THERE ARE NO SOCIALIST PRIMES LESS THAN 10^{9}

Tim Trudgian ${ }^{1}$
Mathematical Sciences Institute, The Australian National University, Australia
timothy.trudgian@anu.edu.au

Received: 12/9/13, Revised: 6/17/14, Accepted: 10/12/14, Published: 10/30/14

Abstract

There are no primes p with $5<p<10^{9}$ for which 2 !, 3 !, $\ldots,(p-1)$! are all distinct modulo p. It is conjectured that there are no such primes.

1. The Problem

Erdős asked whether there are any primes $p>5$ for which the numbers $2!, 3!, \ldots,(p-$ $1)$! are all distinct modulo p. Were these $p-2$ factorials all distinct then the $p-1$ non-zero residue classes modulo p would contain at most one of them. Motivated by this redistribution of resources amongst classes we shall call such a prime p a socialist prime. Rokowska and Schinzel $[7]^{2}$ proved the following.

Theorem 1 (Rokowska and Schinzel). A prime p is a socialist prime only if $p \equiv 5(\bmod 8)$, and

$$
\begin{equation*}
\left(\frac{5}{p}\right)=-1, \quad\left(\frac{-23}{p}\right)=1 \tag{1}
\end{equation*}
$$

Moreover, if a socialist prime exists then none of the numbers $2!, 3!, \ldots,(p-1)$! is congruent to $-((p-1) / 2)$!.

The proof given by Rokowska and Schinzel is fairly straightforward. One may dismiss primes of the form $p \equiv 3(\bmod 4)$, since such primes have the property $[5$, Theorem 114] that $((p-1) / 2)!\equiv \pm 1(\bmod p)$. By Wilson's theorem, $(p-1)!\equiv-1$ $(\bmod p)$ and $(p-2)!\equiv(p-1)!(p-1)^{-1} \equiv+1(\bmod p)$, conditions which, when taken together, prohibit p from being a socialist prime. Henceforth consider $p \equiv 1$ $(\bmod 4)$, in which case

$$
\begin{equation*}
\left\{\left(\frac{p-1}{2}\right)!\right\}^{2} \equiv-1 \quad(\bmod p) \tag{2}
\end{equation*}
$$

[^0]If $2!, 3!, \ldots,(p-1)$! are all distinct modulo p then they must be permutations of the numbers $1,2, \ldots, p-1$ with the exception of some r, with $1 \leq r \leq p-1$, whence

$$
\prod_{n=2}^{p-1} n!\equiv \frac{(p-1)!}{r} \quad(\bmod p)
$$

so that

$$
1 \equiv r \prod_{n=1}^{p-2} n!\equiv r((p-1) / 2)!\prod_{1 \leq k<\frac{p-1}{2}} k!(p-k-1)!\quad(\bmod p)
$$

Applying (2) and Wilson's theorem gives

$$
r \prod_{1 \leq k<\frac{p-1}{2}}(-1)^{k+1} \equiv-\left(\frac{p-1}{2}\right)!\quad(\bmod p)
$$

so that $r \equiv \pm((p-1) / 2)!(\bmod p)$. One may dismiss the positive root, since r is not congruent to any j ! for $1 \leq j \leq p-1$. Hence

$$
\prod_{1 \leq k<\frac{p-1}{2}}(-1)^{k+1} \equiv 1 \quad(\bmod p)
$$

Equating powers of (-1) gives

$$
\sum_{1 \leq k<\frac{p-1}{2}}(k+1)=\frac{(p-3)(p+3)}{8} \equiv 0 \quad(\bmod 2),
$$

whence, since $p \equiv 1(\bmod 4)$, one may conclude that $p \equiv 5(\bmod 8)$.
The conditions in (1) are a little more subtle. Consider a polynomial $F(x)=$ $x^{n}+a_{1} x^{n-1}+\ldots+a_{0}$ with integral coefficients and discriminant D. A theorem by Stickelberger (see, e.g. [2, p. 249]) gives $\left(\frac{D}{p}\right)=(-1)^{n-\nu}$, where ν is the number of factors of $F(x)$ that are irreducible modulo p. Consider the two congruences

$$
x(x+1)-1 \equiv 0 \quad(\bmod p), \quad x(x+1)(x+2)-1 \equiv 0 \quad(\bmod p)
$$

the polynomials in which have discriminants 5 and -23 . For the former, if $\left(\frac{5}{p}\right)=$ 1, then, by Stickelberger's theorem, there are two irreducible factors, whence the congruence factors and has a solution. Therefore $(x+1)!\equiv(x-1)!(\bmod p)$ and p is not a socialist prime. Likewise for the latter: if $\left(\frac{-23}{p}\right)=-1$ then there are two irreducible factors, whence $(x+2)!\equiv(x-1)!(\bmod p)$. This completes the proof of Theorem 1.

One cannot continue down this path directly. Consider $x(x+1)(x+2)(x+3)-1 \equiv$ $0(\bmod p)$ which has a solution if and only if $y(y+2)-1 \equiv 0(\bmod p)$ has a solution,
where $y=x(x+3)$. Hence $(y+1)^{2} \equiv 2(\bmod p)$, which implies 2 is a quadratic residue modulo $p-$ a contradiction since $p \equiv 5(\bmod 8)$.

Instead one can consider the congruence

$$
x(x+1)(x+2)(x+3)(x+4)(x+5)-1 \equiv 0 \quad(\bmod p)
$$

which is soluble precisely when $y(y+4)(y+6)-1 \equiv 0(\bmod p)$ is soluble, where $y=x(x+5)$. The cubic congruence in y has discriminant 1957, whence, by Stickelberger's theorem, if $\left(\frac{1957}{p}\right)=-1$ then $y(y+4)(y+6)$ has a linear factor. To deduce that $(x+5)!\equiv(x-1)!(\bmod p)$ we need to know that $y \equiv x(x+5)(\bmod p)$ is soluble, that is, we need to know that $4 y+25$ is a quadratic residue modulo p. We can therefore add a condition to (1), namely

Theorem 2. A necessary condition that p be a socialist prime is

$$
\begin{align*}
\left(\frac{1957}{p}\right)=1, & \text { or } \\
\left(\frac{1957}{p}\right)=-1 \quad \& \quad & \left(\frac{4 y+25}{p}\right)=-1, \tag{3}\\
& \quad \text { for all } y \text { satisfying } \quad y(y+4)(y+6)-1 \equiv 0 \quad(\bmod p) .
\end{align*}
$$

2. Computation and Conclusion

Rokowska and Schinzel showed that the only primes $5<p<1000$ satisfying $p \equiv 5$ $(\bmod 8)$ and (1) were

$$
13,173,197,277,317,397,653,853,877,997 .
$$

Using Jacobi's Canon arithmeticus they showed that for each prime there existed $1<k<j \leq p-1$ for which $k!\equiv j!(\bmod p)$.

I am grateful to David Harvey who extended this to show that there are no socialist primes less than 10^{6}. This computation took 45 minutes on a 1.7 GHz Intel Core i7 machine. Tomás Oliveira e Silva extended this to $p<10^{9}$, a calculation which took 3 days.

The following example shows the utility of adding the condition (3). Using the conditions $p \equiv 5(\bmod 8)$ and (1), it is easy to check that there are at most 4908 socialist primes up to 10^{6}. These need to be checked to see whether there are values of k and j for which $k!\equiv j!(\bmod p)$. Including the condition (3) means that there are at most 3662 socialist primes up to 10^{6} that need to be checked.

To extend the range of computation beyond 10^{9} it would be desirable to add another condition arising from a suitable congruence. The congruence leading to (3) was of degree 6 ; no other suitable congruence was found for degrees 8 and 9 .

In [1] the authors considered $F(p)$ defined to be the number of distinct residue classes modulo p that are not contained in the sequence $1!, 2!, 3!, \ldots$. They showed that $\lim \sup _{p \rightarrow \infty} F(p)=\infty$; for the problem involving socialist primes one wishes to show that $F(p)=2$ never occurs. It would therefore be of interest to study small values of $F(p)$. This problem has also been considered and recast in [3] and [6].

Finally, one may examine the problem naïvely as follows. Ignore the conditions $p \equiv 5(\bmod 8)$ and (1) - including these only reduces the likelihood of there being socialist primes. For $2 \leq k \neq j \leq p-2$ we want $p \nmid j!-k!$. There are $\binom{p-3}{2}=(p-3)(p-4) / 2$ admissible values of (k, j). Assuming, speciously, that the probability that p does not divide N 'random' integers is $(1-1 / p)^{N}$ one concludes that the probability of finding a socialist prime is

$$
\left(1-\frac{1}{p}\right)^{\frac{(p-3)(p-4)}{2}} \rightarrow e^{\frac{(7-p)}{2}}
$$

for large p.
Given this estimate, and the computational data, it seems reasonable to conjecture that there are no socialist primes.

Acknowledgements I am grateful to David Harvey and Tomás Oliveira e Silva for their computations, and to Victor Scharaschkin, Igor Shparlinski, and the referee for their comments and suggestions.

References

[1] W. D. Banks, F. Luca, I. E. Shparlinski, and H. Stichtenoth. On the value set of n ! modulo a prime. Turkish J. Math., 29(2):169-174, 2005.
[2] L. E. Dickson. History of the Theory of Numbers Volume 1. Dover, New York, 2005.
[3] M. Z. Garaev, F. Luca, and I. Shparlinski. Exponential sums and congruences with factorials. J. Reine Angew. Math., 584:29-44, 2005.
[4] R. K. Guy. Unsolved Problems in Number Theory. Problem Books in Mathematics. Springer, 3rd edition, 2004.
[5] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford University Press, New York, 6th edition, 2008.
[6] V. Lev. Permutations in abelian groups and the sequence n!. European J. Combin., 27(5):635643, 2006.
[7] B. Rokowska and A. Schinzel. Sur un problème de M. Erdős. Elem. Math., 15:84-85, 1960.

[^0]: ${ }^{1}$ Supported by Australian Research Council DECRA Grant DE120100173.
 ${ }^{2}$ This problem also appears as F11 in Richard Guy's insuperable book [4].

