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Abstract 

Recently a few self-simulation algorithms 
have been developed to execute algorithms 

conjecture has been supported. by deriving a 
new algorithm, from our adaptive algorithm, 
to compute the contour of maximal elements 
of n planar points on an ordinary mesh of size 
..fii,x ..fii,. on a reconfigurable mesh (RM) of size smaller 

than recommended in those algorithms. Op­
timal slowdown, in self-simulation, has been 
achieved with the compromise that the re- l 
sultant algorithms fail to remain AT2 opti­
mal. In this paper we have introduced, for 
the first time, the idea of adaptive algorithm 
which runs on RM of variable sizes without 
compromising the AT2 optimality. We have 
supported our idea by developing adaptive al­
gorithms for sorting items and computing the 
contour of maximal elements of a set of planar 
points on RM. We have also conjectured that 

Introduction 

It is well-known that interprocessor commu­
nications and simultaneous memory accesses 
often act as bottlenecks in present-day par­
allel machines. Bus systems have been intro­
duced recently to a number of parallel ma­
chines to address this problem. Examples in­
clude the Bus Automaton [21), the Reconfig­
urable Mesh (RM) [13], the content address­
able army processor [25], and the Polymor­
phic torus [12]. Among them RM draws much 
attention because of its simplicity. A bus sys­
tem is called reconfigurable if it can be dy­
namically changed according to either global 

to obtain an AT2 algorithm to solve a prob-­
lem of size n with I(n) information content 
on an RM of size p x q where pq = kl(n), it is 
sufficient to form buses of length O(k ). This 

• Corresponding author. 



or local information. 
Introduction of reconfigurable bus systems 

reduces the virtual communicational diame­
ter of any network of processors to a con­
stant. This fact has greatly influenced the re­
searchers around the world and a large collec­
tion of constant time algorithms have already 
been developed [18J. To realise these constant 
t ime algorithms we need to use more proces­
sors than we usually use to solve the same 
problems on ordinary meshes. In fact, we can 
easily observe that the ratio of the number of 
processors used in a constant time algorithm 
to the number of processors used in an ordi­
nary mesh algorithm solving the same prob­
lem is polynomial in problem size. Ben-Asher 
et al. [l] present the idea of self-simulation 
where the existing RM algorithms are exe­
cuted with slowdown on an RM of size smaller 
than intended for those algorithms. A few 
self-simulation techniques appear in [1, 17] 
with optimal slowdown for various models of 
RM. 

In this paper, we have pointed out that self­
simulation even with optimal slowdown com­
promises with the AT' [23, chapter 2] opti­
mality of the resultant algorithm. To over­
come this limitation of self-simulation, we 
have presented a new idea of developing al­
gorithms on RM which will be adaptive in 

oped an adaptive AT2 optimal algorithm to 
compute the contour of maximal elements of 
n planar points in f time. 

In developing our adaptive algorithm idea, 
we have conjectured that to obtain an AT2 
algorithm to solve a problem of size n with 
information content I ( n) on an RM of size 
p x q where pq = kl(n) , it is sufficient to 
form buses of length O(k). This conjecture 
has been supported by deriving a new algo­
rithm, from our adaptive algorithm, to com­
pute the contour of maximal elements of n 
planar points on an ordinary mesh of size 
..fox ..jn. 

The paper is organised as follows. In the 
next section we present the key issues associ­
ated with RM and of its self-simulation, The 
idea of adaptive optimal algorithm is devel­
oped in Section 3. In Section 4 we develop an 
adaptive AT2 optimal sorting algorithm. The 
problem of computing the contour of maxi­
mal elements of a set of planar points is de­
fined in Section 5 and an adaptive AT2 opti­
mal algorithm to solve the problem is devel­
oped in the same section. A new algorithm 
is presented in Section 6 to compute the con­
tour of maximal elements of n planar points 
on an ordinary mesh of size ,.Jn x Jn. Sec­
tion 7 concludes the paper. 

the sense that these algorithms can be exe­
cuted on RM of various size keeping the AT2 2 
measures unaffected by the size. 

Preliminaries 
To illustrate our idea we have developed 

an adaptive AT2 optimal sorting algorithm 
to sort n items in f time on an RM of size 
p x q, pq = kn, 1 < p Sq S n2 , and k 2: 1. 
By using the same RM, we have also <level-

For the sake of completeness, here we briefly 
define the reconfigurable mesh and self­
simulation of RM and then describe the opti­
mality issues associated with self-simulation. 
Throughout the paper, we use 0() to mean 



Figure 2: Possible internal connections be­
tween the four I/0 ports of a processor 

Figure 1: A reconfigurable mesh of size 3 x 4 

"order exactly," 0() to mean "order at most," 
and 0() to mean "order at least." 

2.1 Reconfigurable Mesh 

The reconfigurable mesh is primarily a two­
dimensional mesh of processors connected by 
reconfigurable buses. In this parallel archi­
tecture, a processor element is placed at the 
grid points as in the usual mesh connected 
computers. Processors of the RM of size 
X x Y are denoted by P EiJ, 0 ~ i < X - 1, 
0 ~ j < Y - 1 where processor P Eo,o resides 
in the south-western corner. Each processor 
is connected to at most four neighbouring 
processors through fixed bus segments con­
nected to four I/O ports E & W along di­
mension x and N & S along dimension y. 
These fixed bus segments are building blocks 
of larger bus components which are formed 
through switching, decided entirely on local 
data, of the internal connectors (see Figure 1) 
between the I/0 ports of each processor. The 
fifteen possible interconnections of I/0 ports 
through switching are shown in Figure 2. 
Like all bus systems, the behaviour of RM re-

lies on the assumption that the transmission 
time of a message along a bus is independent 
of the length of the bus [2]. 

A reconfigurable mesh operates in the sin­
gle instruction multiple data (SIMD) mode. 
Besides the reconfigurable switches, each pro­
cessor has a computing unit with a fixed num­
ber of local registers. A single time step of 
an RM is composed of the following four sub­
steps: 

BUS substep. Every processor switches 
the internal connectors between I/0 
ports by local decision. 

WRITE substep. Along each bus, one or 
more processors on the bus transmit a 
message of length bounded by the band­
width of the fixed bus segments as well as 
the switches. These processors are called 
the speakers. It is assumed that a colli­
sion between several speakers will be de­
tected by all the processors connected to 
the bus and the transmitted message will 
be discarded. 

READ substep. Some or all the processors 
connected to a bus read the message 



transmitted by a single speaker. These as in the above definition then the slowdown 
processors are called the readers. remains as the key issue. 

COMPUTE substep. A constant-time lo­
cal computation is done by each proces­
sor. 

Other than the buses and switches the RM 
of size p x q is similar to the standard mesh 
of size p x q and hence it has 0(pq) area in 
VLSI embedding [23], under the assumption 
that processors, switches, and links between 
adjacent switches occupy unit area. 

2.2 Optimality Issues in Self-
Simulation of RM 

Introduction of reconfigurable buses reduces 
the virtual communicational diameter of reg­
ular parallel architecture to a constant and 
thus leads to the simplest architecture, the 
mesh. Can reconfigurable mesh be the basis 
for the design of the next generation of mas­
sively parallel computers? Perhaps the an­
swer depends on the most fundamental issue 
of self-simulation. 

Let RMgxB denote a reconfigurable mesh 
of A rows and B columns with each PE hav­
ing C registers. 

Definition 1 The self-simulation problem of 
RM is to step-by-step simulate RMptxN by 
RM:[Rhmrn where p ~ M, Q ~ N, 
and the computing power of the PEs and the 
bus bandwidth (not less than log MN) are as­
sumed to be equivalent in both the meshes. 

To simplify the exposition 1f and %- are 
assumed to be integers. If the memory re­
quirement of the simulating RM is bounded 

Definition 2 We say that reconfigurable 
mesh R1 is simulated by Ri with slowdown 
S if the result for any algorithm A 1 on R1 is 
achieved through the execution of a step-by­
step simulation algorithm A2 on Ri in which 
each step of A1 is simulated wi.th slowdown at 
most S. 

Obviously the self-simulation of RMptx N 
by RM;(RQ'f'I;)' P ~Mand Q ~ N, is said 

to be optimal if the slowdown is e ( 1 ~). 
A smaller slowdown would lead to a serial 
algorithm contradicting lower bound. 

Ben-Asher et al. [1] first present the con­
cept of self-simulation for · RM and develop 
some self-simulation algorithms with opti­
mal slowdown. In [17] we present optimal 
self-simulation algorithms of some restricted 
reconfigurable meshes. Optimal slowdown 
in self-simulation is the bottom line we can 
achieve but it tells a little of the optimality 
of the resultant algorithm. 

2.2.1 Is tbe Resultant Algorithm in 
Self-Simulation of RM with Op­
timal Slowdown AT2 Optimal? 

We have a negative answer. Consider any 
problem of size n whose AT2 = fl(n2), say, 
sorting of n elements of size log n bits each. 
Now, we have some sorting algorithms [6, 20, 
19] which can sort n elements on RM of size 
n x n in constant time. Obviously the AT2 

measures of these algorithms are 0(n2) and 
thus these algorithms are AT2 optimal. 



Suppose one of this AT2 optimal sorting al­
gorithm is self-simulated, with optimal slow­
down 8(~), in an RM of size m x m where 
m < n. The AT2 measure of the resultant 
sorting algorithm then becomes 8(~) which 
is not optimal for m << n. 

On the other hand, we have many AT2 op­
timal sorting algorithms [10, 11, 22] to sort n 
elements on an ordinary mesh of size vn X vn 
in 0( .fii) time. 

This anomaly suggests the development of 
adaptive algorithms which will remain AT2 

optimal while running on RM of various sizes. 

3 Adaptive AT2 Optimal 
Algorithms 

Let a problem P of size n have I(n) informa­
tion content [23, pages 51-54]. If this prob­
lem P is realised in a VLSI circuit with as­
pect ratio a then, by Ullman [23, page 57], 
AT2 lower bound of P will be O(c,/2(n)). 
Now, consider an RM of size p x q where 
pq = kl(n), 1 < p:, q :, I 2 (n), and k 2'. 1. 
We are interested in developing an algorithm 
to solve P which will remain AT2 optimal for 
all p and q. 

Let T be the time to solve P in an RM of 
size p x q. Then 

Which implies 

pqT2 = 'l12 (n). 
p 

Observe that T is independent of q, the 
length of the larger side of the VLSI circuit. 
Now, 

T = 1 ""'p = I(n). 

Thus, development of constant time algo­
rithm is feasible whenever p = I(n) for any 
q ~ p. As we are interested in keeping 
the area at minimum, the minimum possible 
value of q should be considered. So, 

T = 1 ""'p = q = k = I(n). (2) 

Again, 
k = 1 ""'T = q. 

This implies that whenever the area of the 
VLSI circuit equals the information content 
of the problem to be solved, the time of so­
lution depends only on q, the length of the 
larger side of the VLSI circuit. As we are in­
terested in keeping the time at minimum, the 
minimum possible value of q should be con­
sidered. So, pq = I(n) and p :, q derive the 
following: 

k = 1 ""'p = q = T = .,/i(;0. (3) 

Observation {2) represents the AT' opti­
mal constant time algorithm, if it exists, with 
minimum area and observation (3) represents 
the AT2 optimal mesh algorithm, if it ex-
ists , with minimum time. We now want to 
use the available algorithms complying with 
these observations (2) and (3) to develop AT2 

optimal algorithms for 1 :, k :, I(n) with so­

lution time 1 :$ T :$ .,/i(;0. Obviously mini­
mum AT2 lower bound can only be achieved 

(!) when p = q. 



Let the RM of size p x q be divided into sorting algorithm of Marberg and Gafni [11] 
f submeshes of size p x k each. I(n) infor- on ordinary mesh to any constant time sort­
mation content should now be distributed in ing algorithm on RM. 
such a way that each submesh of size p x k re­
ceives exactly p elements of information con­
tent in a column of the submesh. The f-ary 
divide-and-conquer technique seems to be the 
most feasible where the problem will be di­
vided into f subproblems which are solved in 
the submeshes of size p x k in time O(f) in 
parallel. In the next steps the data are ei­
ther redistributed (see Section 4) or merged 
(see Section 5) in time O(f) using the entire 
RM of size p x q. There may be a constant 
number of similar iterations. 

The idea of developing adaptive AT2 op­
timal algorithms was originated in the work 
of Beresford-Smith et al. [3] in which they 
developed optimal algorithms for constrained 
reconfigurable meshes where only buses of 
some constant length is allowed. In fact the 
adaptive optimal sorting algorithm presented 
in the next section has been included from [3} 
where Beresford-Smith et al. did not point 
out the inner strength of their algorithm. 

The value k = ~ may have extra signifi­
cance. Perhaps it can be conjectured, in the 
light of this paper and [3] , that to obtain AT2 

optimal algorithm on RM of size p x q, it is 
sufficient to form buses of length O(k). 

4 Adaptive Optimal Sort­
ing Algorithm 

Lemma 1 Let s items are stored in some s 
processors of a linear array of m ~ s pro­
cessors with reconfigurable bus. Then these 
items can be sorted in O(s) time. 

Proof. A straightforward emulation of odd­
even transposition sort [9, pages 139- 144] 
solves the problem. 0 

Lemma 2 Sorting m items in the first row 
of an RM of size m x m can be done in 0(1) 
time. 

Proof. See in [6, 19, 20]. □ 
The algorithm of Mar berg and Gafni [11] 

uses a fixed number of phases of row /column 
sorting/rotating to sort ab items in O(a + b) 
time on a mesh of size a x b where a > ./b. If 
a i. -,/b then b > .,/a and thus sorting can be 
done simply by transposing all row/column 
operations into column/row operations in the 
algorithm. 

4.1 Adaptive Optimal Sorting 
of p Items on an RM of Size 
k x p, k $ p 

Let the RM of size k x p be divided into f 
submeshes of size k x k each and the given p 
items in the first row be distributed in such 
a way that each processor P E1,,1k, 0 ::; i < k 
and O ::; j < f, receives an item. It is obvious 

Here we plan to develop an adaptive algo- that such a redistribution of elements can be 
rithm which will connect the AT2 optimal carried out in constant time using a column 



broadcast followed by a row broadcast with 
bus splitting [14). Now, the emulation of the 
sorting algorithm of Marberg and Gafni [11) 
needs only the following basic operations: 

Ifk?./fo 

1. Sorting k items in a column using a 
submesh of size k x k. 

2. Rotating ,/f items in a row using a 

submesh of size 1 x kjf. 
3. Sorting f items in a row using a 

submesh of size 1 x p. 

4. Rotating f items in a row using a 
submesh of size 1 x p. 

5. Sorting ,/f items in a column using 

a submesh of size ,/f x k. 

6. Sorting f items in a row using a 
submesh of size 1 x p. 

7. Rotating ./k items in a column us­
ing a submesh of size ./k x k. 

time by Lemma 2. Using Lemma 1 it can 
be shown that operation 2 can be done in 
0(,/f) time and operations 3, 4, 6, and 10 
can be done in O(f) time. Hence follows: 

Theorem 1 Given p items in the first row of 
an RM of size k x p, k :'.5 p, these items can 
be sorted in O(f) time, which is AT2 optimal. 
□ 

4.2 Adaptive Optimal Sorting 
of n Items on an RM of Size 
p x q, p ::; q and pq = kn 

Let the RM of size p x q be divided into 'f 
submeshes of size p x k each as suggested 
in Section 3 and the given n items in the 
first ~ columns be distributed in such a way 
that each processor P EiJk, 0 :'.5 i < p and 
0 :'.5 j < 'f, receives an item. It can easily 
be shown that such a redistribution can be 
carried out in 0(') = O(V time using only 
row broadcasts. Again, the emulation of the 
sorting algorithm of Marberg and Gafni [11) 
needs only the following basic operations: 

8. Sorting k items in a column using a 
submesh of size k x k. If P ~ If 

9. Rotating k items in a column using 
a submesh of size k x k. 

10. Sorting ./k items in a row using a 
submesh of size I x kvk. 

The problem of rotation can always be 
transformed into a sorting problem without 
any slowdown. A rotation, therefore, takes 
as much time as it does to sort. Now, Oper­
ations 1, 5, 7, 8, and 9 can be done in 0(1) 

1. Sorting p items in a column using a 
submesh of size p x k. 

2. Rotating [f items in a row using a 

submesh of size 1 x kif. 
3. Sorting 'f items in a row using a 

submesh of size 1 x q. 

4. Rotating 'f items in a row using a 
su bmesh of size 1 x q. 



5. Sorting jf items in a column using 

a submesh of size jf x k. 

Else=>f>.jji 

6. Sorting f items in a row using a 
submesh of size 1 x q. 

7. Rotating ,IP items in a column us­
ing a submesh of size ..Jp x k. 

8. Sorting p items in a column using a 
submesh of size p x k. 

y 

O non-maximal point 
• maximalpoint 

9. Rotating p items in a column using Figure 3: m-contour of a set of planar points 
a submesh of size p x k. 

10 . Sorting .jp items in a row using a x(p) denote the x-coordinate and y(p) denote 
submesh of size 1 x k.jji. they-coordinate of p, e.g., x(P(i,j)) = i and 

Operations 1, 8, and 9 can be done in 0(1) 
time by Lemma 2 if k 2'.: p, else these can 
be done in O(f) t ime by Theorem 1. Using 
similar arguments it can be shown that oper­
ations 5 and 7 can be done in O(f) and O(!,:) 
respectively. Using Lemma 1, operations 3, 4, 
6, and 10 can be done in O({) time and op­
eration 2 can be done in 0(/f) time. Since 
p :S: q, it follows from the above argument 
that: 

Theorem 2 Given n items in the first ~ 
columns of an RM of size p x q, p :S: q and 
pq = kn, these items can be sorted in 0( {) 
time, which is AT2 optimal. □ 

5 Adaptive Optimal 
contour Algorithm 

m-

Let the planar point at coordinate (i, j) be 
defined as P( i, j). Again, let for any point p, 

y(P(i,j)) = j. 
Definition 3 A point p dominates a point q 
(denoted by q-< p) if x(q) :, x(p) and y(q):, 
y(p). {The relation "-< 1' is naturally called 
dominance.) 

Let S be a set of N planar points. To 
simplify the exposition of our algorithms, the 
points in S are assumed to be distinct. 

Definition 4 A point p E S is maximal if 
there is no other point q E S wi.th p -< q. 

We are interested in the contour spanned 
by the maximal elements of S, called the m­
contour of S which can be obtained by simply 
sorting the maximal elements in ascending or­
der of their x-coordinates (Figure 3). Let the 
m-contour of a set S be denoted as m(S). 

We have mentioned two interesting obser­
vations on m-contour in our paper [15, 16] 
which are given below for the sake of com­
pleteness. 



Lemma 3 Every m-contour is sorted in de­
scending order of the y-coordinates. 

Proof. Suppose the contrary. Then there 
exists at least one pair of maximal elements 
p and q such that y(p) < y(q) while x(p) :S 
x(q), which contradicts with the assumption 
that point p is maximal. D 

Let for any set S of some planar points 
functions min,(S) and max,(S) denote the 
minimum and maximum x-coordinates in the 
set respectively. Let two more functions 
min,(S) and max,(S) be defined similarly 
w.r.t. y-coordinate. 

Lem.ma 4 Given K sets So, S1, ... SK-1 of 
planar points such that 'vt : 0 $ t < K - 1, 
maxx(St) $ minx(St+1 ), then Vi : 0 $ i < 
K - I, 'Ip E m(S,) I\ y(p) > max,(m(S;)), 
'tj > i, if and only if, p E m(U{;,01 S,). 

Proof. The necessity part can be proved by 
arranging a contradiction of Lemma 3. To 
prove the sufficiency part we take a point p E 
m(S,), 3i: 0 :Si< K - I /\p ,f. m(U{;,01 S,). 
Then by the definition of maximality we get 
3q E U~il1 St such that p -< q, i.e., y(p) $ 
y(q). □ 

The m-contour problem is also known as 
finding the maxima of a set of vectors and 
has been extensively explored for serial com­
puters in [7, 8, 26]. Computation of max­
imal elements is important in solving the 
Largest Empty Rectangle Problem [5] where 
a rectangle R, and a number of planar points 
S E R, are given and the problem is to com­
pute the largest rectangle r ~ R that con­
tains no point in S and whose sides are par­
allel to those of R. If R is divided into four 

SE SW 

............. ~ • 
l '······••···· ............... .: 

NE NW 

Figure 4: Importance of maximal elements in 
computing largest empty rectangle 

quadrants then the maximal elements w.r.t. 
the northeast(NE), northwest(NW), south­
west(SW), and southeast(SE) directions as 
depicted in Figure 4 remain the only candi­
dates to be the supporting elements of the 
empty rectangles lying in all the four quad­
rants. 

It is well known that the time complexity 
for computing the contour of the maximal ele­
ments ofn planar points is 0(nlogn) using a 
serial computer [8]. This lower boundary can 
be concluded from the fact that the problem 
of sorting can be easily transformed into an 
m-contour problem. The information content 
in computing m-contour of n planar points is 
fl(n) and hence the AT2 lower baund is fl(n2) 

[23, page 56]. Dehne [4] gives an AT' opti­
mal algorithm for solving m-contour problem 
on a mesh of size .Jn x .Jn in 0( .Jii.) time. 
In [15, 16] we have presented three constant 
time m-contour algorithms on RM of various 
dimensions. Using the result of optimal sim­
ulation of multidimensional RM by two di­
mensional RM in [24], it can easily be shown 
that all the three algorithms in [15, 16] are 
AT2 optimal. 



We now plan to develop an adaptive al­
gorithm based on our AT2 optimal con­
stant time m-contour algorithm presented in 
[15, 16]. 

Given a binary sequence, bi, 0 ~ j < N 1 

the prefix-and computation is to compute, 'vi : 
0 '.S i < N , b0 A b1 A · · · A b;. Similarly the 
prefix-or computation computes b0 V b1 V • • • V 
bi, 'vi : 0 ~ i < N. Adapting the technique 
of bus splitting [14] it is easy to show that: 

Lemma 5 Given a binary sequence of length 
m in the only row of an RM of size 1 x m, 
both the prefix-and and the prefix-or of the 
elements in the sequence can be computed in 
0(1) time. 

5.1 Adaptive Optimal Comput­
ing of the m-contour of p 
Planar Points on an RM of 
Size k x p, k '.'o p 

Let the RM of size k x p be divided into I 
submeshes of size k x k each and the given p 
planar points in the first row be distributed 
in such a way that each processor P E1Jk , 
0 ~ i < k and O ~ j < f , receives a point. 
It is obvious that such a redistribution of el­
ements can be carried out in constant time 
using a column broadcast followed by a row 
broadcast with bus splitting [14]. Now, we 
sort the points w.r.t. x-coordinate in column­
major order by Theorem 1 in 0( I) time. 

Let the points residing in column jk be de­
noted by the set Si, 0 ~ j < r Clearly 
these I sets of planar points follow the con-

Proof. See in [14]. □ dition of Lemma 41 i.e., Vj : 0 ~ j < f - 1, 
maxx(Si) ~ min2:(S;+1). The m-contours 
m(Sj), 0 :S j < f , are now computed in 
parallel using a su bmesh of size k x k for 
each computation. By Lemma 6 this oper­
ation takes only 0(1) time. Now, we trans-

Lemma 6 Computing m-contour of m pla­
nar points in the first row of an RM of size 
m x m can be done in 0(1) time. 

Proof. First the points are sorted w.r.t. x­
coordinate in constant time using Lemma 2. 
Using a column broadcast and a row broad­
cast, all the points are distributed in such a 
way that each column represents possible m 
pair-wise comparisons of a single point with 
the rest. The m-contour is then determined 
by computing the prefix-and of the compari­
son values in 0(1) time by Lemma 5. See in 
[15, 16] for detail. D 

fer the max, ( m( S;)) values to the first row 
of the RM in the following single step using 
Lemma 3: 

10 

1. b: Any processor in column j contain­
ing a point E m(S;) disconnects all 
port interconnections while the rest 
of the processors connect port N 
withSforallO~j<I' 

w: Any processor in column j contain­
ing a point E m(Si) now writes the 
y-coordinate of the point to port §0 
forallO'.Sj<f. 



r: Every processor in the first row m-contour of these points can be computed in 
reads port Sin. O(f) tim e, which is AT2 optimal. □ 

Here, the substeps are labelled as "b:", "w:" , 
"r:11 , and "c:" to denote the BUS , WRITE, 
READ, and COMPUTE substeps respec­
tively. 

Now, the m-contour of the entire p points 
can be computed in the following steps using 
Lemma 4: 

1. Iterate the following for t = 0 to r fr l - 1 
in step 1: 

1.1 Copy max,(m(Stk+;)) to processors 
PEi,i+rk , 0 $ i < k, 0 $ r < f , 
for all O $ j < k, using a column 
broadcast then a row broadcast and 
finally a column broadcast. 

1.2 Copy the y-coordinate of the point 
residing in processor P Ei,ki to the 
processors PEi,ki+r, 0 $ r < k, for 
all O $ j < ~, 0 $ i < k, using a 
row broadcast. 

1.3 Now in the jth submesh of size 
k x k , the ith row contains k maxy 
values paired with the y-coordinate 
of a particular point, say d. Now, 
apply Lemma 4 to eliminate d by 
computing prefix-or over the com­
parison values of at most k pairs in 
constant time by Lemma 5. 

It is very easy to show that the above iter­
ation takes 0( f fr l) time and thus it can be 
concluded that: 

Theorem 3 Given p planar points in the 
first row of an RM of size k x p, k '.S p, the 

5.2 Adaptive Optimal Comput­
ing of the m-contour of n 
Planar Points on an RM of 
Size p x q, p :S q and pq = kn 

Let the RM of size p x q be divided into { 
submeshes of size p x k each and the given n 
planar points in the first ; columns be dis­
tributed in such a way that each processor 
PEi,ik, 0 $ i < p and O $ j < { , re­
ceives a point. It can easily be shown that 
such a redistribution can be carried out in 
oq;) = O{f) time using only row broadcasts. 
Now, we sort the points w.r.t. x-coordinate 
in column-major order by Theorem 2 in O{f) 
time. 

Let the points residing in column jk be de­
noted by the set S;, 0 '.S j < f Clearly 
these f sets of planar points follow the con­
dition of Lemma 4, i.e ., Vj : 0 $ j < { - 1, 
max:c(Si) $ min.x(Sj+i)· The m-contours 
m(Si), 0 $ j < f, are now computed in par­
allel using a submesh of size p x k for each 
computation. By Theorem 3 this operation 
takes only O(f) time. 

Now taking very similar steps as used in 
Section 5.1 it can be shown that: 

Theorem 4 Given n planar points in the 
first i columns of an RM of size p x q, p $ q 
and pq = kn, the m-contour of these points 
can be computed in O(f) time, which i.s AT2 

optimal. □ 
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6 A New AT2 Optimal Al- of n points using buses of length 0(1)? The 
· h " C following lemmas answer this question in af-gont m ,or omputing firmation. 

m-contour of n Planar 
Points on ...Jn x ...Jn Or­
dinary Mesh 

If we set k = I and p = q in the adaptive al­
gorithm associated with Theorem 4 we get 
an m-contour algorithm on an RM of size 
,/n x ,/n in 0( .fii) time. But this algorithm 
cannot be used on an ordinary mesh of size 
,/n x ,/n in 0( .fii) time as the maxy's of the 
m-contour of all the Jn subproblems must 
be broadcast sequentially to all other proces­
sors. This will result in an algorithm of order 
O(n) which is not AT2 optimal. 

But in Section 3 we have conjectured that 
there should exist AT2 optimal m-contour al­
gorithm on ordinary mesh, where buses of 
length 0(1) are allowed to form, as we al­
ready have AT2 optimal m-contour algorithm 
on RM with k = l. In fact such an algorithm 
[4] exists and we have already mentioned it 
in Section 5. In [4], Dehne develop a recur­
sive algorithm, on an ordinary mesh of size 
Jn x ,Jn, which divides the m-contour prob­

Lemma 7 Given p planar points, one in 
each processor of an ordinary linear array of 
p processors, the m-contour of these points 
can be computed in O (p) time. 

Proof. Once the points are sorted w.r.t. 
x-coordinate in 0(p) time by Lemma 1, all 
the points are systolically shifted to the left 
for at most p times and each processor try 
to eliminate the point , it contains, from the 
m-contour by comparing it with the shifted 
points. D 

Lemma 8 Let m items xo, x 1, ... , Xm-1 be 
given in the first row of an ordinary mesh of 
size m x m where item Xj resides in proces­
sor PEoJ , 0 ~ j < m. Now, consider the 
problem of distributing item Xj among all the 
processors PEi,r, 0 $ i < m and O ~ r < j, 
for all O $ j < m. This problem can be solved 
in O(m) time. 

Proof. Broadcast each item Xj, in parallel, 
to all the processors PEtJ , 0 $ i < m, along 
the column j, 0 S j < m. This takes O(m) 
time. Now, systolically shift the items in each 
column to the left for most O(m) time. □ 

lem of n points into two subproblems of equal 
size and then marge the solutions of these 
subproblems in affordable order 0( ../n) so 
that the overall order, O(y'n), remains AT2 7 
optimal. 

Conclusion 

Is it possible to derive an 0( y'n) order al- In this paper we have shown that even with 
gorithm from our adaptive m-contour algo- optimal slowdown, the resultant algorithm 
rithm associated with Theorem 4 with k = I fails to remain AT2 optimal when the recon­
and p = q which will compute the m-contour figurable mesh is self-simulated. To overcome 
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this, we have introduced, for the first time, 
the idea of adaptive algorithm which runs on 
RM of variable sizes without compromising 
the AT2 optimality. We have supported our 
idea by developing adaptive algorithms for 
sorting items and computing the contour of 
maximal elements of a set of planar points 
on RM. We have also conjectured, with sup­
port from examples , that to obtain an AT2 

algorithm to solve a problem of size n with 
I ( n) information content on an RM of size 
pxq where pq = kI(n), it is sufficient to form 
buses of length O(k). We also have presented 
here a new algorithm to compute the contour 
of maximal elements of n planar points on an 
ordinary mesh of size ,In x ,In. 
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THE AUSTRALIAN NATIONAL UNIVERSITY 

FACILITIES AND SERVICES 

Temporary Overflow Parking off Brian Lewis Crescent 

From time to time questions are raised about the use of this area. 

This area - adjacent to University Accommodation Services (formerly the 
Housing Office) - has been set aside as overflow parking only, associated 
with major University events and large functions held at University House. 
It is not available for continuous use. 

Arrangements may be made through the Manager, Security & Parking 
for this carpark to be opened when the demand for additional space 
is anticipated. Unfortunately the area is not suitable for parking 
following long periods of wet weather when the swface becomes 
slippery because of the slope of the area. 

In the past, the Buildings and Grounds Committee considered a proposal 
to build a permanent surface car park on this site but did not support this 
on the grounds that it would damage the health of the substantial heritage 
value trees on the site. The Committee also acknowledged that because 
of the steep grade the construction cost of a permanent carpark 
would be prohibitive. 

For further information on parking, please contact the Manager, Security 

~ 
Warwick Williams 
Director 
Facilities and Services 
The Australian National University 
18 March 1998 
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