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ABSTRACT
We consider depletion effects of a pear-shaped colloidal particle in a hard-sphere solvent for two different model realizations of the pear-
shaped colloidal particle. The two models are the pear hard Gaussian overlap (PHGO) particles and the hard pears of revolution (HPR). The
motivation for this study is to provide a microscopic understanding for the substantially different mesoscopic self-assembly properties of
these pear-shaped colloids, in dense suspensions, that have been reported in the previous studies. This is done by determining their differing
depletion attractions via Monte Carlo simulations of PHGO and HPR particles in a pool of hard spheres and comparing them with excluded
volume calculations of numerically obtained ideal configurations on the microscopic level. While the HPR model behaves as predicted by the
analysis of excluded volumes, the PHGO model showcases a preference for splay between neighboring particles, which can be attributed to
the special non-additive characteristics of the PHGO contact function. Lastly, we propose a potentially experimentally realizable pear-shaped
particle model, the non-additive hard pear of revolution model, which is based on the HPR model but also features non-additive traits similar
to those of PHGO particles to mimic their depletion behavior.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0007287., s

I. INTRODUCTION

This is the second article in a series1 that addresses equilib-
rium self-assembly process, where by self-organization relatively
simple, non-spherical hard-core particles spontaneously adopt com-
plex three-dimensionally ordered mesoscopic structures. On the
one hand, particle shape is the sole parameter that tunes structure
formation in this process and many simple shape characteristics
(such as particle elongation) have been identified as determinants of

structure formation.2–9 On the other hand, the self-assembly often
depends in a drastic, non-linear way on details of the particle shape.
Even though some shape features of particles can be related to spe-
cific global order,10–12 these correlations are often a rule of thumb
and specific multi-particle behaviors can hardly be targeted in this
straightforward fashion. Small changes to the shape can have major
repercussions for the structure formation.

In recent years, various reverse engineering approaches suc-
cessfully circumvented this issue and opened the door to design
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self-assembled materials more precisely.13–15 Specifically in purely
entropic systems, where the potentials are reduced to hard-
core interactions and, therefore, the shape of the colloids, an
iterative technique called digital alchemy made it possible to cre-
ate specific polyhedral building blocks for the formation of tar-
geted structures.16,17 Despite this remarkable achievement, those
kinds of strategies can still not pinpoint concrete relations between
microscopic particle features and mesoscopic order.

Hence, the question which particle properties are necessary
and which are sufficient for specific structure formation remains
unanswered. To highlight the complexity of this question, this
paper addresses this question in terms of pear-shaped particle self-
assembly through a depletion study of the interactions between
pear-shaped particle pairs in a solvent of hard spheres.

Pear-shaped colloids, or rather their contact function, have
been modeled using the self-non-additive pear hard Gaussian over-
lap (PHGO) model and the hard pears of revolution (HPR) model.
For the definition of the pear shape, which is described by the
aspect ratio k and the degree of tapering kθ and based on a pair
of Bézier curves, and an in-depth discussion about the differences
in the contact functions of both models, we refer to Paper I.1 Here
and in other earlier studies, we showed that, in the PHGO approx-
imation,18 pear-shaped particles spontaneously form cubic, bicon-
tinuous phases, like the double gyroid19,20 or, when diluted with a
small amount of hard-sphere solvent, the double diamond.21 Even
though PHGO particles are best illustrated by a Bézier pear shape,
the computational PHGO model does not represent hard interac-
tions between those Bézier objects perfectly. In particular, PHGO
pear-shaped particles partially overestimate or underestimate the
interparticle distance compared to the Bézier curve representation,
which leads to small overlaps and gaps depending on relative par-
ticle orientations.97 These “non-additivities,” despite being small,
affect the phase behavior of the pears and have previously been—
incorrectly—believed not to be important for the self-assembly pro-
cesses.19,20 Even though the difference between the PHGO and HPR
models, the latter representing the Bézier shape more accurately at
the expense of being computationally substantially more expensive,
is small (see in-depth discussion about the differences in the contact
function in Paper I), Paper I of this study shows that the gyroid phase
is not formed by HPR particles,1 but did not provide a reason for the
system’s failure to form cubic structures. This is what this Paper II
sets out to do.

In Paper II, we show that also the excluded volume interac-
tions of pears in a solvent of hard spheres are impacted by these
distinctions. This depletion behavior enables us to explain some of
the differences between the PHGO and HPR self-assembly behaviors
of the pure systems, without solvent which were discussed in Paper
I of this series.1

Depletion forces, which arise from the osmotic pressure on
neighboring colloids by the surrounding small depletants, lead to
effective short-range attraction22–26 or repulsion27–30 between col-
loidal particles. Already 70 years ago, these depletion forces have
been predicted as a purely entropically driven effect similar to the
entropic self-assembly of colloids into liquid crystal phases. More
specifically, Asakura and Oosawa22,23 argued that, as the free energy
of the system is predominantly governed by the degrees of freedom
of the solvent particles, the minimization of free energy induces the
colloids to arrange in the most compact arrangement such that their

excluded volume, which cannot be penetrated by the solvent, is min-
imized (see Fig. 1). Since then, depletion forces of spherical particles
have been studied extensively both in theory for different solvent
models, like the penetrable hard-sphere model31,32 polymers based
on the ideal chain model,33,34 hard-core spheres,25,26,29 hard-core
rods,35–37 or hard-core disks,38,39 and experimentally.40–51

The study of depletion effects between two pear-shaped parti-
cles in a solvent of hard spheres can also help understand the col-
lective self-assembly mechanisms behind the one-component pear
particle system. In all liquid crystal phases, obtained for the PHGO
system so far,19–21 the arrangement of each pear is highly affected
by a multitude of next nearest neighbors. This elaborate interplay
of particles coupled with the aspherical pear shape, which fea-
tures a significant degree of complexity, makes a more detailed
analysis of the direct influence between adjacent particles in one-
component systems impracticable. Hence, we reduce the complexity
of our simulations and shift our focus to the depletion systems,
which encapsulate the fundamental features of pure two-particle
interactions.

This article is structured as follows: We first identify the opti-
mal arrangement of pears in terms of minimal collective excluded
volume using numerical tools in Sec. II. Next (Sec. III), we perform
Monte Carlo (MC) simulations of two large pear-shaped particles
within a solution of smaller hard spheres. This is done for both
the PHGO and HPR particle models to compare the computational
results with the previous predictions of the ideal excluded volume,
obtained by the numerical technique. These allow us to pinpoint
the specific differences between the two models more efficiently.
We show that the PHGO particles favor the formation of bilayer
phases (including the bilayer smectic and gyroid phases) in contrast
to the HPR particles. Finally in Sec. IV, we demonstrate a possible

FIG. 1. The concept of depletion is sketched by the example of two hard-core
spherical colloids (left), three hard-core spherical colloids (center), and two hard-
core pear-shaped colloids (right) dissolved in a liquid of smaller hard spheres
(indicated in light blue). The system is driven mainly by the entropy of the solvent
particles and maximizes the free energy by minimizing the excluded volume of
the bigger colloidal particles. The excluded volume (orange short-dashed curve)
cannot be penetrated by the depletant due to the presence of the colloid. Thus,
the larger objects pack together such that their excluded volumes maximally over-
lap (indicated in orange) and more space is provided for the depletants. Overall,
this mechanism can be interpreted as an effective, entropically driven attraction
between the colloids.
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mechanism by which bilayer phases could be stabilized in monodis-
perse systems based on the HPR interactions by introducing non-
additivity to the contact function based on the non-additive hard
pear of revolution (NAHPR) model.

II. EXCLUDED VOLUME OF TWO PEAR-SHAPED
PARTICLES

Similar to other self-assembly processes, the shape of the
molecules/colloids naturally impacts how a pair of two colloidal par-
ticles in a solvent eventually arranges under the influence of deple-
tion. On changing colloids from simple spheres to objects with more
complicated shapes, the excluded volume does not only depend on
the separation but also depend on the relative orientation of the
particles (see Fig. 1). Consequently, depletion induces orientational
rearrangement of the particles in addition to the entropic attraction.
For instance, it has been shown that by adding dimples to one of
the spheres the other colloid preferentially attaches to these concav-
ities.52,53 This “lock-and-key” mechanism can be used as a tool to
control the depletion of particles. Another sort of directionality can
be introduced by creating elongated colloids. At a wall, hard pro-
late ellipsoids54,55 and spherocylinders56 align with their long axis
along the flat interface due to depletion. Moreover, it is known the-
oretically57,58 and from experiments59,60 that rod-like colloids self-
assemble into clusters with nematic order when non-absorbing poly-
mers are added. Excluded volume mechanisms provide access to
rich phase behaviors for various mixtures of hard aspherical parti-
cles and depletant particles,57,61–66 including fascinating effects like
depletion-induced shape-selective separation in colloidal mixtures
by the addition of non-adsorbing polymers.67–70

To predict the most compact and ideal configuration in terms
of depletion of two Bézier pear-shaped particles in a solvent, we first
present some geometric calculations for excluded volumes, obtained
by computational geometry of static configurations (not from sim-
ulations). The used computational algorithm that calculates the
excluded volumes of the pear-shaped particles is explained in the
Appendix. For rotationally symmetric particles like pears defined by

Bézier curves, three degrees of freedom have to be considered in
addition to the particle separation to define a specific constellation
between two pears. Two of these degrees of freedom relate to the rel-
ative orientations of the particles u and v. The last one relates to the
flexibility to select the contact point pc on the surface of one colloid,
in the case where the two particles are touching and, so, their sepa-
ration is 0. The choices of u, v, and pc automatically determine the
contact point on the surface of the other object [see Figs. 2(a) and
2(b)]. Theoretically, we are able to sweep the whole configurational
space of the two-pear-depletion problem and identify the configura-
tion with the largest excluded volume overlap. Therefore, we apply
our sampling algorithm to pears with aspect ratio k = 3 and tapering
angle θk = 15○, which lie well within the gyroid phase for the PHGO
model20 but do not form cubic phases for the HPR model.

The presented three-dimensional excluded volume problem
can be narrowed down to its two-dimensional counterpart. In more
mathematical terms, we only consider arrangements of pears, where
the orientation vectors of the two pears u and v and their relative
position vector R are linearly dependent. Only these positions need
to be considered in order to find the ideal placement of a pair of
pears. Any expansions of the excluded volume in the form of dilata-
tions into the third dimension (like those indicated in Fig. 9) can be
prevented by restricting the particles to a plane. This guess is con-
firmed by computation of the excluded volume for different relative
orientations with a fixed contact point pc of one of the pears as plot-
ted in Fig. 2(c). Here, the pear with constant pc acts as a reference
[see Figs. 2(a) and 2(b)] such that v can be written in spherical coor-
dinates with respect to the frame defined by u and pc. The azimuthal
angle ϕ = 0 of the spherical coordinate system is defined by the direc-
tion from the contact point pc to the center of the reference pear. For
all the tested values of pc, the extremal values inVexcl, and hence both
its global maximum and minimum, are attained by linearly depen-
dent configurations, that is where the polar angle of v is either ϕ = 0
or ϕ = π.

To reduce the configurational space even further, we utilize
another argument about the symmetry of the system. The contact,

FIG. 2. Excluded volume of two pear-
shaped particles with k = 3, θk = 15○,
and rdepl = 0.31σw in relation to the
relative orientation of the pears on the
unit sphere. The algorithm to calculate
the excluded volumes is described in the
Appendix. The contact point pc is fixed
for the reference pear and chosen such
that the configuration with the global min-
imum can be adopted. In the center
(c), the orientation of the free pear v
is given in spherical coordinates depen-
dent on the orientation of the reference
pear u and the direction toward pc u⊥1 .
On the right, the unit sphere is viewed
from the top (d), bottom (e), and side
(f) perspective. On the left (a) and (b),
two exemplary configurations are shown.
The locations of their corresponding ori-
entations v1 and v2 on the unit sphere
are indicated.
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FIG. 3. Excluded volume of two pear-
shaped particles with k = 3, θk = 15○,
and rdepl = 0.31σw along the “roll” (blue)
and “slide” (red) routes, where the par-
ticles share the same contact point pc,
in terms of the angle β between the
orientation of the pears and the nor-
mal direction into the pear at pc . The
algorithm to calculate the excluded vol-
umes is described in the Appendix, and
both sampling pathways are sketched
above. The plots show a minimum of the
same value, which can be identified as
the global minimum of the system. The
corresponding optimal configurations are
highlighted in the small colored boxes.

which leads to the maximal or minimal excluded volume, has to be
at the same point on both pear surfaces as the choice of the reference
pear is arbitrary. Otherwise, the system would have two solutions
with the same relative orientations, which is not possible for con-
vex particles. Overall, this leaves us with a sampling domain that,
in practice, only depends on one degree of freedom, namely on the
shared pc. By adding the constraint of linearly dependent orienta-
tions with ϕ = 0/ϕ = π, the polar angle, θ, is restricted to at most
two possible orientations. The excluded volume calculations for the
“roll” and “slide” sampling of the different contact points pc are
plotted in Fig. 3.

● Roll route: The particles start from an antiparallel config-
uration, when the pears touch with their blunt ends, pass
through a parallel alignment next to each other, and eventu-
ally end up antiparallel again, where their pointy ends meet.
This sampling can be interpreted as one pear being rolled
over the other.

● Slide route: During the “slide” sampling, the pears are per-
fectly antiparallel for all pc, which resembles a slide of one
pear along the surface of the other.

Hence, the duality of θ is covered by those two computational path-
ways. The contact pc is given by the angle β between u and the
normal vector into the pear at pc.

Interestingly, the different paths reveal two distinct relative
configurations with the same contact point pc = p̃c, which both can
be associated with the global minimum of the excluded volumeVexcl.
In one solution, the pears are placed side by side and oriented per-
fectly antiparallel toward one another: u ⋅ v = −1 (see Fig. 3). The
minimum, however, does not occur for β = π

2 when the pears are at
the same height. The particles are rather shifted toward their blunt
ends by a small distance. The second ideal configuration exists due
to the broken inversion symmetry of the pear shape and is found
when the two pears point roughly in the same general direction (see
Fig. 3). However, here, the colloids are not perfectly aligned but
slightly tilted toward each other. This tilt also becomes apparent by
looking at the excluded volume plot of different orientations at p̃c in
Figs. 2(d)–2(f). The top, bottom, and especially side view of the unit
sphere clearly show that the minimum at the northern hemisphere

is shifted away from the north pole. The tilt can be related directly
to tapering angle of θk = 15○. Hence, θk also defines the shift in
the antiparallel domain, as both optimal configurations are attained
for p̃c.

Furthermore, the computations show that configurations,
where the blunt ends touch (β < π

2 in Fig. 3), tend to be often
more favorable than arrangements where the pears come together
with their pointy ends (β> π

2 ). Also in Fig. 2(c), a similar observa-
tion can be made. If the particle is oriented away from the reference
pear and comes in contact with the blunt end, the excluded volume is
smaller than if the pear points directly toward p̃c. This general behav-
ior indicates that during the rearrangement of inversion asymmetric
particles from a configuration where the colloids are separated to one
where they are in contact due to depletion interactions, the colloids
are likely to first approach each other with their bigger ends before
eventually equilibrating into the most compact formation. Note that
an indication of this blunt-end attraction can be seen in the gyroid-
phase self-assembly1 where the blunt ends form the network-like
domains of the bicontinuous cubic phase.19–21 This indicates that
also the hard HPR pears have a tendency to cluster with their blunt
ends.

III. MONTE CARLO SIMULATIONS OF DEPLETION
EFFECTS OF PEAR-SHAPED PARTICLES

Having determined the geometrically most favorable configu-
ration of pairs of pear-shaped particles in regard to their excluded
volume, we compare the computational predictions to results
obtained by Monte Carlo simulations. Our goal is to replicate the
behavior of pear-shaped colloids due to depletion and, moreover, to
study if the pears indeed prefer the states calculated in Sec. II. There-
fore, we apply simple Metropolis Monte Carlo methods below. A
typical procedure to calculate the depletion forces between various
particles is usually the “acceptance” approach, where the free ener-
gies between two different configuration states are compared.55,71–73

This procedure has been advanced using Wang–Landau Monte
Carlo approaches.74–77 Also, a hybrid of simulation and density func-
tional theory (DFT) has been suggested.78 Those approaches are,
however, very complicated for the pear shape (in case of the hybrid
approach) or very time inefficient, as for every configuration state,
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a separate MC run has to be performed in the acceptance approach.
Combining these issues with the already computationally demand-
ing overlap check between two meshes for the HPR particles and
hard spheres, the mentioned techniques are all impracticable.

Density functional theory, where Roth introduced a so-called
insertion approach,26,56,79 is also hardly applicable to our study, as
are other approaches.28,29,80 All of those theoretical approaches only
cover a set of particles with simple shapes. Even though a density
functional calculation for hard pear-shaped particles representing
the HPR model has been derived,81 the difficulty of this approach
is further heightened by the fact that it would also require the devel-
opment of a functional of orientational-dependent contact functions
like for PHGO particles as well.

In general, we are not necessarily interested in the specific free
energy calculations of the different states but merely want to clarify
the distinctions between the HPR and PHGO models. Therefore, the
question of depletion is tackled by applying Monte Carlo simulations
in the following, straightforward fashion.

A. Depletion interactions between HPR particles
Monte Carlo simulations are performed on systems with Npear

= 2 hard-core pear-shaped particles within a solvent, which is repre-
sented by a large number Nsph = 1498 of surrounding smaller hard
spheres, within a cubic box with periodic boundary conditions in
all three dimensions. The aspect ratio k = 3 and tapering parameter
θk = 15○ of the pear-shaped particles are chosen to enable straight-
forward comparison between the simulation results with the calcu-
lations of Fig. 2. For the same reason, the sphere radii of the solvent
rdepl are all set to 0.31σw , which corresponds to the volume ratio
between the spheres and pears v = Vdepl

Vpear
= 0.08. An acceptance rate

of roughly 50% has been achieved by setting the maximal translation
Δq ,max = 0.085σw and the maximal orientational displacement Δu ,max
= 0.085σw per step. Use of a large number of depletants ensures
that the simulations are not affected by the boundary conditions
and the system can indeed be interpreted as two pear-shaped col-
loids surrounded by a hard-sphere solvent. Furthermore, the sphere
size is small enough to see depletion interactions between the par-
ticles occurring at higher densities. All sets are performed in the
NVT-ensemble starting from different diluted initial states at

ρg = Npear ⋅ Vpear + Nsph ⋅ Vsph

Vbox
= 0.1. (1)

After a sequence of compressions to the final density ρg = 0.45,
the system is studied for 5.0 ⋅ 10○ steps. This density turned out to
be sufficiently high to observe considerable entropic forces between
the pear-shaped colloids and low enough to prevent crystallization
in the surrounding hard-sphere liquid.

We first simulate HPR pears in a hard-sphere fluid, where the
overlap of two particles is determined by checking for intersections
of two meshes representing the surfaces of the pears.82,83 For every
simulation run, the entropic depletion attraction between the pear
particles is determined when the colloids are in each other’s vicinity,
which means that their excluded volumes overlap. More precisely,
the particles stay together for a considerable number of MC steps
(see Fig. 4), which leads to the conclusion that the system indeed
favors the particles coming in contact. However, the entropic attrac-
tion seems to be of short range and rather weak. This is shown

FIG. 4. Representative progressions of the separation R of two pear-shaped parti-
cles (red: HPR, blue: PHGO, orange: NAHPR) surrounded by 1498 hard spheres,
acting as a solvent during the Monte Carlo simulations. The simulations are per-
formed at a global density of ρg = 0.45. All models show an effective attraction into
the zone of influence, where the excluded volumes of the pears can be consid-
ered overlapping, induced by depletion effects. The shaded area approximates this
zone of influence—when they are outside of this region, they cannot be considered
in contact.

in Fig. 4, where, during a typical MC simulation run, the parti-
cles repeatedly separate prior to reaching a seemingly steady state
where they remain in contact.99 Nevertheless, the preferred sam-
pling of close pear arrangements is a strong indication for depletion
interactions.

Even though the particles are affected by the presence of the
second colloid, the determination of the relative arrangements of
the colloid pair presents some difficulties. The main issue that has
to be overcome is poor statistics. As we are studying a two-particle
problem, it is hardly feasible to gather enough data for a detailed
combined analysis of the possible states due to computational time
constraints. Therefore, we decouple the degrees of freedom and only
investigate one relative parameter at a time. In Fig. 5(a), the rel-
ative polar angle between two close HPR particles is plotted. For
these plots, only configurations are considered if the excluded vol-
umes overlap. This ensures that the sampled relative orientations
are actually influenced by the close distance between the particles.
The relative angle α between the orientation vectors of the pears
u and v is split into two domains to characterize the orientational
states further. For positive angles, the pears point away from each
other such that their blunt ends are in contact. A negative angle indi-
cates that the pears face toward one another and that their pointy
ends are closer together. In the following, we will refer to these
two domains “V”-configurations (α > 0) and “A”-configuration
(α < 0).

The histogram of the relative pear orientations shows two dis-
tinct peaks that match perfectly with the ideal configurations pre-
dicted in Figs. 2(c) and 3. The first preferred orientation is measured
at α = −0.26 = −15○ and hence categorized as an A-configuration.
This relative angle corresponds directly to the parallel solution for
minimal excluded volume as it coincides with the tapering angle θk
= 15○. The configuration can also be extracted from the simulations
directly [see a snapshot in Fig. 5(I)]. The second peak at α = ±π
= ±180○ is identified as a single characteristic orientation due to the
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FIG. 5. Relative orientation [(a) and (b)] and lateral distance distribution [(c) and (d)] of two HPR/PHGO particles surrounded by 1498 hard spheres, acting as a solvent
at global density ρg = 0.45, on the left. The particle parameters are set to k = 3, θk = 15○, and rdepl = 0.31σw (

Vdepl

Vpear
= 0.08). Only pair configurations are considered

if the pear-shaped particles are close to each other such that the excluded volumes overlap. Positive angles α indicate V-configurations (blunt ends together), whereas
negative α values describe A-configurations (pointy ends together). On the bottom, typical arrangements of the HPR [(I) and (II)] and PHGO [(III) and (IV)] depletion systems,
extracted from both types of simulations, are shown. The left snapshot [dashed line, (I)] corresponds to the indicated peak in (a) and coincides with the parallel solution for
maximal excluded volume overlap. The center left configuration [dashed-dotted line, (II)] contributes to the second peak of (a) and matches the antiparallel solution in terms
of minimized excluded volume. The center right snapshot [dotted line, (III)] shows a V-configuration, which corresponds to the indicated peak in (b). This configuration does
not coincide with the parallel solution for maximal excluded volume overlap of Bézier pears. The right configuration [dashed-dotted line, (IV)] contributes to the second peak
in (b) and matches the antiparallel solution in terms of minimized excluded volume.

duality of the A-configuration and V-configuration for cos(α) = −1.
Moreover, this orientation also coincides with the predictions as it
fits the second solution of the excluded volume calculations, where
the particles are aligned antiparallel and adjacent to each other. A
snapshot from the MC simulation of this particular configuration is
depicted in Fig. 5(II).

The observations are corroborated by the lateral distance dis-
tributions between two particles when in contact. Figure 5(c) high-
lights that the neighboring pears are not distributed around the
center point of the reference particles. The distribution is rather
slightly shifted toward the pointy end. The inversion asymmetric
shape of the HPR particle consequently introduces a move of the
optimal contact point above the center point. Hence, the HPR parti-
cles behave precisely as expected according to Sec. II and according
to the solutions of the ideal configurations to maximize the available
space for the hard spheres.

B. Depletion interactions between PHGO particles
The depletion MC simulations are repeated with the same

parameters except that the HPR contact function is replaced with
the hard PHGO potential to approximate the particle overlap.18

The first distinction between the PHGO and HPR systems
becomes apparent during the MC sampling already. By tracking the
distances between both particles for every MC step in Fig. 4, the

depletion attraction between two PHGO pears seems to be much
stronger than in the equivalent HPR case. This can be explained by
the development of the separation once the two PHGO pears are
close together. After the pears pass a sequence of arbitrary displace-
ments and eventually approach each other, the touching configura-
tion stays stable for a significantly longer time (see Fig. 4). This is in
contrast to the uncouplings of the HPR particles, where very short-
lived periods in close configurations alternate with lengthier periods
of separation and subsequent recombination. The repeated attach-
ment/detachment of the pear colloids in the HPR model indicates
that the depletion attraction is comparable to thermal energies; that
is, it is of the order of kBT. The greater propensity of the PHGO pear
colloids to remain in contact (rather than to detach again) is a clear
indication that the depletion effects are stronger for PHGO particles
than for HPR particles. The increased strength of the entropic force,
however, can be related to the contact function of the PHGO pear.
Presuming the particles are in the optimal state, an attempted trans-
lational step and especially an attempted rotational step are much
more strongly penalized for PHGO than for HPR particles. This is
manifested in the contact distance of roughly perpendicular arrange-
ments (see Fig. 1 of Paper I1). Here, the pear size is overestimated,
and a particle pair is accounted as overlapping even though they are
not in contact according to the Bézier-curve depiction. The effect
is comparable to the PHGO pears and HGO ellipsoids84 entering
orientationally ordered phases at slightly lower densities than their
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true hard-particle equivalents. The depth of the effective potential
does not necessarily indicate that the two models differ qualita-
tively, but suggests that the depletion is more guided toward the
equilibrium states.

The relative orientation distribution between two PHGO par-
ticles in close contact is plotted in Fig. 5(b). Two distinct peaks
emerge similar to the equivalent HPR system. The smaller peak is
found at α = ±π, which again corresponds to an antiparallel con-
figuration. Therefore, the orientation distribution suggests that the
PHGO pear model reproduces the antiparallel solution sufficiently.
In this domain, the HPR and PHGO differ the least from each other,
such that it is quite intuitive that in the antiparallel case both models
share the same solution. Additionally, we find many configurations
as depicted in Fig. 5(IV), which contribute to the pronounced peak at
α = ±π and coincide with the ideal solution to a sufficient degree. By
focusing on the second larger peak, however, we observe two major
differences compared to the HPR system. Firstly, the peak is signif-
icantly more intense. This indicates that for PHGO particles, the
parallel configuration is more beneficial than the antiparallel solu-
tion. This is explained by the ability of PHGO particles to come close
together than HPR particles when parallelly aligned. By changing the
relative angle between the pear-shaped particles, the overlap tends to
be underestimated by the PHGO model, which consequently leads to
a lower excluded volume. Thus, the duality of the ideal configuration
is broken by the particular angle dependence of the PHGO con-
tact function and weighted to the benefit of parallel arrangements.
This observation is in accordance with the pair correlation func-
tions of the monodisperse pear-shaped particle systems, obtained in
Paper I.1 Also, these plots indicated a pronounced polar alignment
between neighboring PHGO particles reminiscent of a bilayer archi-
tecture of the gyroid structure but which is not exhibited by HPR
particles.

The second difference is the position of the peak, which
is shifted from α = −15○ to a positive value close to α = 20○.
Hence, the particles adopt slight V-configurations rather than the A-
configurations seen for HPRs. To clarify the reason behind this tran-
sition, we take a closer look at those V-configurations, which can be
obtained from the simulations directly. A representative pair is por-
trayed in Fig. 5(III). It becomes apparent that the pears slightly over-
lap.100 Furthermore, the underlying underestimation of the PHGO
contact function enables the pear-shaped particles to occupy space,
which by design cannot be reached by hard spheres and would
also be prohibited for HPR particles. This effect is known as pair-
wise non-additivity and is well studied for hard binary sphere mix-
tures,85–89 which successfully model the behavior of binary alloys90,91

or organic mixtures.92,93

The V-configurations also can be associated with a special
kind of non-additivity effect between two PHGO pears, which
we called self-non-additivity in Paper I1 of this series. Due to
the self-non-additivity between the blunt ends of PHGO parti-
cles, the excluded volume is decreased instead of simple align-
ment by an alternative route, namely by increasing the overlap of
the two particles. For pears with k = 3 and θk = 15○, the max-
imal overlap according to the Bézier shape occurs roughly at an
angle of αoverlap ≈ 30○. This is considerably higher than the mea-
sured angle between the pears in the V-configuration observed in
the simulations. However, we can argue that the adopted angle
results from the intricate interplay of reducing excluded volume via

overlap and alignment and the sphere radius of the solvent. For small
volume ratios, the overlap is more dominant and the V-arrangement
more favorable, whereas for large ratios, the contribution of the
overlap becomes negligible and the aligned A-configuration will be
adopted.

To complete the comparison between the HPR and PHGO par-
ticles, we investigate the lateral distance of the PHGO pears to its
fellow pear in close contact in Fig. 5(d). Compared to Fig. 5(c),
the distribution is much narrower and shifted toward the blunt
end, which leads the impression that the HPR particles have more
freedom to explore configuration space, whereas the PHGO pears
are more restricted in terms of fluctuations from the ideal configu-
ration. The emergence of the shifted peaks can again be attributed to
the non-additive characteristics of the PHGO model. Furthermore,
the two maxima at lateral distance z = −0.17 and z = 0.70 indicate
the existence of two different contact points. One is associated with
the V-position (z < 0), and the other peak can be identified as the
contact for the antiparallel solution z > 0.

IV. THE NAHPR MODEL
In the first paper of this series, we have discussed aspects of

whether the HPR model or the PHGO model is closer to potential
experimentally synthesized colloidal particles.20 As we came to the
conclusion that this question cannot be resolved conclusively, we
now pursue a different question in this section. Namely, we analyze
some concepts of how a non-additive pear-shaped particle with a
contact function of the PHGO particle would need to be designed, if
non-additivity is indeed enough to stabilize the V-configuration and,
more precisely, how the HPR contact profile would need to be mod-
ified to obtain the key characteristics of the PHGO contact function.
Therefore, we propose an approach by which non-additive features
could be introduced to the mesh description of HPR particles as
well.

To mimic the behavior of PHGO particles, non-additive fea-
tures have to be added to the blunt ends of the pear particles. Using
this approach, we have specifically tried to engineer an HPR poten-
tial, which favors the formation of V-configurations due to depletion
interactions. One idea is to introduce a “prickly” pear-shaped col-
loid. Here, non-additivity is modeled by a region of spikes, which
is pervious by thorns of other colloids, leading to an effective “over-
lap” of the pear shapes, but cannot be penetrated by their hard bodies
[see Fig. 6(a)]. Here, we have to consider that the spikes should not
be too dense, which would prevent the full penetration of spikes or
causes the particles to wedge. On the downside, if the spikes are dis-
tributed only sparsely, also the hard body can enter the non-additive
region. Nevertheless, it seems feasible that we can effectively repli-
cate the self-non-additive properties of the PHGO model by colloids
with spikes in appropriate distances and optimized angles of the
thorns.

To avoid optimizing the prickly pear-shaped colloids in terms
of spike distance and angle, we describe in our simulations the semi-
penetrable region of the colloid by a second mesh in addition to that
used for calculating the HPR interactions. This mesh that describes
the interaction between two blunt ends is based on the distance of
two PHGO particles with the largest overlap. As mentioned, this
occurs for αoverlap ≈ 30○. However, the distance is decreased even
further by −0.035σw to additionally compensate for the contact
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FIG. 6. Possible design of a “prickly” pear-shaped colloid that copies the properties
of the PHGO and NAHPR models. The self-non-additivity is modeled by a region
of spikes (blue), which is pervious for spikes of other pear-shaped colloids but
not for their hard body (black). (b) The procedure to obtain the second mesh in
the NAHPR model, which determined the overlap between the blunt ends of two
pears with k = 3 and θk = 15○. First, two pears are placed symmetrically at an
angle α = 30○ such that the pears are exactly in contact according to the PHGO
contact function. The distance is decreased by −0.035σw also to compensate
for the contact overestimation for A-configurations. Afterward, the overlap is cut
from the initial contour (dashed) such that a concavity occurs (dotted line). The
equivalent non-additive contour is obtained from its convex hull (dashed-dotted).
This procedure is repeated for different angles between α = 30○ ± 10○. The final
contour (solid line) is the basis of the solid of revolution from which the mesh is
generated.

overestimation for A-configurations, which otherwise would not be
considered. The contour of the non-additive shape is created by
introducing a flat line between the two points, where both Bézier
curves meet [see Fig. 6(b)]. Taking this new contour as a basis, we
repeat the procedure for different angles α = 30○ ± 10○ to allow
some flexibility of the adopted orientations. Afterward, a triangu-
lated mesh of the solid of revolution of the resulting contour is gen-
erated. The mesh is implemented within the MC algorithm such that
in most arrangements only the blunt ends of the pears are allowed to
overlap according to the Bézier shape. However, the particles inter-
act via the non-additive mesh exclusively when the particles come
together with their blunt ends. Otherwise, the overlap is determined

by the regular mesh describing the pear surface (see Fig. 7). Fur-
thermore, the pear–sphere interactions stay unmodified such that
the hard solvent still experiences the HPR pear. We will refer to
this model as the non-additive hard pear of revolution (NAHPR)
model. In experiments, the underlying contact function might be
realized by preparing pear colloids with a rougher surface at the
pointy than at the blunt ends or through some other surface func-
tionalization. By using different roughness, the strength between dif-
ferent parts of a colloid can be controlled, and therefore, an effective
entropic attraction between specific moieties of the colloid can be
introduced.94,95

After implementing the non-additive contact function, the
depletion MC simulations are again repeated with the same param-
eters. Both Figs. 4 and 8 reveal that many of the features of the
PHGO model have been adopted by the NAHPR model. By investi-
gating the separation during the MC simulation in Fig. 4, it becomes
apparent that the depletion interaction increases. Even though the
PHGO particles show slightly weaker attraction, the NAHPR par-
ticles remain in the zone of influence similarly as soon as they are
within their vicinities. More interesting, however, is the orienta-
tion distribution for NAHPR particles in contact [see Fig. 8(a)].
The non-additivity at the blunt ends indeed stabilizes the desired
V-configurations creating a dominant peak at around α = 20○. Nev-
ertheless, by taking a close look, a small peak at the A-configurations
can be observed as well. This leads to the conclusion that two minima
for the excluded volume can be obtained within the parallel con-
figurations. The global one is attributed to the V-configuration and
the non-additivity, and the second minor one can be ascribed to the
A-position and the parallel alignment of the pears according to their
tapering parameter.

The NAHPR model can also reproduce roughly the lateral
distance distribution of the PHGO particle. Even though the dis-
tribution in Fig. 8(b) is broader than the one in Fig. 5(b), most
of the contact points are located underneath the center point of
the pear-shaped particle as well. However, the NAHPR model
still does not reproduce all features of the PHGO particles. For
instance, some of the simulations end up in configurations, which
contribute to the preferred antiparallel alignment but do not
coincide with the prediction. Although the predicted antiparal-
lel arrangement, where thin and blunt ends of the pear-shaped
particles are next to each other, is still the dominant configura-
tion, the non-additivity allows the particles also to overlap with
the blunt ends in an antiparallel configuration [S-configuration, see

FIG. 7. Concept of the overlap determination for the NAHPR model. The pear consists of an inner contour (solid line, non-additive part) and an outer contour (dotted line,
similar to the HPR model). If the pears come together with their blunt ends (left), the particles are considered in contact if their inner contours touch. Otherwise (center), the
outer contours determine the overlap. The interactions with hard spheres are also according to the outer contour (right).
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FIG. 8. Relative orientation (a) and
lateral distance distribution (b) of two
non-additive HPR particles surrounded
by 1498 hard spheres, acting as a
solvent at global density ρg = 0.45,
on the left. The particle parameters
are set to k = 3, θk = 15○, and
rdepl = 0.31σw (

Vdepl

Vpear
= 0.08). Only pair

configurations are considered if the pear-
shaped particles are close to each other
and the excluded volumes overlap. Pos-
itive angles α indicate V-configurations
(blunt ends together). Negative α val-
ues describe A-configurations (pointy
ends together). This is also indicated
above the plot. On the right, two typical
arrangements, extracted from the sim-
ulations, are shown. The top snapshot
[dotted line, (c)] corresponds to the indi-
cated peak and shows the engineered V-
configuration. The bottom configuration
[dashed-dotted line, (d)] is a defect of
the non-additive mesh and contributes
next to the antiparallel solution also to
the second indicated peak.

Fig. 8(d)] and also introduces in the antiparallel case a secondary
minimum.

V. CONCLUSION AND OUTLOOK
In this article, we have studied depletion effects of pear-shaped

particles in a solvent of hard spheres. To this end, we have inves-
tigated the depletion interactions of a pair of pear-shaped particles
surrounded by a hard-sphere solvent. In the course of this study, we
first determined the optimal pear configurations in terms of min-
imized total excluded volume based on the Bézier curves to pre-
dict the equilibrated particle formation. Using numerical calculation
techniques, we identified two configurations that both correspond to
two global minima: a parallel solution and an antiparallel solution,
which both share the same contact point on the pear surface. Both
configurations could be related directly to the taper of the particle.
Afterward, the predicted states could be obtained in Monte Carlo
simulations of two HPR pear particles dissolved in a hard-sphere
solvent. However, the depletion attraction is weaker for the chosen
parameters.

In comparison, the PHGO pear particles revealed differences to
the predictions in Sec. II. Even though the antiparallel configuration
was also reproduced for PHGO pears, the parallel solution was found
to be more dominant and shifted from an A- to a V-configuration
with a different contact point. We argue that the V-configuration
is stabilized by the PHGO contact function that underestimates the
pear contact distance slightly and causes overlaps according to the
Bézier representation. Moreover, it has been shown that the deple-
tion attraction between two PHGO particles is much stronger than
between HPR particles.

The discrepancies in the depletion behavior also give improved
insight into why the PHGO model has a propensity to forming inter-
digitated bilayer phases and why such bilayers are absent in the phase
diagram of HPR particles. It is more than likely that specific details
of the relative positions between neighboring pear-shaped particles
are varied due to the enhanced complexity of the excluded volume
effects in one-component assemblies. Nevertheless, based also on the
pair correlation functions in Paper I, we can reason that the non-
interdigitating name of the arrangements would not change, and
hence, general statements about the local formations can be made.
In particular, three contributions to the stabilization mechanisms of
bilayer configurations20 are identified.

1. By breaking the duality of the optimal configurations (parallel
and antiparallel), the systems introduce a local polar order. In
the PHGO model, this leads to a dominant formation of par-
allel alignments between adjacent pears. Hence, the system is
guided toward the formation of sheets, which are a prerequisite
of interdigitated bilayers.

2. The interdigitation is enhanced by the preferred parallel order
into V- rather than A-configurations. It is quite intuitive to
imagine that sheets, which consist of an array of V-aligned
pears, interlock analogous to a zip mechanism in a “zigzag”
pattern and subsequently develop bilayers.

3. The greater fluctuations of the contact point in HPR systems
hinder a targeted alignment of particles. This consequently
leads to an increased susceptibility for defects within the bilay-
ers, and a weaker correlation of translational order as those
observed in typical smectics let alone gyroid or lamellar phases.

Based on these three factors, we introduced an additional
model, the non-additive hard pear of revolution (NAHPR) model,
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which combines similar overlap rules as for hard pears of revo-
lution with non-additive properties of PHGO particles. In a nut-
shell, the NAHPR particles can recreate some of the features of
the PHGO contact function, like the formation of V-configurations,
the enhanced depletion attraction, or the shift of the contact point
toward the blunt ends. At the same time, some other features like the
symmetry breaking into heavily favored antiparallel configuration
could not be resolved by the modified model yet. Unfortunately, we
could not determine whether the NAHPR particles indeed do form
bilayer phases, due to the very time-consuming calculations of the
contact function and, hence, major equilibration issues. However,
the introduction of non-additivity between blunt ends seems to be a
pivotal factor to enable bilayer formation. The present issues might
be resolved by further alternations of the NAHPR interactions. One
solution might be to add additional angle dependence to the non-
additivity, such that blunt ends are only able to overlap if the parti-
cles are pointing roughly in the same direction. This would probably
diminish the formation of S-configurations. This, however, is in con-
trast with the original idea of prickly pear-shaped colloids, where this
asymmetry seems hardly achievable. Another approach might be to
replace the rounded pear surface with a partially flat surface. This
would allow us to control not only the non-additivity attraction but
also the depletion attraction via alignment by introducing more or
less curvature to the surfaces.

As a final note of this paper series, we have to mention the
importance of detail in self-assembly processes of complex struc-
tures again. Not only have we shown in Paper I, based on the pres-
ence and absence of the gyroid phase in the PHGO and HPR mod-
els, respectively, that already small variations in particle shape can
alter the phase behavior of colloids drastically. We also shed light
on the formation of bilayer-like gyroid structures in this paper. The
depletion interactions reported here indicate that the bilayers are
a result of a delicate interplay between the taper of the pear shape
and the self-non-additive features of the PHGO contact function.
Therefore, we argue that solely particle asymmetry is not sufficient
but, in addition to self-non-additivity, necessary to create gyroid-like
configurations.
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APPENDIX: SAMPLING ALGORITHM
This appendix describes the sampling algorithm to determine

the most compact arrangement between two pear-shaped particles.
The most important steps are both sketched in Fig. 9 and itemized
below:

1. In the first step, an initial arrangement of two pear-shaped
particles is chosen. We only consider arrangements, where
the two pears are in contact, as those configurations provide
the minimal excluded volume for convex particles in terms of
separation.

2. Afterward, the surfaces of the particles are triangulated to cre-
ate two separate meshes (B1 and B2) representing the pear
shape.

3. In the next step, the parallel surfaces of the triangulations are
generated. The vertices pt of the triangulations are translated
in normal direction n̂ by rdepl.

f∥,rdepl : B→ B′

f∥,rdepl(pt) = pt + rdepl ⋅ n̂(pt).
(A1)

The resulting new meshes B′1(rdepl) and B′2(rdepl) correspond
to the interface separating the impenetrable and available space
of virtual hard spheres with radius rdepl caused by the first and
second pears, respectively.

4. Subsequently, B′1(rdepl) and B′2(rdepl) are merged to calculate
the collective excluded volume defined by

Vexcl(rdepl) = B′1(rdepl) ∪ B′2(rdepl). (A2)

FIG. 9. Main steps of the algorithm to predict the ideal two pear-shaped particle arrangement in terms of excluded volume. In the first and second steps (left), a configuration
is chosen, and the surface meshes B1 and B2 of the pear-shaped particles are created. In the third step (center), the individual excluded volumes of the pears B′1 and B′2
are created by constructing the parallel surface of B1 and B2. Afterward (right), the two meshes are merged and the total excluded volume Vexcl is computed. The steps are
repeated until enough configurations are sampled.
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5. Another configuration, which has not been observed yet, is
chosen, and the algorithm returns to step 2. This procedure
is repeated until the configuration space is sampled sufficiently
densely.

In this article, this algorithm is applied to pears with aspect
ratio k = 3 and tapering parameter θk = 15○. Moreover, we use rdepl
= 0.31σw , which corresponds to spheres with Vsph = 0.08 ⋅Vpear to
create the data for Figs. 2 and 3. The computations are performed
using the “Boolean operator” of the 3D animation software tool
Houdini96 for creating intersections between mesh representations
of two pear-shaped particles.
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The data that support the findings of this study are available
within the article.
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