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Abstract

The Hawkes process has been widely applied to modeling self-exciting events includ-
ing neuron spikes, earthquakes and tweets. To avoid designing parametric triggering
kernels, the non-parametric Hawkes process has been proposed, in which the trigger-
ing kernel is in a non-parametric form. However, inference in such models suffers
from poor scalability to large-scale datasets and sensitivity to uncertainty in the
random finite samples. To deal with these issues, we employ Bayesian non-parametric
Hawkes processes and propose two kinds of efficient approximate inference methods
based on existing inference techniques. Although having worked as the corner-
stone of probabilistic methods based on Gaussian process priors, most of existing
inference techniques approximately optimize standard divergence measures such as
the Kullback-Leibler (KL) divergence, which lacks the basic desiderata for the task
at hand, while chiefly offering merely technical convenience. In order to improve
them, we further propose a more advanced Bayesian inference approach based on
the Wasserstein distance, which is applicable to a wide range of models. Apart from
these works, we also explore a robust frequentist estimation method beyond the
Bayesian field. Efficient inference techniques for the Hawkes process will help all
the different applications that it already has, from earthquake forecasting, finance to
social media. Furthermore, approximate inference techniques proposed in this thesis
have the potential to be applied to other models to improve robustness and account
for uncertainty.

More specifically, we first develop an efficient non-parametric Bayesian estimation
of the triggering kernel of Hawkes processes based on Gibbs sampling. Our method
considers a Gaussian process modulated triggering kernel and is developed based on
the cluster representation of Hawkes processes. Utilizing the finite support assumption
of the Hawkes process, we efficiently sample random branching structures and thus,
we split the Hawkes process into clusters of Poisson processes. We derive two
algorithms — a block Gibbs sampler and a maximum a posteriori estimator based
on expectation maximization — and we show that our methods have a linear time
complexity, both theoretically and empirically. On synthetic data, we show our
methods to be able to infer flexible Hawkes triggering kernels. On two large-scale
Twitter diffusion datasets, we show that our methods outperform the current state-
of-the-art in goodness-of-fit and that the time complexity is linear in the size of the
dataset. We also observe that on diffusions related to online videos, the learned
kernels reflect the perceived longevity for different content types such as music or pet
videos.

Secondly, we propose a new non-parametric Bayesian Hawkes process in which
the triggering kernel is modeled as a squared sparse Gaussian process and a novel
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variational inference schema is proposed for model optimization. We again employ
the branching structure of the Hawkes process so that maximization of evidence lower
bound (ELBO) is tractable by the expectation-maximization algorithm. We propose a
tighter ELBO which improves the fitting performance. Further, we accelerate the novel
variational inference scheme to linear time complexity by leveraging the finite support
assumption of the triggering kernel. Different from prior acceleration methods, ours
enjoys higher efficiency. Finally, we exploit synthetic data and two large social media
datasets to evaluate our method. We show that our approach outperforms state-of-
the-art non-parametric frequentist and Bayesian methods. We validate the efficiency
of our accelerated variational inference scheme and the practical utility of our tighter
ELBO for model selection. We observe that the tighter ELBO exceeds the common
one in model selection.

Thirdly, we develop a new approximate inference method for Gaussian process
models which overcomes the technical challenges arising from abandoning those
convenient divergences. Our method—dubbed Quantile Propagation (QP)—is similar
to expectation propagation (EP) but minimizes the L2 Wasserstein distance instead
of the KL divergence. The Wasserstein distance exhibits all the required properties
of a distance metric, while respecting the geometry of the underlying sample space.
We show that QP matches quantile functions rather than moments as in EP and has
the same mean update but a smaller variance update than EP, thereby alleviating
EP’s tendency to over-estimate posterior variances. Crucially, despite the significant
complexity of dealing with the Wasserstein distance, QP has the same favorable
locality property as EP, and thereby admits an efficient algorithm. Experiments
on classification and Poisson regression show that QP outperforms both EP and
variational Bayes.

Finally, we propose a simple and robust framework for the estimation of condi-
tional moment restriction (CMR) models which include the Hawkes process. The
framework is developed based on a kernelized CMR known as a maximum moment
restriction (MMR) and applied to nonlinear instrumental variable (IV) regression,
which we are particularly interested in. The MMR is formulated by maximizing the
interaction between the residual and the instruments belonging to a unit ball in a
reproducing kernel Hilbert space (RKHS). The MMR allows us to reformulate the
IV regression as a single-step empirical risk minimization problem, where the risk
depends on the reproducing kernel on the instrument and can be estimated by a U-
statistic or V-statistic. This simplification not only eases the proofs of consistency and
asymptotic normality in both parametric and non-parametric settings, but also results
in easy-to-use algorithms with an efficient hyper-parameter selection procedure. We
demonstrate the advantages of our framework over existing ones using experiments
on both synthetic and real-world data.
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Chapter 1

Introduction

Hawkes (point) processes [Hawkes, 1971] have been widely used to model self-exciting
event sequences in which existing events increase the likelihood of occurrence of future
events. An example of self-exciting data is that on the online social media, attractive
tweets can easily diffuse by being retweeted [Simma and Jordan, 2010], and retweeting
promotes these tweets being seen and retweeted by more people. As another example,
in the seismic activities, an intensive earthquake tends to trigger a series of aftershocks,
and aftershocks possibly cause more aftershocks [Zhao et al., 2015]. In addition, many
finance data also have the self-excitement characteristic [Bacry et al., 2015] — we
recommend related works therein for more self-exciting cases.

The Hawkes process is suitable for self-exciting events because it explicitly models
the self-exciting interactions between events. Specifically, every event in the Hawkes
process is assumed to be triggered by either a previous event or the exterior stimulus.
To quantify the former triggering factor, the model uses a triggering kernel function
φ(·), and for the latter, it employs a background intensity function µ(·). φ and µ

measure the occurrence rate of events, and are non-negative-valued functions. The
aggregate occurrence rate is the sum of µ and φ of every previous event, which
is usually denoted as a λ(·) function. Consequently, we can understand a Hawkes
process as a cluster of Poisson processes [Hawkes and Oakes, 1974]. In the cluster view,
a Poisson process with an intensity µ (denoted as PP(µ)) generates immigrant points
which arrive in the system from the outside, and every existing point triggers offspring
points, which are generated internally through self-excitement, via a PP(φ). Points
are therefore structured into clusters where each cluster contains either a point and
its direct offspring or the background process (an example is shown in Figure 1.1(a)).
Connecting all points using the triggering relations yields a tree structure, which is
called the branching structure (an example is shown in Figure 1.1(b) corresponding to
Figure 1.1(a)). With the branching structure, we can decompose the Hawkes process
into a cluster of Poisson processes. The triggering kernel φ is shared among all cluster
Poisson processes relating to a Hawkes process, and it determines the overall behavior
of the process. Consequently, designing the kernel functions is of utmost importance
for employing the Hawkes process to a new application, and its study has attracted
much attention.

1
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(a) Poisson cluster process (b) Branching structure

Figure 1.1: The cluster representation of a Hawkes process. In (a), a Hawkes process with
a decaying triggering kernel φ(·) has intensity λ(x) which increases after each new point
(vertical dash line) is generated. It can be viewed as a cluster of Poisson processes: PP(µ)
and PP(φ(x− xi)) associated with each xi. Figure (b) presents the branching structure of the
Hawkes process in (a) and it reflects the triggering relationships between points. Here, an
edge xi → xj means that xi triggers xj, and its probability is denoted as pji.

1.1 Research Questions

Most of the recent works employing Hawkes Processes [Bao et al., 2015; Filimonov and
Sornette, 2015; Lallouache and Challet, 2016; Mishra et al., 2016; Rizoiu et al., 2017]
design parametric kernels modeling a predetermined subset of social processes such
as the limited length of collective memory [Wu and Huberman, 2007], or preferential
attachment [Barabási, 2005]. Manually designing parametric kernels is an expensive
process and may not generalize well to other applications. An open question is (Q1)
can we design non-parametric solutions for the kernel function?

There are many non-parametric estimations of Hawkes triggering kernels, such
as the works of Lewis and Mohler [2011]; Zhou et al. [2013]; Bacry and Muzy
[2016]; Eichler et al. [2017]. These are all frequentist methods and among them, the
Wiener-Hopf equation based method [Bacry and Muzy, 2016] takes the advantage of
quadrature approximation for the integrals in the equation and obtains linear time
complexity in estimating the triggering kernel, while it is sensitive to the employed
quadrature points. A different class of estimation methods are based on the Euler-
Lagrange equation [Lewis and Mohler, 2011; Zhou et al., 2013]. Similarly, these
methods require discretizing the input domain and as a result, they face a problem of
poorly scaling with the dimension of the domain. The same problem is also faced by
Eichler et al. [2017]’s discretization based method. Besides, frequentist methods do not
model uncertainty over the learned triggering kernels and tend to be sensitive to the
point process realizations. A second open question is (Q2) can we design continuous
and more robust non-parametric estimations, which account for the variance and
the noise in the observed real life data?
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The Bayesian inference for the Hawkes process has also been studied, includ-
ing the work of Rasmussen [2013]; Linderman and Adams [2014]; Linderman and
Adams [2015]. These works require either constructing a parametric triggering kernel
[Rasmussen, 2013; Linderman and Adams, 2014] or discretizing the input domain
to scale with the data size [Linderman and Adams, 2015]. To overcome the afore-
mentioned shortcomings of discretization, Donnet et al. [2018] propose a continuous
non-parametric Bayesian Hawkes process and resort to an unscalable Markov chain
Monte Carlo (MCMC) approach to the posterior distribution. The third open ques-
tion is (Q3) can we design efficient inference for non-parametric Bayesian Hawkes
processes?

1.2 Thesis Contributions

In the thesis, we answer the above three questions by proposing four solutions:

(i) the Laplace Bayesian Hawkes process [Zhang et al., 2019], in Section 1.2.1,
(ii) the variational Bayesian Hawkes process [Zhang et al., 2020b], in Section 1.2.2,

(iii) the quantile propagation [Zhang et al., 2020a], in Section 1.2.3,
(iv) the kernel maximum moment restriction estimation [Zhang et al., 2021a], in

Section 1.2.4.

The first two works, namely, (i) the Laplace Bayesian Hawkes process and (ii) the
variational Bayesian Hawkes process, are proposed as direct solutions to all three ques-
tions (Q1∼3). They are applications of existing approximation methods for Bayesian
inference. Compared with the former, the latter employs the more complicated and
advanced variational inference method, and enjoys faster training speed.

The last two works (iii) and (iv) study robust estimation methods beyond the
field of the Hawkes process and are more general solutions to Q2∼3. The work of
quantile propagation explores a new approximation method for Bayesian inference.
This method is similar to the expectation propagation (EP) algorithm [Opper and
Winther, 2000] in the use of iterative local updates but employs the L2 Wasserstein
distance instead of the Kullback-Leibler (KL) divergence. Due to the locality of the
computations, it is simple for our method and EP to parallelize and distribute, leading
to more efficiency than variational inference [Li et al., 2015] especially on large-scale
data [Gelman et al., 2017]. However unlike variational inference which minimizes
the lower bound of the log model evidence, EP and QP correspond to no explicit
global objective functions being minimized, and there is lack of works providing a
clear understanding of the iterative updates, making EP and our QP behave more in a
more complicated way than variational inference. Consequently, applying the new
method to the Bayesian Hawkes process is challenging and non-trivial, and left for
future work. It is observed that our method outperforms EP on the Gaussian process
binary classification tasks, so we expect it to offer efficient and accurate performance
for the Bayesian Hawkes process on large scale data.

Different from the above Bayesian solutions (i∼iii), the final one (iv) proposes a
frequentist estimation method which has an advantage of robustness and simplicity.
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This method is a generalization of maximum likelihood estimation and the method of
moments that are commonly employed by existing frequentist estimation methods
[Lewis and Mohler, 2011; Zhou et al., 2013; Bacry and Muzy, 2016; Eichler et al.,
2017]. Different from obtaining robustness via modeling uncertainty in the Bayesian
methods, the method has the spirit of adversarial learning. It considers a reproducing
kernel Hilbert space (RKHS) weighted average of the loss function values on data
points and estimates the model parameters by optimizing the maximal or the worst
average value. This idea is general and applicable to a wide range of estimation
tasks, including estimation of the Hawkes process (as elaborated in Section 2.4), and
we demonstrate its effectiveness on instrumental variable regression, which we are
particularly interested in.

1.2.1 Laplace Bayesian Hawkes Process

In the first solution, we exploit block Gibbs sampling [Ishwaran and James, 2001]
to iteratively sample the latent branching structure, the background intensity µ and
the triggering kernel φ. In each iteration, the point data are decomposed as a cluster
of Poisson processes based on the sampled branching structure. The posterior µ

and φ are estimated using the resulting cluster processes. Our framework is close to
the stochastic Expectation-Maximization (EM) algorithm [Celeux and Diebolt, 1985]
where posterior µ and φ are estimated [Lloyd et al., 2015; Walder and Bishop, 2017]
in the M-step and random samples of µ and φ are drawn. We adapt the approach of
the recent non-parametric Bayesian estimation for Poisson process intensities, termed
Laplace Bayesian Poisson process [Walder and Bishop, 2017], to estimate the posterior
φ given the sampled branching structure. We utilize the finite support assumption
of the Hawkes Process to speed up sampling and to compute the probability of the
branching structure. We theoretically show our method to be of linear time complexity.
Furthermore, we explore the connection with the EM algorithm [Dempster et al., 1977]
and develop a second variant of our method, as an approximate EM algorithm. We
empirically show that our method enjoys linear time complexity and can infer known
analytical kernels, i.e., exponential and sinusoidal kernels. On two large-scale social
media datasets, our method outperforms the current state-of-the-art non-parametric
approaches and the learned kernels reflect the perceived longevity for different content
types. We propose a new acceleration trick based on the finite support assumption of
the triggering kernel. The new trick enjoys higher efficiency than previous methods
and accelerates the variational inference schema to linear time complexity per iteration.

1.2.2 Variational Bayesian Hawkes Process

The second solution proposes the first sparse Gaussian process modulated Hawkes
process which employs a novel variational inference scheme, enjoys a linear time
complexity per iteration and scales to large real world data. Our method is inspired
by the variational Bayesian Poisson process (VBPP) [Lloyd et al., 2015] which provides
Bayesian non-parametric inference only for the whole intensity of the Hawkes process
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rather than its components: the background intensity µ and the triggering kernel
φ. Thus, the VBPP loses the internal reactions between points, and developing the
variational Bayesian non-parametric inference for the Hawkes process is non-trivial
and more challenging than the VBPP. In this work, we adapt the VBPP for the Hawkes
process and term the new approach the variational Bayesian Hawkes process (VBHP).
We employ a sparse Gaussian process modulated triggering kernel and a Gamma
distributed background intensity and propose a new variational inference scheme
for such models. Specifically, we employ the branching structure of the HP so that
maximization of the evidence lower bound (ELBO) is tractable by the expectation-
maximization algorithm, and we contribute a tighter ELBO which improves the fitting
performance of our model. We propose a new acceleration trick based on the finite
support assumption of the triggering kernel. The new trick enjoys higher efficiency
than prior methods and accelerates the variational inference schema to linear time
complexity per iteration. We empirically show that VBHP provides more accurate
predictions than state-of-the-art methods on synthetic data and on two large online
diffusion datasets. We validate the linear time complexity and faster convergence of
our accelerated variational inference scheme compared to the Gibbs sampling method,
and the practical utility of our tighter ELBO for model selection, which outperforms
the common one in model selection.

1.2.3 Quantile Propagation for Gaussian Process Models

Beyond the area of the Hawkes process, we develop an approximate inference algo-
rithm for Gaussian process models with factorized likelihoods based on minimization
of the L2 Wasserstein distance. Our approach employs a Gaussian likelihood to ap-
proximate the non-Gaussian likelihood. In order to optimize Gaussian likelihoods, we
avoid directly minimizing the global L2 Wasserstein distance between true and approx-
imate joint posteriors, due to its computational and analytical intractability in high
dimensional spaces. Instead, our method iteratively minimizes local L2 Wasserstein
distances, like EP. As a result, our method matches two quantile functions different
from moment matching in EP, thus named quantile propagation. We further derive
updating formulas for the mean and the variance of the Gaussian likelihood. The
estimation of the mean is equal to EP’s, while the variance is less than EP’s, hence
alleviating EP’s deficiency of over-estimating variances [Minka, 2005; Heess et al.,
2013; Hernández-Lobato et al., 2016]. We show that the optimal approximate Gaussian
likelihood enjoys an economical parameterization like EP, i.e., relying on a single
latent variable instead of all of them. This property allows our method or EP to
significantly reduce memory consumption by a factor N (the number of data) and
computation time via optimizing much less (O(1), vs O(N2) for the full parameter-
ization) parameters in each local update. We regard both methods as approximate
coordinate descent algorithms to a KL divergence and a L2 Wasserstein objective
function respectively, under the same approximation assumption. In the experiment
part, we evaluate EP and our method via Gaussian process binary classification on a
number of real world datasets. Our results show that our method can outperform
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EP in both predictive accuracy and uncertainty quantification, which validates our
method alleviating over-estimation of the variance. We will apply this method to the
Bayesian Hawkes process in the future and consider parallelizing or distributing the
local updates. We expect it to perform efficiently and accurately on large-scale data.

1.2.4 Kernel Maximum Moment Restriction Estimation

The last solution proposes a simple framework for the nonlinear instrumental variable
regression, which is a more difficult and general problem than the model parameter
estimation for the Hawkes process. The framework is based on a kernelized condi-
tional moment restriction known as a kernel maximum moment restriction (KMMR).
The KMMR is formulated by maximizing the interaction between the residual and the
instruments belonging to a unit ball in an RKHS. The KMMR allows us to reformulate
the IV regression as a single-step empirical risk minimization problem, where the
risk depends on the reproducing kernel on the instrument and can be estimated by a
U-statistic or V-statistic. This simplification not only eases the proofs of consistency
and asymptotic normality in both parametric and non-parametric settings, but also
results in easy-to-use algorithms with an efficient hyper-parameter selection proce-
dure. We demonstrate the advantages of our framework over existing methods using
experiments on both synthetic and real-world data.

1.3 Broader Impact

The proposed inference techniques for Hawkes processes in the thesis have an advan-
tage of a linear time complexity. Most of existing applications of Hawkes processes,
from earthquake forecasting, finance to social media, take quadratic time complexity
to estimate model parameters. Our algorithms thus will help to develop efficient
applications. The approximate inference techniques also have the potential to be
applied to other models to improve their robustness and account for uncertainty.

1.4 Thesis Outline

The subsequent chapters provide details of solutions to the proposed research ques-
tions. We first introduce prerequisites of the solutions and review related develop-
ments of them in Chapter 2. Then we elaborate on the four proposed methods in
Chapters 3, 4, 5 and 6 respectively, which are summarized concisely in Chapter 7.
Chapter 7 also provides some interesting future research directions.



Chapter 2

Preliminaries and Related Work

The works in the thesis are on Hawkes processes, approximate inference for Gaussian
processes and robust frequentist estimation. In this chapter, we introduce the prelim-
inaries of them and review the related works in the three research areas separately.
Specifically, in Section 2.1, we first introduce the Poisson and Hawkes processes. We
then review the Gaussian process model and the approximate Bayesian inference
approaches used in the thesis in Section 2.2. In Section 2.3 and 2.4, we introduce the
Wasserstein distance and the conditional moment restriction respectively. Then, we
review the related work on estimation of Hawkes process, on expectation propagation
and Wasserstein distance, and on condition moment restriction based estimation, in
Sections 2.5, 2.6 and 2.7 respectively.

2.1 Poisson and Hawkes Processes

2.1.1 Poisson Processes

The Poisson (point) process assumes that points in any bounded subregion of the
domain are independent of those in other subregions. More specifically, for any subset
of the d-dimensional real space T ∈ Rd, other intervals T ′ disjoint from T do not
affect the occurrence of events in T , and the probability of “the event count in T ,
N(T ), being equal to n” is determined by the Poisson distribution:

P{N(T ) = n} :=
Λ(T )n

n!
e−Λ(T ), Λ(T ) :=

∫
T

λ(x) dx,

where Λ(T ) is the expected number of points in T , and the function λ(x) is known
as the intensity and modulates the occurrence rate of events at x. The log-likelihood
of D := {xi}N

i=1 given λ is [Rubin, 1972]:

log p(D|λ) =
N

∑
i=1

log λ(xi)−
∫

Ω
λ(x) dx,

where Ω is the sample domain of {xi}N
i=1. The log-likelihood of any stochastic point

process, such as the Hawkes process, has the same form. We recommend [Daley and
Vere-Jones, 2003] for a detailed introduction to stochastic point processes.
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Figure 2.1: A Poisson process realization (points). The intensity function λ(t) = 10 sin(t) +
10.5 (solid line) is used to simulate points and higher function values generates more points.

2.1.2 Hawkes Processes

The Hawkes process [Hawkes, 1971] is a self-exciting point process, in which the
occurrence of a point increases the arrival rate λ(·) of new points. Given a set of
ordered points D = {xi}N

i=1, xi ∈ Rd, the intensity at x conditioned on given points is
written as:

λ(x) = µ + ∑
xi<x

φ(x− xi),

where µ > 0 is background intensity, commonly considered as a constant, and
φ : Rd → [0, ∞) is the triggering kernel. We consider d = 1 for a concise presentation
and extension to d > 1 follows by the same development procedure. In the thesis, we
are interested in the branching structure of the Hawkes process. As introduced in
Chapter 1, each point xi has a parent that we represent by the below one-hot vector.
The index is up to i− 1 as the points are ordered.

bi = [bi0, bi1, · · · , bi,i−1]
T. (2.1)

Each element bij is binary, bij = 1 represents that xi is triggered by xj (0 ≤ j ≤ i− 1,
x0: the background), and ∑i−1

j=0 bij = 1. A branching structure B is the set of bi and is
determined by B = {bi}N

i=1. We define the probability of bij = 1 as (see e.g. [Lewis
and Mohler, 2011])

pij := p(bij = 1) =

{
φ(xi − xj)/λ(xi), 0 < j ≤ j− 1

µ/λ(xi), j = 0
, (2.2)

then the probability of B is expressed as below and it is clear ∑i−1
j=0 pij = 1 for all i.

p(B) =
N

∏
i=1

i−1

∏
j=0

p
bij
ij .
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Log-likelihood Given Branching Structure. Given the branching structure B, the
Hawkes process can be viewed as a cluster of Poisson processes, namely, PP(µ) and
{PP(φ(x− xi))}N

i=1 as introduced in Chapter 1. Consequently, the log likelihood of
the Hawkes process becomes a sum of log-likelihoods of Poisson processes. The data
domain of PP(µ) equals that of the Hawkes process, which we denote as Ω, and we
denote the data domain of PP(φ(x− xi)) by Ωi ⊂ Ω. As a result, the log-likelihood of
data points and the branching structure is calculated by:

log p(D, B|µ, φ) =
N

∑
i=1

( i−1

∑
j=1

bij log φij + bi0 log µ
)
−

N

∑
i=1

∫
Ωi

φ− µ|T |, (2.3)

where |Ω| :=
∫

Ω 1 dx, φij := φ(xi − xj) and
∫

Ωi
φ :=

∫
Ωi

φ(x) dx. Note that the
Lebesgue measure is considered here.

Figure 2.2: A Hawkes process realization (points). The intensity function λ(t) = 1 +

∑ti<t 0.1e−(t−ti) + 0.6e−3(t−ti) + 0.7e−7(t−ti) (solid line) is used to simulate points.

2.2 Gaussian Processes

2.2.1 Exact Gaussian Processes

The Gaussian process (GP) is defined as a distribution over a function f , denoted
as GP( f ), such that for any non-empty set of x := {x1, · · · , xN} in the domain of f ,
function values f := { f (xi)}N

i=1 jointly have a Gaussian distribution, i.e.,

p( f |θ) = N (µx, Kx), (2.4)

where the mean vector µx and the covariance matrix Kx are the evaluation of a mean
function µ(·) and a covariance function k(·, ·) on x, that is, µx := {µ(xi)}N

i=1 and
Kx := [k(xi, xj)]

N
i,j=1, and θ is the set of parameters of µ and k. The covariance function

defines the covariance between two function values,

k(x, y) = Cov( f (x), f (y)),
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and any covariance function k can be represented in terms of the eigenvalues {λi}K
i=1

and eigenfunctions {ei}K
i=1 according to Mercer’s theorem [Mercer, 1909]

k(x, y) =
K

∑
i=1

λiei(x)ei(y),

where {ei}K
i=1 are chosen to be orthonormal in L2(Ω, ν) for some sample space Ω with

the measure ν and K = ∞ if k is non-degenerate. A popular approach to determine θ

is to maximize the log marginal likelihood given a set of observations D,

θ̂ = argmax
θ

log p(D|θ) := log
∫

p(D| f , θ)p( f |θ) d f . (2.5)

With the optimized parameters θ̂, the posterior distribution of f is obtained as

p( f |D, θ̂) =
p(D| f , θ̂)p( f |θ̂)∫

p(D| f , θ̂)p( f |θ̂) d f
. (2.6)

This exact GP model often suffers from computational and analytical intractability.
Specifically, computing the exact posterior requires to store and invert an (N × N)-
matrix, which consumes O(N2) memory and O(N3) time. Both impede the method
from scaling up to large problems. The analytical intractability originates from the
non-conjugate Gaussian prior p( f |θ) for the likelihood p(D| f , θ) and as a results, the
integral in Equation (2.6) (as well as Equation (2.5)) has no closed-form expression.
To overcome the two issues, the sparse GP model (Section 2.2.2) and approximate
Bayesian inference (Section 2.2.3, 2.2.4, 2.2.5) are often employed.

2.2.2 Sparse Gaussian Processes

The sparse GP [Quiñonero-Candela and Rasmussen, 2005; Titsias, 2009] is proposed
to reduced the computational burden. With the same assumption on function distri-
butions as that of the GP, the sparse GP introduces inducing points to approximate
distributions of function values at any point, which is realized based on the Bayes’
rules for Gaussian variables. As a result, the computational time and memory are
reduced to O(NM2) and O(NM) respectively, where M is the number of inducing
points.

More specifically, given a set of M inducing points z := {z1, · · · , zM} ⊂ Ω and
corresponding function values u := { f (zi)}M

i=1, f evaluated at x have a joint Gaussian
distribution (

f
u

)
∼ N

((
µx

µz

)
,
(

Kx Kxz

Kzx Kz

))
where Kx and Kz are the covariance matrices of x and z respectively, as defined
in Equation (2.4), and Kxz and Kzx are cross-covariance matrices between x and z,
which are obtained as the evaluations of the covariance function on x and z, namely,
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Kxz = {k(xi, zj)}N,M
i,j=1 and K>xz = Kzx. The conditional distribution of f given u can

then be expressed as

p( f |u) = N (µx + KxzK−1
z (u− µz), Kx − KxzK−1

z Kzx).

We omit the condition on θ from time to time for a neat presentation. The quantity
of interest is the posterior distribution of f , which can be calculated based on the
posterior distribution of u as

p( f |D) =
∫

p( f |u)p(u|D) du,

where D is the observation. The posterior distribution of u often has no closed-form
expressions and the Sparse GP model employs a Gaussian distribution q(u) for u,
which is an approximation to the posterior distribution of u. Suppose that q(u) has a
Gaussian form

q(u) = N (m, S),

and then the optimal m and S of q(u) can be obtained by using variational infer-
ence for the marginal likelihood (Equation (2.5)) [Titsias, 2009]. With the optimal
q(u) ≈ p(u|D), we obtain a distribution over f , which is Gaussian again and is the
approximation of interest to the posterior distribution of f ,

q( f ) =
∫

p( f |u)q(u) du

= N (µx + KxzK−1
z (m− µz), Kx − KxzK−1

z (Kz − S)K−1
z Kzx)

≈
∫

p( f |u)p(u|D) du

= p( f |D).

2.2.3 Laplace Approximation

Laplace approximation [Rasmussen and Williams, 2005, section 3.4], [Bishop, 2006,
section 4.4] is a widely-used method and it provides a Gaussian approximation to the
analytical intractable posterior probability. Suppose that the analytically intractable
probability has the following form,

p( f ) = Z−1h( f ), Z :=
∫

h( f ) d f ,

where Z is the unknown normalization constant. First, the method finds a mode of
p( f ), which is a point f0 satisfying

∇h( f )| f= f0
= 0.
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Then, it considers a second-order Taylor expansion of ln h( f ) centred on the mode f0,

ln h( f ) ≈ ln h( f0)−
1
2
( f − f0)

>A( f − f0), A := ∇2 ln h( f )
∣∣

f= f0
,

where the first-order term is omitted as it is equal to zero. Taking the exponential and
normalization on both sides of the above equation, we obtain a Gaussian distribution
approximating p( f ),

p( f ) ≈ |A|1/2

(2π)N/2 exp
{
−1

2
( f − f0)

>A( f − f0)

}
= N ( f0, A−1).

2.2.4 Variational Inference

Variational inference [Bishop, 2006, Section 10.1] is a more general approach than
Laplace approximation because it allows non-Gaussian approximation to intractable
distributions. Consider the joint distribution of observations and variables, p(D, f |θ).
The variational approach introduces a variational distribution q( f |θ′) to approximate
the posterior distribution p( f |D, θ) and optimizes q( f |θ′) by maximizing a lower
bound of the log-likelihood, known as the evidence lower bound (ELBO), which can
be derived from the non-negative gap perspective:

log p(D|θ) = log
p(D, f |θ)
q( f |θ′) − log

p( f |D, θ)

q( f |θ′)
= Eq( f |θ′)

[
log p(D| f , θ)

]︸ ︷︷ ︸
reconstruction term

−KL(q( f |θ′)||p( f |θ))︸ ︷︷ ︸
regularization term︸ ︷︷ ︸

≡ELBO(q( f ),p(D| f ),p( f ))

+KL(q( f |θ′)||p( f |D, θ))︸ ︷︷ ︸
intractable (non-negative) gap

≥ ELBO(q( f ), p(D| f ), p( f )), (2.7)

where we omit θ and θ′ in conditions. For notational convenience, we will often omit
conditioning on θ and θ′ hereinafter. Optimizing the ELBO w.r.t. θ′ balances between
the reconstruction error and the Kullback-Leibler (KL) divergence from the prior.
Generally, the conditional p(D| f ) is known, so is the prior. Thus, for an appropriate
choice of q, it is easier to work with this lower bound than with the intractable
posterior p( f |D). We also see that, due to the form of the intractable gap, if q is from
a distribution family containing elements close to the true unknown posterior, then
q will be close to the true posterior when the ELBO is close to the true likelihood.
An alternative derivation applies Jensen’s inequality [Jordan et al., 1999]. A vanilla
ELBO objective can usually be straight-forwardly minimized by standard algorithms,
such as gradient descent. In Chapter 4, we will show that the ELBO of our Bayesian
Hawkes process model has extra constraints on certain variables, so we accordingly
develop a variational-inference based two-step iterative optimization algorithm.
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2.2.5 Expectational Propagation

In this subsection, we introduce the application of the expectational propagation
(EP) algorithm to the GP models [Opper and Winther, 2000; Minka, 2001b,c]. Given
D = {yi}N

i=1 and fi := f (xi), suppose that the GP model has the factorized likelihood,

p(D| f ) =
N

∏
i=1

p(yi| fi).

Numerous problems take this form: binary classification [Williams and Barber, 1998],
single-output regression with Gaussian likelihood [Matheron, 1963], Student’s-t like-
lihood [Jylänki et al., 2011] or Poisson likelihood [Zou, 2004], and the warped GP
[Snelson et al., 2004]. EP deals with the analytical intractability by using Gaussian
approximations to the individual non-Gaussian likelihoods, namely,

p(yi| fi) ≈ ti( fi) ≡ Z̃iN ( fi|µ̃i, σ̃2
i ).

The function ti is often called the site function and is specified by the site parameters: the
scale Z̃i, the mean µ̃i and the variance σ̃2

i . Notably, it is sufficient to use univariate site
functions given that the local update can be efficiently computed using the marginal
distribution only [Seeger, 2005]. We refer to this as the locality property. Although in
this thesis we employ a more complex L2 Wasserstein distance, our approach retains
this property, as we elaborate in Chapter 5.

Given the site functions, one can approximate the intractable posterior distribution
p( f |D) using a Gaussian q( f ) as below,

q( f |D) = q(D)−1 p( f )
N

∏
i=1

ti( fi) ≡ N ( f |µ, Σ), (2.8)

µ = Σ(K−1
x µx + Σ̃−1µ̃), Σ = (K−1

x + Σ̃−1)−1,

where µ̃ is the vector of µ̃i, Σ̃ is diagonal with Σ̃ii = σ̃2
i ; log q(D) is the log approximate

model evidence expressed as below and further employed to optimize the GP hyper-
parameters:

log q(D) =
N

∑
i=1

log(Z̃i/
√

2π)− 1
2

log |Kx + Σ̃| − 1
2

µ̃T(Kx + Σ̃)−1µ̃. (2.9)

The core of EP is to optimize site functions {ti( fi)}N
i=1. Ideally, one would seek to

minimize the (global) KL divergence between the true and approximate posterior dis-
tributions KL(p( f |D)‖q( f )), however this is intractable. Instead, EP is built based on
the assumption that the global divergence can be approximated by the local divergence
KL(q̃( f )‖q( f )), where q̃( f ) ∝ q\i( f )p(yi| fi) and q\i( f ) ∝ q( f )/ti( fi) are referred to
as the tilted and cavity distributions, respectively. Note that the cavity distribution
is Gaussian while the tilted distribution is usually not. The local divergence can be
simplified from multi-dimensional to univariate, KL(q̃( f )‖q( f )) = KL(q̃( fi)‖q( fi))
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(detailed in Appendix C.7), and ti( fi) is optimized by minimizing it.
The minimization is realized by projecting the tilted distribution q̃( fi) onto the

Gaussian family, with the projected Gaussian denoted as

projKL(q̃( fi)) := argmin
N

KL(q̃( fi)‖N ( fi)).

Then the projected Gaussian is used to update ti( fi) ∝ projKL(q̃( fi))/q\i( fi). The
mean and the variance of projKL(q̃( fi)) ≡ N (µ?, σ?2) match the moments of q̃( fi) and
are used to update ti( fi)’s parameters:

µ?=µq̃i , σ?2=σ2
q̃i

, (2.10)

µ̃i=σ̃2
i

(
µ?(σ?)−2−µ\iσ

−2
\i

)
, σ̃−2

i =(σ?)−2−σ−2
\i , (2.11)

where µq̃i and σ2
q̃i

are the mean and the variance of q̃( fi), and µ\i and σ2
\i are the mean

and the variance of q\i( fi). We refer to the projection as the local update. Note that Z̃
does not impact the optimization of q( f ) or the GP hyper-parameters θ, so we omit
the update formula for Z̃. We summarize EP in Algorithm 2 (Appendix).

2.3 Wasserstein Distance

We denote byM1
+(Ω) the set of all probability measures on Ω. We consider probabil-

ity measures on the d-dimensional real space Rd. The Wasserstein distance between
two probability distributions ξ, ν ∈ M1

+(R
d) can be intuitively defined as the cost

of transporting the probability mass from one distribution to the other. We are par-
ticularly interested in the subclass of Lp Wasserstein distance, formally defined as
follows.

Definition 1 (Lp Wasserstein distance). Consider the set of all probability measures on
the product space Rd ×Rd, whose marginal measures are ξ and ν respectively, denoted as
U(ξ, ν). The Lp Wasserstein distance between ξ and ν is defined as

Wp
p (ξ, ν) := inf

π∈U(ξ,ν)

∫
Rd×Rd

‖x− z‖p
p dπ(x, z),

where p ∈ [1, ∞) and ‖ · ‖p is the Lp norm.

Like the KL divergence, the Lp Wasserstein distance it has a minimum of zero,
achieved when the distributions are equivalent. Unlike the KL, however, it is a proper
distance metric, and thereby satisfies the triangle inequality, and has the appealing
property of symmetry.

A less fundamental property of the Wasserstein distance which we exploit for
computational efficiency is:

Proposition 1. [Peyré et al., 2019, Remark 2.30] The Lp Wasserstein distance between
1-d distribution functions ξ and ν ∈ M1

+(R) equals the Lp distance between the quantile
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functions,

Wp
p(ξ, ν) =

∫ 1

0

∣∣∣F−1
ξ (y)− F−1

ν (y)
∣∣∣p dy,

where Fz : R→ [0, 1] is the cumulative distribution function (CDF) of z, defined as Fz(x) =∫ x
−∞ dz, and F−1

z is the pseudo-inverse or quantile function, defined as F−1
z (y) = minx{x ∈

R∪ {−∞} : Fz(x) ≥ y}.

Finally, the following translation property of the L2 Wasserstein distance is central
to our proof of locality in Chapter 5:

Proposition 2. [Peyré et al., 2019, Remark 2.19] Consider the L2 Wasserstein distance defined
for ξ and ν ∈ M1

+(R
d), and let fτ(x) = x− τ, τ ∈ Rd, be a translation operator. If ξτ and

ντ′ denote the probability measures of translated random variables fτ(x), x ∼ ξ, and fτ′(x),
x ∼ ν, respectively, then

W2
2(ξτ , ντ′) = W2

2(ξ, ν)− 2(τ − τ′)T(mξ −mν) + ‖τ − τ′‖2
2,

where mξ and mν are means of ξ and ν respectively. In particular when τ = mξ and τ′ = mν,
ξτ and ντ′ become zero-mean measures, and

W2
2(ξτ , ντ′) = W2

2(ξ, ν)− ‖mξ −mν‖2
2.

2.4 Conditional Moment Restriction

Let (X, Z) be a random variable taking values in X ×Z and Θ a parameter space. A
conditional moment restriction (CMR) [Newey, 1993; Ai and Chen, 2003] can then be
expressed as

CMR(θ0) = E[ϕθ0(X) | Z] = 0, PZ − almost surely (a.s.) (2.12)

for the true parameter θ0 ∈ Θ. The function ϕθ(X) is a problem-dependent generalized
residual function in Rq parameterized by θ. Intuitively, the CMR asserts that, for
correctly specified models, the conditional mean of the generalized residual function
is almost surely equal to zero. Many statistical models can be written as Equation
(2.12) including nonparametric regression models where X = (X̃, Y), Z = X̃ and
ϕθ(X) = Y − f (X̃; θ); conditional quantile models where X = (X̃, Y), Z = X̃, and
ϕθ(X) = 1{Y < f (X̃; θ)} − τ for the target quantile τ ∈ [0, 1]; IV regression models
where X = (X̃, Y), Z is an IV, and ϕθ(X) = Y− f (X̃; θ); the stochastic point process,
where X = (X̃), Z is the observed region in the domain, and ϕθ(X) = ∇θ log pθ(X)
with pθ the probability model of the point process. More specifically in the point
process case, the maximum likelihood estimator is written in general as below

θ̂ = argmax
θ

EX∼p[log pθ(X)|Z] =⇒ EX∼p[∇θ log pθ(X)|Z]
∣∣
θ=θ̂

= 0,
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X
YZ

Figure 2.3: A causal graph depicting an instrumental variable Z that satisfies an exclusion
restriction and unconfoundedness (there may be a confounder ε acting on X and Y, but it is
independent of Z).

where p is the true probability of data, and as we note, θ̂ is often estimated as the
solution to the first-order condition shown in the right part. Besides, the finite region
Z where real-world data are collected is random and dependent on the time when we
observe the data, so it is reasonable to view the point process as a CMR model.

2.4.1 Instrumental Variable Regression

We introduce details of instrumental variable (IV) regression on which we test our
kernel maximum moment restriction estimation method. Following standard setting
in the literature [Hartford et al., 2017; Lewis and Syrgkanis, 2018; Bennett et al.,
2019; Singh et al., 2019; Muandet et al., 2020b], let X be a treatment (endogenous)
variable taking value in X ⊆ Rd and Y a real-valued outcome variable. The goal of
IV regression is to estimate a function f : X → R from a structural equation model
(SEM) of the form

Y = f (X) + ε, X = t(Z) + g(ε) + ν, (2.13)

where we assume that E[ε] = 0 and E[ν] = 0. Unfortunately, as we can see from
Equation (2.13), ε is correlated with the treatment X, i.e., E[ε|X] 6= 0, and hence
standard regression methods cannot be used to estimate f . This setting arises, for
example, when there exist unobserved confounders (i.e., common causes) between X
and Y.

To illustrate the problem, let us consider an example taken from Hartford et al.
[2017] which aims at predicting sales of airline ticket Y under an intervention in price
of the ticket X. However, there exist unobserved variables that may affect both sales
and ticket price, e.g., conferences, COVID-19 pandemic, etc. This creates a correlation
between ε and X in (2.13) that prevents us from applying the standard regression
toolboxes directly on observational data.

Instrumental variable (IV). To address this problem, we assume access to an
instrumental variable Z taking value in Z ⊆ Rd′ . As we can see in (2.13), the instrument
Z is associated with the treatments X, but not with the outcome Y, other than through
its effect on the treatments. Formally, Z must satisfy (i) Relevance: Z has a causal
influence on X, (ii) Exclusion restriction: Z affects Y only through X, i.e., Y ⊥⊥ Z|X, ε,
and (iii) Unconfounded instrument(s): Z is independent of the error, i.e., ε ⊥⊥ Z. For
example, the instrument Z may be the cost of fuel, which influences sales only via
price. Intuitively, Z acts as a “natural experiment” that induces variation in X; see
Figure 2.3.
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2.5 Related Works of Hawkes Process Estimation

As mentioned in Chapter 1, the triggering kernel φ is important as it is shared and
decides the class of the whole process. In this section, we review the estimation of the
triggering kernel φ as well as topics related to it, including modeling of the intensity
function and of the integral of the triggering/intensity function, and model parameter
estimation methods and so on.

2.5.1 Parametric Frequentist Solutions

The Hawkes processes with the parametric triggering kernels are applied in a wide
range of areas and the popularity can be explained by their simplicity and flexibility
compared with other models. Mishra et al. [2016] employ the branching factor of the
Hawkes process with the power-law kernel to predict popularity of tweets; Kurashima
et al. [2018] predict human actions using a Hawkes process equipped with exponential,
Weibull and Gaussian mixture kernels; online popularity unpredictability is explained
using the Hawkes process with a variant of the exponential kernel by Rizoiu et al.
[2018]; Xu et al. [2016] employ a sum of Gaussian kernels to discover the Granger
causality for the Hawkes process. The model parameters can be easily determined by
the maximum likelihood estimation [Ozaki, 1979]. However, most works employing
Hawkes processes with parametric triggering kernels encode strong assumptions,
and limit the expressivity of the models. Therefore, recent works design practical
approaches to learn flexible representations of the optimal triggering kernel from data,
as the following subsections.

2.5.2 Non-parametric Frequentist Solutions

A popular direction on learning the flexible triggering kernel functions is the non-
parametric frequentist estimation. Basically, the triggering kernel function is assigned
a non-parametric form which is mainly a piecewise function [Lewis and Mohler, 2011;
Zhou et al., 2013; Bacry and Muzy, 2016; Eichler et al., 2017]. The form of the function
is caused by discretization of the function domain and leads to poor scaling with
the domain dimension and sensitivity to the choice of discretization. Moreover, they
do not quantify the uncertainty of the learned triggering kernels, so are sensitive to
randomness of finite data. In contrast, our methods require no discretization and are
Bayesian, so has an advantage of scalability with the dimension of the domain and
robustness to uncertainty in the finite samples.

Frequentist Estimation of Intensities. Learning the triggering kernels based on
the maximum likelihood requires O(N2) computational time and to circumvent this
problem, many frequentist methods focus on estimating the intensity function, which
needs O(N) time. These methods rely on modern machine learning models, such as
the neural network [Du et al., 2016; Xiao et al., 2017a,b; Mei and Eisner, 2017; Omi et al.,
2019; Zhang et al., 2020; Zuo et al., 2020] and the reproducing kernel Hilbert space
[Flaxman et al., 2017] (RKHS). As no assumption is made on the type of interaction
between points such as self-excitement, they allow the modelling of flexible point
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processes. Early neural network approaches on modeling intensity functions rely on
the recurrent neural network (RNN) or long short-term memory (LSTM) network [Du
et al., 2016; Xiao et al., 2017b; Mei and Eisner, 2017], and estimate model parameters
based on maximum likelihood. Training deep RNNs and LSTMs is notoriously
difficult because of gradient explosion and gradient vanishing [Pascanu et al., 2013].
The inherently sequential nature of RNN and LSTM renders the impossibility to
process all the events in parallel and limits the methods’ ability to scale to large
datasets. More recent works deal with this issue by employing the transformer or
the self-attention mechanism [Zhang et al., 2020; Zuo et al., 2020]. Apart from the
issues with models, most of the neural network approaches suffer from no analytical
expression for the integral of the intensity function in the likelihood. Hence, the
integral has to be approximated numerically, which leads to in-accurate parameter
estimation. In order to circumvent this problem, Omi et al. [2019] directly model the
integral by a RNN. As a result, the intensity function is obtained by differentiation of
the integral, which is easier to compute than integration. Shchur et al. [2020b] present
a new modeling method for the integral by exploiting the normalizing flows which
later is employed to model the distribution of the inter-arrival time [Shchur et al.,
2020a]. As shown by Walder and Bishop [2017], the integral can have a closed-form
expression with kernel methods by explicitly constructing the eigen-components of
the kernel function. Orthogonal to the afore-mentioned development, there is recent
interest in parameter estimation methods beyond the popular maximum likelihood
estimation, including the Wiener-hopf equation based method [Bacry and Muzy,
2016], the adversarial loss such as the wasserstein distance based loss [Xiao et al.,
2017a], the least square loss [Eichler et al., 2017], the cumulants-based method [Achab
et al., 2017], the reinforcement learning based method [Li et al., 2018]. Interestingly,
it is unnecessary to estimate the triggering kernel or the intensity function in some
applications, such as discovering the Granger causality, where it is sufficient to only
estimate the integral of the triggering kernel [Achab et al., 2017]. We recommend
the related work sections of these methods for more development on point processes.
Different from works reviewed here, this thesis focuses on the non-parametric Bayesian
estimation of the triggering kernel.

2.5.3 Bayesian Parametric and Non-parametric Solutions

The Bayesian non-parametric estimation for the Hawkes process has been studied,
including the work of Rasmussen [2013]; Linderman and Adams [2014]; Linderman
and Adams [2015]. These work require either constructing a parametric triggering
kernel [Rasmussen, 2013; Linderman and Adams, 2014] or discretizing the input
domain to scale with the data size [Linderman and Adams, 2015]. The shortcoming
of discretization is just mentioned and to overcome it, Donnet et al. [2018] propose
a continuous non-parametric Bayesian Hawkes process and resort to an unscalable
Markov chain Monte Carlo (MCMC) estimator to the posterior distribution. We
comparatively summarize a part of related works in 2.1. Compared with these works,
our methods are Bayesian and non-parametric without requiring discretization of
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Table 2.1: Non-parametric triggering kernel estimation.

Methods Time
Complexity

Bayesian Continuous Non-
parametric

Zhou et al. [2013] O(n3) × X ×
Xu et al. [2016] O(n3) × X ×
Lewis and Mohler [2011] O(n3) × × X
Zhou et al. [2013] O(n3) × × X
Rasmussen [2013] O(n) X X ×
Linderman and Adams [2015] O(n) X interval-

censored
×

Donnet et al. [2018] unspecified X X X
Ours O(n) X X X

domains and has an advantage of a linear time complexity allowing it to be applied
to large-scale real-world datasets.

2.6 Related Works of Expectation Propagation and Wasser-
stein Distance

The basis of the EP algorithm for GP models was first proposed by Opper and
Winther [2000] and then generalized by Minka [2001b,c]. Power EP [Minka, 2004,
2005] is an extension of EP that exploits the more general α-divergence (with α = 1
corresponding to the forward KL divergence in EP) and has been recently used
in conjunction with GP pseudo-input approximations [Bui et al., 2017]. Although
generally not guaranteed to converge locally or globally, Power EP uses fixed-point
iterations for its local updates and has been shown to perform well in practice for GP
regression and classification [Bui et al., 2017]. In comparison, our approach (quantile
propagation) uses the L2 Wasserstein distance, and like EP, it yields convex local
optimizations for GP models with factorized likelihoods. This convexity benefits the
convergence of the local update, and is retained even with the general Lp (p ≥ 1)
Wasserstein distance as shown in Theorem 2 (Chapter 5). Moreover, for the same class
of GP models, both EP and our approach have the locality property [Seeger, 2005]
and can be unified in the generic message passing framework [Minka, 2005].

Without the guarantee of convergence for the explicit global objective function,
understanding EP has proven to be a challenging task. As a result, a number of
works have instead attempted to directly minimize divergences between the true
and approximate joint posteriors, for divergences such as the KL [Jordan et al., 1999;
Dezfouli and Bonilla, 2015], Rényi [Li and Turner, 2016], α [Hernández-Lobato et al.,
2016] and optimal transport divergences [Ambrogioni et al., 2018]. To deal with the
infinity issue of the KL (and more generally the Rényi and α divergences) which
arises from different distribution supports [Montavon et al., 2016; Arjovsky et al., 2017;
Gulrajani et al., 2017], Hensman et al. [2014] employ the product of tilted distributions
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as an approximation. A number of variants of EP have also been proposed, including
the convergent double loop algorithm [Opper and Winther, 2005], parallel EP [Minka,
2001a], distributed EP built on partitioned datasets [Xu et al., 2014; Gelman et al., 2017],
averaged EP assuming that all approximate likelihoods contribute similarly [Dehaene
and Barthelmé, 2018], and stochastic EP which may be regarded as sequential averaged
EP [Li et al., 2015].

The L2 Wasserstein distance between two Gaussian distributions has a closed
form expression [Dowson and Landau, 1982]. Detailed research on the Wasserstein
geometry of the Gaussian distribution is conducted by Takatsu [2011]. Recently, this
closed form expression has been applied to robust Kalman filtering [Shafieezadeh-
Abadeh et al., 2018] and to the analysis of populations of GPs [Mallasto and Feragen,
2017]. A more general extension to elliptically contoured distributions is provided
by Gelbrich [1990] and used to compute probabilistic word embeddings [Muzellec
and Cuturi, 2018]. A geometric interpretation for the L2 Wasserstein distance between
any distributions [Benamou and Brenier, 2000] has already been exploited to develop
approximate Bayesian inference schemes [El Moselhy and Marzouk, 2012]. Our
approach is based on the L2 Wasserstein distance but does not exploit these closed
form expressions; instead we obtain computational efficiency by leveraging the EP
framework and using the quantile function form of the L2 Wasserstein distance for
univariate distributions. We believe our work paves the way for further practical
approaches to Wasserstein-distance-based Bayesian inference.

2.7 Related Works of Conditional Moment Restriction

We review conditional moment restriction (CMR) models [Newey, 1993; Ai and
Chen, 2003; Dikkala et al., 2020] in this section and the models have a wide range
of applications in causal inference, economics, and finance modeling, where for
correctly-specified models the conditional mean of certain functions of data equals
zero almost surely. This kind of models also appear in Mendelian randomization,
a technique in genetic epidemiology that uses genetic variation to improve causal
inference of a modifiable exposure on disease [Davey Smith and Ebrahim, 2003;
Burgess et al., 2017a]. Rational expectation models [Muth, 1961], widely-used in
macroeconomics, measures how available information is exploited to form future
expectations by decision-makers as conditional moments [Muth, 1961]. Furthermore,
CMRs have also gained popularity in the community of causal machine learning,
leading to novel algorithms such as generalized random forests [Athey et al., 2019],
double/debiased machine learning [Chernozhukov et al., 2018] and nonparametric IV
regression [Bennett et al., 2019; Muandet et al., 2020b]; see also related works therein,
as well as in offline reinforcement learning [Liao et al., 2021].

This thesis focuses on CMR based estimation with the application to IV regression
(introduced in Section 2.4). Therefore, we mainly review literature on the CMR based
estimation for IV regression.

Classical methods for IV regression often rely on a linearity assumption in which
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a two-stage least squares (2SLS) is the most popular technique [Angrist et al., 1996].
The generalized method of moments (GMM) of Hansen [1982], which imposes the
orthogonality restrictions, can also be used for the linear IV regression. For nonlinear
regression, numerous methodologies have been developed in the field of nonpara-
metric IV [Newey and Powell, 2003; Hall and Horowitz, 2005; Blundell et al., 2007;
Horowitz, 2011] and recent machine learning [Hartford et al., 2017; Lewis and Syrgka-
nis, 2018; Bennett et al., 2019; Muandet et al., 2020b; Singh et al., 2019]. However,
these estimators have complicated structures in general. The nonparametric IV is an
ill-posed problem or requires estimating a conditional density. The machine learning
methods needs two-stage estimation or minimax optimization. As a result, it is not
easy to obtain an asymptotic distribution of estimation errors and to simply apply
learning algorithms such as the stochastic gradient descent (SGD), e.g., see Daskalakis
and Panageas [2018] for the limitation of SGD with minimax problems.

Several extensions of 2SLS and GMM exist for the nonlinear IV problem. In
the two-stage approach, the function f (x) has often been obtained by solving a
Fredholm integral equation of the first kind E[Y|Z] =

∫
f (x)dP(X|Z). In Newey

and Powell [2003]; Blundell et al. [2007]; Horowitz [2011]; Chen and Pouzo [2012],
linear regression is replaced by a linear projection onto a set of known basis functions.
A uniform convergence rate of this approach is provided in Chen and Christensen
[2018]. However, it remains an open question how to best choose the set of basis
functions. In Hall and Horowitz [2005] and Darolles et al. [2011], the first-stage
regression is replaced by a conditional density estimation of P(X|Z) using a kernel
density estimator. Estimating conditional densities is a difficult task and is known to
perform poorly in high dimension [Tsybakov, 2008].

The IV regression has also recently received attention in the machine learning
community. Hartford et al. [2017] proposed to solve the integral equation by first
estimating P(X|Z) with a mixture of deep generative models on which the function
f (x) can be learned with another deep NNs. Instead of NNs, Singh et al. [2019]
proposed to model the first-stage regression using the conditional mean embedding
of P(X|Z) [Song et al., 2009, 2013; Muandet et al., 2017] which is then used in the
second-step kernel ridge regression. In other words, the first-stage estimation in Singh
et al. [2019] becomes a vector-valued regression problem. The critical drawback of
these algorithms is that they involve the intermediate first-stage regression which may
not be of our primary interest. In an attempt to alleviate this drawback, Muandet et al.
[2020b] and Liao et al. [2020] reformulate the two-stage procedure as a convex-concave
saddle-point problem. The DualIV [Muandet et al., 2020b] has a quadratic objective
function similar to ours, but its RKHS is applied on (Z, Y) which cannot be interpreted
as a valid instrument. In contrast, the approach of Liao et al. [2020, Appendix F] is
highly related to GMM and provides a dual reformulation of our method by using a
RKHS for the inner maximization. Besides, the starting points of these works differ
from ours. In both DualIV and Liao et al. [2020], they started from the population
risk functional, whereas we start from the CMR. The fact that they arrive at the same
objective highlights a deeper connection which requires further investigation.

Our work follows in spirit many GMM-based approaches for IV regression, namely,
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Lewis and Syrgkanis [2018]; Bennett et al. [2019]; Muandet et al. [2020a]. We apply
the MMR framework of Muandet et al. [2020a] to the IV regression problem, whereas
Muandet et al. [2020a] only considers a conditional moment (CM) testing problem. In
fact, this framework was initially inspired by Lewis and Syrgkanis [2018] and Bennett
et al. [2019] which instead parametrize the instruments by deep NNs and Muandet
et al. [2020b] which proposes the dual formulation of the two-stage procedure. By
combining the GMM framework with RKHS functions, our objective function can be
evaluated in closed-form. As a result, our IV estimate can be obtained by minimizing
the empirical risk, as opposed to an adversarial optimization used in Lewis and
Syrgkanis [2018] and Bennett et al. [2019]. Furthermore, unlike existing two-stage
procedures [Angrist et al., 1996; Hartford et al., 2017; Singh et al., 2019], our algorithm
does not require the first-stage regression. It is important to note that, concurrent
to our work, Dikkala et al. [2020] extends the work of Lewis and Syrgkanis [2018]
to an algorithm similar to our MMR-IV (RKHS) [Dikkala et al., 2020, Section 4].
Although both work employs RKHSs in the minimax frameworks, Dikkala et al.
[2020] incorporate a Tikhonov regularization on h in (6.2) and resort to the representer
theorem [Schölkopf et al., 2001a] to develop the analytical objective function, whereas
we impose a unit-ball constraint which is a form of Ivanov regularization [Ivanov
et al., 2002] and enables not to rely on such a theorem.

Beyond the IV regression, there are numerous prior studies that are related to
ours, especially in policy evaluation, reinforcement learning, and causal inference. We
leave the review of them to Appendix D.4.

2.8 Summary

In this chapter, we first review different technical prerequisites, including the Poisson
and Hawkes processes, the Gaussian process model, the approximate Bayesian infer-
ence approaches, the Wasserstein distance and the conditional moment restriction
respectively. We then review the related development of these techniques. The prereq-
uisite are essential for the methods proposed in the following four chapters. In the
next chapter, we present an efficient non-parametric Bayesian inference framework
for estimation of the Hawkes process. The approach is developed based on the
branching structure of the Hawkes process and exploit Gibbs sampling and Laplace
approximation.



Chapter 3

Gibbs Sampling and Laplace
Approximation Based Efficient
Inference

In this chapter, we present a general framework for the efficient non-parametric
Bayesian inference of Hawkes processes. The contents are categorized as:

(i) In Section 3.1, we first review a prerequisite of our work, the Laplace Bayesian
Poisson process.

(ii) In Section 3.2, we propose an efficient non-parametric Bayesian framework for
the Hawkes process by combining Gibbs sampling and the Laplace Bayesian
Poisson process. We exploit block Gibbs sampling [Ishwaran and James, 2001]
to iteratively sample the latent branching structure, the background intensity µ

and the triggering kernel φ from their posterior distributions. In each iteration,
the point data are decomposed as a cluster of Poisson processes based on the
sampled branching structure and the posterior distributions of µ and φ are
estimated using the resulting cluster processes. Our framework is close to
the stochastic Expectation-Maximization (EM) algorithm [Celeux and Diebolt,
1985] where posterior µ and φ are estimated [Lloyd et al., 2015; Walder and
Bishop, 2017] in the M-step and random samples of µ and φ are drawn. We
adapt the approach of the recent non-parametric Bayesian estimation for Poisson
process intensities, termed Laplace Bayesian Poisson process (LBPP) [Walder
and Bishop, 2017], to estimate the posterior φ given the sampled branching
structure. Especially in Section 3.2.4, we utilize the finite support assumption
of the Hawkes Process to speed up sampling and computing the probability of
the branching structure. We theoretically show our method to be of linear time
complexity.

(iii) In Section 3.3, we furthermore explore the connection with the EM algorithm
[Dempster et al., 1977] and develop a second variant of our method, as an
approximate EM algorithm.

(iv) In Section 3.4, we empirically show our method enjoys linear time complexity
and can infer known analytical kernels, i.e., exponential and sinusoidal kernels.
On two large-scale social media datasets, our method outperforms the current

23
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state-of-the-art non-parametric approaches and the learned kernels reflect the
perceived longevity for different content types.

3.1 Laplace Bayesian Poisson Process

In this section, we introduce a prerequisite of our work, the Laplace Bayesian Poisson
process (LBPP) [Walder and Bishop, 2017]. LBPP has been proposed for the non-
parametric Bayesian estimation of the intensity of a Poisson process. To satisfy
non-negativity of the intensity function, LBPP models the intensity function λ as
a permanental process [Shirai and Takahashi, 2003], i.e., λ = g ◦ f where the link
function g(z) = z2/2 and f (·) obeys a Gaussian process (GP) prior. Alternative
link functions include exp(·) [Møller et al., 1998; Diggle et al., 2013] and g(z) =
λ∗(1 + exp(−z))−1 [Adams et al., 2009] where λ∗ is constant.

The choice g(z) = z2/2 has the analytical advantages; for some covariances the
log-likelihood can be computed in closed form [Lloyd et al., 2015; Flaxman et al., 2017].
LBPP exploits the Mercer expansion [Mercer, 1909] of the GP covariance function
k(x, y) ≡ Cov( f (x), f (y)), namely,

k(x, y) =
K

∑
i=1

λiei(x)ei(y), (3.1)

where for non-degenerate kernels, K = ∞. The eigenfunctions {ei(·)}K
i=1 are chosen

to be orthonormal in L2(Ω,M) for some sample space Ω with the measureM. f (·)
can be represented as a linear combination of ei(·) [Rasmussen and Williams, 2005,
section 2.2] as below

f (·) = ωTe(·), ω ∼ N (0, Λ), (3.2)

where Λ = diag(λ1, λ2, · · · , λK) is a diagonal covariance matrix and e(·) = {e1(·)}K
i=1

is a (column) vector of basis functions. Computing the posterior distribution of
the intensity function λ is equivalent to estimating the posterior distribution of ω

which, in LBPP, is approximated by a normal distribution (as known as Laplace
approximation introduced in Section 2.2.3). That is

log p(ω|x, Ω, k) ≈ logN (ω|ω̂, Q),

where x := {xi}N
i=1 is a set of point data, Ω the sample space and k the Gaussian

process kernel function. ω̂ is selected as the mode of the true posterior and Q the
negative inverse Hessian of the true posterior at ŵ:

ω̂ = argmax
ω

log p(ω|x, Ω, k), (3.3)

Q−1 = −∂ωωT log p(ω|x, Ω, k)|ω=ω̂ . (3.4)

The approximate posterior distribution of f (x) is expressed as the following normal
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distribution [Rasmussen and Williams, 2005, section 2.2]:

f (x) ∼ N (ω̂Te(x), e(x)TQe(x)) ≡ N (ν, σ2). (3.5)

Furthermore, the posterior distribution of λ(x) = f (x)2/2 is a Gamma distribution:

Gamma(t|α, β) := βαtα−1e−βt/Γ(α), (3.6)

where α = (ν2 + σ2)2/(4ν2σ2 + 2σ4) and β = (ν2 + σ2)/(2ν2σ2 + σ4).

3.2 Inference via Sampling

We now detail our efficient non-parametric Bayesian estimation algorithm for Hawkes
processes, which employs block Gibbs sampling to iteratively draw samples from
the posterior distributions of µ (constant background intensity) and φ(·) (triggering
kernel). Our method starts with random µ0 and φ0(·), and iterates by cycling through
the following four steps (k is the iteration index):

(i) Calculate p(B|x, φk−1, µk−1), the distribution of the branching structure B given
the data x, triggering kernel φk−1, and background intensity µk−1 (see details in
Section 3.2.1).

(ii) Sample a branching structure Bk from p(B|x, φk−1, µk−1) (Section 3.2.1).
(iii) Estimate p(φ|Bk, x) (Section 3.2.3) and p(µ|Bk, x) (Section 3.2.2).
(iv) Sample a sample φk and µk from p(φ|Bk, x) and p(µ|Bk, x), respectively.

By standard Gibbs sampling arguments, the samples of φ and µ drawn in the step (iv)
converge to the desired posterior, modulo the Laplace approximation for estimation
of p(φ|Bk, x) in (iii). As the method is based on block Gibbs sampling [Ishwaran and
James, 2001], we term it Gibbs-Hawkes in this chapter.

3.2.1 Distribution and Sampling of the Branching Structure

The branching structure B has a data structure of tree (as Figure 1.1(b)) and consists
of independent triggering events. Therefore, we may sample a branching structure by
sampling a parent for each xi independently, where sampling exploits the probabilities
of triggering events for xi, namely, {pij}i−1

j=0 as defined in Equation (2.2). The sampled
branching structure separates a set of points into immigrants and offspring (introduced
in Chapter 1). Immigrants can be regarded as a sequence generated from PP(µ), where
PP(µ) is a Poisson process owning an intensity µ, and can be used to estimate the
posterior distribution of µ.

The key property which we exploit in the subsequent Section 3.2.2 and Section 3.2.3

is the following. Denote by {x(i)k }
Nxi
k=1, the Nxi offspring is generated by point xi. If

such a sequence is aligned to an origin at xi, yielding Sxi := {t(i)k − xi}Ni
k=1, then the

aligned sequence is drawn from PP(φ) over [0, T-xi] where [0, T] is the sample domain
of the Hawkes process. The posterior distribution of φ is estimated on all such aligned
sequences.
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3.2.2 Posterior Distribution of µ

Continuing from the observations in Section 3.2.1, note that if we are given a set of
points {xi}M

i=1 (M ≤ N) generated by PP(µ) over Ω = [0, T], the likelihood for {xi}M
i=1

is the Poisson likelihood, p({xi}M
i=1|µ, Ω) = e−µT(µT)M/M!. For simplicity, we place

a conjugate (Gamma) prior on µT, µT ∼ Gamma(α, β); the Gamma-Poisson conjugate
family conveniently gives the posterior distribution of µT, i.e., p(µT|{xi}M

i=1, α, β) =
Gamma(α + M, β + 1). We choose the scale α and the rate β in the Gamma prior by
making the mean of the Gamma posterior equal to N and the variance M/2, which is
easily shown to correspond to α = M and β = 1. Finally, due to conjugacy we obtain
the posterior

p(µ|{xi}M
i=1, α, β) = Gamma(2M, 2T).

3.2.3 Posterior Distribution of φ

We handle the posterior distribution of the triggering kernel φ given the branching
structure in an analogous manner to the LBPP method of Walder and Bishop [2017].
That is, we assume that φ(·) = f 2(·)/2 where f (·) is Gaussian process distributed
as described in Section 3.1. In line with [Walder and Bishop, 2017], we consider the
sample domain [0, π] and the so-called cosine kernel,

k(x, y) = ∑
γ≥0

λγeγ(x)eγ(y), (3.7)

λγ := 1/(a(γ2)m + b), (3.8)

eγ(x) := (2/π)1/2
√

1/2
[γ=0]

cos (γx). (3.9)

Here, γ is a multi-index with non-negative (integral) values, [·] is the indicator
function, a and b are parameters controlling the prior smoothness, and we let m = 2.
The choice of m affects the rate of change or shape of λγ with γ and results in different
priors: for large m λγ decreases rapidly with γ, giving a-priori preference to smoother
functions. So do the parameters a and b. This basis is orthonormal w.r.t. the Lebesgue
measure on Ω = [0, π]. The expansion Equation (3.7) is an explicit kernel construction
based on the Mercer expansion as per Equation (3.1), but other kernels may be used,
for example by Nyström approximation of the Mercer decomposition [Flaxman et al.,
2017].

As mentioned at the end of Section 3.2.1, by conditioning on the branching
structure we may estimate φ by considering the aligned sequences. In particular,
letting Sxi denote the aligned sequence generated by xi, the joint distribution of ω

and S := {Sxi}N
i=1 is calculated as [Walder and Bishop, 2017],

log p(ω, S|Ω, k) =
N

∑
i=1

∑
∆t∈Sxi

log
1
2

(
ωTe(∆t)

)2
− 1

2
ωT(A + Λ−1)ω + C, (3.10)

A :=
N

∑
i=1

∫ T−xi

0
e(t)e(t)T dt, C := −1

2
log
[
(2π)K|Λ|

]
,
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where K is the number of eigenfunctions and Λ is defined in Equation (3.2). Note that
there is a subtle but important difference between the integral term above and that of
Walder and Bishop [2017], namely, the limit of integration; closed-form expressions
for the present case are provided in Section A.1 of the appendix. Putting the above
equation into Equation (3.3) and Equation (3.4), and we obtain the mean ω̂ and the
covariance Q of the (Laplace) approximate log-posterior in ω:

ω̂ = argmax
ω

log p(ω, S|Ω, k), (3.11)

Q−1 =−
N

∑
i=1

∑
∆t∈Sxi

2e(∆t)e(∆t)T/(ω̂Te(∆t))2 + A + Λ−1. (3.12)

Then, the posterior φ is achieved by Equation (3.5) and (3.6).

3.2.4 Computational Complexity

For the LBPP method, constructing Equation (3.10) and (3.12) takes O(NoK2) where
K is the number of basis functions and No is the number of offspring. Optimizing
ω (Equation (3.11)) is a concave problem, which can be solved efficiently. If L-
BFGS is used, O(CK) will be taken to calculate the gradient on each ω where C is
the number of steps stored in memory. Computing Q requires inverting a K × K
matrix, which is O(K3). As a result, the complexity of estimating the conditional
probability p(φ|B) is O((No + K)K2). In terms of estimating p(µ|B) taking O(1), the
complexity of estimating p(µ|B) and p(φ|B) is linear to the number of data. The time
taken to sample µ and φ is minor (O(1) and O(K) respectively), so estimation time
dominates. Although the naive complexity for pij is O(N2), Halpin [2012] provides
an optimized approach to reduce it to O(N), which relies on the finite support
assumption of Hawkes processes. The finite support assumption says that the value
of the triggering kernel is negligible when the input is large [Halpin, 2012, p. 9]. As a
result, the step of sampling branching structures can also be run in O(N) and points
with negligible impacts on another point are not sampled as its parents. Interestingly,
in comparison with LBPP, while our model is in some sense more complex, it enjoys
a more favorable computational complexity. In summary, we have the following
complexities per iteration and in Section 3.4, we validate the complexity on both
synthetic and real data.

Table 3.1: Time complexity.

Operation p(µ|B) pij p(φ|B) overall

Complexity O(1) O(N) O((No + K)K2) O((N + K)K2)
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Figure 3.1: A visual summary of the Gibbs-Hawkes, EM-Hawkes and the EM algorithms. The
differences between them are (1) the number of sampled branching structures and (2) selected
φ and µ for pij. In contrast with with Gibbs-Hawkes, the EM-Hawkes method draws multiple
branching structures at once and calculates pij using M.A.P. φ and µ. The EM algorithm is
equivalent to sampling infinite branching structures and exploiting M.A.P. or constrained
M.L.E. φ and µ to calculate pij (see Section 3.3).

3.3 Maximum-A-Posterior Estimation

We explore a connection between the sampler of Section 3.2 and the EM algorithm,
which allows us to introduce an analogous but intermediate scheme between them.
In contrast to the random sampler of Section 3.2, the proposed scheme employs a
deterministic maximum-a-posteriori (M.A.P.) sampler.

3.3.1 Relationship to EM

At the very beginning of this chapter, we mentioned the connection between our
method and the stochastic EM algorithm [Celeux and Diebolt, 1985]. The difference
is in the M-step; to perform EM [Dempster et al., 1977], we need only modify our
sampler by: (a) sampling infinite branching structures at each iteration, and (b) re-
calculating the probability of the branching structure with the M.A.P. µ and φ, given
the infinite set of branching structures. More specifically, maximizing the expected log
posterior distribution to estimate M.A.P. µ and φ given infinite branching structures
is equivalent to maximizing the EM objective in the M-step (see Section A.2 of the
appendix for the detailed derivation). Finally, note that the above step (b) is identical
to the E-step of the EM algorithm.

3.3.2 EM-Hawkes

Following the discussion above, we propose EM-Hawkes, an approximate EM algo-
rithm variant of Gibbs-Hawkes proposed in Section 3.2. Specifically, at each iteration
EM-Hawkes (a) samples a finite number of cluster assignments (to approximate the
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Figure 3.3: Running time (seconds) per
iteration on ACTIVE and SEISMIC.

expected log posterior distribution), and (b) finds the M.A.P. triggering kernels and
background intensities rather than sampling them as per block Gibbs sampling (the
M-step of the EM algorithm). An overview of the Gibbs-Hawkes, EM-Hawkes and
EM algorithm is illustrated in Figure 3.1.

Note that under our LBPP-like posterior, finding the most likely triggering kernel
φ is intractable (see details in Appendix A.3). As an approximation, we take the
element-wise mode of the marginal distributions of {φ(xi)}N

i=1 to approximate the
mode of the joint distribution of the {φ(xi)}N

i=1.

3.4 Experiments

We now evaluate our proposed approaches — Gibbs-Hawkes and EM-Hawkes — and
compare them to three baseline models, on synthetic data and on two large Twitter
online diffusion datasets. The three baselines are:

(i) A naive parametric Hawkes equipped with a constant background intensity and
an exponential (Exp) triggering kernel φ = a1a2 exp(−a2t), a1, a2 > 0, estimated
by maximum likelihood.

(ii) Ordinary differential equation (ODE)-based non-parametric non-bayesian Hawkes
[Zhou et al., 2013].

(iii) Wiener-Hopf (WH) equation based non-parametric non-bayesian Hawkes [Bacry
and Muzy, 2016]. Codes of ODE based and WH based methods are publicly
available [Bacry et al., 2017].
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3.4.1 Synthetic Data

We employ two toy Hawkes processes to generate data, both having the same back-
ground intensity µ = 10, and cosine (Equation (3.13)) and exponential (Equation (3.14))
triggering kernels respectively. Note that compared to the cosine triggering kernel, the
exponential one has a larger L2 norm for its derivative, and the difference is designed
to test the performance of the approaches in different situations. We can check that
both triggering kernels have negligible values when the input is large in the domain
which we will choose as [0, π], so the finite support assumption is satisfied.

φcos(x) = cos(3πx) + 1, x ∈ [0, 1]; 0, otherwise; (3.13)

φexp(x) =5 exp(−5x), x ≥ 0. (3.14)

Prediction. For three baseline models and EM-Hawkes, the predictions µpred and
φpred are taken to be the M.A.P. values, while for Gibbs-Hawkes we use the posterior
mean.

Evaluation. Each toy model generates 400 point sequences over Ω = [0, π], which
are evenly split into 40 groups, 20 for training and 20 for test. Each of the three
methods fit on each group, i.e., summing log-likelihoods for 10 sequences (for the
parametric Hawkes) or estimating the log posterior probability of the Hawkes process
given 10 sequences (for Gibbs-Hawkes and EM-Hawkes) or fitting the superposition
of 10 sequences [Xu et al., 2018]. Since the true models are known, we evaluate
fitting results using the relative L2 distance between predicted and true µ and φ(·):
dL2(gpred, gtrue) = (

∫
Ω

(
gpred(t)− gtrue(t)

)2dt)1/2/(
∫

Ω(gtrue(t))2dt)1/2.

Table 3.2: Empirical performance comparison between algorithms (columns) with different
measures (rows). Top: relative L2 distance to known φ and µ, and AVG denoted the average
of L2 errors of φ and µ. bottom: mean predictive log likelihood on real data. Bold numbers
denote the best performance and the underlined numbers for the second best.

Data Exp ODE WH Gibbs EM

φcos 0.661 0.553 1.000 0.338 0.318
µcos 0.069 0.071 1.739 0.078 0.119
AVGcos 0.365 0.312 1.370 0.208 0.219
φexp 0.120 0.610 1.000 0.147 0.140
µexp 0.086 0.309 4.631 0.103 0.204
AVGexp 0.103 0.460 2.816 0.125 0.172

ACTIVE 2.369 2.370 1.315 2.580 2.592
SEISMIC 3.335 3.357 2.131 3.576 3.578

Experimental Details. For Gibbs-Hawkes and EM-Hawkes, we must select pa-
rameters of the GP kernel (Equation (3.7), (3.8) and (3.9)). An arbitrary choice of
them can lead to poor performance, and to this end, we apply the standard cross
validation based on the log-likelihood. We choose the number of basis functions in
[8, 16, 32, 64, 128] and a = b from [0.2, 0.02, · · · , 2× 10−8]. We found that having many
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basis functions leads to a high fitting accuracy, but low speed. So, we use 32 basis
functions which provides a suitable balance. In terms of kernel parameters a, b of
Equation (3.8), we observed that large values return smooth triggering kernels which
have a large distance to the ground truth, while small values result in non-smooth pre-
dictions which however have small log-likelihoods. As a result, the values a, b = 0.002
were chosen. 5000 iterations are run to fit each group and first 1000 are ignored (i.e.
burned-in).
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Figure 3.4: Learned Hawkes triggering kernels using our non-parametric Bayesian approaches.
Each red or blue area shows the estimated posterior distributions of φ, while the solid lines
indicate the 10, 50 and 90 percentiles. In Figure (a), a synthetic dataset simulated using φexp(t)
(in gray) is fit using Gibbs-Hawkes (in red) and EM-Hawkes (in blue); Figure (b) presents
learning outcomes on Twitter data in ACTIVE (in red) and SEISMIC (in blue); Figure (c)
presents learning outcomes on Twitter data associated with two categories in the ACTIVE set:
Music (in red) and Pets & Animals (in blue).

Results. The top section of Table 3.2 shows the mean relative L2 distance between
the learned and the true φ and µ on toy data. First, Gibbs-Hawkes and EM-Hawkes
are the closest the models to the ground truth cosine model according to the average
error values (AVGcos). For the exponential simulation model, both approaches gain
the second and the third lowest errors respectively among all methods, and as
expected, the parametric Hawkes – which uses an exponential kernel – fits the model
best. In contrast, the parametric model retrieves the cosine model worse because
of its mismatch with the ground truth model. The learned triggering kernels for
φexp and φcos by our approaches are shown in Figure 3.4(a) and Figure A.1 in the
appendix. The ODE-based method performs unsatisfactorily on both simulation
settings and it is observed that it performs better on (µcos, φcos) than on (µexp, φexp).
We explain the second observation as that the regularization of the ODE-based method
encourages those triggering kernels that have small L2 norms for their derivatives
and the derivative of φexp(x) has a larger norm than that of φcos(x). Notably, tuning
the hyper-parameters of the WH method is challenging, and Table 3.2 shows the
best result obtained after a rather exhaustive experimentation. We speculate that the
overall better performance of our approaches is due to the regularization induced by
the prior distributions and less difficult hyper-parameter selection. In addition, we
also note that EM-Hawkes always performs better at discovering triggering kernels
than Gibbs-Hawkes and this observation also holds on the real-life data. Thus, we
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conclude that generating multiple samples per iteration tends to improve modeling
of the triggering kernels. In summary, compared with state-of-the-art methods, our
approaches achieve better performances for data generated by kernels from several
parametric classes; as expected, the parametric models are only effective for data
generated from their own class.

Effect of Halpin’s Procedure. In Section 3.2.4, we show that using Halpin’s
procedure reduces the complexity of calculating pij from quadratic to linear. We
now empirically validate this speed-up. To distinguish between quadratic and linear
complexity, we compute the ratio between running time and data size, shown in
Figure 3.2. The ratio when using Halpin’s procedure remains roughly constant as data
size increases (the ratio increases linearly without the optimization), which implies
that Halpin’s procedure renders linear calculation of estimating pij and sampling
branching structures. Later, we show the linear complexity of our method on real-
world data.

3.4.2 Twitter Diffusion Data

We evaluate the performance of our two proposed approaches on two Twitter datasets
that consist of retweet cascades. A retweet cascade contains an original tweet, together
with its direct and indirect retweets. Current state of the art diffusion modeling
approaches [Zhao et al., 2015; Mishra et al., 2016; Rizoiu et al., 2018] are based on the
self-exciting assumption: users get in contact with online content, and then diffuse it
to their friends, therefore generating a cascading effect. The two datasets we use have
been employed in prior works and they are publicly available:

(i) ACTIVE [Rizoiu et al., 2018] owns 41k retweet cascades, each containing at
least 20 (re)tweets with links to Youtube videos. It was collected in 2014 and
each Youtube video (and therefore each cascade) is associated with a Youtube
category, e.g., Music or News.

(ii) SEISMIC [Zhao et al., 2015] owns 166k randomly sampled retweet cascades,
collected in from Oct 7 to Nov 7, 2011. Each cascade contains at least 50 tweets.

Setup. The temporal extent of each cascade is scaled to [0, π], and assigned to
either training or test data with equal probability. We bundle together groups of 30
cascades of similar size, and we estimate one Hawkes process for each bundle. Unlike
for the synthetic dataset, for the retweet cascades dataset there is no true Hawkes
process to evaluate against. Instead, we measure using log-likelihood how well the
learned model generalizes to the test set. We use the same hyper-parameters values
as for the synthetic data. Finally, we follow the prior works on these cascade datasets
[Zhao et al., 2015; Rizoiu et al., 2018] by setting the background intensity µ as 0,
because the cascade datasets contain only the information of triggering relationships.

Fitting Performance. For each dataset, we calculate the log-likelihood per event
for each tweet cascade obtained by three baselines and our approaches (Table 3.2).
Visibly, our proposed methods consistently outperform baselines, with EM-Hawkes
performing slightly better than Gibbs-Hawkes (by 0.5% for ACTIVE and 0.06% for
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SEISMIC). This seems to indicate that online diffusion is influenced by factors not
captured by the parametric kernel, therefore justifying the need to learn the Hawkes
kernels non-parametrically. As mentioned in the synthetic data part, the WH-based
method has a disadvantage of hard-to-tune hyper-parameters, which leads to the
worst performance among all methods.

Scalability. To validate the linear complexity of our method, we record running
time per iteration of Gibbs-Hawkes on ACTIVE and SEISMIC in Figure 3.3. The
running time rises linearly with the number of points increasing, in line with the
theoretical analysis. Linear complexity makes our method scalable and applicable on
large datasets.

Interpretation. We show in Figure 3.4(b) and 3.4(c) the learned kernels for in-
formation diffusions. We notice that the learned kernels appear to be decaying and
long-tailed, in accordance with the prior literature. Figure 3.4(b) shows that the kernel
learned on SEISMIC is decaying faster than the kernel learned on ACTIVE. This indi-
cates that non-specific (i.e. random) cascades have a faster decay than video-related
cascades, presumably due to the fact that Youtube videos stay longer in the human
attention. This connection between the type of content and the speed of the decay
seems further confirmed in Figure 3.4(c), where we show the learned kernels for two
categories in ACTIVE: Music and Pets & Animals. Cascades relating to Pets & Animals
have a faster decaying kernel than Music, most likely because Music is an ever-green
content.

3.5 Summary

In this chapter, we provided the first non-parametric Bayesian inference procedure
for the Hawkes process which requires no discretization of the input domain and
has an advantage of a linear time complexity. Our method iterates between two
steps. First, it samples the branching structure, effectively transforming the Hawkes
process into a cluster of Poisson processes. Next, it estimates the Hawkes triggering
kernel using a non-parametric Bayesian estimation of the intensity of the cluster
Poisson processes. We provide both a full posterior sampler and an EM estimation
algorithm based on our ideas. We demonstrated our approach can infer flexible
triggering kernels on simulated data. On two large Twitter diffusion datasets, our
method outperforms the state-of-the-art in held-out likelihood. Moreover, the learned
non-parametric kernel reflects the intuitive longevity of different types of content.
The linear complexity of our approach is corroborated on both the synthetic and real
problems. The present framework is limited to the univariate unmarked Hawkes
process and will be extended to marked multivariate Hawkes process.

The Bayesian Hawkes process model in this chapter is a Gaussian latent model
so an advanced Laplace approximation based approach, i.e., the Integrated nested
Laplace approximation (INLA) [Rue et al., 2009, 2017], is applicable. INLA is ap-
plicable to the case of univariate posterior marginals of latent variables and hyper-
parameters. More specifically, we could apply INLA in each iteration of Gibbs
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sampling by introducing an additional prior distribution for hyper-parameters θ. As
per Rue et al. [2009], INLA first approximates indirectly the posterior distribution of
θ, say p(θ|D), and then approximates the posterior distribution of ωi by integrating
out θ, p(ωi|D) =

∫
p(ωi|θ,D)p(θ|D) dθ (for algorithmic details see Rue et al. [2009]).

Both steps apply Laplace approximation and the main difference from our Laplace
approximation application includes: (1) INLA aims to model univariate marginal
distributions while we focus on the joint distribution; (2) INLA’s indirect approxi-
mation to the posterior θ can result in non-Gaussian distributions, which enables
more flexible modeling. (3) INLA considers a distribution for hyper-parameters,
which increases computational burden: e.g. integrating out θ in computing p(ωi|D)
often needs numerical integration. We may also apply INLA to the Bayesian Hawkes
process without the Gibbs sampling framework, which needs deeper investigation.

In the next chapter, we will introduce a sparse Gaussian process modulated
Hawkes process model and propose variational inference for it.



Chapter 4

Variational Inference for Sparse
Gaussian Process Modulated
Hawkes Process

In this chapter, we propose the sparse Gaussian process modulated Hawkes process
which employs a novel variational inference schema, has an advantage of a linear
time complexity per iteration and scales to large real-world data. Our method is
inspired by the variational Bayesian Poisson process (VBPP) [Lloyd et al., 2015] which
provides the Bayesian non-parametric inference only for the whole intensity of the
Hawkes process without for its components: the background intensity µ and the
triggering kernel φ. Thus, the VBPP loses the internal reactions between points, and
developing the variational Bayesian non-parametric inference for the Hawkes process
is non-trivial and more challenging than the VBPP. In this paper, we adapt the VBPP
for the Hawkes process and term the new approach the variational Bayesian Hawkes
process (VBHP). The structure of this chapter is as follows:

(i) In Section 4.1, we first review a prerequisite of our approach, LBPP.
(ii) In Section 4.2, we introduce a Bayesian non-parametric Hawkes process, which

employs a sparse Gaussian process modulated triggering kernel and a Gamma
distributed background intensity. We propose a new variational inference
schema for such a model which is an EM-like two-step iterative algorithm.
Specifically, we employ the branching structure of the Hawkes process so that
maximization of the evidence lower bound (ELBO) is tractable. As a result, it
introduces extra constraints to the ELBO. To deal with the constraints, we apply
the expectation-maximization algorithm to minimize the ELBO.

(iii) In Section 4.3, we contribute a tighter ELBO which improves the fitting perfor-
mance of our model.

(iv) In Section 4.4, we propose a new acceleration trick based on the finite support
assumption of the triggering kernel. The new trick enjoys higher efficiency than
prior methods and accelerates the variational inference schema to linear time
complexity per iteration.

(v) In Section 4.5, we empirically show that VBHP provides more accurate predic-
tions than state-of-the-art methods on synthetic data and on two large online
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diffusion datasets. We validate the linear time complexity and faster convergence
of our accelerated variational inference schema compared to the Gibbs sampling
method, and the practical utility of our tighter ELBO for model selection, which
outperforms the common one in model selection.

4.1 Variational Bayesian Poisson Process

Before presenting our approach, we first review Variational Bayesian Poisson process
(VBPP) [Lloyd et al., 2015], which is a prerequisite of our method. VBPP applies the
VI to the Bayesian Poisson process, which exploits the sparse Gaussian process (GP)
to model the Poisson intensity. Specifically, VBPP uses a squared link function to map
a sparse GP distributed function f to the Poisson intensity λ(·) = f 2(·). The sparse
GP employs the ARD kernel for given x, y ∈ RR:

k(x, y) := γ
R

∏
r=1

exp
(
− (xr − yr)2

2αr

)
.

where γ and {αr}R
r=1 are GP hyper-parameters. Let u := ( f (z1), f (z2), · · · , f (zM))

where {zi}M
i=1 are inducing points. The prior and the approximate posterior distribu-

tions of u are Gaussian distributions,

p(u) = N (u|0, Kzz) q(u) = N (u|m, S),

where m is the mean vector, and Kzz and S are the covariance matrices. Note both u
and function evaluations f employ zero mean priors. Notations of VBPP are connected
with those of VI (Section 2.2.4) in Table 4.1.

Table 4.1: Notations.
VBHP VBPP VI

D := {xi}N
i=1 D := {xi}N

i=1 D
B, µ, f , u f , u f

k0, c0, {αi}R
i=1, γ {αi}R

i=1, γ θ

k, c, m, S, {αi}R
i=1, γ, {{qij}i−1

j=0}N
i=1 m, S, {αi}R

i=1, γ θ′

Importantly, the variational joint distribution of f and u uses the exact conditional
distribution p( f |u), i.e.,

q( f , u) ≡ p( f |u)q(u) (4.1)

which in turn leads to the posterior GP:

q( f ) = N ( f |ν, Σ), (4.2)

ν(x) ≡ KxzK−1
zz m,

Σ(x, x′) ≡ Kxx′ + KxzK−1
zz (SK−1

zz − I)Kzx′ .
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Then, the ELBO is obtained by using Equation (2.7):

ELBO(q( f , u), p(D| f , u), p( f , u)) = Eq( f )[log p(D| f )]−KL(q(u)||p(u)).

Note that the second term is the KL divergence between two multivariate Gaussian
distributions, so is available in closed form. The first term turns out to be the
expectation w.r.t. q( f ) of the log-likelihood log p(D| f ) = ∑N

i=1 log f 2(xi)−
∫
T f 2. The

expectation of the integral part is relatively straight-forward to compute and the
expectation of the other (data-dependent) part is available in almost closed-form with
a hyper-geometric function.

4.2 Variational Bayesian Hawkes Process

4.2.1 Notations

To extend VBPP to Hawkes process, we introduce two more variables: the background
intensity µ and the branching structure B, defined in Section 2.1.2. We assume that
the prior distribution of µ is a Gamma distribution p(µ) = Gamma(µ|k0, c0)1 and
the posterior distribution is approximated by another Gamma distribution q(µ) =
Gamma(µ|k, c). Given a dataset D = {xi}N

i=1, the branching structure is expressed
as B = {bi}N

i=1 with bi = {bij}i−1
j=0 defined around Equation (2.1). As bij ∈ {0, 1} is a

binary variable and there is only one bij equal to 1 among bi = {bij}i−1
j=0 (one point

has a unique parent), bi hence has a categorical distribution. We let the variational
posterior probability of bij = 1 be denoted as qij = q(bij = 1) and there must be
∑i−1

j=0 qij = 1. As a result, the variational posterior probability of B is expressed as:

q(B) =
N

∏
i=1

i−1

∏
j=0

q
bij
ij . (4.3)

The same squared link function is adopted for the triggering kernel φ(·) = f 2(·), so
are the priors for f and u, namely N ( f |0, Kxx′) and N (u|0, Kzz′). More link functions
such as exp(·) are discussed by Lloyd et al. [2015]. Moreover, we use the same
variational joint posterior on f and u as Equation (4.1). Consequently, we complete
the variational joint distribution on all latent variables as below:

q(B, µ, f , u) ≡ q(B)q(µ)p( f |u)q(u), (4.4)

and notations of VBHP are summarized in Table 4.1. The variational posterior
probability of B (Equation (4.3)) has the same form as that of the true posterior, so
it is a good approximation. The variational joint distribution q(B, µ, f , u) assumes
independence between the modeled variables, which is not the case for the true joint
posterior distribution, e.g. the branching structure B is closely dependent on the

1Gamma(µ|k0, c0) =
1

Γ(k0)ck
0

µk0−1e−x/c0
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background intensity µ and the function f . Thus such an approximation is not perfect.
The approximation error is insignificant in practice and our experiments demonstrate
the effectiveness of the proposed approximation.

Based on Equation (2.7) and (4.4), we obtain the ELBO for VBHP as below (see
details in Section B.1 of the appendix). To differentiate with the tighter ELBO presented
later in Section 4.3, we name the below one as the common ELBO (CELBO).

CELBO(q(B, µ, f , u), p(D|B, µ, f , u), p(B, µ, f , u))

= Eq(B,µ, f )

[
log p(D, B| f , µ)

]
︸ ︷︷ ︸
Data Dependent Expectation (DDE)

+HB −KL(q(µ)||p(µ))−KL(q(u)||p(u)). (4.5)

where HB = −∑N
i=1 ∑i−1

j=0 qij log qij is the entropy of the variational posterior B. The
KL terms are between gamma and Gaussian distributions, for which closed forms are
provided in Section B.2 of the appendix.

4.2.2 Data Dependent Expectation

Now, we are left with the problem of computing the data dependent expectation
(DDE) in Equation (4.5). The DDE is w.r.t. the variational posterior probability
q(B, µ, f ). From Equation (4.4), q(B, µ, f ) =

∫
q(B, µ, f , u) du = q(B)q(µ)q( f ) and

q( f ) is identical to Equation (4.2). As a result, we can compute the DDE w.r.t. q(B)
first, and then w.r.t. q(µ) and q( f ).

Expectation w.r.t. q(B). From Equation (2.3), we easily obtain log p(D, B| f , µ) by
replacing φ with f 2, whereupon it is clear that only bij in log p(D, B| f , µ) is dependent
on B. Therefore, Eq(B)[log p(D, B| f , µ)] is computed as:

Eq(B)[log p(D, B| f , µ)] =
N

∑
i=1

( i−1

∑
j=1

qij log f 2
ij + qi0 log µ

)
−

N

∑
i=1

∫
Ti

f 2 − µ|T |

where fij := f (xi − xj).

Expectation w.r.t. q( f ) and q(µ). We compute the expectation w.r.t. q( f ) and q(µ)
by exploiting the expectation and the log expectation of the Gamma distribution:
Eq(µ)(µ) = kc and Eq(µ)(log(µ)) = ψ(k) + log c, and also the property E(x2) =
E(x)2 + Var(x):

DDE =
N

∑
i=1

[ i−1

∑
j=1

qij Eq( f )(log f 2
ij) + qi0

(
ψ(k) + log c

)
−
∫
Ti

E2
q( f )( f )−

∫
Ti

Varq( f )( f )
]
− kc|T |,

where ψ is the Digamma function. We provide closed form expressions for
∫
Ti

E2
q( f )( f )
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and
∫
Ti

Varq( f )( f ) in Section B.3 of the appendix. As in VBPP,

Eq( f )(log f 2
ij) = −G̃(−ν2

ij/(2Σij)) + log(Σij/2)− C

is available in the closed form with a hyper-geometric function, where νij = ν(xi − xj),
Σij = Σ(xi − xj, xi − xj) (ν and Σ are defined in Equation (4.2)), C ≈ 0.57721566 is the
Euler-Mascheroni constant and G̃ is defined as

G̃(z) = 1F(1,0,0)
1 (0, 1/2, z),

that is, the partial derivative of the confluent hyper-geometric function 1F1 w.r.t. the
first argument. We compute G̃ using the method of Ancarani and Gasaneo [2008] and
implement G̃ and G̃′ by linear interpolation of a lookup table.

4.2.3 Predictive Distribution of φ

The predictive distribution of f (x) depends on the posterior u. We assume that the
optimal variational distribution of u approximates the true posterior distribution,
namely q(u|D, θ′∗) = N (u|m∗, S∗) ≈ p(u|D, θ). Therefore, there is

q( f |D, θ′∗) =
∫

p( f |u)q(u|D, θ′∗) dθ

≈
∫

p( f |u)p(u|D, θ) dθ = p( f |D, θ),

and we thus use q( f (x̃)|D, θ′∗) as the the approximate predictive distribution which
is calculated as

q( f (x̃)|D, θ′∗) =
∫

p( f (x̃)|u)q(u|D, θ′∗) du

= N (Kx̃zK−1
zz m∗, Kx̃x̃ − Kx̃zK−1

zz′ Kzx̃ + Kx̃zK−1
zz′ S

∗K−1
zz′ Kzx̃)

≡ N (ν̃, σ̃2).

Given the relation φ = f 2, it is straightforward to derive the corresponding approxi-
mate posterior of φ(x̃)

φ(x̃) ∼ Gamma(k̃, c̃)

where the shape k̃ = (ν̃2 + σ̃2)2/[2σ̃2(2ν̃2 + σ̃2)] and the scale c̃ = 2σ̃2(2ν̃2 + σ̃2)/(ν̃2 +
σ̃2).

4.3 New Variational Inference Schema

We now propose a new variational inference (VI) schema which uses a tighter ELBO
than the common one, i.e.
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Theorem 1. For VBHP, there is a tighter ELBO

Eq(B,µ, f )

[
log p(D, B| f , µ)

]
+ HB︸ ︷︷ ︸

≡TELBO

≤ log p(D).

Remark. TELBO is tighter because it is equivalent to the CELBO (Equation (4.5)) except
without subtracting non-negative KL divergences over µ and u. Thus, it is easy to see that the
gap between the TELBO and log p(D) is

log p(D)− TELBO = −KL(q(µ)||p(µ))− KL(q(u)||p(u)) + KL(q(B, µ, f , u)||p(B, µ, f , u|D)).

The aggregate effect of the three KL terms is rather challenging to understand and needs further
investigation. Other graphical models such as the variational Gaussian mixture model [Attias,
1999] have a similar TELBO. Later on, we propose a new VI schema based on the TELBO,
where the TELBO will be applied to selecting the hyper-parameters as it provides a tighter
approximation to the log marginal likelihood compared to CELBO.

Proof. With the variational posterior probability of the branching structure q(B) de-
fined in Equation (4.3) and through the Jensen’s inequality, we have:

log p(D) ≥∑
B

q(B) log p(D, B) + HB, (4.6)

where HB is the entropy of B defined in Equation (4.5). The term ∑B q(B) log p(D, B)
can be understood as follows. Consider that infinite branching structures are drawn
from q(B) independently, say {Bi}∞

i=1. Given a branching structure Bi, the Hawkes
process can be decomposed into a cluster of Poisson processes, denoted as (D, Bi),
and the corresponding log-likelihood is log p(D, Bi). Then, ∑B q(B) log p(D, B) is the
mean of all log likelihoods {log p(D, Bi)}∞

i=1,

lim
n→∞

1
n

n

∑
i=1

log p(D, Bi) = lim
n→∞ ∑

B

nB

n
log p(D, B) = ∑

B
q(B) log p(D, B), (4.7)

where nB is the number of occurrences of branching structure B. Since all branching
structures {Bi}∞

i=1 are i.i.d., the clusters of Poisson processes generated over {Bi}∞
i=1

should also be independent, i.e., {(D, Bi)}∞
i=1 are i.i.d.. It follows that

∞

∑
i=1

log p(D, Bi) = log p({(D, Bi)}∞
i=1). (4.8)

We compute the CELBO of log p({(D, Bi)}∞
i=1) by making z = (µ, f , u) and x =

{(D, Bi)}n
i=1 in Equation (2.7):

log p({(D, Bi)}n
i=1) ≥ Eq( f ,µ)

[
log p({(D, Bi)}n

i=1| f , µ)] (4.9)

−KL(q(µ)||p(µ))−KL(q(u)||p(u)).
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Further, we plug Equation (4.8) and (4.9) into Equation (4.7):

Equation (4.7) = lim
n→∞

1
n

log p({(D, Bi)}n
i=1)

(a)
≥ lim

n→∞

1
n

Eq( f ,µ)
[

log p({(D, Bi)}n
i=1| f , µ)]

(b)
= lim

n→∞ ∑
nB

nB

n
Eq( f ,µ)

[
log p(D, B| f , µ)

]
= Eq( f ,µ,B)

[
log p(D, B| f , µ)

]
where (a) is because the finite values of KL terms are divided by infinitely large n, and
(b) is due to i.i.d. (D, Bi) and the variational posterior B being independent of f and µ.
Finally, we plug the above inequality into Equation (4.6) and obtain the TELBO.

4.3.1 New Optimization Schema for VBHP

To optimize the model parameters under constraints ∑i−1
j=0 qij = 1, we employ the

expectation-maximization algorithm. Specifically, in the E step, all qij are optimized
to maximize the CELBO, and in the M step, m, S, k and c are updated to increase the
CELBO. We don’t use the TELBO to optimize the variational distributions because
it doesn’t guarantee minimizing the KL divergence between variational and true
posterior distributions. Instead, the TELBO is employed to select GP hyper-parameters:

{α∗i }R
i=1, γ∗ = argmax

{αi}R
i=1,γ

TELBO.

The TELBO bounds the marginal likelihood more tightly than CELBO, and is there-
fore expected to lead to a better predictive performance — an intuition which we
empirically validate in Section 4.5.

The updating equations for qij are derived through maximization of Equation (4.5)
under the constraints ∑i−1

j=0 qij = 1 for all i. This maximization problem is dealt with
the Lagrange multiplier method, and yields the below updating equations:

qij =

{
exp(Eq( f )(log f 2

ij))/Ai, j > 0;

θ exp(ψ(k))/Ai, j = 0,

where Ai = θ exp(ψ(k)) + ∑i−1
j=1 exp(Eq( f )(log f 2

ij)) is the normalizer.
Furthermore, and similarly to VBPP, we fix the inducing points on a regular grid

over T . Despite the observation that more inducing points lead to better fitting
accuracy [Lloyd et al., 2015; Snelson and Ghahramani, 2006], in the case of our more
complex VBHP, more inducing points may cause slow convergence (Figure B.2(a) in
the appendix) for some hyper-parameters, and therefore lead to poor performance in
limited iterations. Generally, more inducing points improve accuracy at the expense
of longer fitting time.
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4.4 Acceleration Trick

4.4.1 Time Complexity Without Acceleration

In the E step of model optimization, updating qij requires computing the mean and
the variance of all fij, which both take O(M3 + M2N2) with N points in the HP and
M inducing points. Here, we omit the dimension of data R since normally M > R
for a regular grid of inducing points. Similarly, in the M step, computing the hyper-
geometric term requires the means and variances of all the fij. Finally, computation
of the integral terms takes O(M3N). Thus, the total time complexity per iteration is
O(M3N + M2N2).

4.4.2 Acceleration to Linear Time Complexity

To accelerate our VBHP, similarly to Zhang et al. [2019] we exploit the finite support
assumption of the triggering kernel, assuming the kernel has negligible values for
sufficiently large inputs. As a result, sufficiently distant pairs of points do not enter
into the computations. This trick reduces possible parents of a point from all prior
points to a set of neighbors. The number of relevant neighbors is bounded by a
constant C and as a result the total time complexity is reduced to O(CM3N).

Specifically, we introduce a compact region S =×R
r=1[Smin

r ,Smax
r ] ⊆ T so that

φ(xi − xj) = 0 and qij = 0 if xi − xj 6∈ S . As a result, all terms related to xi − xj 6∈ S
vanish. To choose a suitable S , we again use the TELBO, taking the smallest S for
which the TELBO doesn’t drop significantly; we optimize Smin

r and Smax
r by grid search

with other dimensions fixed (so that this step is run R times in total) and we optimize
Smin

r after optimizing Smax
r .

Rather than selecting pairs of points in each iteration in the manner of Halpin’s
trick [Halpin, 2012; Zhang et al., 2019], our method pre-computes those pairs, leading
to gains in computational efficiency. The similar aspect is that both tricks have hyper-
parameters to select to threshold the triggering kernel value. We employ the TELBO
for hyper-parameter selection while frequentist methods use the cross validation.

4.5 Experiments

4.5.1 Evaluation

We employ two metrics: the first is the L2 distance (for cases with a known ground
truth), which measures the difference between predictive and truth Hawkes kernels,
formulated as L2(φpred, φtrue) = (

∫
T (φpred(x)− φtrue(x))2 dx)0.5 and L2(µpred, µtrue) =

|µpred − µtrue|; the second is the hold-out log likelihood (HLL), which describes how
well the predictive model fits the test data, formulated as log p(DTest = {xi}N

i=1|µ, f ) =
∑N

i=1 log λ(xi)−
∫
T λ. To calculate the HLL for each process, we generate a number

of test sequences by every time randomly assigning each point of the original process
to either a training or testing sequence with equal probability; HLLs of test sequences
are normalized (by dividing test sequence length) and averaged.
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Figure 4.1: The relationship between the log marginal likelihood and the L2 distance. In
(a), the true φsin (dash green) is plotted with the median (solid) and the [0.1, 0.9] interval
(filled) of the approximate posterior triggering kernel obtained by VBHP and Gibbs Hawkes
(10 inducing points). It uses the maximum point of the TELBO (red star in (b)). In (c), the
maximum point of the TELBO is marked. The maximum point overlaps with that of the
CELBO. [0, 1.4] is used as the support of the predictive triggering kernel and 10 inducing
points are used.

4.5.2 Prediction

We use the pointwise mode of the approximate posterior triggering kernel as the
prediction because it is computationally intractable to find the posterior mode at
multiple point locations [Zhang et al., 2019]. Besides, we exploit the mode of the
approximate posterior background intensity as the predictive background intensity.

4.5.3 Baselines

We use the following models as baselines.

(i) A parametric Hawkes process equipped with the sum of exponential (SumExp)
triggering kernel φ(x) = ∑K

i=1 ai
1ai

2 exp(−ai
2x) and the constant background

intensity.
(ii) The ordinary differential equation (ODE) based non-parametric non-Bayesian

Hawkes process [Zhou et al., 2013]. The code is publicly available [Bacry et al.,
2017].

(iii) Wiener-Hopf (WH) equation based non-parametric non-Bayesian Hawkes pro-
cess [Zhou et al., 2013]. The code is publicly available [Bacry et al., 2017].

(iv) The Gibbs sampling based Bayesian non-parametric Hawkes process (Gibbs
Hawkes) [Zhang et al., 2019].

For fairness, the ARD kernel is used by Gibbs Hawkes and corresponding eigen-
functions are approximated by Nyström method [Williams and Seeger, 2001], where
regular grid points are used as VBHP. Different from batch training in [Zhang et al.,
2019], all experiments are conducted on single sequences.
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Figure 4.2: Figure (a), (b): The relationship between the TELBO and the HLL. Figure (c), (d):
Average fitting time (seconds) per iteration. In Figure (a), the maximum point is marked by
the red star. In Figure (b), the maximum points of the TELBO and CELBO are marked by
red and blue stars. Figure (c) is plotted on 50 processes. Figure (d) shows the fitting time of
Gibbs Hawkes (star) and VBHP (circle) on 120 processes. 10 inducing points are used unless
specified.

Table 4.2: Results on synthetic and real-world data (mean ± one standard variance). VBHP
(C) and (T) use the CELBO and the TELBO to update the hyper-parameters respectively. Bold
numbers denote the best performance.

Measure Data SumExp ODE WH Gibbs Hawkes VBHP (C) VBHP (T)

L2

Sin
φ:0.693±0.028 0.665±0.121 2.463±0.145 0.408±0.198 0.152±0.091 0.183±0.076
µ:2.968±1.640 4.514±3.808 6.794±5.054 4.108±3.949 0.640±0.528 0.579±0.523

Cos
φ:0.473±0.102 0.697±0.065 1.743±0.083 0.667±0.686 0.325±0.073 0.292±0.096
µ:2.751±1.902 7.030±5.662 6.099±4.613 4.685±4.421 0.555±0.294 0.515±0.293

Exp
φ:0.133±0.138 1.835±0.539 2.254±2.042 0.676±0.233 0.257±0.086 0.235±0.102
µ:3.290±1.991 8.969±8.604 16.66±20.95 7.648±9.647 0.471±0.432 0.486±0.418

HLL

Sin 3.490±0.400 3.489±0.413 3.233±0.273 3.492±0.406 3.488±0.400 3.497±0.406
Cos 3.874±0.544 3.872±0.552 3.613±0.373 3.871±0.562 3.876±0.541 3.878±0.548
Exp 2.825±0.481 2.822±0.496 2.782±0.490 2.826±0.492 2.826±0.491 2.829±0.487

ACTIVE 1.692±1.371 0.880±2.716 0.710±0.943 1.323±2.160 1.824±1.159 1.867±1.181
SEISMIC 2.943±0.959 2.582±1.665 1.489±1.796 3.110±1.251 3.143±0.895 3.164±0.843
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4.5.4 Synthetic Experiments

Synthetic Data. Our synthetic data are generated from three Hawkes processes over
T = [0, π], whose triggering kernels are sin, cos and exp functions respectively, shown
as below, and whose background intensities are the same µ = 10:

φsin(x) = 0.9[sin(3x) + 1], x ∈ [0, π/2]; otherwise, 0;

φcos(x) = cos(2x) + 1, x ∈ [0, π/2]; otherwise, 0;

φexp(x) = 5 exp(−5x), x ∈ [0, ∞).

As a result, for any generated sequence, say {xi}N
i=1, Ti = [0, π − xi] is used in the

CELBO and the TELBO. We can check that all three triggering kernels have negligible
values when the input is large, so the finite support assumption is satisfied.

Model Selection. As the marginal likelihood p(D|θ) is a key advantage of our
method over non-Bayesian approaches [Zhou et al., 2013; Bacry and Muzy, 2016], we
investigate its efficacy for model selection. Figure 4.1(b) shows the contour plot of the
approximate log marginal likelihood (the TELBO) of a sequence. It is observed that the
contour plot of the TELBO has agreement to the contour plots of L2(φ) (Figure 4.1(c)) —
GP hyper-parameters with relatively high marginal likelihoods have relatively low L2

errors. Figure 4.1(a) plots the posterior triggering kernel corresponding to the maximal
approximate marginal likelihood. Similar agreement is also observed between the
TELBO and the HLL (Figure 4.2(a), 4.2(b)). This demonstrates the practical utility of
both the marginal likelihood itself and our approximation of it.

Evaluation. To evaluate VBHP on synthetic data, 20 sequences are drawn from
each model and 100 pairs of train and test sequences drawn from each sample to
compute the HLL. We select GP hyper-parameters of Gibbs Hawkes and of VBHP
by maximizing approximate marginal likelihoods. Table 4.2 shows evaluations for
baselines and VBHP (using 10 inducing points for trade-off between accuracy and time,
so does Gibbs Hawkes) in both L2 and HLL. VBHP achieves the best performance but
is two orders of magnitudes slower than Gibbs Hawkes per iteration (shown as Figure
4.2(c) and 4.2(d)). The speed of VBHP is limited by its complicated implementation,
such as the linear interpolation of the lookup table when computing G̃ as Section
4.2.2, and we could accelerate it with more advanced implementation techniques.
Although the Gibbs Hawkes is based on the Markov Chain Monte Carlo algorithm
and is expected to return more accurate results, it employs Laplace approximation per
iteration and leads to approximation error, which is one of the causes of the inferior
performance. The TELBO performs closely to the CELBO in the L2 error and this
is also reflected in Figure 4.1(c) where the maximum points of the TELBO and the
CELBO overlap. In contrast, the TELBO consistently improves the performance of
VBHP in the HLL, which is also reflected in Figure 4.2(b) where hyper-parameters
selected by the TELBO tend to have a higher HLL. Interestingly, when the parametric
model SumExp uses the same triggering kernel (a single exponential function) as the
ground truth φexp, SumExp fits φexp best in L2 distance while due to learning on single
sequences, the background intensity has relatively high errors. Although our method
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is not aware of the parametric family of the ground truth, it performs well. Compared
with non-parametric frequentist methods which have strong fitting capacity but suffer
from noisy data and have difficulties with hyper-parameter selection, our Bayesian
solution overcomes these disadvantages and achieves better performance.

4.5.5 Real World Experiments

Real World Data. We conclude our experiments with two large scale tweet datasets.
ACTIVE [Rizoiu et al., 2018] is a tweet dataset which was collected in 2014 and
contains ∼41k (re)tweet temporal point processes with links to Youtube videos. Each
sequence contains at least 20 (re)tweets. SEISMIC [Zhao et al., 2015] is a large
scale tweet dataset which was collected from October 7 to November 7, 2011, and
contains ∼166k (re)tweet temporal point processes. Each sequence contains at least 50
(re)tweets.

Evaluation. Similarly to synthetic experiments, we evaluate the fitting performance
by averaging HLL of 20 test sequences randomly drawn from each original datum.
We scale all original data to T = [0, π] (leading to Ti = [0, π − xi] used in the CELBO
and the TELBO for a sequence {xi}N

i=1) and employ 10 inducing points to balance
time and accuracy. The model selection is performed by maximizing the approximate
marginal likelihood. The obtained results are shown in Table 4.2. Again, we observe
similar predictive performance of VBHP: the TELBO performs better the CELBO;
VBHP achieves best scores. This demonstrates our Bayesian model and novel VI
schema are useful for flexible real life data.

Fitting Time. We further evaluate the fitting speed2 of VBHP and Gibbs Hawkes
on synthetic and real-world point processes, which is summarized in Figure 4.2(c) and
4.2(d). The fitting time is averaged over iterations and we observe that the increasing
trends with the number of inducing points and with the data size are similar between
Gibbs Hawkes and VBHP. Although VBHP is significantly slower than Gibbs Hawkes
per iteration, VBHP converges faster, in 10∼20 iterations (Figure B.2 of the appendix),
giving an average convergence time of 549 seconds for a sequence of 1000 events,
compared to 699 seconds for Gibbs Hawkes. The slope of VBHP in Figure 4.2(d) is
1.04 (log-scale) and the correlation coefficient is 0.96, so we conclude that the fitting
time is linear to the data size.

4.6 Conclusions

In this chapter, we presented a new Bayesian non-parametric Hawkes process whose
triggering kernel is modulated by a sparse Gaussian process and background intensity
is Gamma distributed. We provided a novel VI schema for such a model: we employed
the branching structure so that the common ELBO is maximized by the expectation-
maximization algorithm; we contributed a tighter ELBO which performs better in
model selection than the common one. To address the difficulty with scaling with the

2The CPU we use is Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz and the language is Python 3.6.5.
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data size, we utilize the finite support assumption of the triggering kernel to reduce the
number of possible parents for each point. Different from prior acceleration methods,
ours enjoys higher efficiency. On synthetic data and two large Twitter diffusion
datasets, VBHP enjoys linear fitting time with the data size and fast convergence rate,
and provides more accurate predictions than those of state-of-the-art approaches. The
novel ELBO is also demonstrated to exceed the common one in model selection.

Comparison with the Approach in Chapter 3. The approach in Chapter 3 simi-
larly exploits the Hawkes process branching structure and the finite support assump-
tion of the triggering kernel, while it builds on Gibbs sampling. It considers only
high-probability triggering relationships in computations for acceleration. However,
those relationships are updated in each iteration, which is less efficient than our pre-
computing them. Besides, our variational inference schema enjoys faster convergence
than that of the Gibbs sampling based method.

Both methods in this chapter and the last chapter are designed based on classical
approximate Bayesian inference, we propose a new approximate inference technique
which outperforms classical ones in the next chapter.
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Chapter 5

Quantile Propagation for
Wasserstein-Approximate Gaussian
Processes

Approximate inference techniques are the cornerstone of probabilistic methods based
on Gaussian process (GP) priors. Despite this, most work approximately optimizes
standard divergence measures such as the Kullback-Leibler (KL) divergence, which
lack the basic desiderata for the task at hand, while chiefly offering merely technical
convenience. In this chapter, we develop an efficient approximate Bayesian scheme
that minimizes a specific class of Wasserstein distances (WDs), which we refer to as
the L2 WD. Our method overcomes some of the shortcomings of the KL divergence
for approximate inference with GP models. The contents of this chapter is organized
as below:

(i) In Section 5.1, we first introduce the background and motivation of the new
work.

(ii) In Section 5.2, we develop quantile propagation (QP), an approximate inference
algorithm for models with GP priors and factorized likelihoods. Like the
expectation propagation (EP) algorithm, QP does not directly minimize global
distances between high-dimensional distributions. Instead, QP estimates a fully
coupled Gaussian posterior by iteratively minimizing local divergences between
two particular marginal distributions. As these marginals are univariate, QP
boils down to an iterative quantile function matching procedure (rather than
moment matching as in EP) — hence we term our inference scheme quantile
propagation. We derive the updates for the approximate likelihood terms and
show that while the QP mean estimates match those of EP, the variance estimates
are lower for QP.

(iii) In Section 5.3, we show that like EP, QP satisfies the locality property, meaning
that it is sufficient to employ univariate approximate likelihood terms, and
that the updates can thereby be performed efficiently using only the marginal
distributions. Consequently, although our method employs a more complex
divergence than that of EP (L2 WD vs KL), it has the same computational
complexity, after the precomputation of certain (data independent) lookup

49
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tables.
(iv) In Section 5.4, we employ eight real-world datasets and compare our method to

EP and variational Bayes (VB) on the tasks of binary classification and Poisson
regression. We find that in terms of predictive accuracy, QP performs similarly
to EP but is superior to VB. In terms of predictive uncertainty, however, we find
QP superior to both EP and VB, thereby supporting our claim that QP alleviates
variance over-estimation associated with the KL divergence when approximating
short-tailed distributions [Minka, 2005; Jylänki et al., 2011; Heess et al., 2013].

5.1 Introduction

Gaussian process (GP) models have attracted the attention of the machine learning
community due to their flexibility and their capacity to measure uncertainty. They
have been widely applied to learning tasks such as regression [Matheron, 1963],
classification [Williams and Barber, 1998; Hensman et al., 2015] and stochastic point
process modeling [Møller et al., 1998; Zhang et al., 2019]. However, exact Bayesian
inference for GP models is intractable for all but the Gaussian likelihood function.
To address this issue, various approximate Bayesian inference methods have been
proposed, such as Markov Chain Monte Carlo [MCMC, see e.g. Neal, 1997], the
Laplace approximation [Williams and Barber, 1998], variational inference [Jordan
et al., 1999; Opper and Archambeau, 2009] and expectation propagation [Opper and
Winther, 2000; Minka, 2001c].

The existing approach most relevant to this work is expectation propagation (EP),
which approximates each non-Gaussian likelihood term with a Gaussian by iteratively
minimizing a set of local forward Kullback-Leibler (KL) divergences. As shown by
Gelman et al. [2017], EP can scale to very large datasets. However, EP is not guaranteed
to converge, and is known to over-estimate posterior variances [Minka, 2005; Jylänki
et al., 2011; Heess et al., 2013] when approximating a short-tailed distribution. By
over-estimation, we mean that the approximate variances are larger than the true
variances so that more distribution mass lies in the ineffective domain. Interestingly,
many popular likelihoods for GPs results in short-tailed posterior distributions, such
as Heaviside and probit likelihoods for GP classification and Laplacian, Student’s t
and Poisson likelihoods for GP regression.

The tendency to over-estimate posterior variances is an inherent drawback of the
forward KL divergence for approximate Bayesian inference. More generally, several
authors have pointed out that the KL divergence can yield undesirable results such as
(but not limited to) over-dispersed or under-dispersed posteriors [Dieng et al., 2017;
Li and Turner, 2016; Hensman et al., 2014].

As an alternative to the KL, optimal transport metrics—such as the Wasserstein
distance [WD, Villani, 2008, §6]—have seen a recent boost of attention. The WD is a
natural distance between two distributions, and has been successfully employed in
tasks such as image retrieval [Rubner et al., 2000], text classification [Huang et al.,
2016] and image fusion [Courty et al., 2016]. Recent work has begun to employ the
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WD for inference, as in Wasserstein generative adversarial networks [Arjovsky et al.,
2017], Wasserstein variational inference [Ambrogioni et al., 2018] and Wasserstein
auto-encoders [Tolstikhin et al., 2017]. In contrast to the KL divergence, the WD is
computationally challenging [Cuturi, 2013], especially in high dimensions [Bonneel
et al., 2015], in spite of its intuitive formulation and excellent performance.

5.2 Quantile Propagation

We now propose our new approximation algorithm which, as summarized in Algo-
rithm 2 (Appendix), employs an L2 WD based projection rather than the forward KL
divergence projection of EP. Although QP employs a more complex divergence, it
has the same computational complexity as EP, with the following caveat. To match
the speed of EP, it is necessary to precompute sets of (data independent) lookup
tables. Once precomputed, the resulting updates are only a constant factor slower
than EP — a modest price to pay for optimizing a divergence which is challenging
even to evaluate. Appendix C.10 provides further details on the precomputation and
use of these tables.

As stated in Proposition 1, minimizing W2
2(q̃( fi),N ( fi)) is equivalent to minimiz-

ing the L2 distance between quantile functions of q̃( fi) and N ( fi), so we refer to our
method as quantile propagation (QP). This section focuses on deriving local updates
for the site functions and analyzing their relationships with those of EP. Later in
Section 5.3, we show the locality property of QP, meaning that the site function t( f )
has a univariate parameterization and so the local update can be efficiently performed
using marginals only.

5.2.1 Convexity of Lp Wasserstein Distance

We first show Wp
p(q̃( f ),N ( f |µ, σ2)) to be strictly convex in µ and σ. Formally, we

have:

Theorem 2. Given two probability measures inM1
+(R): a Gaussian N (µ, σ2) with mean µ

and standard deviation σ > 0, and an arbitrary measure q̃, Wp
p(q̃,N ) is strictly convex in µ

and σ.

Proof. See Appendix C.4.

5.2.2 Minimization of L2 WD

An advantage of using the Lp WD with p = 2, rather than other choices of p, is the
computational efficiency it admits in the local updates. As we show in this section,
optimizing the L2 WD yields neat analytical updates of the optimal µ? and σ? that
require only univariate integration and the CDF of q̃( f ). In contrast, other Lp WDs
lack convenient analytical expressions. Nonetheless, other Lp WDs may have useful
properties, the study of which we leave to future work.
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The optimal parameters µ? and σ? corresponding to the L2 WD W2
2(q̃,N (µ, σ2))

can be obtained using Proposition 1. Specifically, we employ the quantile function
reformulation of W2

2(q̃,N (µ, σ2)), and zero its derivatives w.r.t. µ and σ. The results
provided below are derived in section C.1:

µ? = µq̃,

σ? =
√

2
∫ 1

0
F−1

q̃ (y)erf−1(2y− 1) dy = 1/
√

2π
∫ ∞

−∞
e−[erf−1(2Fq̃( f )−1)]2 d f . (5.1)

Interestingly, the update for µ matches that of EP, namely the expectation under q̃.
However, for the standard deviation we have the difficulty of deriving the CDF Fq̃. If
a closed form expression is available, we can apply numerical integration to compute
the optimal standard deviation; otherwise, we may use sampling based methods to
approximate it. In our experiments we employ the former.

5.2.3 Properties of the Variance Update

Given the update equations in the previous section, here we show that the standard
deviation estimate of QP, denoted as σQP, is less or equal to that of EP, denoted as σEP,
when projecting the same tilted distribution to the Gaussian space.

Theorem 3. The variances of the Gaussian approximation to a univariate tilted distribution
q̃( f ) as estimated by QP and EP satisfy σ2

QP ≤ σ2
EP.

Proof. See Appendix C.5.

Corollary 3.1. The variances of the site functions updated by EP and QP satisfy: σ̃2
QP ≤ σ̃2

EP,
and the variances of the approximate posterior marginals satisfy σ2

q,QP ≤ σ2
q,EP.

Proof. Since the cavity distribution is unchanged, we can calculate the variance of the
site function as per Equation (2.11) and conclude that the variance of the site function
also satisfies σ̃2

QP ≤ σ̃2
EP. Moreover as per the definition of the cavity distribution in

Section 2.2.5, the approximate marginal distribution is proportional to the product
of the cavity distribution and the site function q( fi) ∝ q\i( fi)t( fi), which are two
Gaussian distributions. By the product of Gaussians formula (Equation (2.11)), we
know the variance of q( fi) estimated by EP as σ2

q,EP = (σ̃−2
EP + σ−2

\i )−1 = σ2
EP and

similarly σ2
q,QP = σ2

QP, where σ2
EP and σ2

QP are defined in Theorem 3. Thus, there is
σ2

q,QP ≤ σ2
q,EP.

Corollary 3.2. The predictive variances of latent functions at x∗ by EP and QP satisfy:
σ2

QP( f (x∗)) ≤ σ2
EP( f (x∗)).

Proof. The predictive variance of the latent function was analyzed in [Rasmussen and
Williams, 2005, Equation (3.61)]: σ2( f∗) = k∗ − kT

∗(K + Σ̃)−1k∗,
where we define f∗ = f (x∗) and k∗ = k(x∗, x∗), and let k∗ = (k(x∗, xi))

N
i=1 be the

(column) covariance vector between the test data x∗ and the training data {xi}N
i=1.
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After updating parameters of the site function ti( fi), the predictive variance can be
written as (details in Appendix C.9):

σ2
new( f∗) = k∗ − kT

∗Ak∗ + kT
∗sisT

i k∗/[(σ̃2
i,new − σ̃2

i )
−1 + Aii],

where σ̃2
i,new is the site variance updated by EP or QP, A = (K + Σ̃)−1 and si is the i’s

column of A. Since σ̃2
i,QP ≤ σ̃2

i,EP, we have σ2
QP( f∗) ≤ σ2

EP( f∗).

Remark. We compared variance estimates of EP and QP assuming the same cavity distribu-
tion. Proving analogous statements for the fixed points of the EP and QP algorithms is more
challenging, however, and we leave this to future work, while providing empirical support for
these analogous statements in Figure 5.1(a) and Figure 5.1(b).

5.3 Locality Property

In this section we detail the central result on which our QP algorithm is based upon,
which we refer to as the locality property. That is, the optimal site function ti is
defined only in terms of the single corresponding latent variable fi, and thereby and
similarly to EP, it admits a simple and efficient sequential update of each individual
site approximation.

5.3.1 Review: Locality Property of EP

We provide a brief review of the locality property of EP for GP models; for more
details see Seeger [2005]. We begin by defining the general site function ti( f ) in
terms of all of the latent variables, and the cavity and the tilted distributions as
q\i( f ) ∝ p( f )∏j 6=i t̃j( f ) and q̃( f ) ∝ q\i( f )p(yi| fi), respectively. To update ti( f ), EP
matches a multivariate Gaussian distribution N ( f ) to q̃( f ) by minimizing the KL
divergence KL(q̃‖N ), which is further rewritten as (see details in Appendix C.6.1):

KL
(
q̃‖N

)
= KL

(
q̃i‖Ni

)
+ Eq̃i

[
KL
(
q\i\i|i‖N\i|i

)]
, (5.2)

where and hereinafter, \i|i denotes the conditional distribution of f\i (taking fi out of

f ) given fi, namely, q\i\i|i = q\i( f\i| fi) and N\i|i = N ( f\i| fi). Note that q\i\i|i and N\i|i
in the second term in Equation (5.2) are both Gaussian, and so setting them equal to
one another causes that term to vanish. Furthermore, it is well known that the term
KL
(
q̃i‖Ni

)
is minimized w.r.t. the parameters of Ni by matching the first and second

moments of q̃i and Ni. Finally, according to the usual EP logic, we recover the site
function ti( f ) by dividing the optimal Gaussian N ( f ) by the cavity q\i( f ):

ti( f ) ∝ N ( f )/q\i( f ) =���
��N ( f\i| fi)N ( fi)/(���

��q\i( f\i| fi)q\i( fi)) = N ( fi)/q\i( fi). (5.3)

Here we can see the optimal site function ti( fi) relies solely on the local latent variable
fi, so it is sufficient to assume a univariate expression for site functions. Besides, the
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site function can be efficiently updated by using the marginals q̃( fi) and N ( fi) only,
namely, ti( fi) ∝

(
minNi KL(q̃i‖Ni))/q\i( fi)

)
.

5.3.2 Locality Property of QP

This section proves the locality property of QP, which turns out to be rather more
involved to show than is the case for EP. We first prove the following theorem, and
then follow the same procedure as for EP (Equation (5.3)).

Theorem 4. Minimization of W2
2(q̃( f ),N ( f )) w.r.t. N ( f ) results in q\i( f\i| fi) = N ( f\i| fi).

Proof. See Appendix C.6.

Theorem 5 (Locality Property of QP). For GP models with factorized likelihoods, QP
requires only univariate site functions, and so yields efficient updates using only marginal
distributions.

Proof. We apply the same steps as in Equation (5.3) for the EP case to QP and
we conclude that the site function ti( fi) ∝ N ( fi)/q\i( fi) relies solely on the local
latent variable fi. And as per Equation (C.15) (Appendix C.6), N ( fi) is estimated by
minNi W2

2(q̃i,Ni), so the local update only uses marginals and can perform efficiently.

Benefits of the Locality Property. The locality property admits an analytically
economic form for the site function ti( fi), requiring a parameterization that depends
on a single latent variable. In addition, this also yields a significant reduction in
the computational complexity, as only marginals are involved in each local update.
In contrast, if QP (or EP) had no such a locality property, estimating the mean and
the variance would involve integrals w.r.t. high-dimensional distributions, with a
significantly higher computational cost should closed form expressions be unavailable.

5.4 Experiments

In this section, we compare the QP, EP and variational Bayes [VB, Opper and Ar-
chambeau, 2009] algorithms for binary classification and Poisson regression. The
experiments employ eight real world datasets and aim to compare relative accuracy
of the three methods, rather than optimizing the absolute performance. The imple-
mentations of EP and VB in Python are publicly available [GPy, since 2012], and
our implementation of QP is based on that of EP. For both EP and QP, we stop local
updates, i.e., , the inner loop in Algorithm 2 (Appendix), when the root mean squared
change in parameters is less than 10−6. In the outer loop, the GP hyper-parameters
are optimized by L-BFGS-B [Byrd et al., 1995] with a maximum of 103 iterations and a
relative tolerance of 10−9 for the function value. VB is also optimized by L-BFGS-B
with the same configuration. Parameters shared by the three methods are initialized
to be the same.
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5.4.1 Binary Classification

Benchmark Data. We perform binary classification experiments on the five real world
datasets employed by Kuss and Rasmussen [2005]: Ionosphere (IonoS), Wisconsin
Breast Cancer, Sonar [Dua and Graff, 2017], Leptograpsus Crabs and Pima Indians
Diabetes [Ripley, 1996]. We use two additional UCI datasets as further evidence: Glass
and Wine [Dua and Graff, 2017]. As the Wine dataset has three classes, we conduct
binary classification experiments on all pairs of classes. We summarize the dataset
size and data dimensions in Table 5.1.

Table 5.1: Results on benchmark datasets. The first three columns give dataset names, the
number of instances m and the number of features n. The table records the test errors (TEs)
and the negative test log-likelihoods (NTLLs). The top section is on the benchmark datasets
employed by Kuss and Rasmussen [2005] and the middle section uses additional datasets.
The bottom section shows Poisson regression results. * indicates that QP outperforms EP in
more than 90% of experiments consistently.

TE (×10−2) NTLL(×10−3)
Data m n EP QP VB EP QP VB
IonoS 351 34 7.9±0.5 7.9±0.5 18.9±6.9 215.9±8.4 215.9±8.5 337.4±70.8

Cancer 683 9 3.2±0.2 3.2±0.2 3.1±0.2 88.2±3.1 88.2∗±3.1 88.9±19.1
Pima 732 7 20.3±1.0 20.3±1.0 21.9±0.4 424.7±13.0 424.0∗±13.2 450.3±2.6
Crabs 200 7 2.7±0.5 2.7±0.5 3.7±0.7 64.4±8.2 64.3±8.4 164.7±7.5
Sonar 208 60 14.0±1.1 14.0±1.1 25.7±3.9 306.7±10.8 306.2∗±10.9 693.1±0.0

Glass 214 10 1.1±0.4 1.0±0.4 2.6±0.5 29.5±5.4 29.0∗±5.5 79.5±6.3
Wine1 130 13 1.5±0.5 1.5±0.5 1.7±0.6 48.0±3.4 47.4∗±3.4 83.9±5.2
Wine2 107 13 0.0±0.0 0.0±0.0 0.0±0.0 18.0±1.2 17.8∗±1.2 26.7±1.9
Wine3 119 13 2.0±1.0 2.0±1.0 1.2±0.7 52.1±5.6 51.8∗±5.6 69.4±5.0

Mining 112 1 118.6±27.0 118.6±27.0 170.3±15.9 1606.8±116.3 1606.5±116.3 2007.3±119.8

Note: Wine1: Class 1 vs. 2. Wine2: Class 1 vs. 3. Wine3: Class 2 vs. 3.

Prediction. We predict the test labels using models optimized by EP, QP and VB on
the training data. For a test input x∗ with a binary target y∗, the approximate predictive
distribution is written as: q(y∗|x∗) =

∫ ∞
−∞ p(y∗| f∗)q( f∗) d f∗ where f∗ = f (x∗) is

the value of the latent function at x∗. We use the probit likelihood for the binary
classification task, which admits an analytical expression for the predictive distribution
and results in a short-tailed posterior distribution. Correspondingly, the predicted
label ŷ∗ is determined by thresholding the predictive probability at 1/2.

Performance Evaluation. To evaluate the performance, we employ two measures:
the test error (TE) and the negative test log-likelihood (NTLL). The TE and the NTLL
quantify the prediction accuracy and uncertainty, respectively. Specifically, they are
defined as (∑m

i=1 |y∗,i − ŷ∗,i|/2)/m and −(∑m
i=1 log q(y∗,i|x∗,i))/m, respectively, for a

set of test inputs {x∗,i}m
i=1, test labels {y∗,i}m

i=1, and the predicted labels {ŷ∗,i}m
i=1.

Lower values indicate better performance for both measures.
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Experiment Settings. In the experiments, we randomly split each dataset into
10 folds, each time using 1 fold for testing and the other 9 folds for training, with
features standardized to zero mean and unit standard deviation. We repeat this 100
times for a random seed ranging 0 through 99. As a result, there are a total of 1,000
experiments for each dataset. We report the average and the standard deviation of the
above metrics over the 100 rounds.

Results. The evaluation results are summarized in Table 5.1. The top section
presents the results on the datasets employed by Kuss and Rasmussen [2005], whose
reported TEs match ours as expected. While QP and EP exhibit similar TEs on
these datasets, QP is superior to EP in terms of the NTLL. VB under-performs both
EP and QP on all datasets except Cancer. The middle section of Table 5.1 shows
the results on additional datasets. The TEs are again similar for EP and QP, while
QP has lower NTLLs. Again, VB performs worst among the three methods. To
emphasize the difference between NTLLs of EP and QP, we mark with an asterisk
those results in which QP outperforms EP in more than 90% of the experiments.
Furthermore, we visualize the predictive variances of QP in comparison with those
of EP in Figure 5.1(a)., which shows that the variances of QP are always less than
or equal to those of EP, thereby providing empirical evidence of QP alleviating the
over-estimation of predictive variances associated with the EP algorithm.

5.4.2 Poisson Regression

Data and Settings. We perform a Poisson regression experiment to further evaluate
the performance of our method. The experiment employs the coal-mining disaster
dataset [Jarrett, 1979] which has 190 data points indicating the time of fatal coal
mining accidents in the United Kingdom from 1851 to 1962. To generate training and
test sequences, we randomly assign every point of the original sequence to either
a training or test sequence with equal probability, and this is repeated 200 times
(random seeds 0, · · · , 199), resulting in 200 pairs of training and test sequences. We
use the TE and the NTLL to evaluate the performance of the model on the test dataset.
The NTLL has the same expression as that of the Binary classification experiment, but
with a different predictive distribution q(y∗|x∗). The TE is defined slightly differently
as (∑m

i=1 |y∗,i − ŷ∗,i|)/m. To make the rate parameter of the Poisson likelihood non-
negative, we use the square link function [Flaxman et al., 2017; Walder and Bishop,
2017], and as a result, the likelihood becomes p(y| f 2). We use this link function
because it is more mathematically convenient than the exponential function: the EP
and QP update formulas, and the predictive distribution q(y∗|x∗) are available in
Appendices C.3.2 and C.8, respectively.

Results. The means and the standard deviations of the evaluation results are
reported in the last row of Table 5.1. Compared with EP, QP yields lower NTLL,
which implies a better fitting performance of QP to the test sequences. We also
provide the predictive variances in Figure 5.1(b)., in the variance of QP is once again
seen to be less than or equal to that of EP. This experiment further supports our claim
that QP alleviates the problem with EP of over-estimation of the predictive variance.
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(a) Binary Classification (b) Poisson Regression

Figure 5.1: A scatter plot of the predictive variances of latent functions on test data, for EP
and QP. The diagonal dash line represents equivalence. We see that the predictive variance of
QP is always less than or equal to that of EP.

Finally, once again we find that both EP and QP outperform VB.

5.5 Conclusions

We have proposed QP as the first efficient L2-WD based approximate Bayesian infer-
ence method for Gaussian process models with factorized likelihoods. Algorithmically,
QP is similar to EP but uses the L2 WD instead of the forward KL divergence for
estimation of the site functions. When the likelihood factors are approximated by a
Gaussian form we show that QP matches quantile functions rather than moments
as in EP. Furthermore, we show that QP has the same mean update but a smaller
variance than that of EP, which in turn alleviates the over-estimation by EP of the
posterior variance in practice. Crucially, QP has the same favorable locality property
as EP, and thereby admits efficient updates. Our experiments on binary classification
and Poisson regression have shown that QP can outperform both EP and variational
Bayes. Approximate inference with WD is promising but hard to compute, especially
for continuous multivariate distributions. We believe our work paves the way for
further practical approaches to WD-based inference.

Limitations and Future Work. Although we have presented properties and ad-
vantages of our method, it is still worth pointing out its limitations. First, our method
does not provide a methodology for hyper-parameter optimization that is consistent
with our proposed WD minimization framework. Instead, for this purpose, we rely on
optimization of EP’s marginal likelihood. We believe this is one of the reasons for the
small performance differences between QP and EP. Furthermore, the computational
efficiency of our method comes at the price of additional memory requirements and
the look-up tables may exhibit instabilities on high-dimensional data. To overcome



58 Quantile Propagation for Wasserstein-Approximate Gaussian Processes

these limitations, future work will explore alternatives to hyper-parameter optimiza-
tion, improvements on numerical computation under the current approach and a
variety of WD distances under a similar algorithm framework.

Applications to Bayesian Hawkes Processes. Applying QP to Bayesian Hawkes
processes is a challenging task. This goal first requires solving a less difficult problem:
using the EP or QP algorithm for Bayesian Poisson processes. We didn’t explore
QP for Poisson processes but for Poisson regression. Even for EP, the application
to Poisson processes is missing. The main reason is that Poisson processes involve
generally analytically intractable integrals in the likelihood and therefore are hard to
handle. Further to this problem, applying QP to Bayesian Hawkes processes will face
new problems, such as a high computational burden.

In the next chapter, we study a simple and robust frequentist estimation framework
beyond the Bayesian field. The framework builds on the kernel maximum moment
restriction and is applicable to a wide range of models.



Chapter 6

Kernel Maximum Moment
Restriction for Instrumental
Variable Regression

In this chapter, we propose a simple estimation framework for conditional moment
restriction (CMR) models. We focus on instrumental variable (IV) regression models
and design the method based on the kernelized maximum moment restriction (MMR).
We organize the contents as below:

(i) In Section 6.1, we introduce the background of IV regression and present an
overview of our proposed method.

(ii) In Section 6.2, we elaborate the prerequisites of our method: the detailed settings
of IV regression, generalized method of moment which is widely applied to
IV regression estimation and related to our method, and the kernelized MMR
framework which is formulated by maximizing the interaction between the
residual and the instruments belonging to a unit ball in a reproducing kernel
Hilbert space (RKHS).

(iii) In Section 6.3, we propose the simple framework for IV regression estimation
based on the kernelized MMR. Different from two-step optimization in most
of existing methods, our method reformulates the IV regression estimation as
a single-step empirical risk minimization problem, where the risk depends on
the reproducing kernel on the instrument and can be estimated by a U-statistic
or V-statistic. We then present two practical algorithms by considering two
modern machine learning models, neural networks and kernel machines, in the
framework.

(iv) In Section 6.4, we present an efficient hyper-parameter selection procedure.
(v) In Section 6.5, we analyze consistency and asymptotic normality of our estimator

in both parametric and non-parametric settings.
(vi) In Section 6.6, we demonstrate the advantages of our framework over existing

ones using experiments on both synthetic and real-world data.

59
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6.1 Introduction

Instrumental variables (IV) have become standard tools for economists, epidemiol-
ogists, and social scientists to uncover causal relationships from observational data
[Angrist and Pischke, 2008; Klungel et al., 2015]. Randomization of treatments or
policies has been perceived as the gold standard for such tasks, but is generally
prohibitive in many real-world scenarios due to time constraints or ethical concerns.
When treatment assignment is not randomized, it is generally impossible to discern
between the causal effect of treatments and spurious correlations that are induced by
unobserved factors. Instead, the use of IV enables the investigators to incorporate
natural variation through an IV that is associated with the treatments, but not with
the outcome variable, other than through its effect on the treatments. In economics,
for instance, the season-of-birth was used as an IV to study the return from schooling,
which measures causal effect of education on labor market earning [Card, 1999]. In
genetic epidemiology, the idea to use genetic variants as IVs, known as Mendelian
randomization, has also gained increasing popularity [Burgess et al., 2017b, 2020].

To overcome these drawbacks, we propose a simple framework which views
nonlinear IV regression as an empirical risk minimization (ERM) problem with U-
statistic or V-statistic. This framework is based on (i) the maximum moment restriction
(MMR) by Muandet et al. [2020a], which develops an equivalent form of moment
conditions by a reproducing kernel Hilbert space (RKHS), and (ii) a U/V-statistics
approximation technique [Serfling, 1980] for the form. We call our framework MMR-
IV. Based on this formulation, we can solve the nonlinear IV problem by a single-step
optimization with an empirical risk.

Our MMR-IV framework has the following advantages:

(i) A closed-form solution of the optimization problem is available. Also, for neural
networks, we can simply apply common algorithms such as SGD.

(ii) We can interpret MMR-IV as an analogy for Gaussian processes, and conse-
quently, we develop an efficient hyper-parameter selection procedure.

(iii) We prove consistency and asymptotic normality of estimators by MMR-IV in
both parametric and non-parametric settings.

All of these advantages come from the empirical risk minimization form of MMR-IV.
To the best of our knowledge, we do not find any other method that can achieve all of
these. Further, our experiments show MMR-IV has better performance with synthetic
data, and it provides appropriate interpretation of real data.

6.2 Preliminaries

Generalized method of moment (GMM). The aforementioned conditions imply that
E[ε | Z] = 0 for PZ-almost all z. This is a conditional moment restriction (CMR) which
we can use to estimate f [Newey, 1993]. For any measurable function h, the CMR
implies a continuum of unconditional moment restrictions [Lewis and Syrgkanis, 2018;
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Bennett et al., 2019]1:
E[(Y− f (X))h(Z)] = 0. (6.1)

That is, there exists an infinite number of moment conditions, each of which is indexed
by the function h. As a result, learning with Equation (6.1) is challenging. Although
the asymptotic efficiency of the estimator can in principle improve when we consider
increasingly many moment conditions, it was observed that the excessive number
of moments can be harmful in practice [Andersen and Sorensen, 1996] because its
finite-sample bias increases with the number of moment conditions [Newey and
Smith, 2004]. Hence, traditional works in econometrics often select a finite number
of moment conditions for estimation based on the generalized method of moments
(GMM) [Hansen, 1982; Hall et al., 2005]. Unfortunately, an adhoc choice of moments
can potentially lead to a loss of efficiency or even a loss of identification [Dominguez
and Lobato, 2004]. For this reason, subsequent works advocate an incorporation of all
moment restrictions simultaneously in different ways such as the method of sieves
[de Jong, 1996; Donald et al., 2003] and a continuum of moment restrictions [Carrasco
and Florens, 2000; Carrasco et al., 2007; Carrasco, 2012; Carrasco and Florens, 2014],
among others.

One of the key questions in econometrics is which moment conditions should be
used as a basis for estimating the function f [Donald and Newey, 2001; Hall, 2005]. In
this work, we show that, for the purpose of estimating f , it is sufficient to restrict h to
be within a unit ball of a RKHS of real-valued functions on Z.

6.2.1 Maximum Moment Restriction

Throughout this paper, we assume that h is a real-valued function on Z which belongs
to a RKHS Hk endowed with a reproducing kernel k : Z ×Z → R. The RKHS Hk
satisfies two important properties: (i) for all z ∈ Z and h ∈ Hk, we have k(z, ·) ∈ Hk
and (ii) (reproducing property of Hk) h(z) = 〈h, k(z, ·)〉Hk where k(z, ·) is a function
of the second argument. Furthermore, we define Φk(z) as a canonical feature map of
z in Hk. It follows from the reproducing property that k(z, z′) = 〈Φk(z), Φk(z′)〉Hk

for any z, z′ ∈ Z , i.e., an inner product between the feature maps of z and z′ can be
evaluated implicitly through the kernel evaluation. Every positive definite kernel k
uniquely determines the RKHS for which k is a reproducing kernel [Aronszajn, 1950].
For detailed exposition on kernel methods, see, e.g., Schölkopf and Smola [2002],
Berlinet and Thomas-Agnan [2004], and Muandet et al. [2017].

Instead of (6.1), we define a risk in terms of a maximum moment restriction (MMR)
[Muandet et al., 2020a]:

Rk( f ) := sup
h∈Hk ,‖h‖≤1

(E[(Y− f (X))h(Z)])2. (6.2)

That is, instead of considering all measurable functions h as instruments, we only
restrict to functions that lie within a unit ball of the RKHS Hk. The risk is then defined

1Also, IV assumptions imply ε is independent of Z, i.e., E[(Y− f (X))h(Z)] = 0 for all measurable h.
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as a maximum value of the moment restriction with respect to this function class.
The benefits of our formulation are two-fold. First, it is computationally intractable
to learn f from (6.1) using all measurable functions as instruments. By restricting
the function class to a unit ball of the RKHS, the problem becomes computationally
tractable, as will be shown in Lemma 1 below. Second, this restriction still preserves
the consistency of parameter estimated using Rk( f ). In some sense, the RKHS is a
sufficient class of instruments for the nonlinear IV problem (cf. Theorem 6).

A crucial insight for our approach is that the population risk Rk( f ) has an analytic
solution.

Lemma 1 (Muandet et al. [2020a], Thm 3.3). Assume that E[(Y− f (X))2k(Z, Z)] < ∞.
Then, we have

Rk( f ) = E[(Y− f (X))(Y′ − f (X′))k(Z, Z′)] (6.3)

where (X′, Y′, Z′) is an independent copy of (X, Y, Z).

We assume throughout that the reproducing kernel k is integrally strictly positive
definite (ISPD).

Assumption 1. The kernel k is continuous, bounded (i.e., supz∈Z
√

k(z, z) < ∞) and
satisfies the condition of integrally strictly positive definite (ISPD) kernels, i.e., for any
function g that satisfies 0 < ‖g‖2

2 < ∞, we have
∫∫
Z g(z)k(z, z′)g(z′)dz dz′ > 0.

The assumption is also related to the notion of characteristic and universal kernels;
see, e.g., Simon-Gabriel and Schölkopf [2018]. More details on ISPD kernels are given
in Appendix D.1. We further assume the identification for the minimizer of Rk( f ).

Assumption 2. Consider the function space F and f ∗ ∈ argmin f∈F Rk( f ). Then for any
g ∈ F with |E[g(X)]| < ∞, E[g(X)− f ∗(X) | Z] = 0 implies g = f ∗.

A sufficient condition for identification follows from the completeness property of
X for Z [D’Haultfoeuille, 2011], e.g., the conditional distribution of X given Z belongs
to the exponential family [Newey and Powell, 2003]. Provided identification, it is
straightforward to obtain consistency.

6.3 Our Method

We propose to learn f by minimizing Rk( f ) in (6.3). To this end, we define an optimal
function f ∗ as a minimizer of the above population risk with respect to a function
class F of real-valued functions on X , i.e.,

f ∗ ∈ argmin f∈F Rk( f ).

It is instructive to note that population risk Rk depends on the choice of the kernel
k. Based on Assumption 1 and Lemma 1, we obtain the following result, which is a
special case of Muandet et al. [2020a, Theorem 3.2], showing that Rk( f ) = 0 if and
only if f satisfies the original conditional moment restriction (see Appendix D.2.2 for
the proof).
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Theorem 6. Assume that the kernel k is integrally strictly positive definite (ISPD). Then,
for any real-valued measurable function f , Rk( f ) = 0 if and only if E[Y− f (X) | z] = 0 for
PZ-almost all z.

Theorem 6 holds as long as the kernel k belongs to a class of ISPD kernels. Hence,
it allows for more flexibility in terms of the kernel choice. Moreover, it is not difficult
to show that Rk( f ) is strictly convex in f (see Appendix D.2.3).

6.3.1 Empirical Risk Minimization with U, V-Statistics

The previous results pave the way for an empirical risk minimization (ERM) framework
[Vapnik, 1998] to be used in our work. That is, given an i.i.d. sample {(xi, yi, zi)}n

i=1 ∼
Pn(X, Y, Z) of size n, an empirical estimate of the risk Rk( f ) can be obtained as

R̂U( f ) := ∑n
1≤i 6=j≤n

(yi− f (xi))(yj− f (xj))k(zi ,zj)

n(n−1) , (6.4)

which is in the form of U-statistic [Serfling, 1980, Section 5]. Alternatively, an empirical
risk based on V-statistic can also be used, i.e.,

R̂V( f ) := ∑n
i,j=1

(yi− f (xi))(yj− f (xj))k(zi ,zj)

n2 . (6.5)

Both forms of empirical risk can be used as a basis for a consistent estimation of f . The
advantage of (6.4) is that it is a minimum-variance unbiased estimator with appealing
asymptotic properties, whereas (6.5) is a biased estimator of the population risk (6.3),
i.e., E[R̂V ] 6= Rk. However, the estimator based on V-statistics employs a full sample
and hence may yield better estimate of the risk than the U-statistic counterpart.

Let x := [x1, . . . , xn]>, y := [y1, . . . , yn]> and z := [z1, . . . , zn]> be column vectors.
Let Kz be the kernel matrix K(z, z) = [k(zi, zj)]ij evaluated on the instruments z. Then,
both (6.4) and (6.5) can be rewritten as

R̂V(U)( f ) = (y− f (x))>WV(U)(y− f (x)), (6.6)

where f (x) := [ f (x1), . . . , f (xn)]> and WV(U) ∈ Rn×n is a symmetric weight matrix
that depends on the kernel matrix Kz. Specifically, the weight matrix W corre-
sponding to (6.4) is given by WU = (Kz − diag(k(z1, z1), . . . , k(zn, zn)))/(n(n − 1))
where diag(a1, . . . , an) denotes an n× n diagonal matrix whose diagonal elements are
a1, . . . , an. As shown in Appendix D.2.5, WU is indefinite and may cause problematic
inferences. The weight matrix W for (6.5) is given by WV := Kz/n2 which is a positive
definite matrix for the ISPD kernel k. Finally, our objective (6.6) also resembles the
well-known generalized least regression with correlated noise [Kariya and Kurata,
2004, Chapter 2] where the covariance matrix is the Z-dependent invertible matrix
W−1

V(U)
.

Based on (6.4) and (6.5), we estimate f ∗ by minimizing the regularized empirical
risk over a function class F :

f̂V(U) ∈ argmin f∈F R̂V(U)( f ) + λΩ( f )
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where λ > 0 is a regularization constant satisfying limn→∞ λ = 0, and Ω( f ) is the
regularizer. Since f̂U and f̂V minimizes objectives which are regularized U-statistic
and V-statistic, they can be viewed a specific form of M-estimators; see, e.g., Van der
Vaart [2000, Ch. 5]. In this work, we focus on the V-statistic empirical risk and provide
practical algorithms when F is parametrized by deep neural networks (NNs) and an
RKHS of real-valued functions.

Kernelized GMM. We may view the objective (6.6) from the GMM perspec-
tive [Hall, 2005]. The assumption that the instruments Z are exogenous implies
that E[Φk(Z)ε] = 0 where Φk denotes the canonical feature map associated with
the kernel k. This gives us an infinite number of moments, g( f ) = Φk(Z)(Y −
f (X)). Hence, we can write the sample moments as ĝ( f ) = (1/n)∑n

i=1 Φk(zi)(yi −
f (xi)). The intuition behind GMM is to choose a function f that sets these moment
conditions as close to zero as possible, motivating the objective function J( f ) :=
‖ĝ( f )‖2

Hk
= 〈ĝ( f ), ĝ( f )〉Hk = 1

n2 ∑n
i,j=1(yi − f (xi))〈Φk(zi), Φk(zj)〉Hk(yj − f (xj)) =

(y − f (x))>WV(y − f (x)). Hence, our objective (6.6) defined using V-statistic is a
special case of the GMM objective when the weighting matrix is the identity operator.
Carrasco et al. [2007, Ch. 6] shows that the optimal weighting operator is given in
terms of the inversed covariance operator.

6.3.2 Practical MMR-IV Algorithms

A workflow of our algorithm based on R̂V is summarized in Algorithm 1; we leave the
R̂U based method to future work to solve the inference issues caused by indefinite WU .
We provide examples of the class F in both parametric and non-parametric settings
below.

Deep neural networks. In the parametric setting, the function class F can often
be expressed as FΘ = { fθ : θ ∈ Θ} where Θ ⊆ Rm denotes a parameter space. We
consider a very common nonlinear model in machine learning f (x) = W0Φ(x) + b0

where Φ : x 7−→ σh(Whσh−1(· · · σ1(W1x))) denotes a nonlinear feature map of a
depth-h NN. Here, Wi for i = 1, . . . , h are parameter matrices and each σi denotes the
entry-wise activation function of the i-th layer. In this case, θ = (b0, W0, W1, . . . , Wh).
As a result, we can rewrite f̂V in terms of their parameters as

θ̂V ∈ arg minθ∈Θ R̂V( fθ) + λ‖θ‖2
2

where fθ ∈ FΘ. We denote θ∗ ∈ arg minθ∈Θ Rk( fθ). In what follows, we refer to this
algorithm as MMR-IV (NN); see Algorithm 4 in Appendix D.5.1.

Kernel machines. In a non-parametric setting, the function class F becomes
an infinite dimensional space. In this work, we consider F to be an RKHS Hl of
real-valued functions on X with a reproducing kernel l : X × X → R. Then, the
regularized solution can be obtained by arg min f∈Hl R̂V( f ) + λ‖ f ‖2

Hl
. As per the

representer theorem, any optimal f̂ admits a form f̂ (x) = ∑n
i=1 αil(x, xi) for some

(α1, . . . , αn) ∈ Rn [Schölkopf et al., 2001b], and based on this representation, we
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Algorithm 1 MMR-IV
Input: Dataset D = {x, y, z}, kernel function k with parameters θk, a function class
F , regularization functional Ω(·), and regularization parameter λ

Output: The estimate of f ∗ in F .
1: Compute the kernel matrix K = k(z, z; θk).
2: Define the residual ε( f ) = y− f (x).
3: f̂λ ← argmin f∈F

1
n2 ε( f )>Kε( f ) + λΩ(‖ f ‖F )

4: return f̂λ

rewrite the objective as

f̂V = arg min
α∈Rn

(y− Lα)>WV(y− Lα) + λα>Lα, (6.7)

where L = [l(xi, xj)]ij is the kernel matrix on x. For U-statistic version, the quadratic
program (6.7) substitutes indefinite WU for WV , so it may not be positive definite.
The value of λ needs to be sufficiently large to ensure that (6.7) is definite. On the
other hand, the V-statistic based estimate (6.7) is definite for all non-zero λ since
WV is positive semi-definite. Thus, the optimal α̂ can be obtained by solving the
first-order stationary condition and if L is positive definite, the solution has a closed
form expression, α̂ = (LWV L + λL)−1LWVy. Thus, we will focus on the V-statistic
version in our experiments. In the following, we refer to this algorithm as MMR-IV
(RKHS).

Nyström approximation. The MMR-IV (RKHS) algorithm is computationally
costly for large datasets as it requires a matrix inversion. To improve the scalability,
we resort to Nyström approximation [Williams and Seeger, 2001] to accelerate the
matrix inversion in α̂ = (LWV L + λL)−1LWVy. First, we randomly select a subset
of m(� n) samples from the original dataset and construct the corresponding sub-
matrices of WV , namely, Wmm and Wnm based on this subset. Second, let V and U
be the eigenvalue vector and the eigenvector matrix of Wmm. Then, the Nyström
approximation is obtained as WV ≈ ŨṼŨ> where Ũ :=

√m
n WnmUV−1 and Ṽ := n

m V.
We finally apply the Woodbury formula [Flannery et al., 1992, p. 75] to obtain

(LWV L + λL)−1LWV = L−1(WV + λL−1)−1WV

≈ λ−1[I − Ũ(λ−1Ũ>LŨ + Ṽ−1)−1Ũ>λ−1L]ŨṼŨ>.

We will refer to this algorithm as MMR-IV (Nyström); Algorithm 3 in Appendix D.5.1.
The runtime complexity of this algorithm is O(nm2 + n2).

6.4 Hyper-parameter Selection

We develop a convenient hyperparameter selection method for MMR-IV (Nyström)
with our objective (6.7) and the V-statistic. This method benefits from the fact that our
ERM form can be interpreted as a stochastic model with a Gaussian process, inspired
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by Vehtari et al. [2016]. This approach is an analog of parameter selection in the
ordinary kernel regression. However, we need to apply additional analysis due to the
weight matrix WV in (6.7) with V-statistics. Full details are provided in Appendix D.3.

Gaussian process (GP) interpretation. We start the GP interpretation by defining
the energy-based likelihood p(D| f (x)) ∝ exp(−R̂V( f )/2) ∝ N( f (x)|y, K−1

z ), where
D := {x, y, z} denotes the dataset. Then we assign a GP prior to f , i.e., f (x) ∼
GP(0, δl(x, x)) with a real constant δ > 0,s and the posterior distribution of f (x) is
straight-forwardly derived based on the Gaussian-like prior and likelihood,

p( f (x)|D) = N( f (x)|c, C) ∝ p( f (x))p(D| f (x)),

where c = CKzy and C = (Kz + (δL)−1)−1 ≈ δ[L− LŨ(n2δŨ>LŨ + Ṽ−1)−1Ũ(n2δ)L]
by Nyström approximation . The connections between the GP model and the regular-
ized R̂V( f ) are elaborated in Appendix D.3 and summarized as Theorem 7. In a word,
maximization of p( f (x)|D) is alternative to minimization of (6.7) and the Bayesian
inference is a substitute for the frequentist prediction.

Theorem 7. Given δ = (λn2)−1 and f̂ = argmin f∈Hl
Equation (6.7), there are

(i) argmax f (x) p( f (x)|D) = f̂ (x);
(ii) prediction at x∗: argmax f (x∗) p( f (x∗)|D) = f̂ (x∗).

Analytical cross-validation error. Now we derive the analytical error of the
leave-M-out cross validation (LMOCV) from the perspective of the GP. We split
the whole dataset D into training and development datasets, denoted as Dtr and
Dde := {xde, yde, zde} respectively, where Dde has M triplets of data points. Given
Dtr, the predictive probability on Dde can be obtained by Bayes’ rules p( f (xde)|Dtr) ∝

p( f (xde)|D)
p(Dde| f (xde))

, where p( f (xde)|D) = N(cde, Cde) with cde, Cde the mean and covariance

of f (xde) in p( f (x)|D) and p(Dde| f (xde)) ∝ N(yde, K−1
de ), Kde = k(zde, zde). By this

result, the function estimated on the training set can be represented w.r.t. that on the
whole dataset. It turns out that p( f (xde)|Dtr) = N(b, B) where B−1 = C−1

de − Kde and
b = B(C−1

de cde − Kdeyde), and by (ii) in Theorem 7, the error of m repeated LMOCV is

LMOCV Error := ∑m
i=1(r

(i))>K(i)
de r(i), (6.8)

where (i) denotes the experiment index and the residual r(i) := b(i) − y(i)
M = (I −

C(i)
de K(i)

de )
−1(c(i)de − y(i)

de ). The analytical error enables an efficient parameter selection
with the CV procedure.

6.5 Consistency and Asymptotic Normality

We provide the consistency and asymptotic normality of f̂V . We also develop the
same results for f̂U , but we defer them to the appendix due to space limitation. All
proofs are presented in the appendix.
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6.5.1 Consistency

We first show the consistency of f̂V , which depends on the uniform convergence of
the risk functions. The result holds regardless of the shape of Ω( f ), so we can utilize
the regularization ‖θ‖2

2 which is common for NN but non-convex in terms of f .

Theorem 8 (Consistency of f̂V). Assume that E[|Y|2] < ∞, E[sup f∈F | f (X)|2] < ∞, F
is compact, Assumption 1, 2 hold, Ω( f ) is a bounded function and λ

p→ 0. Then f̂V
p→ f ∗.

If the Ω( f ) is convex in f , the consistency can be obtained more easily by Newey
and McFadden [1994, Theorem 2.7]. In this case, we can avoid several conditions. We
provide an additional result with this setting in Appendix D.2.6.

6.5.2 Asymptotic Normality

We analyze asymptotic normality of the estimator f̂V , which is important to advanced
statistical analysis such as tests. Here, we investigate two different cases: the estimator
has finite- and infinite-dimension.

Finite-dimension case. We consider the f̂V is characterized by a finite-dimensional
parameter from a parameter space Θ. We rewrite the regularized V-statistic risk
as a compact form R̂V,λ( fθ) := 1

n2 ∑n
i=1 ∑n

j=1 hθ(ui, uj) + λΩ(θ), hθ(ui, uj) := (yi −
f (xi))(yj − f (xj))k(zi, zj), and consider Rk( fθ) is uniquely minimized at θ∗ ∈ Θ.

Theorem 9 (Asymptotic normality of θ̂V). Suppose that fθ and Ω(θ) are twice contin-
uously differentiable about θ, Θ is compact, H = E[∇2

θhθ∗(U, U′)] is non-singular, E[|Y|2] <
∞, E

[
supθ∈Θ | fθ(X)|2

]
< ∞, E

[
supθ∈Θ ‖∇θ fθ(X)‖2

2
]
< ∞, E

[
supθ∈Θ ‖∇2

θ fθ(X)‖2
F
]
<

∞,
√

nλ
p→ 0, Rk( fθ) is uniquely minimized at θ∗ which is an interior point of Θ, and As-

sumption 1 holds. Then,
√

n(θ̂V − θ∗) N(0, ΣV) holds, where

ΣV = 4H−1diag(EU [E
2
U′ [hθ∗(U, U′)]])H−1

and denotes a convergence in law.

Infinite-dimension case. We show the asymptotic normality of an infinite-dimensional
estimator f̂V . That is, we show that an error of f̂V weakly converges to a Gaussian
process that takes values in a function space Hl . We set Ω( f ) = ‖ f ‖2

Hl
and consider a

minimizer: f ∗λ0
∈ argmin f∈F Rk( f ) + λ0‖ f ‖2

Hl
with arbitrary λ0 > 0. We also define

N (ε,H, ‖ · ‖) as an ε-covering number of a set H in terms of ‖ · ‖. Then, we obtain
the following:

Theorem 10. Suppose Assumption 1 holds, l is a bounded kernel, k is a uniformly bounded
function, and λ− λ0 = o(n−1/2) holds. Also, suppose that X , Z , and Y are compact spaces,
and there exists s ∈ (0, 2) and a constant CH > 0 such that logN (ε,Hl , ‖ · ‖L∞) ≤ CHε−s

for any ε ∈ (0, 1). Then, there exists a Gaussian process G∗P such that
√

n( f̂V − f ∗λ0
)  

G∗P in Hl .

This result allows statistical inference on functional estimators such as kernel
machines. Although there are many conditions, all of them are valid for many
well-known kernels; see Appendix D.2.11 for examples.
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6.6 Experimental Results

We present the experimental results in a wide range of settings for IV estimation.
Following Lewis and Syrgkanis [2018] and Bennett et al. [2019], we consider both low
and high-dimensional scenarios. In our experiments, we compare our algorithms to
the following baselines: (i) DirectNN (ii) 2SLS (iii) Poly2SLS (iv) DeepIV [Hartford
et al., 2017] (v) KernelIV [Singh et al., 2019] (vi) GMM+NN (vii) AGMM [Lewis and
Syrgkanis, 2018] (viii) DeepGMM [Bennett et al., 2019]. (ix) AGMM-K [Dikkala et al., 2020].
We refer readers to Appendix D.5 for more experimental details.

6.6.1 Low-dimensional Scenarios

Following Bennett et al. [2019], we employ the following data generation process:

Y = f ∗(X) + e + δ, X = Z1 + e + γ,

where Z := (Z1, Z2) ∼ Uniform([−3, 3]2), e ∼ N (0, 1), and γ, δ ∼ N (0, 0.12). In
words, Z is a two-dimensional IV, but only the first instrument Z1 has an effect on
X. The variable e is the confounding variable that creates the correlation between X
and the residual Y− f ∗(X). We vary the true function f ∗ between the following cases
to enrich the datasets: (i) sin: f ∗(x) = sin(x). (ii) step: f ∗(x) = 1{x≥0}. (iii) abs:
f ∗(x) = |x|. (iv) linear: f ∗(x) = x. We consider both small-sample (n = 200) and
large-sample (n = 2000) regimes.

Table 6.1 reports the results for the large-sample regime (and Table D.1 in Ap-
pendix D.5 for the small-sample regime). Our findings are as follows: (i) MMR-IVs
perform reasonably well in most cases. (ii) The linear methods (2SLS and Poly2SLS)
perform best when the linearity assumption is satisfied. (iii) Some nonlinear but com-

Table 6.1: The mean square error (MSE) ± one standard deviation in the large-sample regime
(n = 2000).

Algorithm
True Function f ∗

abs linear sin step

DirectNN .116 ± .000 .035 ± .000 .189 ± .000 .199 ± .000
2SLS .522 ± .000 .000 ± .000 .254 ± .000 .050 ± .000
Poly2SLS .083 ± .000 .000 ± .000 .133 ± .000 .039 ± .000
GMM+NN .318 ± .000 .044 ± .000 .694 ± .000 .500 ± .000
AGMM .600 ± .001 .025 ± .000 .274 ± .000 .047 ± .000
DeepIV .247 ± .004 .056 ± .003 .165 ± .003 .038 ± .001
DeepGMM .027 ± .009 .005 ± .001 .160 ± .025 .025 ± .006
KernelIV .019 ± .000 .009 ± .000 .046 ± .000 .026 ± .000
AGMM-K 181 ± .000 2.34 ± .000 19.4 ± .000 4.13 ± .000
MMR-IV (NN) .011 ± .002 .005 ± .000 .153 ± .019 .040 ± .004
MMR-IV (Nys) .011 ± .001 .001 ± .000 .006 ± .002 .020 ± .002
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Figure 6.1: Runtime comparison in the large-sample regime (n = 2000). The computational
time of parameter selection is excluded from the comparison. AGMM-K (No Nyström) and
MMR-IV (RKHS) overlap due to the same runtime.

plicated methods (GMM+NN, DeepIV and DeepGMM) are unstable due to the sensitivity to
hyper-parameters. (iv) We suspect that the AGMM-K performance is unsatisfactory be-
cause the hyper-parameter selection is not flexible enough. On the other hand, MMR-IV
(Nyström) has the advantage of adaptive hyper-parameter selection (cf. Section 6.4).
Appendix D.5.2 provides more details.

We also record the runtimes of all methods on the large-sample regime and report
them in Figure 6.1. Compared to the NN-based methods, i.e., AGMM, DeepIV, DeepGMM,
our MMR-IV (NN) is the most computationally efficient method, which is clearly a
result of a simpler objective. Using a minimax optimization between two NNs, AGMM
is the least efficient method. DeepGMM and DeepIV are more efficient than AGMM, but
are less efficient than MMR-IV (NN). Lastly, all three RKHS-based methods, namely,
KernelIV, AGMM-K and MMR-IV (RKHS), have similar computational time. All three
methods are observed to scale poorly on large datasets.

6.6.2 High-dimensional Structured Scenarios

In high-dimensional setting, we employ the same data generating process as in
Section 6.6.1. We consider only the absolute function for f ∗, but map Z, X, or both
X and Z to MNIST images (784-dim) [LeCun et al., 1998]. Let us denote the original
outputs in Section 6.6.1 by Xlow, Zlow and let π(u) := round(min(max(1.5u+ 5, 0), 9))
be a transformation function mapping inputs to an integer between 0 and 9, and let
RI(d) be a function that selects a random MNIST image from the digit class d. We set
n = 10, 000. Then, the scenarios we consider are

(i) MNISTZ: Z ← RI(π(Zlow
1 )),

(ii) MNISTX: X ← RI(π(Xlow)),
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Figure 6.2: The MSE of different methods on Mendelian randomization experiments as we
vary the numbers of instruments (left), the strength of confounders to exposures c1 (middle),
and the strength of confounders to instruments c2 (right). The MSE is obtained from 10
repetitions of the experiment.

(iii) MNISTXZ: X ← RI(π(Xlow)), Z ← RI(π(Zlow
1 )).

We report the results in Table 6.2. We summarize our findings: (i) MMR-IV (NN)
performs well across scenarios. (ii) MMR-IV (Nyström) fails except MNISTZ, because
the ARD kernel with PCA are not representative enough for MNISTX. (iii) DeepIV
does not work when X is high-dimensional, similar to Bennett et al. [2019]. (iv) The
two-step methods (Poly2SLS and Ridge2SLS) has large errors because the first-stage
regression from Z to X is ill-posed. Appendix D.5.3 provides more details.

6.6.3 Mendelian Randomization

We demonstrate our method in the setting of Mendelian randomization which relies
on genetic variants that satisfy the IV assumptions. The “exposure” X and outcome Y
are univariate and generated from the simulation process by Hartwig et al. [2017]:

Y = βX + c1e + δ, X = ∑m
i=1αiZi + c2e + γ,

where Z ∈ Rd′ with each entry Zi ∼ B(2, pi), pi ∼ unif(0.1, 0.9), e ∼ N (0, 1),
αi ∼ unif([0.8/d′, 1.2/d′]), and γ, δ ∼ N (0, 0.12). Zi ∼ B(2, pi) mimics the frequency
of an individual getting one or more genetic variants. The parameters β, c1 control the
strength of exposures and confounders to outcomes, while c2, αi control the strength
of instruments and confounders to exposures. We set αi ∼ unif([0.8/d′, 1.2/d′]) so
that as the number of IVs increases, each instrument becomes weaker while the overall
strength of instruments (∑d′

i αi) remains constant.
In Mendelian randomization, it is known that genetic variants may act as weak

IVs [Kuang et al., 2020; Hartford et al., 2020; Burgess et al., 2020], so this experiment
aims to evaluate the sensitivity of different methods to the number of instruments (d′)
and confounder strengths (c1, c2). We consider three experiments: (i) d′ = 8, 16, 32;
(ii) c1 = 0.5, 1, 2; (iii) c2 = 0.5, 1, 2; unmentioned parameters use default values: β = 1,
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Table 6.2: The mean square error (MSE) ± one standard deviation on high-dimensional
structured data. We run each method 10 times.

Algorithm
Setting

MNISTz MNISTx MNISTxz

DirectNN .134 ± .000 .229 ± .000 .196 ± .011
2SLS .563 ± .001 >1000 >1000
Ridge2SLS .567 ± .000 .431 ± .000 .705 ± .000
GMM+NN .121 ± .004 .235 ± .002 .240 ± .016
AGMM .017 ± .007 .732 ± .107 .529 ±.163
DeepIV .114 ± .005 n/a n/a
DeepGMM .038 ± .004 .315 ± .130 .333 ± .168
AGMM-K+NN .021 ± .007 1.05 ± .366 .327 ± .192
MMR-IV (NN) .024 ± .006 .124 ± .021 .130 ± .009
MMR-IV (Nys) .015 ± .002 .442 ± .000 .425 ± .002

d′ = 16, c1 = 1, c2 = 1. We draw 10, 000 samples for the training, validation and
test sets, respectively, and train MMR-IV (Nyström) only on the training set. Other
settings are the same as those of the low-dimensional scenario.

Figure 6.2 depicts the experimental results. Overall, 2SLS performs well on all
settings due to the linearity assumption, except particular sensitivity to the number of
(weak) instruments, which is a well-known property of 2SLS [Angrist and Pischke,
2008]. Although imposing no such assumption, MMR-IVs perform competitively and
even more stably, since the information of instruments is effectively captured by the
kernel k and we only need to deal with a simple objective, and also the analytical CV
error plays an essential role. Section D.5.5 contains additional findings.

6.6.4 Application on the Vitamin D data

Lastly, we apply our algorithm to the Vitamin D data [Sjolander and Martinussen, 2019,
Sec. 5.1]. The data were collected from a 10-year study on 2571 individuals aged 40–71
and 4 variables are employed: age (at baseline), filaggrin (binary indicator of filaggrin
mutations), VitD (Vitamin D level at baseline) and death (binary indicator of death
during study). The goal is to evaluate the potential effect of VitD on death. We follow
Sjolander and Martinussen [2019] by controlling age in the analyses, using filaggrin
as instrument, and then applying the MMR-IV (Nyström) algorithm. Sjolander and
Martinussen [2019] modeled the effect of VitD on death by a generalized linear model
and found the effect is insignificant by 2SLS (p-value on the estimated coefficient is
0.13 with the threshold of 0.05). More details can be found in Appendix D.5.6. The
estimated effect is illustrated in Figure D.1 in the appendix. We observe that: (i) By
using instruments, both our method and Sjolander and Martinussen [2019] output
more reasonable results compared with those without instruments: a low VitD level
at a young age has a slight effect on death, but a more adverse effect at an old age
[Meehan and Penckofer, 2014]; (ii) Unlike Sjolander and Martinussen [2019], our
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method allows more flexible non-linearity for causal effect.

6.7 Conclusion

Learning causal relations when hidden confounders are present is a cornerstone of
decision making. IV regression is a standard tool to tackle this task, but currently faces
challenges in nonlinear settings. The present work presents a simple framework that
overcomes some of these challenges. We employ RKHS theory in the reformulation
of conditional moment restriction (CMR) as a maximum moment restriction (MMR)
based on which we can approach the problem from the empirical risk minimization
(ERM) perspective. As we demonstrate, this framework not only facilitates theoretical
analysis, but also results in easy-to-use algorithms that perform well in practice
compared to existing methods. The paper also shows a way of combining the elegant
theoretical approach of kernel methods with practical merits of deep neural networks.
Despite these advantages, the optimal choice of the kernel k remains an open question
which we hope to address in future work.

In the next chapter, we present a conclusion summarizing the thesis and provide
future directions.



Chapter 7

Conclusions and Future Work

In this chapter, we first summarize the contributions we made in the thesis. We then
present some potential research directions for future work.

7.1 Conclusions

Given a set of data and the model hypothesis space, accurate estimation of the model
parameters is crucial for e.g. data modeling and model-based inference. The thesis is
motivated by the non-parametric Bayesian estimation of the Hawkes process. The non-
parametric form provides powerful modeling ability and the approximate Bayesian
inference approach is a natural choice for less sensitivity to randomness of finite
samples and better scalability on large-scale datasets. For this end, the thesis studies
two different kinds of efficient approximate inference frameworks, namely, the Laplace
Bayesian Hawkes process (LBHP) as Chapter 3 and the Variational Bayesian Hawkes
process (VBHP) as Chapter 4. Both frameworks employ the branching structure of the
Hawkes process to simplify the Bayesian inference and the finite support assumption
for acceleration. Notably, they rely on different approximate principles: LBHP exploits
Gibbs sampling as the high-level procedure with Laplace approximation applied in
each iteration; VBHP only exploits the variational inference method. As a result, VBHP
has an advantage of efficiently selecting the hyper-parameters without grid search,
while LBHP is a more general framework and is able to estimate the distribution of
other quantities related to the Hawkes process, such as the branching factor.

Beyond the studies on the Hawkes process, the thesis further explores a new
approximate Bayesian inference approach in Chapter 5, which is applicable to more
general Gaussian process models. The approach builds on the expectation propagation
algorithm and substitutes the L2 Wasserstein distance to the Kullback-Leibler (KL)
divergence. Interestingly, although equipped with a more complicated distance, the
approach preserves some desirable properties, such as the locality property of the EP
update.

Finally, the thesis studies a simple and robust frequentist estimation framework
as Chapter 6, which is outside the Bayesian field. The framework is designed for
estimation of conditional moment restriction models, including the Hawkes process,
and depends on the kernel maximum moment restriction. The framework has a
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simple risk function and eases the proofs of consistency and asymptotic normality
properties. It can also result in efficient hyper-parameter selection for some specific
model classes.

7.2 Future Research Directions

According to recent frequentist estimation methods of the Hawkes process as reviewed
in Section 2.5, it would be interesting to develop efficient Bayesian versions for these
methods to gain more robustness and better modeling performance. Some of these
methods are based on normalizing flows, which can be applied for approximate
Bayesian inference. Therefore, developing more practical normalizing flows is an
interesting direction.

The kernel maximum moment restriction based method is general and we expect
it to be applied in different subfields of stochastic point processes.
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Appendix: Laplace Bayesian
Hawkes Process

A.1 Computing the Integral Term of the Log-likelihood

We consider Ω = [0, T], the background intensity µ, the triggering kernel φ(·) =
1/2 f (·)2, f (·) = ωTe(·), and data {xi}N

i=1, and the integral term in the log-likelihood
is calculated as below

Integral Term = −1
2

N

∑
i=1

∫ T

0
f 2(t− xi)dt

= −1
2

N

∑
i=1

∫ T−xi

0
[

K

∑
k=1

ωkek(t)]2dt

= −1
2

N

∑
i=1

K

∑
k=1

K

∑
k′=1

ωkωk′

∫ T−xi

0
ek(t)ek′(t)dt︸ ︷︷ ︸

U(i)
kk′

= −1
2

N

∑
i=1

ωTU(i)ω.

In our case, Equation (3.9) has d = 1, i.e., φk(x) = (2/π)1/2
√

1/2
[k−1=0]

cos[(k−
1)x], k = 1, 2, · · · . The matrix U(i) is calculated as below:

U(i)
1,1 =

∫ T−t1

0

1
π

dt =
T − xi

π
,

U(i)
k>1,1 =U(i)

1,k>1 =

√
2

π

sin[(k− 1)(tm − xi)]

k− 1
,

Uk,k(k>1) =
1
π

{
T − xi +

sin[2(k− 1)(T − xi)]

2(k− 1)

}
,

Uk,k′(k 6=k′) =
1
π

{sin[(k− k′)(T − xi)]

k− k′
+

sin[(k + k′ − 2)(T − xi)]

k + k′ − 2

}
.
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A.2 M.A.P. µ and φ Given Infinite Branching Structures

M.A.P. µ and φ given Infinite branching structures is written as:

argmax
ω,µ

EB[log p(ω, µ|B, {xi}N
i=1, Ω, k)]

= argmax
ω,µ

EB[log p({xi}N
i=1|ω, µ, B, Ω, k)]︸ ︷︷ ︸

Expected Log-likelihood

+ log p(ω) + log p(µ)︸ ︷︷ ︸
Constraints

= argmax
ω,µ

∑
i=1

{
∑

xj<xi

pij log
1
2
[ωTe(xi − xj)]

2 − pi0 log µ− 1
2

∫ T−xi

0
[ωTe(t)]2dt

}
− (β + 1)µT − 1

2
ωTΛ−1ω− (α− 1) log µ,

where B represents the branching structure, pij the probabilities of triggering rela-
tionships shown as Equation (2.2), and α, β are parameters of the Gamma prior of
µT. The second line is obtained using Bayes’ rule, which shows M.A.P. µ and φ given
infinite branching structures is equivalent to maximizing the constrained expected
log-likelihood, i.e., the objective function for the M-step of the EM algorithm and the
third line is an explicit expression of the second line.

A.3 Mode-Finding the Triggering Kernel

Here we demonstrate in detail the computational challenges involved in finding the
posterior mode with respect to the value of the triggering kernel at multiple point

locations. Consider the triggering kernel φ(·) = 1
2

f 2(·) where f (·) is Gaussian process

distributed. For a dataset {xi}N
i=1, X ≡ { f (xi)}N

i=1 = {Xi}N
i=1 has a normal distribution,

i.e., { f (xi)}N
i=1 ∼ N (m, Σ) where m and Σ are the mean and the covariance matrix.

The distribution of Y ≡ {φ(xi)}N
i=1 = {Yi}N

i=1 is derived as below where F is the
cumulative density function and f the probabilistic density function.

FY(y)

= P(−
√

2yi < Xi <
√

2yi, i = 1, · · · , N)

=
∫ √2y1

−
√

2y1

· · ·
∫ √2yN

−
√

2yN

1√
(2π)NΣ−1

exp[− (X −m)TΣ−1(X −m)

2
] dX1 · · · dXN ,

fY(y)

=
∂N

∂y1 · · · ∂yN
FY(y)

=
1√

(2π)NΣ−1
(ΠN

i=1
1

2
√

2y1
) ∑

X∈×N
i=1{
√

2y1,−
√

2y1}
exp[− (X −m)TΣ−1(X −m)

2
],

where× is the Cartesian product. There are 2N summations of exponential functions,
which is intractable.
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Figure A.1: Triggering kernels estimated by the Gibbs-Hawkes method (Section 3.2) and
the EM-Hawkes method (Section 3.3.2). The true kernel is plotted as the bold gray curve.
We plot the median (red) and [0.1, 0.9] interval (filled red) of the approximate predictive
distribution, along with the triggering kernel inferred by the EM Hawkes method (blue). The
hyper-parameters a and b of the Gaussian process kernel are set to 0.002.



78 Appendix: Laplace Bayesian Hawkes Process



Appendix B

Appendix: Variational Bayesian
Hawkes Process

B.1 Deriving Equation (4.5)

As per Equation (2.7), there is

CELBO(q(B, µ, f , u), p(D|B, µ, f , u), p(B, µ, f , u))

= Eq(B,µ, f )[log p(D|B, µ, f )]−KL(q(B, µ, f , u)||p(B, µ, f , u))

where the KL term can be simplified as

KL(q(B, µ, f , u)||p(B, µ, f , u))

= ∑
B

∫ ∫ ∫
q(B, µ, f , u) log

q(B)q(µ)p( f |u)q(u)
p(B)p(µ)p( f |u)p(u)

du d f dµ (Equation (4.4) and Bayes’ rule)

= ∑
B

∫ ∫ ∫
q(B, µ, f , u) du d f dµ log

q(B)
p(B)

+ ∑
B

∫ ∫ ∫
q(B, µ, f , u) du d f log

q(µ)
p(µ)

dµ

+ ∑
B

∫ ∫ ∫
q(B, µ, f , u) d f dµ log

q(u)
p(u)

du (simplification)

= ∑
B

q(B) log
q(B)
p(B)

+
∫

q(µ) log
q(µ)
p(µ)

dµ +
∫

q(u) log
q(u)
p(u)

du (simplification)

= KL(q(B)||p(B)) + KL(q(µ)||p(µ)) + KL(q(u)||p(u)).

We utilise the likelihood p(D, B|µ, f ) by the reconstruction term and the KL term w.r.t.
B

Eq(B,µ, f )[log p(D|B, µ, f )]−KL(q(B)||p(B))

= ∑
B

∫ ∫
q(B, µ, f ) log p(D|B, µ, f ) d f dµ−∑

B
q(B) log

q(B)
p(B)

(definition)

79
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= ∑
B

∫ ∫
q(B, µ, f ) log p(D|B, µ, f ) d f dµ−∑

B

∫ ∫
q(B, µ, f ) log

q(B)
p(B)

d f dµ

(align probabilities)

= ∑
B

∫ ∫
q(B, µ, f ) log

p(D|B, µ, f )p(B)
q(B)

d f dµ (merge)

= ∑
B

∫ ∫
q(B, µ, f ) log p(D, B|µ, f ) d f dµ−∑

B
q(B) log q(B) (merge)

= Eq(B,µ, f )

[
log p(D, B|µ, f )

]
+ HB

where HB = −∑B q(B) log q(B) is the entropy of B and further computed as follows.
We adopt q(B) from Equation (4.3) and the close form expression of HB is derived as

HB = − ∑
{bi}N

i=1

( N

∏
i=1

i−1

∏
j=0

q
bij
ij

)
log
( N

∏
i=1

i−1

∏
j=0

q
bij
ij

)

= −
k−1

∑
j=0

∑
{bi}i 6=k

(
qkj ∏

i 6=k

i−1

∏
j=0

q
bij
ij

)
log
(

qkj ∏
i 6=k

i−1

∏
j=0

q
bij
ij

)
(split the summation)

= −
k−1

∑
j=0

∑
{bi}i 6=k

(
qkj ∏

i 6=k

i−1

∏
j=0

q
bij
ij

)[
log qkj + log

(
∏
i 6=k

i−1

∏
j=0

q
bij
ij

)]
(split the log)

= −
k−1

∑
j=0

qkj log qkj ∑
{bi}i 6=k

(
∏
i 6=k

i−1

∏
j=0

q
bij
ij

)
︸ ︷︷ ︸

=1

−
k−1

∑
j=0

qkj︸ ︷︷ ︸
=1

∑
{bi}i 6=k

(
∏
i 6=k

i−1

∏
j=0

q
bij
ij

)
log
(

∏
i 6=k

i−1

∏
j=0

q
bij
ij

)

(distributive law of multiplication)

= −
k−1

∑
j=0

qkj log qkj − ∑
{bi}i 6=k

(
∏
i 6=k

i−1

∏
j=0

q
bij
ij

)
log
(

∏
i 6=k

i−1

∏
j=0

q
bij
ij

)
(simplification)

= · · · (do the same operations as above)

= −
N

∑
i=1

i−1

∑
j=0

qij log qij.

B.2 Closed Forms of KL Terms in the ELBO

KL(q(µ)||p(µ)) = (k− k0)ψ(k)− k0 log(c/c0)− k− log[Γ(k)/Γ(k0)] + ck/c0

KL(q(u)||p(u)) = [Tr(K−1
zz′ S) + log |Kzz′ |/|S| −M + mTK−1

zz′ m]/2
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B.3 Extra Closed Form Expressions for Equation (4.2.2)

∫
Ti

E2
q( f )( f ) =

∫
Ti

mTK−1
zz′ KzxKxzK−1

zz′ m dx

= mTK−1
zz′

( ∫
Ti

KzxKxz dx
)

K−1
zz′ m

≡ mTK−1
zz′ ΨiK−1

zz′ m.

∫
Ti

Varq( f )[ f ] =
∫
Ti

Kxx − KxzK−1
zz′ Kzx + KxzK−1

zz′ SK−1
zz′ Kzx dx

=
∫
Ti

γ− Tr(K−1
zz′ KzxKxz) + Tr(K−1

zz′ SK−1
zz′ KzxKxz) dx

=
∫
Ti

γ dx− Tr(K−1
zz′

∫
Ti

KzxKxz dx) + Tr(K−1
zz′ SK−1

zz′

∫
Ti

KzxKxz dx)

≡ γ|Ti| − Tr(K−1
zz′ Ψi) + Tr(K−1

zz′ SK−1
zz′ Ψi).

Ψi(z, z′) =
∫
Ti

KzxKxz′ dx

=
∫
Ti

γ2
R

∏
r=1

exp
(
− (xr − zr)2

2αr

)
exp

(
− (z′r − xr)2

2αr

)
dx

=
∫
Ti

γ2
R

∏
r=1

exp
(
− (zr − z′r)2

4αr

)
exp

(
− (z̄r − xr)2

αr

)
dx

= γ2
R

∏
r=1

exp
(
− (zr − z′r)2

4αr

) ∫
Ti,r

exp
(
− (z̄r − xr)2

αr

)
dxr (yr = (z̄r − xr)/αr)

= γ2
R

∏
r=1
−√αr exp

(
− (zr − z′r)2

4αr

) ∫ (z̄r−T max
i,r )/

√
αr

(z̄r−T min
i,r )/

√
αr

exp(−y2
r ) dyr

= γ2
R

∏
r=1
−
√

παr

2
exp

(
− (zr − z′r)2

4αr

)[
erf
( z̄r − T max

i,r√
αr

)
− erf

( z̄r − T min
i,r√

αr

)]
.

where we explicitly express Ti as a Cartesian product Ti ≡×R
r=1[T min

i,r , T max
i,r ] for

R-dimensional data.

B.4 Additional Experiment Results
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Figure B.1: Posterior Triggering Kernels Inferred By VBHP and Gibbs Hawkes. Results of
Gibbs Hawkes are obtained in 2000 iterations.
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Figure B.2: Convergence Rate of VBHP and Gibbs Hawkes with Different Numbers of
Inducing Points. VBHP and Gibbs Hawkes measure respectively the relative error of the
approximate marginal likelihood and of the posterior distribution of the Gaussian process.
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Appendix: Quantile Propagation

C.1 Minimization of L2 WD between Univariate Gaussian
and Non-Gaussian Distributions

In this section, we derive the formulas of the optimal µ∗ and σ∗ for the L2 WD, i.e.,
, Equation (5.1). Recall the optimization problem: we use a univariate Gaussian
distribution N ( f |µ, σ2) to approximate a univariate non-Gaussian distribution q( f )
by minimizing the L2 WD between them:

min
µ,σ

W2
2(q,N ) = min

µ,σ

∫ 1

0

∣∣∣F−1
q (y)− µ−

√
2σerf−1(2y− 1)

∣∣∣2 dy,

where F−1
q is the quantile function of the non-Gaussian distribution q, namely the

pseudo-inverse function of the corresponding cumulative distribution function Fq

defined in Proposition 1.

To solve this problem, we first calculate derivatives about µ and σ:

∂W2
2

∂µ
= −2

∫ 1

0
F−1

q (y)− µ−
√

2σerf−1(2y− 1) dy,

∂W2
2

∂σ
= −2

∫ 1

0
(F−1

q (y)− µ−
√

2σerf−1(2y− 1))
√

2erf−1(2y− 1) dy.

Then, by zeroing derivatives, we obtain the optimal parameters:

µ∗ =
∫ 1

0
F−1

q (y)−
√

2σerf−1(2y− 1) dy

=
∫ ∞

−∞
xq(x) dx−

√
2

2
σ
∫ 1

−1
erf−1(y) dy

= µq −
√

2σ
∫ ∞

−∞
xN (x|0, 1/2) dx

= µq,

σ∗ =
√

2
∫ 1

0
(F−1

q (y)− µ)erf−1(2y− 1) dy
/ ∫ 1

0
2(erf−1)2(2y− 1) dy

83
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=
√

2
∫ 1

0
F−1

q (y)erf−1(2y− 1) dy
/ ∫ ∞

−∞
2x2N (x|0, 1/2) dx︸ ︷︷ ︸

=1

=
√

2
∫ 1

0
F−1

q (y)erf−1(2y− 1) dy

=
√

2
∫ ∞

−∞
f erf−1(2Fq( f )− 1) dFq( f )

= −
√

1
2π

∫ ∞

−∞
f d e−[erf−1(2Fq̃( f )−1)]2

= 0 +

√
1

2π

∫ ∞

−∞
e−[erf−1(2Fq̃( f )−1)]2 d f . (C.1)

C.2 Minimization of Lp WD between Univariate Gaussian
and Non-Gaussian Distributions

In this section, we describe a gradient descent approach to minimizing an Lp WD,
for p 6= 2, in order to handle cases with no analytical expressions for the optimal
parameters. Our goal is to use a univariate Gaussian distribution N ( f |µ, σ2) to
approximate a univariate non-Gaussian distribution q( f ). Specifically, we seek the
minimizer in µ and σ of Wp

p(q,N ); the derivatives of the objective function about µ

and σ are:

∂µWp
p = −p

∫ 1

0
|ε(y)|p−1sgn(ε(y)) dy = −p

∫ ∞

−∞
|η(x)|p−1sgn(η(x))q(x) dx,

∂σWp
p = −p

∫ 1

0
|ε(y)|p−1sgn(ε(y))erf−1(2y− 1) dy

= −p
∫ ∞

−∞
|η(x)|p−1sgn(η(x))erf−1(2Fq(x)− 1)q(x) dx.

where for simplification, we define ε(y) = F−1
q (y)− µ−

√
2σerf−1(2y− 1) and η(x) =

x − µ −
√

2σerf−1(2Fq(x) − 1), with Fq and F−1
q being the CDF and the quantile

function of q. Note the derivatives have no analytical expressions. However, if the
CDF Fq is available, we can use the standard numerical integration routines; otherwise,
we resort to Monte Carlo sampling. In the framework of EP or QP, q(x) ∝ q\i(x)p(yi|x)
and q\i is Gaussian, so we may draw samples from a Gaussian proposal distribution
to obtain a simple Monte Carlo method.

C.3 Computations for Different Likelihoods

Given the likelihood p(y| f ) and the cavity distribution q\i( f ) = N ( f |µ, σ2), a sta-
ble way to compute the mean and the variance of the tilted distribution q̃( f ) =
p(y| f )q\i( f )/Z where the normalizer Z =

∫ ∞
−∞ p(y| f )q\i( f ) d f , can be found in the

software manual of Rasmussen and Williams [2005]. We present the key formulae
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below, for use in subsequent derivations:

∂µZ =
∫ ∞

−∞

f − µ

σ2 p(y| f )N ( f |µ, σ2) d f

∂µZ
Z

=
1
σ2

∫ ∞

−∞
f

p(y| f )N ( f |µ, σ2)

Z
d f − µ

σ2

∫ ∞

−∞

p(y| f )N ( f |µ, σ2)

Z
dy

∂µZ
Z

=
1
σ2 µq̃ −

µ

σ2

=⇒ µq̃ =
σ2∂µZ

Z
+ µ = σ2∂µ log Z + µ,

∂2
µZ =

∫ ∞

−∞
− 1

σ2 p(y| f )N ( f |µ, σ2) +

(
f − µ

σ2

)2

p(y| f )N ( f |µ, σ2) d f

∂2
µZ
Z

=
∫ ∞

−∞

(
− 1

σ2 +
µ2

σ4 +
f 2

σ4 −
2µ f
σ4

)
p(y| f )N ( f |µ, σ2)

Z
d f

∂2
µZ
Z

= − 1
σ2 +

µ2

σ4 +
1
σ4 (σ

2
q̃ + µ2

q̃)−
2µ

σ4 µq̃

∂2
µZ
Z

= − 1
σ2 +

σ2
q̃

σ4 +
(µ− µq̃)

2

σ4 = − 1
σ2 +

σ2
q̃

σ4 +

(
∂µZ

Z

)2

=⇒ σ2
q̃ = σ4

[
∂2

µZ
Z
−
(

∂µZ
Z

)2
]
+ σ2 = σ4∂2

µ log Z + σ2.

C.3.1 Probit Likelihood for Binary Classification

For the binary classification with labels y ∈ {−1, 1}, the PDF of the tilted distribution
q̃( f ) with the probit likelihood is provided by Rasmussen and Williams [2005]:

q̃( f ) = Z−1Φ( f y)N ( f |µ, σ2), Z = Φ(z), z =
µ

y
√

1 + σ2
,

and the mean estimate also has a closed form expression:

µ? = µq̃ = µ +
σ2N (z)

Φ(z)y
√

1 + σ2
.

As per Equation (5.1), the computation of the optimal σ? requires the CDF of q̃,
denoted as Fq̃. For positive y > 0, the CDF is derived as

Fq̃,y>0(x) = Z−1
∫ x

−∞
Φ ( f y)N

(
f |µ, σ2) d f

=
Z−1

2πσy

∫ µ

−∞

∫ x−µ

−∞
exp

(
−1

2

[
w
f

]T [
v−2 + σ−2 v−2

v−2 v−2

] [
w
f

])
dw d f

= Z−1
∫ k

−∞

∫ h

−∞
N
([

w
f

] ∣∣∣∣0,
[

1 −ρ

−ρ 1

])
dw d f
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(a)
= Z−1

[
1
2

Φ(h)− T

(
h,

k + ρh
h
√

1− ρ2

)
+

1
2

Φ(k)− T

(
k,

h + ρk
k
√

1− ρ2

)
+ η

]

k =
µ√

σ2 + 1
, h =

x− µ

σ
, ρ =

1√
1 + 1/σ2

, x 6= µ, µ 6= 0,

where the step (a) is obtained by exploiting the work of Owen [1956] and T(·, ·) is the
Owen’s T function:

T(h, a) =
1

2π

∫ a

0

exp
[
− (1 + x2)h2/2

]
1 + x2 dx,

and η is defined as

η =

{
0 hk > 0 or (hk = 0 and h + k ≥ 0),

−0.5 otherwise.

Similarly, for y < 0, the CDF is

Fq̃,y<0(x) = Z−1

[
1
2

Φ(h) + T

(
h,

k + ρh
h
√

1− ρ2

)
− 1

2
Φ(k) + T

(
k,

h + ρk
k
√

1− ρ2

)
− η

]
.

Summarizing the two cases, we get the closed form expression of Fq̃:

Fq̃(x)

= Z−1

[
1
2

Φ(h)− yT

(
h,

k + ρh
h
√

1− ρ2

)
+

y
2

Φ(k)− yT

(
k,

h + ρk
k
√

1− ρ2

)
+ yη

]

= Z−1

[
1
2

Φ(h)− yT

(
h,

k
h
√

1− ρ2
+ σ

)
+

y
2

Φ(k)− yT

(
k,

h
k
√

1− ρ2
+ σ

)
+ yη

]
.

Provided the above, the optimal σ? can be computed by numerical integration of
Eqn (C.1). For special cases, we provide additional formulas:

(1) x = µ, µ 6= 0 : Fq̃(x) = Z−1
[

1
4
− ysign(k)

4
+

y
2

Φ(k)− yT(k, σ) + yη

]
;

(2) x 6= µ, µ = 0 : Fq̃(x) = 2
[

1
2

Φ(h)− yT(h, σ) +
y
4
− ysign(h)

4
+ yη

]
;

(3) x = µ, µ = 0 : Fq̃(x) =
1
2
− y

π
arctan(σ).

C.3.2 Square Link Function for Poisson Regression

Consider Poisson regression, which uses the Poisson likelihood p(y|g) = gy exp(−g)/y!
to model count data y ∈ N, with the square link function g( f ) = f 2 [Walder and
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Bishop, 2017; Flaxman et al., 2017]. We use the square link function because it is more
mathematically convenient than the exponential function. Given the cavity distribu-
tion q\i( f ) = N ( f |µ, σ2), we want the tilted distribution q̃( f ) = q\i( f )p(y|g( f ))/Z
where the normalizer Z is derived as:

Z =
∫ ∞

−∞
q\i( f )p(y|g) d f

=
∫ ∞

−∞

1√
2πσ2

exp
(
− ( f − µ)2

2σ2

)
f 2y exp(− f 2)/y! d f

(a)
=

1√
2πσ2y! exp(µ2/(1 + 2σ2))

∫ ∞

−∞
f 2y exp

(
− ( f − µ/(1 + 2σ2))2

2σ2/(1 + 2σ2)

)
d f

(b)
=

(
2σ2

1+2σ2

)y+ 1
2

√
2πσ2y! exp(µ2/(1 + 2σ2))

Γ
(

y +
1
2

)
1F1

(
−y;

1
2

;− µ2

2σ2(1 + 2σ2)

)
=

αy+ 1
2√

2πσ2y! exp(h)
Γ
(

y +
1
2

)
1F1

(
−y;

1
2

;− h
2σ2

)
,

α =
2σ2

1 + 2σ2 , h =
µ2

1 + 2σ2 (C.2)

where the step (a) rewrites the product of two exponential functions into the form
of the Gaussian distribution, (b) is achieved through Mathematica [Wolfram, 2019],
Γ(·) is the Gamma function and 1F1

(
−y; 1

2 ;− h2

2σ2

)
is the confluent hypergeometric

function of the first kind. Furthermore, we compute the first derivative of log Z w.r.t.
µ and then the mean of the tilted distribution:

∂µ log Z =

y 1F1

(
−y + 1; 3

2 ;− h
2σ2

)
σ2

1F1

(
−y; 1

2 ;− h
2σ2

) − 1

 2µ

1 + 2σ2

=⇒ µq̃ = σ2∂µ log Z + µ.

∂2
µ log Z =

y 1F1

(
−y + 1; 3

2 ;− h
2σ2

)
σ2

1F1

(
−y; 1

2 ;− h
2σ2

) − 1

 2
1 + 2σ2−2(1− y) 1F1

(
−y + 2; 5

2 ;− h
2σ2

)
3 1F1

(
−y; 1

2 ;− h
2σ2

) +
2y 1F1

(
−y + 1; 3

2 ;− h
2σ2

)2

1F1

(
−y; 1

2 ;− h
2σ2

)2

 2µ2y
σ4(1 + 2σ2)2

=⇒ σ2
q̃ = σ4∂2

µ log Z + σ2

Finally, we derive the CDF of the tilted distribution q̃ by using the binomial theorem:

Fq̃(x) = Z−1
∫ x

−∞
p(y|g)N ( f |µ, σ2) d f
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(a)
= A

∫ x

−∞
f 2y exp

(
− ( f − µ/(1 + 2σ2))2

2σ2/(1 + 2σ2)

)
d f

= A
∫ x− µ

1+2σ2

−∞

(
f +

µ

1 + 2σ2

)2y

exp
(
− f 2

2σ2/(1 + 2σ2)

)
d f

(b)
= A

∫ x−β

−∞

[
2y

∑
k=0

(
2y
k

)
f kβ2y−k

]
exp

(
− f 2

α

)
d f

= A
2y

∑
k=0

(
2y
k

)
β2y−k

[∫ 0

−∞
f k exp

(
− f 2

α

)
d f +

∫ x−β

0
f k exp

(
− f 2

α

)
d f
]

(c)
=

A
2

2y

∑
k=0

(
2y
k

)
β2y−kα

k+1
2

[
(−1)kΓ

(
k + 1

2

)
+

sgn(x− β)k+1
(

Γ
(

k + 1
2

)
− Γ

(
k + 1

2
,
(x− β)2

α

)) ]
A =

Z−1
√

2πσ2y! exp(µ2/(1 + 2σ2))
=

[
αy+ 1

2 Γ
(

y +
1
2

)
1F1

(
−y;

1
2

;− h
2σ2

)]−1

,

β =
µ

1 + 2σ2 ,

where the step (a) has been derived in (a) of Equation (C.2), (b) applies the binomial
theorem and (c) is obtained through Mathematica [Wolfram, 2019]. And, the function
Γ(a, z) =

∫ ∞
z ta−1e−t dt is the upper incomplete gamma function and sgn(x) is the

sign function, equaling 1 when x > 0, 0 when x = 0 and −1 when x < 0.

C.4 Proof of Convexity

Theorem. Given two probability measures in M1
+(R): a Gaussian N (µ, σ2) with

mean µ and standard deviation σ > 0, and an arbitrary measure q̃, the Lp WD
Wp

p(q̃,N ) is strictly convex about µ and σ.

Proof. Let F−1
q̃ (y) and F−1

N (y) = µ +
√

2σerf−1(2y − 1), y ∈ [0, 1], be the quantile
functions of q̃ and the Gaussian N , where erf is the error function. Then, we consider
two distinct Gaussian measures N (µ1, σ2

1 ) and N (µ2, σ2
2 ) and a convex combination

w.r.t. their parameters N (a1µ1 + a2µ2, (a1σ1 + a2σ2)2) with a1, a2 ∈ R+ and a1 + a2 = 1.
Given the above, we further define εk(y) = F−1

q̃ (y)− µk − σk
√

2erf−1(2y− 1), k = 1, 2,
for notational simplification, and derive the convexity as:

Wp
p(q̃,N (a1µ1 + a2µ2, (a1σ1 + a2σ2)

2))
(a)
=
∫ 1

0
|a1ε1(y) + a2ε2(y)|p dy

(b)
≤
∫ 1

0
(a1|ε1(y)|+

a2|ε2(y)|)p dy
(c)
≤ a1Wp

p(q̃,N (µ1, σ2
1 )) + a2Wp

p(q̃,N (µ2, σ2
2 )),

where steps (a), (b) and (c) are obtained by applying Proposition 1, non-negativity
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of the absolute value, and the convexity of f (x) = xp, p ≥ 1, over R+ respectively.
The equality at (b) holds iff εk(y) ≥ 0, k = 1, 2, ∀y ∈ [0, 1], and (c)’s equality holds
iff |ε1(y)| = |ε2(y)|, ∀y ∈ [0, 1]. These two conditions for equality can’t be attained
simultaneously as otherwise it would contradict that N (µ1, σ2

1 ) is different from
N (µ2, σ2

2 ). So, Wp
p(q̃,N ), p ≥ 1, is strictly convex about µ and σ.

C.5 Proof of Variance Difference

Theorem 11. The variance of the Gaussian approximation to a univariate tilted distribution
q̃( f ) as estimated by QP and EP satisfy σ2

QP ≤ σ2
EP.

Proof. Let N (µQP, σ2
QP) be the optimal Gaussian in QP. As per Proposition 1, we

reformulate the L2 WD based projection W2
2(q̃,N (µQP, σ2

QP)) w.r.t. quantile functions:

W2
2(q̃,N (µQP, σ2

QP)) =
∫ 1

0
|F−1

q̃ (y)− µQP −
√

2σQPerf−1(2y− 1)|2 dy

=
∫ 1

0
(F−1

q̃ (y)− µQP)
2︸ ︷︷ ︸

σ2
EP

+ (
√

2σQPerf−1(2y− 1))2︸ ︷︷ ︸
σ2

QP

− 2(F−1
q̃ (y)− µQP)

√
2σQPerf−1(2y− 1)︸ ︷︷ ︸

(A)

dy

= σ2
EP − σ2

QP,

where for (A), we used
∫

µQPσQPerf−1(2y− 1) dy = 0 and the remaining factor can
be easily shown to be equal to 2σ2

QP. Furthermore, due to the non-negativity of the
WD, we have σ2

EP ≥ σ2
QP, and the equality holds if and only if q̃ is Gaussian.

C.6 Proof of Locality Property

Theorem. Minimization of W2
2(q̃( f ),N ( f )) w.r.t. N ( f ) results in q\i( f\i| fi) =

N ( f\i| fi).

Proof. We first apply the decomposition of the L2 norm to rewriting the W2
2(q̃( f ),N ( f ))

as below (see detailed derivations in Appendix C.6.2):

W2
2 (q̃,N ) = inf

πi
Eπi

[
‖ fi − f ′i ‖2

2 + W2
2(q
\i
\i|i,N\i|i)

]
, (C.3)

where the prime indicates that the variable is from the Gaussian N , and for simpli-
fication, we use the notation πi for the joint distribution π( fi, f ′i ) which belongs to
a set of measures U(q̃i,Ni). Since q\i( f ) is known to be Gaussian, we define it in a
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partitioned form:

q\i( f ) ≡ N
([

f\i
fi

] ∣∣∣∣∣
[

m\i
mi

]
,

[
S\i S\ii
ST
\ii Si

])
, (C.4)

and the conditional q\i( f\i| fi) is expressed as:

q\i( f\i| fi) = N ( f\i|m\i|i, S\i|i), m\i|i = m\i + S\iiS
−1
i ( fi −mi) ≡ a fi + b, (C.5)

S\i|i = S\i − S\iiS
−1
i ST

\ii.

We define a similar partitioned expression for the Gaussian N ( f ′) by adding primes
to variables and parameters on the r.h.s. of Equation (C.4), and as a result, the
conditional N ( f ′\i| f ′i ) is written as:

N ( f ′\i| f ′i ) = N (m′\i|i, S′\i|i), m′\i|i = m′\i + S′\iiS
′−1
i ( f ′i −m′i) ≡ a′ f ′i + b′, (C.6)

S′\i|i = S′\i − S′\iiS
′−1
i S′ T

\ii . (C.7)

Given the above definitions, we exploit Proposition 2 to take the means out of the L2

WD on the r.h.s. of Equation (C.3):

W2
2 (q̃,N ) = inf

πi
Eπi

[
‖ fi − f ′i ‖2

2 + ‖m\i|i −m′\i|i‖2
2

]
+ W2

2

(
N (0, S\i|i),N (0, S′\i|i)

)
︸ ︷︷ ︸

(A)

.(C.8)

Minimizing this function requires optimizing m′i, m′\i, S′i , S′\i and S′\ii. As S′\i is only
contained in S\i|i and isolated into the term (A), it can be optimized by simply setting

S′\i|i=S\i|i
Equation (C.7)

=⇒ S(n)∗
\i =S\i|i+S′\iiS

′−1
i S′ T

\ii . (C.9)

As a result, (A) is minimized to zero. Next, we plug in expressions of m\i|i and m′\i|i
(Equation (C.5) and Equation (C.6)) into optimized Equation (C.8):

min
S′\i

(C.8) = inf
πi

Eπi

[
‖ fi − f ′i ‖2

2 + ‖a fi − a′ f ′i + b− b′‖2
2
]

, (C.10)

where m′\i is only contained by b′. Thus, we can optimize it by zeroing the derivative
of the above function about m′\i, which results in:

b′ = b + aµq̃i − a′m′i
Equation (C.6)

=⇒ m(n)∗
\i = S′\iiS

′−1
i m′i + b + aµq̃i − a′m′i, (C.11)

where µq̃i is the mean of q̃( fi). The minimum value of Equation (C.10) thereby is (see
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details in subsection C.6.3):

min
m′\i

(C.10) = (1 + aTa′)W2
2(q̃i,Ni) + ‖a‖2

2σ2
q̃i
+ ‖a′‖2

2S′i − aTa′
[
σ2

q̃i
+ S′i + (µq̃i −m′i)

2
]

(C.12)

where σ2
q̃i

is the variance of q̃( fi). This function can be further simplified using the

quantile based reformulation of W2
2(q̃i,Ni) (see details in Appendix C.6.4) which

results in:

(C.12)=W2
2(q̃i,Ni)+‖a‖2

2σ2
q̃i
−2

3
2 aTa′cq̃i S

′ 12
i +‖a′‖2

2S′i︸ ︷︷ ︸
(B)

. (C.13)

Now, we are left with optimizing m′i, S′i and S′\ii. To optimize S′\ii, which only exists
in the above term (B), we zero the derivative of (B) w.r.t. S′\ii and this yields:

a′∗ = 2
1
2 (S′i)

− 1
2 cq̃i a

Equation (C.6)
=⇒ S′∗\ii = (2S′i)

1
2 cq̃i a, (C.14)

and the minimum value of Equation (C.13) is

min
S′\ii

(C.13) = W2
2(q̃i,Ni) + ‖a‖2

2(σ
2
q̃i
− 2c2

q̃i
). (C.15)

The results of optimizing m′i and S′i in the above equation have already been provided
in Equation (5.1): m′∗i = µq̃i and S′∗i = 2c2

q̃i
. By plugging them into Equation (C.14)

and Equation (C.11), we have a′∗ = a and b′∗ = b. Finally, using Equation (C.9), we
obtain q\i( f\i| fi) = N ( f\i|a fi + b, S\i|i) = N ( f\i|a′ fi + b′, S′\i|i) = N ( f\i| fi) , which
concludes the proof.

C.6.1 Details of Equation 5.2

KL(q̃( f )‖N ( f )) =
∫

q̃( f ) log
q̃( f\i| fi)q̃( fi)

N ( f\i| fi)N ( fi)
d f

=
∫

q̃( fi) log
q̃( fi)

N ( fi)
d fi +

∫
q̃( fi)

∫
q̃( f\i| fi) log

q̃( f\i| fi)

N ( f\i| fi)
d f\i d fi

= KL
(
q̃( fi)‖N ( fi)

)
+ Eq̃( fi)

[
KL
(
q̃( f\i| fi)‖N ( f\i| fi)

)]
q̃( f\i| fi) =

q̃( f )
q̃( fi)

∝
p( f )���

�p(yi| fi)∏j 6=i tj( f )

q\i( fi)���
�p(yi| fi)

= q\i( f\i| fi). (C.16)
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C.6.2 Details of Equation C.3

W2
2 (q̃( f ),N ( f )) ≡ inf

π∈U(q̃,N )
Eπ

(
‖ f − f ′‖2

2
)

= inf
π∈U(q̃,N )

Eπ

(
‖ fi − f ′i ‖2

2
)
+ Eπ

(
‖ f\i − f ′\i‖2

2

)
(a)
= inf

π∈U(q̃,N )
Eπi

[
‖ fi − f ′i ‖2

2 + Eπ\i|i

(
‖ f\i − f ′\i‖2

2

) ]
(b)
= inf

πi
Eπi

[
‖ fi − f ′i ‖2

2 + inf
π\i|i

Eπ\i|i

(
‖ f\i − f ′\i‖2

2

) ]
= inf

πi
Eπi

[
‖ fi − f ′i ‖2

2 + W2
2(q̃\i|i,N\i|i)

]
(c)
= inf

πi
Eπi

[
‖ fi − f ′i ‖2

2 + W2
2(q
\i
\i|i,N\i|i)

]
,

where the superscript prime indicates that the variable is from the Gaussian N . In (a),
πi = π( fi, f ′i ) and π\i|i = π( f\i, f ′\i| fi, f ′i ). In (b), the first and the second inf are over

U(q̃i,Ni) and U(q̃\i|i,N\i|i) respectively. (c) is due to q̃( f\i| fi) being equal to q\i( f\i| fi)
(refer to Equation (C.16)).

C.6.3 Details of Equation C.12

min
m′\i

Equation (C.10)

= inf
πi

Eπi

[
‖ fi − f ′i ‖2

2 + ‖a( fi − µq̃i)− a′( f ′i −m′i)‖2
2

]
= inf

πi
Eπi

[
‖ fi − f ′i ‖2

2

]
+ ‖a‖2

2σ2
q̃i
+ ‖a′‖2

2S′i − 2aTa′Eπi

(
fi f ′i − µq̃i m

′
i

)
= inf

πi
Eπi

[
‖ fi − f ′i ‖2

2

]
+ ‖a‖2

2σ2
q̃i
+ ‖a′‖2

2S′i + aTa′Eπi

(
‖ fi − f ′i ‖2

2 − f 2
i − ( f ′i )

2 + 2µq̃i m
′
i

)

= inf
πi

Eπi

[
‖ fi − f ′i ‖2

2

]
+ ‖a‖2

2σ2
q̃i
+ ‖a′‖2

2S′i + aTa′Eπi

(
‖ fi − f ′i ‖2

2 − ( fi − µq̃i)
2−

2 fiµq̃i + µ2
q̃i
− ( f ′i −m′i)

2 − 2 f ′i m′i + (m′i)
2 + 2µq̃i m

′
i

)
= (1 + aTa′)W2

2(q̃i,Ni) + ‖a‖2
2σ2

q̃i
+ ‖a′‖2

2S′i − aTa′
(

σ2
q̃i
+ µ2

q̃i
+ S′i + (m′i)

2 − 2µq̃i m
′
i

)

= (1 + aTa′)W2
2(q̃i,Ni) + ‖a‖2

2σ2
q̃i
+ ‖a′‖2

2S′i − aTa′
[
σ2

q̃i
+ S′i + (µq̃i −m′i)

2
]
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C.6.4 Details of Equation C.12

We first use Proposition 1 to reformulate the L2 WD W2
2(q̃i,Ni) as:

W2
2(q̃i,Ni) =

∫ 1

0

(
F−1

q̃i
(y)−m′i −

√
2S′ierf−1(2y− 1)

)2 dy,

=
∫ 1

0
(F−1

q̃i
(y)−m′i)

2 + 2S′ierf−1(2y− 1)2 − 2
√

2S′ierf−1(2y− 1)(F−1
q̃i

(y)−m′i) dy,

=
∫ 1

0
(F−1

q̃i
(y)− µq̃i + µq̃i −m′i)

2 dy + S′i − 2
√

2S′icq̃i ,

= σ2
q̃i
+ (µq̃i −m′i)

2 + S′i − 2cq̃i

√
2S′i ,

where F−1
q̃i

(y) is the quantile function of q̃( fi) and cq̃i ≡
∫ 1

0 F−1
q̃i

(y)erf−1(2y− 1) dy.
Next, we plug this reformulation into Equation (C.12):

Equation (C.12) = W2
2(q̃i,Ni) + aTa′W2

2(q̃i,Ni) + ‖a‖2
2σ2

q̃i
+ ‖a′‖2

2S′i − aTa′
[
σ2

q̃i
+ S′i + (µq̃i −m′i)

2
]

= W2
2(q̃i,Ni) + aTa′

[
((((

(((
((((σ2

q̃i
+ (µq̃i −m′i)

2 + S′i − 2cq̃i

√
2S′i
]
+ ‖a‖2

2σ2
q̃i
+ ‖a′‖2

2S′i

− aTa′
[
(((

((((
((((σ2

q̃i
+ S′i + (µq̃i −m′i)

2
]

= W2
2(q̃i,Ni)− 2cq̃i

√
2S′ia

Ta′ + ‖a‖2
2σ2

q̃i
+ ‖a′‖2

2S′i

C.7 More Details of EP

We use the expressions q̃( f ) = q\i( f )p(yi| fi)/Zq̃ and q\i( f ) = q( f )/(ti( fi)Zq\i), and
the derivation of KL(q̃( f )‖q( f )) = KL(q̃( fi)‖q( fi)) is shown as below:

KL(q̃( f )‖q( f )) =
∫

q̃( f ) log
q\i( f )p(yi| fi)

Zq̃q( f )
d f

=
∫

q̃( f ) log ��
�q( f )p(yi| fi)

Zq\i Zq̃��
�q( f )ti( fi)

d f

=
∫

q̃( fi) log
p(yi| fi)

Zq\i Zq̃ti( fi)
d fi

=
∫

q̃( fi) log
q\i( fi)p(yi| fi)

Zq\i Zq̃q\i( fi)ti( fi)
d fi

=
∫

q̃( fi) log
q̃( fi)

q( fi)
d fi

= KL(q̃( fi)‖q( fi))
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C.8 Predictive Distributions of Poisson Regression

Given the approximate predictive distribution f (x∗) = N (µ∗, σ2
∗) and the relation

g( f ) = f 2, it is straightforward to derive the corresponding g(x∗) ∼ Gamma(k∗, c∗)1

where the shape k∗ and the scale c∗ are expressed as [Walder and Bishop, 2017; Zhang
et al., 2020b]:

k∗ =
(µ2
∗ + σ2

∗)
2

2σ2∗(2µ2∗ + σ2∗)
, c∗ =

2σ2
∗(2µ2

∗ + σ2
∗)

µ2∗ + σ2∗
.

Furthermore, the predictive distribution of the count value y ∈N can also be derived
straightforwardly:

p(y) =
∫ ∞

0
p(g∗)p(y|g∗) dg∗

=
∫

Gamma(g∗|k∗, c∗)Poisson(y|g∗) dg∗

=
cy
∗(c∗ + 1)−k∗−yΓ(k∗ + y)

y!Γ(k∗)
= NB(y|k∗, c∗/(1 + c∗)),

where g∗ = g(x∗) and NB denotes the negative binomial distribution. The mode is
obtained as bc∗(k∗ − 1)c if k∗ > 1 else 0.

C.9 Proof of Corollary 3.2

Since the site approximations of both EP and QP are Gaussian, we may analyse
the predictive variances using results from the regression with Gaussian likelihood
function case, namely the well known Equation (3.61) in [Rasmussen and Williams,
2005]:

σ2( f∗) = k(x∗, x∗)− kT
∗(K + Σ̃)−1k∗, (C.17)

where f∗ = f (x∗) is the evaluation of the latent function at x∗ and k∗ = [k(x∗, xi)]
N T
i=1

is the covariance vector between the test data x∗ and the training data {xi}N
i=1, K is the

prior covariance matrix and Σ̃ is the diagonal matrix with elements of site variances
σ̃2

i .
After updating the parameters of a site function ti( fi), the term (K + Σ̃)−1 is

updated to (K + Σ̃ + (σ̃2
i,new − σ̃2

i )eieT
i )
−1 where σ̃i,new is the site variance estimated

by EP or QP and ei is a unit vector in direction i. Using the Woodbury, Sherman &
Morrison formula [Rasmussen and Williams, 2005, A.9], we rewrite (K + Σ̃ + (σ̃2

i,new−
σ̃2

i )eieT
i )
−1 as

(K + Σ̃ + (σ̃2
i,new − σ̃2

i )eieT
i )
−1 ≡ (A−1 + (σ̃2

i,new − σ̃2
i )eieT

i )
−1

= A− Aei[(σ̃
2
i,new − σ̃2

i )
−1 + eT

i Aei]
−1eT

i A

1Gamma(x|k, c) = 1
Γ(k)ck xk−1e−x/c.
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≡ A− si[(σ̃
2
i,new − σ̃2

i )
−1 + Aii]

−1sT
i

= A− 1
(σ̃2

i,new − σ̃2
i )
−1 + Aii

sisT
i

where A = (K + Σ̃)−1 and si is the i’th column of A. Putting the above expression
into Equation (C.17), we have that the predictive variance is updated according to:

σ2
new( f∗) = k(x∗, x∗)− kT

∗Ak∗ +
1

(σ̃2
i,new − σ̃2

i )
−1 + Aii

kT
∗sisT

i k∗.

In EP and QP, the first two terms on the r.h.s. of the above equation are equivalent. As
the site variance provided by QP is less or equal to that by EP, i.e., , σ̃2

i,QP ≤ σ̃2
i,EP, the

third term on the r.h.s. for QP is less or equal to that for EP. Therefore, the predictive
variance of QP is less or equal to that of EP: σ2

QP( f∗) ≤ σ2
EP( f∗).

C.10 Lookup Tables

To speed up updating variances σ2
QP in QP, we pre-compute the integration in Equa-

tion (5.1) over a grid of cavity parameters µ and σ, and store the results into lookup
tables. Consequently, each update step obtains σ2

QP simply based on the lookup tables.
Concretely, for the GP binary classification, we compute Equation (5.1) with µ, σ and
y varying from -10 to 10, 0.1 to 10 and {−1, 1} respectively. µ and σ vary in a linear
scale and a log10 scale respectively, and both have a step size of 0.001. The resulting
lookup tables has a size of 20001× 2001. In a similar way, we make the lookup table
for the Poisson regression. In the experiments, we exploit the linear interpolation to
fit σ2

QP given µ ∈ [−10, 10] and σ ∈ [0.1, 10], and if µ and σ lie out of the lookup table,
σ2

QP is approximately computed by the EP update formula, i.e., σ2
QP ≈ σ2

EP. On Intel(R)
Xeon(R) CPU E5-2680 v4 @ 2.40GHz, we observe the running time of EP and QP is
almost the same.
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Algorithm 2 Expectation (Quantile) Propagation
Input: p( f ), p(yi| fi), ti( fi), i = 1, · · · , N, θ
Output: q( f ) approximate posterior

1: repeat
2: compute q( f ) ∝ p( f )∏i ti( fi) by (2.8)
3: repeat
4: for i = 1 to N do
5: compute q\i( fi) ∝ q( fi)/ti( fi) cavity
6: compute q̃( fi) ∝ q\i( fi)p(yi| fi) tilted
7: if EP then
8: ti( fi) ∝ projKL[q̃( fi)]/q\i( fi) by (2.10)(2.11)
9: else if QP then

10: ti( fi) ∝ projW[q̃( fi)]/q\i( fi) by (5.1)(2.11)
11: end if
12: update q( f ) ∝ p( f )∏i ti( fi) by (2.8)
13: end for
14: until convergence
15: θ = argmaxθ log q(D) by (2.9)
16: until convergence
17: return q( f )



Appendix D

Appendix: Kernel Maximum
Moment Restriction

D.1 Integrally Strictly Positive Definite (ISPD) Kernels

Popular kernel functions that satisfy Assumption 1 are the Gaussian RBF kernel and
Laplacian kernel

k(z, z′) = exp
(
−‖z− z′‖2

2
2σ2

)
, k(z, z′) = exp

(
−‖z− z′‖1

σ

)
,

where σ is a positive bandwidth parameter. Another important kernel is an inverse
multiquadric (IMQ) kernel

k(z, z′) = (c2 + ‖z− z′‖2
2)
−γ

where c and γ are positive parameters [Steinwart and Christmann, 2008, Ch. 4].
This class of kernel functions is closely related to the notions of universal kernels
[Steinwart, 2002] and characteristic kernels [Fukumizu et al., 2004]. The former
ensures that kernel-based classification/regression algorithms can achieve the Bayes
risk, whereas the latter ensures that the kernel mean embeddings can distinguish
different probability measures. In principle, they guarantee that the corresponding
RKHSs induced by these kernels are sufficiently rich for the tasks at hand. We refer
the readers to Sriperumbudur et al. [2011] and Simon-Gabriel and Schölkopf [2018]
for more details.

D.2 Detailed Proofs

This section contains detailed proofs of the results that are missing in the main paper.
Most of the proofs on consistency and asymptotic normality take advantages of the
useful resource by Newey and McFadden [1994]. Readers are referred to it for more
detailed discussions on e.g. assumptions.
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D.2.1 Proof of Lemma 1

Proof. Since Hk is the RKHS, we can rewrite (6.2) as

Rk( f ) = sup
h∈Hk ,‖h‖≤1

(E[(Y− f (X))〈h, k(Z, ·)〉H])2

= sup
h∈Hk ,‖h‖≤1

(〈h, E[(Y− f (X))k(Z, ·)]〉H)2

= ‖E[(Y− f (X))k(Z, ·)]‖2
Hk

, (D.1)

where we used the reproducing property of Hk in the first equality and the fact
that Hk is a vector space in the last equality. By assumption, E[(Y− f (X))k(Z, ·)] is
Bochner integrable [Steinwart and Christmann, 2008, Def. A.5.20]. Hence, we can
write (D.1) as

‖E[(Y− f (X))k(Z, ·)]‖2
Hk

= 〈E[(Y− f (X))k(Z, ·)], E[(Y− f (X))k(Z, ·)]〉Hk

= E [〈(Y− f (X))k(Z, ·), E[(Y− f (X))k(Z, ·)]〉Hk ]

= E
[
〈(Y− f (X))k(Z, ·), (Y′ − f (X′))k(Z′, ·)〉Hk

]
= E

[
(Y− f (X))(Y′ − f (X′))k(Z, Z′)

]
,

as required.

D.2.2 Proof of Theorem 6

Proof. First, the law of iterated expectation implies that

E[(Y− f (X))k(Z, ·)] = EZ[EXY[(Y− f (X))k(Z, ·)|Z]] = EZ[EXY[Y− f (X)|Z]k(Z, ·)].

By Lemma 1, we know that Rk( f ) = ‖E[(Y− f (X))k(Z, ·)]‖2
Hk

. As a result, Rk( f ) = 0
if E[Y − f (X) | z] = 0 for PZ-almost all z. To show the converse, we assume that
Rk( f ) = 0 and rewrite it as

Rk( f ) =
∫∫
Z

g(z)k(z, z′)g(z′)dz dz′ = 0,

where we define g(z) := EXY[Y− f (X) | z]p(z). Since k is ISPD by assumption, this
implies that g is a zero function with respect to PZ, i.e., E[Y − f (X) | z] = 0 for
PZ-almost all z.

D.2.3 Convexity Result

Theorem 12. If F is a convex set and Assumptions 1, 2 hold, then the risk Rk given in (6.3)
is strictly convex on F .

Proof. Given α ∈ (0, 1) and any functions f , g : X → R, we will show that

Rk(α f + (1− α)g)− αRk( f )− (1− α)Rk(g) < 0.
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By Lemma 1, we know that Rk( f ) = ‖E[(Y− f (X))k(Z, ·)]‖2
Hk

. Hence, we can rewrite
the above function as

Rk(α f + (1− α)g)− αRk( f )− (1− α)Rk(g)

= ‖E[(Y− α f (X)− (1− α)g(X))k(Z, ·)]‖2
Hk
− α‖E[(Y− f (X))k(Z, ·)]‖2

Hk

− (1− α)‖E[(Y− g(X))k(Z, ·)]‖2
Hk

(a)
= α(α− 1)‖E[(Y− f (X))k(Z, ·)]‖2

Hk
+ α(α− 1)‖E[(Y− g(X))k(Z, ·)]‖2

Hk

− 2α(α− 1)〈E[(Y− f (X))k(Z, ·)], E[(Y− g(X))k(Z, ·)]〉Hk

(b)
= α(α− 1) ‖E[( f (X)− g(X))k(Z, ·)]‖2

Hk︸ ︷︷ ︸
>0

< 0

The equality (a) is obtained by considering Y = αY + (1− α)Y in ‖E[(Y − α f (X)−
(1− α)g(X))k(Z, ·)]‖2

Hk
on the left hand side of (a). We note that the right hand side

of (a) is quadratic in ‖E[(Y− f (X))k(Z, ·)]‖Hk and ‖E[(Y− g(X))k(Z, ·)]‖Hk , and can
be further expressed as a square binomial as the right hand side of (b). Therefore, the
convexity follows from the fact that k is the ISPD kernel, ‖E[( f (X)− g(X))|Z]‖2 6= 0
and α(α− 1) < 0.

D.2.4 Uniform Convergence of Risk Functionals

The results presented in this section are used to prove the consistency of f̂V and f̂U .

Lemma 2 (Uniform consistency of R̂V( f )). Assume that E[|Y|2] < ∞, F is compact,
E[sup f∈F | f (X)|2] < ∞, and Assumption 1 holds. Then, the risk Rk( f ) is continuous about

f ∈ F and sup f∈F |R̂V( f )− Rk( f )| p→ 0.

Proof. First, let u := (x, y, z), u′ := (x′, y′, z′), and h f (u, u′) := (y − f (x))(y′ −
f (x′))k(z, z′) for some (x, y, z), (x′, y′, z′) ∈ X × Y ×Z . To prove that R̂V converges
uniformly to Rk, we need to show that (i) h f (u, u′) is continuous at each f with prob-

ability one; (ii) EU,U′
[
sup f∈F |h f (U, U′)|

]
< ∞, and EU,U

[
sup f∈F |h f (U, U)|

]
< ∞

Newey and McFadden [1994, Lemma 8.5]. To this end, it is easy to see that

|h f (u, u′)| = |(y− f (x))(y′ − f (x′))k(z, z′)|
≤ |y− f (x)||y′ − f (x′)||k(z, z′)|
≤ |y− f (x)||y′ − f (x′)|

√
k(z, z)k(z′, z′)

≤ (|y|+ | f (x)|)(|y′|+ | f (x′)|)
√

k(z, z)k(z′, z′).

The third inequality follows from the Cauchy-Schwarz inequality. Since F is compact,
every f ∈ F has f (x) bounded for ‖x‖ < ∞. In term of k(·, ·) is bounded as per
Assumption 1, we have h f (u, u′) < ∞ and thus h f (u, u′) continuous at each f with
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probability one. Furthermore, we obtain the following inequalities

EU,U′

[
sup
f∈F
|h f (U, U′)|

]
≤ E

[
sup
f∈F

(|Y|+ | f (X)|)(|Y′|+ | f (X′)|)
√

k(Z, Z)k(Z′, Z′)

]

≤ E

[
sup
f∈F

(|Y|+ | f (X)|) sup
f∈F

(|Y′|+ | f (X′)|)
]

sup
z

k(z, z)

= E

[
sup
f∈F

(|Y|+ | f (X)|)
]2

sup
z

k(z, z)

= E

[
|Y|+ sup

f∈F
| f (X)|

]2

sup
z

k(z, z) < ∞

EU,U

[
sup
f∈F
|h f (U, U)|

]
≤ Eu

[
sup
f∈F

(|Y|+ | f (X)|)2

]
sup

z
k(z, z)

= E

[
(|Y|+ sup

f∈F
| f (X)|)2

]
sup

z
k(z, z)

≤ 2

(
E
[
|Y|2

]
+ E

[
sup
f∈F
| f (X)|2

])
sup

z
k(z, z) < ∞

Hence, our assertion follows from Newey and McFadden [1994, Lemma 8.5].

Lemma 3 (Uniform consistency of R̂U( f )). Assume that E[|Y|] < ∞, F is compact,
E[| f (X)|] < ∞ and Assumption 1 holds. Then, Rk( f ) is continuous about f and sup f∈F |R̂U( f )−
Rk( f )| p→ 0.

Proof. First, let u := (x, y, z), u′ := (x′, y′, z′), and h f (u, u′) := (y − f (x))(y′ −
f (x′))k(z, z′) for some (x, y, z), (x′, y′, z′) ∈ X × Y × Z . To prove the uniform con-
sistency of R̂U , we need to show that (i) h f (u, u′) is continuous at each f with
probability one; (ii) there is d(u, u′) with |h f (u, u′)| ≤ d(u, u′) for all f ∈ F and
EU,U′ [d(U, U′)] < ∞ [Newey and McFadden, 1994, Lemma 2.4]; (iii) (ui, uj)

n,n
i 6=j has

strict stationarity and ergodicity in the sense of Newey and McFadden [1994, Footnote
18 in P.2129]. To this end, it is easy to see that

|h f (u, u′)| = |(y− f (x))(y′ − f (x′))k(z, z′)|
≤ |y− f (x)||y′ − f (x′)||k(z, z′)|
≤ |y− f (x)||y′ − f (x′)|

√
k(z, z)k(z′, z′)

≤ (|y|+ | f (x)|)(|y′|+ | f (x′)|)
√

k(z, z)k(z′, z′) ≡ d(u, u′).

The third inequality follows from the Cauchy-Schwarz inequality. Since F is compact,
every f ∈ F has f (x) bounded for ‖x‖ < ∞. In terms of k(·, ·) is bounded as per
Assumption 1, we have h f (u, u′) < ∞ and thus it proves that (i) h f (u, u′) is continuous
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at each f with probability one. To prove (ii) EU,U′ [d(U, U′)] < ∞, we show that

EU,U′ [d(U, U′)] ≤ E [|Y|+ | f (X)|]2 sup
z

k(z, z) < ∞

Furthermore, we show that (ui, uj)
n,n
i 6=j has strict stationarity and ergodicity. Strict

stationarity means that the distribution of a set of data (ui, uj 6=i)
i+m,j+m′

i=1,j=1 does not
depend on the starting indices i, j for any m and m′, which is easy to check. Ergodicity
means that R̂U( f )

p→ Rk( f ) for all f ∈ F and E[|h f (U, U′)|] < ∞. We have already

shown that h f (u, u′) is bounded and E[|h f (U, U′)|] < ∞, so R̂U( f )
p→ Rk( f ) follows by

Hoeffding [1963, P.25]. Therefore, ergodicity holds, and we have shown all conditions
required by extended results of Newey and McFadden [1994, Lemma 2.4]. Then, it
follows that sup f∈F |R̂U( f )− Rk( f )| p→ 0 and Rk( f ) is continuous.

D.2.5 Indefiniteness of Weight Matrix WU

Theorem 13. If Assumption 1 holds, WU is indefinite.

Proof. By definition, we have

WU =
1

n(n− 1)
[K(z, z)− diag(k(z1, z1), . . . , k(zn, zn))] =

1
n(n− 1)

KU ,

where diag(a1, . . . , an) denotes an n× n diagonal matrix whose diagonal elements
are a1, . . . , an. We can see that the diagonal elements of KU are zeros and therefore
trace(WU) = 0. Let us denote the eigenvalues of WU by {λi}n

i=1. Since ∑n
i=1 λi =

trace(WU), we conclude that there exist both positive and negative eigenvalues (all
eigenvalues being zeros yields trivial WU = 0). As a result, WU is indefinite.

D.2.6 Consistency of f̂V with Convex Ω( f )

Theorem 14 (Consistency of f̂V with convex Ω( f )). Assume that F is a convex set, f ∗ is
an interior point of F , Ω( f ) is convex about f , λ

p→ 0 and Assumptions 1, 2 holds. Then, f̂V

exists with probability approaching one and f̂V
p→ f ∗.

Proof. Given Ω( f ) is convex about f , we prove the consistency based on Newey and
McFadden [1994, Theorem 2.7] which requires (i) Rk( f ) is uniquely maximized at f ∗;
(ii) R̂V( f ) + λΩ( f ) is convex; (iii) R̂V( f ) + λΩ( f )

p→ Rk( f ) for all f ∈ F .
Recall that R̂V( f ) = ‖ 1

n ∑n
i=1(yi − f (xi))k(zi, ·)‖2

Hk
, and by the law of large number,

we have that 1
n ∑n

i=1(yi − f (xi))k(zi, ·)
p→ E[(Y− f (X))k(Z, ·)]. Then R̂V( f )

p→ Rk( f )
follows from the Continuous Mapping Theorem [Mann and Wald, 1943] based on
the fact that the function g(·) = ‖ · ‖2

Hk
is continuous. As λ

p→ 0, we obtain (iii)

R̂V( f ) + λΩ( f )
p→ Rk( f ) by Slutsky’s theorem [Van der Vaart, 2000, Lemma 2.8].

Besides, it is easy to see that R̂V( f ) is convex because the weight matrix WV is positive
definite, and (ii) R̂V( f ) + λΩ( f ) is convex due to convex Ω( f ). Further, the condition
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(i) directly follows from Theorem 12, and given that f ∗ is an interior point of the
convex set F , our assertion follows from Newey and McFadden [1994, Theorem
2.7].

D.2.7 Proof of Theorem 8

Proof. From the conditions of Lemma 2, we know that F is compact, Rk( f ) is contin-
uous about f and sup f∈F |R̂V( f )− Rk( f )| p→ 0. As Assumptions 1, 2 hold, Rk( f ) is

uniquely minimized at f ∗. Based on the conditions that Ω( f ) is bounded and λ
p→ 0,

we obtain by Slutsky’s theorem that

sup
f∈F

∣∣∣R̂V( f ) + λΩ( f )− Rk( f )
∣∣∣ ≤ sup

f∈F

∣∣∣R̂V( f )− Rk( f )
∣∣∣+ λ sup

f∈F
Ω( f )

p→ 0.

Consequently, we assert the conclusion by Newey and McFadden [1994, Theorem
2.1].

D.2.8 Consistency of f̂U

Theorem 15 (Consistency of f̂U). Assume that conditions of Lemma 3 and Assumption 2
hold, Ω( f ) is a bounded function and λ

p→ 0. Then f̂U
p→ f ∗.

Proof. By the conditions of Lemma 3, we know that F is compact, Rk( f ) is continuous
about f and sup f∈F |R̂U( f ) − Rk( f )| p→ 0. As Assumptions 1, 2 hold, Rk( f ) is

uniquely minimized at f ∗. Based on the conditions that Ω( f ) is bounded and λ
p→ 0,

we obtain by Slutsky’s theorem that

sup
f∈F

∣∣∣R̂U( f ) + λΩ( f )− Rk( f )
∣∣∣ ≤ sup

f∈F

∣∣∣R̂U( f )− Rk( f )
∣∣∣+ λ sup

f∈F
Ω( f )

p→ 0.

Consequently, we assert the conclusion by Newey and McFadden [1994, Theorem
2.1].

D.2.9 Asymptotic Normality of θ̂U

In this section, we consider the regularized U-statistic risk R̂U,λ( fθ). For ui := (xi, yi, zi)
and uj := (xj, yj, zj), we express it in a compact form

R̂U,λ( fθ) :=
1

n(n− 1)

n

∑
i=1

n

∑
j 6=i

hθ(ui, uj)︸ ︷︷ ︸
R̂U( fθ)

+λΩ(θ)

hθ(ui, uj) := (yi − fθ(xi))k(zi, zj)(yj − fθ(xj)).
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We will assume that fθ and Ω(θ) are twice continuously differentiable about θ. The
first-order derivative ∇θ R̂U( fθ) can also be written as

∇θ R̂U,λ( fθ) =
1

n(n− 1)

n

∑
i=1

n

∑
j 6=i
∇θhθ(ui, uj)︸ ︷︷ ︸

∇θ R̂U( fθ)

+λ∇θΩ(θ)

∇θhθ(ui, uj) = −
[
(yi − fθ(xi))∇θ fθ(xj) + (yj − fθ(xj))∇θ fθ(xi)

]
k(zi, zj).

Asymptotic normality of ∇θ R̂U,λ( fθ∗). We first show the asymptotic normality of
∇θ R̂U,λ( fθ∗). We assume that there exists z ∈ Z such that EX[∇θ fθ∗(X) | z]p(z) 6= 0
or EXY[Y− fθ∗(X) | z]p(z) 6= 0. Both terms being equal to zeros for all z ∈ Z leads to
a singular ∇2

θ R̂U( fθ∗) and the asymptotic distribution therefore becomes much more
complicated to analyze.

Lemma 4. Suppose that fθ and Ω(θ) are first continuously differentiable about θ, E[‖∇θhθ∗(U, U′)‖2
2] <

∞, there exists z ∈ Z such that EX[∇θ fθ∗(X) | z]p(z) 6= 0 or EXY[Y− fθ∗(X) | z]p(z) 6= 0,
and
√

nλ
p→ 0. Then,

√
n∇θ R̂U,λ( fθ∗)

p→ N(0, 4diag(EU [E
2
U′ [∇θhθ∗(U, U′)]])).

Proof. The proof follows from Serfling [1980, Section 5.5.1 and Section 5.5.2] and we
need to show that (i) ∇θ R̂U( fθ∗)

p→ 0 and (ii) whether VarU [EU′ [∇θhθ∗(U, U′)]] > 0 or
not. (i) can be obtained by the law of large numbers because ∇θ R̂U( fθ∗) is a sample
average of ∇θ Rk( fθ∗) = 0.

To prove (ii), we first note that VarU [EU′ [∇θhθ∗(U, U′)]] = EU [E
2
U′ [∇θhθ∗(U, U′)]]−

E2
UU′ [∇θhθ∗(U, U′)]︸ ︷︷ ︸

=0

≥ 0, where equality holds if for any U, there is EU′ [∇θhθ∗(U, U′)] =

0, i.e.,

EU′ [∇θhθ∗(U, U′)]

= −EX′Z′ [∇θ fθ∗(X′)k(Z′, Z)](Y− fθ∗(X))−EX′Y′Z′ [(Y′ − fθ∗(X′))k(Z′, Z)]∇θ fθ∗(X)

= 0.

As the above equation holds for any Y, the coefficient of Y must be 0:

EX′Z′ [∇θ fθ∗(X′)k(Z′, Z)] = EZ′ [EX′ [∇θ fθ∗(X′)|Z′]k(Z′, Z)] = 0,

where we note that E[∇θ fθ∗(X′) | Z′]p(Z′) = 0 for any Z′ implied by the second
function above. Similarly, the coefficient of ∇θ fθ∗(X) must be zero, which implies that
EX′Y′ [(Y′ − fθ∗(X′)) | Z′]p(Z′) = 0 for any Z′. The two coefficients cannot be zero at
the same time (otherwise against the given conditions), so VarU [EU′ [∇θhθ∗(U, U′)]] >
0. Further due to the given condition E[‖∇θ∗h(U, U′)‖2

2] < ∞, we obtain
√

n∇θ R̂U( fθ∗)
p→

N(0, 4EU [E
2
U′ [∇θhθ∗(U, U′)]]) as per Serfling [1980, Section 5.5.1]. Finally, as

√
nλ

p→ 0
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and ∇θΩ(θ∗) < ∞ by the condition that Ω(θ) is first continuously differentiable, we
assert the conclusion by Slutsky’s theorem,

√
n∇θ R̂U,λ( fθ∗) =

√
n∇θ R̂U( fθ∗) +

√
nλ∇θΩ(θ∗)

p→ N(0, 4diag(EU [E
2
U′ [∇θhθ∗(U, U′)]])).

This concludes the proof.

Uniform consistency of ∇2
θ R̂U,λ( fθ). Next, we consider the second derivative

∇2
θ R̂U,λ( fθ) and show its uniform consistency. In what follows, we denote by ‖ · ‖F

the Frobenius norm. We can express ∇2
θ R̂U,λ( fθ) as

∇2
θ R̂U,λ( fθ) =

1
n(n− 1)

n

∑
i=1

n

∑
j 6=i
∇2

θhθ(ui, uj)︸ ︷︷ ︸
∇2

θ R̂U( fθ)

+λ∇2
θΩ(θ)

∇2
θhθ(ui, uj) = [∇θ fθ(xi)∇θ f>θ (xj)− (yi − fθ(xi))∇2

θ fθ(xj)

+∇θ fθ(xj)∇θ f>θ (xi)− (yj − fθ(xj))∇2
θ fθ(xi)]k(zi, zj).

Lemma 5. Suppose that fθ and Ω(θ) are twice continuously differentiable about θ, Θ is
compact, E [| fθ(X)|] < ∞, E [‖∇θ fθ(X)‖2] < ∞, E

[
‖∇2

θ fθ(X)‖F
]
< ∞, E[|Y|] < ∞,

λ
p→ 0 and Assumption 1 holds. Then, E[∇2

θhθ(U, U′)] is continuous about θ and

sup
θ∈Θ

∥∥∥∇2
θ R̂U,λ( fθ)−E[∇2

θhθ(U, U′)]
∥∥∥

F

p→ 0.

Proof. The proof is similar to that of Lemma 3 and both applies extended results of
Newey and McFadden [1994, Lemma 2.4]. As (ui, uj)i 6=j being strictly stationary in
the sense of Newey and McFadden [1994, Footnote 18 in P.2129] has been shown
in Lemma 3, we only need to show that (i) ∇2

θhθ(u, u′) is continuous at each θ ∈ Θ
with probability one and (ii) there exists d(u, u′) ≥ ‖∇2

θhθ(u, u′)‖F for all θ ∈ Θ and
E[d(U, U′)] < ∞. We exploit the triangle inequality of the Frobenius norm and obtain∥∥∇2

θhθ(u, u′)
∥∥

F

≤
[
2‖∇θ fθ(x)∇θ f>θ (x′)‖F + (|y|+ | fθ(x)|)‖∇2

θ fθ(x′)‖F + (|y′|+ | fθ(x′)|)‖∇2
θ fθ(x)‖F

]
k(z, z′)

≡ d(u, u′),

We first show d(u, u′) is bounded for bounded u, u′. As fθ is twice continuously
differentiable about θ and Θ is compact, we have fθ(x) bounded as well as each
entry of ∇θ fθ(x) and ∇2

θ fθ(x) for ‖x‖ < ∞. Further taking into account that k(·, ·) is
bounded as per Assumption 1, we know that d(u, u′) < ∞ if u, u′ are bounded, and it
follows that (i) ∇2

θhθ(u, u′) is continuous at each θ ∈ Θ with probability one as fθ is
twice continuously differentiable.
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We then show that (ii) EU,U′ [d(U, U′)] < ∞ by the following inequalities:

EU,U′ [d(U, U′)]

≤ 2E
[
‖∇θ fθ(X)∇θ f>θ (X′)‖F + (|Y|+ | fθ(X)|)‖∇2

θ fθ(X′)‖F

]
sup

z
k(z, z)

= 2

E [‖∇θ fθ(X)‖F]︸ ︷︷ ︸
<∞

E
[
‖∇θ f>θ (X′)‖F

]
+ E [|Y|+ | fθ(X)|]︸ ︷︷ ︸

<∞

E
[
‖∇2

θ fθ(X′)‖F
]︸ ︷︷ ︸

<∞

 sup
z

k(z, z)

< ∞.

Therefore, we obtain supθ∈Θ ‖∇2
θ R̂U( fθ) − E[∇2

θhθ(U, U′)]‖F
p→ 0 following from

the extended results in the remarks of Newey and McFadden [1994, Lemma 2.4].
Furthermore, from the conditions that Ω(θ) is twice continuously differentiable and
the parameter space Θ is compact, we obtain that ‖∇2

θΩ(θ)‖F < ∞ for any θ ∈ Θ.
Finally, it follows from the Slutsky’s theorem that

sup
θ∈Θ

∥∥∥∇2
θ R̂U,λ( fθ)−E[∇2

θhθ(U, U′)]
∥∥∥

F

≤ sup
θ∈Θ

∥∥∥∇2
θ R̂U( fθ)−E[∇2

θhθ(U, U′)]
∥∥∥

F
+ λ sup

θ∈Θ

∥∥∇2
θΩ(θ)

∥∥
F

p→ 0.

This concludes the proof.

Theorem 16 (Asymptotic normality of θ̂U). Suppose that H = E[∇2
θhθ∗(U, U′)] is non-

singular, Θ compact, E [| fθ(X)|] < ∞, E[|Y|] < ∞, fθ and Ω(θ) are twice continuously
differentiable about θ, E [‖∇θ fθ(X)‖2] < ∞, E

[
‖∇2

θ fθ(X)‖F
]
< ∞,

√
nλ

p→ 0, Rk( fθ) is
uniquely minimized at θ∗ which is an interior point of Θ, E[‖∇θhθ∗(U, U′)‖2

2] < ∞ and
Assumptions 1 hold. Then

√
n(θ̂U − θ∗)

p→ N(0, 4H−1diag(EU [E
2
U′ [hθ∗(U, U′)]])H−1).

Proof. The proof follows by Newey and McFadden [1994, Theorem 3.1] and we
need to show that (i) θ̂U

p→ θ∗; (ii) R̂U,λ(θ) is twice continuously differentiable; (iii)√
n∇θ R̂U,λ( fθ∗)

p→ N(0, 4EU [E
2
U′ [hθ∗(U, U′)]]); (iv) there is H(θ) that is continuous at

θ∗ and supθ∈Θ ‖∇2
θ R̂U,λ( fθ)− H(θ)‖F

p→ 0; (v) H(θ∗) is non-singular.
The proof of (i) is very similar to Theorem 15 except that we consider finite

dimensional parameter space instead of functional space. For a neat proof, we
would like to omit the detailed proof here. We can first show the uniform consistency
supθ∈Θ |R̂U,λ( fθ)−Rk( fθ)|

p→ 0 and Rk( fθ) is continuous about θ similarly to Lemma 3.
Here, the proof is based on the conditions E[|Y|] < ∞, Θ is compact, E[| fθ(X)|] < ∞
and fθ is twice continuously differentiable about θ, and Assumption 1 holds. Then,
θ̂U

p→ θ∗ similarly to Theorem 15, because of the extra condition Rk( fθ) is uniquely
minimized at θ∗.
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Furthermore, from the conditions that Θ is compact, fθ is twice continuously
differentiable about θ, E [| fθ(X)|] < ∞, E [‖∇θ fθ(X)‖2] < ∞, E

[
‖∇2

θ fθ(X)‖F
]
< ∞,

E[|Y|] < ∞ and k(z, z′) is bounded as implied by Assumption 1, we can obtain (ii)
R̂V,λ(θ) is twice continuously differentiable about θ. Given H = E[∇2

θhθ∗(U, U′)] =
∇2

θ Rk(θ) is non-singular and Rk( fθ) is uniquely minimized at θ∗, we can obtain that
the Hessian matrix H is positive definite,

H = 2E(XYZ),(X′Y′Z′)

[(
∇θ fθ∗(X)∇θ f>θ∗(X′)− (Y− fθ∗(X))∇2

θ fθ∗(X′)
)

k(Z, Z′)
]
� 0.

If for all z ∈ Z , there is EX[∇θ fθ∗(X) | z]p(z) = 0 and EXY[Y − fθ∗(X) | z]p(z) = 0,
then we can see that the above function H = 0 which contradicts H � 0. Therefore,
there must exist z s.t. EX[∇θ fθ∗(X) | z]p(z) 6= 0 or EXY[Y− fθ∗(X) | z]p(z) 6= 0. Then,
it follows by Lemma 4 that (iii)

√
n∇θ R̂U,λ( fθ∗)

p→ N(0, 4EU [E
2
U′ [hθ∗(U, U′)]]).

Finally by Lemma 5, we know that H(θ) = E[∇2
θhθ(U, U′)] and H(θ∗) = H, so

(iv) and (v) are satisfied. Now, conditions of Newey and McFadden [1994, Theorem
3.1] are all satisfied, so we assert the conclusion.

D.2.10 Proof of Theorem 9

We restate the notations

R̂V,λ( fθ) :=
1
n2

n

∑
i=1

n

∑
j=1

hθ(ui, uj)︸ ︷︷ ︸
R̂V( fθ)

+λΩ(θ)

hθ(ui, uj) := (yi − fθ(xi))k(zi, zj)(yj − fθ(xj)),

Lemma 6. Suppose that conditions of Lemma 4 hold. Then

√
n∇θ R̂V,λ( fθ∗)

p→ N(0, 4EU [E
2
U′ [∇θhθ∗(U, U′)]]).

Proof. As E[‖∇θhθ∗(U, U′)‖2
2] < ∞,

√
n∇θ R̂V( fθ∗) has the same limit distribution as

that of
√

n∇θ R̂U( fθ∗) by Serfling [1980, Section 5.7.3]. Furthermore, by
√

nλ
p→ 0

and ∇θΩ(θ∗) < ∞ from that Ω(θ) is first continuously differentiable, we assert the
conclusion by Slutsky’s theorem

√
n∇θ R̂V,λ( fθ∗) =

√
n∇θ R̂V +

√
nλ∇θΩ(θ∗)

p→ N(0, 4EU [E
2
U′ [∇θhθ∗(U, U′)]]).

Lemma 7. Suppose that fθ and Ω(θ) are twice continuously differentiable about θ, Θ is com-
pact, E[supθ∈Θ | fθ(X)|2] < ∞, E[supθ∈Θ ‖∇θ fθ(X)‖2

2] < ∞, E[supθ∈Θ ‖∇2
θ fθ(X)‖2

F] <

∞, E[|Y|2] < ∞, λ
p→ 0 and Assumption 1 holds. Then, E[∇2

θhθ(U, U′)] is continuous

about θ and supθ∈Θ ‖∇2
θ R̂V( fθ)−E[∇2

θhθ(U, U′)]‖F
p→ 0.
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Proof. We apply Newey and McFadden [1994, Lemma 8.5] for this proof and need
to show (i) ∇2

θhθ(u, u′) is continuous about each θ ∈ Θ with probability one, and (ii)
E[supθ∈Θ ‖∇2

θhθ(U, U′)‖F] < ∞ and E[supθ∈Θ ‖∇2
θhθ(U, U)‖F] < ∞.

We first see that ‖∇2
θhθ(u, u′)‖F and ‖∇2

θhθ(u, u)‖F are bounded for finite u, u′

because fθ is twice continuously differentiable about θ. It follows that (i) ∇2
θhθ(u, u′)

is continuous about θ with probability one. We then derive upper bounds for
E[supθ∈Θ ‖∇2

θhθ(U, U′)‖F] and E[supθ∈Θ ‖∇2
θhθ(U, U)‖F] so as to show their bound-

edness,

E[sup
θ∈Θ
‖∇2

θhθ(U, U′)‖F]

≤ 2E

[
sup
θ∈Θ
‖∇θ fθ(X)∇θ f>θ (X′)‖F + (|Y|+ | fθ(X)|)‖∇2

θ fθ(X′)‖F

]
sup

z
k(z, z)

≤ 2E

[
sup
θ∈Θ
‖∇θ fθ(X)‖2

]2

+ 2E

[
|Y|+ sup

θ∈Θ
| fθ(X)|

]
E

[
sup
θ∈Θ
‖∇2

θ fθ(X′)‖F

]
sup

z
k(z, z)

< ∞,

and

E[sup
θ∈Θ
‖∇2

θhθ(U, U)‖F]

≤ 2E

[
sup
θ∈Θ
‖∇θ fθ(X)∇θ f>θ (X)‖F + (|Y|+ | fθ(X)|)‖∇2

θ fθ(X)‖F

]
sup

z
k(z, z)

≤ 2E

[
sup
θ∈Θ
‖∇θ fθ(X)‖2

2

]
+ 2E

(|Y|+ sup
θ∈Θ
| fθ(X)|

)2
E

[
sup
θ∈Θ
‖∇2

θ fθ(X′)‖2
F

]
sup

z
k(z, z)

≤ 2E

[
sup
θ∈Θ
‖∇θ fθ(X)‖2

2

]
+ E

[
(|Y|+ sup

θ∈Θ
| fθ(X)|)2

]
+ E

[
sup
θ∈Θ
‖∇2

θ fθ(X′)‖2
F

]
sup

z
k(z, z)

≤ 2E

[
sup
θ∈Θ
‖∇θ fθ(X)‖2

2

]
+ 2E

[
|Y|2 + sup

θ∈Θ
| fθ(X)|2

]
+ E

[
sup
θ∈Θ
‖∇2

θ fθ(X′)‖2
F

]
sup

z
k(z, z)

< ∞.

Thus, we assert the conclusion by Newey and McFadden [1994, Lemma 8.5].

Proof of Theorem 9. The proof is the same as that of Theorem 16 except that R̂U is
replaced by R̂V .
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D.2.11 Asymptotic Normality in the Infinite-dimension Case

We firstly state the asymptotic normality theorem for f̂U and its proof. Afterwards,
we provide the proof of Theorem 10 whose proof is a slightly modified version of that
of f̂U .

Theorem 17. Suppose Assumption 1 holds, l is a bounded kernel, k is a uniformly bounded
function, and λ ≥ λ0 holds. Also, suppose that X , Z , and Y are compact spaces, and there
exists s ∈ (0, 2) and a constant CH > 0 such that logN (ε,Hl , ‖ · ‖L∞) ≤ CHε−s for any
ε ∈ (0, 1). If λ− λ0 = o(n−1/2) holds, then there exists a Gaussian process G∗P such that

√
n( f̂U − f ∗λ0

) G∗P in Hl .

An exact covariance of G∗P is described in the proof. The proof is based on the
uniform convergence of U-processes on the function space [Arcones and Gine, 1993]
and the functional delta method using the asymptotic expansion of the loss function
[Hable, 2012]. This asymptotic normality allows us to perform statistical inference,
such as tests, even in the non-parametric case.

We discuss the boundedness and covering number assumptions in Theorem 10
and Theorem 17. For the boundedness assumption, many common kernels, such
as the Gaussian RBF kernel, the Laplacian kernel, and the Mercer kernel, satisfy it.
For the covering number, the common kernels above also satisfy it with a certain
parameter configuration. For example, the Gaussian kernel (see Section 4 in Steinwart
and Christmann [2008]) and the Mercer kernel (explained in Zhou [2002]).

To prove the theorem, we provide some notation. Let P be a probability measure
which generates u = (x, y, z) and W = X × Y × Z . Also, we define a function
h f (u, u′) = (y− f (x))(y′ − f (x′))k(z, z′). Let H := {h f :W ×W → R | f ∈ Hl}. For
preparation, we define P1h f :W → R as P1h f (·) = (

∫
h f (u, ·) + h f (·, u)dP(u))/2 for

h f ∈H. For a signed measure Q onW , we define a measure Q2 := Q⊗Q onW ×W .
Then, we can rewrite the U-statistic risk as

R̂U( f ) =
(n− 2)!

n!

n

∑
i=1

n

∑
j 6=i

h f (ui, uj) =: U2
nh f ,

where Un is an empirical measure for the U-statistics. Similarly, we can rewrite the
V-statistic risk as

R̂V( f ) =
1
n2

n

∑
i=1

n

∑
j=1

h f (ui, uj) =: P2
n h f ,

where Pn is an empirical measure of u.
Further, we define a functional associated with measure. We consider functional

spaces G1 := {g : W ×W → [0, 1] | a convex set ω s.t. g = 1{· ≤ ω}} and G2 :=
{g : W ×W → [0, 1] | ∃ f , f ′ ∈ Hl , g(u, u′) = h f (u, u′)( f ′(x) + f (x′))}. Note that
G1 contains a functional which corresponds to the U2

n. Then, we consider a set of
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functionals

BS :=
{

F : G1 ∪ G2 → R | ∃non-zero finite Q2 s.t. F(g) =
∫

g dQ2, ∀g ∈ G1 ∪ G2

}
,

and also let B0 be the closed linear span of BS. For a functional F ∈ BS, let ι(F) be a
measure which satisfies

F(g) =
∫

g dι(F).

Uniform Central Limit Theorem: We firstly achieve the uniform convergence.
Note that a measure P2 satisfies P2h f := E(U,U′)[h f (U, U′)]. The convergence theorem
for U-processes is as follows:

Theorem 18 (Theorem 4.4 in Arcones and Gine [1993]). Suppose H is a set of uniformly
bounded class and symmetric functions, such that {P1h f | h f ∈H} is a Donsker class and

lim
n→∞

E[n−1/2 logN (n−1/2ε, H, ‖ · ‖L1(U2
n)
)] = 0

holds, for all ε > 0. Then, we obtain
√

n(U2
n − P2) 2GP1 , in `∞(H).

Here, GP1 denotes a Brownian bridge, which is a Gaussian process on H with zero mean and
a covariance

EU [P1h f (U)P1h′f (U)]−EU [P1h f (U)]EU [P1h′f (U)],

with h f , h′f ∈H.

To apply the theorem, we have to show that H satisfies the condition in Theorem 18.
We firstly provide the following bound:

Lemma 8. For any f , f ′ ∈ Hl such that ‖ f ‖L∞ ∨ ‖ f ′‖L∞ ≤ B holds, y, y′ ∈ [−B, B] and
u, u′ ∈ W , we have

|h f (u, u′)− h f ′(u, u′)| ≤ 4B|k(z, z′)|‖ f − f ′‖L∞ .

Proof of Lemma 8. We simply obtain the following:

|h f (u, u′)− h f ′(u, u′)|
= |(y− f (x))k(z, z′)(y′ − f (x′))− (y− f ′(x))k(z, z′)(y′ − f ′(x′))|
= |k(z, z′)||(y− f (x))(y′ − f (x′))− (y− f ′(x))(y′ − f ′(x′))|
= |k(z, z′)||y′( f ′(x)− f (x)) + y( f ′(x′)− f (x′)) + f (x) f (x′)− f ′(x) f ′(x′)|
= |k(z, z′)||y′( f ′(x)− f (x)) + y( f ′(x′)− f (x′)) + f (x′)( f (x)− f ′(x))− f ′(x)( f (x′)− f ′(x′))|
≤ |k(z, z′)|{|y′|| f ′(x)− f (x)|+ |y|| f ′(x′)− f (x′)|+ | f (x′)|| f (x)− f ′(x)| − | f ′(x)|| f (x′)− f ′(x′)|}
≤ 4B|k(z, z′)|‖ f − f ′‖L∞ ,
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as required.

Lemma 9. Suppose the assumptions of Theorem 10 hold. Then, the followings hold:

1. {P1h f | h f ∈H} is a Donsker class.

2. For any ε > 0, the following holds:

lim
n→∞

E[n−1/2 logN (n−1/2ε, H, ‖ · ‖L1(U2
n)
)] = 0.

Proof of Lemma 9. For preparation, fix ε > 0 and set N = N (ε,Hl , ‖ · ‖L∞). Also, let
Q be an arbitrary finite discrete measure. Then, by the definition of a bracketing
number, there exist N functions { fi ∈ Hl}N

i=1 such that for any f ∈ Hl there exists
i ∈ {1, 2, ..., N} such as ‖ f − fi‖L∞ ≤ ε.

For the first condition, as shown in Equation (2.1.7) in Van der Vaart and Wellner
[1996], it is sufficient to show

sup
Q

logN (ε, {P1h f | h f ∈H}, ‖ · ‖L2(Q)) ≤ cε−2δ (ε→ 0),

for arbitrary δ ∈ (0, 1). Here, c > 0 is some constant, and Q is taken from all possible
finite discrete measure. To this end, it is sufficient to show that logN (ε, {P1h f | h f ∈
H}, ‖ · ‖L2(Q)) ≤ c′ logN (ε,Hl , ‖ · ‖L∞) with a constant c′ > 0. Fix P1h f ∈ {P1h f |
h f ∈H} arbitrary, and set fi which satisfies ‖ f − fi‖L2(Q) ≤ ε. Then, we have∥∥∥P1h f − P1h fi

∥∥∥2

L2(Q)

=
∫ {∫

(h f (u, u′) + h f (u′, u))/2− (h fi(u, u′) + h fi(u
′, u))/2 dP(u′)

}2

dQ(u)

=
∫ (∫

h f (u, u′)− h fi(u, u′) dP(u′)
)2

dQ(u)

≤ C
∫ (∫

|k(z, z′)| dP(u′)
)2

dQ(u)‖ f − fi‖2
L∞

≤ C′‖ f − fi‖2
L∞

≤ C′ε2,

with constants C, C′ > 0. The first inequality follows Lemma 8 with the bounded
property of f , f ′ and Y . The second inequality follows the bounded condition of k in
Theorem 17. Hence, the entropy condition shows the first statement.

For the second condition, we have the similar strategy. For any h f ∈ H, we
consider i ∈ {1, 2, . . . , N} such that ‖ f − fi‖L∞ ≤ ε. Then, we measure the following
value

‖h f − h fi‖L1(U2
n)
=
∫
|h f (u, u′)− h fi(u, u′)| dU2

n(u, u′) ≤ C′′‖ f − fi‖L∞ ≤ C′′ε,



§D.2 Detailed Proofs 111

with a constant C′′ > 0. Hence, we have

E[n−1/2 logN (n−1/2ε, H, ‖ · ‖L1(U2
n)
)] ≤ n−1/2 logN (n−1/2ε,Hl , ‖ · ‖L∞)

≤ Cn−1/2
(

n1/2

ε

)s

= Cn(s−1)/2 → 0, (n→ ∞),

since s ∈ (0, 1).

From Theorem 18 and Lemma 9, we rewrite the central limit theorem utilizing
terms of functionals. Note that ι−1(U2

n), ι−1(P2) ∈ BS holds. Then, we can obtain

√
n(ι−1(U2

n)− ι−1(P2)) 2GP1 in `∞(H).

Learning Map and Functional Delta Method: We consider a learning map S :
BS → Hl . For a functional F ∈ BS, we define

Sλ(F) := argmin
f∈Hl

ι(F)h f + λ‖ f ‖2
Hl

.

Obviously, we have

f̂ = Sλ(ι
−1(U2

n)), and f ∗λ0
= Sλ0(ι

−1(P2)).

We consider a derivative of Sλ in the sense of the Gateau differentiation by the
following steps.

Firstly, we define a partial derivative of the map RQ2( f ). To investigate the
optimality of the minimizer of

RQ2,λ( f ) :=
∫

h f (u, u′) dQ2(u, u′) + λ‖ f ‖2
Hl

.

To this end, we consider the following derivative∇RQ2,λ[ f ] : Hl → Hl with a direction
f as

∇RQ2,λ[ f ]( f ′) := 2λ f +
∫

∂ f ,1h f (u, u′) f ′(x) + ∂ f ,2h f (u, u′) f ′(x′) dQ2(u, u′).

Here, ∂ f ,1h f is a partial derivative of h f in terms of the input f (x) as

∂ f ,1h f (u, u′) = ∂t|t= f (x)(y− t)k(z, z′)(y′ − f (x′)) = −(y′ − f (x′))k(z, z′),

and ∂ f ,2h f follows it respectively. The following lemma validates the derivative:

Lemma 10. If the assumptions in Theorem 10 hold, then ∇RQ2,λ[ f ] is a Gateau-derivative of
RQ2,λ with the direction f ∈ Hl .

Proof of Lemma 10. We consider a sequence of functions hn ∈ Hl for n ∈N, such that
hn(x) 6= 0, ∀x ∈ X and ‖hn‖L∞ → 0 as n→ ∞. Then, for f ∈ Hl , a simple calculation
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yields ∣∣∣∣RQ2,λ( f + hn)− RQ2,λ( f )−∇RQ2,λ[ f ](hn)

‖hn‖L∞

∣∣∣∣
≤
∫
‖hn‖−1

L∞ |k(z, z′)((y− f (x))hn(x)

+ (y′ − f (x′))hn(x′) + hn(x)hn(x′))−∇RQ2,λ[ f ](hn)| dQ2(u, u′)

≤
∫
‖hn‖−1

L∞ |k(z, z′)hn(x)hn(x′)| dQ2(u, u′)

≤
∫
‖hn‖−1

L∞ |k(z, z′)‖hn‖2
L∞ | dQ2(u, u′)

≤ ‖hn‖L∞

∫
|k(z, z′)| dQ2(u, u′)→ 0, (n→ ∞).

The convergence follows the definition of hn and the absolute integrability of k, which
follows the bounded property of k and compactness of Z . Then, we obtain the
statement.

Here, we consider its RKHS-type formulation of ∇RQ2,λ, which is convenient to
describe a minimizer. Let Φl : X → Hl be the feature map associated with the RKHS
Hl , such that 〈Φl [x], f 〉Hl = f (x) for any x ∈ X and f ∈ Hl . Let ∇R̃Q2,λ : Hl → Hl
be an operator such that

∇R̃Q2,λ( f ) := 2λ f +
∫

∂ f ,1h f (u, u′)Φl [x](·) + ∂ f ,2h f (u, u′)Φl [x′](·) dQ2(u, u′).

Obviously, ∇RQ2,λ[ f ](·) = 〈∇R̃Q2,λ( f ), ·〉Hl . Now, we can describe the first-order
condition of the minimizer of the risk. Namely, we can state that

f̂ = argmin
f∈Hl

RQ2,λ( f )⇔ ∇R̃Q2,λ( f̂ ) = 0.

This equivalence follows Theorem 7.4.1 and Lemma 8.7.1 in Luenberger [1997].
Next, we apply the implicit function theorem to obtain an explicit formula of the

derivative of S. To this end, we consider a second-order derivative ∇2R̃Q2,λ : Hl → Hl
as

∇2R̃Q2,λ( f ) := 2λ f +
∫

k(z, z′)( f (x)Φl [x](·) + f (x′)Φl [x′](·)) dQ2(u, u′),

which follows (b) in Lemma A.2 in Hable [2012]. Its basic properties are provided in
the following result:

Lemma 11. If Assumption 1 and the assumptions in Theorem 10 hold, then ∇2R̃Q2,λ is a
continuous linear operator and it is invertible.

Proof of Lemma 11. By (b) in Lemma A.2 in Hable [2012],∇2R̃Q2,λ is a continuous linear
operator. In the following, we define A : Hl → Hl as A( f ) =

∫
k(z, z′) f (x)Φl [x](·) +
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f (x′)Φl [x′](·)) dQ2(u, u′). To show ∇2R̃Q2,λ is invertible, it is sufficient to show that
(i) ∇2R̃Q2,λ is injective, and (ii) A is a compact operator.

For the injectivity, we fix non-zero f ∈ Hl and obtain

‖∇2R̃Q2,λ( f )‖2
Hl

= 〈2λ f + A( f ), 2λ f + A( f )〉Hl

= 4λ2‖ f ‖2
Hl

+ 4λ〈 f , A( f )〉Hl + ‖A( f )‖2
Hl

> 4λ〈 f , A( f )〉Hl

= 4λ

〈
f ,
∫

k(z, z′) f (x)Φ[x] dQ2(u, u′)
〉
Hl

+ 4λ

〈
f ,
∫

k(z, z′) f (x′)Φ[x′] dQ2(u, u′)
〉
Hl

= 4λ
∫

k(z, z′) f (x)2 dQ2(u, u′) + 4λ
∫

k(z, z′) f (x′)2 dQ2(u, u′)

≥ 0.

The last equality follows the property of Φl and the last inequality follows the ISPD
property in Assumption 1.

For the compactness, we follow Lemma A.5 in Hable [2012] and obtain that opera-
tors ( f 7→

∫
k(z, z′) f (x)Φl [x](·) dQ2(u, u′)) and ( f 7→

∫
k(z, z′) f (x′)Φl [x′](·) dQ2(u, u′))

are compact.

We define the Gateau derivative of S. For a functional F′ ∈ `∞(G1 ∪ G2), we define
the following function

∇SQ2,λ(F′) := −∇2R̃−1
Q2,λ

(∫
∂ f ,1h fQ2 (u, u′)Φl [x](·) + ∂ f ,2h fQ2 (u, u′)Φl [x′](·) dι(F′)(u, u′)

)
,

where fQ2 = Sλ(ι
−1(Q2)) and Q2 is a signed measure onW ×W . Then, we provide

the following derivative theorem:

Proposition 3. Suppose the assumptions in Theorem 10 hold. For F ∈ BS, F′ ∈ `∞(G1 ∪G2),
and s ∈ R such that F + sF′ ∈ BS, ∇Sι(F),λ(F′) is a Gateau-derivative of Sλ, namely,

lim
s→0

∥∥∥∥Sλ(F + sF′)− Sλ(F)
s

−∇Sι(F),λ(F′)
∥∥∥∥
Hl

= 0.

Proof of Proposition 3. This proof has the following two steps, (i) define a proxy opera-
tor Γ, then (ii) prove the statement by the implicit function theorem.

(i) Define Γ: Note that ι(F′) exists since F + sF′ ∈ BS implies F′ ∈ B0. We define
the following operator Γ(s, f , λ) : Hl → Hl for f ∈ Hl :

Γ(s, f , λ) := ∇R̃ι(F)+sι(F′),λ

= 2λ f +
∫

∂ f ,1h f (u, u′)Φl [x](·) + ∂ f ,2h f (u, u′)Φl [x′](·) dι(F)(u, u′)

+s
∫

∂ f ,1h f (u, u′)Φl [x](·) + ∂ f ,2h f (u, u′)Φl [x′](·) dι(F′)(u, u′).
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For simple derivatives, Lemma A.2 in Hable [2012] provides

∇sΓ(s, f , λ) =
∫

∂ f ,1h f (u, u′)Φl [x](·) + ∂ f ,2h f (u, u′)Φl [x′](·) dι(F′)(u, u′),

and

∇ f Γ(s, f , λ) = ∇2R̃ι(F)+sι(F′),λ.

(ii) Apply the implicit function theorem: By its definition and the optimal condi-
tions, we have

Γ(s, f , λ) = 0⇔ f = Sλ(ι(F) + sι(F′)).

Also, we obtain

∇ f Γ(0, Sλ(F), λ) = ∇2R̃ι(F),λ.

Then, for each λ > 0, by the implicit function theorem, there exists a smooth map
ϕλ : R→ Hl such that

Γ(s, ϕλ(s), λ) = 0, ∀s,

and it satisfies

∇s ϕλ(0) = −
(
∇ f Γ(0, ϕλ(0), λ)

)−1
(∇sΓ(0, ϕλ(0), λ)) = ∇Sι(F),λ(F′).

Also, we have ϕλ(s) = S(Q2 + sµ2). Then, we have

lim
s→0

∥∥∥∥Sλ(F + sF′)− Sλ(F′)
s

−∇Sι(F),λ(F′)
∥∥∥∥
Hl

= lim
s→0

∥∥∥∥ ϕλ(s)− ϕλ(0)
s

−∇s ϕλ(0)
∥∥∥∥
Hl

= 0.

Then, we obtain the statement.

Now, we are ready to prove Theorem 10 and Theorem 17.

Proof of Theorem 17. As a preparation, we mention that Sλ is differentiable in the
Hadamard sense, which is Gateau differentiable by Proposition 3. Lemma A.7 and
A.8 in Hable [2012] show that ∇Sι(F),λ,ι(G) is Hadamard-differentiable for any λ, G
and F.

Then, we apply the functional delta method. As shown in Theorem 18 and
Lemma 9, we have

√
n(ι−1(U2

n)− ι−1(P2)) 2GP1 .
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Hence, we obtain

√
n((λ0/λ)ι−1(U2

n)− ι−1(P2)) =
λ0

λ

√
n(ι−1(U2

n)− ι−1(P2)) +

√
n(λ− λ0)

λ
 2GP1 ,

since λ− λ0 = o(n−1/2). Utilizing the result, we can obtain

√
n( f̂ − f ∗λ0

) =
√

n(Sλ0((λ0/λ)ι−1(U2
n))− Sλ0(ι

−1(P2))) + oP(1) ∇SP2,λ0
(2GP1),

in `∞(H). The convergence follows the functional delta method.

Proof of Theorem 10. This proof is completed by substituting the Central Limit Theorem
part (Theorem 18) of the proof of Theorem 17. From Section 3 in Akritas et al. [1986],
the V- and U- processes have the same limit distribution asymptotically, so the same
result holds.

D.3 Gaussian Process (GP) Interpretation

We present the close connection between the non-parametric model and the Gaussian
process (GP) in this section. We will show that the RKHS solution of our objective
function (6.6) is equivalent to the maximum function of the posterior distribution of
the GP. The relationship is inspired by the similarity of our objective function to that
of GLS, and it will be used to derive an efficient cross validation error.

By Mercer theorem, the kernel l(x, x′) can be expanded as l(x, x′) = ∑N
i=1 λiφi(x)φi(x′),

where φi(x) are orthonormal in L2(Rd), a space of square-integrable real-valued func-
tions, and N < ∞ for degenerate kernels and N = ∞ otherwise. To satisfy for
arbitrary f (x) = ∑N

i=1 αiφi(x) the reproducing property〈
∑

i
αiφi, l(x, ·)

〉
Hl

= f (x),

we choose φi(x) such that φi is orthogonal in Hl as the Mercer expansion is not unique.
Based on the reproducing property, we can obtain 〈φi, φj〉Hl = δijλ

−1
i where δij = 1, if

i = j, and zero otherwise. Similar settings can be found in Walder and Bishop [2017],
for example.

Let us consider a GP over a space of functions

f (x) = Φ(x)w,

where Φ(x) = [φ1(x), φ2(x), . . . , φN(x)] is the feature vector and w is the parameter
vector. We assume a prior distribution of w ∼ N(0, δΛ)1 where Λ = diag(λ1, λ2, . . . , λN)
is a diagonal matrix with eigenvalues λ1, . . . , λN , and δ > 0 is a hyper-parameter,
which plays the same role as the regularization hyper-parameter (as we show later).

1Throughout the paper, we denote by N(µ, σ2) a Gaussian distribution with the mean µ and variance
σ2.
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This definition is equivalent to assuming that on a set of input x, f (x) ∼ GP(0, δl(x, x))
because

E[ f (x)] = Φ(x)E[w] = 0,

Var[ f (x)] = δΦ(x)ΛΦ(x)> = δl(x, x).

We refer the interested readers to Rasmussen and Williams [2005] for further
details on Gaussian process models.

D.3.1 Likelihood Function

Given the prior distribution on w, we aim to characterize the posterior distribution
p(w |D) ∝ p(D |w)p(w) where D = {(xi, yi, zi)}n

i=1 is an i.i.d. sample of size n, and
f (x) = Φ(x)w where the i’s row of Φ(x) contains the feature vector of xi, namely,
Φ(xi)

>. To define the likelihood p(D |w), we recall from Lemma 1 that the risk Rk( f )
can be expressed in terms of two independent copies of random variables (X, Y, Z)
and (X′, Y′, Z′). To this end, let D′ := {(x′i, y′i, z′i)}n

i=1 be an independent sample
of size n with an identical distribution to D. Given a pair of samples (x, y, z) and
(x′, y′, z′) from D and D′, respectively, we then define the likelihood as

p({(x, y, z), (x′, y′, z′)} |w) ∝ exp
[
−1

2
(y−Φ(x)w)k(z, z′)(y′ −Φ(x′)w)

]
= exp

[
−1

2
(y− f (x))k(z, z′)(y′ − f (x′))

]
.

Hence, the likelihood on both D and D′ can be expressed as

p({D, D′} |w) ∝
n

∏
i=1

n

∏
j=1

p({(xi, yi, zi), (x′j, y′j, z′j)} |w)

= exp

[
−1

2

n

∑
i=1

n

∑
j=1

(yi − f (xi))k(zi, z′j)(y
′
j − f (x′j))

]
. (D.17)

In practice, however, we only have access to a single copy of sample, i.e., D, but not D′.
One way of constructing D′ is through data splitting: the original dataset is split into
two halves of equal size where the former is used to construct D and the latter is used
to form D′. Unfortunately, this approach reduces the effective sample size that can be
used for learning. Alternatively, we propose to estimate the original likelihood (D.17)
by using M-estimators: given the full dataset D = {(xi, yi, zi)}n

i=1, our approximated
likelihood can be defined as

p(D |w) ∝
n

∏
i=1

n

∏
j=1

p({(xi, yi, zi), (xj, yj, zj)} |w)

= exp

[
−1

2

n

∑
i=1

n

∑
j=1

(yi − f (xi))k(zi, zj)(yj − f (xj))

]
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= exp
[
−1

2
(y− f (x))>Kz(y− f (x))

]
= (2π)n/2|Kz|−1/2N( f (x) | y, K−1

z ).

The matrix Kz, as a kernel matrix defined above, plays a role of correlating the
residuals yi − f (xi). Besides, the standard GP regression has a similar likelihood,
which is Gaussian but the covariance matrix is computed on x rather than z. Based
on the likelihood p(D |w), the maximum likelihood (ML) estimator hence coincides
with the minimizer of the non-regularized version of our objective (6.6).

D.3.2 Maximum A Posteriori (MAP)

Combining the above likelihood function with the prior on w, the maximum a
posteriori (MAP) estimate of w can be obtained by solving

argmax
w

log p(w |D)

= argmax
w

[
log p(D |w) + log p(w)− log p(D)

]
= argmax

w

[
− 1

2
(y−Φ(x)w)>Kz(y−Φ(x)w)

− n
2

log 2π − 1
2

log |δΛ| − 1
2

w>(δΛ)−1w− log p(D)
]

= argmax
w

[
− 1

2
(y−Φ(x)w)>Kz(y−Φ(x)w)− 1

2
w>(δΛ)−1w

]
. (D.18)

Specifically, setting the first derivative of (D.18) to zero yields the first-order condition

−(δΛ)−1ŵ−Φ(x)>KzΦ(x)ŵ + Φ(x)>Kzy = 0

and the MAP estimate

ŵ = δΛΦ(x)>Kz(y−Φ(x)>ŵ). (D.19)

Note that we express ŵ using the implicit expression. Given a test data point x∗, the
corresponding prediction can be obtained by computing the posterior expectation, i.e.,

f̂ (x∗) ≡ E f |D[ f (x∗)]

= Φ(x∗)ŵ

= Φ(x∗)(δΛ)Φ(x)>Kz(y−Φ(x)>ŵ)

≡ l(x∗, x)α̂,

where we define α̂ ≡ δKz(y − Φ(x)>ŵ). The second equality holds because ŵ
is the posterior mean. The third equality is obtained by substituting (D.19) into
the second equation. Finally, the last equation follows from the Mercer theorem:
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Φ(x′)ΛΦ(x)> = l(x′, x).
We can see that without using the representer theorem here, we get the same

expression of the optimal solution f̂ as the one we obtain by invoking the representer
theorem in Section 6.3.2. By substituting α̂ = δKz(y−Φ(x)>ŵ) back into (D.19), we
obtain

ŵ = ΛΦ(x)>α̂. (D.20)

Furthermore, putting (D.20) into (D.18) also yields the following optimization prob-
lem:

α̂ = argmin
α

[
δ−1α>Lα + (y− Lα)>Kz(y− Lα)

]
= argmin

α

[
(n2δ)−1α>Lα + (y− Lα)>W(y− Lα)

]
,

where L = l(x, x) is the kernel matrix. This problem has the same form as that of the
V-statistic objective (6.7) except that (n2δ)−1 replaces λ. Therefore, we conclude that
the predictive mean is equivalent to the optimal function of the V-statistic objective
(6.7) given that (n2δ)−1 = λ, and δ plays the role of the regularization parameter. Such
a GP interpretation is used for an elegant derivation of the efficient cross validation
error in Section 6.4.

D.4 Related Works in Reinforcement Learning

Firstly, the idea of “kernel loss” was proposed in Feng et al. [2019] to estimate the
value function in reinforcement learning. Similar idea has been used to estimate
the importance ratio of two state or state-action distributions in Liu et al. [2018] and
Uehara et al. [2020]. Kallus [2018] and Kallus [2020] considered the estimation of
the average policy effect (APE) and policy learning. Secondly, in the area of causal
inference, Wong and Chan [2018] employed similar technique to estimate an average
treatment effect. Despite the methodological similarity to our work, these works did
not consider the IV regression setting. To better understand the connection, we first
introduce the objective functions of the aforementioned works and then highlight the
differences, challenges, and novelties of our work.

Kernel loss in reinforcement learning. Although estimating different subjects f ,
Liu et al. [2018] and Feng et al. [2019] employ similar population objective functions
in the following form:

min
f

EXEX′ [((A f )(X)− f (X))k(X, X′)((A f )(X′)− f (X′))], (D.21)

where A is a task-specific operator acting on f and X′ is an independent copy of
X. More specifically, Liu et al. [2018] aims to estimate the importance ratio of state
distributions of two policies as f (X). In the task of value function estimation by Feng
et al. [2019], f (X) is the value function. In both works, X represents the state variable
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in the context of reinforcement learning.

Loss for APE and policy learning. As mentioned by Kallus [2018], the estimation
of the APE is similar to that of the average treatment effect, so we introduce the
former as an example. By Kallus [2018], the target is to estimate the average effect of
a provided policy πT(X) for a treatment T ∈ [1, . . . , m] conditioned on a covariate X.
More specifically, given a set of observations of T, X and the outcome Y, {ti, xi, yi}n

i=1,
the APE estimate is f := ∑n

i=1 wiyi where {wi}n
i=1 are unknown weights. We use bold

character z := [zi]
n
i=1 to denote a column vector of variables zi. Then, the weights w

are determined by the following objective:

min
w

(∑
T

γ
q
TB

q
T)

2/q + n−2w>Λw (D.22)

BT(w) := (w>δtT − πT(x))>kT(x, x)(w>δtT − πT(x)),

where q ∈ (0, 1) and γT > 0 are constants, δs,t = I[s = t] is the Kronecker delta
and Λ is a positive definite matrix dependent on y. Furthermore, πT(x) and δtT are
(column) function values evaluated on x and t, and kT(x, x) is the kernel matrix on
x conditioned on T. The policy learning task assumes that no policy is known and
requires optimizing both w and π on a slight variant of the above objective.

Comparison between related losses (D.21), (D.22) and MMR loss. Compared
with our population and empirical risks (6.3) and (6.6), the kernel loss (D.21) and
BT(w) in the loss for APE (D.22) have a similar quadratic form. The difference is
that the kernel loss and BT(w) have variables, which appear in the kernel function,
involved in the residual, whereas the kernel function in our objective depends on the
instrument Z which does not appear in the residual.

Challenges and novelties of MMR. The difference in losses simplifies the estima-
tion in the related work and requires us to perform new analyses. Specifically, the
consistence of the estimators in the above related work holds under mild conditions.
That is, in the estimation of the value function, minimizing the population objective
function to 0 guarantees a solution for the Bellman equation, which is consistent to
the value function according to the unique solution property of the Bellman equation
[Feng et al., 2019]; for the importance ratio and the APE estimation, the consistency
holds under mild conditions of data distributions [Liu et al., 2018; Kallus, 2018]. In
contrast, the estimator by minimizing the MMR risk (6.3) to 0 is hardly consistent
to the the true f (X) under mild conditions, because there can be f̂ 6= f satisfying
E[Y − f̂ (X) | Z] = 0 almost surely. Therefore, we first introduce the completeness
condition in Assumption 2 for the estimation, which is classical in the IV regression
field and is needed to identify f (X) from the CMR. Second, a new theoretical analysis
is necessary to clarify the nature of the estimation on f (X), such as consistency and
asymptotic normality. We develop a novel theory for this point in Section 6.5, which
has not been studied by these related work.
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Algorithm 3 MMR-IV (Nyström)
Input: Dataset D = {(x, y, z)}n

i=1, kernel functions k and l with parameters θk and
θl , regularization parameter λ, leave out data size M, Nyström approximation
sample size M′, LMOCV times m

Output: predictive value at x∗
1: K = k(z, z; θk)

2: δ̂, θ̂l = argminδ,θl
∑m

i=1(b
(i) − y(i)

M )>K(i)
M (b(i) − y(i)

M )

3: Equation (6.8)
4: K/n2 ≈ ŨṼŨ> Nyström Approx with M′ samples
5: α̂ = λ−1[I − Ũ(λ−1Ũ>LŨ + Ṽ−1)−1Ũ>λ−1L]ŨṼŨ>y
6: return f̂ (x∗) = l(x∗, x; θ̂l)α̂

Algorithm 4 MMR-IV (NN)
Input: Dataset D = {x, y, z}, kernel function k with parameters θk, NN fNN with

parameters θNN, regularization parameter λ
Output: predictive value at x∗

1: Compute K = k(z, z; θk)
2: f̂NN = argmin fNN

(y− fNN(x))>K(y− fNN(x))/n2 + λ‖θNN‖2
2

3: return f̂NN(x∗)

D.5 Additional Details of Experiments

In this section, we provide additional details about the experiments as well as more
discussions on the experimental results presented in Section 6.6.

D.5.1 Baseline Algorithms

The details of MMR-IV (Nyström) and MMR-IV (NN) algorithms are given in
Algorithm 3 and Algorithm 4, respectively. In the experiments, we compare our
algorithms to the following baseline algorithms:

• DirectNN: A standard least square regression on X and Y using a neural network
(NN).

• 2SLS: A vanilla 2SLS on raw X and Z.

• Poly2SLS: The 2SLS that is performed on polynomial features of X and Z via
ridge regressions.

• DeepIV [Hartford et al., 2017]: A nonlinear extension of 2SLS using deep NNs.
We use the implementation available at https://github.com/microsoft/EconML.

• KernelIV [Singh et al., 2019]: A generalization of 2SLS by modeling relations
among X, Y, and Z as nonlinear functions in RKHSs. We use the publicly
available implementation at https://github.com/r4hu1-5in9h/KIV.

https://github.com/microsoft/EconML
https://github.com/r4hu1-5in9h/KIV
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• GMM+NN: An optimally-weighted GMM [Hansen, 1982] is combined with a NN
f (X). The details of this algorithm can be found in Bennett et al. [2019, Section
5].

• AGMM [Lewis and Syrgkanis, 2018]: This algorithm models h(Z) by a deep NN
and employs a minimax optimization to solve for f (X). The implementation we
use is available at https://github.com/vsyrgkanis/adversarial_gmm.

• DeepGMM [Bennett et al., 2019]: This algorithm is a variant of AGMM with optimal
inverse-covariance weighting matrix. The publicly available implementation at
https://github.com/CausalML/DeepGMM is used and all of the above baselines
are provided in the package except KernelIV.

• AGMM-K [Dikkala et al., 2020]: This algorithm extends AGMM by modeling h(Z)
and f (X) as RKHSs. Nyström approximation is applied for fast computation.
The publicly available implementation at https://github.com/microsoft/Adversa
rialGMM is used.

D.5.2 Experimental Settings on Low-dimensional Scenario

For the experiments in Section 6.6.1, we consider both small-sample (n = 200) and
large-sample (n = 2000) regimes, in which n points are sampled for training, validation
and test sets, respectively. In both regimes, we standardize the values of Y to have
zero mean and unit variance for numerical stability. Hyper-parameters of NNs
in Algorithm 4, including the learning rate and the regularization parameter, are
chosen by 2-fold CV for fair comparisons with the baselines. These hyper-parameters
are provided in Appendix D.5.4. Besides, we use the well-tuned hyper-parameter
selections of baselines provided in their packages without changes. We fix the random
seed to 527 for all data generation and model initialization.

In contrast to our NN-based method, the RKHS-based method in Algorithm 3 has
the analytic form of CV error. We combine the training and validation sets to perform
leave-2-out CV to select parameters of the kernel l and the regularization parameter
λ. We choose the sum of Gaussian kernels for k and the Gaussian kernel for l. For
the Nyström approximation, we subsample 300 points from the combined set. As a
small subset of the Gram matrix is used as Nyström samples, which misses much
information of data, we avoid outliers in test results by averaging 10 test errors with
different Nyström approximations in each experiment. All methods are repeated 10
times on each dataset with random initialization.

Detailed comments on the experimental results. First, under the influence of
confounders, DirectNN performs worst as it does not use instruments. Second,
MMR-IVs perform reasonably well in both small-sample and large-sample regimes. For
the linear function, 2SLS and Poly2SLS tend to outperform other algorithms as the
linearity assumption is satisfied in this case. For non-linear functions, some NN based
methods show competitive performance in certain cases. Notably, GMM+NN has unstable
performance as the function h in (6.1) is designed manually. KernelIV performs quite

https://github.com/vsyrgkanis/adversarial_gmm
https://github.com/CausalML/DeepGMM
https://github.com/microsoft/AdversarialGMM
https://github.com/microsoft/AdversarialGMM
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Table D.1: The mean square error (MSE) ± one standard deviation in the small-sample regime
(n = 200).

Algorithm
Function f ∗

abs linear sin step

DirectNN .143 ± .000 .046 ± .000 .404 ± .006 .253 ± .000
2SLS .564 ± .000 .003 ± .000 .304 ± .000 .076 ± .000
Poly2SLS .125 ± .000 .003 ± .000 .164 ± .000 .077 ± .000
GMM+NN .792 ± .000 .203 ± .000 1.56 ± .001 .550 ± .000
AGMM .031 ± .000 .011 ± .000 .330 ± .000 .080 ± .000
DeepIV .204 ± .008 .047 ± .004 .197 ± .004 .039 ± .001
DeepGMM .022 ± .003 .032 ± .016 .143 ± .030 .039 ± .002
KernelIV .063 ± .000 .024 ± .000 .086 ± .000 .055 ± .000
AGMM-K 12.3 ± .000 1.32 ± .000 1.57 ± .000 1.71 ± .000
DualIV .202 ± .000 0.103 ± .000 .251 ± .000 .362 ± .000
MMR-IV (NN) .019 ± .003 .004 ± .001 .292 ± .024 .075 ± .008
MMR-IV (RKHS) .030 ± .000 .011 ± .000 .075 ± .000 .057 ± .000

well but not as well as our method. AGMM-K is similar in principle to our method while
its errors are high. We suspect that this is due to the hyper-parameter selection is not
flexible enough. Additionally, we observe that the AGMM-K’s performance becomes
better as the numbers of CV folds and of hyper-parameter candidates increase. A
similar observation is also obtained on DualIV. Thus, it show that it is desirable to
have the analytical CV error, which is a advantage of our method against other RKHS
baselines. Besides, the selection of the weight matrix remains an open question, and
although DualIV, AGMM-K and MMRIV (RKHS) rely on the median heuristic to select
the bandwidth, we believe that the selection has different effects on different methods
and it is difficult to get fair selection. We will leave this problem to future work.
Moreover, the performances of the complicated methods like DeepIV and DeepGMM
deteriorate more in the large-sample regimes than the small-sample regimes. We
suspect that this is because these methods rely on two NNs and are thus sensitive
to different hyper-parameters. In contrast, MMR-IV (Nyström) has the advantage of
adaptive hyper-parameter selection.

D.5.3 Experimental Settings on High-dimensional Scenario

For experiments in Section 6.6.2, we sample n = 10, 000 points for the training,
validation, and test sets, and run each method 10 times. For MMR-IV (Nyström), we
run it only on the training set to reduce computational workload, and use principal
component analysis (PCA) to reduce dimensions of X from 728 to 8. We still use the
sum of Gaussian kernels for k(z, z′), but use the automatic relevance determination
(ARD) kernel for l(x, x′). We omit KernelIV and DualIV in this experiment since
their kernel parameter selection is not suitable for image data.

Detailed comments on the experimental results. Like Bennett et al. [2019], we
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observe that the DeepIV code returns NaN when X is high-dimensional. Besides, we
run Ridge2SLS, which is Poly2SLS with fixed linear degree, in place of Poly2SLS
to reduce computational workload. AGMM-K+NN, i.e., the KLayerTrained method
in [Dikkala et al., 2020], is a variant of AGMM-K, which uses neural networks to
model f (X), and to extract features of Z as inputs of the kernel k. To reinforce the
flexibility, AGMM-K+NN also trains the kernel hyper-parameter, i.e., the lengthscale of
the RBF kernel k. 2SLS has large errors for high-dimensional X because the first-stage
regression from Z to X is ill-posed. The average performance of GMM+NN suggests
that manually designed functions for instruments is insufficient to extract useful
information. Furthermore, MMR-IV (NN) performs competitively across scenarios. On
MNISTZ, MMR-IVs perform better than other methods, which implies using the sum
of Gaussian kernels for the kernel k is proper. DeepGMM has competitive performance
as well. On MNISTX and MNISTXZ, MMR-IV (NN) outperforms all other methods.
Compared with MMR-IV (NN), AGMM-K+NN has a more flexible kernel k but is lack
of good kernel hyper-parameter selection. So, it is vulnerable to local minimum
and shows unstable performance. The ARD kernel with PCA of MMR-IV (Nyström)
fails because the features from PCA are not representative enough. In addition, we
observe that DeepGMM often produces results that are unreliable across all settings.
We suspect that hard-to-optimize objective and complicated optimization procedure
are the causes. Compared with DirectNN, most of baselines can hardly deal with
high-dimensional structured instrumental regressions.

D.5.4 More Details of MMR-IVs

For the kernel function on instruments, we employ the sum of Gaussian kernels

k(z, z′) =
1
3

3

∑
i=1

exp

(
−‖z− z′‖2

2

2σ2
ki

)

and the Gaussian kernel for l(x, x′) = exp(−‖x− x′‖2
2/(2σ2

l )), where σk1 is chosen
as the median interpoint distance of z = {zi}n

i=1 and σk2 = 0.1σk1, σk3 = 10σk1. The
motivation of such a kernel k is to optimize f on multiple kernels, and we leave
parameter selection of k to the future work.

As per the dimensions of X, we parametrize f either as a fully connected neural
network with leaky ReLU activations and 2 hidden layers, each of which has 100 cells,
for non-image data, or a deep convolutional neural network (CNN) architecture for
MNIST data. We denote the fully connected neural network as FCNN(100,100) and
refer readers to our code release for exact details on our CNN construction. Learning
rates and regularization parameters are summarized in Table D.2.

D.5.5 Additional Comments on Mendelian Randomization

For experiments in Section 6.6.3, KernelIV also achieves competitive and stable per-
formance across all settings, but not as good as ours. DirectNN is always among
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Table D.2: Hyper-parameters of neural networks used in the experiments.
Scenario Model f Learning Rates λ

Low Dimensional FCNN(100,100) (10−12, 10−11, 10−10, 10−9, 10−8, 10−7, 10−6) (5× 10−5, 10−4, 2× 10−4)
MNISTZ FCNN(100,100) (10−12, 10−11, 10−10, 10−9, 10−8, 10−7, 10−6) (5× 10−5, 10−4, 2× 10−4)
MNISTX CNN (10−12, 10−11, 10−10, 10−9, 10−8, 10−7, 10−6) (5× 10−5, 10−4, 2× 10−4)
MNISTXZ CNN (10−12, 10−11, 10−10, 10−9, 10−8, 10−7, 10−6) (5× 10−5, 10−4, 2× 10−4)
Mendelian FCNN(100,100) (10−12, 10−11, 10−10, 10−9, 10−8, 10−7, 10−6) (5× 10−5, 10−4, 2× 10−4)

the worst approaches on all settings as no instrument is used. Poly2SLS performs
accurately on the last two experiments, while presents significant instability with the
number of instruments in Figure 6.2(left) because of failure of the hyper-parameter
selection. In Figure 6.2(middle) and Figure 6.2(right), we can observe that the perfor-
mance of most approaches deteriorates as the effect of confounders becomes stronger.
MMR-IV (Nyström) has promising performance and shows a bit more sensitivity to
c2 than c1, and the good performance take the advantage of the hyper-parameter
selection compared with AGMM-K and DualIV.

D.5.6 Experimental Settings on Vitamin D Data

We normalize each variable to have a zero mean and unit variance to reduce the
influence of different scales. We consider two cases: (i) without instrument and (ii)
with instruments. By without instrument, we mean that the WV matrix of MMR-IV
(Nyström) becomes an identity matrix. Following Sjolander and Martinussen [2019],
we assess the effect of Vitamin D (exposure) on mortality rate (outcome), control
the age in the analyses, and use filaggrin as the instrument. We illustrate original
Vitamin D, age and death in Figure D.2. We randomly pick (random seed is 527) 300
Nyström samples and use leave-2-out cross validation to select hyper-parameters. The
generalized linear models in [Sjolander and Martinussen, 2019] are a linear function
in the first step and a logistic regression model in the second step.

In this experiment, we use age as a control variable by considering a structural
equation model, which is similar to the model (2.13) except the presence of the
controlled (exogenous) variable C,

Y = f (X, C) + ε, X = t(Z, C) + g(ε) + ν

where E[ε] = 0 and E[ν] = 0. We further assume that the instrument Z satisfies the
following three conditions:

(i) Relevance: Z has a causal influence on X;

(ii) Exclusion restriction: Z affects Y only through X, i.e., Y ⊥⊥ Z|X, ε, C;

(iii) Unconfounded instrument(s): Z is conditionally independent of the error, i.e.,
ε ⊥⊥ Z |C.

Unlike the conditions specified in the main text, (ii) and (iii) also include the controlled
variable C. A similar model is employed in Hartford et al. [2017]. From Assumption
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(iii), we can see that E[ε |C, Z] = E[ε |C], and based on this, we further obtain

E[(Y− f (X, C)−E[ε|C])h(Z, C)] = 0

for any measurable function h. Note that E[ε |C] is only conditioned on C, remains
constant on arbitrary values of C, and is typically non-zero. To adapt our method to
this model, we only need to use the kernel k with (Z, C) as inputs and be aware that
the output of the method is an estimate of f ′(X, C) := f (X, C) + E[ε|C] instead of just
f (X, C).
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(a) Kernel Ridge Regression (IV: None)
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(b) MMRIV (IV: Filaggrin Mutation)
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(c) Generalized Linear Model (GLM, IV: None)
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(d) 2SLS + GLM (IV: Filaggrin Mutation)

Figure D.1: Estimated effect of vitamin D level on mortality rate, controlled by age. All plots
depict normalized contours of f̂ ′ defined in Section D.5.6 where blue represents low mortality
rate and yellow the opposite. We can divide each plot roughly into left (young age) and right
(old age) parts. While the right parts reflect similar information (i.e., lower vitamin D level at
an old age leads to higher mortality rate), the left parts are different. In (a), a high level of
vitamin D at a young age can result in a high mortality rate, which is counter-intuitive. A
plausible explanation is that it is caused by some unobserved confounders between vitamin D
level and mortality rate. In (b), on the other hand, this spurious effect disappears when the
filaggrin mutation is used as instrument, i.e., a low vitamin D level at a young age has only a
slight effect on death, but a more adverse effect at an old age [Meehan and Penckofer, 2014].
This comparison demonstrates the benefit of an instrument variable. (c) and (d) correspond
to the results obtained by using Sjolander and Martinussen [2019]’ generalized linear model
(GLM), from which we can draw similar conclusions. It is noteworthy that MMRIV allows
more flexible non-linearity for causal effect.
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Figure D.2: Distribution of Vitamin D data. Data points are plotted in the middle, the solid
curve and histogram on the right describe the kernel density estimation and histogram of
Vitamin D, and those on the top are for Age.
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