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Learning under Diverse World Views:   
Model-Based Inference†

By George J. Mailath and Larry Samuelson*

People reason about uncertainty with deliberately incomplete 
 models.  How do people hampered by different, incomplete views 
of the  world learn from each other? We introduce a model of 
“ model-based  inference.”  Model-based reasoners partition an 
 otherwise hopelessly complex state space into a manageable model. 
Unless the differences in agents’ models are trivial, interactions will 
often not lead agents to have common beliefs or beliefs near the 
 correct-model belief. If the agents’ models have enough in  common, 
then interacting will lead agents to similar beliefs, even if their 
 models also exhibit some bizarre idiosyncrasies and their informa-
tion is widely dispersed. (JEL D82, D83)

Economists’ theories typically model people as having a complete and perfect 
understanding of their world. When people lack information, such uncertainty is 
captured by a (common) state space, whose elements “resolve all uncertainty.” 
Physicists may not be sure which is the right reconciliation of quantum theory and 
general relativity, but they understand every detail of every possibility.

In practice, people work with models that are deliberately incomplete, including 
the most salient variables and excluding others. At best, the states in such mod-
els resolve all relevant uncertainty. Moreover, different people work with different 
models. Civil engineers building bridges and electrical engineers designing quan-
tum computers persist with models that are incomplete.

People routinely interact, exchanging information and beliefs. These exchanges 
seldom lead to complete agreement, but people do learn from each other. How do 
they do this when hampered by different incomplete views of the world? We address 
this question by developing and analyzing a model of “ model-based inference.”

We conduct our analysis in a particularly stylized interaction. As in Geanakoplos 
and  Polemarchakis (1982), our agents observe information, form beliefs about 
an event, exchange these beliefs, update in response to the other agents’ beliefs, 
announce their new beliefs, and so on. We are obviously ignoring much of the 
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 complexity of actual interactions, but retain precisely what is needed to examine 
how people learn from others with diverse world views.

What do we mean by “diverse world views?” One obvious source of different 
views is different information. However, Aumann’s (1976)  agreeing-to-disagree 
 theorem (as adapted by Geanakoplos and  Polemarchakis 1982) tells us that 
 asymmetric information alone cannot be a source of persistently different views of 
the world.

We assume people follow Savage’s (1972) recommendation that they escape 
the hopeless complexity of states that resolve all uncertainty by partitioning the 
state space into elements designed to capture the most important factors and ignore 
less important ones. The elements of these partitions become the states in people’s 
 models. But we expect different people to construct this partition differently,  leading 
to different world views. Once they have formed their models, our agents apply 
Bayes’ rule.

Since different information can give rise to persistently different world views 
when people have different prior beliefs, why not simply assume agents hold differ-
ent priors? The important advantage of working directly with different models is that 
we can then reasonably insist that agents have a common prior on the common ele-
ments of their models. This restores much of the discipline whose absence  typically 
pushes research away from models with heterogeneous priors. Online Appendix 
Section A illustrates the lack of discipline that arises with heterogeneous priors.

Sections  I and II introduce  model-based reasoning and interactions between 
 model-based reasoners. In Section III, we show that unless the differences in agents’ 
models are trivial, interactions will not lead agents to common beliefs. More prob-
lematically, any conventional aggregate of the agents’ beliefs will often be off the 
mark, in the sense that the  correct-model belief will lie outside the convex hull of 
the agents’ beliefs. In general, we cannot expect people with different models to 
effectively aggregate their information.

Section  IV shows that if the agents’ models have enough in common, then 
 interacting will lead agents to similar beliefs, even if their models also exhibit some 
bizarre idiosyncrasies. Perhaps more importantly, we identify conditions under 
which agents who collectively have sufficient information will have an average 
belief close to the  correct-model belief, even if their information is widely dispersed. 
The key to effective information aggregation is thus not that people have common 
 information or a common model, but that the different models people use imply a 
sufficiently common interpretation of whatever information they have.

I. The Setting

A. The Environment

We begin with a familiar model of uncertainty. A state of the world is an element 
of the set  Ω =  X   N  , where  X ⊆ ℝ  and  N ⊆ ℕ  is possibly infinite.1 Nature draws 

1 With the exception of Section III and Proposition 8 in Section IVC, our results hold for a more general model 
in which states of the world are given by a complete, separable metric space  Ω , endowed with the associated 
Borel  σ -algebra. See the preceding working paper (Mailath and Samuelson 2019) for details.
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a state  ω  from  Ω  according to the probability measure  ρ  on  Ω . Agents form beliefs 
about the occurrence of an event  F . It is convenient to describe this event in terms of 
its indicator function  f  : Ω →  {0, 1}  , so that  f  (ω)  = 1  if and only if  ω ∈ F .

For illustration, we often assume that  X  is finite (at which point nothing is lost 
by taking  X  to be the set   {0, 1}  ) and  N  is finite, which we refer to as the finite case.

B.  Model-Based Reasoning

It is standard in economic analyses to equip agent  i  with the state space  Ω  , 
nature’s distribution  ρ  as prior belief, and description  f  of the event. We refer to such 
a  reasoner as an (agent) oracle.

In contrast, we are concerned with  model-based reasoners. A  model-based rea-
soner is a faithful adherent of The Foundations of Statistics (Savage 1972). Savage 
explains that it is a hopeless undertaking to work with a state space that resolves all 
uncertainty, i.e., that specifies “[t]he exact and entire past, present, and future his-
tory of the universe, understood in any sense, however wide” (Savage 1972, p. 8).2 
Savage argues on the next page that “the use of modest little worlds, tailored to 
particular contexts, is often a simplification, the advantage of which is justified.” 
A  model-based reasoner’s “modest little world” effectively partitions the state 
space into equivalence classes that he or she believes capture relevant informa-
tion about  F  while ignoring irrelevant information. These equivalence classes then 
become “states” in the reasoner’s model.3

We capture this reliance on models by assuming that each agent  i  explains the 
occurrence of the event  F  by a function (her theory)

   f    i  :  X    M   i   →  [0, 1]  

that depends only on the realizations of the variables contained in a subset   M   i  ⊆ N .4 
We refer to the set   M   i   as agent  i ’s model. Once the agent has a model and attendant 
theory, we can talk about reasoning, Bayesian or otherwise.

If the variables in   M   i   suffice to determine whether  F  has occurred, then agent  i  
correctly understands the forces determining  F . We are most interested in cases in 
which agent  i  works with a set   M   i   that omits some of the variables required to 
 determine whether  F  has occurred. Agent  i  realizes that such a model cannot be 
expected to perfectly explain the event  F , reflected in   f    i   mapping into   [0, 1]  , 
 giving the  probability that the event  F  has occurred, rather than   {0, 1}  .

Denote by   ω  M   i     an element of the set   X    M   i   . An element   ω  M   i     specifies the realiza-
tions drawn from  X  of each of the variables that appear in  i ’s model. In terms of 
Savage’s procedure for creating a “modest little world,” the model   M   i   identifies the 

2 Savage (1972, p. 16) describes this logical extreme of “look before you leap” as “utterly ridiculous.”
3 This is not the only possible interpretation of Savage (1972). An alternative is that Bayesian decision making 

in the spirit of Savage (1972) is only justified in situations where a decision maker can legitimately specify a state 
space that resolves all uncertainty. The distinction between these interpretations is particularly relevant when dis-
cussing the origin of the prior, an issue we avoid by assuming (1) and (2).

4 The corresponding formulation in the general case is that  i ’s theory   f    i   is measurable with respect to a  
sub- σ -algebra      i   of the Borel  σ -algebra.
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 equivalence classes, of the form   { ω  M   i   }  ×  X   − M   i   , that convert   X   N   into agent  i ’s view 
of the world.

For example, suppose the event  F  corresponds to an increase in the price of a 
financial asset. Even upon restricting attention to professionals, we encounter a vari-
ety of approaches. A fundamentalist will typically seek information on the cash 
reserves, debt load, volume of sales, profit margin (and so on) of the underlying 
firm; these are the variables that would appear in her model   M   i  . A chartist’s   M   i   
will include variables corresponding to recent share trading volumes, price trends, 
reversals in price movements, the existence of apparent price ceilings, and so on. An 
efficient marketer will ask for a coin to flip. And even among professionals, there are 
forecasters whose models focus on astrological data. The fundamentalist is likely 
to exclude much of the  asset-price history from her model, while the chartist may 
neglect various aspects of the firm’s current financial position. Both will typically 
exclude information about zodiac signs. All of the agents are likely to miss factors 
whose relevance has not yet been imagined, as well as factors they are convinced are 
irrelevant, while possibly including irrelevant factors.

We assume that agent  i ’s theory   f    i   is consistent with the event  F ’s indicator 
 function  f . The probability agent  i  attaches to the event  F  given   ω  M   i     matches the 
probability that the prior probability measure  ρ  attaches to the event  F ,  conditional 
on   ω  M   i    . In the finite case, this is the requirement that for every   ω  M   i     (for which  
 ρ  ( ω  M   i   )  = ρ  ( { ω  M   i   }  ×  X   − M   i  )   is positive),

(1)   f    i  ( ω  M   i   )  =   ∑ 
ω∈Ω

    f  (ω) ρ (ω |  { ω  M   i   }  ×  X   − M   i  )   .

To formulate the infinite version of this requirement, let      i   be the  σ -algebra on  
  X   N   induced by the model   M   i  .5 Agent  i ’s theory   f    i  :  X    M   i   →  [0, 1]   can also be viewed 
as a function from   X   N   to   [0, 1]   that is measurable with respect to      i  , i.e., that takes 
on the value   f    i  ( ω  M   i   )   for every  ω ∈  { ω  M   i   }  ×  X   − M   i   . We adopt this view throughout 
our formal development, while thinking of   f    i   as a function on   X    M   i    for interpretation. 
To keep notation uncluttered, we refer to both formulations as   f    i  , with the context 
making clear which is appropriate. Our assumption for the infinite case is

(2)   f    i  (ω)  = 피 [ f |     i  ]  (ω) . 

As in (1), the probability agent  i  attaches to event  F  having observed the variables 
in      i   is the probability attached to the event  F  by the prior measure  ρ , conditional 
on the event.6

One interpretation for the correct beliefs assumed in (2) is that, as in Spiegler 
(2016), agent  i  builds her theory from her model   M   i   and her access to a record of an 
unlimited number of independent draws from the prior distribution  ρ .7 Recall that 
the agent restricts attention to the variables in her model. For each of the possible 
realizations   ω  M   i     of such variables (focusing for interpretation on the finite case), the 

5 That is,      i   is generated by the equivalence classes   { ω  M   i   }  ×  X   − M   i   .
6 Because  Ω  in the general case is complete, separable, and metric (i.e., Polish), we can assume conditional 

beliefs exist for all  ω  (Stroock 2011, Theorem 9.2.1).
7 Eyster and Piccione (2013, p. 1492) analogously motivates a condition similar to (1)–(2) as the outcome of a 

statistical learning process.
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agent identifies the draws in the record whose realizations match   ω  M   i     for the  variables 
in   M   i   and calculates the frequency with which the event  F  has occurred among these 
realizations, giving rise to the probabilities   f    i  ( ω  M   i   )   in (1).

Of course we do not expect agent  i  to literally have access to an infinite number 
of independent draws from the distribution  ρ . In practice, the agent must construct   f    i   
using a finite number of observations. Hence, even while using the device of an 
infinite record to interpret the beliefs in (1)–(2), we still feel free to appeal to the 
case of finite data when developing intuition for our analysis. Our goal in imposing 
(1)–(2) is to isolate the implications of agent  i ’s  model-based inference from the 
statistical problems that invariably arise with finite sets of data, much as econo-
metricians prefer to separate questions of estimation and identification. We thus 
endow each agent with correct beliefs and examine the implication of these beliefs. 
In  particular, (2) imposes a natural consistency requirement across agents.

Remark 1 (Clinging to Models): Our agents are dogmatic in their models, in the 
sense that they never entertain the possibility of adopting a different model. People 
indeed go to great lengths to defend models to which they resolutely cling. Einstein 
is reputed to have argued that “God does not play dice with the universe” and Dirac 
to have argued that “God used beautiful mathematics in creating the world.” Both 
are examples of defending particular (types of) models. We do not examine the 
process by which agent  i  might come to focus on the model   M   i   or might consider 
alternatives to the model   M   i  . Importantly, one should not expect such processes to 
eliminate differences in models, since different agents may follow different model 
selection processes.8

Subsection C4 returns to this issue.

C. Beliefs

Forming beliefs about uncertain events, whether by an oracle or a  model-based 
reasoner, requires two steps. First, the agent identifies their  full-information beliefs. 
Then the agent takes expectations of these  full-information beliefs with respect to an 
appropriately updated probability measure.

C1: Full-Information Beliefs.—If agent  i  observed all of the information she 
deemed relevant, i.e., if agent  i  observed the realization   ω  M   i     of the variables in her 
model   M   i  , then she would regard herself as having full information and would attach 
to the event  F  the probability

   f    i  ( ω  M   i   )  =  f    i  (ω) , 

whose value is given by (2). We write the  notation-abusing equality as a reminder 
that   f    i   is viewed as a function on   X   N   throughout our formal development,  measurable 

8 Hong, Stein, and Yu (2007) examines a model in which agents restrict attention to a class of models simpler 
than that of an (in our terms) agent oracle, but update their beliefs about which model in the simple class is appro-
priate. The extension of our model to such a setting would involve agents who restrict attention to different classes 
of models, or follow different  model-updating rules. The difficulties agents face in learning from other agents would 
only be exacerbated in such a setting.
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with respect to      i  , but often interpreted as a function on   X    M   i   . We refer to this as a 
full information belief. Agent  i  ignores any variables outside of   M   i  , but she  correctly 
uses the implications of the information she does think relevant, namely   ω  M   i     . 
It  follows immediately from (2) that the  full-information beliefs of a  model-based 
reasoner agree with those of an agent oracle having information   ω  M   i     .

C2: Prior Beliefs.—If agent  i  has no information about the state, then she attaches 
to the event  F  the expectation of her  full-information belief, given by

(3)  피 [  f    i  (ω) ]  = 피 [피 [ f |     i ]  (ω) ]  = 피 [ f  (ω) ] , 

where the first equality is from (2) and the second is an application of the law of 
iterated expectations.

This indicates that agent  i ’s prior belief matches that of an agent oracle. This is 
no surprise. Recall we interpret  i ’s belief as having arisen from a consultation of the 
record. Without any information, no observations from the record are eliminated 
as possible candidates, and the empirical frequency calculated by  i  matches that 
 calculated by an oracle.

C3: Interim Beliefs.—We now consider the case where agent  i  observes the real-
izations   ω  I   i     for some subset   I   i  ⊆ N . Agent  i  then forms her interim beliefs, which 
we denote by   β    i  .

Analogously to our treatment of agent  i ’s theory   f    i  , for purposes of interpretation, 
we treat   β    i   as a function   X    I   i   →  [0, 1]  , identifying for each realization   ω  I   i    ∈  X    I   i    the 
updated probability agent  i  attaches to the event  F . For the formal development, we 
view   β    i   as an equivalent (and identically named) function on   X   N   that is measurable 
with respect to the information contained in   I    i  .9

We think of agent  i  as observing her information   ω  I   i     and then consulting the 
record. She identifies all those realizations that match her observation   ω  I   i    , and 
 calculates the frequency of the various values of   ω  M   i     in these observations. This 
gives  her an updated distribution of the realizations of the variables   ω  M   i    . Each 
 realization of   ω  M   i     gives rise to a  full-information belief, and she takes the expecta-
tion of these  full-information beliefs with respect to this updated distribution.

Importantly, the essence of our  model-based inference “model” of the agent 
is that agent  i  does not simply look at the empirical frequency of the occurrence 
of  F  under   I   i  . This reflects our assumption that  i  acts as if only her model variables 
are relevant for predicting  F , and the only value in information is to help her in 
inferring the variables in   M   i  . Indeed, calculating   β   i   as the empirical frequency of  F  
under   I   i   is equivalent to taking   M   i  = N . Given the stark simplicity of our model 
of  model-based reasoners, agent  i  appears to be throwing away useful information. 
Recall, though, that our model is a representation of a vastly more complex reality, 
in which (as we explain in Subsection C4) the agent adopts a model, uses whatever 
means she has available for formulating  full-information beliefs (for convenience 

9 This latter viewpoint is particularly useful when we include announcements by other agents in  i ’s information.
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assumed to be correct in our analysis), and then uses information to update her 
beliefs about the variables in her model.

Denote by       i   the  σ -algebra induced by   I   i  .10 Then agent  i ’s interim belief, denoted 
by   β    i  (ω)  , is

(4)   β   i  (ω)  = 피 [  f    i  ∣      i ]  (ω) . 

An oracle can similarly be viewed as examining those observations in the record 
that match   ω  I   i     , but then taking the expectation of the description  f  (ω)   over this set. 
If   I   i  ⊆  M   i  , then these two updating procedures are equivalent.11 We have

(5)   β   i  (ω)  = 피 [  f    i  ∣      i ]  (ω) 

 = 피 [피 [ f |     i ]  ∣      i ]  (ω) 

 = 피 [ f ∣      i ]  (ω) , 

where the first equality repeats the definition (4) of the interim belief   β   i  , the next line 
follows from the definition of the  full-information belief from (2), and the last line 
follows from the law of iterated expectations.

Our first example illustrates the basics of  model-based reasoning, and how it dif-
fers from oracular reasoning.

Example 1: Suppose  Ω =   {0, 1}    2  , with each state equally likely. The event  F  
consists of the state   (1, 1)  . We summarize this information in the left array in Figure 
1.

Let   M   i  =  {1}   and   I   i  =  { 2}  . Agent  i  views dimension 1 as the only relevant 
dimension, and   ω  M   i    =  ω 1    takes on two values, 0 and 1.

Agent  i ’s  full-information beliefs   f    i  ( ω 1  )   are given by

   f    i  (0)  = 0 and  f    i  (1)  = 1 / 2. 

We summarize agent  i ’s model and  full-information beliefs in the right array in 
Figure 1.

Agent  i  observes dimension 2, or   I   i  =  {2}  . Importantly,   I  i   ⊈  M   i  , disrupting the 
equivalence of agent and oracular beliefs established in (5).

An agent- i  oracle who observed   ω 2    forms the posteriors  ρ  (ω |  ω 2  )   given by 
( economizing on notation by shortening  ρ ( (0, 0)  ∣ 0)   to  ρ (0, 0 ∣ 0)  )

(6)  ρ  (0, 0 ∣ 0)  = 1 / 2 ,   ρ  (1, 0 ∣ 0)  = 1 / 2 , 

(7)  ρ  (0, 1 ∣ 1)  = 1 / 2 ,  and  ρ  (1, 1 ∣ 1)  = 1 / 2 , 

10 Similar to footnote 5,      i   is generated by the equivalence classes   { ω  I   i   }  ×  X   − I   i   .
11 If   I   I  ⊈  M   I  , the agent’s interim beliefs and the agent oracular beliefs need not coincide, since we cannot apply 

the law of iterated expectations.
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with all other conditional probabilities equaling 0, and then takes expectations of her 
 full-information beliefs to obtain the interim beliefs

  피 [ f  ( ω 1  ,  ω 2  )  ∣ 0]  = ρ  (0, 0 ∣ 0)  f  (0, 0)  + ρ  (1, 0 ∣ 0)  f  (1, 0)  = 0 ,

  and 피 [ f  ( ω 1  ,  ω 2  )  ∣ 1]  = ρ  (0, 1 ∣ 1)  f  (0, 1)  + ρ  (1, 1 ∣ 1)  f  (1, 1)  = 1 / 2. 

We interpret  model-based agent  i  as observing   ω 2    and then consulting the record 
to form the posterior beliefs over the variables in her model

  Pr  ( ω 1   = 0 ∣  ω 2   = 0)  = 1 / 2,   Pr  ( ω 1   = 1 ∣  ω 2   = 0)  = 1 / 2, 

  Pr  ( ω 1   = 0 ∣  ω 2   = 1)  = 1 / 2,  and  Pr  ( ω 1   = 1 ∣  ω 2   = 1)  = 1 / 2. 

The  model-based agent  i  then takes expectations of her  full-information beliefs to 
obtain

   β   i  (0)  = 1 / 4 and  β   i  (1)  = 1 / 4. 

Formally, we capture this updating process with the expectation given in (4). Here, 
agent  i  again forms a posterior on   X   N  =   {0, 1}    2  , matching the posterior of an 
 agent-oracle, given by (6)–(7). However, rather than taking the expectation of  f , 
agent  i  then takes the expectation of her  full-information belief to obtain

   β   i  (0)  = 피 [  f    i   ( ω 1  )  ∣ 0]  = ρ (0, 0 ∣ 0)   f    i  (0)  + ρ  (1, 0 ∣ 0)   f    i   (1)  = 1 / 4 

  and  β   i  (1)  = 피 [  f    i  ( ω 1  )  ∣ 1]  = ρ  (0, 1 ∣ 1)   f    i   (0)  + ρ  (1, 1 ∣ 1)   f    i  (1)  = 1 / 4. 

The reader may wonder why, given that  F =  (1, 1)  , in the calculations above, 
the  model-based reasoner does not use her record to set   β   i  (1)   equal to  ρ  (1, 1 ∣ 1)  . 
But the  model-based reasoner does not know that  F =  (1, 1)  . Rather, her model  
  M   i  =  {1}   specifies that  F  is (randomly) determined by   ω 1    only, with her record 

Figure 1. The Structure for Example 1

Note: The first four columns present the environment,   (Ω, ρ, f )  , and the last two columns present agent  i ’s model, 
which has only two states, and full information beliefs.

    Ω    


  
  ω 1     ω 2    ρ ( ω)  f  ( ω)   ω 1     f    i  ( ω 1  ) 

0 0 1/4 0
  }  

0 0
0 1 1/4 0

1 0 1/4 0
  }  

1 1/2
1 1 1/4 1
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and (1) yielding her theory   f    i  (0)  = 0  and   f    i  (1)  = 1 / 2 . She only uses her informa-
tion   ω 2    to calculate her beliefs over   ω 1   .

We hereafter assume   I   i  ⊆  M   i  , allowing us to focus on interactions between 
agents.12

C4: Why Don’t Agents Choose the Right Model?—Given an unlimited record 
of previous draws from the distribution  ρ , why doesn’t the agent use the record to 
identify the correct model? Equivalently, why doesn’t the agent choose the largest 
possible model,  N , ensuring that she never omits anything relevant?

In practice, agents are confronted with finite data and a state space of  potentially 
infinite complexity. Even big data cannot “slip the surly bonds” of finiteness, while 
Arrow and  Hurwicz (1972, p. 2) notes that variables are unlimited: “How we 
describe the world is a matter of language, not of fact. Any description of the world 
can be made finer by introducing more elements to be described.” An agent will 
never encounter data that unambiguously contradict whatever model she holds or 
unambiguously identify a correct model. Instead, anomalous observations can be 
explained away by unobserved factors, and for every event and every set of data, 
there will be an infinite collection of models that explain the data perfectly, making 
it impossible to use the data to find the “right” model. And for every event, there 
will be an infinite list of variables about which the agent could collect informa-
tion, making it impossible to be a pure empiricist.  Al-Najjar (2009) and Gilboa 
and Samuelson (2012) elaborate on the futility of interpreting data without models. 
If she is to make any meaningful use of the data, agent  i  must then appeal to some 
model   M   i   and proceed as if only the variables captured by   M   i   matter. In order to 
focus on how and whether agents can “learn” from each other, we make the extreme 
assumption captured in (1)–(2) that the agent makes perfect use of whatever model 
she has.

Giacomini, Skreta, and Turén (2020) describes the behavior of 75 professional 
forecasters in terms we recognize as  model-based reasoning. The object of each 
participant was to predict the US inflation rate, for each of the years 2007–2014. 
Forecasting typically began at the beginning of July of the preceding year (with 
slightly later initial forecasts for 2007 and 2008), with individual forecasters updat-
ing their predictions at any time until the end of the year in question. Giacomini, 
Skreta, and Turén (2020) argues that the forecasters in their sample appear to be 
Bayesians (albeit much more so in  non-crisis years), but with different models that 
lead them to different forecasts. In response to this disagreement, the agents perse-
vere in their belief in their models (again, more so in  non-crisis years) and in their 
disagreement. Such agents would find themselves well at home in our setting.

12 We view the restriction of   I   i   to a subset of   M   i   as reasonable in many circumstances, on the grounds that people 
are likely to not process information they deem irrelevant.
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II. Learning from Others

We now assume there are  K  agents. Each agent  i = 1, …, K  has a 
model   M   i    exhibiting the properties outlined in Section  IIB, and has access to 
 information   I   i  ⊆  M   i  .

A. Unknown Sense or Known Nonsense?

How does agent  i  extract information from agent  j ’s beliefs, given that  i  and  j  may 
have different models? What, if anything, must agent  i  know about  j ’s model to draw 
such inferences?

Our leading interpretation is that agent  i  need know nothing about  j ’s model. We 
refer to this as the case of unknown sense: agent  i  may allow for the possibility that 
there is some sense behind  j ’s reasoning, but  i  might have no idea how this reasoning 
proceeds. The fundamentalist may comment that “I have no idea how the chartist 
comes up with these conclusions.”

Our model is also consistent with the assumption that each agent knows the mod-
els of other agents. In this case, agent  i  may think that agent  j  is  ill-advised in her 
choice of model. This is presumably why agent  i  sticks with her own model rather 
than adopting  j ’s model, and hence we refer to this as the case of known nonsense. 
The fundamentalist might remark that “I can read the charts and see how the astrol-
oger comes up with these predictions, but I do not believe it an improvement to 
incorporate the zodiac into my model.”

We follow Geanakoplos and Polemarchakis (1982) in examining the following 
 information-exchange protocol:

 (i) First, each agent  i  observes her information   ω  I   i     and forms her interim belief.

 (ii) Agents (by assumption truthfully) simultaneously announce their 
interim beliefs.

 (iii) Agents update their beliefs in response to these announcements.

 (iv) Agents then announce their revised beliefs, update, and announce, and so on.

Formally, this process continues indefinitely; we say that the process terminates if a 
stage is reached at which beliefs are not subsequently revised.13

In the known nonsense case, one can readily imagine how  i  draws inferences 
from  j ’s beliefs, since  i  can invert  j ’s reasoning. But how does  i  draw inferences 
under our leading interpretation, in which  i  may have no understanding of how  j  
reasons?

13 Geanakoplos and Polemarchakis (1982) assumes the agents have finite information partitions, ensuring that 
the belief revision process terminates in a finite number of steps. Sethi and Yildiz (2012) applies Geanakoplos 
and Polemarchakis (1982) to a model of deliberation with different priors. There is no belief updating in their 
model after the first round because the first round signals are a sufficient statistic of the relevant private information. 
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We interpret the updating that occurs in steps (iii) and (iv) of this process as 
 follows. Consistent with our discussion in Section I, we think of the record as includ-
ing not only the realizations of the state, but also the sequences of announcements 
made by the agents. Agent  i  forms her interim belief by identifying those states in the 
record corresponding to her observation   ω  I   i     , then identifying the relative frequencies 
of   ω  M   i     in these states, and then taking the expectation of her  full-information belief 
over this set. She forms her next update by restricting attention to the subset of such 
states in which the other agents’ first announcements match those she has observed, 
and again identifying the relative frequencies of   ω  M   i     in these states and taking the 
expectation of her  full-information belief over this set. She continues similarly in 
subsequent rounds.14

B. The Details of Updating Beliefs

Fix  ω  and suppose that agent  i  has observed her information   ω  I   i     and the other 
agents  have announced the vector   b  0  −i  =  ( b  0  1 , … ,  b  0  i−1 ,  b  0  i+1 , … ,  b  0  K )  , where 
the  j  th -element of the vector   b  0  −i   corresponds to agent  j ’s announced interim 
belief   b   0  

j   =  β     j  (ω)   of the event  F  (determined by  j ’s observation of his information). 
Agent  i  then forms a belief denoted by   β    i  ( ω  I   i   ,  b  0  −i  )  . Letting     0  −i   be the  σ -algebra 
generated by the announcement   b   −i  , agent  i  forms her  model-based belief about the 
event  F  as15

(8)   β   i  (ω,  b  0  −i )  = 피 [  f    i   |      i ,    0  −i ]  (ω) . 

Denote the interim belief announced by agent  i  by   b  0  i   , the second poste-
rior by   b  1  i   , and so on; the vector of announced posteriors is similarly denoted by  
  b  0   =  ( b  0  i   ,  b  0  −i  )  ,   b  1   =  ( b  1  i  ,  b  1  −i  )  , and so on. The beliefs we have examined to this 
point are

   b  0  i   =  β    i  (ω)  and   b  1  i   =  β   i   (ω,  b  0  −i  ) . 

Let     1  −i   denote the  σ -algebra induced by the announcements  ( b  0  −i ,  b  1  −i   ). Then given 
the beliefs   b  0  i   =  β   i  (ω)   and   b  1  i   =  β   i  (ω,  b  0  −i )  , an announcement by the remaining 
agents of their updated posteriors   b  1  

j   =  β    j  (ω,  b  0  
−j )   results in agent  i  updating  

her beliefs to

   b  2  i   =  β   i  (ω,  b  0  −i ,  b  1  −i  )  = 피 [  f    i  |     i ,    1  −i  ]  (ω) . 

14 Each agent’s beliefs in any round of the protocol depend only on  previous-round beliefs of the other agents. 
There is then no circularity of the type that arises in Spiegler (2016) when considering decisions.

15 Throughout the formal analysis, agent  i ’s beliefs at each stage of the updating process are given by a function 
on   X   N   that is measurable with respect to the  σ -algebra generated by the relevant information. We conserve on nota-
tion by using   β   i  ( ⋅ )   to denote these beliefs, such as   β   i  (ω)  ,   β   i  (ω,  b  0  −i )  ,   β   i  (ω,  b  0  −i ,  b  1  −i )  , and so on, where the dot operator 
identifies the relevant information. (Recall footnote 9.) In examples, we replace  ω  by   ω  I   i     in this notation to serve as 
a reminder of agent  i ’s initial information.
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Letting     n  −i   and    n    denote the  σ -algebras induced by   ( b  0  −i ,  … ,  b  n  −i )   and   
( b  0  ,  …  ,  b  n  )  , we have, for all  n ,

   b  n+1  i   =  β    i  (ω,  b  0  −i , …  ,  b  n  −i )  = 피 [  f    i  |      i ,    n  −i ]  (ω)  = 피 [  f    i  |      i ,   n  ]  (ω) , 

where the last equality follows from  σ  (     i ,    n  −i  )  = σ  (    i ,   n  )   (and  σ  ( , )   is 
the  σ -algebra generated by the  σ -algebras  and ). Denote by  b ≔  ( b  0  ,  b  1  , …)   the 
infinite sequence of announcements and by    ∞    the  σ -algebra induced by  b . It will 
also be useful to keep track of the beliefs of the public oracle,

  피 [ f  |   n  ]  and 피 [ f  |   ∞  ] . 

Intuitively, a public oracle is an agent whose model is given by  N  and whose theory 
is thus given by  f , and who observes the announcements of all players, but no other 
information.

Since each agent  i  and the public oracle follow Bayesian updating on the sequence 
of increasingly informative announcements (filtrations)   (   n  −i  )   and   (  n  )  , the resulting 
sequence of updates are martingales and so converge (with probability one under  ρ ) 
to limits which are measurable with respect to the limit  σ -algebras. The following 
result summarizes this discussion.

LEMMA 1: The updated beliefs

    (피  [  f    i  |      i ,    n  −i ] )   
n=1

  
∞

   and   (피 [ f  |   n  ] )   n=1  
∞   

are martingales, with  ρ -almost-sure limits

  피 [  f    i  |      i ,    ∞  −i ]  and 피 [ f  |   ∞  ] . 

Remark 2 (Different Models or Different Events?): We interpret our analysis as 
that of agents forming beliefs about a single event  F , but with different models. The 
challenge is then to examine how agents infer information relevant to their own 
models from other agents who have different models. Returning to our example, the 
fundamentalist may recognize that there is information to be gleaned about funda-
mentals from another agent who is primarily concerned with charts.

Much of the analysis of this section could be recast as one in which every agent 
is an oracle, but the agents are forming beliefs about different events. The chal-
lenge is then to examine how agents infer information about their own events from 
other agents who are concerned with other events. One fundamentalist may be con-
cerned with industrial stocks, while recognizing that there is useful information to 
be gleaned from the beliefs of an analyst who specializes in agricultural futures. For 
the purposes of much of this section, it is a taste question which interpretation is 
most congenial. However, most of the results in subsequent sections are consistent 
only with our preferred interpretation of agents using different models to reason 
about a common event.



1476 THE AMERICAN ECONOMIC REVIEW MAY 2020

C. Example

Agent  i  may find  j ’s beliefs relevant for two reasons. First,  j  may observe a vari-
able that appears in  i ’s model but  i  does not observe. A fundamentalist may be 
convinced that the outcome of a firm’s recent drug trial is important, but may not be 
privy to that outcome, and so may glean inferences from the beliefs of an insider. 
Second, there may be correlations between the variables. A fundamentalist may take 
note when the CEO of a firm opens a secret bank account in the Cayman Islands, not 
because such accounts appear directly in the list of fundamentals, but because they 
are correlated with other variables that do. If the president of the country believes 
in astrology, then government policy may cause firm fundamentals to be correlated 
with astrological phenomena, inducing the fundamentalist to glean information 
from the beliefs of the astrologer.

Example 2: Suppose the state space is given by    {0, 1}    4  . The pair   ( ω 1  ,  ω 2  )   is drawn 
from the distribution  Pr { ( ω 1  ,  ω 2  )  =  (0, 0) }  = Pr { ( ω 1  ,  ω 2  )  =  (1, 1) }  = 3 / 8 ,  
 Pr { ( ω 1  ,  ω 2  )  =  (0, 1) }  = Pr { ( ω 1  ,  ω 2  )  =  (1, 0) }  = 1 / 8 , and the pair   ( ω 3  ,  ω 4  )   is 
independently drawn from a distribution with an identical correlation structure. The 
event is

  F =  {ω :   ∑ 
k=1

  
4

     ω k   ≥ 2} . 

There are two agents. Agent 1’s model and information are given by

   M   1  =  {1, 2, 3, 4}  and  I   1  =  {2, 3}  ,

while agent 2’s are given by

   M   2  =  {3, 4}  and  I   2  =  {4} . 

This information is summarized in Figure 2, together with the interim beliefs  
  β   1  ( ω  I   1   )   and   β   2  ( ω  I     2   )  .

Now we turn to updating in response to others’ beliefs. First, consider agent 1, 
who is an oracle. Agent 2 observes only one piece of information, namely   ω 4   , and 
different realizations of   ω 4    cause agent 2 to announce different interim beliefs. 
Agent 1’s  first-round update, given by (8), is then identical to the interim belief 
agent 1 would have if 1 observed   { ω 2  ,  ω 3  ,  ω 4  }  . We report these beliefs in Figure 2, in 
the column labeled   β   1  ( ω  I    1   ,  b  0  2 )  . There is nothing more agent 1 can learn, and hence 
agent 1 does no further updating.

Turning to agent 2, suppose, first,   b  0  1  = 1 . Agent 2 observes   ω 4   , and infers that 
agent 1 has observed   ω 3   = 1 . Agent 2 then has (from her point of view) full infor-
mation. Any information about   ω 2    in agent 1’s belief agent 2 considers irrelevant. 
Agent 2’s updated beliefs   β   2  ( ω  I    2   ,  b  0  1 )   about the event  F  are then given by

   β   2  (0, 1)  = 5 / 8 and  β   2  (1, 1)  = 1. 



1477MAILATH AND SAMUELSON: LEARNING UNDER DIVERSE WORLD VIEWSVOL. 110 NO. 5

We see here the difference between  model-based and oracular updating. An  
agent-2 oracle who observed   ω 4   = 0  and   b  0  1  = 1  would infer that the state is   
(0, 1, 1, 0)   with probability  1 / 2  and   (1, 1, 1, 0)   with probability  1 / 2 . Both states give 
rise to the event  F , and so the  agent-2 oracle would attach posterior  probability 1 
to the event. In contrast, the  model-based updater who has observed   ω 4   = 0  
and   b  0  1  = 1  draws the inference that the state (in her model)   ( ω 3  ,  ω 4  )   equals   
(1, 0)  . The agent then calculates her full information probability of  F , given  
  ( ω 3  ,  ω 4  )  =  (1, 0)  , which is  5 / 8 .

The case of   b  0  1  = 1 / 16  is similar.
Finally, suppose   b  0  1  = 13 / 16 . Unlike the previous two cases, this observa-

tion does not unambiguously identify player 1’s observation, instead pooling the 
 realizations   (0, 1)   and   (1, 0)   of   ( ω 2  ,  ω 3  )  . Let   ρ   2  ( ω  M   2    |  ω  I   2   ,  b  0  1 )   identify the probabilities 
agent 2 attaches to the values of the states (in her model)   ω  M   2    =  ( ω 3  ,  ω 4  )   given the 
information   ω  I   2     and the announcement   b  0  1  . Then

  ρ (0, 0 ∣ 0, 13 / 16)  = 3 / 4, ρ (1, 0 ∣ 0, 13 / 16)  = 1 / 4, 

  ρ (0, 1 ∣ 1, 13 / 16)  = 1 / 4, and ρ (1, 1 ∣ 1, 13 / 16)  = 3 / 4. 

Agent 2’s updated beliefs   β   2  ( ω  I   2   ,  b  0  1 )   about the event  F  are then given by

   β   2  (0, 13 / 16)  = 14 / 32 and  β   2  (1, 13 / 16)  = 29 / 32. 

Again, these beliefs differ from those of an  agent-2 oracle, who attaches 
 probabilities 5 / 8 (after observing   ( ω 4  ,  b  0  1 )  =  (0, 13 / 16)  ) and  1  (after  

Figure 2. The Beliefs for Example 2

Note: Because agent 1 is an oracle, her theory agrees with the indicator f and so is not listed separately.

State Prior 2’s theory Interim beliefs First-round updates Second round
 ( ω 1  ,  ω  2  ,  ω  3  ,  ω 4  ) ρ  f ( ω)   f    2   (  ω  M   2   )   β    1  ( w   I   1   )   β    2  ( w   I    2   )   β    1   ( ω  I   1   ,  b  0  

2 )    β   2   ( ω  I   2   ,  b  0  
1 )    β   2   ( ω  I   2   ,  b  0  

1 ,  b  1  
1 ,  b  0  

2 )  

(0, 0, 0, 0) 9 / 64 0 3 / 8 1 / 16 14 / 32 0 3 / 8 3 / 8
(0, 0, 0, 1) 3 / 64 0 5 / 8 1 / 16 29 / 32 1 / 4 5 / 8 5 / 8
(0, 0, 1, 0) 3 / 64 0 5 / 8 13 / 16 14 / 32 1 / 4 14 / 32 5 / 8
(0, 1, 0, 0) 3 / 64 0 3 / 8 13 / 16 14 / 32 3 / 4 14 / 32 3 / 8
(1, 0, 0, 0) 3 / 64 0 3 / 8 1 / 16 14 / 32 0 3 / 8 3 / 8
(0, 0, 1, 1) 9 / 64 1 1 13 / 16 29 / 32 1 29 / 32 29 / 32
(0, 1, 0, 1) 1 / 64 1 5 / 8 13 / 16 29 / 32 1 29 / 32 29 / 32
(1, 0, 0, 1) 1 / 64 1 5 / 8 1 / 16 29 / 32 1 / 4 5 / 8 5 / 8
(0, 1, 1, 0) 1 / 64 1 5 / 8 1 14 / 32 1 5 / 8 5 / 8
(1, 0, 1, 0) 1 / 64 1 5 / 8 13 / 16 14 / 32 1 / 4 14 / 32 5 / 8
(1, 1, 0, 0) 9 / 64 1 3 / 8 13 / 16 14 / 32 3 / 4 14 / 32 3 / 8
(1, 1, 1, 0) 3 / 64 1 5 / 8 1 14 / 32 1 5 / 8 5 / 8
(1, 1, 0, 1) 3 / 64 1 5 / 8 13 / 16 29 / 32 1 29 / 32 29 / 32
(1, 0, 1, 1) 3 / 64 1 1 13 / 16 29 / 32 1 29 / 32 29 / 32
(0, 1, 1, 1) 3 / 64 1 1 1 29 / 32 1 1 1
(1, 1, 1, 1) 9 / 64 1 1 1 29 / 32 1 1 1

   M   1  =  {1, 2, 3, 4} ,  M   2  =  {3, 4} ,

  I   1  =  {2, 3} ,  I   2  =  {4}  .
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observing   ( ω 4  ,  b  0  1 )  =  (1, 13 / 16)  ) to event  F . The results of agent 2’s updating  
are reported in the column   β   2  ( ω  I   2   ,  b  0  1 )  . This concludes the first round of updating.

The subsequent round of updating is described in online Appendix Section B.

D. How Revealing Are Beliefs?

Why not have agents simply announce their information rather than their beliefs? 
We are comfortable in abstracting from the details of agents’ interactions by using 
the exchange of beliefs as a convenient proxy for the workings of such interactions, 
but we are not comfortable simply assuming the interaction will reveal all of the 
agents’ information.

This difference matters. As illustrated by Geanakoplos and Polemarchakis (1982, 
Proposition 3) and Figure  5, an agent oracle need not hold the same beliefs as 
someone who can observe the information contained in   ∪  k=1  K

    I    k  .16 Instead, some 
player  k ’s belief announcements may pool together some of the information con-
tained in   I    k  . Constructing such examples is straightforward, even when the agents 
are all oracles.

One might counter that the pooling encountered in these examples is nongeneric 
(Geanakoplos and  Polemarchakis 1982, Proposition 4). Indeed, one might argue 
that for a generic specification of prior beliefs, each agent’s first announcement 
reveals that agent’s information, and hence we need not worry about multiple rounds 
of announced beliefs.

We first note that if the state space is a ( multidimensional) continuum with agents 
receiving continuously distributed signals, and if an agent observed several signals, 
then a  one-dimensional announcement will typically (and generically) not reveal 
all the agent’s information. We find it convenient in the examples to strip away 
complications by working with discrete signals, but are then unwilling to appeal to 
genericity arguments. Second, even within a discrete framework, the space of prior 
beliefs may not be the appropriate space to seek genericity. For example, the factors 
determining which state has occurred may be summarized by a tree, with random 
moves at decision nodes and terminal nodes corresponding to states. We would then 
apply genericity arguments to the mixtures appearing in the tree. If this tree has a 
nontrivial structure, then generic specifications of the probabilities appearing in the 
tree will induce probability distributions over states that appear nongeneric, but that 
we nonetheless view as robust.

We believe that the repeated announcement of beliefs gives us information 
transmission similar to that allowed by (for example) the common knowledge that 
agents are willing to trade, sufficiently so that we are willing to avoid modeling the 
fine details of market microstructure by working directly with sequences of belief 
announcements. However, we are not convinced that market or other interactions 
will necessarily reveal every detail of every agent’s information, and so would be 
skeptical of a model that precluded pooling.

16 The limit beliefs held by an agent oracle are Geanakoplos and Polemarchakis’s (1982) indirect communica-
tion equilibrium beliefs. 



1479MAILATH AND SAMUELSON: LEARNING UNDER DIVERSE WORLD VIEWSVOL. 110 NO. 5

E. The Bliss of Others’ Ignorance

Our next example illustrates a phenomenon that can only arise with agents having 
different models: increasing the information of one agent (even when another agent 
thinks the information is valuable) can result in a deterioration of inferences.

Example 3: We jump immediately to the tabular presentation of this example, 
which includes all the relevant information, presented in Figure 3. In contrast to the 
presentation of our earlier examples, we replace the column specifying the indicator 
function,  f , with   f    ⁎  , its expected value conditional on all the agents’ model variables, 
i.e.,   f    ⁎ (ω) ≔ 피[  f (ω) ∣  ω 1  ,  ω 2  ,  ω 3  ] . In Example 2,  N =  ∪ i    M   i  , which is to say that 
the variables contained in   {0, 1}    ∪ i    M   i    suffice to determine the value of  f . In the current 
example, there are additional variables in the state space that we have not presented. 
These variables lie outside all agents’ models, and play a role in the analysis only to 
the extent that they shape the values of   f    ⁎   and so we omit them from the table.

Since   ω 1    is independent of   ( ω 2  ,  ω 3  )  , agent 2 learns nothing from agent 1 and does 
no updating. Agent 1 learns the realization of   ω 2    from agent 2, and so does one 
round of updating. In four of the states, agent 1 learns the probability of  F , namely 0. 
Agent 1 overestimates the value of  F  in two of the remaining four states and under-
estimates it in the remaining two states.

Now suppose we give agent 2 more information, as displayed in Figure 4.
Agent 2 again does not update, while agent 1 does one round of updating. As a 

result of the additional information, agent 2 now pools her states. Agent 1 does not 
estimate the probability of  F  correctly in any state.

F. Properties of the Belief Updating Process

The following proposition gathers some information about the  belief-updating 
process. Recall that throughout, we maintain the assumption that   I   i  ⊆  M   i   for all  i , 
and that  b =  ( b  0   ,  b  1   , …)   denotes the complete sequence of publicly announced 
beliefs with associated  σ -algebra    ∞   . We introduce the omniscient oracle who, in 
addition to having the model  N , knows the realization of the state.

Figure 3. The Beliefs for Example 3

State Prior Interim beliefs First-round updates
 ( ω 1  ,  ω  2  ,  ω  3  ) ρ   f    * ( ω)   β    1  ( ω  I   1   )   β    2  ( ω  I    2   )   β    1   ( ω  I   1   ,  b  0  

2 )  
(0, 0, 0) 1/10 0 (2x + y)/5 (x + y)/4 0
(1, 0, 0) 1/10 x (x + y)/5 (x + y)/4 (x + y)/2
(0, 0, 1) 1/10 0 (2x + y)/5 (x + y)/4 0
(1, 0, 1) 1/10 y (x + y)/5 (x + y)/4 (x + y)/2
(0, 1, 0) 2/10 x (2x + y)/5 (2x + y)/6 (2x + y)/3
(1, 1, 0) 2/10 0 (x + y)/5 (2x + y)/6 0
(0, 1, 1) 1/10 y (2x + y)/5 (2x + y)/6 (2x + y)/3
(1, 1, 1) 1/10 0 (x + y)/5 (2x + y)/6 0

  Ω =   {0, 1}    3 ,  M   1  =  {1, 2, 3} ,  M   2  =  {2, 3} ,
  I   1  =  {1} ,  I   2  =  {2}   .
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PROPOSITION 1: 

 (i ) If      i   is finite for all  i ∈  {1, … , K}  , then b is eventually constant, i.e., the 
updating process terminates. If the   M   i   are infinite, the updating process need 
not terminate.

 (ii ) The limiting beliefs of different agents need not be equal.

 (iii ) With  ρ -probability 1, once an agent’s belief equals 0 or 1, that agent’s 
beliefs  agree with those of the omniscient oracle, and so are never 
 subsequently  revised.17 Thus, two agents cannot simultaneously assign a 
belief of  0  and  1  to the event  F .

 (iv ) Agent  i ’s private information is only pooled in the limit if it does not matter 
to agent  i , that is,

  피 [  f    i  ∣      i ,   ∞  ]  = 피 [  f    i  ∣   ∞  ] . 

 (v) If  f  depends only on the variables in   M   i  , then   f    i  = f  and agent  i ’s limit belief 
equals the agent oracular and public oracular belief, that is,

  피 [ f ∣      i ,   ∞  ]  = 피 [  f    i  ∣      i ,   ∞  ]  

  = 피 [  f    i  ∣   ∞  ]  

  = 피 [ f ∣   ∞  ] . 

17 So  model-based reasoners cannot match the common description of being “often wrong but never in doubt.”

Figure 4. The Result of Giving Agent 2 in Figure 3 Increased Information

State Prior Interim beliefs First-round updates
 ( ω 1  ,  ω  2  ,  ω  3  ) ρ   f    *   ( ω)   β    1  ( w   I   1   )   β    2  ( w   I    2   )   β    1   ( w   I   1   ,  b  0  

2 )  
(0, 0, 0) 1/10 0 (2x + y)/5 x/2 2x/3
(1, 0, 0) 1/10 x (x + y)/5 x/2 x/3
(0, 0, 1) 1/10 0 (2x + y)/5 y/2 y/2
(1, 0, 1) 1/10 y (x + y)/5 y/2 y/2
(0, 1, 0) 2/10 x (2x + y)/5 x/2 2x/3
(1, 1, 0) 2/10 0 (x + y)/5 x/2 x/3
(0, 1, 1) 1/10 y (2x + y)/5 y/2 y/2
(1, 1, 1) 1/10 0 (x + y)/5 y/2 y/2

  Ω =   {0, 1}    3 ,  M   1  =  {1, 2, 3} ,  M   2  =  {2, 3} ,
  I   1  =  {1} ,  I   2  =  {2, 3}   .
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 (vi ) If   ∪  j    I   j  ⊆  M   i  , then agent  i ’s limit belief equals the agent oracular and pub-
lic oracular belief,

  피 [ f ∣      i ,   ∞  ]  = 피 [  f    i  ∣      i ,   ∞  ]  

  = 피 [  f    i  ∣   ∞  ]  

  = 피 [ f ∣   ∞  ] . 

PROOF: 

 (i) At each round  n  of the updating process, agent  i ’s belief about the event  F  is 
the expectation of  i ’s  full-information belief conditioning on the  σ - algebra 
reflecting  i ’s information and the information revealed by the collective 
announcements of the agents,  σ (     i ,   n  )  . The sequence    (σ (     i ,   n  ) )   n=0  

∞
    is a 

filtration, with each  σ -algebra being coarser than  σ  (    1 , … ,     K )  . If all      j   are 
finite, then each  σ (     i ,   n  )   and  σ (    1 , … ,     K )   are generated by finite partitions, 
and so the filtration must eventually be constant, ensuring that the updating 
process terminates. Online Appendix Section C describes an example with 
infinite   M   1   and   M   2   in which updating proceeds for an infinite number of 
rounds.

 (ii) Example 2 shows that the limit beliefs need not agree. With positive proba-
bility, the limiting beliefs in online Appendix Section C are not equal.

 (iii) A belief   b  n  i    for agent  i  can equal an extreme value ( 0  or  1 ) at some round  n  
if and only if the  full-information belief   f    i  (ω)   takes the same extreme value 
on a full  ρ -measure event in  σ (     i ,   n  )  , which implies the omniscient 
 oracle has the same beliefs on a full  ρ -measure event in  σ (     i ,   n  )  , and so 
on every  subsequent subevent in the sequence. Since the omniscient oracle 
 cannot have two distinct beliefs, it is then immediate that two agents cannot 
 simultaneously assign a beliefs of 0 and 1 to the event  F .

 (iv) Proof is by contradiction. Suppose that

  피 [  f    i  ∣      i ,   ∞  ]  ≠ 피 [  f    i  ∣   ∞  ] . 

Then,    ∞    must pool together some states that agent  i  does not pool together, 
and on which   f    i   is not constant.18 But if this were the case, then there would 
be an announcement from agent  i  not contained in    ∞   , a contradiction.

 (v) Immediately follows from the definitions and item (iv).

18 More precisely, there exist two positive probability events  E  and  E′  in  σ (     i ,   ∞  )   not separated by    ∞    (i.e., for 
all events  B ∈   ∞   , we have either  E, E′ ⊆ B  or   (E ∪ E′)  ∩ B = ∅ ) for which  피 [  f    i  ∣ E]  ≠ 피 [  f    i  ∣ E ′]  .
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 (vi) We verify the first equality. Since  σ  (     i ,   ∞  )  ⊆ σ ( ∪  j        j )  , if   ∪  j        j  ⊆     i  ,  
then  σ (     i ,   ∞  )  ⊆ σ  (    i )  , and so (using (ii) and the law of iterated 
expectations)

  피 [  f    i  ∣      i ,   ∞  ]  = 피 [피 [ f  ∣     i ]  ∣      i ,   ∞  ]  

  = 피 [ f  ∣      i ,   ∞  ] . 

The second equality is just item (v) above, while the third equality is 
 established by an identical argument to that which verified the first equality. ∎

Remark 3 (Common Knowledge): If we adopt the interpretation that the agents 
know each others’ models, then their limit beliefs are common knowledge. Online 
Appendix Section D provides details.

III. Agents and Oracles

A. Do Agents Agree?

In one sense, it is obvious (and our earlier discussion confirms) that when agents 
have substantively different models, their limit beliefs may not agree. We now 
explore the sources and implications of agreement.

To ease notation, we consider the case of two agents. We say that limit beliefs 
necessarily agree if, for all  ω ∈ Ω , the limit beliefs of agents 1 and 2 are equal, i.e.,

(9)  피 [  f    1  |     1 ,   ∞  ]  (ω)  = 피 [  f    2  |     2 ,   ∞  ]  (ω) . 

The left side is agent 1’s  model-based belief, giving 1’s observation of   ω  I   1     and the 
announced sequence of beliefs, and the right side is agent 2’s corresponding belief. 
From Proposition 1(iv), equation (9) can be rewritten as

  피 [  f    1  |   ∞  ]  (ω)  = 피 [  f    2  |   ∞  ]  (ω) . 

Given   I   1   and   I   2  , we say that the variable  k ∈  M   i   is redundant in agent  i ’s model 
if  피 [  f    i  ∣     1 ,     2 ]   is constant in   ω k   .

When the variables in   I   i  \  M   j   are not redundant for agent  i , it seems difficult to 
achieve necessary agreement. Suppose  k ∈  I   i  \  M   j   is not redundant for agent  i . Then 
we would expect agent  i ’s belief to vary as the value of   ω k    varies, while agent  j ’s 
theory is not responsive to variations in the values of   ω k    for  k ∉  M   j  . It may still 
be that agent  j ’s belief varies with   ω k    (reflecting changes in  j ’s beliefs over   ω  M   j    ), 
but agent  j ’s theory averages  f  over   ω k    and so it seems difficult to obtain agreement 
on the more confident beliefs, precluding necessary agreement. Online Appendix 
Section E illustrates this intuition.

While suggestive, this intuition fails when there is no variation in beliefs. The 
example in Figure 5 has the feature that both agents pool their information (agent 1 
because she is not fully informed). Consequently, both agents’ beliefs agree with 
the prior.
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Under independence, necessary agreement implies either that the variables 
in   I   i  \  M   j   are redundant, or the information is not being revealed (as in Figure 5).

PROPOSITION 2: Suppose the variables   ω k    are drawn independently and  K = 2 . 
Suppose the beliefs of agents 1 and 2 necessarily agree. If for some  i ∈  {1, 2}  , the 
variables in   I   i  \  M   j   are not redundant for agent  i , then for some  j ∈  {1, 2}   (which 
may but need not equal  i )

  피 [  f    j  ∣   ∞  ]  ≠ 피 [  f    j  ∣     1 ,     2 ] , 

that is, not all the agents’ information is revealed.

Note that if agents’ information is not all revealed, then even if the different 
variables in  N  are independent, agent’s beliefs conditional on    ∞    need not be 
independent.

PROOF: 
Suppose the beliefs of agents 1 and 2 necessarily agree and that   I   1  \  M   2   is not 

redundant for agent 1, Suppose, moreover, that for both  i = 1, 2 ,

(10)  피 [  f    i  ∣   ∞  ]  = 피 [  f    i  ∣     1 ,      2 ] , 

so that all agents are effectively conditioning on all the information. Since the 
 variables  are independent,  피 [  f    2  ∣     1 ,      2 ]   does not depend on   ω k    for  k ∈  I   1  \  M   2  .  
But necessary agreement implies  피 [  f   1  ∣   ∞  ]  = 피 [  f    2  ∣   ∞  ]   while nonredun-
dancy of   I   1  \  M   2   implies  피 [  f   1  ∣     1 ,      2 ]   must depend on   ω k    for some  k ∈  I   1  \  M   2  ,  
contradicting (10). ∎

Hence, when variables are independent, agents necessarily agree only if either 
there are effectively no differences in information (i.e., information is either 
 redundant or common) or not all information is revealed.

Correlation in variables may allow necessary agreement even when there are 
nonredundant variables and all information is revealed. If there is correlation, then 

State Prior Theories Beliefs

(  ω 1   ,   ω  2    ) ρ f ( ω)   f    1   (  ω  M   1    )   f    2   (  ω  M   2    )   β    1   ( ω  I   1   )    β   2   ( ω  I   2   )  

(0, 0) 1/4 0 0 1/2 1/2 1/2
(0, 1) 1/4 1 1 1/2 1/2 1/2
(1, 0) 1/4 1 1 1/2 1/2 1/2
(1, 1) 1/4 0 0 1/2 1/2 1/2

  X =  {0, 1} ,  M   1  =  {1, 2,} ,  M   2  =  {2} ,

  I   1  =  {1} ,  I   2  =  {2}  .

Figure 5

Note: An example with agreement, even though variable 1 is not redundant for agent 1.
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agent 1 may observe information that is useful to agent 2, not because it appears in 
2’s model but because it is correlated with the values of other variables in 2’s model 
(that 2 does not observe). The example in online Appendix Section F illustrates that 
this can occur. Moreover, Section  IV shows that strong correlation implies limit 
beliefs will be close.

Conversely, redundancy in general leads to agreement, with or with-
out  independence. In the following, we must strengthen redundancy since  
 피 [  f   1  |       1 ,      2 ]   constant in   ω k    for all  k ∈  I   1  \  M   2   need not imply that  피 [  f    1  ∣     1 ]   is 
 constant in   ω k    for all  k ∈  I   1  \  M   2   (for example,   ω k    may be correlated with a variable  
in   I   2  ∩  M   1  ).

PROPOSITION 3: Suppose  K = 2 ,  피 [  f    1  ∣     1 ,     2 ]   is constant in   ω k    for all  
 k ∈  I   1  \  M   2   and all  sub- σ -algebras      2   of      2  , and  피 [  f    2  ∣     2 ,     1 ]   is constant in   ω k     
for all  k ∈  I   2  \  M   1   and all  sub- σ -algebras      1   of      1  . Then, the limit beliefs of agents 
1 and 2 necessarily agree, and agree with the public oracular belief.

PROOF: 
The strengthened redundancy assumptions imply that no matter what agent  1 , 

for example, learns from agent  2 ’s announcements,  1 ’s prediction is independent 
of   ω k    for all  k ∈  I   1  \  M   2  . This implies that, without loss of generality, we may 
assume   I   i  \  M   j  = ∅  for all  i . This implies that for each agent  i ,   I   1  ∪  I   2  ⊆  M   i  , 
and so by Proposition 1(vi), agent  i ’s limit belief necessarily agrees with the public 
oracular belief, and so with agent  j ’s limit belief. ∎

B. The Wisdom of the Crowd?

The idea of the “wisdom of the crowd” (e.g., Surowiecki 2004, Wolfers 
and  Zitzewitz 2004) is that groups or “crowds” of people effectively aggregate 
information, even if their members disagree. We can thus reasonably assert that 
information is aggregated, even though various agents disagree, as long as the crowd 
forms beliefs that are “correct on average.”

We have introduced agent oracles, the public oracle, and the omniscient  oracle. 
We  now introduce the universal oracle, who has access to all of the agents’ 
 information and hence has beliefs  피 [ f ∣     1 , … ,     K  ]  .

All oracular beliefs are based on the true indicator function  f . The difference 
between the different oracles is the information on which they condition. In order 
of increasing information, the public oracle has the least information (namely,    ∞   ), 
followed by an agent’s oracle (who has both    ∞    and that agent’s information       i  ), 
then the universal oracle, and finally the omniscient oracle.

One interpretation of “correct on average” is that there is some statistic  φ  of the 
crowd’s limit beliefs that necessarily agrees with the universal oracle. There are 
many possible candidates for such a statistic (mean, median, etc.). It is easy to see 
that if there is any such statistic, then the public oracle effectively aggregates all the 
agents’ information.

PROPOSITION 4: Suppose there exists a function  φ :    [ 0, 1]    K  →  [ 0, 1]   that 
 necessarily agrees with the universal oracle, i.e., for all  ω ∈ Ω ,
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(11)  φ (피 [  f    1  ∣      1 ,   ∞  ]  (ω) , … , 피 [  f    K  ∣     1 ,   ∞  ]  (ω) )  = 피 [ f ∣     1 , … ,     K  ]  (ω) . 

Then, for all  ω ∈ Ω , the public and universal oracular beliefs coincide:

  피 [ f ∣     1 , … ,      K ]  (ω)  = 피 [ f ∣   ∞  ]  (ω) . 

PROOF: 
From Proposition 1(iv),

  φ (피 [  f    1  ∣     1 ,   ∞  ]  (ω) , … , 피 [  f    K  ∣     1 ,   ∞  ]  (ω) )  

   = φ (피 [  f    1  ∣   ∞  ]  (ω) , … , 피 [  f    K  ∣   ∞  ]  (ω) ) , 

and so the statistic (as a function of limit beliefs) must be measurable with respect 
to the sequence of public announcements    ∞   , and by (11) then so must be the 
belief of the universal oracle. But then the universal oracle must agree with the 
public oracle. ∎

The least demanding standard for beliefs being correct on average is that the 
universal oracular belief lies in the convex hull of the agents’ updated beliefs. 
Unfortunately, even this mild requirement is not guaranteed.

Example 4: We examine a case in which   M   1  ∪  M   2  = Ω =  I   1  ∪  I   2  = Ω , so 
every variable appears in the model of at least one agent and is also observed by at 
least one agent. This presents conditions most favorable to information aggregation. 
Consider the environment in Figure 6.

Both agents observe the information they deem relevant, neither updates, and 
their limiting beliefs are given by their theories. In every state, the universal oracular 
belief (given by   f    ⁎  (ω)  ) lies outside the convex hull of the agents’ limit beliefs.

Our next proposition shows it is a pervasive result that the universal oracular belief 
lies outside the convex hull of the  model-based beliefs. A subset   N ̃   ⊆ N  is sufficient 
if the variables in   N ̃    suffice to determine whether  F  has occurred. Obviously  N  is 
always a sufficient set. There is always at least one minimal sufficient set, and there 
may be multiple minimal sufficient sets (e.g., if the realizations of some variables 
are perfectly correlated).

PROPOSITION 5: Suppose  X  and  N  are finite and let   ∪  k=1  K
    M   k  =  ∪  k=1  K

    I   k  =  N ̃    
for some minimal sufficient set   N ̃   , with the collection    { M   k }  k    pairwise disjoint and  
  M   k  ⊊  N ̃    for each  k . Suppose  ρ  has full support. Then there exist states for which 
the universal oracular belief lies outside the convex hull of the  model-based beliefs.

PROOF:
Because no model is sufficient,  f  is not constant. Suppose first that beliefs 

reveal the agent’s information, i.e.,    ∞   = σ  (     1 , … ,  I   K  )  . Then the agents’ limit 
 model-based beliefs will be their  full-information beliefs. However, because  f  is 



1486 THE AMERICAN ECONOMIC REVIEW MAY 2020

not measurable with respect to any      j  , for every agent there is a state at which her 
beliefs do not equal  0  or  1 .

We now note that there is a state at which every agent’s belief is strictly between  0  
and  1 . Otherwise it could not be the case that for every state, there is at least one 
agent whose belief is either  0  or  1 .19

Because   N ̃    is sufficient, the universal oracular belief will always be 0 or 1, and 
hence must sometimes lie outside the convex hull of the agent’s beliefs.

Finally, if beliefs are not revealing, then the agents have less information, and so 
again there cannot be an agent whose beliefs are always either 0 or 1. ∎

This result does not require that announcements pool information, and so is not 
simply a statement that the universal oracle has more information than does any 
single agent: in the limit they will often have identical information. However, the 
universal oracle has a more encompassing model than any of the individuals, and 
hence makes use of more information, leading to more extreme beliefs.

IV. Information Aggregation

This section presents three variations on the idea that groups of agents will effec-
tively aggregate information if they have a sufficiently common understanding. The 
agents need not have similar information, and indeed each individual agent may 
have very little information. The protocol will aggregate their information, as long 
as their models by which they interpret this information are not too different.

A. Correlated Model Predictions

If the realizations of the variables in the agents’ different models are suffi-
ciently correlated across models, then their limit beliefs will be close. We view 
this  correlation as an indication that the agents’ models are, for practical purposes, 

19 Since  ρ  has full support, if   f    i  ( ω  M   i   )  = 1  for some   ω  M   i    , then  f ( ω  M   i   ,  ω − M   i   )  = 1  for all   ω − M   i    . Suppose for 
some   ω   M    j   ′   ,   f    j  ( ω   M    j   ′  )  = 0 . Then for all   ω  M   i     and all   ω − M   i − M   j    ,  f  ( ω  M   i   ,  ω   M    j   ′  ,  ω − M   i − M   j   )  = 0 . But this is impossible, and so  
 f  (ω)  = 1  for all  ω , a contradiction (because  f  is not constant).

State Prior Theories

 ( ω 1  ,  ω  2   ) ρ   f    ⁎  ( ω)   f    1  ( ω  M   1   )   f    2  ( ω  M   2   ) 

(0, 0) 1/4 7/8 1/2 9/16
(0, 1) 1/4 1/8 1/2 1/2
(1, 0) 1/4 2/8 9/16 9/16
(1, 1) 1/4 7/8 9/16 1/2

  X =  {0, 1} ,  M   1  =  {1} ,  M   2  =  {2} ,

  I   1  =  {1} ,  I   2  =  {2}  .

Figure 6

Note: The universal oracular beliefs (given by   f    ⁎  (ω)  ) are not in the convex hull of agent beliefs.
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nearly the same. The extreme case involves agents whose models are disjoint, but 
whose realizations are perfectly correlated, so that the agents effectively have the 
same model described in different languages.

PROPOSITION 6: Fix agent  i ’s theory   f    i  . For any  ε > 0 , there is an  η < 1  such 
that if the coefficient of correlation between agent  i ’s theory   f    i   and agent  j ’s theory   f    j   
is at least  1 − η , then agents  i ’s and  j ’s limiting beliefs are within  ε  of one another 
with probability  1 − ε  .

This proposition imposes the correlation requirement on   f    i   and   f    j  , rather than 
imposing the stronger requirement on the correlation between   ω  M   i     and   ω  M   j    , because 
correlation is relevant only for those variables that play a role in affecting beliefs 
about  F .

The proof first shows that if two agents’ theories are perfectly correlated ex ante, 
then their updated beliefs must be identical. In this case, the agents effectively 
have identical models with different descriptions. We then show that if two agents’ 
 theories are close ex ante, then their limit beliefs must, with high probability, be 
close. The delicateness in establishing this seemingly intuitive result arises in show-
ing that it holds irrespective of the nature of the agents’ information. Appendix A 
contains the proof.

B. Models with a Common Component

The next result shows that if the agents’ models share a large enough common 
component, then their beliefs cannot be too different from one another. We fix a 
group of  K  agents and examine a sequence    ( M  n  1 , … ,  M  n  K )   n=1  

∞   , with each element   
( M  n  1 , … ,  M  n  K  )   specifying a model for each agent, and with these models growing 
(at least weakly) larger along the sequence.

PROPOSITION 7: Consider a sequence of    ( M  n  1 , … ,  M  n  K )   n=1  
∞   , with   M  n  k  ⊆  M  n+1  k   .  

Suppose that for all  i  and  j ,   ∪  n=0  ∞    M  n  i   =  ∪  n=0  ∞    M  n  j    . Then for every  δ > 0 , there 
exists   N  δ    such that for any accompanying sequence of information    ( I  n  1 , … ,  I  n  K )   n=1  

∞   , 
for all  n >  N  δ   , with probability at least  1 − δ , the limit beliefs of all agents are 
within  δ  of each other.

The requirement that   ∪ n    M   i  =  ∪ n    M   j   ensures that any variable that eventually 
appears in  i ’s model also eventually appears in  j  ’s model (and that if the models 
are constant, then they agree). Notice that we do not require that  F  is completely 
 determined by the variables in   ∪ n    M  n  i   . It may be that no agent  i  ever acquires a 
 complete understanding of the event  F .

The conditions of the proposition are consistent with the agents having an 
 arbitrarily small, even zero, proportion of their models in common, for every term 
in the sequence.20

20 For example, agent  1 ’s  n th  model may be   {1, 2, 3, … , n}   ∪  {1, 3, 5, 7, …}   and agent  2 ’s  n th  model may be   
{1, 2, 3, … , n}  ∪  {2, 4, 6, 8, …}   . 
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The proposition indicates that as the agents’ models come to share an increasing 
common component, the agents come to share common beliefs. If the agents have 
access to little information, these beliefs will be rather uninformative, while if the 
agents have access to ample information, these beliefs will be close to those of an 
omniscient oracle.

Appendix B contains the proof. The idea behind the proof is that even though  f  
may depend on an infinite number of variables (in the sense that there is no finite 
set of variables  L  such that  f  is measurable with respect to   X   L  ), there are a lim-
ited number of variables that can be “important” in determining whether  F  occurs. 
Eventually, the important variables are either included in everyone’s model, ensur-
ing that each agent makes use of the information that is important to the public ora-
cle, or such variables never appear in the agents’ models, in which case the public 
oracle also lacks access to such information. In either case, the agents’ beliefs must 
grow close to those of the public oracle.

C. Dispersed Information

We now investigate the sense in which the limiting beliefs of agents with diverse 
models and dispersed information approximate the belief of the omniscient oracle 
as the number of agents grows.

Our first step toward an  information-aggregation result is to show that if an agent’s 
model is sufficiently sophisticated, than that agent’s  full-information belief cannot 
be too far from the omniscient belief. For an arbitrary subset  Z ⊆ N , let      Z   denote 
the  σ -algebra induced by  Z .21 Appendix C contains the proof of the following.

LEMMA 2: For all  ζ > 0 , there exists a finite set   Z   ζ   ⊆ 핅  such for all  
 σ -algebras   ,

  ρ {ω :   |  피 [ f |      Z ζ   , ]  (ω)  − f  (ω)  |   < ζ}  ≥ 1 − ζ . 

Lemma 2 implies that if an agent’s model includes the variables   Z   ζ   , not only is 
the agent’s  full-information belief close to the omniscient belief, but there is no 
additional information that can change the agent’s belief significantly. It is not sur-
prising that if we put enough of the right variables into an agent’s model, then their 
 full-information belief will be close to the omniscient oracular belief. The more 
delicate part of Lemma 2 lies in showing that nothing else the agent could possibly 
include in her model can drive the agent outside the  ζ -margin of error.

Remark 4 (Proposition 7 Redux): Lemma 2 allows a variation on Proposition 7. 
Any sequence whose agents’ models eventually include   Z   ζ    must eventually have 
beliefs that are close to those of an public oracle (and hence each other). Lemma 2 
plays the role of Lemma A1 in the proof of Proposition 7, mutatis mutandis.

21 For example,       M   i   =     i  .
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We need to replace the  full-information beliefs of Lemma 2 with limiting beliefs. 
It is clear that doing so will require some conditions, even if all agents were agent 
oracles: Geanakoplos and Polemarchakis (1982) and Figure 5 present  examples in 
which agents’ announcements convey no information, despite all agents being agent 
oracles. The culprit behind the agents’ discombobulation in Figure 5 is that their ini-
tial announcements pool information, preventing even oracular agents from making 
use of this information. If we are to even get off the ground, we must ensure some 
information transmission. Section  IVD explains why we do not rule out pooling 
by making the stronger assumption that  ρ  is generic. It is also worth noting that 
genericity would not simplify the argument.

DEFINITION 1: The indicator  f  is discernible if, for any sets   I   1 ,  I   2  ⊆ N , we have

(12)  피 [ f  |     1 ,     2 ]  = 피 [ f  | σ (피 [ f  |     1 ] , 피 [ f   |     2 ] ) ] , 

where  σ (피 [ f   |     1 ] , 피 [ f  |     2 ] )   is the  σ -algebra induced by the announcements of the 

beliefs  피 [ f |     1 ]   and  피 [ f  |     2 ]  . 

Discernibility requires that the announcements  피 [ f |     1 ]   and  피 [ f |     2 ]   allow an 
agent oracle to infer the information contained in   I   1  ∪  I   2   that is relevant for deter-
mining  f  (but may not allow the agent oracle to identify   ω  I   1 ∪ I   2    , and hence allows the 
pooling of information that is irrelevant for determining  F  ). For any  f , discernibil-
ity will approximately hold if   I  1    and   I  2    are sufficiently large. Discernibility fails in 
Figure 5.

We note that discernibility extends to finite numbers of sets. The following result 
is immediate.

LEMMA 3: Suppose  f  is discernible. Then

  피 [ f  |     1 ,     2 ,     3 ]  = 피 [ f  | σ (피 [ f  |   1  ,   2  ] , 피 [ f  |     3 ] ) ]  

 = 피 [ f  | σ (피 [ f  |     1 ] , 피 [ f  |     2 ] , 피 [ f  |     3 ] ) ] . 

The first equality is the statement of discernibility, and the second again applies 
discernibility.22

We can hope to replace the  full-information beliefs of Lemma 2 with limiting 
beliefs only if the sequence of announced beliefs conveys sufficient information. 
Our route to ensuring this is to examine a large group of agents. To make the notion 
“large” precise, we construct a sequence of groups of agents whose models and 
information are randomly determined, designed to capture our interest in agents 
with diverse models and dispersed information.

22 The discernibility condition (12) implies that the expectation  피 [ f  |     1 ,     2 ]   of  f  conditioning on the  σ -algebra  
 σ (    1 ,     2 )   is measurable with respect to the coarser  σ -algebra  σ (피 [ f  |     1 ] , 피 [ f  |     2 ] )  , and hence the random vari-

able  피 [ f  |     1 ,     2 ]   is measurable with respect to  σ (피 [ f  |     1 ] , 피 [ f  |     2 ] )  , or  σ (피 [ f   |     1 ,     2 ] )  = σ (피 [ f   |     1 ] , 피 [ f   |     2 ] )  .



1490 THE AMERICAN ECONOMIC REVIEW MAY 2020

DEFINITION 2: A sequence of groups of agents (with the number of agents going 
to infinity) is canonical if there is a probability measure  λ  and a family of measures   
{ μ M   : M ⊆ 핅}   satisfying

 (i )  λ  is a full support measure on the space of all finite models,

 (ii ) there is a  Γ ∈ ℕ  such that for each finite model  M ⊆ ℕ ,   μ M    is a full support 
probability distribution over the subsets of  M  with at most  Γ  elements, and

 (iii ) in each group, each agent’s model and information are determined by 
 independent draws from  λ  and   μ M    .

The agents in a canonical sequence will exhibit a wide variety of models, 
 reflecting the  full-support measure  λ . Importantly, sophisticated models arise with 
positive probability, and so in large groups, with very high probability there will be 
very sophisticated agents. At the same time, the information of each individual may 
be paltry ( Γ  may be small), and hence individuals may lack the requisite informa-
tion to form interim beliefs that are close to full information beliefs.

In a sufficiently large group drawn from a canonical sequence, any agent whose 
model contains the variables   Z   ζ    (from Lemma 2) will, with high probability, effec-
tively learn  F  from the sequence of announced beliefs. Appendix D proves the fol-
lowing result.

LEMMA 4: Suppose  f  is discernible and fix a canonical sequence of groups of 
agents. For all  ε > 0 , there exists an   N  ε    such that for all  n >  N  ε   , every agent with 
a finite model  M  containing   Z   ε   2 /8    has, with probability at least  1 − ε , a limiting 
belief within  ε  of the omniscient oracle.

The argument first identifies a set of agents   K      whose interim beliefs, given dis-
cernibility, allow any agent whose model is precisely   Z   ε   2 /8    to form  full-information 
beliefs. In a sufficiently large set of agents drawn from a canonical sequence, such 
a set   K      will exist with high probability. We then argue that the limiting beliefs of 
an agent whose model contains   Z   ε   2 /8    must be close to that agent’s full information 
beliefs, and use Lemma 2 to argue that the latter must be close to the beliefs of 
the omniscient oracle. The triangle inequality (with the help of our choice of the 
parameter   ε   2  / 8 ) then ensures that the agents’ limiting beliefs are close to those of 
the omniscient oracle.

The key to bringing the average of the agents’ limiting beliefs close to those of 
the limiting oracle is to have the measure  λ  insert enough sufficiently sophisticated 
agents into the groups in the canonical sequence. Let  Λ (ζ)   be the probability that a 
model drawn according to  λ  does not contain   Z    ζ   .

PROPOSITION 8: Suppose  f  is discernible and fix a canonical sequence of groups  
of agents. For all  ε > 0 , there exists   N  ε  ⁎   such that for all  n >  N  ε  ⁎  , the probability 
the average of beliefs is within  3ε + Λ ( ε   2  / 8)   of the omniscient belief is at least 
 1 − ε .
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PROOF: 
We can choose   N  ε  ⁎  ≥  N  ε    so that for all  n >  N  ε  ⁎  , with probability at least  1 − ε  

the proportion of agents whose models include   Z   ε   2 /8    will be at least  1 − Λ ( ε   2  / 8)  − ε  
and the   K     -agents are present. Conditional on this event, the difference between the 
average belief and the belief of an omniscient oracle is then at most

   (1 − Λ ( ε   2  / 8)  − ε)  ( (1 − ε) ε + ε)  + Λ ( ε   2  / 8)  + ε ≤ 3ε + Λ ( ε   2  / 8) .  ∎

The discernibility requirement in Lemma 4 gets the  information-revelation 
 process off the ground in a particularly brutal way, ensuring that for any informa-
tion set  I , the first announcement by an agent  i  with   M   i  =  I   i  = I  reveals all the 
relevant information contained in  I . It would suffice that limiting beliefs reveal such 
 information, and we could formulate discernibility in terms of limiting beliefs, at 
the costs of greater complexity and pushing the assumption further away from the 
fundamentals of the problem. Alternatively, discernibility is more demanding when 
applied to small information sets. We could work with a version of  γ - discernibility 
that applies the discernibility requirement only to sets with at least  γ  elements, but 
then would need to place stronger requirements on the presence of agents with larger 
information sets.

Proposition 8 establishes that if enough agents have large enough (i.e., contain-
ing   Z   ε   2 /8   ) models, then it is very likely that the average belief will be “close” to 
that of an omniscient oracle. How close? This depends on the characteristics of 
the canonical sequence. If the measure  λ  puts sufficient probability on large mod-
els, then  Λ ( ε   2  / 8)   will be small. This is the case of a sophisticated crowd, whose 
 members entertain sufficiently nuanced models of the forces determining the event  F  
that the revelation of information can bring their beliefs close to those of the omni-
scient oracle. If  λ  concentrates its probability of small models,  Λ ( ε   2  / 8)   will be 
large, giving us a dogmatic crowd whose beliefs are impervious to the onslaught of 
overwhelming information.

Proposition 8 may appear to be nothing more than the statement that if enough 
people get it right, then the average will be about right. The more delicate part of 
the argument involves showing the beliefs of those who would otherwise “get it 
right” are not disrupted by the presence of some agents with bizarre models. This 
requires a uniformity condition across  σ -algebras (in Lemma 2). The average belief 
is then driven toward the omniscient belief, not by having those who get it right 
convincing or converting those who are confused, but by having the former swamp 
the latter. Notice, however, that for this to happen there must be sufficiently many 
agents with sufficiently large and common models. There is no similar requirement 
on the commonality of information. Interactions can indeed effectively aggregate 
dispersed information, if the agents have a sufficiently common understanding of 
the meaning of that information.

V. Discussion and Related Literature

People cannot help but reason via models, different people use different 
 models, and yet people learn from one another. We provide a tractable description 
of  model-based reasoning that describes how people can learn from each other 
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in a disciplined manner. Our analysis confirms that we should not expect peo-
ple to agree after exchanging opinions, nor should we expect the average opin-
ion of a group to be particularly accurate. But our analysis elucidates the sense 
in which interactions can effectively aggregate information and generate approx-
imate consensus, no matter how dispersed is information and no matter what 
idiosyncrasies various models contain, as long as the models share a sufficient  
common core.

A key element of our description is the notion of a  model-based reasoner, who 
forms beliefs about the occurrence of an event using only the variables in her model. 
Such a reasoner uses information not in her model only to infer those variables in 
her model that she does not know. In this sense, a  model-based reasoner uses a par-
ticularly simple Bayesian network. A Bayesian network is a directed acyclic graph, 
with the arrows capturing conditional dependencies. A  model-based reasoner effec-
tively reasons using a Bayesian network with two maximal cliques, one capturing 
the dependence of the event F on the variables in agent  i ’s model   M   i  , and another 
capturing the possible dependence of variables in   M   i   (but not  F ) on variables not 
in   M   i  . See Pearl (2009) for an exposition of Bayesian networks, Spiegler (2016) for 
an application to decision making, and Spiegler (2019) for a review of recent work. 
That work focuses the behavioral implications of misinterpreted correlations and 
causations, while our focus is on inference and information aggregation.

Our work shares with Jehiel (2005) the idea that agents will simplify the descrip-
tion of the world by aggregating states. In particular, we can view an element of 
agent  i ’s model partition   { ω  M   i   }  ×  X   − M   i    as an analogy class. Jehiel (2005) introduced 
the idea of an analogy class and used it to define an equilibrium notion for games of 
perfect information, and Jehiel and Koessler (2008) discusses an extension to games 
of incomplete information. Eyster and Piccione (2013) examines financial traders 
who partition the state space into analogy classes, and then form expectations on 
these analogy classes as in our (1)–(2).

The idea of the “wisdom of the crowd” has attracted considerable attention (e.g., 
Surowiecki 2004, Wolfers and Zitzewitz 2004, Page 2017). One can view our model 
of information exchange as a stylized model of the process by which the crowd 
grows wise. Arieli, Babichenko, and  Smorodinsky (2018) takes a different per-
spective in a similar setting, examining a model in which the members of a crowd 
of agents receive signals, update their beliefs, and then (once) report their beliefs. 
The question is when an observer can infer the identity of the underlying state, 
despite knowing nothing about the agents’ signal structures. The (rough) answer 
is that even if the crowd is arbitrarily large, no inferences can be drawn unless a 
signal drives a posterior belief to either 0 or 1. The flavor of this result is reminis-
cent of our observations that (Proposition 1) beliefs of 0 or 1 must match those 
of an omniscient oracle and that (from online Appendix Section A) when beliefs 
are interior, Bayes’ rule places very little discipline on models in the absence of a  
common prior.

Analyses of information exchange inevitably takes place in the shadow of 
Aumann’s  agreeing-to-disagree theorem (Aumann 1976) and Milgrom and Stokey’s 
 no-trade theorem (Milgrom and Stokey 1982). An extensive literature has arisen 
motivated by a desire to break these results by relaxing various assumptions under-
lying them. Perhaps the most obvious approach is to allow heterogeneous priors 
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(e.g., Morris 1994).23 We believe that agents will often hold different prior beliefs. 
For much the same reasons, we believe that agents will hold different models. We 
explain in online Appendix Section A that  model-based reasoning imposes more 
discipline than simply allowing priors to differ.24

Appendix: Proofs

A. Proof of Proposition 6

We first prove a preliminary result that looks obvious, but for the fact that we 
require uniformity over  σ -algebras   .

LEMMA A1: Suppose    (  f   n   )  n    is a sequence of    -measurable functions converg-
ing almost surely to the -measurable function   f    †  . For all  δ > 0 , there exists a 
set   Ω δ    with  ρ ( Ω δ  )  > 1 − δ  and an integer   N  δ    such that for all  n >  N  δ    and for all  
 σ -algebras   ⊆  ,

    |  피 [  f    †  | ]  (ω)  − 피 [  f  n   | ]  (ω)  |   < δ, ∀ω ∈  Ω δ   .  

PROOF: 
Fix a value  δ > 0 . Choose  λ  and  ε  such that

  λ > 1 / δ ,

  ε (1 + λ)  < δ . 

By Egorov’s theorem, there exists a value   N  δ    and a set   Ω δ    of measure at least  1 − ε  
(which is at least  1 − δ ) with the property that for all  n >  N  δ   , we have

   |   f  n   (ω)  −  f    †  (ω) |  < ε, ∀ω ∈  Ω δ   . 

We now argue that with probability at least  1 − δ , we have

    |  피 [  f  n   ∣ ]  − 피 [  f    †  ∣ ]  |   < δ.  

Define

  h (ω)  ≔  {  
ε,

  
if ω ∈  Ω δ   ;   

1,
  

if ω ∉  Ω δ   .
   

23 Disagreement can also arise, reflecting considerations similar to those that arise with different prior 
beliefs, when agents have a common prior but nonpartitional information structures (e.g., Geanakoplos 1989 and 
Brandenburger, Dekel, and Geanakoplos 1992), while the possibility of noise traders (e.g., Kyle 1985 and Ostrovsky 
2012) figures prominently among the many other approaches to disagreement and trade.

24 Sethi and Yildiz (2016) examines a setting in which agents with different and unknown prior beliefs learn, 
but often incompletely, about others’ prior beliefs. Acemoglu, Chernozhukov, and Yildiz (2016) examine a setting 
in which uncertainty about the  signal-generating process causes posterior beliefs to be sensitive to prior beliefs even 
after receiving an infinite sequence of signals, and so allows limiting beliefs of agents with different prior beliefs 
to differ.
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Then,

   |  f  n   (ω)  −  f    †  (ω) |  ≤ h (ω) , 

and

  피 [h ∣ ]  = εPr ( Ω δ   ∣ )  + Pr (Ω \  Ω δ   ∣ )  

  ≤ ε + Pr (Ω \  Ω δ   ∣ ) . 

Let  A ≔  {ω : Pr (Ω \  Ω δ   ∣ )  (ω)  > λε}  . Then  A ∈   and so

  λεPr A <  ∫ 
A
  
 

   피 [ χ Ω\ Ω δ     ∣ ]  dρ 

  =  ∫ 
A
  
 

    χ Ω\ Ω δ     dρ 

  ≤ ε, 

and so

  Pr {ω : Pr ( χ Ω\ Ω δ     ∣ )  (ω)  > λε}  ≤ 1 / λ, 

and hence we have

  Pr {ω : ε + Pr  (Ω \  Ω δ   ∣ )  (ω)  <  (1 + λ) ε}  > 1 − 1 / λ. 

Invoking our conditions on  λ  and  ε  yields

  Pr {ω : 피 [h ∣ ]  (ω)  < δ}  > 1 − δ, 

and since

    | 피 [  f  n   ∣ ]  − 피 [  f    †  ∣ ]  |  ≤ 피 [ |  f  n   −  f    † |  | ] ,  

we have the desired inequality. ∎

PROOF OF PROPOSITION 6:
Suppose first that the coefficient of correlation between   f    i   and   f    j   equals 1. 

Then   f    j  − 피f = α(  f    i  − 피f )   ρ -almost surely for some constant  α > 0  (recall 
(3)). Suppose   f    i   is not constant (if it were, the result is  trivial), so that for 
some  x > 0 ,  피f + x  is in the support of   f    i  .

We now argue that  α = 1 . En route to a contradiction, suppose  α > 1  
(a   similar argument rules out  α < 1 ). Fix  ε > 0  so that  α (x − ε)  > x  and set  
 B (x)  ≔  {ω : x − ε ≤  f    i  (ω)  − 피 f ≤ x}  . We may assume  ρ  (B(x))  > 0  (if not, 
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marginally increasing the value of  x  yields a positive measure set). Then, for  y = αx  
and  B′ (y)  ≔  {ω : y − αϵ ≤  f    j  (ω)  − 피f ≤ y}  , we have  ρ  (B (x) ΔB′ (y) )  = 0 .25 
From (2), since  B (x)  ∈     i   and  B′ (y)  ∈     j  , we then have

  xρ (B (x) )  ≥  ∫ B (x)   
 

    (  f    i  (ω)  − 피f )  dρ 

  =  ∫ B (x)   
 

    ( f  (ω)  − 피f )  dρ 

  =  ∫ B′ (y)   
 

    ( f  (ω)  − 피f )  dρ 

  =  ∫ B′ (y)   
 

    (  f    j  (ω)  − 피f )  dρ ≥  (y − αε) ρ (B′ ( y) ) , 

and so  x ≥ α (x − ε)  , a contradiction.
From Proposition 1(iv), we have that agent  i ’s limiting belief  피 [  f    i  |     i ,   ∞  ]    

equals  피 [  f    i  |   ∞  ]   which equals  피 [  f    j  |   ∞  ]  , and so agent  i  and  j ’s limiting beliefs 
agree on any sequence of announced posteriors.

Turning to the approximation, it is enough to prove that we can make  피  |  f    i  −  f    j |   
arbitrarily small by choosing  η  sufficiently small, where  1 − η  is the lower bound on 
the correlation. We prove the latter by contradiction. If not, then there exists  ε > 0  
such that for all  n > 0  there exists   f  n   j    such that the correlation between   f    i   and   f  n   j    is 
at least  1 − 1 / n  and yet  피 |  f    i  −  f  n   j  |  > ε .

Define  X ≔  f    i  − 피 f  and   Y  n   ≔  f  n   j   − 피 f . Then,

  피  [ Y  n   피 ( X   2 )  − X 피 (X  Y  n  ) ]    2  = 피 ( X   2 )  [피  ( X   2 ) 피 ( Y  n  2 )  − 피   (X  Y  n  )    2 ]  

   ≤ 피 ( X   2 )  [피 ( X   2 ) 피 ( Y  n  2 )  −   (1 − 1 / n)    2  피 ( X   2 ) 피 ( Y  n  2 ) ]  

  =   (피  X   2 )    2  피 ( Y  n  2 )  [1 − 1 + 2 / n − 1 /  n   2 ] , 

and so   Y  n   피  ( X   2 )  − X 피  (X  Y  n  )   converges in mean square to  0  as  n → ∞  (since  피  ( Y  n  2 )   
is bounded above by  1 / 4 ). If    ( Y  n  )  n    (or any subsequence) has a limit in mean square 
(and so a limit in mean), then that limit must equal  X  (for the reasons above). We 
will show that every subsequence has a convergent sub-subsequence, which implies 
that the original sequence converges to  X .

We use  n  to index an arbitrary subsequence and let   α n   ≔ 피X  Y  n   / 피  ( X   2 )  , so that  
  Y  n   −  α n   X  converges to  0  in mean square. We claim that   ( α n  )   has a conver gent 
subsequence. For, if not, then  | α n  | → ∞ , which implies  피 ( Y  n  2 )  → ∞ , which is 
impossible.

Suppose   ( α  n  k    )   converges to some  α . Then,

  0 ≤   [피  ( Y   n  k     − αX)    2 ]    
  1 _ 2  
  ≤   [피  ( Y   n  k     −  α  n  k     X)    2 ]    

  1 _ 2  
  +   [피  (α −  α  n  k    )    

2   X   2 ]    
  1 _ 2  
  → 0 , 

25 The notation  AΔB ≔  (A \ B)  ∪  (B \ A)   is the symmetric difference of the two sets  A  and  B .



1496 THE AMERICAN ECONOMIC REVIEW MAY 2020

and so   Y  n    converges in mean square to  αX , and so  α = 1 .
It remains to argue that for  n  sufficiently large, with probability at least  1 − ε ,

    |  피 [ Y  n   |      j ,   ∞  ]  − 피 [X |      i ,   ∞  ]  |   < ε.  

By Proposition 1(v), this inequality can be rewritten as

    |  피 [ Y  n   |   ∞  ]  − 피 [X |   ∞  ]  |   < ε.  

Since every subsequence of    ( Y  n  )  n    has a  sub-subsequence almost surely converging 
to  X , the desired result is implied by Lemma A1. ∎

B. Proof of Proposition 7

PROOF: 
Fix a value  δ > 0 . Define

    ∞   ≔ σ  ( M  1  i  ,  M  2  i  , …)  

(which is, by assumption, independent of  i ) and set    f ˆ   ≔ 피  [ f ∣   ∞  ]  .
Agent  i ’s theory under her  n th  model is given by

   f  n   i  = 피  [ f ∣    n  i  ]  = 피  [   f ˆ   ∣    n  i  ]  

(where the second equality follows from     n  i    being coarser than    ∞    and the law of 
iterated expectations). Since    (   n  i  )  n    is a filtration, with limit  σ -algebra    ∞   ,

   f   n  i   →   f ˆ   ρ-almost-surely. 

Our goal is to show that with probability at least  1 − δ , we have

    |  피 [  f  n   i  ∣  ℐ  n  i  ,   ∞   (n) ]  − 피 [ f  ∣   ∞   (n) ]  |   < δ,  

where    ∞   (n)   is the  σ -algebra induced by the sequence of publicly announced beliefs 
for the  n th  term in the sequence.

By Lemma A1, with probability at least  1 − δ , we have

    |  피 [  f  n   i  ∣   ∞   (n) ]  − 피 [   f ˆ    ∣   ∞   (n) ]  |   < δ.  

By Proposition 1(v),

  피 [  f  n   i   ∣    n   i  ,   ∞   (n) ]  = 피 [  f  n   i   ∣   ∞   (n) ] , 

and so with probability at least  1 − δ , we have

    |  피 [  f  n   i  ∣    n   i  ,   ∞   (n) ]  − 피 [   f ˆ   ∣   ∞   (n) ]  |   < δ.  
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Finally, since    ∞   (n)   is coarser than    ∞    (since   ∪  j      n   j   ⊆  ∪  j      n  j   ⊆   ∞   ) 
and    f ˆ   ≔ 피 [ f ∣   ∞  ]  , we have that with probability at least  1 − δ ,

    |피 [  f  n   i  ∣    n   i  ,   ∞   (n) ]  − 피 [ f  ∣   ∞   (n) ] |  < δ .   ∎

C. Proof of Lemma 2

Recall that      t   is the  σ -algebra generated by the  t  coordinate of  Ω =   {0, 1}    N  , and 
set       t  ≔ σ (    1 , … ,     t )  . Since  f  is measurable with respect to  σ  (    1 ,     2 , …)  , we 
have

  피 [ f ∣      t ]  → f almost surely  [ρ] . 

Egorov’s theorem implies that for all  ζ > 0 , there exists   T  ζ    and an event   Ω ζ   ,  
with  ρ ( Ω ζ  )  ≥ 1 − ζ / 4 , for which

(A1)    |  피 [ f  ∣      t  ]  (ω)  − f  (ω)  |   <  ζ   2 /4, ∀ t ≥  T  ζ  , ∀ ω ∈  Ω ζ   .  

Set   Z   ζ   ≔  {1, … ,  T  ζ  }  , so that       Z ζ    =       T ζ     .

Claim A1: On a full probability subset of   Ω ζ   ∩ F ,

(A2)  Pr {피 [ f  ∣      Z ζ   , ]  ≤ 1 − ζ ∣      Z ζ   }  < ζ / 4 

and on a full probability subset of   Ω ζ   \ F ,

(A3)  Pr {피 [ f  ∣      Z ζ   , ]  ≥ ζ ∣      Z ζ   }  < ζ / 4. 

PROOF: 
We prove (A2); the proof of (A3) follows similar lines. Define  

  g   †  (ω)  ≔ 피 [ f  ∣      Z ζ   , ]  (ω)  , and  g (ω)  ≔ Pr { g   †  ≤ 1 − ζ ∣      Z ζ   }  (ω)  . Note that  g  
is only measurable with respect to       Z ζ     (so in particular, the inequality in (A2) is 
measurable with respect to       Z ζ    ), while   g   †   is measurable with respect to the finer  
 σ  (     Z ζ   , )  .

Recalling that  f  is the indicator function of the event  F , for  ω ∈  Ω ζ   ∩ F , (A1) is

  1 −  ζ   2  / 4 < 피 [ f  ∣      Z ζ   ]  (ω) , 

and so (A2) is implied by for  ρ -almost all  ω ∈  Ω ζ   ∩ F ,

  피 [ f  ∣      Z ζ   ]  (ω)   ≤ 1 − ζ g(ω). 

Since the left and right sides of the inequality above are measurable with respect 
to       Z ζ    , if the inequality does not hold, there is a positive  ρ -probability event  B ∈      Z ζ     
such that,

(A4)  피 [ f  ∣      Z ζ   ]  (ω)  > 1 − ζg (ω) , ∀ ω ∈ B. 
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Since  B ∈      Z ζ    , where   χ A    is the indicator function of the event  A , and the first and 
last (respectively, third) equalities hold because the integrating events are measur-
able with respect to       Z ζ     (respectively,  σ  (     Z ζ   , )  ),

   ∫ 
B
  
 

   피 [ f  ∣      Z ζ   ]  dρ =  ∫ 
B
  
 

    f dρ 

  =  ∫ B ∩ { g   † ≤1−ζ}   
 

    f dρ +  ∫ B ∩ { g   † >1−ζ}   
 

    f dρ 

  =  ∫ B ∩ { g   † ≤1− ζ}   
 

     g   †  dρ +  ∫ B ∩ { g   † >1−ζ}   
 

     g   †  dρ 

  ≤  (1 − ζ )  ∫ 
B
  
 

     χ  { g   † ≤1−ζ}    dρ +  ∫ 
B
  
 

    1 −  χ  { g   † ≤1−ζ}    dρ 

  =  ∫ 
B
  
 

    1 − ζ  χ  { g   † ≤1−ζ}    dρ 

  =  ∫ 
B
  
 

    1 − ζ g dρ, 

contradicting (A4). ∎

Defining

  B′ ≔  {ω :  |  피 [ f  |      Z ζ   , ]  (ω)  − f  (ω)  |   ≥ ζ}  

and

  F′ ≔  {ω : Pr {피 [ f  |      Z ζ   , ]  ≤ 1 − ζ ∣      Z ζ   }  (ω)  < ζ / 4}  

we have (since, up to a zero probability event,   Ω ζ   ∩ F ⊆ F′  and  F′ ∈      Z ζ     )

  Pr (B′ ∩ F)  = Pr { {피 [ f  |      Z ζ   , ]  (ω)  ≤ 1 − ζ}  ∩ F}  

  ≤ Pr { {피 [ f  |      Z ζ   , ]  (ω)  ≤ 1 − ζ}  ∩ F′}  

  = 피 [피 [ χ  {피 [ f |     Z ζ   , ]  (ω) ≤1−ζ} ∩ F ′   ∣      Z ζ   ] ]  

  = 피 [피 [ χ  {피 [ f |     Z ζ   ,]  (ω) ≤1−ζ}    ∣      Z  ζ   ]   χ F′  ]  

  ≤  ∫  Ω ζ    
 

     Pr {피 [ f  |      Z ζ   , ]  (ω)  ≤ 1 − ζ ∣      Z ζ   }   χ  F′   dρ + ρ  (Ω \  Ω ζ  )  

  ≤ ζ / 4 + ζ / 4. 

Applying a similar argument to  B′ \ F , we obtain

  Pr (B′ \ F)  ≤ ζ / 2, 

so that  ρ (B′ )  ≤ ζ . ∎
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D. Proof of Lemma 4

PROOF: 
Denote by    a collection of subsets of  ℕ  satisfying   Z   ζ   = ∪   such that no set 

in  has more than  Γ  elements. Choose   N  ε    sufficiently large that for  N >  N  ε    with 
probability at least   √ 

_
 1 − ε   , for every set   I   i  ∈  , there is an agent whose model and 

information set consist precisely of that set. Denote this set of agents by   K     , and 
suppose this set is present.

Consider now an agent  j  whose model contains   Z   ζ   . We now argue that

(A5)  ρ {ω :  |   피 [  f    j  ∣   ∞  ]  (ω)  − f  (ω)  |   < ε}  ≥  √ 
_

 1 − ε  . 

Observe first that since for  i ∈  K     , agent  i ’s interim belief is  피 [ f  |      I   i  ]  , we have

  피 [ f  ∣   ∞  ]  = 피 [ f  ∣ 피 [ f  ∣   ∞  ] ,   (피 [ f  ∣      I   i  ] )  
i∈ K      ]  

  = 피 [ f  ∣ 피 [ f  ∣   ∞  ] , 피 [ f  ∣      Z ζ   ] ]  

  = 피 [ f  ∣   ∞  ,      Z ζ   ] , 

where the second equality follows from the discernability of  f .
From Lemma 2, with probability at least  1 − ζ ,

(A6)    |  피 [ f  ∣   ∞  ,      Z ζ   ]  − f  |   < ζ <   ε _ 
2
   .  

We now bound the first term by the triangle inequality,

(A7)    |  피 [  f    j  ∣   ∞  ]  − 피 [ f  ∣   ∞  ]  |   +  |  피 [ f  ∣   ∞  ,      Z ζ   ]  − f  |   ≥  |  피 [  f    j  ∣   ∞  ]  − f  |  .  

Claim A2: With probability at least  1 − 4ζ / ε ,

    |  피 [  f    j  ∣   ∞  ]  − 피 [ f  ∣   ∞  ]  |   <   ε _ 
2
   .  

PROOF: 
From Lemma 2, there is a set   Ω ζ   ,  ρ ( Ω ζ  )  > 1 − ζ  such that on   Ω ζ    ,

   |  f    j  − f |  < ζ . 

Let

  B ≔  { | 피 [  f    j  ∣   ∞  ]  − 피 [ f  ∣   ∞  ]  |  ≥ ε / 2}  .
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Then,

   ∫ 
B
  
 

     |피 [  f    j  ∣   ∞  ]  − 피  [ f  ∣   ∞  ] |  ≥   
ερ  (B) 
 _ 

2
    .

But since  B ∈   ∞   ,

    ∫ 
B
  
 

     |피 [  f    j  ∣   ∞  ]  − 피 [ f  ∣   ∞  ] |  =  ∫ 
B
  
 

     |  f    j  − f |   

  < ζρ (B ∩  Ω ζ   )  + ρ (B \  Ω ζ   )  

  ≤ 2ζ , 

and so

  ρ  (B)  <   4ζ _ ε   .  

From (A6) and the claim, we have that the right side of (A7) is bounded above 
by  ε  with probability at least

  1 − ζ − 4 ζ / ε >  √ 
_

 1 − ε   , 

where the inequality follows from  ζ =  ε   2  / 8 .
Since the realization of uncertainty under  ρ  is independent of the determination 

of agents’ information and models, the probability that the set   K      of agents is present 
and (A5) holds is   √ 

_
 1 − ε    √ 
_

 1 − ε   = 1 − ε . ∎

REFERENCES

Acemoglu, Daron, Victor Chernozhukov, and Muhamet Yildiz. 2016. “Fragility of Asymptotic Agree-
ment under Bayesian Learning.” Theoretical Economics 11 (1): 187–225.

Al-Najjar, Nabil  I. 2009. “Decision Makers as Statisticians: Diversity, Ambiguity, and Learning.” 
Econometrica 77 (5): 1371–1401.

Arieli, Itai, Yakov Babichenko, and Rann Smorodinsky. 2018. “When Is the Crowd Wise?”  Unpublished.
Arrow, Kenneth J., and Leonid Hurwicz. 1972. “An Optimality Criterion for Decision-Making under 

Ignorance.” In Uncertainty and Expectations in Economics: Essays in Honour of G. L. S. Shackle, 
edited by C. F. Carter and J. L. Ford, 1–11. Oxford: Basil Blackwell.

Aumann, Robert J. 1976. “Agreeing to Disagree.” Annals of Statistics 4 (6): 1236–39.
Brandenburger, Adam, Eddie Dekel, and John Geanakoplos. 1992. “Correlated Equilibrium with Gen-

eral Information Structures.” Games and Economic Behavior 4 (2): 182–201. 
Eyster, Erik, and Michele Piccione. 2013. “An Approach to Asset Pricing under Incomplete and Diverse 

Perceptions.” Econometrica 81 (4): 1483–1506. 
Geanakoplos, John. 1989. “Game Theory without Partitions, and Applications to Speculation and Con-

sensus.” Yale University Cowles Foundation Discussion Paper 914. 
Geanakoplos, John D., and Heraklis M. Polemarchakis. 1982. “We Can’t Disagree Forever.” Journal 

of Economic Theory 28 (1): 192–200. 
Giacomini, Raffaella, Vasiliki Skreta, and Javier Turen. 2020. “Models, Inattention, and Bayesian 

Updates.” American Economic Journal: Macroeconomics 12 (1): 282–309. 
Gilboa, Itzhak, and Larry Samuelson. 2012. “Subjectivity in Inductive Inference.” Theoretical Eco-

nomics 7 (2): 183–215. 
Hong, Harrison, Jeremy  C. Stein, and Jialin Yu. 2007. “Simple Forecasts and Paradigm Shifts.” 

 Journal of Finance 62 (3): 1207–42. 

http://pubs.aeaweb.org/action/showLinks?crossref=10.3982%2FECTA10499&citationId=p_7
http://pubs.aeaweb.org/action/showLinks?crossref=10.3982%2FTE845&citationId=p_11
http://pubs.aeaweb.org/action/showLinks?crossref=10.3982%2FECTA7501&citationId=p_2
http://pubs.aeaweb.org/action/showLinks?crossref=10.1016%2F0022-0531%2882%2990099-0&citationId=p_9
http://pubs.aeaweb.org/action/showLinks?crossref=10.1016%2F0899-8256%2892%2990014-J&citationId=p_6
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Fmac.20180235&citationId=p_10
http://pubs.aeaweb.org/action/showLinks?crossref=10.3982%2FTE436&citationId=p_1
http://pubs.aeaweb.org/action/showLinks?crossref=10.1111%2Fj.1540-6261.2007.01234.x&citationId=p_12
http://pubs.aeaweb.org/action/showLinks?crossref=10.1214%2Faos%2F1176343654&citationId=p_5


1501MAILATH AND SAMUELSON: LEARNING UNDER DIVERSE WORLD VIEWSVOL. 110 NO. 5

Jehiel, Philippe. 2005. “Analogy-Based Expectation Equilibrium.” Journal of Economic Theory 123 
(2): 81–104. 

Jehiel, Philippe, and Frédéric Koessler. 2008. “Revisiting Games of Incomplete Information with 
Analogy-Based Expectations.” Games and Economic Behavior 62 (2): 533–57. 

Kyle, Albert S. 1985. “Continuous Auctions and Insider Trading.” Econometrica 53 (6): 1315–35. 
Mailath, George J., and Larry Samuelson. 2019. “The Wisdom of a Confused Crowd: Model-Based 

Inference.” Yale University Cowles Foundation Discussion Paper 2161. 
Milgrom, Paul R., and Nancy Stokey. 1982. “Information, Trade and Common Knowledge.” Journal 

of Economic Theory 26 (1): 17–27. 
Morris, Stephen. 1994. “Trade with Heterogeneous Prior Beliefs and Asymmetric Information.” 

Econometrica 62 (6): 1327–47. 
Ostrovsky, Michael. 2012. “Information Aggregation in Dynamic Markets with Strategic Traders.” 

Econometrica 80 (6): 2595–2647. 
Page, Scott E. 2017. The Diversity Bonus: How Great Teams Pay Off in the Knowledge Economy. 

Princeton, NJ: Princeton University Press. 
Pearl, Judea. 2009. Causality: Models, Reasoning and Interference. 2nd ed. New York: Cambridge 

University Press. 
Savage, Leonard J. 1972. The Foundations of Statistics. 2nd ed. New York: Dover Publications. 
Sethi, Rajiv, and Mahumet Yildiz. 2012. “Public Disagreement.” American Economic Journal: Micro-

economics 4 (3): 57–95. 
Sethi, Rajiv, and Muhamet Yildiz. 2016. “Communication with Unknown Perspectives.” Economet-

rica 84 (6): 2029–69. 
Spiegler, Ran. 2016. “Bayesian Networks and Boundedly Rational Expectations.” Quarterly Journal 

of Economics 131 (3): 1243–90. 
Spiegler, Ran. 2019. “Behavioral Implications of Causal Misperceptions.” Unpublished. 
Stroock, Daniel W. 2011. Probability Theory: An Analytic View. 2nd ed. New York: Cambridge Uni-

versity Press. 
Surowiecki, James. 2004. The Wisdom of Crowds. New York: Anchor Books. 
Wolfers, Justin, and Eric Zitzewitz. 2004. “Prediction Markets.” Journal of Economic Perspectives  

18 (2): 107–26.

http://pubs.aeaweb.org/action/showLinks?crossref=10.2307%2F2951751&citationId=p_18
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Fmic.4.3.57&citationId=p_23
http://pubs.aeaweb.org/action/showLinks?crossref=10.1016%2Fj.jet.2003.12.003&citationId=p_13
http://pubs.aeaweb.org/action/showLinks?crossref=10.1093%2Fqje%2Fqjw011&citationId=p_25
http://pubs.aeaweb.org/action/showLinks?crossref=10.2307%2F1913210&citationId=p_15
http://pubs.aeaweb.org/action/showLinks?crossref=10.1016%2F0022-0531%2882%2990046-1&citationId=p_17
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2F0895330041371321&citationId=p_29
http://pubs.aeaweb.org/action/showLinks?crossref=10.3982%2FECTA8479&citationId=p_19
http://pubs.aeaweb.org/action/showLinks?crossref=10.3982%2FECTA13320&citationId=p_24
http://pubs.aeaweb.org/action/showLinks?crossref=10.1016%2Fj.geb.2007.06.006&citationId=p_14

	Learning under Diverse World Views: Model-Based Inference
	I. The Setting
	A. The Environment
	B. Model-Based Reasoning
	C. Beliefs

	II. Learning from Others
	A. Unknown Sense or Known Nonsense?
	B. The Details of Updating Beliefs
	C. Example
	D. How Revealing Are Beliefs?
	E. The Bliss of Others’ Ignorance
	F. Properties of the Belief Updating Process

	III. Agents and Oracles
	A. Do Agents Agree?
	B. The Wisdom of the Crowd?

	IV. Information Aggregation
	A. Correlated Model Predictions
	B. Models with a Common Component
	C. Dispersed Information

	V. Discussion and Related Literature
	Appendix: Proofs
	A. Proof of Proposition 6
	B. Proof of Proposition 7
	C. Proof of Lemma 2
	D. Proof of Lemma 4

	REFERENCES




