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Dynamics and stability of an optically levitated mirror
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We analyze the dynamics of a one-dimensional vertical Fabry-Pérot cavity, where the upper mirror levitates
due to intracavity radiation pressure force. A perturbative approach is used based around separation of timescales,
which allows us to calculate the physical quantities of interest. Due to the dynamics of the cavity field, we find
that the upper mirror’s motion will always be unstable for levitation performed using only a single laser. Stability
can be achieved for two lasers, where one provides the trapping potential and the other a damping effect, and we
locate and characterize all parameter regimes where this can occur. Finally we analyze photothermal effects due
to heating of the mirror substrate. We show that this can stabilize the system, even with only a single input laser,
if it acts to increase the optical path length of the cavity. This work serves as a foundation for understanding how
levitated optical cavity schemes can be used as stable metrological platforms.
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I. INTRODUCTION

Optomechanics explores the interaction between electro-
magnetic radiation and mechanical motion. The canonical
example is a Fabry-Pérot cavity, one end of which oscillates
on a spring [1]. This interaction between different physical
systems opens up many applications. We can perform preci-
sion metrology by coupling the mechanical motion to some
force of interest and reading out its position via the cavity field
[2], and thermal motion of the oscillator can be cooled using
optical techniques [3]. A quantum state of light in the cavity
could generate a macroscopic quantum superposition in the
mechanical oscillator [4,5], providing a platform for tests of
quantum decoherence [6] and models of semiclassical quan-
tum gravity [7–9]. Alternatively, the interaction can lead to the
generation of squeezed light for quantum information [10,11].

The main source of noise and decoherence in optomechani-
cal systems is generally thermal effects from the environment,
which will couple into the system via the mechanical oscilla-
tor and can be significant even at cryogenic temperatures [12].
Finding ways to combat this is one of the key challenges in
optomechanics. One approach is to use advanced fabrication
techniques and designs to reduce the coupling via the physical
channel [13,14]. Alternatively, we can replace the mechanical
spring with optical trapping and levitation of the cavity mir-
rors [15–21], which can also lead to optical springs with much
higher Q factors than is possible mechanically [22,23] due to
the lack of internal mechanical strains in the oscillation. In
particular, we will consider a vertically oriented Fabry-Pérot
cavity where the upper mirror levitates on the intracavity field.
This approach achieves decoupling from the environment,
without the drawback of scattering losses present in setups
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such as optical tweezers. These systems are also open to
further, all-optical system engineering [24].

Such a system has been proposed and analyzed [8,25–
27], and it has been found that these can attain the standard
quantum limit with realistic experimental parameters. These
schemes are also very flexible, with the spring constant and
damping coefficient selectable through choice of optical fre-
quency and power [20]. However, a detailed investigation of
the optical spring has not yet been performed. While the lev-
itating mirror shares many characteristics with conventional
optomechanical systems, the lack of a reference mechanical
oscillator means that the spring is entirely optical in nature.
We will show that this introduces some key differences in
behavior.

In this paper we perform a theoretical investigation of the
optical spring of a one-dimensional levitating system, making
use of a perturbative and separation-of-timescales approach.
While our analysis will be fully classical, such a treatment
is a necessary precursor to both a quantum investigation and
experimental realization. We will be concerned only with
optically induced stability, with the assumption that geometric
stability has already been provided. This could be done via
a field gradient as in optical tweezers [28,29], a multibeam
configuration [25,26], or other means such as electromagnetic
confinement.

In Sec. II we introduce a perturbative analysis based on
separation of the optical and mechanical timescales. Key
dimensionless parameters are identified in Sec. II A, and an
adiabatic approximation in Sec. II B allows us to identify an
effective potential in which the levitating mirror moves. In
Sec. II C we consider the first-order correction to this which
introduces optical antidamping to the system, and in Sec. II D
we show how the previous analysis leads to an intuitive visu-
alization of the evolution of our dynamical variables. We then
apply this formalism in Sec. III, analyzing passive two-laser
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TABLE I. Physical parameters used in the model.

Variable Meaning

Mirror
x Mirror height
px Mirror momentum
m Mirror mass
g Gravitational acceleration

Cavity
L0 Cavity natural length
G Linear optomechanical coupling ω0/L
ω0 Cavity frequency
κi Cavity input coupling
δω Cavity linewidth

First input laser
α Amplitude of first cavity field
Pα Input power of first input laser
ωα Frequency of first input laser
�α First laser detuning ω0 − ωα

Second input laser
β Amplitude of second cavity field
Pβ Input power of second input laser
ωβ Frequency of second input laser
�β Second laser detuning ω0 − ωβ

Photothermal effects
ζ Photothermal strength
γ Photothermal relaxation rate

optical cooling in Sec. III A and photothermal expansion in
Sec. III B.

The quantities defined in the paper are summarized in
Tables I and II. Code for computer simulations, their results,
and all figures may be downloaded from Ref. [30].

II. ANALYSIS OF THE IDEAL SYSTEM

We first consider an idealized version of our system. This
can be very well characterized, and our findings and intuition
can be translated to when we add in experimental considera-
tions such as additional lasers and photothermal expansion.

The system is shown in Fig. 1, and consists of a vertically
oriented Fabry-Pérot cavity where the bottom mirror is fixed
and the upper levitates due to the radiation pressure force of
the intracavity field. The cavity has frequency ω0 and natural
length L0, and the deviation of the upper mirror’s position
from L0 is denoted by x. The intracavity field amplitude is
α. In what follows, we will often refer to the levitating mirror
as simply the “mirror.”

We will often want to compute the values of various
quantities. A typical set of parameters for this system is a
cavity finesse of 2500, a length of 10 cm, and a mirror mass
of 1 mg. We will take the input laser to be 1050 nm with a
power of 2 watts, and assume the input coupling is half of
the linewidth (κi = δω/2 in Eq. (1)), meaning all losses are
coming from the bottom mirror.

A. Dimensionless equations of motion

Suppose the cavity is driven by a coherent laser field with
frequency ωα . Moving to a reference frame rotating with the
laser frequency, the system is then described by the equations

TABLE II. Natural parameters used in the model.

Variable Meaning

Natural scales

 Natural length δω/2

G

ν Mechanical frequency
√

G2Pα2κi/mω0(δω/2)3

Cavity and Mirror
x̃ x/

p̃x px/m
ν

σ̃
√

g̃−1 − 1
g̃ Effective gravity (mgL0(δω/2)2)/(2κiPα )
ε̃ Ratio of timescales ν/(δω/2)
χ̃ x̃ + �̃α

First input laser
α̃ α/A
A Cavity max amplitude (δω/2)−1

√
(2κiPα )/(h̄ω0)

�̃α �α/(δω/2)
Second input laser

β̃ β/(B̃A)
B̃ Ratio of max amplitudes of β/α:

√
Pβ/Pα

�̃β �β/(δω/2)
�̃βα �̃β − �̃α

Photothermal effects
ζ̃ (h̄ω0A2ζ )/(2
L0/c)l
γ̃ γ /ν

of motion [1, Sec. III.C] (where a dot denotes a derivative with
respect to time t)

ẋ = px

m
,

ṗx = −mg + h̄G|α|2, (1)

α̇ = i(�α + Gx)α − δω

2
α +

√
2κiPα

h̄ω0
.

FIG. 1. A vertically oriented Fabry-Pérot cavity with frequency
ω0, natural length L0, and intracavity field amplitude α. The upper
mirror is displaced a distance x and has momentum px . The mirror is
pushed downwards by gravity g, and upwards by radiation pressure
force Frp = h̄G|α|2.

053857-2



DYNAMICS AND STABILITY OF AN OPTICALLY … PHYSICAL REVIEW A 101, 053857 (2020)

Here m is the mass of the mirror, with x and px its position
and momentum, respectively, and g the gravitational acceler-
ation. In the second equation the h̄G|α|2 term represents the
radiation pressure force on the mirror due to the cavity field,
with G the linearized optomechanical coupling [1, Sec. III.B].
The input field of power Pα is detuned �α = ω0 − ωα relative
to the cavity resonance, with input coupling κi. The cavity has
linewidth δω, and h̄ is the reduced Planck’s constant.

To simplify the analysis, we nondimensionalize the equa-
tions of motion. What follows is a brief discussion of the
results, for more details see Appendix A. We will introduce
a natural length scale 
, frequency ν, and cavity amplitude A,
defined as


 = δω/2

G
, ν =

√
h̄GA2

m

, A = 1

δω/2

√
2κiPα

h̄ω0
. (2)

The parameter 
 is the spatial displacement of the mirror for
the cavity to have a detuning of one half-linewidth, and A
gives the maximum cavity amplitude: 0 < |α|2 < |A|2. The
timescale of the upper mirror’s oscillation frequencies is
given by ν, which is half the optical spring frequency at one
lindwidth’s displacement. Because of this we will often refer
to ν as the “mechanical timescale” and δω/2 as the “optical
timescale.”

In terms of these natural scales we define the dimensionless
dynamical variables (denoted by a tilde):

τ̃ = νt, x̃ = x



, p̃ = p

m
ν
, α̃ = α

A
. (3)

Because of the chosen normalization, we will have 0 < |α̃|2 <

1. Furthermore the mirror variables x̃ and p̃x will typically be
of order 1, as if x̃ � 1 the cavity detuning will be far from
resonance so the optical force will approach zero.

We will also require three dimensionless parameters:

g̃ = g


ν2
, ε̃ = ν

δω/2
, �̃α = �α

δω/2
. (4)

The simplest is �̃α , which is the detuning rescaled in terms of
the cavity linewidth. More interesting is the “effective gravity”
g̃, which equals (simplifying G = ω0/L0 [1, Sec. III.B])

g̃ = mgL0(δω/2)2

2κiPα

. (5)

In the numerator are quantities which, when increased,
make levitation more difficult, namely mass, gravity, cavity
linewidth, and the natural length of the cavity. In the denomi-
nator we have the coupled input power.

Finally there is the parameter ε̃, which compares the
response timescale of the cavity δω/2 to our natural
timescale ν:

ε̃ = 1

L0(δω/2)5/2

√
2κiPαω0

m
. (6)

To understand the dependence on cavity length it is helpful to
expand δω = (πc)/(L0F ), where c is the speed of light and
F the cavity finesse

ε̃ = L3/2
0

(
2F
πc

)5/2
√

2κiPαω0

m
. (7)

Typically the intracavity field responds very quickly to
changes in the position of the mirror, and so ε̃ will be very
small. For the parameters mentioned in Sec. II B we have ε̃ ≈
1/6, and if the cavity length is decreased to 1 cm this becomes
ε̃ ≈ 1/60. We will exploit this separation of timescales to
perform a perturbative expansion around ε̃ ≈ 0, which will
simplify the dynamics to the point where an analytic approach
is tractable. Numerical simulation will show that this picture
is still reasonably accurate, even for values of ε̃ ≈ 1/5.

With these definitions, and letting primes denote deriva-
tives with respect to τ̃ , the equations of motion are

x̃′ = p̃x,

p̃′
x = −g̃ + |α̃|2, (8)

α̃′ = [i(�̃α + x̃)α̃ − α̃ + 1]/ε̃.

From the differential equation for p̃′
x, we see that levitation

can only occur in the regime 0 < g̃ < 1. Throughout the rest
of this section we will understand this system by analyzing it
using successively weaker approximations.

B. Adiabatic limit

The optical timescale will typically be much faster than
the mechanical one. We can exploit this to perform an “adi-
abatic approximation” and assume that for any given x̃, the
light field will immediately reach its steady state given by
α̃′ = 0. Formally this corresponds to the limit ε̃ → 0, see
Appendix B for a detailed derivation. In this case we have

|α̃|2 = 1

1 + (�̃α + x̃)2
, (9)

giving us the reduced equations of motion

x̃′ = p̃x,

p̃′
x = −g̃ + 1

1 + (�̃α + x̃)2
. (10)

In Appendix C we show that these equations describe a
classical particle moving in a potential

Ṽ (x̃) = g̃(�̃α + x̃) − arctan(�̃α + x̃), (11)

with total dimensionless energy

Ẽ (x̃, p̃x ) = p̃2
x

2
+ Ṽ (x̃). (12)

We plot the potential Ṽ (x̃) in Fig. 2(a) for various values of
g̃. This has two equilibrium points at

x̃s
± = −�̃α ± σ̃ , (13)

where we defined

σ̃ =
√

g̃−1 − 1. (14)

The point x̃s
− is unstable, while x̃s

+ allows for quasistable
oscillations. Small g̃ gives a wide and shallow potential well,
which morphs into a point of inflection as g̃ approaches its
maximum value of 1.

We detail in Appendix C how to use Ṽ (x̃) to calculate
the possible frequencies of oscillation of the mirror, which
will depend on the amplitude of oscillation since the well
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FIG. 2. (a) Slices of the dimensionless potential Eq. (11), plotted
for various values of g̃. The two black dots represent the equilibrium
points at ±σ̃ for g̃ = 0.5. (b) The dimensionless potential over all
values of g̃. The solid lines correspond to the values of g̃ plotted in (a),
and the dashed lines show the equilibria at ±σ̃ . (c) The frequencies
of oscillation divided by ν̃, as a function of g̃ and amplitude scaled
by 
. The white region represents oscillation amplitudes which are
larger than the width of the potential well for that value of g̃, and
hence impossible.

is anharmonic. The range of possible amplitudes decreases
as g̃ increases, as this corresponds to the well shortening.
We plot the frequencies in Fig. 2(c). Note that apart from
amplitude, the frequency of oscillation depends solely on the
dimensionless parameter g̃, and we observe that frequency
decreases as the amplitude increases.

Finally, up to present we assumed that the detuning �̃α is
static. In practice the system is often characterized by sweep-
ing the detuning over a range of values: �̃α (τ̃ ) = �̃α0 + s̃τ̃ ,
for �̃α0, s̃ constants. Assuming the mirror begins resting on
some solid support at x̃ = 0, we show in Appendix C that
if the detuning is swept from negative to positive the mirror
exhibits temporary oscillations, while if the detuning begins
positive and decreases, the mirror will be lifted off the support
if and only if the scan speed s̃ is less than the critical value

s̃c = 2
√

arctan(σ̃ ) − σ̃ g̃. (15)

C. Dynamics of the light field

We will now relax the adiabatic approximation, and con-
sider the first-order perturbation to Eq. (10) induced by the
dynamics of the light field. In Appendix B we derive the
first-order correction

x̃′ = p̃x,

p̃′
x = −g̃ + 1

1 + (x̃ + �̃α )2
+ ε̃

4( p̃x + s̃)(x̃ + �̃α )

[1 + (x̃ + �̃α )2]3
. (16)

Recall that in the adiabatic limit the mirror oscillated in
the dimensionless potential without any loss of energy. If
we compute the derivative of Ẽ , hereafter referred to as the
“heating rate,” from Eq. (12) with respect to the first-order
equations Eq. (16), we find (setting s̃ = 0 for simplicity)

d Ẽ
d τ̃

= ε̃
4 p̃2

x̃(x̃ + �̃α )

[1 + (x̃ + �̃α )2]3
. (17)

The dynamics of the light field thus alters the energy of
the system, and the sign of x̃ + �̃α determines whether
damping (negative) or antidamping (positive) occurs. This
corresponds to the usual optomechanical picture of sideband-
heating (cooling) in the blue (red-detuned) input-laser regime
[1, Sec. VA]. Let us look again at the potential in Fig. 2(a),
and consider a small oscillation around the potential well
minimum. Since the oscillations lie to the right of the axis,
x̃ + �̃α is positive; there will be antidamping and the ampli-
tude of the oscillation will grow. Eventually the oscillations
will be so large that the mirror crosses the axis into the
damping region, however, as this is much narrower than the
antidamping region, we can expect that over one oscillation
the antidamping will dominate, and the mirror will eventually
cross over −σ̃ and leave the trap. The effect of the dynamics of
the light field is thus to render unstable all oscillations within
the trapping well.

Finally, we investigate in Fig. 3 how accurate the approx-
imation made in this section is. We see in Fig. 3(a) that for
a value of ε̃ = 1/100 there is no visible difference between
the approximation and full simulation for x̃ and p̃x. Zooming
in on the heating rate in Fig. 3(b), this is found to be highly
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FIG. 3. (a) Comparison of the first-order approximation Eq.
(16) (orange) with the full system Eq. (8) (blue), with parameters
(g̃, ε̃, �̃α ) = (0.5, 1/100, 0). The mirror starts off slightly perturbed
from equilibrium, and exhibits growing oscillations until it falls out
of the trapping well. The traces for x̃, p̃x , and the energy Ẽ perfectly
coincide, while we can see slight discrepancies in the heating rate
d Ẽ/d τ̃ . (b) Zooming in to the heating rate d Ẽ/dt̃ (same parameters
as (a)) we see that the actual equations of motion predict very fast be-
havior, the average of which is well described by the approximation.
(c) For ε̃ = 1/10 the actual dynamics eventually diverge from those
of the approximation, however, they are still qualitatively similar.

oscillatory due to the rapid dynamics of the cavity field, but
the average value is well described by the approximation. For
ε̃ = 1/10 shown in Fig. 3(c) we get a divergence, however,
the dynamics are still qualitatively similar. The approximation
may thus still be effective for analyzing qualitative features of
dynamics, even in reasonably large ε̃ regimes.

FIG. 4. (a) A plot of x̃ vs t̃ for (g̃, �̃α, ε̃) = (0.5, 0, 1/5), where
the trajectory is colored according to time τ̃ (beginning at blue and
ending at yellow), and shown moving in the effective potential Ṽ (x̃)
defined in Eq. (11). The mirror exhibits growing oscillations in the
trapping region, until eventually it falls out. (b) The same trajectory
now plotted in phase space. The dynamics rapidly collapse onto the
Lorentzian-shaped adiabatic manifold given by Eq. (9), then exhibit
growing oscillations until they fall out of the trap.

D. Visualizing the motion

The simpler picture of the adiabatic and first-order ap-
proximations provides us with an intuitive visualization of
the system dynamics. Consider the trace for position x̃ in
Fig. 3(a); the mirror exhibits growing oscillations until at
some point it falls out of the trap. We can better understand
this by plotting the mirror’s motion in the potential Ṽ (x̃) in
Fig. 4(a) (simulated for a different value of ε̃ to Fig. 3). Now
we can clearly see how the mirror is oscillating in a trapping
region, and that the fall occurs once the oscillations take it
out of the potential well. Note that we are simulating the full
dynamics Eq. (8) without any approximation.

In Fig. 4(b) we plot the same trajectory in phase space.
Regardless of starting point, the dynamics rapidly collapse
onto the Lorentzian-shaped adiabatic manifold given by Eq.
(9), indicated by the orange surface. The system exhibits
growing oscillations on the manifold, until eventually falling
out of the trap. Thus while we have three dynamical variables,
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the separation of timescales means that the dynamics are
effectively two-dimensional.

The potential and adiabatic manifold shown in Fig. 4 are
derived in the limit ε̃ → 0. Note, however, that the trajectory
we simulate is for the somewhat large value of ε̃ = 1/5.
Even at such values, our analysis can still provide us with an
effective intuition for the system. The trajectory does briefly
leave the manifold when passing over the maximum of the
Lorentzian, but as ε̃ decreases these deviations will become
much less noticeable.

III. APPLICATIONS OF IDEAL ANALYSIS

In this section we will apply the analysis of Sec. II to
two scenarios of experimental relevance. First, we will look
at passive sideband cooling, a commonly used technique in
optomechanics, and show that it is much less effective for a
levitating mirror system. Second, we investigate photother-
mal effects of the mirror substrate. This is likely to become
significant at the powers required for levitation, and we will
show that this can have a stabilising or destabilizing influence
depending on the sign of the effect.

A. Passive cooling

It is common in optomechanics to use a (possibly second)
laser to passively damp the mirror’s motion, a technique
known as sideband cooling [1, Sec. V.B]. Depending on the
detuning of an input laser, it can either lead to a trapping
force and antidamping, opposing motion of the mirror but
transferring energy to it from the optical field, or antitrapping
but damping, removing energy from the mirror while pushing
it in the direction of motion. In the case of a levitated mirror
the idea would be to use a strong primary laser to provide the
trapping, and a weaker, detuned, ancillary laser to provide the
damping. By choosing appropriate amplitudes and detunings
for the two lasers, one aims to find a regime where the
net trapping and damping effects dominate. In contrast to a
normal optomechanical system, however, we do not have a
mechanical spring, and so all of the trapping force must come
from the light field. This makes a difference, and while there
do exist regions with simultaneous trapping and damping, the
potential around these tends to be both shallow and flat.

Suppose we have a second laser incident on the cavity,
leading to another mode with amplitude β. The equations of
motion Eq. (1) then become

ẋ = px

m
, ṗx = −mg + h̄G|α|2 + h̄G|β|2,

α̇ = i(�α + Gx)α − δω

2
α +

√
2κiPα

h̄ω0
, (18)

β̇ = i(�β + Gx)β − δω

2
β +

√
2κiPβ

h̄ω0
,

where now Pβ and �β are the power and detuing of the
laser driving β. As before many of these parameters may
be eliminated via nondimensionalization, where now we will
exploit the symmetry between α, β. Without loss of generality

we may take Pα � Pβ , and in analogy to Eq. (3) write

β̃ = β

B̃A
, (19)

where B̃ = √
Pβ/Pα is between zero and one, and we will also

have |β̃|2 < 1. Defining �̃βα = �̃β − �̃α and χ̃ = x̃ + �̃α ,
the nondimensionalized equations are

χ̃ ′ = p̃x,

p̃′
x = −g̃ + |α̃|2 + B̃2

∣∣β̃∣∣2
,

α̃′ = [iχ̃ α̃ − α̃ + 1]/ε̃,

β̃ ′ = [i(χ̃ + �̃βα )β̃ − β̃ + 1]/ε̃. (20)

Inspecting the equation for p̃′
x, for there to be levitation we

must have g̃ < 1 + B̃2.
We first analyze this in the adiabatic approximation as in

Sec. II B, leading to an effective potential which is the sum of
the potentials of the individual lasers:

Ṽ (χ̃ ) = g̃χ̃ − arctan(χ̃ ) − B̃2 arctan(χ̃ + �̃βα ). (21)

A first-order perturbation as in Sec. II C then gives us a
heating rate

d Ẽ
d τ̃

= 4 p̃2
x ε̃

(
χ̃

(1 + χ̃2)3
+ B̃2 (χ̃ + �̃βα )

[1 + (χ̃ + �̃βα )2]3

)
. (22)

These equations can be used to find regions which are both
trapping (minima of Ṽ (χ̃ )) and damping (negative d Ẽ/d τ̃ ).
Equivalently we could linearize the equations of motion and
search for parameter regimes where the Jacobian has neg-
ative eigenvalues. Our approach, however, also allows us
to visualize the width and shape of the trapping potential
and (anti)damping. There are three dimensionless parameters
to search over: 0 � B̃ � 1, 0 � g̃ � 1 + B̃2, and �̃βα , as ε̃

changes only the magnitude of the (anti)damping but not its
sign. While there is no bound on the detuning, we restrict our-
selves to −10 � �̃βα � 10. The code and simulation results
are available for download at Ref. [30].

One trapping and damping solution is plotted in
Fig. 5(a). The dashed lines denotes the “trapping region,”
and trajectories beginning with these will exhibit decaying
oscillations towards the minimum. As we can see, a trajectory
beginning in a location where the optical field is antidamping
may still show net damping over one oscillation and be
trapped, if, for example, it spends more time in the damping
region over each period. The width of this trap is the space
between the dashed lines (∼1.3 
), and the depth is the vertical
distance between the minimum and the intersection of the
rightmost dashed line with the potential (∼0.03 m
2ν2) since,
if the mirror moves above this, then it will leave the trapping
region. The energy value the depth represents is very small,
for the parameters in Sec. II this corresponds to the kinetic
energy of a mirror with speed 10−5 ms−1. However, note that
from Eq. (17) the damping rate is proportional to momentum,
and simulations show that an initial velocity at least ten
times larger is still trapped and damped, though increasing by
another factor of ten leads to the mirror escaping.

In Fig. 5(b) we take ε̃ = 1/5 and plot the dimensionless pa-
rameters at which there exist regions of simultaneous trapping
and damping. We searched over 500 values of g̃, 500 values
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FIG. 5. (a) Regime with the greatest simultaneous trapping and
damping area (g̃, B̃, �̃βα, ε̃) ≈ (0.37, 0.47, −2.63, 1/5). The black
curve shows the effective two-laser potential Eq. (21) with the black
dot the minimum, and the colored line gives the effective heating
rate Eq. (22) divided by 4 p̃2

x ε̃, with blue for damping and red
antidamping. The two dashed vertical lines denote the two ends of the
trapping region; trajectories originating in the trapping region with
zero initial momentum will exhibit decaying oscillations towards the
minimum. The distance between them is the “width” of this trap,
and the vertical distance from the minimum to the intersection of the
right dashed line with the potential is the “depth.” Multiplying the
width by the depth then gives us the “area.” (b) The parameters which
allow for simultaneous trapping and damping regions map out a two-
dimensional folded manifold in parameter space, with ε̃ = 1/5. Little
difference is visible when ε̃ = 1/100 (although the (anti)damping
rates will be much less). The points are colored by the width of the
region in units of 
. (c) The points are now colored by the area of the
trapping and damping regions, found by multiplying the width by
the depth.

of B̃, and 1000 values of �̃βα within the aforementioned
ranges, in a computation which took two days on a Google
Cloud Compute Engine with 64 virtual CPUs. These form
a folded, two-dimensional surface, where the banding comes
from the numerical grid used. The color of the points denotes
the width of the trapping region. This was found by simulating
the unapproximated equations of motion Eq. (20), with χ̃

beginning at increasingly large distances χ̃0 from the potential
well minimum, and recording the largest distance such that
both a positive and negative perturbation of that magnitude
to the position would remain trapped. The initial conditions
for the other dynamical variables were their steady states for
the given initial value of χ̃0: p̃x = 0, α̃ = 1/(1 − iχ̃0), and
β̃ = 1/[1 − i(χ̃0 + �̃βα )]. We can see that in general there
are reasonably wide trapping and damping regions in the
regime where both g̃ and B̃ approach zero, and �̃βα is strongly
negatively detuned.

In Fig. 5(c) we color the points by the “area,” approxi-
mately found by multiplying the width by the depth of the
well. All of the trapping regions are very shallow, and so while
robust against large changes in χ̃ , even a small change in
momentum may be enough for the mirror to escape. We note
that Fig. 5(a) plotted the solution with the greatest trapping
area, and other solutions display similar characteristics, with a
broad flat region about the minimum and a somewhat shallow
nature. Thus the experimental utility of sideband cooling
for levitated systems is far from guaranteed, and a detailed
investigation needs to be done to study the robustness of the
parameter regimes identified against fluctuations of the cavity
field or the mirror’s thermal Brownian motion.

Finally, we repeated the simulations for ε̃ = 1/100 but
there was little difference in the cooling widths and areas.
The change in energy of the mirror’s oscillations, however,
either damping or antidamping, was much slower. This is to
be expected, as (anti)damping arises from the dynamics of the
light field, and as ε̃ → 0 these dynamics vanish.

B. Photothermal effects

So far we assumed the mirror to be perfectly reflecting,
which will not be true in practice. The intracavity field in this
system must be very strong to provide levitation, and so even
for a highly reflective mirror a substantial amount of optical
energy is likely to be absorbed by the mirror substrate. This
induces photothermal effects, where the mirror both deforms
and undergoes a change in refractive index, resulting in a
measurable change to the effective optical path length of the
cavity. We can model this as [31–34]

ẋ = px

m
, ṗx = −mg + h̄G|α|2,

ż = −γ

(
z + ζ

h̄ω0|α|2
2L0/c

)
, (23)

α̇ = i[�α + G(x + z)] − δω

2
α +

√
2κiPα

h̄ω0
.

The variable z represents the change in optical path length due
to photon absorption by the mirror, and may be positive or
negative depending on the mirror substrate. The intracavity
power is given by h̄ω0|α|2

2L0/c (energy divided by photon travel
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time), and so ζ parameterizes the rate at which intracavity
power translates to a change in path length, with units’ length
divided by power. The timescale of the effect is quantified by
the photothermal relaxation rate γ .

As in Sec. II A we may derive nondimensionalized equa-
tions of motion:

x̃′ = p̃x,

p̃′
x = −g̃ + |α̃|2,

z̃′ = −γ̃ [z̃ + ζ̃ |α̃|2],

α̃′ = [i(�̃α + x̃ + z̃)α̃ − α̃ + 1]/ε̃, (24)

where we introduced dimensionless parameters

z̃ = z



, γ̃ = γ

ν
, ζ̃ = h̄ω0A2ζ

(2L0/c)

. (25)

We will consider the regime γ̃ � 1, which is true for many
systems due to the slow rate of thermal expansion and con-
traction. For example, a typical value of γ between 10–100 Hz
[35] will make γ̃ ∼ 10−5 − 10−4 (for the parameters from
Sec. II). The expansion coefficient ζ depends on the mirror
substrate and the width and shape of the optical beam, a
typical value is on the order of 10 picometers per watt [36,
Sec. III.C] which corresponds to ζ̃ ∼ 30.

We now analyze how the photothermal expansion affects
the equilibrium states of the system. From x̃′ we clearly must
have p̃s

x = 0. The equation for p̃′
x gives that |α̃s|2 = g̃, and so

from z̃′ we find

z̃s = −ζ̃ g̃. (26)

Thus the only contribution of the photothermal effect to the
steady state is to add a constant shift to the detuning. As before
the mirror position x̃ will have two equilibrium states

x̃s
± = −�̃s

α ± σ̃ , (27)

with σ̃ from Eq. (14) and effective detuning

�̃s
α = �̃α − ζ̃ g̃. (28)

Photothermal effects may also alter the stability of the
equilibria. We discuss in Appendix D that due to the small
value of γ̃ , these behave as a small perturbation on our
system. We may still look at the mirror as moving in the
potential Ṽ (x̃ + z̃), only now as well as having a damping
or antidamping effect from the dynamics of the light field,
we have an additional photothermal contribution. Considering
a small oscillation around the potential-well minimum, the
change in dimensionless energy of the system over one period
is

2ρ̃2(1 − g̃)g̃3ζ̃ γ̃ + O(γ̃ 2), (29)

where ρ̃ is the size of the small perturbation from equilibrium.
Thus positive photothermal expansion (ζ̃ > 0) will provide
an antidamping effect, while negative photothermal expansion
(ζ̃ < 0) will give damping. This is similar to what is observed
in conventional optomechanical systems, where engineering a
photothermal effect with a negative sign to stabilize the sys-
tem has also been proposed [37]. Note that Eq. (29) describes
photothermal effects only, which will be in competition with
the damping or antidamping induced by the light field.

FIG. 6. We take γ̃ = 10−4 and compute the maximum eigen-
value of the linearized system at the potential-well minimum x̃s

+ for
various values of ε̃. Positive and negative values are colored red and
blue, respectively, and the opacity is proportional to the magnitude
of the eigenvalue (for negative eigenvalues a value of −0.3 is fully
opaque, while for the positive eigenvalues a value of 3 is opaque).
For large ε̃ there is competition between photothermal damping and
radiation pressure antidamping, while as ε̃ decreases and optical
effects become less significant the sign of the eigenvalues relies on ζ̃

alone.

This result relied upon a number of approximations, and
we can verify this with a numerical search of the unap-
proximated system. We compute the sign of the maximum
eigenvalue around the steady state for various parameter
regimes, and plot these Fig. 6. We find that x̃s

+ is in general
unstable for a positive ζ̃ , and stable for a negative value.
This difference becomes more pronounced as ε̃ grows smaller,
and the optical heating effect decreases. Interestingly, for a
large positive photothermal expansion coefficient, decreasing
ε̃ actually increases the antidamping rate.

As in Fig. 4(b), we can visualize the trajectories in phase
space. Taking advantage of the almost two-dimensional nature
of the dynamics we replace the |α̃|2-axis with the photother-
mal variable z̃, and plot this in Fig. 7(a). In this case we
consider a negative photothermal expansion coefficient, and
observe decaying oscillations towards the equilibrium state.
These are centered on the steady state for x̃, p̃x assuming a
fixed value z̃. From Eq. (27) this is given by the line

x̃ = −�̃α + ζ̃ z̃ + σ̃ , (30)

in the p̃x = 0 plane. Finally, we plot the trajectory in the
dimensionless potential Ṽ in Fig. 7(b). In this case we need to
consider the total displacement x̃ + z̃, and with this we can see
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FIG. 7. (a) The phase space with photothermal expansion and
a negative photothermal expansion coefficient, taking parameters
(g̃, �̃α, ε̃) = (0.5, 0, 1/100) and (ζ̃ , γ̃ ) = (−30, 3 × 10−4). Time
runs from blue to yellow; the trajectory begins at the bottom and
exhibits decaying oscillations towards the steady state at the top. The
dashed black line through the center denotes the steady state for x̃,
p̃x assuming a fixed value of z̃. (b) The same trajectory, now plotted
in the potential Ṽ .

the photothermal damping stabilizing the mirror oscillations
towards the well minimum.

IV. CONCLUSION

We analyzed a vertically oriented Fabry-Pérot cavity where
the upper mirror levitates on the intracavity radiation pres-
sure force. Nondimensionalizing the equations of motion,
the behavior was essentially determined by two dimension-
less parameters: the effective gravity g̃ and the ratio ε̃ of
the mechanical-to-optical timescales. Typically the optical
timescale is much faster than the mechanical (ε̃ � 1), and
exploiting this we performed a perturbative expansion around
ε̃ ≈ 0 to simplify the dynamics to the point where an analytic
approach was tractable.

To zeroth order this gave an adiabatic approximation. We
found an effective potential in which the upper mirror moved,
and used this to calculate its frequencies of oscillation. This

also gave us an intuition for the evolution of the dynamical
variables in phase space. A first-order correction to the equa-
tions of motion allowed us to derive the effective damping
or antidamping rate caused by the dynamics of the cavity
field. Comparing to simulations of the exact equations, our
approximation was very accurate for ε̃ ∼ 1/100 and still
qualitatively similar for ε̃ ∼ 1/10, which encompasses a wide
range of realistic parameter regimes.

From this analysis we concluded that the motion of the
upper mirror would always be unstable if the cavity was driven
by a single laser, with the rate at which oscillations were
amplified linearly proportional to ε̃. We then explored using
two input lasers with different amplitudes and detunings,
and found all parameter regimes which allowed for stable
trapping of the upper mirror. In these regions the confining
potential well could be made relatively wide, but was always
flat and shallow. We also analyzed the effect of photothermal
changes in the optical path length of the cavity. If heating of
the mirror substrate lead to a decrease in the cavity length,
working against radiation pressure force on the mirror, there
was an antidamping effect. If, however, photothermal effects
increased the cavity length they could stabilize the system,
even with only a single laser.

Stabilizing the levitating mirror is crucial to use it as a
metrological platform, and there are numerous possible ways
that we could extend our analysis. One is to move beyond two
lasers; it is shown in Ref. [24] that as you allow a greater
number of input lasers to a conventional optomechanical
system, you can approximate an arbitrarily shaped potential.
It is less clear, however, if this can be done for our system
while also ensuring the potential is damping, and it is likely
that any multilaser potential wells which are both trapping and
damping can be made very wide, but will maintain their shal-
low and flat nature. A promising avenue would be feedback
control of the system, which should be able to stabilize it even
with only a single laser. Once stabilization has been achieved,
a detailed study can be performed on the various ways the
levitating mirror could be used for sensing, and how to best
utilize the many unique features of this platform.
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APPENDIX A: DERIVATION OF ONE-DIMENSIONAL
NONDIMENSIONALIZED EQUATIONS

Here we describe the nondimensionalization from Sec. II A
in more detail. We will introduce a natural length scale 
,
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frequency ν, and cavity amplitude A, defined as


 = δω/2

G
, ν2 = h̄GA2

m

, A = 1

δω/2

√
2κiPα

h̄ω0
. (A1)

To understand these scales, we solve for the steady state of α

from Eq. (1) giving the Lorentzian profile (setting �α = 0 for
simplicity)

|α|2 = (δω/2)2A2

(δω/2)2 + (Gx)2
= A2

1 + (
Gx

δω/2

)2 . (A2)

We thus see that A is the maximum intracavity amplitude.
Moreover, at x = (δω/2)/G = 
 the amplitude-squared has
dropped to half of its maximum value, or equivalently 
 is the
distance by which the mirror moves to create a cavity detuning
of one half-linewidth. In a classical optomechanical system
the optical spring constant is given by the first derivative of
the radiation pressure force [1, Sec. V.A]. Its value depends
on x, and at x = 
 we will have an optical spring constant

κos(
) = ∂

∂x
(−h̄G|α|2)

= h̄G2A2

δω
= 2m

h̄GA2

m


= m

(
ν√
2

)2

. (A3)

Comparing this to the usual relation κ = mω2 for a harmonic
oscillator with spring constant κ , mass m, and natural fre-
quency ω, we see that ν is 1/

√
2 multiplied by the opti-

cal spring frequency at one half-linewidth’s displacement.
The “mechanical timescale” ν gives timescale of the upper
mirror’s oscillations, while the “optical timescale” δω/2 de-
scribes the speed of the cavity field’s dynamics.

The dimensionless dynamical variables (denoted by a tilde)
are

τ̃ = νt, x̃ = x



, p̃ = p

m
ν
, α̃ = α

A
. (A4)

For the cavity field we will have 0 < |α̃|2 < 1. Furthermore
during levitation the mirror variables x̃ and p̃x will typically
be of order 1, as if x̃ � 1 the cavity detuning will be far from
resonance so the optical force will approach zero.

We can now write the equations of motion in terms of the
dimensionless parameters, letting a prime denote the deriva-
tive with respect to dimensionless time τ̃ :


νx̃′ = px

m
,

x̃′ = p̃x, (A5)

m
ν2 p̃′
x = −mg + h̄GA2|α̃|2,

p̃′
x = − g


ν2
+ h̄GA2

m
ν2
|α̃|2, (A6)

= −g̃ + |α̃|2,

Aνα̃′ =
(

−δω

2
+ i(�α + G
x̃)

)
Aα̃ +

√
2κiPα

h̄ω0
,

α̃′ = δω/2

ν

[
i(�̃α + x̃)α̃ − α̃ + 1

A(δω/2)

√
2κiPα

h̄ω0

]

= [i(�̃α + x̃)α̃ − α̃ + 1]/ε̃. (A7)

We defined three dimensionless parameters:

g̃ = g


ν2
, ε̃ = ν

δω/2
, �̃α = �α

δω/2
. (A8)

The meanings of these are explored in the main text of
Sec. II A.

To summarize, the dimensionless equations of motion are

x̃′ = p̃x,

p̃′
x = −g̃ + |α̃|2, (A9)

α̃′ = [i(�̃α + x̃)α̃ − α̃ + 1]/ε̃,

where 0 < g̃, |α̃|2 < 1, and typically ε̃ � 1. Moreover if �̃α

is constant, we can eliminate it from our dynamics by defining
χ̃ = �̃α + x̃.

APPENDIX B: EXPANDING THE EQUATIONS
OF MOTION IN ORDERS OF ε̃

The parameter ε̃ will typically be quite small, correspond-
ing to the optical field evolving much faster than the mechan-
ical motion of the mirror. Our dynamics Eq. (8) thus have a
separation of timescales, also known in literature as a “slow-
fast system.” We can exploit this to simplify the dynamics in
the manner of [38, Sec. 2], by expanding in a power series of
ε̃.

We begin with

α̃ = α̃0 + ε̃α̃1 + O(ε̃2), (B1)

and substitute this into the equation of motion for α̃′ from
Eq. (A9):

α̃′
0 + ε̃α̃′

1 + O(ε̃2)

= ε̃−1[i(�̃α + x̃) − 1][α̃0 + ε̃α̃1 + O(ε̃2)] + ε̃−1. (B2)

Equating terms of order ε̃−1 (or equivalently multiplying both
sides by ε̃ then taking the limit ε̃ → 0) gives

0 = [i(�̃α + x̃) − 1]α̃0 + 1, (B3)

and solving this for α̃0 recovers the adiabatic approximation
we discussed in Sec. II B:

α̃0 = 1

1 − i(�̃α + x̃)
. (B4)

We can thus see that the adiabatic equations of motion Eq.
(10) correspond to expanding the full equations of motion Eq.
(A9) to zeroth order in ε̃.

The terms of order 1 give

α̃′
0 = [i(�̃α + x̃) − 1]α̃1, (B5)

which has solution

α̃1 = −α̃′
0

1 − i(�̃α + x̃)
. (B6)
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Differentiating Eq. (B4) using �̃′
α = s̃ and x̃′ = p̃x gives

α̃′
0 = i(s̃ + p̃x )

[1 − i(�̃α + x̃)]2
. (B7)

Substituting this into Eq. (B6) then gives us α̃1, which we can
use to compute |α̃|2 to first order in ε̃:

|α̃2| = 1

1 + (x̃ + �̃α )2
+ ε̃

4( p̃x + s̃)(x̃ + �̃α )

[1 + (x̃ + �̃α )2]3
+ O(ε̃2).

(B8)
The equations of motion to first order in ε̃ are then

x̃′ = p̃x,

p̃′
x = −g̃ + 1

1 + (x̃ + �̃α )2
+ ε̃

4( p̃x + s̃)(x̃ + �̃α )

[1 + (x̃ + �̃α )2]3
. (B9)

APPENDIX C: THE ADIABATIC APPROXIMATION

Here we provide more detail on the results from the adia-
batic approximation in Sec. II B. We begin with the equations
of motion Eq. (10)

x̃′ = p̃x,

p̃′
x = −g̃ + 1

1 + (�̃α + x̃)2
. (C1)

Partially integrating the equation of motion for p̃′
x with respect

to x̃ gives

−
∫ (

d p̃x

d τ̃

)
dx̃ = g̃x̃ − arctan(�̃α + x̃). (C2)

As the dynamics are unchanged by a constant shift in the po-
tential, we define the effective dimensionless potential energy
as

Ṽ (x̃) = g̃(�̃α + x̃) − arctan(�̃α + x̃). (C3)

Then we can verify that p̃′
x = −∇Ṽ (x̃). Adding a “kinetic en-

ergy” term ( p̃′
x )2/2, the total dimensionless energy is defined

as

Ẽ (x̃, p̃x ) = p̃2
x

2
+ Ṽ (x̃). (C4)

We can verify that Ẽ is conserved by directly computing

d Ẽ
d τ̃

= p̃x
d p̃x

d τ̃
+ dṼ

dx̃

dx̃

d τ̃
,

= p̃x

(
−dṼ (x̃)

dx̃

)
+ dṼ

dx̃
( p̃x ), (C5)

= 0.

Thus in the adiabatic limit, the levitated mirror will behave
like a classical particle moving in the potential Eq. (C3).

To find the frequency of these oscillations we follow the
procedure outlined in Ref. [39, Sec. 2]. Suppose the mirror
oscillates between two points x̃M and x̃P. We necessarily have
Ṽ (x̃M ) = Ṽ (x̃P ), and −σ̃ < x̃M < σ̃ < x̃P. The dimensionless
period T̃ of an oscillation is

T̃ =
∮

d τ̃ = 2
∫ x̃P

x̃M

(
d τ̃

dx̃

)
dx̃, (C6)

which can be redimensionalized as T = T̃ /ν. We have d τ̃
dx̃ =

( dx̃
dτ

)
−1 = ( p̃x )−1, and we can write this in terms of the dimen-

sionless energy using Eq. (12):

T̃ =
√

2
∫ x̃P

x̃M

dx̃√
Ẽ (x̃, p̃x ) − Ṽ (x̃)

. (C7)

Since energy is conserved in the adiabatic regime, over the
whole period we have

Ẽ (x̃, p̃x ) = Ṽ (x̃M ), (C8)

and so the integral in Eq. (C7) can be evaluated. To find all
periods, we choose x̃M ∈ (−σ̃ , σ̃ ), and then numerically solve
the transcendental equation Ṽ (x̃) = Ṽ (x̃M ) whose solution is
x̃P (choosing the root which lies to the right of σ̃ ). Once x̃M

and x̃P are in hand we may numerically compute the integral
in Eq. (C7). The range of possible amplitudes increases as g̃
decreases since the width of the potential well increases. We
plot the frequencies in Fig. 2(c) (rather than the period since T̃
approaches infinity for the maximum amplitude oscillations).
Note that the frequency of oscillation depends solely on the
dimensionless parameter g̃ and the amplitude of oscillation,
and furthermore the frequency decreases as the amplitude
increases.

So far we assumed that the input laser detuning �̃α is static.
We will now briefly investigate allowing �̃α to vary linearly
with τ̃ , which can occur when we scan the cavity length or
laser frequency

�̃α (τ̃ ) = �̃α0 + s̃τ̃ , (C9)

where �̃α0 is the initial detuning and s̃ the scan speed. Such
a sweeping is commonly used to probe and characterize the
optical system, and will correspond to shifting the potential
shown in Fig. 2(a) horizontally at the speed s̃.

First suppose that �̃α0 is negative (i.e., the laser is red-
detuned compared to the cavity), and s̃ is positive. The mirror
begins at x̃ = 0, and we assume this to be sitting on a stand
which prevents it from falling below this point. The potential
Ṽ is initially centered at −�̃α0 > 0, and moves to the left
at speed s̃. The force due to the potential on the mirror is
initially downwards, so the mirror will be stationary due to the
stand. When �̃α (τ̃ ) = −σ̃ the local maximum of the potential
will pass the mirror leading to a net upwards force, and so it
will begin to oscillate on the stand. Eventually, however, the
potential will keep moving and the force on the mirror will
become negative; the oscillations will cease and it will rest on
the stand.

The other case is for �̃α0 > 0 and s̃ < 0, where the center
of the potential begins to the left of the mirror and moves
towards the right. If the scan speed is slow enough, the mirror
will be “picked up” by the potential well and there will be
oscillations centered about x̃ = �̃α (τ̃ ). If the scan is too fast,
however, the moving potential well will not be able to pick
up the mirror, so after a brief period of oscillation the force
will become downwards again and oscillations will cease.
The critical scan velocity s̃c below which the mirror is picked
up can be found by moving to a reference frame where the
potential is stationary, while the mirror moves to the left at
speed s̃. Because of the stand, the mirror does not begin
moving until the force is in the upwards direction, and so
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the initial mirror position in this frame must be at the local
minimum of the potential well. In this case for the mirror to
be trapped by the potential we require its kinetic energy to be
less than the potential barrier between σ̃ and −σ̃ :

s̃2

2
� 2[arctan(σ̃ ) − σ̃ g̃], (C10)

which gives

s̃c = 2
√

arctan(σ̃ ) − σ̃ g̃. (C11)

APPENDIX D: CALCULATION OF THE PHOTOTHERMAL
DISSIPATION RATE

Here we will investigate whether photothermal effects lead
to damping or antidamping. To focus on the photothermal
effect alone, we eliminate the influence of the optical field
by making an adiabatic approximation. This is justified as
typically the dynamics of the light field, described by ε̃−1, are
fast compared to the photothermal relaxation rate γ̃ . With this
we have equations of motion

x̃′ = p̃x,

p̃′
x = −g̃ + 1

1 + (�̃α + x̃ + z̃)2
, (D1)

z̃′ = −γ̃

[
z̃ + ζ̃

1

1 + (�̃α + x̃ + z̃)2

]
.

We then linearize the system Eq. (D1) about the steady state
x̃s
+, leading to equations of motion

δx̃′ = δ p̃x,

δ p̃′
x = −ω̃2(δx̃ + δz̃), (D2)

δz̃′ = γ̃ ζ̃ ω̃2δx̃ − λ̃δz̃,

with constants defined as

ω̃2 = 2g̃2

√
1

g̃
− 1, λ̃ = γ̃ (1 − ω̃2ζ̃ ). (D3)

While the coupled linear system Eq. (D2) can be solved
directly, this results in a very complicated expression. We
can, however, derive a simpler approximate solution, taking
advantage of the small value of γ̃ .

Suppose that the mirror is perturbed slightly from x̃s
+. From

our analysis of the adiabatic system in Sec. II B we know
that the mirror will oscillate around the steady state. As this
happens, this will induce oscillations in the intracavity field,
and thus photothermal expansion δz̃. Due to the small value
of γ̃ , the oscillations of δz̃ will be much smaller than those of
δx̃ and δ p̃x. A zeroth-order approximation will thus be to take
δz̃ ≈ O(γ̃ ) ≈ 0, in which case we find from Eq. (D2)

δx̃(τ̃ ) = ρ̃ sin(ω̃τ̃ ),

δ p̃x(τ̃ ) = ρ̃ω̃ cos(ω̃τ̃ ), (D4)

δz̃(τ̃ ) = 0,

where ρ̃ is the size of the perturbation to δx̃. We can then
substitute Eq. (D4) into the equations of motion Eq. (D2) to
calculate the error, which we find to be O(γ̃ ).

Next we use Eq. (D4) to generate the first-order approxi-
mation. We assume δx̃, δ p̃x take the form given in Eq. (D4),
and then solve the equation of motion for δz̃′ which yields

δz̃(τ̃ ) = ρ̃ω̃2γ̃ ζ̃

ω̃2 + λ̃2
(λ̃ sin(ω̃τ̃ ) − ω̃ cos(ω̃τ̃ )). (D5)

We then substitute in this form for δz̃ into the equations of
motion Eq. (D2), and derive

δx̃(τ̃ ) = ρ̃ sin(ω̃τ̃ ) + ρ̃γ̃ Ẽ (C̃+(τ̃ ) cos(ω̃τ̃ )

− D̃−(τ̃ ) sin(ω̃τ̃ )),

δ p̃x(τ̃ ) = ρ̃ω cos(ω̃τ̃ ) + ρ̃γ̃ ω̃Ẽ (D̃+(τ̃ ) cos(ω̃τ̃ )

+ C̃−(τ̃ ) sin(ω̃τ̃ )), (D6)

where

Ẽ = ζ̃ ω̃2

4(ω̃2 + λ̃2)
,

C̃±(τ̃ ) = ω̃(1 ± 2λ̃τ̃ ), (D7)

D̃±(τ̃ ) = λ̃ ± 2ω̃2τ̃ .

Substituting Eqs. (D5) and (D6) into the equations of motion
Eq. (D2) the error is found to be of order O(γ̃ 2τ̃ ), which is
negligible for small times. We can thus use these approximate
solutions to see how the photothermal expansion will affect
the stability of x̃s

+.
Accounting for photothermal expansion, the energy of the

mirror is now

Ẽ = p̃2
x

2
+ g̃x̃ − tan−1(x̃ + z̃). (D8)

Assuming we are in the neighbourhood of the steady state
(x̃s

+, p̃s
x, z̃s), we have to second order

Ẽ = Ẽ s − g̃δz̃ + δ p̃2
x

2
+ ω̃2

2
(δx̃ + δz̃)2 + O(δ3), (D9)

where Ẽ s is the steady-state energy. If the mirror position
is perturbed a distance ρ̃ from equilibrium, its motion will
approximate periodic oscillation with period

T̃ = 2π

ω̃
. (D10)

The average heating over a single oscillation can then be
found via

1

T̃

∫ T̃

0

d Ẽ
d τ̃

d τ̃ . (D11)

Using the derived forms Eqs. (D5) and (D6), we find this to
be

ω̃4

2
ρ̃2ζ̃ γ̃ + O(γ̃ 2) = 2(1 − g̃)g̃3ρ̃2ζ̃ γ̃ + O(γ̃ 2). (D12)

Thus photothermal expansion induces antidamping at a rate
linearly proportional to ζ̃ : positive photothermal expansion
will provide an antidamping effect, while negative photother-
mal expansion will give damping.
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