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THERE ARE NO SOCIALIST PRIMES LESS THAN 109
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Abstract
There are no primes p with 5 < p < 109 for which 2!, 3!, . . . , (p� 1)! are all distinct
modulo p. It is conjectured that there are no such primes.

1. The Problem

Erdős asked whether there are any primes p > 5 for which the numbers 2!, 3!, . . . , (p�
1)! are all distinct modulo p. Were these p� 2 factorials all distinct then the p� 1
non-zero residue classes modulo p would contain at most one of them. Motivated
by this redistribution of resources amongst classes we shall call such a prime p a
socialist prime. Rokowska and Schinzel [7]2 proved the following.

Theorem 1 (Rokowska and Schinzel). A prime p is a socialist prime only if
p ⌘ 5 (mod 8), and ✓

5
p

◆
= �1,

✓
�23
p

◆
= 1. (1)

Moreover, if a socialist prime exists then none of the numbers 2!, 3!, . . . , (p� 1)! is
congruent to �((p� 1)/2)!.

The proof given by Rokowska and Schinzel is fairly straightforward. One may
dismiss primes of the form p ⌘ 3 (mod 4), since such primes have the property [5,
Theorem 114] that ((p� 1)/2)! ⌘ ±1 (mod p). By Wilson’s theorem, (p� 1)! ⌘ �1
(mod p) and (p � 2)! ⌘ (p � 1)!(p � 1)�1 ⌘ +1 (mod p), conditions which, when
taken together, prohibit p from being a socialist prime. Henceforth consider p ⌘ 1
(mod 4), in which case

⇢✓
p� 1

2

◆
!
�2

⌘ �1 (mod p). (2)
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2This problem also appears as F11 in Richard Guy’s insuperable book [4].
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If 2!, 3!, . . . , (p� 1)! are all distinct modulo p then they must be permutations of
the numbers 1, 2, . . . , p�1 with the exception of some r, with 1  r  p�1, whence

p�1Y
n=2

n! ⌘ (p� 1)!
r

(mod p),

so that

1 ⌘ r
p�2Y
n=1

n! ⌘ r((p� 1)/2)!
Y

1k< p�1
2

k!(p� k � 1)! (mod p).

Applying (2) and Wilson’s theorem gives

r
Y

1k< p�1
2

(�1)k+1 ⌘ �
✓

p� 1
2

◆
! (mod p),

so that r ⌘ ±((p � 1)/2)! (mod p). One may dismiss the positive root, since r is
not congruent to any j! for 1  j  p� 1. HenceY

1k< p�1
2

(�1)k+1 ⌘ 1 (mod p).

Equating powers of (�1) gives

X
1k< p�1

2

(k + 1) =
(p� 3)(p + 3)

8
⌘ 0 (mod 2),

whence, since p ⌘ 1 (mod 4), one may conclude that p ⌘ 5 (mod 8).
The conditions in (1) are a little more subtle. Consider a polynomial F (x) =

xn + a1xn�1 + . . . + a0 with integral coe�cients and discriminant D. A theorem by
Stickelberger (see, e.g. [2, p. 249]) gives

⇣
D
p

⌘
= (�1)n�⌫ , where ⌫ is the number of

factors of F (x) that are irreducible modulo p. Consider the two congruences

x(x + 1)� 1 ⌘ 0 (mod p), x(x + 1)(x + 2)� 1 ⌘ 0 (mod p),

the polynomials in which have discriminants 5 and �23. For the former, if
⇣

5
p

⌘
=

1, then, by Stickelberger’s theorem, there are two irreducible factors, whence the
congruence factors and has a solution. Therefore (x + 1)! ⌘ (x� 1)! (mod p) and p

is not a socialist prime. Likewise for the latter: if
⇣
�23

p

⌘
= �1 then there are two

irreducible factors, whence (x + 2)! ⌘ (x � 1)! (mod p). This completes the proof
of Theorem 1.

One cannot continue down this path directly. Consider x(x+1)(x+2)(x+3)�1 ⌘
0 (mod p) which has a solution if and only if y(y+2)�1 ⌘ 0 (mod p) has a solution,
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where y = x(x + 3). Hence (y + 1)2 ⌘ 2 (mod p), which implies 2 is a quadratic
residue modulo p — a contradiction since p ⌘ 5 (mod 8).

Instead one can consider the congruence

x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)� 1 ⌘ 0 (mod p),

which is soluble precisely when y(y + 4)(y + 6) � 1 ⌘ 0 (mod p) is soluble, where
y = x(x+5). The cubic congruence in y has discriminant 1957, whence, by Stickel-
berger’s theorem, if

⇣
1957

p

⌘
= �1 then y(y+4)(y+6) has a linear factor. To deduce

that (x + 5)! ⌘ (x � 1)! (mod p) we need to know that y ⌘ x(x + 5) (mod p) is
soluble, that is, we need to know that 4y + 25 is a quadratic residue modulo p. We
can therefore add a condition to (1), namely

Theorem 2. A necessary condition that p be a socialist prime is✓
1957

p

◆
= 1, or

✓
1957

p

◆
= �1 &

✓
4y + 25

p

◆
= �1,

for all y satisfying y(y + 4)(y + 6)� 1 ⌘ 0 (mod p).

(3)

2. Computation and Conclusion

Rokowska and Schinzel showed that the only primes 5 < p < 1000 satisfying p ⌘ 5
(mod 8) and (1) were

13, 173, 197, 277, 317, 397, 653, 853, 877, 997.

Using Jacobi’s Canon arithmeticus they showed that for each prime there existed
1 < k < j  p� 1 for which k! ⌘ j! (mod p).

I am grateful to David Harvey who extended this to show that there are no
socialist primes less than 106. This computation took 45 minutes on a 1.7 GHz Intel
Core i7 machine. Tomás Oliveira e Silva extended this to p < 109, a calculation
which took 3 days.

The following example shows the utility of adding the condition (3). Using the
conditions p ⌘ 5 (mod 8) and (1), it is easy to check that there are at most 4908
socialist primes up to 106. These need to be checked to see whether there are values
of k and j for which k! ⌘ j! (mod p). Including the condition (3) means that there
are at most 3662 socialist primes up to 106 that need to be checked.

To extend the range of computation beyond 109 it would be desirable to add
another condition arising from a suitable congruence. The congruence leading to
(3) was of degree 6; no other suitable congruence was found for degrees 8 and 9.
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In [1] the authors considered F (p) defined to be the number of distinct residue
classes modulo p that are not contained in the sequence 1!, 2!, 3!, . . .. They showed
that lim supp!1 F (p) = 1; for the problem involving socialist primes one wishes
to show that F (p) = 2 never occurs. It would therefore be of interest to study small
values of F (p). This problem has also been considered and recast in [3] and [6].

Finally, one may examine the problem näıvely as follows. Ignore the conditions
p ⌘ 5 (mod 8) and (1) — including these only reduces the likelihood of there
being socialist primes. For 2  k 6= j  p � 2 we want p - j! � k!. There are�p�3

2

�
= (p� 3)(p� 4)/2 admissible values of (k, j). Assuming, speciously, that the

probability that p does not divide N ‘random’ integers is (1� 1/p)N one concludes
that the probability of finding a socialist prime is

✓
1� 1

p

◆ (p�3)(p�4)
2

! e
(7�p)

2 ,

for large p.
Given this estimate, and the computational data, it seems reasonable to conjec-

ture that there are no socialist primes.
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