
ANCOCK
ge pamph
A76. 9
A43
187
.998

A
THE AUSTRALIAN NATIONAL UNIVERSITY

TR-CS-98-02

Adaptive AT2 Optimal Algorithms on
Reconfigurable Meshes

M. Manzur Murshed and Richard P. Brent

March 1998

Joint Computer Science Technical Report Series

Department of Computer Science
Faculty of Engineering and Information Technology

Computer Sciences Laboratory
Research School of Information Sciences and Engineering

This technical report series is published jointly by the Department of
Computer Science, Faculty of Engineering and Information Technology,
and the Computer Sciences Laboratory, Research School of Information
Sciences and Engineering, The Australian National University.

Please direct correspondence regarding this series to:

Technical Reports
Department of Computer Science
Faculty of Engineering and Information Technology
The Australian National University
Canberra ACT 0200
Australia

or send email to:

Technical Reports@cs. anu. edu. au

A list of technical reports, including some abstracts and copies of some full
reports may be found at:

http:/ /cs. anu. edu. au/techreports/

Recent reports in this series:

TR-CS-98--01 Scott Milton. Thread migration in distributed memory
multicomputers. February 1998.

TR-CS-97-21 Ole Meller Nielsen and Markus Hegland. A scalable parallel
2D wavelet transform algorithm. December 1997.

TR-CS-97-20 M. Hegland, S. Roberts, and I. Altas. Finite element thin plate
splines for surface fitting. November 1997.

TR-CS-97-19 Xun Qu,Jeffrey Xu Yu, and Richard P. Brent. Implementation
of a portable-IP system for mobile TCP/IP. November 1997.

TR-CS-97-18 Richard P. Brent. Stability of fast algorithms for structured
linear systems. September 1997.

TR-CS-97-17 Brian Murphy and Richard P. Brent. On quadratic
polynomials for the number field sieve. August 1997.

Adaptive AT2 Optimal Algorithms on Reconfigurable
Meshes

M. Manzur Murshed' Richard P. Brent
Computer Sciences Lab, Research School of Information Sciences & Engg.

The Australian National University, Canberra ACT 0£00, Austrolia

E-mail: { murshed, rpb} ficslab.anu. edu. au

March 14, 1998

Abstract

Recently a few self-simulation algorithms
have been developed to execute algorithms

conjecture has been supported. by deriving a
new algorithm, from our adaptive algorithm,
to compute the contour of maximal elements
of n planar points on an ordinary mesh of size
..fii,x ..fii,. on a reconfigurable mesh (RM) of size smaller

than recommended in those algorithms. Op­
timal slowdown, in self-simulation, has been
achieved with the compromise that the re- l
sultant algorithms fail to remain AT2 opti­
mal. In this paper we have introduced, for
the first time, the idea of adaptive algorithm
which runs on RM of variable sizes without
compromising the AT2 optimality. We have
supported our idea by developing adaptive al­
gorithms for sorting items and computing the
contour of maximal elements of a set of planar
points on RM. We have also conjectured that

Introduction

It is well-known that interprocessor commu­
nications and simultaneous memory accesses
often act as bottlenecks in present-day par­
allel machines. Bus systems have been intro­
duced recently to a number of parallel ma­
chines to address this problem. Examples in­
clude the Bus Automaton [21), the Reconfig­
urable Mesh (RM) [13], the content address­
able army processor [25], and the Polymor­
phic torus [12]. Among them RM draws much
attention because of its simplicity. A bus sys­
tem is called reconfigurable if it can be dy­
namically changed according to either global

to obtain an AT2 algorithm to solve a prob-­
lem of size n with I(n) information content
on an RM of size p x q where pq = kl(n), it is
sufficient to form buses of length O(k). This

• Corresponding author.

or local information.
Introduction of reconfigurable bus systems

reduces the virtual communicational diame­
ter of any network of processors to a con­
stant. This fact has greatly influenced the re­
searchers around the world and a large collec­
tion of constant time algorithms have already
been developed [18J. To realise these constant
t ime algorithms we need to use more proces­
sors than we usually use to solve the same
problems on ordinary meshes. In fact, we can
easily observe that the ratio of the number of
processors used in a constant time algorithm
to the number of processors used in an ordi­
nary mesh algorithm solving the same prob­
lem is polynomial in problem size. Ben-Asher
et al. [l] present the idea of self-simulation
where the existing RM algorithms are exe­
cuted with slowdown on an RM of size smaller
than intended for those algorithms. A few
self-simulation techniques appear in [1, 17]
with optimal slowdown for various models of
RM.

In this paper, we have pointed out that self­
simulation even with optimal slowdown com­
promises with the AT' [23, chapter 2] opti­
mality of the resultant algorithm. To over­
come this limitation of self-simulation, we
have presented a new idea of developing al­
gorithms on RM which will be adaptive in

oped an adaptive AT2 optimal algorithm to
compute the contour of maximal elements of
n planar points in f time.

In developing our adaptive algorithm idea,
we have conjectured that to obtain an AT2
algorithm to solve a problem of size n with
information content I (n) on an RM of size
p x q where pq = kl(n) , it is sufficient to
form buses of length O(k). This conjecture
has been supported by deriving a new algo­
rithm, from our adaptive algorithm, to com­
pute the contour of maximal elements of n
planar points on an ordinary mesh of size
..fox ..jn.

The paper is organised as follows. In the
next section we present the key issues associ­
ated with RM and of its self-simulation, The
idea of adaptive optimal algorithm is devel­
oped in Section 3. In Section 4 we develop an
adaptive AT2 optimal sorting algorithm. The
problem of computing the contour of maxi­
mal elements of a set of planar points is de­
fined in Section 5 and an adaptive AT2 opti­
mal algorithm to solve the problem is devel­
oped in the same section. A new algorithm
is presented in Section 6 to compute the con­
tour of maximal elements of n planar points
on an ordinary mesh of size ,.Jn x Jn. Sec­
tion 7 concludes the paper.

the sense that these algorithms can be exe­
cuted on RM of various size keeping the AT2 2
measures unaffected by the size.

Preliminaries
To illustrate our idea we have developed

an adaptive AT2 optimal sorting algorithm
to sort n items in f time on an RM of size
p x q, pq = kn, 1 < p Sq S n2 , and k 2: 1.
By using the same RM, we have also <level-

For the sake of completeness, here we briefly
define the reconfigurable mesh and self­
simulation of RM and then describe the opti­
mality issues associated with self-simulation.
Throughout the paper, we use 0() to mean

Figure 2: Possible internal connections be­
tween the four I/0 ports of a processor

Figure 1: A reconfigurable mesh of size 3 x 4

"order exactly," 0() to mean "order at most,"
and 0() to mean "order at least."

2.1 Reconfigurable Mesh

The reconfigurable mesh is primarily a two­
dimensional mesh of processors connected by
reconfigurable buses. In this parallel archi­
tecture, a processor element is placed at the
grid points as in the usual mesh connected
computers. Processors of the RM of size
X x Y are denoted by P EiJ, 0 ~ i < X - 1,
0 ~ j < Y - 1 where processor P Eo,o resides
in the south-western corner. Each processor
is connected to at most four neighbouring
processors through fixed bus segments con­
nected to four I/O ports E & W along di­
mension x and N & S along dimension y.
These fixed bus segments are building blocks
of larger bus components which are formed
through switching, decided entirely on local
data, of the internal connectors (see Figure 1)
between the I/0 ports of each processor. The
fifteen possible interconnections of I/0 ports
through switching are shown in Figure 2.
Like all bus systems, the behaviour of RM re-

lies on the assumption that the transmission
time of a message along a bus is independent
of the length of the bus [2].

A reconfigurable mesh operates in the sin­
gle instruction multiple data (SIMD) mode.
Besides the reconfigurable switches, each pro­
cessor has a computing unit with a fixed num­
ber of local registers. A single time step of
an RM is composed of the following four sub­
steps:

BUS substep. Every processor switches
the internal connectors between I/0
ports by local decision.

WRITE substep. Along each bus, one or
more processors on the bus transmit a
message of length bounded by the band­
width of the fixed bus segments as well as
the switches. These processors are called
the speakers. It is assumed that a colli­
sion between several speakers will be de­
tected by all the processors connected to
the bus and the transmitted message will
be discarded.

READ substep. Some or all the processors
connected to a bus read the message

transmitted by a single speaker. These as in the above definition then the slowdown
processors are called the readers. remains as the key issue.

COMPUTE substep. A constant-time lo­
cal computation is done by each proces­
sor.

Other than the buses and switches the RM
of size p x q is similar to the standard mesh
of size p x q and hence it has 0(pq) area in
VLSI embedding [23], under the assumption
that processors, switches, and links between
adjacent switches occupy unit area.

2.2 Optimality Issues in Self-
Simulation of RM

Introduction of reconfigurable buses reduces
the virtual communicational diameter of reg­
ular parallel architecture to a constant and
thus leads to the simplest architecture, the
mesh. Can reconfigurable mesh be the basis
for the design of the next generation of mas­
sively parallel computers? Perhaps the an­
swer depends on the most fundamental issue
of self-simulation.

Let RMgxB denote a reconfigurable mesh
of A rows and B columns with each PE hav­
ing C registers.

Definition 1 The self-simulation problem of
RM is to step-by-step simulate RMptxN by
RM:[Rhmrn where p ~ M, Q ~ N,
and the computing power of the PEs and the
bus bandwidth (not less than log MN) are as­
sumed to be equivalent in both the meshes.

To simplify the exposition 1f and %- are
assumed to be integers. If the memory re­
quirement of the simulating RM is bounded

Definition 2 We say that reconfigurable
mesh R1 is simulated by Ri with slowdown
S if the result for any algorithm A 1 on R1 is
achieved through the execution of a step-by­
step simulation algorithm A2 on Ri in which
each step of A1 is simulated wi.th slowdown at
most S.

Obviously the self-simulation of RMptx N
by RM;(RQ'f'I;)' P ~Mand Q ~ N, is said

to be optimal if the slowdown is e (1 ~).
A smaller slowdown would lead to a serial
algorithm contradicting lower bound.

Ben-Asher et al. [1] first present the con­
cept of self-simulation for · RM and develop
some self-simulation algorithms with opti­
mal slowdown. In [17] we present optimal
self-simulation algorithms of some restricted
reconfigurable meshes. Optimal slowdown
in self-simulation is the bottom line we can
achieve but it tells a little of the optimality
of the resultant algorithm.

2.2.1 Is tbe Resultant Algorithm in
Self-Simulation of RM with Op­
timal Slowdown AT2 Optimal?

We have a negative answer. Consider any
problem of size n whose AT2 = fl(n2), say,
sorting of n elements of size log n bits each.
Now, we have some sorting algorithms [6, 20,
19] which can sort n elements on RM of size
n x n in constant time. Obviously the AT2

measures of these algorithms are 0(n2) and
thus these algorithms are AT2 optimal.

Suppose one of this AT2 optimal sorting al­
gorithm is self-simulated, with optimal slow­
down 8(~), in an RM of size m x m where
m < n. The AT2 measure of the resultant
sorting algorithm then becomes 8(~) which
is not optimal for m << n.

On the other hand, we have many AT2 op­
timal sorting algorithms [10, 11, 22] to sort n
elements on an ordinary mesh of size vn X vn
in 0(.fii) time.

This anomaly suggests the development of
adaptive algorithms which will remain AT2

optimal while running on RM of various sizes.

3 Adaptive AT2 Optimal
Algorithms

Let a problem P of size n have I(n) informa­
tion content [23, pages 51-54]. If this prob­
lem P is realised in a VLSI circuit with as­
pect ratio a then, by Ullman [23, page 57],
AT2 lower bound of P will be O(c,/2(n)).
Now, consider an RM of size p x q where
pq = kl(n), 1 < p:, q :, I 2 (n), and k 2'. 1.
We are interested in developing an algorithm
to solve P which will remain AT2 optimal for
all p and q.

Let T be the time to solve P in an RM of
size p x q. Then

Which implies

pqT2 = 'l12 (n).
p

Observe that T is independent of q, the
length of the larger side of the VLSI circuit.
Now,

T = 1 ""'p = I(n).

Thus, development of constant time algo­
rithm is feasible whenever p = I(n) for any
q ~ p. As we are interested in keeping
the area at minimum, the minimum possible
value of q should be considered. So,

T = 1 ""'p = q = k = I(n). (2)

Again,
k = 1 ""'T = q.

This implies that whenever the area of the
VLSI circuit equals the information content
of the problem to be solved, the time of so­
lution depends only on q, the length of the
larger side of the VLSI circuit. As we are in­
terested in keeping the time at minimum, the
minimum possible value of q should be con­
sidered. So, pq = I(n) and p :, q derive the
following:

k = 1 ""'p = q = T = .,/i(;0. (3)

Observation {2) represents the AT' opti­
mal constant time algorithm, if it exists, with
minimum area and observation (3) represents
the AT2 optimal mesh algorithm, if it ex-
ists , with minimum time. We now want to
use the available algorithms complying with
these observations (2) and (3) to develop AT2

optimal algorithms for 1 :, k :, I(n) with so­

lution time 1 :$ T :$.,/i(;0. Obviously mini­
mum AT2 lower bound can only be achieved

(!) when p = q.

Let the RM of size p x q be divided into sorting algorithm of Marberg and Gafni [11]
f submeshes of size p x k each. I(n) infor- on ordinary mesh to any constant time sort­
mation content should now be distributed in ing algorithm on RM.
such a way that each submesh of size p x k re­
ceives exactly p elements of information con­
tent in a column of the submesh. The f-ary
divide-and-conquer technique seems to be the
most feasible where the problem will be di­
vided into f subproblems which are solved in
the submeshes of size p x k in time O(f) in
parallel. In the next steps the data are ei­
ther redistributed (see Section 4) or merged
(see Section 5) in time O(f) using the entire
RM of size p x q. There may be a constant
number of similar iterations.

The idea of developing adaptive AT2 op­
timal algorithms was originated in the work
of Beresford-Smith et al. [3] in which they
developed optimal algorithms for constrained
reconfigurable meshes where only buses of
some constant length is allowed. In fact the
adaptive optimal sorting algorithm presented
in the next section has been included from [3}
where Beresford-Smith et al. did not point
out the inner strength of their algorithm.

The value k = ~ may have extra signifi­
cance. Perhaps it can be conjectured, in the
light of this paper and [3] , that to obtain AT2

optimal algorithm on RM of size p x q, it is
sufficient to form buses of length O(k).

4 Adaptive Optimal Sort­
ing Algorithm

Lemma 1 Let s items are stored in some s
processors of a linear array of m ~ s pro­
cessors with reconfigurable bus. Then these
items can be sorted in O(s) time.

Proof. A straightforward emulation of odd­
even transposition sort [9, pages 139- 144]
solves the problem. 0

Lemma 2 Sorting m items in the first row
of an RM of size m x m can be done in 0(1)
time.

Proof. See in [6, 19, 20]. □
The algorithm of Mar berg and Gafni [11]

uses a fixed number of phases of row /column
sorting/rotating to sort ab items in O(a + b)
time on a mesh of size a x b where a > ./b. If
a i. -,/b then b > .,/a and thus sorting can be
done simply by transposing all row/column
operations into column/row operations in the
algorithm.

4.1 Adaptive Optimal Sorting
of p Items on an RM of Size
k x p, k $ p

Let the RM of size k x p be divided into f
submeshes of size k x k each and the given p
items in the first row be distributed in such
a way that each processor P E1,,1k, 0 ::; i < k
and O ::; j < f, receives an item. It is obvious

Here we plan to develop an adaptive algo- that such a redistribution of elements can be
rithm which will connect the AT2 optimal carried out in constant time using a column

broadcast followed by a row broadcast with
bus splitting [14). Now, the emulation of the
sorting algorithm of Marberg and Gafni [11)
needs only the following basic operations:

Ifk?./fo

1. Sorting k items in a column using a
submesh of size k x k.

2. Rotating ,/f items in a row using a

submesh of size 1 x kjf.
3. Sorting f items in a row using a

submesh of size 1 x p.

4. Rotating f items in a row using a
submesh of size 1 x p.

5. Sorting ,/f items in a column using

a submesh of size ,/f x k.

6. Sorting f items in a row using a
submesh of size 1 x p.

7. Rotating ./k items in a column us­
ing a submesh of size ./k x k.

time by Lemma 2. Using Lemma 1 it can
be shown that operation 2 can be done in
0(,/f) time and operations 3, 4, 6, and 10
can be done in O(f) time. Hence follows:

Theorem 1 Given p items in the first row of
an RM of size k x p, k :'.5 p, these items can
be sorted in O(f) time, which is AT2 optimal.
□

4.2 Adaptive Optimal Sorting
of n Items on an RM of Size
p x q, p ::; q and pq = kn

Let the RM of size p x q be divided into 'f
submeshes of size p x k each as suggested
in Section 3 and the given n items in the
first ~ columns be distributed in such a way
that each processor P EiJk, 0 :'.5 i < p and
0 :'.5 j < 'f, receives an item. It can easily
be shown that such a redistribution can be
carried out in 0(') = O(V time using only
row broadcasts. Again, the emulation of the
sorting algorithm of Marberg and Gafni [11)
needs only the following basic operations:

8. Sorting k items in a column using a
submesh of size k x k. If P ~ If

9. Rotating k items in a column using
a submesh of size k x k.

10. Sorting ./k items in a row using a
submesh of size I x kvk.

The problem of rotation can always be
transformed into a sorting problem without
any slowdown. A rotation, therefore, takes
as much time as it does to sort. Now, Oper­
ations 1, 5, 7, 8, and 9 can be done in 0(1)

1. Sorting p items in a column using a
submesh of size p x k.

2. Rotating [f items in a row using a

submesh of size 1 x kif.
3. Sorting 'f items in a row using a

submesh of size 1 x q.

4. Rotating 'f items in a row using a
su bmesh of size 1 x q.

5. Sorting jf items in a column using

a submesh of size jf x k.

Else=>f>.jji

6. Sorting f items in a row using a
submesh of size 1 x q.

7. Rotating ,IP items in a column us­
ing a submesh of size ..Jp x k.

8. Sorting p items in a column using a
submesh of size p x k.

y

O non-maximal point
• maximalpoint

9. Rotating p items in a column using Figure 3: m-contour of a set of planar points
a submesh of size p x k.

10 . Sorting .jp items in a row using a x(p) denote the x-coordinate and y(p) denote
submesh of size 1 x k.jji. they-coordinate of p, e.g., x(P(i,j)) = i and

Operations 1, 8, and 9 can be done in 0(1)
time by Lemma 2 if k 2'.: p, else these can
be done in O(f) t ime by Theorem 1. Using
similar arguments it can be shown that oper­
ations 5 and 7 can be done in O(f) and O(!,:)
respectively. Using Lemma 1, operations 3, 4,
6, and 10 can be done in O({) time and op­
eration 2 can be done in 0(/f) time. Since
p :S: q, it follows from the above argument
that:

Theorem 2 Given n items in the first ~
columns of an RM of size p x q, p :S: q and
pq = kn, these items can be sorted in 0({)
time, which is AT2 optimal. □

5 Adaptive Optimal
contour Algorithm

m-

Let the planar point at coordinate (i, j) be
defined as P(i, j). Again, let for any point p,

y(P(i,j)) = j.
Definition 3 A point p dominates a point q
(denoted by q-< p) if x(q) :, x(p) and y(q):,
y(p). {The relation "-< 1' is naturally called
dominance.)

Let S be a set of N planar points. To
simplify the exposition of our algorithms, the
points in S are assumed to be distinct.

Definition 4 A point p E S is maximal if
there is no other point q E S wi.th p -< q.

We are interested in the contour spanned
by the maximal elements of S, called the m­
contour of S which can be obtained by simply
sorting the maximal elements in ascending or­
der of their x-coordinates (Figure 3). Let the
m-contour of a set S be denoted as m(S).

We have mentioned two interesting obser­
vations on m-contour in our paper [15, 16]
which are given below for the sake of com­
pleteness.

Lemma 3 Every m-contour is sorted in de­
scending order of the y-coordinates.

Proof. Suppose the contrary. Then there
exists at least one pair of maximal elements
p and q such that y(p) < y(q) while x(p) :S
x(q), which contradicts with the assumption
that point p is maximal. D

Let for any set S of some planar points
functions min,(S) and max,(S) denote the
minimum and maximum x-coordinates in the
set respectively. Let two more functions
min,(S) and max,(S) be defined similarly
w.r.t. y-coordinate.

Lem.ma 4 Given K sets So, S1, ... SK-1 of
planar points such that 'vt : 0 $ t < K - 1,
maxx(St) $ minx(St+1), then Vi : 0 $ i <
K - I, 'Ip E m(S,) I\ y(p) > max,(m(S;)),
'tj > i, if and only if, p E m(U{;,01 S,).

Proof. The necessity part can be proved by
arranging a contradiction of Lemma 3. To
prove the sufficiency part we take a point p E
m(S,), 3i: 0 :Si< K - I /\p ,f. m(U{;,01 S,).
Then by the definition of maximality we get
3q E U~il1 St such that p -< q, i.e., y(p) $
y(q). □

The m-contour problem is also known as
finding the maxima of a set of vectors and
has been extensively explored for serial com­
puters in [7, 8, 26]. Computation of max­
imal elements is important in solving the
Largest Empty Rectangle Problem [5] where
a rectangle R, and a number of planar points
S E R, are given and the problem is to com­
pute the largest rectangle r ~ R that con­
tains no point in S and whose sides are par­
allel to those of R. If R is divided into four

SE SW

............. ~ •
l '······••····:

NE NW

Figure 4: Importance of maximal elements in
computing largest empty rectangle

quadrants then the maximal elements w.r.t.
the northeast(NE), northwest(NW), south­
west(SW), and southeast(SE) directions as
depicted in Figure 4 remain the only candi­
dates to be the supporting elements of the
empty rectangles lying in all the four quad­
rants.

It is well known that the time complexity
for computing the contour of the maximal ele­
ments ofn planar points is 0(nlogn) using a
serial computer [8]. This lower boundary can
be concluded from the fact that the problem
of sorting can be easily transformed into an
m-contour problem. The information content
in computing m-contour of n planar points is
fl(n) and hence the AT2 lower baund is fl(n2)

[23, page 56]. Dehne [4] gives an AT' opti­
mal algorithm for solving m-contour problem
on a mesh of size .Jn x .Jn in 0(.Jii.) time.
In [15, 16] we have presented three constant
time m-contour algorithms on RM of various
dimensions. Using the result of optimal sim­
ulation of multidimensional RM by two di­
mensional RM in [24], it can easily be shown
that all the three algorithms in [15, 16] are
AT2 optimal.

We now plan to develop an adaptive al­
gorithm based on our AT2 optimal con­
stant time m-contour algorithm presented in
[15, 16].

Given a binary sequence, bi, 0 ~ j < N 1

the prefix-and computation is to compute, 'vi :
0 '.S i < N , b0 A b1 A · · · A b;. Similarly the
prefix-or computation computes b0 V b1 V • • • V
bi, 'vi : 0 ~ i < N. Adapting the technique
of bus splitting [14] it is easy to show that:

Lemma 5 Given a binary sequence of length
m in the only row of an RM of size 1 x m,
both the prefix-and and the prefix-or of the
elements in the sequence can be computed in
0(1) time.

5.1 Adaptive Optimal Comput­
ing of the m-contour of p
Planar Points on an RM of
Size k x p, k '.'o p

Let the RM of size k x p be divided into I
submeshes of size k x k each and the given p
planar points in the first row be distributed
in such a way that each processor P E1Jk ,
0 ~ i < k and O ~ j < f , receives a point.
It is obvious that such a redistribution of el­
ements can be carried out in constant time
using a column broadcast followed by a row
broadcast with bus splitting [14]. Now, we
sort the points w.r.t. x-coordinate in column­
major order by Theorem 1 in 0(I) time.

Let the points residing in column jk be de­
noted by the set Si, 0 ~ j < r Clearly
these I sets of planar points follow the con-

Proof. See in [14]. □ dition of Lemma 41 i.e., Vj : 0 ~ j < f - 1,
maxx(Si) ~ min2:(S;+1). The m-contours
m(Sj), 0 :S j < f , are now computed in
parallel using a su bmesh of size k x k for
each computation. By Lemma 6 this oper­
ation takes only 0(1) time. Now, we trans-

Lemma 6 Computing m-contour of m pla­
nar points in the first row of an RM of size
m x m can be done in 0(1) time.

Proof. First the points are sorted w.r.t. x­
coordinate in constant time using Lemma 2.
Using a column broadcast and a row broad­
cast, all the points are distributed in such a
way that each column represents possible m
pair-wise comparisons of a single point with
the rest. The m-contour is then determined
by computing the prefix-and of the compari­
son values in 0(1) time by Lemma 5. See in
[15, 16] for detail. D

fer the max, (m(S;)) values to the first row
of the RM in the following single step using
Lemma 3:

10

1. b: Any processor in column j contain­
ing a point E m(S;) disconnects all
port interconnections while the rest
of the processors connect port N
withSforallO~j<I'

w: Any processor in column j contain­
ing a point E m(Si) now writes the
y-coordinate of the point to port §0
forallO'.Sj<f.

r: Every processor in the first row m-contour of these points can be computed in
reads port Sin. O(f) tim e, which is AT2 optimal. □

Here, the substeps are labelled as "b:", "w:" ,
"r:11 , and "c:" to denote the BUS , WRITE,
READ, and COMPUTE substeps respec­
tively.

Now, the m-contour of the entire p points
can be computed in the following steps using
Lemma 4:

1. Iterate the following for t = 0 to r fr l - 1
in step 1:

1.1 Copy max,(m(Stk+;)) to processors
PEi,i+rk , 0 $ i < k, 0 $ r < f ,
for all O $ j < k, using a column
broadcast then a row broadcast and
finally a column broadcast.

1.2 Copy the y-coordinate of the point
residing in processor P Ei,ki to the
processors PEi,ki+r, 0 $ r < k, for
all O $ j < ~, 0 $ i < k, using a
row broadcast.

1.3 Now in the jth submesh of size
k x k , the ith row contains k maxy
values paired with the y-coordinate
of a particular point, say d. Now,
apply Lemma 4 to eliminate d by
computing prefix-or over the com­
parison values of at most k pairs in
constant time by Lemma 5.

It is very easy to show that the above iter­
ation takes 0(f fr l) time and thus it can be
concluded that:

Theorem 3 Given p planar points in the
first row of an RM of size k x p, k '.S p, the

5.2 Adaptive Optimal Comput­
ing of the m-contour of n
Planar Points on an RM of
Size p x q, p :S q and pq = kn

Let the RM of size p x q be divided into {
submeshes of size p x k each and the given n
planar points in the first ; columns be dis­
tributed in such a way that each processor
PEi,ik, 0 $ i < p and O $ j < { , re­
ceives a point. It can easily be shown that
such a redistribution can be carried out in
oq;) = O{f) time using only row broadcasts.
Now, we sort the points w.r.t. x-coordinate
in column-major order by Theorem 2 in O{f)
time.

Let the points residing in column jk be de­
noted by the set S;, 0 '.S j < f Clearly
these f sets of planar points follow the con­
dition of Lemma 4, i.e ., Vj : 0 $ j < { - 1,
max:c(Si) $ min.x(Sj+i)· The m-contours
m(Si), 0 $ j < f, are now computed in par­
allel using a submesh of size p x k for each
computation. By Theorem 3 this operation
takes only O(f) time.

Now taking very similar steps as used in
Section 5.1 it can be shown that:

Theorem 4 Given n planar points in the
first i columns of an RM of size p x q, p $ q
and pq = kn, the m-contour of these points
can be computed in O(f) time, which i.s AT2

optimal. □

11

6 A New AT2 Optimal Al- of n points using buses of length 0(1)? The
· h " C following lemmas answer this question in af-gont m ,or omputing firmation.

m-contour of n Planar
Points on ...Jn x ...Jn Or­
dinary Mesh

If we set k = I and p = q in the adaptive al­
gorithm associated with Theorem 4 we get
an m-contour algorithm on an RM of size
,/n x ,/n in 0(.fii) time. But this algorithm
cannot be used on an ordinary mesh of size
,/n x ,/n in 0(.fii) time as the maxy's of the
m-contour of all the Jn subproblems must
be broadcast sequentially to all other proces­
sors. This will result in an algorithm of order
O(n) which is not AT2 optimal.

But in Section 3 we have conjectured that
there should exist AT2 optimal m-contour al­
gorithm on ordinary mesh, where buses of
length 0(1) are allowed to form, as we al­
ready have AT2 optimal m-contour algorithm
on RM with k = l. In fact such an algorithm
[4] exists and we have already mentioned it
in Section 5. In [4], Dehne develop a recur­
sive algorithm, on an ordinary mesh of size
Jn x ,Jn, which divides the m-contour prob­

Lemma 7 Given p planar points, one in
each processor of an ordinary linear array of
p processors, the m-contour of these points
can be computed in O (p) time.

Proof. Once the points are sorted w.r.t.
x-coordinate in 0(p) time by Lemma 1, all
the points are systolically shifted to the left
for at most p times and each processor try
to eliminate the point , it contains, from the
m-contour by comparing it with the shifted
points. D

Lemma 8 Let m items xo, x 1, ... , Xm-1 be
given in the first row of an ordinary mesh of
size m x m where item Xj resides in proces­
sor PEoJ , 0 ~ j < m. Now, consider the
problem of distributing item Xj among all the
processors PEi,r, 0 $ i < m and O ~ r < j,
for all O $ j < m. This problem can be solved
in O(m) time.

Proof. Broadcast each item Xj, in parallel,
to all the processors PEtJ , 0 $ i < m, along
the column j, 0 S j < m. This takes O(m)
time. Now, systolically shift the items in each
column to the left for most O(m) time. □

lem of n points into two subproblems of equal
size and then marge the solutions of these
subproblems in affordable order 0(../n) so
that the overall order, O(y'n), remains AT2 7
optimal.

Conclusion

Is it possible to derive an 0(y'n) order al- In this paper we have shown that even with
gorithm from our adaptive m-contour algo- optimal slowdown, the resultant algorithm
rithm associated with Theorem 4 with k = I fails to remain AT2 optimal when the recon­
and p = q which will compute the m-contour figurable mesh is self-simulated. To overcome

12

this, we have introduced, for the first time,
the idea of adaptive algorithm which runs on
RM of variable sizes without compromising
the AT2 optimality. We have supported our
idea by developing adaptive algorithms for
sorting items and computing the contour of
maximal elements of a set of planar points
on RM. We have also conjectured, with sup­
port from examples , that to obtain an AT2

algorithm to solve a problem of size n with
I (n) information content on an RM of size
pxq where pq = kI(n), it is sufficient to form
buses of length O(k). We also have presented
here a new algorithm to compute the contour
of maximal elements of n planar points on an
ordinary mesh of size ,In x ,In.

References

[1] Yosi Ben Asher, Dan Gordon, and Assaf
Schuster. Efficient self-simulation algo­
rithms for reconfigurable arrays. Journal
of Parallel and Distributed Computing,
30:1-22, 1995.

[2] Y. Ben-Asher, D. Peleg, R. Ramaswami,
and A. Schuster. The power of recon­
figuration . Journal of Parallel and Dis­
tributed Computing, 13:139-153, 1991.

[3] B. Beresford-Smith, 0. Diessel, and
H. ElGindy. Optimal algorithms for con­
strained reconfigurable meshes. A us­
tralian Computer Science Communica­
tions, 17:32- 41 , 1995.

problem on a mesh-connected parallel
computer. Information Processing Let­
ters, 22:303- 306, 1986.

[5] Frank Dehne. Computing the largest
empty rectangle on one- and two­
dimensional processor arrays. Journal
of Parallel and Distributed Computing,
9:63-68, 1990.

[6] Ju-Wook Jang and Viktor K. Prasanna.
An optimal sorting algorithm on recon­
figurable mesh. Journal of Parallel and
Distributed Computing, 25:31--41, 1995.

[7] H. T. Kung. On the computational com­
plexity of finding the maxima of a set of
vectors. In 15th Annual IEEE Symp. on
Switching and Automata Theory, pages
117-121, Oct. 1974.

[8] H. T. Kung, F. Luccio, and F. P.
Preparata. On finding the maxima of
a set of vectors. J. ACM, 22:469--476,
1975.

[9] F. Thomson Leighton. Introduction to
Parallel Algorithms and Architectures:
Arrays, Trees, Hypercubes. Morgan
Kaufmann Publishers, San Mateo, Cali­
fornia, USA, 1992.

[10] Tom Leighton. Tight bounds on the
complexity of parallel sorting. IEEE
Transactions on Computers, C-34:344-
354, 1985.

[4] Frank Dehne. O(n1i2) algorithms for the [11] John M. Marberg and Eli Gafni. Sorting
maximal elements and ECDF searching in constant number of row and column

13

phases on a mesh. Algorithmica, 3:561- [17] M. Manzur Murshed and Richard P.
572, 1988. Brent. Algorithms for optimal self­

[12] Massimo Maresca. Polymorphic proces­
sor arrays. IEEE Transactions on Par­
allel and Distributed Systems, 4:490-506,
1993.

[13] Russ Miller, V. K. Prasanna Kumar ,
Dionisios I. Reisis, and Quentin F. Stout.
Data movement operations and applica­
tions on reconfigurable VLSI arrays. In
Proc. International Conference on Par­
allel Processing, pages 205-208, 1988.

[14] Russ Miller, V. K. Prasanna-Kumar,
Dionisios I. Reisis, and Quentin F. Stout.
Parallel computations on reconfigurable
meshes. IEEE Transactions on Comput­
ers, 42:678-692, 1993.

[15] M. Manzur Murshed and Richard P.
Brent. Constant time algorithm for com­
puting the contour of maximal elements
on the reconfigurable mesh. To appear in
Parallel Processing Letters, special issue
on Computing on Bus-Based Architec­
ture.

[16] M. Manzur Murshed and Richard P.
Brent. Constant time algorithms for
computing the contour of maximal ele­
ments on the reconfigurable mesh. In
Proceedings of the 1997 International
Conference on Parallel and Distributed
Systems, pages 172- 177, Seoul, Korea,
November 1997. Korea University, IEEE
Computer Society.

simulation of some restricted reconfig­
urable meshes. In Proceedings of the 2nd
International Conference on Computa­
tional Intelligence and Multimedia Ap­
plications 1998, pages 734-744, Gipps­
land, Australia, February 1998. Monash
University, World Scientific.

[18] Koji Nakano. A bibliography of pub­
lished papers on dynamically reconfig­
urable architectures. Parallel Processing
Letters, 5:111-124, 1995.

[19] Madhusudan Nigam and Sartaj Sahni.
Sorting n numbers on n x n recon­
figurable meshes with buses. Journal
of Parallel and Distributed Computing,
23:37-48, 1994.

[20] Stephan Olariu and James L. Schwing.
A novel deterministic sampling scheme
with applications to broadcast-efficient
sorting on the reconfigurable mesh.
Journal of Parallel and Distributed
Computing, 32:215-222, 1996.

[21] J. Rothstein. Bus automata, brains, and
mental models. IEEE TI-ans. Syst. Man
Cybern, 18:522-531, 1988.

[22] C. Thompson and H. Kung. Sorting
on a mesh-connected parallel computer.
Communications of the A CM, 20:263-
271, 1977.

[23] Jeffrey D. Ullman. Computational As­
pects of VLSI. Computer Science Press,
Rockville, Maryland, 1984.

14

124) Ramachandran Vaidyanathan and
Jerry L. Trahan. Optimal simulation of
multidimensional reconfigurable meshes
by two-dimensional reconfigurable
meshes. Information Processing Letters,
47:267-273, 1993.

125) C. C. Weems et al. The image under­
standing architecture. Internat. J. of
Comput. Vision, 2:251-282, 1989.

126) F. F. Yao. On finding the maximal ele­
ments in a set of plane vectors. Techni­
cal report , Corn put. Sci. Dep. Rep., U.
of Illinois at Urbana-Champaign, 1974.

15

c~ +he,.
Q.A ,C,,."J
. Alf..3
H <e.7
/qq.,;

2077315

THE AUSTRALIAN NATIONAL UNIVERSITY

FACILITIES AND SERVICES

Temporary Overflow Parking off Brian Lewis Crescent

From time to time questions are raised about the use of this area.

This area - adjacent to University Accommodation Services (formerly the
Housing Office) - has been set aside as overflow parking only, associated
with major University events and large functions held at University House.
It is not available for continuous use.

Arrangements may be made through the Manager, Security & Parking
for this carpark to be opened when the demand for additional space
is anticipated. Unfortunately the area is not suitable for parking
following long periods of wet weather when the swface becomes
slippery because of the slope of the area.

In the past, the Buildings and Grounds Committee considered a proposal
to build a permanent surface car park on this site but did not support this
on the grounds that it would damage the health of the substantial heritage
value trees on the site. The Committee also acknowledged that because
of the steep grade the construction cost of a permanent carpark
would be prohibitive.

For further information on parking, please contact the Manager, Security

~
Warwick Williams
Director
Facilities and Services
The Australian National University
18 March 1998

	IMG-1750_1
	IMG-1751_1
	IMG-1752_1
	IMG-1753_1
	IMG-1754_1
	IMG-1755_1
	IMG-1756_1
	IMG-1757_1
	IMG-1758_1
	IMG-1759_1
	IMG-1760_1
	IMG-1761_1
	IMG-1762_1
	IMG-1763_1
	IMG-1764_1
	IMG-1765_1
	IMG-1766_1
	IMG-1767_1
	IMG-1768_1

