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Abstract: We present a systematic analysis of the stationary regimes of nonlinear parity-time
(PT) symmetric laser composed of two coupled fiber cavities. We find that power-dependent
nonlinear phase shifters broaden regions of existence of both PT-symmetric and PT-broken
modes, and can facilitate transitions between modes of different types. We show the existence of
non-stationary regimes and demonstrate an ambiguity of the transition process for some of the
unstable states. We also identify the presence of higher-order stationary modes, which return to
the initial state periodically after a certain number of round-trips.
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1. Introduction

The concept of parity-time (PT) symmetry is extensively used in the design of diverse optical
devices with balanced gain and loss, which provide new possibilities for effective signal
manipulation. Specially tailored symmetric distributions of the gain and loss regions, as well
as the refractive index profile, can support optical eigenmodes which energy is conserved
due to a balance of gain and loss, while the modes exhibit amplification or attenuation after
crossing a bifurcation point, the so-called PT-symmetry breaking threshold. The total average
power can be conserved in the PT-symmetric phase, however there might appear transitional
power variations and oscillations related to the non-orthogonality of the interfering eigenmodes.
Thus PT-symmetric systems combine properties of conservative and active systems and can be
used for light amplification, filtering and switching [1–4]. PT-symmetric systems posses an
exceptional point, which separates PT-symmetric and broken phases and plays an important role
in linear and nonlinear dynamics [2,5]. The PT-symmetric structures belong to a broader class of
pseudo-Hermitian systems with an entirely real spectrum, which was proposed and extensively
studied in recent years [6–8].
The idea to use PT-symmetry in laser systems is attracting increasing attention. A couple

of active and passive fiber rings was studied in [9], where the same dynamics as in a PT-
symmetric synthetic lattice were demonstrated. The PT-broken regime can be employed to realize
single-mode lasing in multi-mode systems. The PT lasers were experimentally demonstrated in
microrings [10–13] and fiber resonators [14]. A single transverse mode operation in coupled
microring lasers was demonstrated near the exceptional point [15], and enhanced sensitivity
[16–18] was realized. In the coupled microdisk quantum cascade lasers, the reversal of generated
power dependence was identified in the vicinity of exceptional points [19], where spontaneous
emission was enhanced [20], and these points were observed directly in photonic-crystal lasers
[21]. Additionally, a realization of a PT symmetry-based mode-locking [22] was theoretically
proposed and it was shown that a non-Hermitian phase transition can be observed in the frequency
domain [23]. Furthermore, lasing and anti-lasing can be realized in a single cavity [24].

In fiber systems, it was shown that, despite strong phase stochasticity, pure PT-symmetry phase
can be still observed in long optical fiber network incorporating semiconductor amplifiers [14].
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It was predicted that PT-symmetric coupled fiber-loop lasers can exhibit bi-stable dynamics
combined with a lower lasing power threshold [25]. In this work, we study the effect of nonlinear
phase modulation on the dynamics of the PT-symmetric coupled fiber-loop laser and identify the
transition dynamics between the PT-symmetric and broken phases.

2. Nonlinear PT-symmetric fiber loop laser

We consider a system comprised of two identical fiber cavities, one of them is pumped (i.e.
active), another one is passive, as schematically illustrated in Fig. 1. The cavities are coupled
by means of phase shifters providing a phase shift of a propagating signal. In addition, the
cavities are cross-coupled, which facilitates the PT-symmetry of the system. In this work, we
systematically investigate the effect of power-dependent nonlinear phase shift and identify distinct
phenomena compared to the previously analyzed linear phase shifters [25].

Fig. 1. Schematic diagram of the PT-symmetric laser composed of two coupled fiber ring
cavities with gain and loss. Red sectors of the fiber indicate gain and loss regions, arrows
show the direction of propagation.

A signal round trip can be described by matrix operator L, where each sub-matrix corresponds
to a couple of controlling elements placed in both loops of the laser setup a shown in Fig. 1: gain
and loss, nonlinear phase shifters, 50-50 couplers, and cross-coupling.
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where g2<0 and g1>0 are the loss and gain coefficients, respectively, ϕnl1 and ϕnl2 are the
nonlinear phase shifts provided by phase shifters in the active and passive loops.
In the stationary regime, when the mode profile remains unchanged after a round-trip, we

can define the PT-symmetry of the system with the corresponding fixed values of the nonlinear
coefficients. Then, we define an operator
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which is PT-invariantwhen applied in conjunctionwith the gauge transformation: PTe−(g1+g2)/2LPT =

e−(g1+g2)/2LPTPT. The operator P swaps two fibers

P = ©«
0 1

1 0
ª®¬ , (3)
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while time-reversal operator T swaps the propagation direction and also performs complex
conjugation: TLPT = (LPT

∗)−1T. Thus, PT operator acts on an eigenmode u = {u1, u2} of
LPT as PT{u1, u2} = {u∗2, u

∗
1}. If the system is in the so-called PT-symmetric phase, the

eigenmodes satisfy the symmetry condition PT{u1, u2} = exp(iζ){u1, u2} for a real phase ζ and
the corresponding eigenvalues are |µ+ | = |µ− |. In the broken phase, PT{u1, u2} , exp(iζ){u1, u2}
for any real-valued ζ [3,26]. Interestingly, the round-trip operator remains PT-symmetric for
arbitrary values of gain, loss, and phase shifts, so even PT-broken stationary mode induces a
self-consistent PT-symmetric potential.
In the present work, we use the L operator in form 1 since it is more convenient for analysis.

Both operators have the same eigenvalues, while uPT ,n = egn/2un for n = 1, 2, where uPT ,n and un
are the eigenvector components of LPT and L operators, respectively.

In general, nonlinear dynamics is a complex process, where stationary states play an important
role and may serve as attractors. Indeed, in the previously considered case of linear phase shifters
and nonlinear gain saturation [25], it was found that any initial input leads to one of the stationary
states. A stationary mode, u, is determined as |L(u)u| = |u|, which means that u is an eigenvector
of L(u) with an eigenvalue |µ| = 1.
Following the method proposed in [25] and taking into account Eq. (2), we identify the

eigenvalues and eigenvectors of the operator L as

µ± = ieg̃+iϕ̃nl
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and A is an amplitude. Here we denote g̃ ≡ (g1 + g2)/2, ∆g ≡ g1 − g2, ϕ̃nl ≡ (ϕnl1 + ϕnl2)/2
is a common phase shift, and ∆ϕnl ≡ ϕnl1 − ϕnl2 is a relative phase shift. Since we consider
power-dependent phase shifters, ∆ϕnl depends on eigenvector u. Moreover, in a real laser system
gain usually exhibits saturation with power growth [27]. Thus we approximate it by the following
relation g1 = g0/(1 + αP1) − gh, where P1 is the signal intensity in the first loop at the current
round trip, gh is the value of loss in the gain element when intensity is high, g0 determines the
gain at low powers and α defines an inverse of the characteristic gain-saturation power.
We now analyze the balance condition for a stationary mode, |µ+ | = 1 and/or |µ− | = 1,

eg̃
����cosh(∆g/2) cos(∆ϕnl/2) ±

√
cosh(∆g/2)2 cos(∆ϕnl/2)2 − 1

���� = 1, (6)

where according to the gain saturation

g1 = g0(1 + αA2)−1 − gh. (7)

In our system, A = u1. The above relations place a constraint on the gain parameter g1,
relative phase shift ∆ϕnl, and the amplitude A. A stationary mode can be either PT-symmetric
or PT-broken. In the PT-symmetric phase there are a couple of modes with the eigenvalues
|µ+ | = |µ− | = 1. Then, it follows from Eq. (4) that g̃ = 0, i.e. g1 + g2 = 0. In the PT-broken
phase, |µ+ | , |µ− |, and only one mode can be stationary for g1 + g2 , 0, corresponding to
|µ+ | = 1 or |µ− | = 1.
Using restrictions in Eqs. (6) and (7), we calculate the parameter regions where different types

of stationary modes of L exist and plot them in Fig. 2(a). For definiteness we set g2 = −0.7 and
gh = 0.05 as in Ref. [25].
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Fig. 2. (a) Parameter regions of existence of stationary modes. Brown (I) – a couple of
PT-symmetric modes, yellow (II) – only one PT-broken mode with |µ+ | = 1, light yellow (III)
– a couple of PT-symmetric and one PT-broken modes with |µ− | = 1 co-exist, blue (IV) – no
stationary modes. Black dashed lines mark the boundaries of region III. (b) Schematically
shown averaged power distribution in stationary regimes for the PT-symmetric case - power
distributed equally between loops, and PT-broken cases - power mostly concentrated in
active (II region) or passive (III region) loops, respectively.

If the unsaturated gain at low powers is below the loss in the second ring, i.e. g0 − gh + g2<0,
lasing does not occur in the system in the PT-symmetric regime (blue region IV in Fig. 2(a)). In
this case Eqs. (7)–8 can not be satisfied for any A ≥ 0. When g0 ≥ gh − g2, there are a couple of
PT-symmetric modes with |µ+ | = |µ− | = 1 and g1 + g2 = 0 if |∆ϕnl |>2 arccos(sech[g2]). The
latter expression is a PT-symmetry breaking threshold as defined in [25]. This case spans brown
(I) and light yellow (III) regions in Fig. 2(a). For the parameter range |∆ϕnl |<2 arccos(sech(g2))
there is only one PT-broken mode with |µ+ | = 1 for some g1< − g2, while the other mode
exponentially decays during propagation since |µ− |<1 (yellow region II).

We note that for arccos(sech(g2))< |∆ϕnl |<2 arccos(eg2 ) there is a stationarymodewith |µ− | = 1
for a specific range of g1> − g2, while another mode has |µ+ |>1 (yellow region II) and it grows
exponentially. In this region, both types of modes co-exist, although for different values of g1 and
A. In Fig. 2(b) we schematically present averaged power distribution in the cavities corresponding
to different types of stationary modes: PT-symmetric case - equal power distribution, PT-broken
case - power preferably concentrated in the first or second loop.As discussed above, the relative
phase shift ∆ϕnl and the gain at low powers g0 determine the type of a stationary regime in which
the system operates in a particular case. However, ∆ϕnl is power dependent and it consists of the
linear (constant) and nonlinear parts as

∆ϕnl = ∆ϕlinear + γ1P̂1 − γ2P̂2, (8)

where γ1,2 are the nonlinear coefficients and P̂1,2 are signal powers inside the phase shifters in
the active and passive loops, respectively, ∆ϕlinear is a constant relative phase shift produced
by the phase shifters when the signal power is small. This means that a particular laser setup
can demonstrate a variety of stationary regimes corresponding to different signal powers. The
nonlinearity can effectively "mix" the different regions shown in Fig. 2, enabling more than
three stationary regimes to co-exist in specific fixed laser configurations. Taking into account
Eqs. (5)–(8) we find that

∆ϕnl = ∆ϕlinear +
g0 − g1(∆ϕnl) − gh

g1(∆ϕnl) + gh

×

(
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where A1 and A2 are determined through eigenvectors defined in Eq. (5):
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We numerically solve Eq. (9) to determine ∆ϕnl for the chosen ∆ϕlinear and g0 and thereby
identify the mode type according to the region ∆ϕnl belongs to. The results are presented in Fig. 3
for g2 = −0.7, gh = 0.05, and α = 2. In panel (a) we show the regions where a stationary mode
exists for γ1 = γ2 = 2, while in (b) γ1 = 2 and γ2 = 3. Blue color shows the region (IV) where
no lasing modes exist, brown (I) – only PT-symmetric modes exist, yellow (II) – only PT-broken
modes exist, light yellow (III) – modes of both types co-exist. Red lines indicate the PT-symmetry
breaking threshold where both eigenvalues and eigenvectors collapse. In panels (c) and (d) we
indicate the total number of PT-symmetric and PT-broken stationary modes corresponding to the
parameters in (a) and (b), respectively.

Fig. 3. Parameter regions where stationary modes exist. Blue (IV) – no modes exist, brown
(I) – only PT-symmetric modes exist, yellow (II) – only PT-broken modes exist, light yellow
(III) – modes of both types co-exist. Red lines show PT-symmetry breaking threshold. (a,c)
γ1 = γ2 = 2; (b,d) γ1 = 2, γ2=3. (c,d) Number of PT-symmetric and PT-broken modes
corresponding to panels (a,b), respectively.

We note that Fig. 2(a) effectively shows the regions where stationary modes exist in the case
of linear phase shifters, with γ1 = γ2 = 0, since in this case ∆ϕnl = ∆ϕlinear. Then, based on
comparison with Figs. 3(a) and (b), we conclude that the nonlinear phase modulation broadens the
regions of existence of both the PT-symmetric and PT-broken modes, and accordingly increases
the overlap region where the modes of different symmetries can coexist (the light yellow region
in Fig. 3 is much larger than one in Fig. 2(a)). We also note that the total number of stationary
modes of both types increases when g0 grows. In general, a larger value g0 corresponds to higher
power of a stationary mode, see Eq. (7), however, a particular value of the power is determined
by model parameters and through Eq. (9).
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Another interesting aspect is that in the case of identical nonlinear coefficients in the two loops,
γ1 = γ2, the region of stationary PT-broken modes coincides with one for the case of linear
phase shifters considered in [25]. Indeed, for PT-broken modes |A1 | = |A2 | and accordingly from
Eq. (10) we obtain ∆ϕnl = ∆ϕlinear. Thus, nonlinearity does not affect the stationary PT-broken
modes and consequently, there cannot be more than one stationary PT-broken mode for any fixed
laser parameters.

3. Transitions in PT-symmetric fiber laser

We now investigate the dynamical transitions between a variety of co-existing stationary modes
that we have identified above. To demonstrate these processes we apply initial conditions
corresponding to different stationary modes with small perturbations. In simulations, we track
the powers in the middle of the gain/loss elements, i.e. (P(n)1 ,P(n)2 ) = (e

g1 |u(n)1 |
2, eg2 |u(n)2 |

2), where
n is the round-trip number. Then, PT-symmetric modes correspond to equal power distribution
between the loops (P1 = P2), while in PT-broken regime the powers are different. In Fig. 4, top
row, we show characteristic examples of the transition dynamics for the parameters marked by the
red point in Fig. 3(b), where four PT-symmetric and three PT-broken stationary modes can exist.
The bottom row in Fig. 4 shows the evolution in a phase space. A stable stationary state would be
just a point in the phase space, while transition process is a trajectory from one point to another.

Fig. 4. Nonlinear transitions in the PT-symmetric fibre laser. Top row - laser dynamics
in active (red) and passive (blue) loops, bottom row - corresponding trajectories in the
phase plane. Green and red dots show where the trajectories start and finish, respectively.
Parameters are ∆ϕlinear = 0, g0 = 1.5 as indicated by the red point in Fig. 3(b). (a)
u0 = (0.71,−1.42 + 0.014i), (b) u0 = (3.45, 0.58), (c) u0 = (0.70,−0.29 − 1.39i).

In Fig. 4(a) an unstable PT-symmetric mode transits to a stable PT-symmetric one, in (b) a
transition regime between two PT-broken modes is presented. Another interesting observation is
the existence of non-stationary regimes, see an example in Fig. 4(c). We find that this regime
corresponds to a higher-order stationary mode, where the mode profile is restored after N
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round-trips, i.e. LNu = exp(iβ)u, where β is a real-valued phase coefficient. For the case in
Fig. 4(c), the periodicity is N = 4.
To better understand the transition processes we use the property that the relative phase

shift between the mode amplitudes in active and passive loops conserves its sign after each
round trip, see [25] for a general proof applicable to both linear and nonlinear phase shifters.
Specifically, sign sin(Jn) = sign sin(J0) for any initial condition u(0), where we denote Jn =

(arg(u(n)1 ) − arg(u(n)2 )). Then, from Eqs. (4)–5 it follows that a PT-symmetric mode with
sign sin(J) = 1 cannot transit to a different PT-symmetric mode with sign sin(J) = −1. However,
for PT broken modes J = 0,±π and there could be transitions of different types under small
perturbations. In the linear regime, any PT-symmetric modewith sign sin(J) = 1 has it counterpart
with sign sin(J) = −1 and vice versa, however, there are always only two PT-symmetric modes
and therefore a transition between them is prohibited [25]. In contrast, the nonlinearity of phase
shifters can facilitate a transition between all types of modes. Furthermore, the nonlinear fiber
laser possesses multi-stability. For example, for the laser parameters considered in Fig. 4 we find
three stable fundamental stationary modes, as well as two stationary modes of higher order N>1.

We also noticed that some unstable stationary states demonstrate different dynamics depending
on the perturbation, i.e. they can transit to at least two different regimes. In Fig. 5 we show
the dynamics of stationary modes where we introduce a perturbation φ as (u1 exp[iφ], u2). This
small perturbation shifts the mode upper or lower in the phase plane (as shown in the bottom row
of Fig. 5), which for a PT-broken mode located on the "border" between upper and lower phase
semi-plane, leads to a transition to different regimes with sign sin(Jn) = sign sin(φ). Parameters
are indicated in the figure caption. Interestingly, we observe in Fig. 5(a) that there can be several
transitions during the evolution, e.g. from a PT-broken mode to a higher-order mode and then to
a PT-symmetric mode. On the other hand, Fig. 5(c) illustrates a transition to a stable higher-order
mode, which is a distinct feature due to the nonlinearity of phase shifters.

Fig. 5. Unstable transitions in the PT-symmetric fiber laser. Top row – laser dynamics
in active (red) and passive (blue) loops, bottom row – corresponding trajectories in the
phase plane. Green and red dots show where the trajectories start and finish, respectively.
The input signal is (u1 exp[iφ], u2), where (u1, u2) is a stationary mode and φ is a small
perturbation. (a) and (b) (u1, u2) = (2.92971, 0.708525), φ = ±10−6, (c) and (d) (u1, u2) =
(0.124196,−0.458554), φ = ±10−6, respectively. Other parameters are g0 = 1.3, ∆ϕlinear =
−1.5, γ1 = 2, γ2 = 3.
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4. Conclusion

In this paper, we revealed distinct features of the modes and their dynamical transitions
in a nonlinear PT-symmetric fiber-loop laser. We developed a semi-analytical approach to
systematically find all fundamental stationary modes. We demonstrated that the power-dependent
phase shifts can mix the regions of existence of PT-symmetric and PT-broken stationary modes.
We found that the higher is the gain at low powers (g0), the larger number of stationary modes
can co-exist simultaneously. We identified dynamical transitions between modes of the same or
different PT symmetries, which can exhibit multi-stability.
We emphasize that nonlinear phase shifters enable new dynamical transitions compared to

linear phase shifters [25], where the switching between symmetric and broken modes could
occur only in the parameter region where both types of modes co-exist (see Fig. 2(a), light
yellow region). In such a case the PT-broken mode is always unstable and transits to one of
PT-symmetric modes, whereas a transition between two PT-symmetric modes is prohibited. We
also observed in numerical modeling non-stationary regimes that could not occur in the case
of linear phase shifters, including higher-order stationary modes with different periodicity. A
comprehensive classification and stability analysis of such modes presents an interesting open
problem for future studies.

We anticipate that our findings will be useful for practical realization of lasingmode engineering
and switching in PT-symmetric fiber-loop lasers, since Kerr-type nonlinearity naturally appears
in optical fibers.
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