051 with the centre marked.

FIGURE 3.23. ‘Extremely elongated and thin protrusion.’ F.
Rehfeldt
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(A) Microscopy image of part3-127.

(B) Plot of the boundary of part3-127 with the centre marked.

FIGURE 3.24. ‘Extremely elongated and thin, with a very
thin protrusion.’ F. Rehfeldt
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(A) Microscopy image of part3-219.

(B) Plot of the boundary of part3-219 with the centre marked.

FIGURE 3.25. ‘Has two thin and long protrusions, kinked.’
F. Rehfeldt
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(A) Microscopy image of part3-231.

(B) Plot of the boundary of part3-231 with the centre marked.

FIGURE 3.26. ‘Extremely elongated, and potential fixation
issue in the tail.’ F. Rehfeldt
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(A) Plot of the boundary
of part3-003 with the centre
marked.

(B) Plot of the boundary of
part3-063 with the centre
marked.

(C) Plot of the boundary of
part3-181 with the centre
marked.

(D) Plot of the boundary
of part3-221 with the centre
marked.

FIGURE 3.27. Examples of normal cells in X3.



3.2. ANALYSIS 131

3.2.4. Combined data set. We now combine the cells in X1, X2, X3

into a single data set, X4, and compare the results with our analysis on the
sets individually. There are some outliers identified in Section 3.2.4, which
we remove to obtain the set X ′

4. Again, there is another outlier in X ′
4, which

we remove obtaining X ′′
4 .

(A) Clustering of cells in X4

with k = 5, embedded using
multidimensional scaling.

(B) Clustering of cells in X ′
4

with k = 2, embedded using
multidimensional scaling. There
are two outliers

We then examine the clusters in X ′′
4 with k = 2. There are 47 cells in the

sub-population, with X ′′
4 consisting of 392 cells, giving a sub-population of

11.99%.

FIGURE 3.29. Clustering of cells in X ′′
4 with k = 2.

Comparing the sub-populations identified in X1, X2, X3 and in the com-
bined X4, there is a high overlap. It is to be expected that a small number
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of cells will be in the sub-population in X4 but not in X1, X2, X3 respec-
tively, as well as the other way. The consistency between the individual and
combined analysis indicates that each of the individual data sets is valid.

3.3. Conclusion

In this chapter, we have presented a method for examining the morpho-
logical structure of the (2-dimensional) boundary of a cell, to identify 1) any
potential outliers, and 2) identify subpopulations. We obtain a summary of
the morphology by taking the persistent homology of the boundary, using a
radial function from the ‘centre’ of the cell. We then use the 2-Wasserstein
metric on resulting persistence diagrams as a measure of (dis)similarity. To
identify outliers and subpopulations, we use average linkage hierarchical
clustering and used multi-dimensional scaling to visualise the clustering.

To validate the outliers and subpopulations, we use a ‘learned expert’,
who looks at the microscopy images and contour plots of the cells. There
is debate about the use of a biological marker to stain cells that are not
mesenchymal stem cells. It is future work to compare the cells identified by
this staining [18], with those identified by our process.

We applied this method to three sets of cells cultured separately under
the same conditions, and then on the combined set. The results remained
stable between the individual and combined analyses, indicating that each
of the three sets is valid. The size of the four sub-populations indicates that
on top of the 5% of cells which are other primary cells, there is another
5 − 7% of cells that exhibit abnormal growth due to issues in the culturing
and fixing process. Next steps include repeating our analysis with sets of
cells cultured under other environmental conditions, as well as with cells
from other donors.
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