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Abstract

The Hawkes process has been widely applied to modeling self-exciting events includ-
ing neuron spikes, earthquakes and tweets. To avoid designing parametric triggering
kernels, the non-parametric Hawkes process has been proposed, in which the trigger-
ing kernel is in a non-parametric form. However, inference in such models suffers
from poor scalability to large-scale datasets and sensitivity to uncertainty in the
random finite samples. To deal with these issues, we employ Bayesian non-parametric
Hawkes processes and propose two kinds of efficient approximate inference methods
based on existing inference techniques. Although having worked as the corner-
stone of probabilistic methods based on Gaussian process priors, most of existing
inference techniques approximately optimize standard divergence measures such as
the Kullback-Leibler (KL) divergence, which lacks the basic desiderata for the task
at hand, while chiefly offering merely technical convenience. In order to improve
them, we further propose a more advanced Bayesian inference approach based on
the Wasserstein distance, which is applicable to a wide range of models. Apart from
these works, we also explore a robust frequentist estimation method beyond the
Bayesian field. Efficient inference techniques for the Hawkes process will help all
the different applications that it already has, from earthquake forecasting, finance to
social media. Furthermore, approximate inference techniques proposed in this thesis
have the potential to be applied to other models to improve robustness and account
for uncertainty.

More specifically, we first develop an efficient non-parametric Bayesian estimation
of the triggering kernel of Hawkes processes based on Gibbs sampling. Our method
considers a Gaussian process modulated triggering kernel and is developed based on
the cluster representation of Hawkes processes. Utilizing the finite support assumption
of the Hawkes process, we efficiently sample random branching structures and thus,
we split the Hawkes process into clusters of Poisson processes. We derive two
algorithms — a block Gibbs sampler and a maximum a posteriori estimator based
on expectation maximization — and we show that our methods have a linear time
complexity, both theoretically and empirically. On synthetic data, we show our
methods to be able to infer flexible Hawkes triggering kernels. On two large-scale
Twitter diffusion datasets, we show that our methods outperform the current state-
of-the-art in goodness-of-fit and that the time complexity is linear in the size of the
dataset. We also observe that on diffusions related to online videos, the learned
kernels reflect the perceived longevity for different content types such as music or pet
videos.

Secondly, we propose a new non-parametric Bayesian Hawkes process in which
the triggering kernel is modeled as a squared sparse Gaussian process and a novel
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variational inference schema is proposed for model optimization. We again employ
the branching structure of the Hawkes process so that maximization of evidence lower
bound (ELBO) is tractable by the expectation-maximization algorithm. We propose a
tighter ELBO which improves the fitting performance. Further, we accelerate the novel
variational inference scheme to linear time complexity by leveraging the finite support
assumption of the triggering kernel. Different from prior acceleration methods, ours
enjoys higher efficiency. Finally, we exploit synthetic data and two large social media
datasets to evaluate our method. We show that our approach outperforms state-of-
the-art non-parametric frequentist and Bayesian methods. We validate the efficiency
of our accelerated variational inference scheme and the practical utility of our tighter
ELBO for model selection. We observe that the tighter ELBO exceeds the common
one in model selection.

Thirdly, we develop a new approximate inference method for Gaussian process
models which overcomes the technical challenges arising from abandoning those
convenient divergences. Our method—dubbed Quantile Propagation (QP)—is similar
to expectation propagation (EP) but minimizes the L, Wasserstein distance instead
of the KL divergence. The Wasserstein distance exhibits all the required properties
of a distance metric, while respecting the geometry of the underlying sample space.
We show that QP matches quantile functions rather than moments as in EP and has
the same mean update but a smaller variance update than EP, thereby alleviating
EP’s tendency to over-estimate posterior variances. Crucially, despite the significant
complexity of dealing with the Wasserstein distance, QP has the same favorable
locality property as EP, and thereby admits an efficient algorithm. Experiments
on classification and Poisson regression show that QP outperforms both EP and
variational Bayes.

Finally, we propose a simple and robust framework for the estimation of condi-
tional moment restriction (CMR) models which include the Hawkes process. The
framework is developed based on a kernelized CMR known as a maximum moment
restriction (MMR) and applied to nonlinear instrumental variable (IV) regression,
which we are particularly interested in. The MMR is formulated by maximizing the
interaction between the residual and the instruments belonging to a unit ball in a
reproducing kernel Hilbert space (RKHS). The MMR allows us to reformulate the
IV regression as a single-step empirical risk minimization problem, where the risk
depends on the reproducing kernel on the instrument and can be estimated by a U-
statistic or V-statistic. This simplification not only eases the proofs of consistency and
asymptotic normality in both parametric and non-parametric settings, but also results
in easy-to-use algorithms with an efficient hyper-parameter selection procedure. We
demonstrate the advantages of our framework over existing ones using experiments
on both synthetic and real-world data.
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Chapter 1

Introduction

Hawkes (point) processes [Hawkes, 1971] have been widely used to model self-exciting
event sequences in which existing events increase the likelihood of occurrence of future
events. An example of self-exciting data is that on the online social media, attractive
tweets can easily diffuse by being retweeted [Simma and Jordan, 2010], and retweeting
promotes these tweets being seen and retweeted by more people. As another example,
in the seismic activities, an intensive earthquake tends to trigger a series of aftershocks,
and aftershocks possibly cause more aftershocks [Zhao et al., 2015]. In addition, many
nance data also have the self-excitement characteristic [Bacry et al., 2015] — we
recommend related works therein for more self-exciting cases.

The Hawkes process is suitable for self-exciting events because it explicitly models
the self-exciting interactions between events. Speci cally, every event in the Hawkes
process is assumed to be triggered by either a previous event or the exterior stimulus.
To quantify the former triggering factor, the model uses a triggering kernel function
f (), and for the latter, it employs a background intensity function n(). f and m
measure the occurrence rate of events, and are non-negative-valued functions. The
aggregate occurrence rate is the sum ofmand f of every previous event, which
is usually denoted as a | () function. Consequently, we can understand a Hawkes
process as a cluster of Poisson processes [Hawkes and Oakes, 1974]. In the cluster view,
a Poisson process with an intensity m(denoted as PP{)) generates immigrant points
which arrive in the system from the outside, and every existing point triggers offspring
points, which are generated internally through self-excitement, via a PP( f ). Points
are therefore structured into clusters where each cluster contains either a point and
its direct offspring or the background process (an example is shown in Figure 1.1(a)).
Connecting all points using the triggering relations yields a tree structure, which is
called the branching structure (an example is shown in Figure 1.1(b) corresponding to
Figure 1.1(a)). With the branching structure, we can decompose the Hawkes process
into a cluster of Poisson processes. The triggering kernel f is shared among all cluster
Poisson processes relating to a Hawkes process, and it determines the overall behavior
of the process. Consequently, designing the kernel functions is of utmost importance
for employing the Hawkes process to a new application, and its study has attracted
much attention.
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(a) Poisson cluster process (b) Branching structure

Figure 1.1: The cluster representation of a Hawkes process. In (a), a Hawkes process with
a decaying triggering kernel f () has intensity | (x) which increases after each new point
(vertical dash line) is generated. It can be viewed as a cluster of Poisson processes: PR
and PP(f (x X)) associated with each x;. Figure (b) presents the branching structure of the
Hawkes process in (a) and it re ects the triggering relationships between points. Here, an
edge x; ! x; means that x; triggers x;, and its probability is denoted as pj;.

1.1 Research Questions

Most of the recent works employing Hawkes Processes [Bao et al., 2015; Filimonov and
Sornette, 2015; Lallouache and Challet, 2016; Mishra et al., 2016; Rizoiu et al., 2017]
design parametric kernels modeling a predetermined subset of social processes such
as the limited length of collective memory [Wu and Huberman, 2007], or preferential
attachment [Barabasi, 2005]. Manually designing parametric kernels is an expensive
process and may not generalize well to other applications. An open question is (Q1)
can we design non-parametric solutions for the kernel function?

There are many non-parametric estimations of Hawkes triggering kernels, such
as the works of Lewis and Mohler [2011]; Zhou et al. [2013]; Bacry and Muzy
[2016]; Eichler et al. [2017]. These are all frequentist methods and among them, the
Wiener-Hopf equation based method [Bacry and Muzy, 2016] takes the advantage of
guadrature approximation for the integrals in the equation and obtains linear time
complexity in estimating the triggering kernel, while it is sensitive to the employed
guadrature points. A different class of estimation methods are based on the Euler-
Lagrange equation [Lewis and Mohler, 2011; Zhou et al., 2013]. Similarly, these
methods require discretizing the input domain and as a result, they face a problem of
poorly scaling with the dimension of the domain. The same problem is also faced by
Eichler et al. [2017]'s discretization based method. Besides, frequentist methods do not
model uncertainty over the learned triggering kernels and tend to be sensitive to the
point process realizations. A second open question is (Q2) can we design continuous
and more robust non-parametric estimations, which account for the variance and
the noise in the observed real life data?
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The Bayesian inference for the Hawkes process has also been studied, includ-
ing the work of Rasmussen [2013]; Linderman and Adams [2014]; Linderman and
Adams [2015]. These works require either constructing a parametric triggering kernel
[Rasmussen, 2013; Linderman and Adams, 2014] or discretizing the input domain
to scale with the data size [Linderman and Adams, 2015]. To overcome the afore-
mentioned shortcomings of discretization, Donnet et al. [2018] propose a continuous
non-parametric Bayesian Hawkes process and resort to an unscalable Markov chain
Monte Carlo (MCMC) approach to the posterior distribution. The third open ques-
tion is (Q3) can we design ef cient inference for non-parametric Bayesian Hawkes
processes?

1.2 Thesis Contributions

In the thesis, we answer the above three questions by proposing four solutions:

() the Laplace Bayesian Hawkes process fhang et al., 2019], in Section 1.2.1,
(i) the variational Bayesian Hawkes process [Zhang et al., 2020b], in Section 1.2.2,
(iii) the quantile propagation [ Zhang et al., 2020a], in Section 1.2.3,
(iv) the kernel maximum moment restriction estimation [ Zhang et al., 2021a], in
Section 1.2.4.

The rst two works, namely, (i) the Laplace Bayesian Hawkes process and (ii) the
variational Bayesian Hawkes process, are proposed as direct solutions to all three ques-
tions (Q1 3). They are applications of existing approximation methods for Bayesian
inference. Compared with the former, the latter employs the more complicated and
advanced variational inference method, and enjoys faster training speed.

The last two works (iii) and (iv) study robust estimation methods beyond the
eld of the Hawkes process and are more general solutions to Q2 3. The work of
gquantile propagation explores a new approximation method for Bayesian inference.
This method is similar to the expectation propagation (EP) algorithm [Opper and
Winther, 2000] in the use of iterative local updates but employs the L, Wasserstein
distance instead of the Kullback-Leibler (KL) divergence. Due to the locality of the
computations, it is simple for our method and EP to parallelize and distribute, leading
to more ef ciency than variational inference [Li et al., 2015] especially on large-scale
data [Gelman et al., 2017]. However unlike variational inference which minimizes
the lower bound of the log model evidence, EP and QP correspond to no explicit
global objective functions being minimized, and there is lack of works providing a
clear understanding of the iterative updates, making EP and our QP behave more in a
more complicated way than variational inference. Consequently, applying the new
method to the Bayesian Hawkes process is challenging and non-trivial, and left for
future work. It is observed that our method outperforms EP on the Gaussian process
binary classi cation tasks, so we expect it to offer ef cient and accurate performance
for the Bayesian Hawkes process on large scale data.

Different from the above Bayesian solutions (i iii), the nal one (iv) proposes a
frequentist estimation method which has an advantage of robustness and simplicity.
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This method is a generalization of maximum likelihood estimation and the method of
moments that are commonly employed by existing frequentist estimation methods
[Lewis and Mohler, 2011; Zhou et al., 2013; Bacry and Muzy, 2016; Eichler et al.,
2017]. Different from obtaining robustness via modeling uncertainty in the Bayesian
methods, the method has the spirit of adversarial learning. It considers a reproducing
kernel Hilbert space (RKHS) weighted average of the loss function values on data
points and estimates the model parameters by optimizing the maximal or the worst
average value. This idea is general and applicable to a wide range of estimation
tasks, including estimation of the Hawkes process (as elaborated in Section 2.4), and
we demonstrate its effectiveness on instrumental variable regression, which we are
particularly interested in.

1.2.1 Laplace Bayesian Hawkes Process

In the rst solution, we exploit block Gibbs sampling [Ishwaran and James, 2001]
to iteratively sample the latent branching structure, the background intensity mand
the triggering kernel f. In each iteration, the point data are decomposed as a cluster
of Poisson processes based on the sampled branching structure. The posteriorm
and f are estimated using the resulting cluster processes. Our framework is close to
the stochastic Expectation-Maximization (EM) algorithm [Celeux and Diebolt, 1985]
where posterior mand f are estimated [Lloyd et al., 2015; Walder and Bishop, 2017]
in the M-step and random samples of mand f are drawn. We adapt the approach of
the recent non-parametric Bayesian estimation for Poisson process intensities, termed
Laplace Bayesian Poisson process [Walder and Bishop, 2017], to estimate the posterior
f given the sampled branching structure. We utilize the nite support assumption

of the Hawkes Process to speed up sampling and to compute the probability of the
branching structure. We theoretically show our method to be of linear time complexity.
Furthermore, we explore the connection with the EM algorithm [Dempster et al., 1977]
and develop a second variant of our method, as an approximate EM algorithm. We
empirically show that our method enjoys linear time complexity and can infer known
analytical kernels, i.e., exponential and sinusoidal kernels. On two large-scale social
media datasets, our method outperforms the current state-of-the-art non-parametric
approaches and the learned kernels re ect the perceived longevity for different content
types. We propose a new acceleration trick based on the nite support assumption of
the triggering kernel. The new trick enjoys higher ef ciency than previous methods
and accelerates the variational inference schema to linear time complexity per iteration.

1.2.2 Variational Bayesian Hawkes Process

The second solution proposes the rst sparse Gaussian process modulated Hawkes
process which employs a novel variational inference scheme, enjoys a linear time
complexity per iteration and scales to large real world data. Our method is inspired

by the variational Bayesian Poisson process (VBPP) [Lloyd et al., 2015] which provides
Bayesian non-parametric inference only for the whole intensity of the Hawkes process
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rather than its components: the background intensity mand the triggering kernel
f. Thus, the VBPP loses the internal reactions between points, and developing the
variational Bayesian non-parametric inference for the Hawkes process is non-trivial
and more challenging than the VBPP. In this work, we adapt the VBPP for the Hawkes
process and term the new approach the variational Bayesian Hawkes process (VBHP).
We employ a sparse Gaussian process modulated triggering kernel and a Gamma
distributed background intensity and propose a new variational inference scheme
for such models. Speci cally, we employ the branching structure of the HP so that
maximization of the evidence lower bound (ELBO) is tractable by the expectation-
maximization algorithm, and we contribute a tighter ELBO which improves the tting
performance of our model. We propose a new acceleration trick based on the nite
support assumption of the triggering kernel. The new trick enjoys higher ef ciency
than prior methods and accelerates the variational inference schema to linear time
complexity per iteration. We empirically show that VBHP provides more accurate
predictions than state-of-the-art methods on synthetic data and on two large online
diffusion datasets. We validate the linear time complexity and faster convergence of
our accelerated variational inference scheme compared to the Gibbs sampling method,
and the practical utility of our tighter ELBO for model selection, which outperforms
the common one in model selection.

1.2.3 Quantile Propagation for Gaussian Process Models

Beyond the area of the Hawkes process, we develop an approximate inference algo-
rithm for Gaussian process models with factorized likelihoods based on minimization
of the L, Wasserstein distance. Our approach employs a Gaussian likelihood to ap-
proximate the non-Gaussian likelihood. In order to optimize Gaussian likelihoods, we
avoid directly minimizing the global  L? Wasserstein distance between true and approx-
imate joint posteriors, due to its computational and analytical intractability in high
dimensional spaces. Instead, our method iteratively minimizes local L? Wasserstein
distances, like EP. As a result, our method matches two quantile functions different
from moment matching in EP, thus named quantile propagation. We further derive
updating formulas for the mean and the variance of the Gaussian likelihood. The
estimation of the mean is equal to EP's, while the variance is less than EP's, hence
alleviating EP's de ciency of over-estimating variances [Minka, 2005; Heess et al.,
2013; Hernandez-Lobato et al., 2016]. We show that the optimal approximate Gaussian
likelihood enjoys an economical parameterization like EP, i.e., relying on a single
latent variable instead of all of them. This property allows our method or EP to
signi cantly reduce memory consumption by a factor N (the number of data) and
computation time via optimizing much less ( O(1), vs O(N?) for the full parameter-
ization) parameters in each local update. We regard both methods as approximate
coordinate descent algorithms to a KL divergence and a L, Wasserstein objective
function respectively, under the same approximation assumption. In the experiment
part, we evaluate EP and our method via Gaussian process binary classi cation on a
number of real world datasets. Our results show that our method can outperform
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EP in both predictive accuracy and uncertainty quanti cation, which validates our
method alleviating over-estimation of the variance. We will apply this method to the
Bayesian Hawkes process in the future and consider parallelizing or distributing the
local updates. We expect it to perform ef ciently and accurately on large-scale data.

1.2.4 Kernel Maximum Moment Restriction Estimation

The last solution proposes a simple framework for the nonlinear instrumental variable
regression, which is a more dif cult and general problem than the model parameter
estimation for the Hawkes process. The framework is based on a kernelized condi-
tional moment restriction known as a kernel maximum moment restriction (KMMR).
The KMMR is formulated by maximizing the interaction between the residual and the
instruments belonging to a unit ball in an RKHS. The KMMR allows us to reformulate
the IV regression as a single-step empirical risk minimization problem, where the
risk depends on the reproducing kernel on the instrument and can be estimated by a
U-statistic or V-statistic. This simpli cation not only eases the proofs of consistency
and asymptotic normality in both parametric and non-parametric settings, but also
results in easy-to-use algorithms with an ef cient hyper-parameter selection proce-
dure. We demonstrate the advantages of our framework over existing methods using
experiments on both synthetic and real-world data.

1.3 Broader Impact

The proposed inference techniques for Hawkes processes in the thesis have an advan-
tage of a linear time complexity. Most of existing applications of Hawkes processes,
from earthquake forecasting, nance to social media, take quadratic time complexity
to estimate model parameters. Our algorithms thus will help to develop ef cient
applications. The approximate inference techniques also have the potential to be
applied to other models to improve their robustness and account for uncertainty.

1.4 Thesis Outline

The subsequent chapters provide details of solutions to the proposed research ques-
tions. We rst introduce prerequisites of the solutions and review related develop-
ments of them in Chapter 2. Then we elaborate on the four proposed methods in
Chapters 3, 4, 5 and 6 respectively, which are summarized concisely in Chapter 7.
Chapter 7 also provides some interesting future research directions.



Chapter 2

Preliminaries and Related Work

The works in the thesis are on Hawkes processes, approximate inference for Gaussian
processes and robust frequentist estimation. In this chapter, we introduce the prelim-
inaries of them and review the related works in the three research areas separately.
Speci cally, in Section 2.1, we rst introduce the Poisson and Hawkes processes. We
then review the Gaussian process model and the approximate Bayesian inference
approaches used in the thesis in Section 2.2. In Section 2.3 and 2.4, we introduce the
Wasserstein distance and the conditional moment restriction respectively. Then, we
review the related work on estimation of Hawkes process, on expectation propagation
and Wasserstein distance, and on condition moment restriction based estimation, in
Sections 2.5, 2.6 and 2.7 respectively.

2.1 Poisson and Hawkes Processes

2.1.1 Poisson Processes

The Poisson (point) process assumes that points in any bounded subregion of the
domain are independent of those in other subregions. More speci cally, for any subset
of the d-dimensional real space T 2 RY, other intervals T °disjoint from T do not
affect the occurrence of events in T, and the probability of “the event countin T,
N(T), being equal to n” is determined by the Poisson distribution:

n Z
PEIN(T) = ng = L(r:)e LM LT =10 dx

where L (T) is the expected number of points in T, and the function | (x) is known
as the intensity and modulates the occurrence rate of events at x. The log-likelihood
of D = fxgll, given | is [Rubin, 1972]:

N z
log p(Djl ) = § log! (xi) | (x) dx,
i=1 w

where W is the sample domain of fxigi’il. The log-likelihood of any stochastic point
process, such as the Hawkes process, has the same form. We recommend [Daley and
Vere-Jones, 2003] for a detailed introduction to stochastic point processes.

7
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Figure 2.1: A Poisson process realization (points). The intensity function | (t) = 10sin(t) +
10.5 (solid line) is used to simulate points and higher function values generates more points.

2.1.2 Hawkes Processes

The Hawkes procespglawkes, 1971] is a self-exciting point process, in which the
occurrence of a point increases the arrival rate | () of new points. Given a set of
ordered points D = fx;gl\,, x; 2 RY, the intensity at x conditioned on given points is
written as:

L) =m+ § F(x x),

Xi< X

where m > 0 is background intensity, commonly considered as a constant, and
f :RY! [0,¥) is the triggering kernel. We consider d = 1 for a concise presentation
and extension to d > 1 follows by the same development procedure. In the thesis, we
are interested in the branching structure of the Hawkes process. As introduced in
Chapter 1, each point x; has a parent that we represent by the below one-hot vector.
The indexisupto i 1 as the points are ordered.

b = [bo, b1, by 1] (2.1)

Each elementb; is binary, bjj = 1 represents that x; is triggered by x; (0 j i 1,

Xo: the background), and é}:éhj = 1. A branching structureB is the set of b; and is

determined by B = fbigi'\il. We de ne the probability of b; = 1as (see e.g. [Lewis
and Mohler, 2011])

(
o . _ f(Xi Xj)/ [ (Xi), 0<j j 1
pj = p(b =)= x). =0 : (2.2)

then the probability of B is expressed as below and it is clearé}:(l) pij = 1 forall i.
Nl
p(B)= OO pijj-

i=1j=0
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Log-likelihood Given Branching Structure.  Given the branching structure B, the
Hawkes process can be viewed as a cluster of Poisson processes, namely, PRj and
fPP(f (x x;))gl, as introduced in Chapter 1. Consequently, the log likelihood of
the Hawkes process becomes a sum of log-likelihoods of Poisson processes. The data
domain of PP(m equals that of the Hawkes process, which we denote as W, and we
denote the data domain of PP(f (x  xj)) by W,  W. As a result, the log-likelihood of
data points and the branching structure is calculated by:

NI N Z
log p(D,BiMf)= & & bylogfj+bologm g f mTj (23
i=1 j=1 i=1 W

R R R
where jWj =, 1dx, fj = f(x; ) and wf = Wif(x) dx. Note that the
Lebesgue measure is considered here.

Figure 2.2: A Hawkes process realization (points). The intensity function | (t) = 1+
81<t0.Je (t W+ 06e 3t W)+ 0.7e "t W (solid line) is used to simulate points.

2.2 Gaussian Processes

2.2.1 Exact Gaussian Processes

The Gaussian process (GP) is de ned as a distribution over a function f, denoted
as GP(f), such that for any non-empty set of x = f xg, ,XnQ in the domain of f,
function values f = f f(x;)gl ; jointly have a Gaussian distribution, i.e.,

p(fja) = N (m,Kx), (2.4)

where the mean vector m, and the covariance matrix Ky are the evaluation of a mean
function () and a covariance function k(, ) on x, that is, m == fnm(x;)gl, and
Ky = [k(xi,xj)]{“le, and g is the set of parameters of mand k. The covariance function
de nes the covariance between two function values,

k(x,y) = Cov(f(x), f(y)),
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and any covariance function k can be represented in terms of the eigenvaluesf | igiK: 1
and eigenfunctions fegiK:1 according to Mercer's theorem [Mercer, 1909]

K
k(x,y) = a lia(x)ea(y),
i=1

where f agiﬁl are chosen to be orthonormal in L2(W, n) for some sample spaceW with
the measuren and K = ¥ if kis non-degenerate. A popular approach to determine q
is to maximize the log marginal likelihood given a set of observations D,

z

§= argmaxlog p(Djg) == log  p(Djf,q)p(fjq) df. (2.5)
q

With the optimized parameters Q the posterior distribution of f is obtained as

o POOIf. Op(fif)
p(Dj f, B p(fjg) df

This exact GP model often suffers from computational and analytical intractability.
Speci cally, computing the exact posterior requires to store and invertan (N N)-
matrix, which consumes O(N?) memory and O(N?) time. Both impede the method
from scaling up to large problems. The analytical intractability originates from the
non-conjugate Gaussian prior p(fjq) for the likelihood p(Djf,q) and as a results, the
integral in Equation (2.6) (as well as Equation (2.5)) has no closed-form expression.
To overcome the two issues, the sparse GP model (Section 2.2.2) and approximate
Bayesian inference (Section 2.2.3, 2.2.4, 2.2.5) are often employed.

p(fjD.§) = (2.6)

2.2.2 Sparse Gaussian Processes

The sparse GP [Quifionero-Candela and Rasmussen, 2005; Titsias, 2009] is proposed
to reduced the computational burden. With the same assumption on function distri-
butions as that of the GP, the sparse GP introduces inducing points to approximate
distributions of function values at any point, which is realized based on the Bayes'
rules for Gaussian variables. As a result, the computational time and memory are
reduced to O(NM?) and O(NM) respectively, where M is the number of inducing
points.

More speci cally, given a set of M inducing points z = fz, ,Zvg Wand
corresponding function values u = f f(z)gM,, f evaluated at x have a joint Gaussian
distribution

f m Ky  Kyxz

N ,
u m Kax Kz

where Ky and K, are the covariance matrices of x and z respectively, as de ned
in Equation (2.4), and Ky, and K4 are cross-covariance matrices betweenx and z,
which are obtained as the evaluations of the covariance function on x and z, namely,



82.2 Gaussian Processes 11

Kyy = fk(xi,zj)gi'f;’:'v'l and K3, = K. The conditional distribution of f given u can
then be expressed as

p(fju) = N (m+ KoK, H(u  m), Ky KyzK, TKx).

We omit the condition on ¢ from time to time for a neat presentation. The quantity
of interest is the posterior distribution of f, which can be calculated based on the
posterior distribution of u as
z
p(fiD) = p(fju)p(ujD) du,

where D is the observation. The posterior distribution of u often has no closed-form
expressions and the Sparse GP model employs a Gaussian distribution g(u) for u,
which is an approximation to the posterior distribution of u. Suppose thatg(u) has a
Gaussian form

g(u) = N(m,S),

and then the optimal m and S of g(u) can be obtained by using variational infer-
ence for the marginal likelihood (Equation (2.5)) [Titsias, 2009]. With the optimal
g(u) p(ujD), we obtain a distribution over f, which is Gaussian again and is the
approximation of interest to the posterior distribution of f,

4

q(f) = p(fju)g(u) du
= N(mc+ KKy H(m o m) Ky KaKy (K S)K; HKax)
p(fju)p(ujD) du
= p(fjD).

2.2.3 Laplace Approximation

Laplace approximation [Rasmussen and Williams, 2005, section 3.4], [Bishop, 2006,
section 4.4] is a widely-used method and it provides a Gaussian approximation to the
analytical intractable posterior probability. Suppose that the analytically intractable
probability has the following form,
z
p(f)= Z h(f), z= h(f)df,

where Z is the unknown normalization constant. First, the method nds a mode of
p(f), which is a point fq satisfying

r h(f)js=¢, = 0.
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Then, it considers a second-order Taylor expansion of In h(f) centred on the mode fo,
1
Inh(f) Inh(fp) é(f fo) " A(f  fg), A= ?In h(f) F= 1o

where the rst-order term is omitted as it is equal to zero. Taking the exponential and
normalization on both sides of the above equation, we obtain a Gaussian distribution
approximating p(f),

JAJ 1/2 1

oy &P ST f7AG T = N(foA Y.

p(f)

2.2.4 \Variational Inference

Variational inference [Bishop, 2006, Section 10.1] is a more general approach than
Laplace approximation because it allows non-Gaussian approximation to intractable
distributions. Consider the joint distribution of observations and variables, p(D, fjq).
The variational approach introduces a variational distribution q(fjq% to approximate
the posterior distribution p(fjD,q) and optimizes q(fjq® by maximizing a lower
bound of the log-likelihood, known as the evidence lower bound (ELBO), which can
be derived from the non-negative gap perspective:

P(D. fia) p(fiD.q)
U MR G
= Fann 1og P(DIT,0), - KL(aCFiqiip(fia)) + KL(afidjp(fiD. o)

| reconstruction term { regularization term intractable (non-negative) gap
z

ELBO(q(f),p(Dj f).p(f))

log p(Djq)

ELBO(q(f). p(Djf), p(f)), (2.7)

where we omit g and g°in conditions. For notational convenience, we will often omit
conditioning on g and q° hereinafter. Optimizing the ELBO w.r.t. g®balances between
the reconstruction error and the Kullback-Leibler (KL) divergence from the prior.
Generally, the conditional p(Dj f) is known, so is the prior. Thus, for an appropriate
choice of q, it is easier to work with this lower bound than with the intractable
posterior p(fjD). We also see that, due to the form of the intractable gap, if qis from
a distribution family containing elements close to the true unknown posterior, then

g will be close to the true posterior when the ELBO is close to the true likelihood.
An alternative derivation applies Jensen's inequality [Jordan et al., 1999]. A vanilla
ELBO objective can usually be straight-forwardly minimized by standard algorithms,
such as gradient descent. In Chapter 4, we will show that the ELBO of our Bayesian
Hawkes process model has extra constraints on certain variables, so we accordingly
develop a variational-inference based two-step iterative optimization algorithm.



82.2 Gaussian Processes 13

2.2.5 Expectational Propagation

In this subsection, we introduce the application of the expectational propagation
(EP) algorithm to the GP models [Opper and Winther, 2000; Minka, 2001b,c]. Given
D = fyigl, and f; == f(x;), suppose that the GP model has the factorized likelihood,

N
p(Djf) = O p(yiifi)-
i=1

Numerous problems take this form: binary classi cation [Williams and Barber, 1998],

single-output regression with Gaussian likelihood [Matheron, 1963], Student's-t like-

lihood [Jylanki et al., 2011] or Poisson likelihood [Zou, 2004], and the warped GP
[Snelson et al., 2004]. EP deals with the analytical intractability by using Gaussian
approximations to the individual non-Gaussian likelihoods, namely,

pyiif)  t(f) BN (fijm,e?).

The function t; is often called the site functionand is speci ed by the site parametershe
scale ;, the mean & and the variance eiz. Notably, it is suf cient to use univariate site
functions given that the local update can be ef ciently computed using the marginal
distribution only [Seeger, 2005]. We refer to this as the locality property Although in
this thesis we employ a more complex L, Wasserstein distance, our approach retains
this property, as we elaborate in Chapter 5.

Given the site functions, one can approximate the intractable posterior distribution
p(fjD) using a Gaussianq(f) as below,

N
q(fiD) = (D) *p(f) O ti(f) N (fims), (2.8)
i=1

m= S(K,'m+ 8 'g), S=(K,'+8 1) 1

where mis the vector of ®, 8 is diagonal with §; = &2; log (D) is the log approximate
model evidence expressed as below and further employed to optimize the GP hyper-
parameters:

N .
log (D) = § log(&/ P 2p) %IongX+ 8 %HT(KX+ 8) m (2.9)
i=1

The core of EP is to optimize site functions ft;(f;)g\,. Ideally, one would seek to
minimize the (global) KL divergence between the true and approximate posterior dis-
tributions KL (p(fjD)kq(f)), however this is intractable. Instead, EP is built based on
the assumption that the global divergence can be approximated by the local divergence
KL (g(f)ka(f)), where a(f) p 9" (f)p(y;jfi) and gV (f) p g(f)/ ti(f;) are referred to
as the tilted and cavity distributions, respectively. Note that the cavity distribution

is Gaussian while the tilted distribution is usually not. The local divergence can be
simpli ed from multi-dimensional to univariate, KL (g(f)kqg(f)) = KL(g(fi)kq(f;))
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(detailed in Appendix C.7), and t;(f;) is optimized by minimizing it.
The minimization is realized by projecting the tilted distribution  g(f;) onto the
Gaussian family, with the projected Gaussian denoted as

proj, (a(fi)) = argNmin KL (a(fi)kN ().

Then the projected Gaussian is used to update t;(f;) 1 proj,, (a(f))/ g"(f;). The
mean and the variance of proj,, (a(f)) N (n?,s*?) match the moments of g(f;) and
are used to update t;( f;)'s parameters:

m=my, s?=sg, (2.10)
m=e? ni(s?) * mys,? . 8 ?=(s?) ? s.% (2.11)

where my and sé are the mean and the variance of g( f;), and m}, and Srzn are the mean

and the variance of g"(f;). We refer to the projection as the local update. Note that 2
does not impact the optimization of q(f) or the GP hyper-parameters ¢, so we omit
the update formula for 2. We summarize EP in Algorithm 2 (Appendix).

2.3 Wasserstein Distance

We denote by M 1 (W) the set of all probability measures on W. We consider probabil-
ity measures on the d-dimensional real space RY. The Wasserstein distance between
two probability distributions x,n 2 M 1 (RY) can be intuitively de ned as the cost
of transporting the probability mass from one distribution to the other. We are par-
ticularly interested in the subclass of L, Wasserstein distance, formally de ned as
follows.

De nition 1  (Lp Wasserstein distance) Consider the set of all probability measures on
the product spacRY RY, whose marginal measures ar@nd n respectively, denoted as
U(x,n). The L, Wasserstein distance betweeandn is de ned as
4
WP(x,n) = inf kx zkPdp(x,2),
p( ) p2U(x,n) R4 Rd P p( )
where p2 [1,¥) andk Kkp is the L, norm.

Like the KL divergence, the L, Wasserstein distance it has a minimum of zero,
achieved when the distributions are equivalent. Unlike the KL, however, it is a proper
distance metric, and thereby satis es the triangle inequality, and has the appealing
property of symmetry.

A less fundamental property of the Wasserstein distance which we exploit for
computational ef ciency is:

Proposition 1. [Peyré et al., 2019, Remark 2.30] Thg Wasserstein distance between
1-d distribution functionsx andn 2 M 1 (R) equals theL, distance between the quantile
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functions
1 Z 1

Whkm = R R ) ay,

whereF; : R I [0, 1] is the cumulative distribution function (CDF) df, de ned asf(x) =

X¥ dz, andF, ! is the pseudo-inverse or quantile function, de nedras(y) = minf x 2

R[f ¥g:R(X) vyo

Finally, the following translation property of the L, Wasserstein distance is central
to our proof of locality in Chapter 5:

Proposition 2. [Peyré et al., 2019, Remark 2.19] Consider théVasserstein distance de ned
forxandn2 M 1 (RY), and letf, (x) = x t,t 2 RY be atranslation operator. ¥ and
n o denote the probability measures of translated random varidp(e$, x  x, and f; o(x),

X n, respectively, then

W3(xe, o) = Wa(x,n)  2(t t3T(my mp)+ kt t %3,

wherem, andm, are means of andn respectively. In particular wheh = m, andt 9= m,,
Xt andn, o become zero-mean measures, and

W2(x¢, o) = Wa(x,n) k my, mpka.

2.4 Conditional Moment Restriction

Let (X, Z) be a random variable taking values in X Z and Q a parameter space. A
conditional moment restriction (CMR) [Newey, 1993; Ai and Chen, 2003] can then be
expressed as

CMR(q) = E[j (X)jZ] =0, Pz almostsurely (a.s.) (2.12)

for the true parameter ¢ 2 Q. The function j 4(X) is a problem-dependent generalized
residual function in RY parameterized by g. Intuitively, the CMR asserts that, for
correctly speci ed models, the conditional mean of the generalized residual function
is almost surely equal to zero. Many statistical models can be written as Equation
(2.12) including nonparametric regression models where X = ()Z,Y),Z = X and
j (X) = Y f(X;q); conditional quantile models where X = (X,Y),Z = X, and
j o(X) = 1fY < f(X;q)g t forthe target quantile t 2 [0, 1]; IV regression models
where X = (X,Y), Zisan IV, and j ((X) = Y f(X;q); the stochastic point process,
where X = ( X), Z is the observed region in the domain, and j (X) = r glog py(X)
with pq the probability model of the point process. More speci cally in the point
process case, the maximum likelihood estimator is written in general as below

q= argmaxEx pllog pg(X)jiZ] =) Ex plr ql0g p(X)iZ] i O
q



16 Preliminaries and Related Work
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Figure 2.3: A causal graph depicting an instrumental variable Z that satis es an exclusion
restriction and unconfoundedness (there may be a confounder #acting on X and Y, but it is
independent of Z).

where p is the true probability of data, and as we note, qis often estimated as the
solution to the rst-order condition shown in the right part. Besides, the nite region

Z where real-world data are collected is random and dependent on the time when we
observe the data, so it is reasonable to view the point process as a CMR model.

2.4.1 Instrumental Variable Regression

We introduce details of instrumental variable (IV) regression on which we test our
kernel maximum moment restriction estimation method. Following standard setting
in the literature [Hartford et al., 2017; Lewis and Syrgkanis, 2018; Bennett et al.,
2019; Singh et al., 2019; Muandet et al., 2020b], leK be a treatment (endogenous)
variable taking value in X RYand Y a real-valued outcome variable. The goal of
IV regression is to estimate a function f : X ! R from a structural equation model
(SEM) of the form

Y=f(X)+# X=1t(2)+ g#H+ n, (2.13)

where we assume that E[#] = 0 and E[n] = 0. Unfortunately, as we can see from
Equation (2.13) #is correlated with the treatment X, i.e., E[#X] & 0, and hence
standard regression methods cannot be used to estimate f. This setting arises, for
example, when there exist unobserved confounders (i.e., common causes) betweenX
and Y.

To illustrate the problem, let us consider an example taken from Hartford et al.
[2017] which aims at predicting sales of airline ticket Y under an intervention in price
of the ticket X. However, there exist unobserved variables that may affect both sales
and ticket price, e.g., conferences, COVID-19 pandemic, etc. This creates a correlation
between #and X in (2.13)that prevents us from applying the standard regression
toolboxes directly on observational data.

Instrumental variable (IV). To address this problem, we assume access to an
instrumentalvariable Z taking value in Z R®. Aswe can see in(2.13) the instrument
Z is associated with the treatments X, but not with the outcome Y, other than through
its effect on the treatments. Formally, Z must satisfy (i) RelevanceZ has a causal
in uence on X, (ii) Exclusion restriction:Z affects Y only through X, i.e.,Y ? ZjX,#
and (iii) Unconfounded instrument(s)Z is independent of the error, i.e., #? Z. For
example, the instrument Z may be the cost of fuel, which in uences sales only via
price. Intuitively, Z acts as a “natural experiment” that induces variation in  X; see
Figure 2.3.
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2.5 Related Works of Hawkes Process Estimation

As mentioned in Chapter 1, the triggering kernel f is important as it is shared and
decides the class of the whole process. In this section, we review the estimation of the
triggering kernel f as well as topics related to it, including modeling of the intensity
function and of the integral of the triggering/intensity function, and model parameter
estimation methods and so on.

2.5.1 Parametric Frequentist Solutions

The Hawkes processes with the parametric triggering kernels are applied in a wide
range of areas and the popularity can be explained by their simplicity and exibility
compared with other models. Mishra et al. [2016] employ the branching factor of the
Hawkes process with the power-law kernel to predict popularity of tweets; Kurashima

et al. [2018] predict human actions using a Hawkes process equipped with exponential,
Weibull and Gaussian mixture kernels; online popularity unpredictability is explained
using the Hawkes process with a variant of the exponential kernel by Rizoiu et al.
[2018]; Xu et al. [2016] employ a sum of Gaussian kernels to discover the Granger
causality for the Hawkes process. The model parameters can be easily determined by
the maximum likelihood estimation [Ozaki, 1979]. However, most works employing
Hawkes processes with parametric triggering kernels encode strong assumptions,
and limit the expressivity of the models. Therefore, recent works design practical
approaches to learn exible representations of the optimal triggering kernel from data,
as the following subsections.

2.5.2 Non-parametric Frequentist Solutions

A popular direction on learning the exible triggering kernel functions is the non-
parametric frequentist estimation. Basically, the triggering kernel function is assigned
a non-parametric form which is mainly a piecewise function [Lewis and Mohler, 2011;
Zhou et al., 2013; Bacry and Muzy, 2016; Eichler et al., 2017]. The form of the function
is caused by discretization of the function domain and leads to poor scaling with
the domain dimension and sensitivity to the choice of discretization. Moreover, they
do not quantify the uncertainty of the learned triggering kernels, so are sensitive to
randomness of nite data. In contrast, our methods require no discretization and are
Bayesian, so has an advantage of scalability with the dimension of the domain and
robustness to uncertainty in the nite samples.

Frequentist Estimation of Intensities. Learning the triggering kernels based on
the maximum likelihood requires O(N?) computational time and to circumvent this
problem, many frequentist methods focus on estimating the intensity function, which
needsO(N) time. These methods rely on modern machine learning models, such as
the neural network [Du et al., 2016; Xiao et al., 2017a,b; Mei and Eisner, 2017; Omi et al.,
2019; Zhang et al., 2020; Zuo et al., 2020] and the reproducing kernel Hilbert space
[Flaxman et al., 2017] (RKHS). As no assumption is made on the type of interaction
between points such as self-excitement, they allow the modelling of exible point
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processes. Early neural network approaches on modeling intensity functions rely on
the recurrent neural network (RNN) or long short-term memory (LSTM) network [Du

et al., 2016; Xiao et al., 2017b; Mei and Eisner, 2017], and estimate model parameters
based on maximum likelihood. Training deep RNNs and LSTMs is notoriously
dif cult because of gradient explosion and gradient vanishing [Pascanu et al., 2013].
The inherently sequential nature of RNN and LSTM renders the impossibility to
process all the events in parallel and limits the methods' ability to scale to large
datasets. More recent works deal with this issue by employing the transformer or
the self-attention mechanism [Zhang et al., 2020; Zuo et al., 2020]. Apart from the
issues with models, most of the neural network approaches suffer from no analytical
expression for the integral of the intensity function in the likelihood. Hence, the
integral has to be approximated numerically, which leads to in-accurate parameter
estimation. In order to circumvent this problem, Omi et al. [2019] directly model the
integral by a RNN. As a result, the intensity function is obtained by differentiation of
the integral, which is easier to compute than integration. Shchur et al. [2020b] present
a new modeling method for the integral by exploiting the normalizing ows which
later is employed to model the distribution of the inter-arrival time [Shchur et al.,
2020a]. As shown by Walder and Bishop [2017], the integral can have a closed-form
expression with kernel methods by explicitly constructing the eigen-components of
the kernel function. Orthogonal to the afore-mentioned development, there is recent
interest in parameter estimation methods beyond the popular maximum likelihood
estimation, including the Wiener-hopf equation based method [Bacry and Muzy,
2016], the adversarial loss such as the wasserstein distance based loss [Xiao et al.,
2017a], the least square loss [Eichler et al., 2017], the cumulants-based method [Achab
et al., 2017], the reinforcement learning based method [Li et al., 2018]. Interestingly,
it is unnecessary to estimate the triggering kernel or the intensity function in some
applications, such as discovering the Granger causality, where it is suf cient to only
estimate the integral of the triggering kernel [Achab et al., 2017]. We recommend
the related work sections of these methods for more development on point processes.
Different from works reviewed here, this thesis focuses on the non-parametric Bayesian
estimation of the triggering kernel.

2.5.3 Bayesian Parametric and Non-parametric Solutions

The Bayesian non-parametric estimation for the Hawkes process has been studied,
including the work of Rasmussen [2013]; Linderman and Adams [2014]; Linderman
and Adams [2015]. These work require either constructing a parametric triggering
kernel [Rasmussen, 2013; Linderman and Adams, 2014] or discretizing the input
domain to scale with the data size [Linderman and Adams, 2015]. The shortcoming
of discretization is just mentioned and to overcome it, Donnet et al. [2018] propose
a continuous non-parametric Bayesian Hawkes process and resort to an unscalable
Markov chain Monte Carlo (MCMC) estimator to the posterior distribution. We
comparatively summarize a part of related works in 2.1. Compared with these works,
our methods are Bayesian and non-parametric without requiring discretization of
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Table 2.1: Non-parametric triggering kernel estimation.

Methods Time Bayesian Continuous Non-

Complexity parametric
Zhou et al. [2013] o(nd) X
Xu et al. [2016] O(n?®) X
Lewis and Mohler [2011] o(n®) X
Zhou et al. [2013] O(n3) X
Rasmussen [2013] o(n) X X
Linderman and Adams [2015] O(n) X interval-

censored

Donnet et al. [2018] unspecied X X X
Ours o(n) X X X

domains and has an advantage of a linear time complexity allowing it to be applied
to large-scale real-world datasets.

2.6 Related Works of Expectation Propagation and Wasser-
stein Distance

The basis of the EP algorithm for GP models was rst proposed by Opper and
Winther [2000] and then generalized by Minka [2001b,c]. Power EP [Minka, 2004,
2005] is an extension of EP that exploits the more generala-divergence (with a= 1
corresponding to the forward KL divergence in EP) and has been recently used
in conjunction with GP pseudo-input approximations [Bui et al., 2017]. Although
generally not guaranteed to converge locally or globally, Power EP uses xed-point
iterations for its local updates and has been shown to perform well in practice for GP
regression and classi cation [Bui et al., 2017]. In comparison, our approach (quantile
propagation) uses the L, Wasserstein distance, and like EP, it yields convex local
optimizations for GP models with factorized likelihoods. This convexity bene ts the
convergence of the local update, and is retained even with the general L, (p 1)
Wasserstein distance as shown in Theorem 2 (Chapter 5). Moreover, for the same class
of GP models, both EP and our approach have the locality property [Seeger, 2005]
and can be uni ed in the generic message passing framework [Minka, 2005].

Without the guarantee of convergence for the explicit global objective function,
understanding EP has proven to be a challenging task. As a result, a number of
works have instead attempted to directly minimize divergences between the true
and approximate joint posteriors, for divergences such as the KL [Jordan et al., 1999;
Dezfouli and Bonilla, 2015], Rényi [Li and Turner, 2016], a [Hernandez-Lobato et al.,
2016] and optimal transport divergences [Ambrogioni et al., 2018]. To deal with the
in nity issue of the KL (and more generally the Rényi and a divergences) which
arises from different distribution supports [Montavon et al., 2016; Arjovsky et al., 2017;
Gulrajani et al., 2017], Hensman et al. [2014] employ the product of tilted distributions
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as an approximation. A number of variants of EP have also been proposed, including
the convergent double loop algorithm [Opper and Winther, 2005], parallel EP [Minka,
2001a], distributed EP built on partitioned datasets [Xu et al., 2014; Gelman et al., 2017],
averaged EP assuming that all approximate likelihoods contribute similarly [Dehaene
and Barthelmé, 2018], and stochastic EP which may be regarded as sequential averaged
EP [Li et al., 2015].

The L, Wasserstein distance between two Gaussian distributions has a closed
form expression [Dowson and Landau, 1982]. Detailed research on the Wasserstein
geometry of the Gaussian distribution is conducted by Takatsu [2011]. Recently, this
closed form expression has been applied to robust Kalman Itering [Sha eezadeh-
Abadeh et al., 2018] and to the analysis of populations of GPs [Mallasto and Feragen,
2017]. A more general extension to elliptically contoured distributions is provided
by Gelbrich [1990] and used to compute probabilistic word embeddings [Muzellec
and Cuturi, 2018]. A geometric interpretation for the L, Wasserstein distance between
any distributions [Benamou and Brenier, 2000] has already been exploited to develop
approximate Bayesian inference schemes [El Moselhy and Marzouk, 2012]. Our
approach is based on the L, Wasserstein distance but does not exploit these closed
form expressions; instead we obtain computational ef ciency by leveraging the EP
framework and using the quantile function form of the L, Wasserstein distance for
univariate distributions. We believe our work paves the way for further practical
approaches to Wasserstein-distance-based Bayesian inference.

2.7 Related Works of Conditional Moment Restriction

We review conditional moment restriction (CMR) models [Newey, 1993; Ai and
Chen, 2003; Dikkala et al., 2020] in this section and the models have a wide range
of applications in causal inference, economics, and nance modeling, where for
correctly-speci ed models the conditional mean of certain functions of data equals
zero almost surely. This kind of models also appear in Mendelian randomization,
a technique in genetic epidemiology that uses genetic variation to improve causal
inference of a modi able exposure on disease [Davey Smith and Ebrahim, 2003;
Burgess et al., 2017a]. Rational expectation models [Muth, 1961], widely-used in
macroeconomics, measures how available information is exploited to form future
expectations by decision-makers as conditional moments [Muth, 1961]. Furthermore,
CMRs have also gained popularity in the community of causal machine learning,
leading to novel algorithms such as generalized random forests [Athey et al., 2019],
double/debiased machine learning [Chernozhukov et al., 2018] and nonparametric IV
regression [Bennett et al., 2019; Muandet et al., 2020b]; see also related works therein,
as well as in of ine reinforcement learning [Liao et al., 2021].

This thesis focuses on CMR based estimation with the application to IV regression
(introduced in Section 2.4). Therefore, we mainly review literature on the CMR based
estimation for IV regression.

Classical methods for IV regression often rely on a linearity assumption in which
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a two-stage least squares (2SLS) is the most popular technique [Angrist et al., 1996].
The generalized method of moments (GMM) of Hansen [1982], which imposes the
orthogonality restrictions, can also be used for the linear IV regression. For nonlinear
regression, numerous methodologies have been developed in the eld of nonpara-
metric IV [Newey and Powell, 2003; Hall and Horowitz, 2005; Blundell et al., 2007;
Horowitz, 2011] and recent machine learning [Hartford et al., 2017; Lewis and Syrgka-
nis, 2018; Bennett et al., 2019; Muandet et al., 2020b; Singh et al., 2019]. However,
these estimators have complicated structures in general. The nonparametric IV is an
ill-posed problem or requires estimating a conditional density. The machine learning
methods needs two-stage estimation or minimax optimization. As a result, it is not
easy to obtain an asymptotic distribution of estimation errors and to simply apply
learning algorithms such as the stochastic gradient descent (SGD), e.g., see Daskalakis
and Panageas [2018] for the limitation of SGD with minimax problems.

Several extensions of 2SLS and GMM exist for the nonlinear IV problem. In
the two-stage approach, the function f(x) has often bgen obtained by solving a
Fredholm integral equation of the rst kind E[YjZ] = f(x)dP(XjZ). In Newey
and Powell [2003]; Blundell et al. [2007]; Horowitz [2011]; Chen and Pouzo [2012],
linear regression is replaced by a linear projection onto a set of known basis functions.
A uniform convergence rate of this approach is provided in Chen and Christensen
[2018]. However, it remains an open question how to best choose the set of basis
functions. In Hall and Horowitz [2005] and Darolles et al. [2011], the rst-stage
regression is replaced by a conditional density estimation of P(XjZ) using a kernel
density estimator. Estimating conditional densities is a dif cult task and is known to
perform poorly in high dimension [Tsybakov, 2008].

The IV regression has also recently received attention in the machine learning
community. Hartford et al. [2017] proposed to solve the integral equation by rst
estimating P(XjZ) with a mixture of deep generative models on which the function
f(x) can be learned with another deep NNs. Instead of NNs, Singh et al. [2019]
proposed to model the rst-stage regression using the conditional mean embedding
of P(XjZ) [Song et al., 2009, 2013; Muandet et al., 2017] which is then used in the
second-step kernel ridge regression. In other words, the rst-stage estimation in Singh
et al. [2019] becomes a vector-valued regression problem. The critical drawback of
these algorithms is that they involve the intermediate rst-stage regression which may
not be of our primary interest. In an attempt to alleviate this drawback, Muandet et al.
[2020b] and Liao et al. [2020] reformulate the two-stage procedure as a convex-concave
saddle-point problem. The DuallV [Muandet et al., 2020b] has a quadratic objective
function similar to ours, but its RKHS is applied on (Z,Y) which cannot be interpreted
as a valid instrument. In contrast, the approach of Liao et al. [2020, Appendix F] is
highly related to GMM and provides a dual reformulation of our method by using a
RKHS for the inner maximization. Besides, the starting points of these works differ
from ours. In both DuallV and Liao et al. [2020], they started from the population
risk functional, whereas we start from the CMR. The fact that they arrive at the same
objective highlights a deeper connection which requires further investigation.

Our work follows in spirit many GMM-based approaches for IV regression, namely,
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Lewis and Syrgkanis [2018]; Bennett et al. [2019]; Muandet et al. [2020a]. We apply
the MMR framework of Muandet et al. [2020a] to the IV regression problem, whereas
Muandet et al. [2020a] only considers a conditional moment (CM) testing problem. In
fact, this framework was initially inspired by Lewis and Syrgkanis [2018] and Bennett
et al. [2019] which instead parametrize the instruments by deep NNs and Muandet
et al. [2020b] which proposes the dual formulation of the two-stage procedure. By
combining the GMM framework with RKHS functions, our objective function can be
evaluated in closed-form. As a result, our IV estimate can be obtained by minimizing
the empirical risk, as opposed to an adversarial optimization used in Lewis and
Syrgkanis [2018] and Bennett et al. [2019]. Furthermore, unlike existing two-stage
procedures [Angrist et al., 1996; Hartford et al., 2017; Singh et al., 2019], our algorithm
does not require the rst-stage regression. It is important to note that, concurrent
to our work, Dikkala et al. [2020] extends the work of Lewis and Syrgkanis [2018]
to an algorithm similar to our MMR-IV (RKHS) [Dikkala et al., 2020, Section 4].
Although both work employs RKHSs in the minimax frameworks, Dikkala et al.
[2020] incorporate a Tikhonov regularization on hin (6.2) and resort to the representer
theorem [Schélkopf et al., 2001a] to develop the analytical objective function, whereas
we impose a unit-ball constraint which is a form of Ivanov regularization [lvanov
et al., 2002] and enables not to rely on such a theorem.

Beyond the IV regression, there are numerous prior studies that are related to
ours, especially in policy evaluation, reinforcement learning, and causal inference. We
leave the review of them to Appendix D.4.

2.8 Summary

In this chapter, we rst review different technical prerequisites, including the Poisson
and Hawkes processes, the Gaussian process model, the approximate Bayesian infer-
ence approaches, the Wasserstein distance and the conditional moment restriction
respectively. We then review the related development of these techniques. The prereg-
uisite are essential for the methods proposed in the following four chapters. In the
next chapter, we present an ef cient non-parametric Bayesian inference framework
for estimation of the Hawkes process. The approach is developed based on the
branching structure of the Hawkes process and exploit Gibbs sampling and Laplace
approximation.



Chapter 3

Gibbs Sampling and Laplace
Approximation Based Ef cient
Inference

In this chapter, we present a general framework for the ef cient non-parametric
Bayesian inference of Hawkes processes. The contents are categorized as:

(i)
(ii)

(iii)

(iv)

In Section 3.1, we rst review a prerequisite of our work, the Laplace Bayesian
Poisson process.

In Section 3.2, we propose an ef cient non-parametric Bayesian framework for
the Hawkes process by combining Gibbs sampling and the Laplace Bayesian
Poisson process. We exploit block Gibbs sampling [Ishwaran and James, 2001]
to iteratively sample the latent branching structure, the background intensity m
and the triggering kernel f from their posterior distributions. In each iteration,
the point data are decomposed as a cluster of Poisson processes based on the
sampled branching structure and the posterior distributions of mand f are
estimated using the resulting cluster processes. Our framework is close to
the stochastic Expectation-Maximization (EM) algorithm [Celeux and Diebolt,
1985] where posterior mand f are estimated [Lloyd et al., 2015; Walder and
Bishop, 2017] in the M-step and random samples of mand f are drawn. We
adapt the approach of the recent non-parametric Bayesian estimation for Poisson
process intensities, termed Laplace Bayesian Poisson process (LBPP) [Walder
and Bishop, 2017], to estimate the posterior f given the sampled branching
structure. Especially in Section 3.2.4, we utilize the nite support assumption
of the Hawkes Process to speed up sampling and computing the probability of
the branching structure. We theoretically show our method to be of linear time
complexity.

In Section 3.3, we furthermore explore the connection with the EM algorithm
[Dempster et al., 1977] and develop a second variant of our method, as an
approximate EM algorithm.

In Section 3.4, we empirically show our method enjoys linear time complexity
and can infer known analytical kernels, i.e., exponential and sinusoidal kernels.
On two large-scale social media datasets, our method outperforms the current

23
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state-of-the-art non-parametric approaches and the learned kernels re ect the
perceived longevity for different content types.

3.1 Laplace Bayesian Poisson Process

In this section, we introduce a prerequisite of our work, the Laplace Bayesian Poisson
process (LBPP) [Walder and Bishop, 2017]. LBPP has been proposed for the non-
parametric Bayesian estimation of the intensity of a Poisson process. To satisfy
non-negativity of the intensity function, LBPP models the intensity function | as
a permanental process [Shirai and Takahashi, 2003], i.e.| = g f where the link
function g(z) = z% 2 and f() obeys a Gaussian process (GP) prior. Alternative
link functions include exp( ) [Mgller et al., 1998; Diggle et al., 2013] and g(z) =

| (1+ exp( 2)) ®[Adams et al., 2009] where | is constant.

The choice g(z) = z%/ 2 has the analytical advantages; for some covariances the
log-likelihood can be computed in closed form [Lloyd et al., 2015; Flaxman et al., 2017].
LBPP exploits the Mercer expansion [Mercer, 1909] of the GP covariance function
k(x,y) Cov(f(x),f(y)), namely,

K
k(x,y)= & lia(x)ea(y), (3.1)
i=1

where for non-degenerate kernels, K = ¥ . The eigenfunctions f g( )giK: , are chosen
to be orthonormal in L2(W, M ) for some sample spaceW with the measure M . f()
can be represented as a linear combination ofg( ) [Rasmussen and Williams, 2005,
section 2.2] as below

f()=w'e(), w N (0,L), (3.2)

where L = diag(l 1,1 2, .l ) is a diagonal covariance matrix and e( ) = fei()g,
is a (column) vector of basis functions. Computing the posterior distribution of
the intensity function | is equivalent to estimating the posterior distribution of w
which, in LBPP, is approximated by a normal distribution (as known as Laplace
approximation introduced in Section 2.2.3). That is

log p(wjx,W,K)  log N (wjw, Q),

where x = fx; gi’\il is a set of point data, W the sample space andk the Gaussian
process kernel function. W is selected as the mode of the true posterior and Q the
negative inverse Hessian of the true posterior at W:

W = argmax log p(wjx, W, k), (3.3)
w
Q 1= fuwrlog p(wjx, W,K)j, = - (3.4)

The approximate posterior distribution of f(x) is expressed as the following normal
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distribution [Rasmussen and Williams, 2005, section 2.2]:
f(x) N (W'e(x),e(x)"Qe(x)) N (n,s?). (3.5)
Furthermore, the posterior distribution of | (x) = f(x)?/2 is a Gamma distribution:
Gamma(tja, b) = b?t? le P/ a), (3.6)

where a=(n?+ s2)?/ (4n’s?2+ 2s%) and b = (n?+ s?)/ (2n?s? + s%).

3.2 Inference via Sampling

We now detail our ef cient non-parametric Bayesian estimation algorithm for Hawkes
processes, which employs block Gibbs sampling to iteratively draw samples from
the posterior distributions of m(constant background intensity) and f () (triggering
kernel). Our method starts with random ny and f o( ), and iterates by cycling through
the following four steps ( k is the iteration index):

(i) Calculate p(Bjx,f 1,m 1), the distribution of the branching structure B given
the data x, triggering kernel f 1, and background intensity my ; (see details in
Section 3.2.1).

(i) Sample a branching structure By from p(Bjx,f 1,m 1) (Section 3.2.1).

(iii)y Estimate p(fjBy,x) (Section 3.2.3) andp(njBy, x) (Section 3.2.2).
(iv) Sample a sample f  and m from p(f jBy, x) and p(njBy, X), respectively.

By standard Gibbs sampling arguments, the samples of f and mdrawn in the step (iv)
converge to the desired posterior, modulo the Laplace approximation for estimation

of p(f jBy, x) in (ii)). As the method is based on block Gibbs sampling [Ishwaran and

James, 2001], we term itGibbs-Hawke this chapter.

3.2.1 Distribution and Sampling of the Branching Structure

The branching structure B has a data structure of tree (as Figure 1.1(b)) and consists
of independent triggering events. Therefore, we may sample a branching structure by
sampling a parent for each x; independently, where sampling exploits the probabilities
of triggering events for x;, namely, f p;; g}:é as de ned in Equation (2.2). The sampled
branching structure separates a set of points into immigrants and offspring (introduced
in Chapter 1). Immigrants can be regarded as a sequence generated from PP{), where
PP(m) is a Poisson process owning an intensity m and can be used to estimate the
posterior distribution of m

The key property which we exploit in the subsequent Section 3.2.2 and Section 3.2.3

is the following. Denote by fxl((i)g::lzxil, the Ny, offspring is generated by point Xx;. If

such a sequence isalignedto an origin at x;, yielding Sy, = ftﬁ') XigI’:l:il' then the
aligned sequence is drawn from PP(f ) over [0, T-x;] where [0, T] is the sample domain
of the Hawkes process. The posterior distribution of f is estimated on all such aligned
sequences.
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3.2.2 Posterior Distribution of m

Continuing from the observations in Section 3.2.1, note that if we are given a set of
points fx;gM, (M  N) generated by PP(r) over W= [0, T], the likelihood for fx;gM,
is the Poisson likelihood, p(f xigM jmW) = e ™ (nir)M/ M!. For simplicity, we place
a conjugate (Gamma) prior on nil, nfir  Gamma(a, b); the Gamma-Poisson conjugate
family conveniently gives the posterior distribution of  niT, i.e, p(nTjf xigM ,, a,b) =
Gamma(a+ M, b+ 1). We choose the scalea and the rate b in the Gamma prior by
making the mean of the Gamma posterior equal to N and the variance M/ 2, which is
easily shown to correspond to a= M and b = 1. Finally, due to conjugacy we obtain
the posterior
p(njf xigM ,,a,b) = Gamma(2M, 2T).

3.2.3 Posterior Distribution of f

We handle the posterior distribution of the triggering kernel f given the branching
structure in an analogous manner to the LBPP method of Walder and Bishop [2017].
That is, we assume thatf () = f?( )/ 2 where f( ) is Gaussian process distributed
as described in Section 3.1. In line with [Walder and Bishop, 2017], we consider the
sample domain [0,p] and the so-called cosine kernel

k(x,y) = & | g&y(x)ey(y). (3.7)
g o0

| g = 1/ (a(g®)™+ b), (3.8)

g (x) = (2/ p)t? P 129 % cos(gx). (3.9)

Here, g is a multi-index with non-negative (integral) values, [] is the indicator
function, aand b are parameters controlling the prior smoothness, and we let m = 2.
The choice of m affects the rate of change or shape ofl 4 with g and results in different
priors: for large m| ¢ decreases rapidly with g, giving a-priori preference to smoother
functions. So do the parameters aand b. This basis is orthonormal w.r.t. the Lebesgue
measure on W =[0,p]. The expansion Equation (3.7)is an explicit kernel construction
based on the Mercer expansion as per Equation(3.1), but other kernels may be used,
for example by Nystrém approximation of the Mercer decomposition [Flaxman et al.,
2017].

As mentioned at the end of Section 3.2.1, by conditioning on the branching
structure we may estimate f by considering the alignedsequences. In particular,
letting Sy, denote the aligned sequence generated byx;, the joint distribution of w
and S= fS, g, is calculated as [Walder and Bishop, 2017],

: o 2 1 7 2 1 7 1
log p(w,S\W, k)= g a log= w' e(Dt) -w'(A+L H)w+ C, (3.10)
i=1Dt25, 2 2
h i

£T % T - 1 Kip
e(t)e(t)' dt, C:= 2Iog (2p)"jLj
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where K is the number of eigenfunctions and L is de ned in Equation (3.2). Note that
there is a subtle but important difference between the integral term above and that of

Walder and Bishop [2017], namely, the limit of integration; closed-form expressions

for the present case are provided in Section A.1 of the appendix. Putting the above
equation into Equation (3.3)and Equation (3.4), and we obtain the mean W and the
covariance Q of the (Laplace) approximate log-posterior in w:

W = argmax log p(w, W, k), (3.11)
w
N
Q= & & 2eDt)e(Dt)T/ (W'e(Dt))?+ A+ L L (3.12)
i=1Dt2S,,

Then, the posterior f is achieved by Equation (3.5) and (3.6).

3.2.4 Computational Complexity

For the LBPP method, constructing Equation (3.10)and (3.12)takes O(NyK?) where
K is the number of basis functions and N, is the number of offspring. Optimizing
w (Equation (3.11) is a concave problem, which can be solved ef ciently. If L-
BFGS is used,O(CK) will be taken to calculate the gradient on each w where C is
the number of steps stored in memory. Computing Q requires inverting a K K
matrix, which is O(K3). As a result, the complexity of estimating the conditional
probability p(f jB) is O((No+ K)K?). In terms of estimating p(njB) taking O(1), the
complexity of estimating p(njB) and p(f jB) is linear to the number of data. The time
taken to sample mand f is minor (O(1) and O(K) respectively), so estimation time
dominates. Although the naive complexity for pj; is O(N?), Halpin [2012] provides
an optimized approach to reduce it to O(N), which relies on the nite support
assumption of Hawkes processes. The nite support assumption  says that the value
of the triggering kernel is negligible when the input is large [Halpin, 2012, p. 9]. As a
result, the step of sampling branching structures can also be run in O(N) and points
with negligible impacts on another point are not sampled as its parents. Interestingly,
in comparison with LBPP, while our model is in some sense more complex, it enjoys
a more favorable computational complexity. In summary, we have the following
complexities per iteration and in Section 3.4, we validate the complexity on both
synthetic and real data.

Table 3.1: Time complexity.

Operation  p(njB) Pij p(f jB) overall
Complexity O(1) O(N) O((No+ K)K?) O((N + K)K?)
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Figure 3.1: A visual summary of the Gibbs-Hawkes, EM-Hawkes and the EM algorithms. The
differences between them are (1) the number of sampled branching structures and (2) selected
f and mfor p;. In contrast with with Gibbs-Hawkes, the EM-Hawkes method draws multiple
branching structures at once and calculates p;; using M.A.P. f and m The EM algorithm is
equivalent to sampling in nite branching structures and exploiting M.A.P. or constrained
M.L.E. f and mto calculate p;; (see Section 3.3).

3.3 Maximum-A-Posterior Estimation

We explore a connection between the sampler of Section 3.2 and the EM algorithm,
which allows us to introduce an analogous but intermediate scheme between them.

In contrast to the random sampler of Section 3.2, the proposed scheme employs a
deterministic maximum-a-posterior{M.A.P.) sampler.

3.3.1 Relationship to EM

At the very beginning of this chapter, we mentioned the connection between our
method and the stochastic EM algorithm [Celeux and Diebolt, 1985]. The difference
is in the M-step; to perform EM [Dempster et al., 1977], we need only modify our
sampler by: (a) sampling in nite branching structures at each iteration, and (b) re-
calculating the probability of the branching structure with the M.A.P.  mand f, given
the in nite set of branching structures. More speci cally, maximizing the expected log
posterior distribution to estimate M.A.P. mand f given in nite branching structures
is equivalent to maximizing the EM objective in the M-step (see Section A.2 of the
appendix for the detailed derivation). Finally, note that the above step (b) is identical
to the E-step of the EM algorithm.

3.3.2 EM-Hawkes

Following the discussion above, we propose EM-Hawkes an approximate EM algo-
rithm variant of Gibbs-Hawkes proposed in Section 3.2. Speci cally, at each iteration
EM-Hawkes (a) samples a nite number of cluster assignments (to approximate the
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Figure 3.2: Computation time (seconds) Figure 3.3: Running time (seconds) per
for calculating p;; and sampling branch- iteration on ACTIVE and SEISMIC.

ing structures, with and without Halpin's

speed up.

expected log posterior distribution), and (b) nds the M.A.P. triggering kernels and
background intensities rather than sampling them as per block Gibbs sampling (the
M-step of the EM algorithm). An overview of the Gibbs-Hawkes, EM-Hawkes and
EM algorithm is illustrated in Figure 3.1.

Note that under our LBPP-like posterior, nding the most likely triggering kernel
f is intractable (see details in Appendix A.3). As an approximation, we take the
element-wise mode of the marginal distributionsof ff (xi)gi’\i1 to approximate the
mode of the joint distribution of the ff (x;)gl .

3.4 Experiments

We now evaluate our proposed approaches — Gibbs-Hawkes and EM-Hawkes — and
compare them to three baseline models, on synthetic data and on two large Twitter
online diffusion datasets. The three baselines are:

() A naive parametric Hawkes equipped with a constant background intensity and
an exponential (Exp) triggering kernel f = ajaxexp( at), a;, & > 0, estimated
by maximum likelihood.

(i) Ordinary differential equation (ODE)-based non-parametric non-bayesian Hawkes
[Zhou et al., 2013].

(iii) Wiener-Hopf (WH) equation based non-parametric non-bayesian Hawkes [Bacry
and Muzy, 2016]. Codes of ODE based and WH based methods are publicly
available [Bacry et al., 2017].
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3.4.1 Synthetic Data

We employ two toy Hawkes processes to generate data, both having the same back-
ground intensity m= 10, and cosine (Equation (3.13) and exponential (Equation (3.14)
triggering kernels respectively. Note that compared to the cosine triggering kernel, the
exponential one has a larger L2 norm for its derivative, and the difference is designed
to test the performance of the approaches in different situations. We can check that
both triggering kernels have negligible values when the input is large in the domain
which we will choose as [0,p], so the nite support assumption is satis ed.

foos(X) = cog(3px)+ 1, x2[0,1; 0, otherwise; (3.13)
fexp(X) =5exp( 5x), x O. (3.14)

Prediction. For three baseline models and EM-Hawkes, the predictions njeq and
f preq @re taken to be the M.A.P. values, while for Gibbs-Hawkes we use the posterior
mean.

Evaluation. Each toy model generates 400 point sequences oveW = [ 0,p ], which
are evenly split into 40 groups, 20 for training and 20 for test. Each of the three
methods t on each group, i.e, summing log-likelihoods for 10 sequences (for the
parametric Hawkes) or estimating the log posterior probability of the Hawkes process
given 10 sequences (for Gibbs-Hawkes and EM-Hawkes) or tting the superposition
of 10 sequences [Xu et al., 2018]. Since the true models are known, we evaluate
tting results using Ege relative L2 distance betweep predicted and true  mand f ( ):

di2(Gpred, Grue) = ( \ Gpred(t)  Gtrue (1) dt)llzl( W(gtrue(t))zdt)ll2

Table 3.2: Empirical performance comparison between algorithms (columns) with different
measures (rows). Top: relative L2 distance to known f and m and AVG denoted the average
of L2 errors of f and m bottom:mean predictive log likelihood on real data. Bold nhumbers
denote the best performance and the underlined numbers for the second best.

Data Exp ODE WH Gibbs EM

f cos 0.661 0.553 1.000 0.338 0.318
Mos 0.069 0.071 1.739 0.078 0.119
AVG cos 0.365 0.312 1.3700.208 0.219
fexp 0.120 0.610 1.000 0.147 0.140
Mexp 0.086 0.309 4.631 0.103 0.204

AVGexp 0.103 0.460 2.816 _0.125 0.172

ACTIVE 2369 2.370 1.315 2.580 2.592
SEISMIC 3.335 3.357 2.131 3.576 3.578

Experimental Details. For Gibbs-Hawkes and EM-Hawkes, we must select pa-
rameters of the GP kernel (Equation (3.7), (3.8) and (3.9)). An arbitrary choice of
them can lead to poor performance, and to this end, we apply the standard cross
validation based on the log-likelihood. We choose the number of basis functions in
[8,16,32,64,12Band a= bfrom [0.2,0.02, ,2 10 8. We found that having many
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basis functions leads to a high tting accuracy, but low speed. So, we use 32 basis
functions which provides a suitable balance. In terms of kernel parameters a, b of
Equation (3.8), we observed that large values return smooth triggering kernels which
have a large distance to the ground truth, while small values result in non-smooth pre-
dictions which however have small log-likelihoods. As a result, the values a b= 0.002
were chosen. 5000 iterations are run to t each group and rst 1000 are ignored (i.e.
burned-in).

(a) Exponential synthetic data (b) ACTIVE vs. SEISMIC (c) Categories Music vs. Pets

Figure 3.4: Learned Hawkes triggering kernels using our non-parametric Bayesian approaches.
Each red or blue area shows the estimated posterior distributions of f, while the solid lines
indicate the 10, 50 and 90 percentiles. In Figure (a), a synthetic dataset simulated usingf exp(t)
(in gray) is t using Gibbs-Hawkes (in red) and EM-Hawkes (in blue); Figure (b) presents
learning outcomes on Twitter data in ACTIVE (in red) and SEISMIC (in blue); Figure (c)
presents learning outcomes on Twitter data associated with two categories in the ACTIVE set:
Music (in red) and Pets & Animals (in blue).

Results. The top section of Table 3.2 shows the mean relative L2 distance between
the learned and the true f and mon toy data. First, Gibbs-Hawkes and EM-Hawkes
are the closest the models to the ground truth cosine model according to the average
error values (AVG qs). For the exponential simulation model, both approaches gain
the second and the third lowest errors respectively among all methods, and as
expected, the parametric Hawkes — which uses an exponential kernel — ts the model
best. In contrast, the parametric model retrieves the cosine model worse because
of its mismatch with the ground truth model. The learned triggering kernels for
f exp @nd f cos by our approaches are shown in Figure 3.4(a) and Figure A.1 in the
appendix. The ODE-based method performs unsatisfactorily on both simulation
settings and it is observed that it performs better on (M, f cos) than on (Mexp, f exp)-
We explain the second observation as that the regularization of the ODE-based method
encourages those triggering kernels that have small L2 norms for their derivatives
and the derivative of f exp(X) has a larger norm than that of f ¢os(x). Notably, tuning
the hyper-parameters of the WH method is challenging, and Table 3.2 shows the
best result obtained after a rather exhaustive experimentation. We speculate that the
overall better performance of our approaches is due to the regularization induced by
the prior distributions and less dif cult hyper-parameter selection. In addition, we
also note that EM-Hawkes always performs better at discovering triggering kernels
than Gibbs-Hawkes and this observation also holds on the real-life data. Thus, we
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conclude that generating multiple samples per iteration tends to improve modeling

of the triggering kernels. In summary, compared with state-of-the-art methods, our
approaches achieve better performances for data generated by kernels from several
parametric classes; as expected, the parametric models are only effective for data
generated from their own class.

Effect of Halpin's Procedure. In Section 3.2.4, we show that using Halpin's
procedure reduces the complexity of calculating p;; from quadratic to linear. We
now empirically validate this speed-up. To distinguish between quadratic and linear
complexity, we compute the ratio between running time and data size, shown in
Figure 3.2. The ratio when using Halpin's procedure remains roughly constant as data
size increases (the ratio increases linearly without the optimization), which implies
that Halpin's procedure renders linear calculation of estimating p;; and sampling
branching structures. Later, we show the linear complexity of our method on real-
world data.

3.4.2 Twitter Diffusion Data

We evaluate the performance of our two proposed approaches on two Twitter datasets
that consist of retweet cascades. A retweet cascade contains an original tweet, together
with its direct and indirect retweets. Current state of the art diffusion modeling
approaches [Zhao et al., 2015; Mishra et al., 2016; Rizoiu et al., 2018] are based on the
self-exciting assumption: users get in contact with online content, and then diffuse it

to their friends, therefore generating a cascading effect. The two datasets we use have
been employed in prior works and they are publicly available:

(i) ACTIVE [Rizoiu et al., 2018] owns 41k retweet cascades, each containing at
least 20 (re)tweets with links to Youtube videos. It was collected in 2014 and
each Youtube video (and therefore each cascade) is associated with a Youtube
category, e.g.,Music or News

(i) SEISMIC [Zhao et al., 2015] owns 166k randomly sampled retweet cascades,
collected in from Oct 7 to Nov 7, 2011. Each cascade contains at least 50 tweets.

Setup. The temporal extent of each cascade is scaled td0,p], and assigned to
either training or test data with equal probability. We bundle together groups of 30
cascades of similar size, and we estimate one Hawkes process for each bundle. Unlike
for the synthetic dataset, for the retweet cascades dataset there is notrue Hawkes
process to evaluate against. Instead, we measure using log-likelihood how well the
learned model generalizes to the test set. We use the same hyper-parameters values
as for the synthetic data. Finally, we follow the prior works on these cascade datasets
[Zhao et al., 2015; Rizoiu et al., 2018] by setting the background intensity mas 0O,
because the cascade datasets contain only the information of triggering relationships.

Fitting Performance. For each dataset, we calculate the log-likelihood per event
for each tweet cascade obtained by three baselines and our approaches (Table 3.2).
Visibly, our proposed methods consistently outperform baselines, with EM-Hawkes
performing slightly better than Gibbs-Hawkes (by 0.5% for ACTIVE and 0.06% for
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SEISMIC). This seems to indicate that online diffusion is in uenced by factors not
captured by the parametric kernel, therefore justifying the need to learn the Hawkes
kernels non-parametrically. As mentioned in the synthetic data part, the WH-based
method has a disadvantage of hard-to-tune hyper-parameters, which leads to the
worst performance among all methods.

Scalability. To validate the linear complexity of our method, we record running
time per iteration of Gibbs-Hawkes on ACTIVE and SEISMIC in Figure 3.3. The
running time rises linearly with the number of points increasing, in line with the
theoretical analysis. Linear complexity makes our method scalable and applicable on
large datasets.

Interpretation. We show in Figure 3.4(b) and 3.4(c) the learned kernels for in-
formation diffusions. We notice that the learned kernels appear to be decaying and
long-tailed, in accordance with the prior literature. Figure 3.4(b) shows that the kernel
learned on SEISMIC is decaying faster than the kernel learned on ACTIVE. This indi-
cates that non-speci c (i.e. random) cascades have a faster decay than video-related
cascades, presumably due to the fact that Youtube videos stay longer in the human
attention. This connection between the type of content and the speed of the decay
seems further con rmed in Figure 3.4(c), where we show the learned kernels for two
categories in ACTIVE: Music and Pets & Animals Cascades relating toPets & Animals
have a faster decaying kernel than Music, most likely because Music is an ever-green
content.

3.5 Summary

In this chapter, we provided the rst non-parametric Bayesian inference procedure
for the Hawkes process which requires no discretization of the input domain and
has an advantage of a linear time complexity. Our method iterates between two
steps. First, it samples the branching structure, effectively transforming the Hawkes
process into a cluster of Poisson processes. Next, it estimates the Hawkes triggering
kernel using a non-parametric Bayesian estimation of the intensity of the cluster
Poisson processes. We provide both a full posterior sampler and an EM estimation
algorithm based on our ideas. We demonstrated our approach can infer exible
triggering kernels on simulated data. On two large Twitter diffusion datasets, our
method outperforms the state-of-the-art in held-out likelihood. Moreover, the learned
non-parametric kernel re ects the intuitive longevity of different types of content.
The linear complexity of our approach is corroborated on both the synthetic and real
problems. The present framework is limited to the univariate unmarked Hawkes
process and will be extended to marked multivariate Hawkes process.

The Bayesian Hawkes process model in this chapter is a Gaussian latent model
so an advanced Laplace approximation based approach, i.e., the Integrated nested
Laplace approximation (INLA) [Rue et al., 2009, 2017], is applicable. INLA is ap-
plicable to the case of univariate posterior marginals of latent variables and hyper-
parameters. More speci cally, we could apply INLA in each iteration of Gibbs
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sampling by introducing an additional prior distribution for hyper-parameters g. As
per Rue et al. [2009], INLA rst approximates indirectly the posterior distribution of
g, say p(qjD), an(hthen approximates the posterior distribution of w; by integrating
out g, p(wijD) = p(wjjg,D)p(qjD) dq (for algorithmic details see Rue et al. [2009]).
Both steps apply Laplace approximation and the main difference from our Laplace
approximation application includes: (1) INLA aims to model univariate marginal
distributions while we focus on the joint distribution; (2) INLA's indirect approxi-
mation to the posterior g can result in non-Gaussian distributions, which enables
more exible modeling. (3) INLA considers a distribution for hyper-parameters,
which increases computational burden: e.g. integrating out qin computing p(w;jD)
often needs numerical integration. We may also apply INLA to the Bayesian Hawkes
process without the Gibbs sampling framework, which needs deeper investigation.

In the next chapter, we will introduce a sparse Gaussian process modulated
Hawkes process model and propose variational inference for it.



Chapter 4

Variational Inference for Sparse
Gaussian Process Modulated
Hawkes Process

In this chapter, we propose the sparse Gaussian process modulated Hawkes process
which employs a novel variational inference schema, has an advantage of a linear
time complexity per iteration and scales to large real-world data. Our method is
inspired by the variational Bayesian Poisson process (VBPP) [Lloyd et al., 2015] which
provides the Bayesian non-parametric inference only for the whole intensity of the
Hawkes process without for its components: the background intensity mand the
triggering kernel f. Thus, the VBPP loses the internal reactions between points, and
developing the variational Bayesian non-parametric inference for the Hawkes process
is non-trivial and more challenging than the VBPP. In this paper, we adapt the VBPP
for the Hawkes process and term the new approach the variational Bayesian Hawkes
process (VBHP). The structure of this chapter is as follows:

() In Section 4.1, we rst review a prerequisite of our approach, LBPP.

(i) In Section 4.2, we introduce a Bayesian non-parametric Hawkes process, which
employs a sparse Gaussian process modulated triggering kernel and a Gamma
distributed background intensity. We propose a new variational inference
schema for such a model which is an EM-like two-step iterative algorithm.
Speci cally, we employ the branching structure of the Hawkes process so that
maximization of the evidence lower bound (ELBO) is tractable. As a result, it
introduces extra constraints to the ELBO. To deal with the constraints, we apply
the expectation-maximization algorithm to minimize the ELBO.

(ii) In Section 4.3, we contribute a tighter ELBO which improves the tting perfor-
mance of our model.

(iv) In Section 4.4, we propose a new acceleration trick based on the nite support
assumption of the triggering kernel. The new trick enjoys higher ef ciency than
prior methods and accelerates the variational inference schema to linear time
complexity per iteration.

(v) In Section 4.5, we empirically show that VBHP provides more accurate predic-
tions than state-of-the-art methods on synthetic data and on two large online

35
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diffusion datasets. We validate the linear time complexity and faster convergence
of our accelerated variational inference schema compared to the Gibbs sampling
method, and the practical utility of our tighter ELBO for model selection, which
outperforms the common one in model selection.

4.1 Variational Bayesian Poisson Process

Before presenting our approach, we rst review Variational Bayesian Poisson process
(VBPP) [Lloyd et al., 2015], which is a prerequisite of our method. VBPP applies the
VI to the Bayesian Poisson process, which exploits the sparse Gaussian process (GP)
to model the Poisson intensity. Speci cally, VBPP uses a squared link function to map

a sparse GP distributed function f to the Poisson intensity | () = f2( ). The sparse
GP employs the ARD kernel for given x,y 2 RR:

R 2
= (Xr  yr)
k(x,y) = ex —_— .
(xy)=g9 91 p 28,
where g and fa;g, are GP hyper-parameters. Letu = ( f(z1), f(z2), , f(zm))

where fzgM , are inducing points. The prior and the approximate posterior distribu-
tions of u are Gaussian distributions,

p(u) = N (Uj0,Kzz)  g(u) = N (ujm,S),

where m is the mean vector, and K,, and S are the covariance matrices. Note both u
and function evaluations f employ zero mean priors. Notations of VBPP are connected
with those of VI (Section 2.2.4) in Table 4.1.

Table 4.1: Notations.

VBHP VBPP VI
D = fxgl, D:=fxgl, D
B,mf,u f,u f
ko,co, faigR ;.9 fagl, g q

k.c,m, S, fagR,,g,ff qijg}:égi’il m,S,fagi, g o°

Importantly, the variational joint distribution of  f and u uses the exact conditional
distribution p(fju), i.e.,
q(f,u)  p(fju)a(u) (4.1)

which in turn leads to the posterior GP:
q(f) = N (fjn,S), (4.2)
n(x)  KyK,'m,
S(x, XY Ko+ KK, (SK,E DKy
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Then, the ELBO is obtained by using Equation (2.7):

ELBO(q(f,u), p(Djf,u), p(f,u)) = Eqrllog p(Dj )] KL(a(u)jjp(u)).

Note that the second term is the KL divergence between two multivariate Gaussian
distributions, so is available in closed form. The rst term turns out tgsbe the
expectation w.r.t. g(f) of the log-likelihood log p(Djf) = &{L,log f2(x;)  ; f2 The
expectation of the integral part is relatively straight-forward to compute and the
expectation of the other (data-dependent) part is available in almost closed-form with
a hyper-geometric function.

4.2 \Variational Bayesian Hawkes Process

4.2.1 Notations

To extend VBPP to Hawkes process, we introduce two more variables: the background
intensity mand the branching structure B, de ned in Section 2.1.2. We assume that
the prior distribution of mis a Gamma distribution p(m) = Gamma(njko, co)* and
the posterior distribution is approximated by another Gamma distribution g(m =
Gamma(njk, c). Given a datasetD = fxigY ,, the branching structure is expressed
asB = fhigl, with b; = fb; g}:é de ned around Equation (2.1). Asb; 2f0,1gis a
binary variable and there is only one b; equal to 1 among b; = fb; g}zé (one point
has a unique parent), b; hence has a categorical distribution. We let the variational
posterior probability of b = 1 be denoted asq; = q(j = 1) and there must be

é}:éqij = 1. As a result, the variational posterior probability of B is expressed as:

Nl by
aB) =00 qijl- (4.3)
i=1j=0

The same squared link function is adopted for the triggering kernel f ()= f2(), so
are the priors for f and u, namely N (fj0, K40 and N (uj0,K ). More link functions
such as exp( ) are discussed by Lloyd et al. [2015]. Moreover, we use the same
variational joint posterior on f and u as Equation (4.1). Consequently, we complete
the variational joint distribution on all latent variables as below:

q(B,mf,u) a(B)a(mp(fju)qg(u), (4.4)

and notations of VBHP are summarized in Table 4.1. The variational posterior
probability of B (Equation (4.3)) has the same form as that of the true posterior, so
it is a good approximation. The variational joint distribution q(B,m f,u) assumes
independence between the modeled variables, which is not the case for the true joint
posterior distribution, e.g. the branching structure B is closely dependent on the

rﬁ(o 1e x/ o

‘Gamma(njko, co) = o)
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background intensity mand the function f. Thus such an approximation is not perfect.
The approximation error is insigni cant in practice and our experiments demonstrate
the effectiveness of the proposed approximation.

Based on Equation (2.7) and (4.4), we obtain the ELBO for VBHP as below (see
details in Section B.1 of the appendix). To differentiate with the tighter ELBO presented
later in Section 4.3, we name the below one as the common ELBO (CELBO).

CELBO(q(E%,mf,U),p(DJB,rinf,U),p(B,mf,U))
:|Eq(B,mf) Iog{p(D,ij,n)}+HB KL(a(mijjp(m) KL(a(uw)jjp(u)). (4.5)
Z

Data Dependent Expectation (DDE)

where Hg = & i’\ilé}:éqij log g;; is the entropy of the variational posterior B. The
KL terms are between gamma and Gaussian distributions, for which closed forms are
provided in Section B.2 of the appendix.

4.2.2 Data Dependent Expectation

Now, we are left with the problem of computing the data dependent expectation
(DDE) in Equation (4.5). The DDE is w.r.t. I:she variational posterior probability
q(B,m f). From Equation (4.4), q(B,mf) = q(B,mf,u) du = q(B)a(mq(f) and
g(f) is identical to Equation (4.2). As a result, we can compute the DDE w.r.t. q(B)
rst, and then w.r.t. g(m) and g(f).

Expectation w.r.t. g(B). From Equation (2.3), we easily obtain log p(D, Bjf,m by
replacing f with f2, whereupon itis clear that only by in log p(D, Bjf,n) is dependent
on B. Therefore, E 4g)[log p(D, Bj f,m] is computed as:

NI N Z
Eqpllog p(D.Bjf.mM]= & & gjlog f7+ gologm  § . 2 njT ]
i=1 j=1 i=1 i
where fij = f(Xi Xj).

Expectation w.r.t. g(f) and g(nm). We compute the expectation w.r.t. q(f) and g(m
by exploiting the expectation and the log expectation of the Gamma distribution:
Eqm(m = kcand Eym(log(m) = y(k) + logc, and also the property E(x?) =
E(x)%+ Var(x):

N hiol
DDE = & @ djEqn(log f{) + go y(K) + logc
|—% =1 7 i
T_Eg(f)(f) JVargn(f) kT,

R
where y is the Digamma function. We provide closed form expressions for T, Eg(f)(f)
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R
and  Vary)(f) in Section B.3 of the appendix. As in VBPP,
Eqn(log f8) = &( nf/ (2Sy))+ log(S;/2) C

is available in the closed form with a hyper-geometric function, where n; = n(x;  x;),
Sij = S(xi  X;,Xi Xj) (nand S are de ned in Equation (4.2)), C  0.57721566s the
Euler-Mascheroni constant and & is de ned as

€(z) = 1FM*9(0,1/2, 2),

that is, the partial derivative of the con uent hyper-geometric function 1F w.r.t. the
rst argument. We compute & using the method of Ancarani and Gasaneo [2008] and
implement G and GPby linear interpolation of a lookup table.

4.2.3 Predictive Distribution of f

The predictive distribution of f(x) depends on the posterior u. We assume that the
optimal variational distribution of u approximates the true posterior distribution,
namely q(ujD,q°) = N (ujm ,S) p(ujD,q). Therefore, there is

zZ

a(fiD,q°) = p(fju)a(ujD,q®) dq
Z

p(fju)p(ujD,q) dg= p(fjD,q),

and we thus use q(f(X)jD,q°) as the the approximate predictive distribution which

is calculated as
Z

q(f(x)jD,a%) = p(f(Nju)a(uiD,q®) du
= N (KzK,'m Kz KoK, 3Kz + Kz K, A4S K, 3K )
N (fi,5?).
Given the relation f = f2, it is straightforward to derive the corresponding approxi-

mate posterior of f (X) -
f(X) Gamma(k,?)

where the shape k = ( 2+ §2)2/ [252(2i2 + §2)] and the scale& = 282(2/% + §2)/ (i +
52,
4.3 New Variational Inference Schema

We now propose a new variational inference (V1) schema which uses a tighter ELBO
than the common one, i.e.
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Theorem 1. For VBHP, there is a tighter ELBO

h i
lEq(B,mf) log p(D,Bjf,m + H? log p(D).
Z

TELBO

Remark. TELBO is tighter because it is equivalent to the CELBO (Equafb)) except
without subtracting non-negative KL divergences owgaindu. Thus, it is easy to see that the
gap between the TELBO araly p(D) is

log p(D) TELBO= KL(a(mjjp(m) KL(a(u)jjp(u))+ KL(q(B,m f,u)jjp(B,m f,ujD)).

The aggregate effect of the three KL terms is rather challenging to understand and needs further
investigation. Other graphical models such as the variational Gaussian mixture model [Attias,
1999] have a similar TELBO. Later on, we propose a hew VI schema based on the TELBO,
where the TELBO will be applied to selecting the hyper-parameters as it provides a tighter
approximation to the log marginal likelihood compared to CELBO.

Proof. With the variational posterior probability of the branching structure  q(B) de-
ned in Equation (4.3) and through the Jensen's inequality, we have:

log p(D) & da(B)log p(D,B) + Hg, (4.6)
B

where Hg is the entropy of B de ned in Equation (4.5). The term & 5 q(B) log p(D, B)
can be understood as follows. Consider that in nite branching structures are drawn
from q(B) independently, say f Big ;. Given a branching structure B;, the Hawkes
process can be decomposed into a cluster of Poisson processes, denoted afD, B;),
and the corresponding log-likelihood is log p(D, Bj). Then, & 5 q(B) log p(D, B) is the
mean of all log likelihoods flog p(D, Bj)g ;,

. 1
I!m —
nl ¥ n 1 ¥ B

Il Qo

.o N o
log p(D.B)) = lim, & —>log p(D,B) = § q(B)log p(D,B),  (4.7)
i ' B
where ng is the number of occurrences of branching structure B. Since all branching
structures f Bjg’. , are i.i.d., the clusters of Poisson processes generated ovef Big% ,
should also be independent, i.e., f (D, Bj)g< , are i.i.d.. It follows that

log p(D, B;) = log p(f (D, B))g-,). (4.8)
1

11 Qo «

We compute the CELBO of log p(f (D, Bi)g ;) by making z = (mf,u) and x =
f(D,B;)gL , in Equation (2.7):
log p(f(D,B)giz1) Eqrm log p(f(D,B)GL,jif, m] (4.9)
KL(a(mjjp(m) KL (q(u)jj p(u)).
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Further, we plug Equation (4.8) and (4.9) into Equation (4.7):

Equation (4.7) = lim %Iog p(f(D,Bi)git,)

@ 1 -
lim ﬁEq(f,r@ log p(f (D, Bi)giz 1 f, M]

(b) .. o N .
= Jim & Eqrm log p(D,Bjf,m
ma

= Eytme) log p(D,Bjf,m

where (a) is because the nite values of KL terms are divided by in nitely large  n, and
(b) is due to i.i.d. (D, B;) and the variational posterior B being independent of f and m
Finally, we plug the above inequality into Equation (4.6) and obtain the TELBO. O

4.3.1 New Optimization Schema for VBHP

To optimize the model parameters under constraints é}:%qij = 1, we employ the
expectation-maximization algorithm. Speci cally, in the E step, all g;; are optimized
to maximize the CELBO, and in the M step, m, S, k and c are updated to increase the
CELBO. We don't use the TELBO to optimize the variational distributions because
it doesn't guarantee minimizing the KL divergence between variational and true
posterior distributions. Instead, the TELBO is employed to select GP hyper-parameters:

fa,gt,,g = argmax TELBO.
faigiF\;]_rg

The TELBO bounds the marginal likelihood more tightly than CELBO, and is there-
fore expected to lead to a better predictive performance — an intuition which we
empirically validate in Section 4.5.

The updating equations for ¢; are derived through maximization of Equation (4.5)
under the constraints é}:éqij = 1for all i. This maximization problem is dealt with

the Lagrange multiplier method, and yields the below updating equations:

( .
o = exp(Eq(ry(log )/ A, j> 0;
I - .
' gexp(y(K)/ A, =0,

where A; = gexp(y (k) + é}:iexp(Eq(f)(log fijz)) is the normalizer.

Furthermore, and similarly to VBPP, we x the inducing points on a regular grid
over T. Despite the observation that more inducing points lead to better tting
accuracy [Lloyd et al., 2015; Snelson and Ghahramani, 2006], in the case of our more
complex VBHP, more inducing points may cause slow convergence (Figure B.2(a) in
the appendix) for some hyper-parameters, and therefore lead to poor performance in
limited iterations. Generally, more inducing points improve accuracy at the expense
of longer tting time.
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4.4 Acceleration Trick

4.4.1 Time Complexity Without Acceleration

In the E step of model optimization, updating g requires computing the mean and
the variance of all f;j, which both take O(M3+ M?2N?) with N points in the HP and
M inducing points. Here, we omit the dimension of data R since normally M > R
for a regular grid of inducing points. Similarly, in the M step, computing the hyper-
geometric term requires the means and variances of all the fj;. Finally, computation
of the integral terms takes O(M3N). Thus, the total time complexity per iteration is
O(M3N + M?2N?).

4.4.2 Acceleration to Linear Time Complexity

To accelerate our VBHP, similarly to Zhang et al. [2019] we exploit the nite support
assumption of the triggering kernel, assuming the kernel has negligible values for
suf ciently large inputs. As a result, suf ciently distant pairs of points do not enter
into the computations. This trick reduces possible parents of a point from all prior
points to a set of neighbors. The number of relevant neighbors is bounded by a
constant C and as a result the total time complexity is reduced to O(CM3N).

Speci cally, we introduce a compact region S = rR: 1[S{”"‘,S{”"""] T so that
f(xi x)=0andg;=0if x; X;62SAsaresul, alltermsrelatedto x; x;62S
vanish. To choose a suitable S, we again use the TELBO, taking the smallest S for
which the TELBO doesn't drop signi cantly; we optimize ~ S™" and S™ by grid search
with other dimensions xed (so that this step is run R times in total) and we optimize
SN after optimizing S,

Rather than selecting pairs of points in each iteration in the manner of Halpin's
trick [Halpin, 2012; Zhang et al., 2019], our method pre-computes those pairs, leading
to gains in computational ef ciency. The similar aspect is that both tricks have hyper-
parameters to select to threshold the triggering kernel value. We employ the TELBO
for hyper-parameter selection while frequentist methods use the cross validation.

4.5 Experiments

45.1 Evaluation

We employ two metrics: the rstis the L, distance (for cases with a known ground
truth), which measures the differggce between predictive and truth Hawkes kernels,
formulated as La(f pred. ftrue) = (1 (Fprea(X)  firue (X)) 2 dX)%° and La(Mpreq, Mrue) =
JMyed Mrej; the second is the hold-out log likelihood ( HLL ), which describes how
well the predictivggmodel ts the test data, formulated as  log P(Drest = fxigl ;jm f) =
aitqlogl (xi) 1 | . To calculate the HLL for each process, we generate a number
of test sequences by every time randomly assigning each point of the original process
to either a training or testing sequence with equal probability; HLLs of test sequences
are normalized (by dividing test sequence length) and averaged.
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(a) Variational posterior trigger- (b) TELBO (c) L2 distance for f
ing kernel

Figure 4.1: The relationship between the log marginal likelihood and the L, distance. In
(a), the true f g, (dash green) is plotted with the median (solid) and the [0.1, 0.9] interval
(lled) of the approximate posterior triggering kernel obtained by VBHP and Gibbs Hawkes
(10 inducing points). It uses the maximum point of the TELBO (red star in (b)). In (c), the
maximum point of the TELBO is marked. The maximum point overlaps with that of the
CELBO. [0,1.4 is used as the support of the predictive triggering kernel and 10 inducing
points are used.

4 5.2 Prediction

We use the pointwise mode of the approximate posterior triggering kernel as the
prediction because it is computationally intractable to nd the posterior mode at
multiple point locations [ Zhang et al., 2019]. Besides, we exploit the mode of the
approximate posterior background intensity as the predictive background intensity.

45.3 Baselines

We use the following models as baselines.

() A parametric Hawkes process equipped with the sum of exponential ( SumExp)
triggering kernel f(x) = &K, ad exp( ax) and the constant background
intensity.

(i) The ordinary differential equation ( ODE) based non-parametric hon-Bayesian
Hawkes process [Zhou et al., 2013]. The code is publicly available [Bacry et al.,
2017].

(iii) Wiener-Hopf ( WH) equation based non-parametric non-Bayesian Hawkes pro-
cess [Zhou et al., 2013]. The code is publicly available [Bacry et al., 2017].

(iv) The Gibbs sampling based Bayesian non-parametric Hawkes process Gibbs
Hawkes) [Zhang et al., 2019].

For fairness, the ARD kernel is used by Gibbs Hawkes and corresponding eigen-
functions are approximated by Nystrom method [Williams and Seeger, 2001], where
regular grid points are used as VBHP. Different from batch training in [ Zhang et al.,
2019], all experiments are conducted on single sequences.
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(a) Expected TELBO (training) (b) HLL

(c) Time VS inducing points (d) Time VS data size

Figure 4.2: Figure (a), (b): The relationship between the TELBO and the HLL. Figure (c), (d):
Average tting time (seconds) per iteration. In Figure (a), the maximum point is marked by
the red star. In Figure (b), the maximum points of the TELBO and CELBO are marked by
red and blue stars. Figure (c) is plotted on 50 processes. Figure (d) shows the tting time of
Gibbs Hawkes (star) and VBHP (circle) on 120 processes. 10 inducing points are used unless
speci ed.

Table 4.2: Results on synthetic and real-world data (mean  one standard variance). VBHP
(C) and (T) use the CELBO and the TELBO to update the hyper-parameters respectively. Bold
numbers denote the best performance.

Measure  Data SUmEXp ODE WH Gibbs Hawkes VBHP (C) VBHP (T)
£:0.693 928 0.665 0121 2.463 0145  0.408 108  0.152 ggo1 0.183 o076

Sin m2.968 1640 4.514 3808 6.794 5054  4.108 3949  0.640 0528 0.579 0523

L, Cos f:0.473 9102 0.697 00es 1.743 0033  0.667 ge86  0.325 9073 0.292 0096
m2.751 1902 7.030 5662 6.099 4613  4.685 4421  0.555 0204 0.515 0203

Exp £:0.133 0138 1.8350530 2.254 2042  0.676 0233  0.257 gogs 0.235 0102

m3.290 1991 8.969 ggos 16.66 2095  7.648 947  0.471 9432 0.486 0418

Sin 3.490 0400 3.489 0413 3.233 0273 3492 0406  3.488 0400 3.497 0.406

Cos 3.874 0544 3.872 0552 3.613 0373 3.871 9562  3.876 o541 3.878 o548

HLL Exp 2.825 9481 2.822 9496 2.782 9490 2.826 o492 2.826 9491 2.829 g.4g7

ACTIVE  1.692 1371 0.880 2716 0.710 goss  1.323 2160  1.824 1150 1.867 1181
SEISMIC  2.94309s9 2.582 1665 1.489 1705  3.110 1251  3.143 ggos 3.164 o843
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4.5.4 Synthetic Experiments

Synthetic Data. Our synthetic data are generated from three Hawkes processes over
T =[0,p], whose triggering kernels are sin, cos and exp functions respectively, shown
as below, and whose background intensities are the same m= 10:

fsin(X) = 0.9sin(3x) + 1],x 2 [0,p/2 ]; otherwise, O;
f cos(X) = cog(2x) + 1,x 2 [0,p/2 ]; otherwise, O;
fexp(X) = 5exp( 5x),x 2 [0,¥).

As a result, for any generated sequence, sayf x; gi’il, T, =[0,p Xxi]is used in the
CELBO and the TELBO. We can check that all three triggering kernels have negligible
values when the input is large, so the nite support assumption is satis ed.

Model Selection. As the marginal likelihood p(Djq) is a key advantage of our
method over non-Bayesian approaches [Zhou et al., 2013; Bacry and Muzy, 2016], we
investigate its ef cacy for model selection. Figure 4.1(b) shows the contour plot of the
approximate log marginal likelihood (the TELBO) of a sequence. It is observed that the
contour plot of the TELBO has agreement to the contour plots of L,(f) (Figure 4.1(c)) —
GP hyper-parameters with relatively high marginal likelihoods have relatively low L,
errors. Figure 4.1(a) plots the posterior triggering kernel corresponding to the maximal
approximate marginal likelihood. Similar agreement is also observed between the
TELBO and the HLL (Figure 4.2(a), 4.2(b)). This demonstrates the practical utility of
both the marginal likelihood itself and our approximation of it.

Evaluation. To evaluate VBHP on synthetic data, 20 sequences are drawn from
each model and 100 pairs of train and test sequences drawn from each sample to
compute the HLL. We select GP hyper-parameters of Gibbs Hawkes and of VBHP
by maximizing approximate marginal likelihoods. Table 4.2 shows evaluations for
baselines and VBHP (using 10 inducing points for trade-off between accuracy and time,
so does Gibbs Hawkes) in both L, and HLL. VBHP achieves the best performance but
is two orders of magnitudes slower than Gibbs Hawkes per iteration (shown as Figure
4.2(c) and 4.2(d)). The speed of VBHP is limited by its complicated implementation,
such as the linear interpolation of the lookup table when computing G as Section
4.2.2, and we could accelerate it with more advanced implementation techniques.
Although the Gibbs Hawkes is based on the Markov Chain Monte Carlo algorithm
and is expected to return more accurate results, it employs Laplace approximation per
iteration and leads to approximation error, which is one of the causes of the inferior
performance. The TELBO performs closely to the CELBO in the L, error and this
is also re ected in Figure 4.1(c) where the maximum points of the TELBO and the
CELBO overlap. In contrast, the TELBO consistently improves the performance of
VBHP in the HLL, which is also re ected in Figure 4.2(b) where hyper-parameters
selected by the TELBO tend to have a higher HLL. Interestingly, when the parametric
model SumExp uses the same triggering kernel (a single exponential function) as the
ground truth f exp, SUMEXp ts f ey bestin L, distance while due to learning on single
sequences, the background intensity has relatively high errors. Although our method
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is not aware of the parametric family of the ground truth, it performs well. Compared
with non-parametric frequentist methods which have strong tting capacity but suffer
from noisy data and have dif culties with hyper-parameter selection, our Bayesian
solution overcomes these disadvantages and achieves better performance.

4.5.5 Real World Experiments

Real World Data. We conclude our experiments with two large scale tweet datasets.
ACTIVE [Rizoiu et al., 2018] is a tweet dataset which was collected in 2014 and
contains 41k (re)tweet temporal point processes with links to Youtube videos. Each
seguence contains at least 20 (re)tweets. SEISMIC [Zhao et al., 2015] is a large
scale tweet dataset which was collected from October 7 to November 7, 2011, and
contains 166k (re)tweet temporal point processes. Each sequence contains at least 50
(re)tweets.

Evaluation. Similarly to synthetic experiments, we evaluate the tting performance
by averaging HLL of 20 test sequences randomly drawn from each original datum.
We scale all original datato T =[0,p] (leadingto T =[0,p  x] used in the CELBO
and the TELBO for a sequencef xigi'i 1) and employ 10 inducing points to balance
time and accuracy. The model selection is performed by maximizing the approximate
marginal likelihood. The obtained results are shown in Table 4.2. Again, we observe
similar predictive performance of VBHP: the TELBO performs better the CELBO;
VBHP achieves best scores. This demonstrates our Bayesian model and novel VI
schema are useful for exible real life data.

Fitting Time. We further evaluate the tting speed 2 of VBHP and Gibbs Hawkes
on synthetic and real-world point processes, which is summarized in Figure 4.2(c) and
4.2(d). The tting time is averaged over iterations and we observe that the increasing
trends with the number of inducing points and with the data size are similar between
Gibbs Hawkes and VBHP. Although VBHP is signi cantly slower than Gibbs Hawkes
per iteration, VBHP converges faster, in 10 20 iterations (Figure B.2 of the appendix),
giving an average convergence time of 549 seconds for a sequence of 1000 events,
compared to 699 seconds for Gibbs Hawkes. The slope of VBHP in Figure 4.2(d) is
1.04 (log-scale) and the correlation coef cient is 0.96, so we conclude that the tting
time is linear to the data size.

4.6 Conclusions

In this chapter, we presented a new Bayesian non-parametric Hawkes process whose
triggering kernel is modulated by a sparse Gaussian process and background intensity
is Gamma distributed. We provided a novel VI schema for such a model: we employed
the branching structure so that the common ELBO is maximized by the expectation-
maximization algorithm; we contributed a tighter ELBO which performs better in
model selection than the common one. To address the dif culty with scaling with the

2The CPU we use is Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz and the language is Python 3.6.5.



84.6 Conclusions 47

data size, we utilize the nite support assumption of the triggering kernel to reduce the
number of possible parents for each point. Different from prior acceleration methods,
ours enjoys higher ef ciency. On synthetic data and two large Twitter diffusion
datasets, VBHP enjoys linear tting time with the data size and fast convergence rate,
and provides more accurate predictions than those of state-of-the-art approaches. The
novel ELBO is also demonstrated to exceed the common one in model selection.

Comparison with the Approach in Chapter 3.  The approach in Chapter 3 simi-
larly exploits the Hawkes process branching structure and the nite support assump-
tion of the triggering kernel, while it builds on Gibbs sampling. It considers only
high-probability triggering relationships in computations for acceleration. However,
those relationships are updated in each iteration, which is less ef cient than our pre-
computing them. Besides, our variational inference schema enjoys faster convergence
than that of the Gibbs sampling based method.

Both methods in this chapter and the last chapter are designed based on classical
approximate Bayesian inference, we propose a new approximate inference technigue
which outperforms classical ones in the next chapter.
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Chapter 5

Quantile Propagation for
Wasserstein-Approximate Gaussian
Processes

Approximate inference techniques are the cornerstone of probabilistic methods based
on Gaussian process (GP) priors. Despite this, most work approximately optimizes
standard divergence measures such as the Kullback-Leibler (KL) divergence, which
lack the basic desiderata for the task at hand, while chie y offering merely technical
convenience. In this chapter, we develop an ef cient approximate Bayesian scheme
that minimizes a speci c class of Wasserstein distances (WDs), which we refer to as
the L, WD. Our method overcomes some of the shortcomings of the KL divergence
for approximate inference with GP models. The contents of this chapter is organized
as below:

() In Section 5.1, we rst introduce the background and motivation of the new
work.

(i) In Section 5.2, we develop quantile propagation (QP), an approximate inference
algorithm for models with GP priors and factorized likelihoods. Like the
expectation propagation (EP) algorithm, QP does not directly minimize global
distances between high-dimensional distributions. Instead, QP estimates a fully
coupled Gaussian posterior by iteratively minimizing localdivergences between
two particular marginal distributions. As these marginals are univariate, QP
boils down to an iterative quantile function matching procedure (rather than
moment matching as in EP)— hence we term our inference scheme quantile
propagation We derive the updates for the approximate likelihood terms and
show that while the QP mean estimates match those of EP, the variance estimates
are lower for QP.

(ii) In Section 5.3, we show that like EP, QP satis es the locality property, meaning
that it is suf cient to employ univariate approximate likelihood terms, and
that the updates can thereby be performed ef ciently using only the marginal
distributions. Consequently, although our method employs a more complex
divergence than that of EP (L, WD vs KL), it has the same computational
complexity, after the precomputation of certain (data independent) lookup

49
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tables.

(iv) In Section 5.4, we employ eight real-world datasets and compare our method to
EP and variational Bayes (VB) on the tasks of binary classi cation and Poisson
regression. We nd that in terms of predictive accuracy, QP performs similarly
to EP but is superior to VB. In terms of predictive uncertainty, however, we nd
QP superior to both EP and VB, thereby supporting our claim that QP alleviates
variance over-estimation associated with the KL divergence when approximating
short-tailed distributions [Minka, 2005; Jylanki et al., 2011; Heess et al., 2013].

5.1 Introduction

Gaussian process (GP) models have attracted the attention of the machine learning
community due to their exibility and their capacity to measure uncertainty. They
have been widely applied to learning tasks such as regression [Matheron, 1963],
classi cation [Williams and Barber, 1998; Hensman et al., 2015] and stochastic point
process modeling [Mgller et al., 1998; Zhang et al., 2019]. However, exact Bayesian
inference for GP models is intractable for all but the Gaussian likelihood function.
To address this issue, various approximate Bayesian inference methods have been
proposed, such as Markov Chain Monte Carlo [MCMC, see e.g.Neal, 1997], the
Laplace approximation [Williams and Barber, 1998], variational inference [Jordan
et al., 1999; Opper and Archambeau, 2009] and expectation propagation [Opper and
Winther, 2000; Minka, 2001c].

The existing approach most relevant to this work is expectation propagation (EP),
which approximates each non-Gaussian likelihood term with a Gaussian by iteratively
minimizing a set of local forward Kullback-Leibler (KL) divergences. As shown by
Gelman et al. [2017], EP can scale to very large datasets. However, EP is not guaranteed
to converge, and is known to over-estimate posterior variances [Minka, 2005; Jylanki
et al., 2011; Heess et al., 2013] when approximating a short-tailed distribution. By
over-estimation, we mean that the approximate variances are larger than the true
variances so that more distribution mass lies in the ineffectivedomain. Interestingly,
many popular likelihoods for GPs results in short-tailed posterior distributions, such
as Heaviside and probit likelihoods for GP classi cation and Laplacian, Student's t
and Poisson likelihoods for GP regression.

The tendency to over-estimate posterior variances is an inherent drawback of the
forward KL divergence for approximate Bayesian inference. More generally, several
authors have pointed out that the KL divergence can yield undesirable results such as
(but not limited to) over-dispersed or under-dispersed posteriors [Dieng et al., 2017;
Li and Turner, 2016; Hensman et al., 2014].

As an alternative to the KL, optimal transport metrics—such as the Wasserstein
distance [WD, Villani, 2008, §6]—have seen a recent boost of attention. The WD is a
natural distance between two distributions, and has been successfully employed in
tasks such as image retrieval [Rubner et al., 2000], text classi cation [Huang et al.,
2016] and image fusion [Courty et al., 2016]. Recent work has begun to employ the
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WD for inference, as in Wasserstein generative adversarial networks [Arjovsky et al.,
2017], Wasserstein variational inference [Ambrogioni et al., 2018] and Wasserstein
auto-encoders [Tolstikhin et al., 2017]. In contrast to the KL divergence, the WD is
computationally challenging [Cuturi, 2013], especially in high dimensions [Bonneel
et al., 2015], in spite of its intuitive formulation and excellent performance.

5.2 Quantile Propagation

We now propose our new approximation algorithm which, as summarized in Algo-
rithm 2 (Appendix), employs an L, WD based projection rather than the forward KL
divergence projection of EP. Although QP employs a more complex divergence, it
has the same computational complexity as EP, with the following caveat. To match
the speed of EP, it is necessary to precompute sets of (data independent) lookup
tables. Once precomputed, the resulting updates are only a constant factor slower
than EP —a modest price to pay for optimizing a divergence which is challenging
even to evaluateAppendix C.10 provides further details on the precomputation and
use of these tables.

As stated in Proposition 1, minimizing W3(g(f;), N (f;)) is equivalent to minimiz-
ing the L, distance between quantile functions of g(f;) and N (f;), so we refer to our
method as quantile propagation (QP). This section focuses on deriving local updates
for the site functions and analyzing their relationships with those of EP. Later in
Section 5.3, we show the locality property of QP, meaning that the site function t(f)
has a univariate parameterization and so the local update can be ef ciently performed
using marginals only.

5.2.1 Convexity of L, Wasserstein Distance

We rst show Wg(q(f), N (fjms?)) to be strictly convex in mand s. Formally, we
have:

Theorem 2. Given two probability measures M 1 (R): a GaussiarN (m s?) with meanm
and standard deviatios > 0, and an arbitrary measure, WE(q, N ) is strictly convex inm
ands.

Proof. See Appendix C.4. O

5.2.2 Minimization of L, WD

An advantage of using the L, WD with p = 2, rather than other choices of p, is the
computational ef ciency it admits in the local updates. As we show in this section,
optimizing the L, WD vyields neat analytical updates of the optimal n7 and s? that
require only univariate integration and the CDF of g(f). In contrast, other L, WDs
lack convenient analytical expressions. Nonetheless, other L, WDs may have useful
properties, the study of which we leave to future work.
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The optimal parameters n7 and s corresponding to the L, WD W3(g,N (ms?))
can be obtained using Proposition 1. Speci cally, we employ the quantile function
reformulation of W3(g, N (ms?)), and zero its derivatives w.r.t. mand s. The results
provided below are derived in section C.1.:

? _
nm = m,
z, z
?

_ _Zy
s’ = P 2 R Myerf 2y 1)dy=1 P 2p e [ef "R(D D g5 (5.1)
0 ¥

Interestingly, the update for mmatches that of EP, namely the expectation under g.
However, for the standard deviation we have the dif culty of deriving the CDF R, If
a closed form expression is available, we can apply numerical integration to compute
the optimal standard deviation; otherwise, we may use sampling based methods to
approximate it. In our experiments we employ the former.

5.2.3 Properties of the Variance Update

Given the update equations in the previous section, here we show that the standard
deviation estimate of QP, denoted as sgp, is less or equal to that of EP, denoted assgp,
when projecting the same tilted distribution to the Gaussian space.

Theorem 3. The variances of the Gaussian approximation to a univariate tilted distribution
&(f) as estimated by QP and EP satisfg,  sZp.

Proof. See Appendix C.5. O

Corollary 3.1. The variances of the site functions updated by EP and QP sa&é{y: 82p,
and the variances of the approximate posterior marginals saﬁgy séEp.

Proof. Since the cavity distribution is unchanged, we can calculate the variance of the
site function as per Equation (2.11)and conclude that the variance of the site function
also satis es eép 8Z5. Moreover as per the de nition of the cavity distribution in

Section 2.2.5, the approximate marginal distribution is proportional to the product

of the cavity distribution and the site function q(f;) pu g"(f)t(f;), which are two
Gaussian distributions. By the product of Gaussians formula (Equation (2.11), we
know the variance of q(f;) estimated by EP assZgp = (8zf + s;%) ' = sZ and
similarly sZop = S§p, Where s, and s§p are de ned in Theorem 3. Thus, there is
Saop  Saep O

Corollary 3.2. The predictive variances of latent functions»at by EP and QP satisfy:
s3p(f(x))  sZ(f(x)).

Proof. The predictive variance of the latent function was analyzed in [Rasmussen and
Williams, 2005, Equation (3.61)]:s%(f )= k  kT(K+ 8) k ,

wherewe dene f = f(x )and k = k(x ,x ), andletk =(k(x ,x))N, be the
(column) covariance vector between the test data x and the training data fxigi’\il.



85.3 Locality Property 53

After updating parameters of the site function t;(f;), the predictive variance can be
written as (details in Appendix C.9):
stw(f)=k kTAk + kTs;s'k /[(8? 8?) 1+ Al

I,new

where 872, is the site variance updated by EP or QP, A = (K+ 8) 'and s; isthe i's

column of A. Sincee’, 87 We have sgo(f)  sZp(f ). O

Remark. We compared variance estimates of EP and QP assuming the same cavity distribu-
tion. Proving analogous statements for the xed points of the EP and QP algorithms is more
challenging, however, and we leave this to future work, while providing empirical support for
these analogous statements in Figure 5.1(a) and Figure 5.1(b).

5.3 Locality Property

In this section we detail the central result on which our QP algorithm is based upon,
which we refer to as the locality property That is, the optimal site function t; is
de ned only in terms of the single corresponding latent variable f;, and thereby and
similarly to EP, it admits a simple and ef cient sequential update of each individual
site approximation.

5.3.1 Review: Locality Property of EP

We provide a brief review of the locality property of EP for GP models; for more
details see Seeger [2005]. We begin by de ning the general site function t;(f) in
terms of all of the latent variables, and the cavity and the tilted distributions as
q"(f) u p(f) Oje;i () and g(f) o™ (f)p(yijfi), respectively. To update ti(f), EP
matches a multivariate Gaussian distribution N (f) to g(f) by minimizing the KL
divergence KL (gkN ), which is further rewritten as (see details in Appendix C.6.1):

h _ i
KL @kN = KL gkN; + Eq KL qikNyj (5.2)

where and hereinafter, niji denotes the conditional distribution of f,; (taking f; out of
f) given f;, namely, qﬂ:ji = q"(fyjfi) and Ny;; = N (fjfi). Note that quji and N
in the second term in Equation (5.2)are both Gaussian, and so setting them equal to
one another causes that term to vanish. Furthermore, it is well known that the term
KL gkN; is minimized w.r.t. the parameters of N; by matching the rst and second
moments of g and N;. Finally, according to the usual EP logic, we recover the site
function t;(f) by dividing the optimal Gaussian N (f) by the cavity g"(f):

(F) pN(F)/ o™ () = N (fuifi)N (f)/ (" (fujf)a" (f)) = N (f;)/ q" (). (5.3)

Here we can see the optimal site function t;( f;) relies solely on the local latent variable
fi, so it is suf cient to assume a univariate expression for site functions. Besides, the
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site function can be ef ciently updated by using the marginals g(fj) and N (f;) only,
namely, t;(f;) © miny, KL(&kN;))/ o"(f;) .

5.3.2 Locality Property of QP

This section proves the locality property of QP, which turns out to be rather more
involved to show than is the case for EP. We rst prove the following theorem, and
then follow the same procedure as for EP (Equation (5.3)).

Theorem 4. Minimization of W3(g(f),N (f)) w.rt. N (f) resultsing™ (f;jf) = N (fhjfi).
Proof. See Appendix C.6. O

Theorem 5 (Locality Property of QP) . For GP models with factorized likelihoods, QP
requires only univariate site functions, and so yields ef cient updates using only marginal
distributions.

Proof. We apply the same steps as in Equation (5.3) for the EP case to QP and
we conclude that the site function t;(f;) p N (f;)/ g"(f;) relies solely on the local
latent variable f;. And as per Equation (C.15) (Appendix C.6), N (f;) is estimated by
miny, W3(g,N;), so the local update only uses marginals and can perform ef ciently.
O

Bene ts of the Locality Property. The locality property admits an analytically
economic form for the site function t;(f;), requiring a parameterization that depends
on a single latent variable. In addition, this also yields a signi cant reduction in
the computational complexity, as only marginals are involved in each local update.
In contrast, if QP (or EP) had no such a locality property, estimating the mean and
the variance would involve integrals w.r.t. high-dimensional distributions, with a
signi cantly higher computational cost should closed form expressions be unavailable.

5.4 Experiments

In this section, we compare the QP, EP and variational Bayes [VB, Opper and Ar-
chambeau, 2009] algorithms for binary classi cation and Poisson regression. The
experiments employ eight real world datasets and aim to compare relative accuracy
of the three methods, rather than optimizing the absolute performance. The imple-
mentations of EP and VB in Python are publicly available [GPy, since 2012], and
our implementation of QP is based on that of EP. For both EP and QP, we stop local
updates, i.e., , the inner loop in Algorithm 2 (Appendix), when the root mean squared
change in parameters is less than10 ©. In the outer loop, the GP hyper-parameters
are optimized by L-BFGS-B [Byrd et al., 1995] with a maximum of 10° iterations and a
relative tolerance of 10 9 for the function value. VB is also optimized by L-BFGS-B
with the same con guration. Parameters shared by the three methods are initialized
to be the same.
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5.4.1 Binary Classi cation

Benchmark Data. We perform binary classi cation experiments on the ve real world
datasets employed by Kuss and Rasmussen [2005]: lonosphere (lonoS), Wisconsin
Breast Cancer, Sonar [Dua and Graff, 2017], Leptograpsus Crabs and Pima Indians
Diabetes [Ripley, 1996]. We use two additional UCI datasets as further evidence: Glass
and Wine [Dua and Graff, 2017]. As the Wine dataset has three classes, we conduct
binary classi cation experiments on all pairs of classes. We summarize the dataset
size and data dimensions in Table 5.1.

Table 5.1: Results on benchmark datasets. The rst three columns give dataset names, the
number of instances m and the number of features n. The table records the test errors (TES)
and the negative test log-likelihoods (NTLLs). The top section is on the benchmark datasets
employed by Kuss and Rasmussen [2005] and the middle section uses additional datasets.
The bottom section shows Poisson regression results. * indicates that QP outperforms EP in
more than 90% of experiments consistently

TE( 10 ?) NTLL( 10 9)
Data m n EP QP VB EP QP VB
lonoS 35134 7.9 g5 7.9 o5 189 g9 2159 g4 2159 g5 337.4 703
Cancer683 9 3.2p2 32902 3192 8823 88.2 5, 889 191
Pima 732 7 20.3 10 20.3 10 219 g4 424.7 130 4240 ;3, 4503 36
Crabs 200 7 2.7 o5 2.7 o5 3.7 o7 64.4 g> 64.3 ga 164.7 75
Sonar 2086014.0 117 14.0 ;1 25.7 39 306.7 108 306.2 10.9 693.1 g0
Glass 21410 1.104 1.0 04 26 05 29554 290 cc 795 g3
Winel 13013 15 g5 15 95 1.7 05 48.0 34 474 5, 83.9 5,
Wine2 10713 0.0 g0 0.0 990 0.0 g0 18.0 1> 178 4, 26.7 19
Wine3 11913 2.0 1.0 2.0 10 1.2 o7 52.1 56 51.8 56 69.4 59
Mining 112 1 118.6 27.0118.6 27.0170.3 15.91606.8 116.31606.5 115.32007.3 119.8

Note: Winel: Class 1 vs. 2. Wine2: Class 1 vs. 3. Wine3: Class 2 vs. 3.

Prediction. We predict the test labels using models optimized by EP, QP and VB on
the training data. For a testinput x with e}:pinary target y , the approximate predictive
distribution is written as: q(y jx ) = ¥¥ p(y jf )q(f ) df where f = f(x) is
the value of the latent function at x . We use the probit likelihood for the binary
classi cation task, which admits an analytical expression for the predictive distribution
and results in a short-tailed posterior distribution. Correspondingly, the predicted
label y is determined by thresholding the predictive probability at 1/2.

Performance Evaluation. To evaluate the performance, we employ two measures:
the test error (TE) and the negative test log-likelihood (NTLL). The TE and the NTLL
quantify the prediction accuracy and uncertainty, respectively. Speci cally, they are
denedas (A2,jy i Vii/2/mand (&2;logq(y ;jx i))/ m, respectively, for a
set of test inputs fx ;gT,, test labelsfy ;g ,, and the predicted labels fy ;g ,.
Lower values indicate better performance for both measures.
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Experiment Settings. In the experiments, we randomly split each dataset into
10 folds, each time using 1 fold for testing and the other 9 folds for training, with
features standardized to zero mean and unit standard deviation. We repeat this 100
times for a random seed ranging 0 through 99. As a result, there are a total of 1,000
experiments for each dataset. We report the average and the standard deviation of the
above metrics over the 100 rounds.

Results. The evaluation results are summarized in Table 5.1. The top section
presents the results on the datasets employed by Kuss and Rasmussen [2005], whose
reported TEs match ours as expected. While QP and EP exhibit similar TEs on
these datasets, QP is superior to EP in terms of the NTLL. VB under-performs both
EP and QP on all datasets exceptCancer . The middle section of Table 5.1 shows
the results on additional datasets. The TEs are again similar for EP and QP, while
QP has lower NTLLs. Again, VB performs worst among the three methods. To
emphasize the difference between NTLLs of EP and QP, we mark with an asterisk
those results in which QP outperforms EP in more than 90% of the experiments.
Furthermore, we visualize the predictive variances of QP in comparison with those
of EP in Figure 5.1(a)., which shows that the variances of QP are always less than
or equal to those of EP, thereby providing empirical evidence of QP alleviating the
over-estimation of predictive variances associated with the EP algorithm.

5.4.2 Poisson Regression

Data and Settings. We perform a Poisson regression experiment to further evaluate
the performance of our method. The experiment employs the coal-mining disaster
dataset [Jarrett, 1979] which has 190 data points indicating the time of fatal coal
mining accidents in the United Kingdom from 1851 to 1962. To generate training and
test sequences, we randomly assign every point of the original sequence to either
a training or test sequence with equal probability, and this is repeated 200 times
(random seedsO0, , 199, resulting in 200 pairs of training and test sequences. We
use the TE and the NTLL to evaluate the performance of the model on the test dataset.
The NTLL has the same expression as that of the Binary classi cation experiment, but
with a different predictive distribution q(y jx ). The TE is de ned slightly differently
as(&2,Jy i ¥ i)/ m. To make the rate parameter of the Poisson likelihood non-
negative, we use the square link function [Flaxman et al., 2017; Walder and Bishop,
2017], and as a result, the likelihood becomes p(yjf?). We use this link function
because it is more mathematically convenient than the exponential function: the EP
and QP update formulas, and the predictive distribution g(y jx ) are available in
Appendices C.3.2 and C.8, respectively.

Results. The means and the standard deviations of the evaluation results are
reported in the last row of Table 5.1. Compared with EP, QP vyields lower NTLL,
which implies a better tting performance of QP to the test sequences. We also
provide the predictive variances in Figure 5.1(b)., in the variance of QP is once again
seen to be less than or equal to that of EP. This experiment further supports our claim
that QP alleviates the problem with EP of over-estimation of the predictive variance.
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(a) Binary Classi cation (b) Poisson Regression

Figure 5.1: A scatter plot of the predictive variances of latent functions on test data, for EP
and QP. The diagonal dash line represents equivalence. We see that the predictive variance of
QP is always less than or equal to that of EP.

Finally, once again we nd that both EP and QP outperform VB.

5.5 Conclusions

We have proposed QP as the rst ef cient L,-WD based approximate Bayesian infer-
ence method for Gaussian process models with factorized likelihoods. Algorithmically,
QP is similar to EP but uses the L, WD instead of the forward KL divergence for
estimation of the site functions. When the likelihood factors are approximated by a
Gaussian form we show that QP matches quantile functions rather than moments
as in EP. Furthermore, we show that QP has the same mean update but a smaller
variance than that of EP, which in turn alleviates the over-estimation by EP of the
posterior variance in practice. Crucially, QP has the same favorable locality property
as EP, and thereby admits ef cient updates. Our experiments on binary classi cation
and Poisson regression have shown that QP can outperform both EP and variational
Bayes. Approximate inference with WD is promising but hard to compute, especially
for continuous multivariate distributions. We believe our work paves the way for
further practical approaches to WD-based inference.

Limitations and Future Work.  Although we have presented properties and ad-
vantages of our method, it is still worth pointing out its limitations. First, our method
does not provide a methodology for hyper-parameter optimization that is consistent
with our proposed WD minimization framework. Instead, for this purpose, we rely on
optimization of EP's marginal likelihood. We believe this is one of the reasons for the
small performance differences between QP and EP. Furthermore, the computational
ef ciency of our method comes at the price of additional memory requirements and
the look-up tables may exhibit instabilities on high-dimensional data. To overcome
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these limitations, future work will explore alternatives to hyper-parameter optimiza-
tion, improvements on numerical computation under the current approach and a
variety of WD distances under a similar algorithm framework.

Applications to Bayesian Hawkes Processes. Applying QP to Bayesian Hawkes
processes is a challenging task. This goal rst requires solving a less dif cult problem:
using the EP or QP algorithm for Bayesian Poisson processes. We didn't explore
QP for Poisson processes but for Poisson regression. Even for EP, the application
to Poisson processes is missing. The main reason is that Poisson processes involve
generally analytically intractable integrals in the likelihood and therefore are hard to
handle. Further to this problem, applying QP to Bayesian Hawkes processes will face
new problems, such as a high computational burden.

In the next chapter, we study a simple and robust frequentist estimation framework
beyond the Bayesian eld. The framework builds on the kernel maximum moment
restriction and is applicable to a wide range of models.



Chapter 6

Kernel Maximum Moment
Restriction for Instrumental
Variable Regression

In this chapter, we propose a simple estimation framework for conditional moment
restriction (CMR) models. We focus on instrumental variable (IV) regression models
and design the method based on the kernelized maximum moment restriction (MMR).
We organize the contents as below:

(i)
(ii)

(iii)

In Section 6.1, we introduce the background of IV regression and present an
overview of our proposed method.

In Section 6.2, we elaborate the prerequisites of our method: the detailed settings
of IV regression, generalized method of moment which is widely applied to
IV regression estimation and related to our method, and the kernelized MMR
framework which is formulated by maximizing the interaction between the
residual and the instruments belonging to a unit ball in a reproducing kernel
Hilbert space (RKHS).

In Section 6.3, we propose the simple framework for IV regression estimation
based on the kernelized MMR. Different from two-step optimization in most
of existing methods, our method reformulates the 1V regression estimation as
a single-step empirical risk minimization problem, where the risk depends on
the reproducing kernel on the instrument and can be estimated by a U-statistic
or V-statistic. We then present two practical algorithms by considering two
modern machine learning models, neural networks and kernel machines, in the
framework.

(iv) In Section 6.4, we present an ef cient hyper-parameter selection procedure.

v)
(vi)

In Section 6.5, we analyze consistency and asymptotic normality of our estimator
in both parametric and non-parametric settings.

In Section 6.6, we demonstrate the advantages of our framework over existing
ones using experiments on both synthetic and real-world data.

59



60 Kernel Maximum Moment Restriction for Instrumental Variable Regression

6.1 Introduction

Instrumental variables (IV) have become standard tools for economists, epidemiol-
ogists, and social scientists to uncover causal relationships from observational data
[Angrist and Pischke, 2008; Klungel et al., 2015]. Randomization of treatments or
policies has been perceived as the gold standard for such tasks, but is generally
prohibitive in many real-world scenarios due to time constraints or ethical concerns.
When treatment assignment is not randomized, it is generally impossible to discern
between the causal effect of treatments and spurious correlations that are induced by
unobserved factors. Instead, the use of IV enables the investigators to incorporate
natural variation through an IV that is associated with the treatments, but not with
the outcome variable, other than through its effect on the treatments. In economics,
for instance, the season-of-birth was used as an IV to study the return from schooling,
which measures causal effect of education on labor market earning [Card, 1999]. In
genetic epidemiology, the idea to use genetic variants as 1Vs, known as Mendelian
randomization, has also gained increasing popularity [Burgess et al., 2017b, 2020].

To overcome these drawbacks, we propose a simple framework which views
nonlinear IV regression as an empirical risk minimization (ERM) problem with U-
statistic or V-statistic. This framework is based on (i) the maximum moment restriction
(MMR) by Muandet et al. [2020a], which develops an equivalent form of moment
conditions by a reproducing kernel Hilbert space (RKHS), and (ii) a U/V-statistics
approximation technique [Ser ing, 1980] for the form. We call our framework MMR-
IV . Based on this formulation, we can solve the nonlinear IV problem by a single-step
optimization with an empirical risk.

Our MMR-1V framework has the following advantages:

(i) A closed-form solution of the optimization problem is available. Also, for neural
networks, we can simply apply common algorithms such as SGD.
(i) We can interpret MMR-IV as an analogy for Gaussian processes, and conse-
quently, we develop an ef cient hyper-parameter selection procedure.
(iif) We prove consistency and asymptotic normality of estimators by MMR-IV in
both parametric and non-parametric settings.

All of these advantages come from the empirical risk minimization form of MMR-IV.

To the best of our knowledge, we do not nd any other method that can achieve all of
these. Further, our experiments show MMR-IV has better performance with synthetic
data, and it provides appropriate interpretation of real data.

6.2 Preliminaries

Generalized method of moment (GMM).  The aforementioned conditions imply that
E[#j Z] = O for Pz-almost all z. This is a conditional moment restrictiofCMR) which
we can use to estimate f [Newey, 1993]. For any measurable function h, the CMR
implies a continuum of unconditional moment restrictions [Lewis and Syrgkanis, 2018;
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Bennett et al., 2019%:
E[(Y f(X))h(Z)] = O. 6.1)

That is, there exists an in nite number of moment conditions, each of which is indexed
by the function h. As a result, learning with Equation (6.1)is challenging. Although
the asymptotic ef ciency of the estimator can in principle improve when we consider
increasingly many moment conditions, it was observed that the excessive number
of moments can be harmful in practice [Andersen and Sorensen, 1996] because its
nite-sample bias increases with the number of moment conditions [Newey and
Smith, 2004]. Hence, traditional works in econometrics often select a nite number
of moment conditions for estimation based on the generalized method of moments
(GMM) [Hansen, 1982; Hall et al., 2005]. Unfortunately, an adhoc choice of moments
can potentially lead to a loss of ef ciency or even a loss of identi cation [Dominguez
and Lobato, 2004]. For this reason, subsequent works advocate an incorporation of all
moment restrictions simultaneously in different ways such as the method of sieves
[de Jong, 1996; Donald et al., 2003] and a continuum of moment restrictions [Carrasco
and Florens, 2000; Carrasco et al., 2007; Carrasco, 2012; Carrasco and Florens, 2014],
among others.

One of the key questions in econometrics is which moment conditions should be
used as a basis for estimating the function f [Donald and Newey, 2001; Hall, 2005]. In
this work, we show that, for the purpose of estimating f, it is suf cient to restrict hto
be within a unit ball of a RKHS of real-valued functions on Z.

6.2.1 Maximum Moment Restriction

Throughout this paper, we assume that his a real-valued function on Z which belongs
to a RKHS H endowed with a reproducing kernel k:Z Z'! R. The RKHS Hy
satis es two important properties: (i) forall z2Z and h2 H, we have k(z, ) 2 H
and (ii) (reproducing property of Hy) h(z) = hh,k(z, )iy, where k(z, ) is a function
of the second argument. Furthermore, we de ne F(z) as acanonicafeature map of
zin Hy. It follows from the reproducing property that  k(z,z% = hF(2),Fk(29in,
for any z, 202 7 .i.e., aninner product between the feature maps of z and z0can be
evaluated implicitly through the kernel evaluation. Every positive de nite kernel k
uniquely determines the RKHS for which Kk is a reproducing kernel [Aronszajn, 1950].
For detailed exposition on kernel methods, see, e.g., Scholkopf and Smola [2002],
Berlinet and Thomas-Agnan [2004], and Muandet et al. [2017].

Instead of (6.1), we de ne a risk in terms of a maximum moment restriction (MMR)
[Muandet et al., 2020a]:

R(f):== sup (E[(Y f(X)h(Z)])2 (6.2)
h2H  khk 1

That is, instead of considering all measurable functions h as instruments, we only
restrict to functions that lie within a unit ball of the RKHS  H . The risk is then de ned

1Also, IV assumptions imply #is independent of Z, i.e., E[(Y f(X))h(Z)] = 0 for all measurable h.
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as a maximum value of the moment restriction with respect to this function class.
The bene ts of our formulation are two-fold. First, it is computationally intractable
to learn f from (6.1) using all measurable functions as instruments. By restricting
the function class to a unit ball of the RKHS, the problem becomes computationally
tractable, as will be shown in Lemma 1 below. Second, this restriction still preserves
the consistency of parameter estimated using Ry(f). In some sense, the RKHS is a
suf cient class of instruments for the nonlinear IV problem (cf. Theorem 6).

A crucial insight for our approach is that the population risk  Ry(f) has an analytic
solution.

Lemma 1 (Muandet et al. [2020a], Thm 3.3). Assume thaE[(Y f(X))?k(Z,Z)] < ¥.
Then, we have
R(f)= EI(Y FOONY® f(XNk(Z,29] (6.3)

where(X% Y0 29 is an independent copy 6X,Y, Z).

We assume throughout that the reproducing kernel Kk is integrally strictly positive
de nite (ISPD).

Assumption 1. The kernelk is continuous, bounded (i.esup,,, P k(z,z) < ¥) and
satis es the condition of integrally strictly pc&i_gve de nite (ISPD) kernels, i.e., for any
function g that satis esD < kgk3 < ¥, we have , g(2)k(z,z99(z%) dzdz°> o.

The assumption is also related to the notion of characteristic and universal kernels;
see, e.g., Simon-Gabriel and Schélkopf [2018]. More details on ISPD kernels are given
in Appendix D.1. We further assume the identi cation for the minimizer of ~ Ry(f).

Assumption 2. Consider the function spade and f 2 argmin (,- Ry(f). Then for any
g2 F with JE[g(X)]j < ¥ ,E[g(X) f (X)jZ]= Oimpliesg= f .

A suf cient condition for identi cation follows from the completenessroperty of
X for Z [D'Haultfoeuille, 2011], e.g., the conditional distribution of X given Z belongs
to the exponential family [Newey and Powell, 2003]. Provided identi cation, it is
straightforward to obtain consistency.

6.3 Our Method

We propose to learn f by minimizing Ry(f) in (6.3). To this end, we de ne an optimal
function f as a minimizer of the above population risk with respect to a function
classF of real-valued functions on X, i.e.,

f 2 argmin - Ry(f).

It is instructive to note that population risk Ry depends on the choice of the kernel
k. Based on Assumption 1 and Lemma 1, we obtain the following result, which is a
special case of Muandet et al. [2020a, Theorem 3.2], showing thatR,(f) = 0 if and
only if f satis es the original conditional moment restriction (see Appendix D.2.2 for
the proof).
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Theorem 6. Assume that the kerndd is integrally strictly positive de nite (ISPD). Then,
for any real-valued measurable functionR,(f) = Oif and only if E[Y  f(X)]z] = Ofor
Ps-almost all z.

Theorem 6 holds as long as the kernelk belongs to a class of ISPD kernels. Hence,
it allows for more exibility in terms of the kernel choice. Moreover, it is not dif cult
to show that Ry(f) is strictly convex in f (see Appendix D.2.3).

6.3.1 Empirical Risk Minimization with U, V-Statistics

The previous results pave the way for an empirical risk minimization (ERM) framework
[Vapnik, 1998] to be used in our work. That is, given an i.i.d. sample f(x;,yi,z)gL,
P"(X,Y,Z) of size n, an empirical estimate of the risk Ry (f) can be obtained as

° i FOa(y; f(x))k(zi.z
Ry(f) = &7 s » Y (X))E])(/'n 1()XJ)) &), (6.4)

which is in the form of U-statistic [Ser ing, 1980, Section 5]. Alternatively, an empirical
risk based on V-statistic can also be used, i.e.,

R\/(f) - éin,jzl(yi F(xi))(y; f(Xj))k(Zi,Zj). (6.5)

n2

Both forms of empirical risk can be used as a basis for a consistent estimation of f. The
advantage of (6.4)is that it is a minimum-variance unbiased estimator with appealing
asymptotic properties, whereas (6.5)is a biased estimator of the population risk (6.3),
i.e., E[Ry] 8 R«. However, the estimator based on V-statistics employs a full sample
and hence may vyield better estimate of the risk than the U-statistic counterpart.

Let X :=[Xq,...,Xn)>, Y :=[Y1,...,¥n]” and z :=[zy,...,2,]” be column vectors.
Let K, be the kernel matrix K(z,z) = [ k(z,z)];; evaluated on the instruments z. Then,
both (6.4) and (6.5) can be rewritten as

pv(u)(f) =(y f(X))>Wv(u)(y f(x)), (6.6)

where f(x) := [ f(x1),..., f(xn)]” and Wy,(yy 2 R™ " is a symmetric weight maitrix
that depends on the kernel matrix K,. Specically, the weight matrix W corre-
sponding to (6.4)is given by Wy = (K; diag(k(z1,z1),...,k(zn,20)))/ (n(n 1))
where diag(ay,...,ay) denotes ann n diagonal matrix whose diagonal elements are
a,...,a. As shown in Appendix D.2.5, Wy is inde nite and may cause problematic
inferences. The weight matrix W for (6.5)is given by Wy, := K,/ n? which is a positive
de nite matrix for the ISPD kernel k. Finally, our objective (6.6)also resembles the
well-known generalized least regression with correlated noise [Kariya and Kurata,
2004, Chapter 2] where the covariance matrix is the Z-dependent invertible matrix
Wy by-

Based on(6.4) and (6.5), we estimate f by minimizing the regularizedempirical
risk over a function class F:

fv(u) 2 argmin ¢ RV(U)(f)+ | W(f)
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where | > QOis a regularlzatlon constant satisfying limp ¢ I = 0, and W(f) is the
regularizer. Since fu and fy minimizes objectives which are regularized U-statistic
and V-statistic, they can be viewed a speci ¢ form of M-estimators; see, e.g., Van der
Vaart [2000, Ch. 5]. In this work, we focus on the V-statistic empirical risk and provide
practical algorithms when F is parametrized by deep neural networks (NNs) and an
RKHS of real-valued functions.

Kernelized GMM. We may view the objective (6.6) from the GMM perspec-
tive [Hall, 2005]. The assumption that the instruments Z are exogenous implies
that E[F(Z)# = 0 where F denotes the canonical feature map associated with
the kernel k. This gives us an in nite number of moments, g(f) = F(Z)(Y
f(X)). Hence, we can write the sample moments as §(f) = ( 1/ n) &L, F«(z)(yi
f(xi)). The intuition behind GMM is to choose a function f that sets these moment
conditions as close to zero as possible, motivating the objective function J(f) :=
ka(f)kg, = ha(f), 6(Fin, = HaMN=1(yi  FO)F (), Fu(Z)inly;  f(x)) =
(y f(x)>"Wy(y f(x)). Hence, our objective (6.6) de ned using V-statistic is a
special case of the GMM objective when the weighting matrix is the identity operator.
Carrasco et al. [2007, Ch. 6] shows that the optimal weighting operator is given in
terms of the inversed covariance operator.

6.3.2 Practical MMR-IV Algorithms

A work ow of our algorithm based on Ry is summarized in Algorithm 1; we leave the
Ry based method to future work to solve the inference issues caused by inde nite Wy.
We provide examples of the class F in both parametric and non-parametric settings
below.

Deep neural networks. In the parametric setting, the function class F can often
be expressed asFg = ff; : g2 Qgwhere Q R™ denotes a parameter space. We
consider a very common nonlinear model in machine learning f(x) = WpF (x) + by
where F : x 7! sp(Wpsh 1( s1(W1x))) denotes a nonlinear feature map of a
depth-h NN. Here, W, for i = 1,...,h are parameter matrices and eachs; denotes the
entry-wise activation function of the i-th layer. In this case, q = ( by, Wo, W4, ..., W,}).
As a result, we can rewrite fy in terms of their parameters as

Qv 2 argmin oo Ry (fo) + | kak3

where f; 2 F o. We denoteq 2 argmin g Ri(fg). In what follows, we refer to this
algorithm as MMR-IV (NN) ; see Algorithm 4 in Appendix D.5.1.

Kernel machines. In a non-parametric setting, the function class F becomes
an in nite dimensional space. In this work, we consider F to be an RKHS H, of
real-valued functions on X with a reproducing kernel | : X X! R. Then, the
regularized solution can be obtained by argmin ;o Ry (f)+ | kfkﬁh. As per the
representer theorem, any optimal f admits a form f(x) = &L, al(x,x) for some
(a1,...,an) 2 R" [Scholkopf et al., 2001b], and based on this representation, we
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Algorithm 1 MMR-IV

Input: DatasetD = fx,y, zg, kernel function k with parameters ¢, a function class
F , regularization functional W( ), and regularization parameter |
Output: The estimate of f in F.
1: Compute the kernel matrix K = k(z,z; ).
2: De ne the residual #(f)=y f(x).
3 fi  argmin e S#(f)K#(f)+ | W(kfkg)
4: return f;

rewrite the objective as
fy = arg min (y La)>Wy(y La)+ la’La, (6.7)
a n

where L = [I(x;, X;)];j is the kernel matrix on x. For U-statistic version, the quadratic
program (6.7) substitutes inde nite Wy for Wy, so it may not be positive de nite.
The value of | needs to be suf ciently large to ensure that (6.7)is de nite. On the
other hand, the V-statistic based estimate (6.7) is de nite for all non-zero | since
Wy is positive semi-de nite. Thus, the optimal & can be obtained by solving the
rst-order stationary condition and if L is positive de nite, the solution has a closed
form expression, b = (LWy L+ | L) LWyy. Thus, we will focus on the V-statistic
version in our experiments. In the following, we refer to this algorithm as  MMR-IV
(RKHS).

Nystrom approximation. The MMR-IV (RKHS) algorithm is computationally
costly for large datasets as it requires a matrix inversion. To improve the scalability,
we resort to Nystrom approximation [Williams and Seeger, 2001] to accelerate the
matrix inversion in B = (LWyL+ | L) LWyy. First, we randomly select a subset
of m( n) samples from the original dataset and construct the corresponding sub-
matrices of Wy, namely, Wymm and W,y based on this subset. Second, letv and U
be the eigenvalue vector and the eigenvector matrix o{) Wmm. Then, the Nystrom
approximation is obtained as W, 8¢8~ where 8 = ?anuv Land ¢ := v,
We nally apply the Woodbury formula [Flannery et al., 1992, p. 75] to obtain

(IWyL+1L) Ttwy = L Ywy + 1L Y twy
|1 e levLe+e b vl lLjees>.

We will refer to this algorithm as MMR-IV (Nystrém) ; Algorithm 3 in Appendix D.5.1.
The runtime complexity of this algorithm is  O(nm? + n?).

6.4 Hyper-parameter Selection

We develop a convenient hyperparameter selection method for MMR-IV (Nystrom)
with our objective (6.7)and the V-statistic. This method bene ts from the fact that our
ERM form can be interpreted as a stochastic model with a Gaussian process, inspired
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by Vehtari et al. [2016]. This approach is an analog of parameter selection in the
ordinary kernel regression. However, we need to apply additional analysis due to the
weight matrix Wy, in (6.7) with V-statistics. Full details are provided in Appendix D.3.
Gaussian process (GP) interpretation. We start the GP interpretation by de ning
the energy-based likelihood p(Djf(x)) u exp( Ry (f)/ 2) u N(f(x)jy,K, 1), where
D = fx,y,zg denotes the dataset. Then we assign a GP prior to f, i.e., f(x)
GP(0,dI(x,x)) with a real constant d > 0,s and the posterior distribution of f(x) is
straight-forwardly derived based on the Gaussian-like prior and likelihood,

p(f(X)iD) = N(f(x)jc,C) u p(f(x)) p(Djf(x)),

where c= CKyyand C=(K,+(dL) ) 1 dlL LB8(n%d8>LE8 + ¢ 1) 18(n%d)L]
by Nystrom approximation . The connections between the GP model and the regular-

ized Ry (f) are elaborated in Appendix D.3 and summarized as Theorem 7. In a word,

maximization of p(f(x)jD) is alternative to minimization of (6.7) and the Bayesian
inference is a substitute for the frequentist prediction.

Theorem 7. Givend= (1 n?) landf = argmin 1211, Equation(6.7), there are

(i) argmax .,y p(f(x)iD) = f(x);
(ii) prediction atx : argmax;, , p(f(x )jD) = f(x).

Analytical cross-validation error. Now we derive the analytical error of the
leave-M-out cross validation (LMOCV) from the perspective of the GP. We split
the whole dataset D into training and development datasets, denoted as Dy and
Dge = T Xge Yde Zged respectively, where Dgye has M triplets of data points. Given
D¢, the predictive probability on D4 can be obtained by Bayes' rules p(f(Xge)jDtr) M

f(Xgo) : . _
%, where p(f(Xg4e)JD) = N(Cge Cge) With Cge, Cge the mean and covariance

of f(xge) in P(f(x)jD) and p(Dyd f(Xae)) K N(Yae Kyg): Kae = K(Zge Zge) By this
result, the function estimated on the training set can be represented w.r.t. that on the
whole dataset. It turns out that p(f(Xgd)jDy) = N(b,B) where B 1= Cde1 Kge and
b= B(Cdelcde KgeYde), and by (ii) in Theorem 7, the error of m repeated LMOCYV is

LMOCV Error := &, (r®)>K{r(, (6.8)

where (i) denotes the experiment index and the residual r(® = b ysl) = (1

Céig K((jig) 1(cgg ygg). The analytical error enables an ef cient parameter selection
with the CV procedure.

6.5 Consistency and Asymptotic Normality

We provide the consistency and asymptotic normality of R,. we also develop the
same results for ), but we defer them to the appendix due to space limitation. All
proofs are presented in the appendix.
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6.5.1 Consistency

We rst show the consistency of fy, which depends on the uniform convergence of
the risk functions. The result holds regardless of the shape of W(f), so we can utilize
the regularization qu% which is common for NN but non-convex in terms of f.

Theorem 8 (Consistency of fy). Assume thaE[jYj4] < ¥, E[sup,e jf(X)j3 < ¥,F
is compact, Assumption 1, 2 hold/( f) is a bounded function anid I’ 0. Then fy o

If the W(f) is convex in f, the consistency can be obtained more easily by Newey
and McFadden [1994, Theorem 2.7]. In this case, we can avoid several conditions. We
provide an additional result with this setting in Appendix D.2.6.

6.5.2 Asymptotic Normality

We analyze asymptotic nhormality of the estimator fy, which is important to advanced
statistical analysis such as tests. Here, we investigate two different cases: the estimator
has nite- and in nite-dimension.

Finite-dimension case. We consider the fy is characterized by a nite-dimensional
parameter from a parameter space Q. We rewrite the regularized V-statistic risk
as a compact form Ry, (f,) = 1 5 &1L 18]5 1 hg(ui, up) + T W(Q), hg(ui,up) = (i
f(xi))(y;  f(x;)k(z,z), and conS|der Rk(fq) is uniquely minimized at q 2 Q.
Theorem 9 (Asymptotic normality of Elv) Suppose thaf, and W(q) are twice contin-
uously differentiable abowt, Q is compactH = E[r Zhq (U, U9] is non-singular,E[jYj?] <
¥ ,E suppquij(X)J2 < ¥,E supgqkr g q(X)k < ¥,E supgokr gfg(X)kE <
¥, nl " 0, R(fy) is uniquely minimized aty which is an interior point oQ, and As-
sumption 1 holds. Then, n(qv q)  N(0,Sy) holds, where

Sv = 4H *diag(Ey[EZdhg (U,U9H *

and denotes a convergence in law.

In nite-dimension case. We show the asymptotlc normality of an in nite-dimensional
estimator fy. That is, we show that an error of fy weakly converges to a Gaussian
process that takes values in a function spaceH,. We setW(f) = kfk2I and consider a
minimizer: f, 2 argmin ,c Re(f) + | okfkﬁI with arbitrary | o> 0. We also de ne
N (#H,k k) as an#covering number of a set H in terms of k k. Then, we obtain
the following:

Theorem 10. Suppose Assumption 1 holdsis a bounded kernék,is a uniformly bounded
function, andl o= o(n 1’2) holds. Also, suppose that, Z, andY are compact spaces,
and there exists 2 (0, 2) and a constan€Cy > Osuch thatiog N (#H |,k ki¥x) Cu#*®
forany#2 (0,1). Then, there exists a Gaussian proc&gssuch that n( fy fi)
GP in Hy.

This result allows statistical inference on functional estimators such as kernel
machines. Although there are many conditions, all of them are valid for many
well-known kernels; see Appendix D.2.11 for examples.
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6.6 Experimental Results

We present the experimental results in a wide range of settings for IV estimation.
Following Lewis and Syrgkanis [2018] and Bennett et al. [2019], we consider both low
and high-dimensional scenarios. In our experiments, we compare our algorithms to
the following baselines: (i) DirectNN (i) 2SLS (iii) Poly2SLS (iv) DeeplV [Hartford
et al.,, 2017] (v) Kernellv  [Singh et al., 2019] (vi) GMM+NNvii) AGMMLewis and
Syrgkanis, 2018] (viii) DeepGMMBennett et al., 2019]. (ix) AGMM-KDikkala et al., 2020].
We refer readers to Appendix D.5 for more experimental details.

6.6.1 Low-dimensional Scenarios

Following Bennett et al. [2019], we employ the following data generation process:
Y=f(X)+etd X=2Z;+e+gqg,

where Z := (Z1,Z,) Uniform ([ 3,3%,e N (0,1), and g,d N (0,0.2). In
words, Z is a two-dimensional IV, but only the rst instrument Z; has an effect on
X. The variable eis the confounding variable that creates the correlation between X
and the residual Y f (X). We vary the true function f between the following cases
to enrich the datasets: (i) sin : f (x) = sin(x). (i) step : f (X) = 1ty qg. (iii) abs:
f (x) = jxj. (iv) linear : f (x) = x. We consider both small-sample (n = 200) and
large-sample (n = 2000) regimes.

Table 6.1 reports the results for the large-sample regime (and Table D.1 in Ap-
pendix D.5 for the small-sample regime). Our ndings are as follows: (i) MMR-IVs
perform reasonably well in most cases. (ii) The linear methods ( 2SLS and Poly2SLS )
perform best when the linearity assumption is satis ed. (iii) Some nonlinear but com-

Table 6.1: The mean square error (MSE) one standard deviation in the large-sample regime
(n = 2000).

True Function f

Algorithm abs linear sin step

DirectNN 116 .000 .035 .000 .189 .000 .199 .000
2SLS 522 .000 .000 .000 .254 .000 .050 .000
Poly2SLS .083 .000 .000 .000 .133 .000 .039 .000
GMM+NN .318 .000 .044 .000 .694 .000 .500 .000
AGMM .600 .001 .025 .000 .274 .000 .047 .000
DeeplV .247 .004 .056 .003 .165 .003 .038 .001
DeepGMM .027 .009 .005 .001 .160 .025 .025 .006
KernellV .019 .000 .009 .000 .046 .000 .026 .000
AGMM-K 181 .000 2.34 .000 19.4 .000 4.13 .000

MMR-IV (NN) .011 .002 .005 .000 .153 .019 .040 .004
MMR-IV (Nys) .011 .001 .001 .000 .006 .002 .020 .002
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Figure 6.1: Runtime comparison in the large-sample regime (n = 2000. The computational
time of parameter selection is excluded from the comparison. AGMM-K (No Nystrom) and
MMR-IV (RKHS) overlap due to the same runtime.

plicated methods (GMM+NNDeeplV and DeepGMMare unstable due to the sensitivity to
hyper-parameters. (iv) We suspect that the AGMM-Kperformance is unsatisfactory be-
cause the hyper-parameter selection is not exible enough. On the other hand, MMR-IV
(Nystrom) has the advantage of adaptive hyper-parameter selection (cf. Section 6.4).
Appendix D.5.2 provides more details.

We also record the runtimes of all methods on the large-sample regime and report
them in Figure 6.1. Compared to the NN-based methods, i.e., AGM\MDeeplV , DeepGMM
our MMR-IV (NN) is the most computationally ef cient method, which is clearly a
result of a simpler objective. Using a minimax optimization between two NNs, AGMM
is the least ef cient method. DeepGMMand DeeplV are more ef cient than AGMMbut
are less ef cient than MMR-IV (NN) . Lastly, all three RKHS-based methods, namely,
KernellV , AGMM-Kand MMR-IV (RKHS), have similar computational time. All three
methods are observed to scale poorly on large datasets.

6.6.2 High-dimensional Structured Scenarios

In high-dimensional setting, we employ the same data generating process as in
Section 6.6.1. We consider only the absolute function for f , but map Z, X, or both
X and Z to MNIST images (784-dim) [LeCun et al., 1998]. Let us denote the original
outputs in Section 6.6.1 by X'V 7% and let p (u) := round (min (max(1.5u+ 5,0),9))
be a transformation function mapping inputs to an integer between 0 and 9, and let
RI(d) be a function that selects a random MNIST image from the digit class d. We set
n = 10,000. Then, the scenarios we consider are

(i) MNIST z: Z  RI(p(Z!°")),
(i) MNIST x: X  RI(p(X'*")),
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Figure 6.2: The MSE of different methods on Mendelian randomization experiments as we
vary the numbers of instruments (left), the strength of confounders to exposures c¢; (middle),
and the strength of confounders to instruments ¢, (right). The MSE is obtained from 10
repetitions of the experiment.

(i) MNIST xz: X RI(p(X'*")), Z  RI(p(Z°™)).

We report the results in Table 6.2. We summarize our ndings: (i) MMR-IV (NN)
performs well across scenarios. (i) MMR-IV (Nystrom) fails except MNIST 2, because
the ARD kernel with PCA are not representative enough for MNIST . (iii) DeeplV
does not work when X is high-dimensional, similar to Bennett et al. [2019]. (iv) The
two-step methods (Poly2SLS and Ridge2SLS ) has large errors because the rst-stage
regression from Z to X is ill-posed. Appendix D.5.3 provides more details.

6.6.3 Mendelian Randomization

We demonstrate our method in the setting of Mendelian randomization which relies
on genetic variants that satisfy the IV assumptions. The “exposure” X and outcome Y
are univariate and generated from the simulation process by Hartwig et al. [2017]:

Y= bX+cge+d X=3al,aZzZ+ ce+g,

where Z 2 R with each entry Z; B(2,pi), pi unif (0.1,0.9, e N (0,1,
a; unif([0.8 d%1.2dY),andg,d N (0,0.%).Z; B(2,p;) mimics the frequency
of an individual getting one or more genetic variants. The parameters b, c; control the
strength of exposures and confounders to outcomes, while ¢, a; control the strength
of instruments and confounders to exposures. We set a;  unif (0.8 d° 1.2 d9) so
that as the number of IVs increases, each instrument becomes weaker while the overall
strength of instruments ( & idoai) remains constant.

In Mendelian randomization, it is known that genetic variants may act as weak
IVs [Kuang et al., 2020; Hartford et al., 2020; Burgess et al., 2020], so this experiment
aims to evaluate the sensitivity of different methods to the number of instruments ( d9
and confounder strengths (c;, ¢;). We consider three experiments: (i) d®= 8,16, 32
(i) cp = 0.5,1,2 (iii) ¢ = 0.5,1, 2 unmentioned parameters use default values: b = 1,
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Table 6.2: The mean square error (MSE)
structured data. We run each method 10 times.

one standard deviation on high-dimensional

. Setting

Algorithm MNIST,  MNISTxy  MNIST,,
DirectNN 134 .000 229 .000 .196 .011
2SLS 563 .001  >1000 > 1000
Ridge2SLS 567 .000 .431 .000 .705 .000
GMM+NN 121 004 235 .002 .240 .016
AGMM 017 .007 .732 .107 .529 .163
DeeplV 114 .005 n/a n/a

DeepGMM 038 .004 .315 .130 .333 .168
AGMM-K+NN  .021 .007 1.05 .366 .327 .192
MMR-IV (NN)  .024 .006 .124 .021 .130 .009
MMR-IV (Nys) .015 .002 .442 .000 .425 .002

d°= 16,¢; = 1, ¢ = 1. We draw 10,000samples for the training, validation and
test sets, respectively, and train MMR-IV (Nystrém) only on the training set. Other
settings are the same as those of the low-dimensional scenario.

Figure 6.2 depicts the experimental results. Overall, 2SLS performs well on all
settings due to the linearity assumption, except particular sensitivity to the number of
(weak) instruments, which is a well-known property of 2SLS [Angrist and Pischke,
2008]. Although imposing no such assumption, MMR-IVs perform competitively and
even more stably, since the information of instruments is effectively captured by the
kernel k and we only need to deal with a simple objective, and also the analytical CV
error plays an essential role. Section D.5.5 contains additional ndings.

6.6.4 Application on the Vitamin D data

Lastly, we apply our algorithm to the Vitamin D data [Sjolander and Martinussen, 2019,
Sec. 5.1]. The data were collected from a 10-year study on 2571 individuals aged 40-71
and 4 variables are employed: age(at baseline), laggrin (binary indicator of laggrin
mutations), VitD (Vitamin D level at baseline) and death(binary indicator of death
during study). The goal is to evaluate the potential effect of VitD on death. We follow
Sjolander and Martinussen [2019] by controlling age in the analyses, using laggrin
as instrument, and then applying the MMR-IV (Nystrém) algorithm. Sjolander and
Martinussen [2019] modeled the effect of VitD on death by a generalized linear model
and found the effect is insigni cant by 2SLS ( p-value on the estimated coef cient is
0.13with the threshold of 0.05. More details can be found in Appendix D.5.6. The
estimated effect is illustrated in Figure D.1 in the appendix. We observe that: (i) By
using instruments, both our method and Sjolander and Martinussen [2019] output
more reasonable results compared with those without instruments: a low VitD level
at a young age has a slight effect on death, but a more adverse effect at an old age
[Meehan and Penckofer, 2014]; (ii) Unlike Sjolander and Martinussen [2019], our
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method allows more exible non-linearity for causal effect.

6.7 Conclusion

Learning causal relations when hidden confounders are present is a cornerstone of
decision making. IV regression is a standard tool to tackle this task, but currently faces
challenges in nonlinear settings. The present work presents a simple framework that
overcomes some of these challenges. We employ RKHS theory in the reformulation
of conditional moment restriction (CMR) as a maximum moment restriction (MMR)
based on which we can approach the problem from the empirical risk minimization
(ERM) perspective. As we demonstrate, this framework not only facilitates theoretical
analysis, but also results in easy-to-use algorithms that perform well in practice
compared to existing methods. The paper also shows a way of combining the elegant
theoretical approach of kernel methods with practical merits of deep neural networks.
Despite these advantages, the optimal choice of the kernel k remains an open question
which we hope to address in future work.

In the next chapter, we present a conclusion summarizing the thesis and provide
future directions.



Chapter 7

Conclusions and Future Work

In this chapter, we rst summarize the contributions we made in the thesis. We then
present some potential research directions for future work.

7.1 Conclusions

Given a set of data and the model hypothesis space, accurate estimation of the model
parameters is crucial for e.g. data modeling and model-based inference. The thesis is
motivated by the non-parametric Bayesian estimation of the Hawkes process. The non-
parametric form provides powerful modeling ability and the approximate Bayesian
inference approach is a natural choice for less sensitivity to randomness of nite
samples and better scalability on large-scale datasets. For this end, the thesis studies
two different kinds of ef cient approximate inference frameworks, namely, the Laplace
Bayesian Hawkes process (LBHP) as Chapter 3 and the Variational Bayesian Hawkes
process (VBHP) as Chapter 4. Both frameworks employ the branching structure of the
Hawkes process to simplify the Bayesian inference and the nite support assumption
for acceleration. Notably, they rely on different approximate principles: LBHP exploits
Gibbs sampling as the high-level procedure with Laplace approximation applied in
each iteration; VBHP only exploits the variational inference method. As a result, VBHP
has an advantage of ef ciently selecting the hyper-parameters without grid search,
while LBHP is a more general framework and is able to estimate the distribution of
other quantities related to the Hawkes process, such as the branching factor.

Beyond the studies on the Hawkes process, the thesis further explores a new
approximate Bayesian inference approach in Chapter 5, which is applicable to more
general Gaussian process models. The approach builds on the expectation propagation
algorithm and substitutes the L, Wasserstein distance to the Kullback-Leibler (KL)
divergence. Interestingly, although equipped with a more complicated distance, the
approach preserves some desirable properties, such as the locality property of the EP
update.

Finally, the thesis studies a simple and robust frequentist estimation framework
as Chapter 6, which is outside the Bayesian eld. The framework is designed for
estimation of conditional moment restriction models, including the Hawkes process,
and depends on the kernel maximum moment restriction. The framework has a
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simple risk function and eases the proofs of consistency and asymptotic normality
properties. It can also result in ef cient hyper-parameter selection for some speci c
model classes.

7.2 Future Research Directions

According to recent frequentist estimation methods of the Hawkes process as reviewed
in Section 2.5, it would be interesting to develop ef cient Bayesian versions for these
methods to gain more robustness and better modeling performance. Some of these
methods are based on normalizing ows, which can be applied for approximate
Bayesian inference. Therefore, developing more practical normalizing ows is an
interesting direction.

The kernel maximum moment restriction based method is general and we expect
it to be applied in different sub elds of stochastic point processes.



Appendix A

Appendix: Laplace Bayesian
Hawkes Process

A.1 Computing the Integral Term of the Log-likelihood

We consider W = [0, T], the background intensity m the triggering kernel f () =
1/ 2f( )% f()= w'e( ), and data f x;g ,, and the integral term in the log-likelihood

is calculated as below

1NZT
Integral Term = = § f2(t  x)dt
22y 0
LN AT K
= 54 [& wia(t)]%dt
i=1 0 k=1
1y KK T
= zaad a wwe a(t)ao(t)dt
i=1k=1K=1 E {z }

(i)
Uo

1 i
= Z3 wlulbw.
2i2,

[k 1=0]

In our case, Equation (3.9)hasd = 1, i.e.,f(x) = ( 2/ p)'2 P 172 cog(k

1Dx], k= 1,2, . The matrix U() is calculated as below:

. ZTt .
R
M _@ _  2sinf(k (tm xp)]
Ukl>1,1_ull,k>1_? k 1m : ’
1N sin[2(k (T x)]°
Uk ke 1) "0 T X : (2(k )(1) J :
C1Msin[(k KT x)] . sin[(k+ KO 2)(T  x)]°
Uk,kC(kekO)—B K KO * K+ KO 2 '
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A.2 M.A.P. mand f Given In nite Branching Structures
M.A.P. mand f given In nite branching structures is written as:

argmax Eg[log p(w, njB,f x;gl 1, W, k)]

= argmax s[log p(f x,g,{zljw mB,W, k)} |og p(w){-; log p(n?

Expected Log-likelihood Constraints
2 177 % T (112
= argmaxa a pij log —[W e(xi  xj)] piolog m > [w'e(t)]~dt
wm =1 x<x 0

(b+ 1)mT %wTL 'w (a 1)logm

where B represents the branching structure, p;; the probabilities of triggering rela-
tionships shown as Equation (2.2), and a, b are parameters of the Gamma prior of
mT. The second line is obtained using Bayes' rule, which shows M.A.P. mand f given
in nite branching structures is equivalent to maximizing the constrained expected
log-likelihood, i.e., the objective function for the M-step of the EM algorithm and the
third line is an explicit expression of the second line.

A.3 Mode-Finding the Triggering Kernel

Here we demonstrate in detail the computational challenges involved in nding the
posterior mode with respect to the value of the triggering kernel at multiple point

. . . . 1 . .
locations. Consider the triggering kernel f () = éfz( ) where f( ) is Gaussian process

distributed. For a dataset fxigl |, X f f(x)gll; = fXgl; has a normal distribution,
ie.,f f(xi)gi'\i1 N (m,S) where m and S are the mean and the covariance matrix.
The distribution of Y f f(x)g, = fYigl, is derived as below where F is the
cumulative density function and f the probabilistic density function.

R (y) 0
P 2y,<X< 2yi,i=1, ,N)
Z 1 (X m)7Ts (X m)
= dX dXn,
|0E P o P oy 1P 5 JdX4 N
fyv(y)
_ ﬂN
= W Fv(y)
_ pN 2 (X _m)Ts (X m)
= W( 1ﬁ97) pai p_ exp[ 5 ],

ox2 N2y, T 2yg

where s the Cartesian product. There are 2N summations of exponential functions,
which is intractable.



8A.3 Mode-Finding the Triggering Kernel 77

Figure A.1: Triggering kernels estimated by the Gibbs-Hawkes method (Section 3.2) and
the EM-Hawkes method (Section 3.3.2). The true kernel is plotted as the bold gray curve.
We plot the median (red) and [0.1, 0.9] interval ( lled red) of the approximate predictive
distribution, along with the triggering kernel inferred by the EM Hawkes method (blue). The
hyper-parameters a and b of the Gaussian process kernel are set to 0.002.
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Appendix B

Appendix: Variational Bayesian
Hawkes Process

B.1 Deriving Equation (4.5)

As per Equation (2.7), there is

CELBO(q(B, m f,u), p(DjB,m f,u), p(B,m f, u))
= Eqemnllog p(DjB,mf)]  KL(q(B,m f,u)jjp(B,m f,u))

where the KL term can be simpli ed as

KL (a(B, ? ,u)jip(B,mf,u))

= éé q(B,m f,u) log Séggg?jgg::;g((t)) dudf dm (Equation (4.4) and Bayes' rule)
222
=3 o(B,m f,u) du df dmlog qg
222
+ 4 a(B,m f,u) dudflog A G,
B p(m
722772 ()
+ 4 a(B,m f, u) df dmlog q( ) du (simpli cation)
B

= a_ q(B) log qEB; + q(m)log qg:; dm+ g(u) log qi ; du (simpli cation)

KI-(Q( B)jjp(B)) + KL(a(mjjp(m) + KL (q(u)jjp(u)).

We utilise the likelihood p(D, Bjm f) by the reconstruction term and the KL term w.r.t.
B

Eq(B,me)[log p(DjB,m f)]  KL(a(B)jjp(B))
a(B)

=a g(B,mf)log p(DjB,m f) df dm a q(B) log o(B) (de nition)
B
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Z 7z ZZ

q(B,m f)log p(DjB,m f) df dm § q(B,mf)Ioggigdfdm
B

(align probabilities)

I
w Do

zz p(DjB, m f)p(B)

a(B)
q(B,m f) log p(D,Bjm f) df dm § q(B)log g(B) (merge)
. B

h i
= Eqemfn 109 p(D,Bjmf) + Hg

q(B,m f) log df dm (merge)

o
a
Bzz
o
a
B

where Hg = & 5q(B) log g(B) is the entropy of B and further computed as follows.
We adopt q(B) from Equation (4.3)and the close form expression of Hg is derived as

o Nl Nl
Hg = a OXO qijJ log OO qijJ
fhgh, i=1j=0 i=1j=0

k 1 i1 il
= 4 a qu-OOqi?J log qijOqi?‘ (split the summation)

j=0fbigigk i6kj=0 i6kj=0
k1 o il g h il g _
= a a a0OO0g loggj+log OOa;  (splitthelog)
j=0fbigiek i6kj=0 i8kj=0
k 1 . L il KT . ~ il ~ il
= a&lga a O0g aawa OOg log OOg
j=0 fbigigx 16kj=0 =0 fbigex i6kj=0 i8kj=0
i | Oisk I{ZJ } ‘-?Z_} Osk 16K]j i6kj
=1 =
(distributive law of multiplication)
k 1 . il g il g S
= a&loga; a 0O0gq) log OO«g; (simplication)
j:O fbigiSk |6k]=0 |6k]=0

= (do the same operations as above)
Igl iol

= a a gjlogg;.
i=1j=0

B.2 Closed Forms of KL Terms in the ELBO

KL(a(mjjp(m) = (k ko)y(K) kolog(c/ co) k log[Gk)/ Glko)] + cK co
KL (a(u)ji p(u)) = [ Tr(K,2S) + log jK,4i/ jS| M + mTK,sm]/2
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B.3 Extra Closed Form Expressions for Equation (4.2.2)

Y4 z
Ein(f) = _ mTK,3KxKy K, sm dx
T Ti 7
= m'K, 3 _ KaxKoq dx K,sm

Z Z
Vargplfl= Ky KxzK, pKzx + KK, SK, SKx dx
I Z I
= g Tr(K,iKuxKxz) + Tr(K,5SK, iKzxKxz) dx
zZ" z z

gdx  Tr(K,} L Ko dx) + Tr(K,;6SK, 5 - KoKz d)

9jTij  Tr(K,AYi)+ Tr(K,ASK 3Y}).

4
Yi(z,29 = KpKypodx
Ti
Y4 R ) o ,
— 2 A (Xr ZI’) (Zr Xr)
= ex ex & X" 4y
Ti ? 191 P 2a, P 2a,
4 R 5 B ,
— 2 A (Zr Z?) (ZI’ Xr)
i k rcz)l P 4a, P a
£ 2 202 7 x)2 -
= g2 exp (f49) exp @ x)* dx O =(z %) a)
r=1 a.r Ti,r ar
R 2 z (zz T maxy pa—
—_— 2 ~ p — (Zr ZP) T ir r 2
= ar ex M ex q
° 91 r eXp 4a, T i’rpin)/ pa—r p( yr) Yr
R Poa 2 h 7 T .max 7 T .min |
- 2 ~A pa-r (Zr ZP) Zr i’r Zr‘ i,r
B Y &X erf —p—= erf L .
] 91 P 4a, g ar ﬂ?
where we explicitly express T, as a Cartesian product T; rR: 1[TiTin’TiTaX] for

R-dimensional data.

B.4 Additional Experiment Results
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(a) Exp (b) Cos

Figure B.1: Posterior Triggering Kernels Inferred By VBHP and Gibbs Hawkes. Results of
Gibbs Hawkes are obtained in 2000 iterations.

(a) VBHP (b) Gibbs Hawkes

Figure B.2: Convergence Rate of VBHP and Gibbs Hawkes with Different Numbers of
Inducing Points. VBHP and Gibbs Hawkes measure respectively the relative error of the
approximate marginal likelihood and of the posterior distribution of the Gaussian process.
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Appendix: Quantile Propagation

C.1 Minimization of L, WD between Univariate Gaussian
and Non-Gaussian Distributions

In this section, we derive the formulas of the optimal m and s for the L, WD, i.e.,
, Equation (5.1). Recall the optimization problem: we use a univariate Gaussian
distribution N (fjms?) to approximate a univariate non-Gaussian distribution q(f)
by minimizing the L, WD between them:
w2 N P 1 :
rrr%lsn W5(g,N) = mmlsn . FR(y) m 2serf *(2y 1) dy,

where F, 1 is the quantile function of the non-Gaussian distribution g, namely the
pseudo-inverse function of the corresponding cumulative distribution function  F
de ned in Proposition 1.

To solve this problem, we rst calculate derivatives about mand s:

Z
w3 _ 1o P 1
m 2 . F(y) m 2serf “(2y 1) dy,
2 Z, _ _
111\1/\/32 = 2 (RYy) m IO2serf Yoy 1))p2erf Yoy 1) dy.
0
Then, by zeroing derivatives, we obtain the optimal parameters:
Z, p_
m= R iy)  2serf Y(2y 1)dy
Zy p 5 Z1
= xq(x) dx  —=s erf Yy) dy
Y4 1
p. “¥ .
= my 2s xN (xj0, 1/2) dx
¥
=m,
Z Z
P~ 1 1 ! 1y2
s = 2 (FR(y) merf (2y 1)dy 2(erf H)4(2y 1) dy
0 0
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p_Z1 . Ly
= 2 FRiyyerf Y(2y 1)dy 2x°N (xj0, 1/2) dx
0 ¥
| {z }
=1
P 7Z ! 1 1
= 2 R (y)erf “(2y 1) dy
p_Z%
=2 ferf M2R(f) 1) dRy(f)
r 7Z¥
- 1T e et MR 2
2 ¥
T2
=0+ — el ICR(O Mgf, (C.1)
2p ¥

C.2 Minimization of L, WD between Univariate Gaussian
and Non-Gaussian Distributions

In this section, we describe a gradient descent approach to minimizing an L, WD,
for p & 2, in order to handle cases with no analytical expressions for the optimal
parameters. Our goal is to use a univariate Gaussian distribution N (fjms?) to
approximate a univariate non-Gaussian distribution q(f). Speci cally, we seek the
minimizer in mand s of Wg(q, N ); the derivatives of the objective function about m
and s are:

z Zy

1
TWp= p | H#HyIP sgn(#(y)) dy= p L 1h09j* sgn(h(x)) a(x) dx,
z 1
TsWp= p | HIP lsgn(#(y))erf (2y 1) dy
Ly

= p y jh(x)jP 1sgn(h(x))erf 1(2Fq(x) 1q(x) dx.

where for simpli cation, we de ne  #y) = F, y) m P 2serf 1(2y 1) and h(x) =
X m 2serf 1(2Fq(x) 1), with Fy and F, ! being the CDF and the quantile
function of g. Note the derivatives have no analytical expressions. However, if the
CDF R is available, we can use the standard numerical integration routines; otherwise,
we resort to Monte Carlo sampling. In the framework of EP or QP, q(x) 1 g™ (x) p(yijx)
and g" is Gaussian, so we may draw samples from a Gaussian proposal distribution
to obtain a simple Monte Carlo method.

C.3 Computations for Different Likelihoods

Given the likelihood p(yjf) and the cavity distribution g"(f) = N (fjms?), a sta-
ble way to compute the mean and the vagance of the tilted distribution g(f) =
p(yjf)q"(f)/ Z where the normalizer Z = ¥¥ p(yjf)gq"(f) df, can be found in the
software manual of Rasmussen and Williams [2005]. We present the key formulae
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below, for use in subsequent derivations:

Zy
m . .
= & p(yj )N (fims?) df
Z . . Z . .

TmZ _ 1 7%  p(yifN (fims?) . m=¥ p(yjf)N (fjms?) dy
Z s2 y Z s2 y Z
i _ 1 m
AL

2

=) my= SE’“Z+m: s%mlog Z + m

Tt = SPOIDON(fims9)+  ——= p(yjf)N (fjms®) df
T2 _FY 1, nt P oam pUIDON(fims)
Z s2 g4 g4 g4 Z
@ 1 m 1 2m

—_ 2
z 7 gttt G
2 2
W _ 1, S, (Mmm?_ 1 Sq Tz °
Z 52 s 54# 82 s4 Z
ﬂZ 2
2=s* ;Z ."22 +s2= s*2log Z + s2.

C.3.1 Probit Likelihood for Binary Classi cation
For the binary classi cation with labels y 2 f 1, 1g, the PDF of the tilted distribution
g(f) with the probit likelihood is provided by Rasmussen and Williams [2005]:

m

a(f)= Z 'F(fy)N(fims?), Z=F(2), z= p——,
y 1+ s2

and the mean estimate also has a closed form expression:

s2N (2)

n‘?: = m+ —.
i F(z2)y 1+ s2

As per Equation (5.1), the computation of the optimal s? requires the CDF of g,
denoted as F,. For positive y > 0, the CDF is derived as

ZX
Fay>0(X)= Z * ,F VN fims2 df
|
—lemzxmex 1w ' v2+s 2 y2 'def
T 2psy v v P o g vZ o oy2 i
Zy Zy
=z*! NI 1 " dwdf

y ¢ 7 r 1
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" ! ! #
@- 1 1 k+rh 1 h+ rk
=Z F(h) T hp— +F(k T kpP— +nh
2 () h 1 r?2 2 ) k 1 r2
m X m 1
k= p———, h= , r= p——, x6m m6 0,
s2+ 1 S 1+ 1/s2

where the step (a) is obtained by exploiting the work of Owen [1956] and T( , ) is the
Owen's T function:
1 %aexp  (1+ x?)h?2

T(h,a): 5 o 1+ 2

and h is de ned as

0 hk> Qor(hk= 0and h+ k 0),
0.5 otherwise.

Similarly, for y < 0, the CDF is

! ! ! #
1 k+ rh 1 h+ rk
— 1
Fay<o(x) = 2 = SE(N)+ T hp—s SF+ T k Pz N
Summarizing the two cases, we get the closed form expression of F:
Fa(x) . ! ! )
1 k+ rh y h+ rk
=z ' ZF(h) yT h, + ZF (k) yT Kk + yh
> (h) vy m > (k) y m y
i ! ! #
=ZlEF(h) yT hq0k7+s +XF(k) yT kﬂshj+s +yh .
2 "h 1 r2 2 'K 1 r2

Provided the above, the optimal s? can be computed by numerical integration of
Egn (C.1). For special cases, we provide additional formulas:

Wx=mms0:R)=2 1 5 IO Ve yrs)+yn
(@x6 mm=0:R0)=2 SF(N) yT(hs)+ ¥ YOO Ly,
IZarctan(s).

(3) x

NI

m m= 0:Fy(x) =

C.3.2 Square Link Function for Poisson Regression

Consider Poisson regression, which uses the Poisson likelihood p(yjg) = g exp( g)/y!
to model count data y 2 N, with the square link function g(f) = f2 [Walder and
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Bishop, 2017; Flaxman et al., 2017]. We use the square link function because it is more
mathematically convenient than the exponential function. Given the cavity distribu-
tion g"(f) = N (fjms?), we want the tilted distribution &(f) = g"(f)p(yjg(f))/ Z
where the normalizer Z is derived as:

Zy ‘
z=_ q'(Nplyjg) df
Zy 2
= pl—exp (f_m* ;’n) f¥exp( f2)/y'df
¥ 2ps? 2s .
¥ 2\)2
@)p 1 2 exp (f 21(1"'252)) df
2ps2ylexp(n?/ (1+ 2s2)) ¥ 252/ (1+ 2s2)
2 Yt3
(i_J) n 138252 G y+ } e y } L
" 2ps 2ylexp(?/ (1+ 2s2)) 2 "2 2s?(1+ 2s?)
ay* 1 h
= P Gy+s th VY35 535
" 2ps 2yl exp(h) yre o V'3 252
. 2s? oot
A% Tros2 "7 1w (©2)

where the step (a) rewrites the product of two exponential functions into the form
of the Gaussian distribution, (b) is achieved through Mathematica [Wolfram, 2019],

J ) is the Gamma function and F v; %; %22 is the con uent hypergeometric

function of the rst kind. Furthermore, we compute the rst derivative of log Z w.r.t.
mand then the mean of the tilted distribution:

0 3 o 1

yilh v+ 1,3 5o A om
2

2R Vih oh 1+ 2s

=) my= s*fmlogZ + m
0

fimlog Z = @

1
.3. _h
5 _ @y B y+ L35 s N
fimlog Z — A
s?1h Vi3 32 S

0 1

gl ViR y*2E m R YL 2nfy

a L1 h + 1 h 2 54(1+ 232)2

31F1 y1 21 252 1F1 y, i; 2

=) si=s*MalogZ + s?
Finally, we derive the CDF of the tilted distribution @ by using the binomial theorem:

Z X
F()=21 ) p(yig)N (fims?) df
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@, % 2y (f i (1+ 2s?))2
A < exp 252/ (1+ 259) df

Z, _m_ 2y 2
_ 1+ 252 m f
= A ¥ o, 1+2s2 P g7 (1+ 2s2) df

Zyp 2% 2
O 8 Y oy koep T gy

¥ <o K a

2y Z 0 2 Z X b 2
-p8 Y fkexp  —  df+ fkexp = df

o K ¥ a 0 a

2y
©A o 2y gy g k1 ke K*1

5 20 K b¥ *az ( DG 5
k+ 1 k+1 (x Db)?
k+ 1
sgn(x b) G 5 G > g
1 1
A= p— £ = a'*iG y+} 1R y;}; Lz :

2ps 2yl exp(n?/ (1+ 2s2)) 2 2s
- _m
© 1+ 25

where the step (a) has been derived in (a) of Equation (C.2), (b) applies the binomial
theorem aﬂd (c) is obtained through Mathematica [Wolfram, 2019]. And, the function
Jaz2) = t2 le ' dt is the upper incomplete gamma function and sgn(x) is the
sign functlon equaling 1 when x> 0,0whenx = 0and 1when x< O.

C.4 Proof of Convexity

Theorem. Given two probability measures in M 1 (R): a GaussianN (ms?) with
mean mand standard deviation s > 0, and an arbitrary measure @, the L, WD
Wg(q, N ) is strictly convex about mand s.

Proof. Let F, Yy) and Fyl(y) = m+ péserf Yoy 1),y 2 [0,1], be the quantile
functions of g and the Gaussian N , where erf is the error function. Then, we consider
two distinct Gaussian measures N (m, s?) and N (m, s7) and a convex combination
w.r.t. their parameters N (aym + aomp, (151 + @S,)?) with a;,8 2 R+ and a; + a = 1.
Given the above, we further de ne #(y) = Fy y) me s¢ 2erf Y2y 1),k=1,2
for notational simpli cation, and derive the convexity as:

Z, ) Z 1
WE(a, N (am + 2oy, (aus: + a52)%) & Clam(y) akO)iPdy  (alt)ir

. ) (©
ajt(y)i)P dy  aWp(a N (m,s?))+ aWph(e N (m,s32)),

where steps (a), (b) and (c) are obtained by applying Proposition 1, non-negativity
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of the absolute value, and the convexity of f(x) = xP, p 1, over R, respectively.
The equality at (b) holds iff #(y) 0,k= 1,2,8y 2 [0,1], and (c)'s equality holds
iff j#.(y)] = j#(y)j, 8y 2 [0, 1]. These two conditions for equality can't be attained
simultaneously as otherwise it would contradict that N (rq,slz) is different from
N (mg,szz). So, \Nf,(q, N),p 1,is strictly convex about mand s. O

C.5 Proof of Variance Difference

Theorem 11. The variance of the Gaussian approximation to a univariate tilted distribution
g(f) as estimated by QP and EP satisfg,  sZp.

Proof. Let N (nbp,sép) be the optimal Gaussian in QP. As per Proposition 1, we
reformulate the L, WD based projection W3(g,N (an,SéP)) w.r.t. quantile functions:

Z

1 P ,
W@ N (mp,Sge)) = 1R 1Y) mp  2sgeerf (2y  1)j*dy
= F1! 24 (" 2sgperf, Y2y 1))2
. l( q (Y){Z ”bp)} ﬁ QP {z( y ))}
sép Sgp

p_
|2(Fq Yy) o) {Zsterf Y2y 1% dy
z
(A)
Sép S(ZQP'
R 1 .
where for (A), we used mypsgeerf “(2y 1) dy = 0 and the remaining factor can

be easily shown to be equal to Zsép. Furthermore, due to the non-negativity of the
WD, we have sz,  s3p, and the equality holds if and only if gis Gaussian. O

C.6 Proof of Locality Property

Theorem. Minimization of W3(g(f),N (f)) w.rt. N (f) results in qV(f,jf) =
N (frijfi).

Proof. We rst apply the decomposition of the L, norm to rewriting the W3(g(f), N (f))
as below (see detailed derivations in Appendix C.6.2):

h _ i
w3 (aN) = inf Ep, Kf %3 + W3(d;i Niji) (C.3)

where the prime indicates that the variable is from the Gaussian N, and for simpli-
cation, we use the notation p; for the joint distribution p (fj, in) which belongs to
a set of measuresU (g, N;). Sinceq"(f) is known to be Gaussian, we de ne it in a
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partitioned form:

" #!
fni My; Sl‘ll Snii
fi m Sy S

nii

q"(f) N (C.4)

and the conditional g"(fjf;) is expressed as:

q"(frifi) = N (FuiMpiji Sniji): Muji = My + SyiS H(fi my)  afi+ b, (C.5)
Siiji = Shi SniS 13;..

We de ne a similar partitioned expression for the Gaussian N (9 by adding primes
to variables and parameters on the r.h.s. of Equation (C.4), and as a result, the
conditional N (f2jf9 is written as:

N (fif) = N (mp;. Shj), mgiji =my+ S NP md) %P+ b (C.)

Sii = Sh SuS’ Sl (o)

Given the above de nitions, we exploit Proposition 2 to take the means out of the L»
WD on the r.h.s. of Equation (C.3):

h
W3 (g N) = ingpi kfi £33+ kmy;  mO k2 + W3 N(O,%i{-i),N(O,Sﬂiji)(C.B)
! | z }

niji

(A)

Minimizing this function requires optimizing  mf m¢, s° % and S2.. As S is only

contained in Sy;; and isolated into the term (A), it can be optimized by simply setting

Equatign (C.7)
=Sy = S = g+ S S 1A (C.9)

nljl nii <1 ni

As aresult, (A) is minimized to zero. Next, we plug in expressions of my;; and m?
(Equation (C.5) and Equation (C.6)) into optimized Equation (C.8):

niji

mSLn (C.8)= ig_pri kfi fX&2+ kafi a%°+b b%3 , (C.10)

where mgi is only contained by b® Thus, we can optimize it by zeroing the derivative
of the above function about mgi, which results in:

b= b+ am, OmOEquatISn (C.6) (n) — SnIISo 1 o+ b+ am, aomlq (C.11)

where my is the mean of g(f;). The minimum value of Equation (C.10)thereby is (see
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details in subsection C.6.3):

h [
min (C10)= (1+ a'a)Wi(g,Ni) + kaklsg + kakis® a'a’sg+ +(my  m)?

(C.12)

é is the variance of g(f;). This function can be further simpli ed using the

quantile based reformulation of W5(g,N;) (see details in Appendix C.6.4) which
results in:

where s

(C.12)= W2(g,N;)+ kak2s 2| 22aTaocq{§0%+ ka%2 3 (C.13)
(®)

Now, we are left with optimizing mf, S’and S2.. To optimize S2., which only exists

in the above term (B), we zero the derivative of (B) w.r.t. Sg” and this yields:

a® = 25(SY) icga EP VL = (289 icya, (C.14)
and the minimum value of Equation (C.13) is
rgi)n (C.13)= W5(q,N;) + kakj(sZ 2c3). (C.15)

nii

The results of optimizing mi0 and Sloin the above equation have already been provided
in Equation (5.1). miO = my and SIO = 2(:;. By plugging them into Equation (C.14)
and Equation (C.11), we have a% = aand b® = b. Finally, using Equation (C.9), we
obtain " (fyjfi) = N (fyjafi+ b,Sy;) = N (fyja+ bo Sﬁul) = N (fyjfi) , which
concludes the proof. O

C.6.1 Details of Equation 5.2

z fri i) a( fi
KL(a(f)kN (f))=  &(f)log ngf .}f;ﬁf(:) df
_° () lo &(fi) df+Zq(f)Z (f.ijf)lo ATl ) df,; df;
- q gN(f) q n|J gN(fm f) ni |
h i

KL a(fi)kN (fi) + Egqr) KL a(fmjfi)kKN (frjfi)
a(f) p(f)p(Yijfi)Ojsitj(f)
a(f) o (i) p(yij fi)
= q"(fnjfi). (C.16)

a(frifi) =
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C.6.2 Details of Equation C.3

W2 (g(f),N (f inf E, kf %32
s(a(f),N(f)) o2y P 5

= inf Ep kfi %3 +Ep kfy f2K3

p2U(aN) .
© inf E h|<f 2+ B, ki fOK2
= N . f . + . f

DZU(Q,N) Pi | i ™2 P niji ni ni 2
(b) . 02 !
= infEp, kfi fX3+ inf Ep . kfy fOK3

Pi h P niji " i
= i[}_f Ep, Kkfi £33+ W5(aniji, Nniji)

" h i
(©

= iQ.pri kfi K3+ WZ(qm“! niji)

where the superscript prime indicates that the variable is from the Gaussian N . In (a),
pi = p(fi, f) and ppnj = p(f, fAifi, £9. In (b), the rst and the second inf are over

U(&,N;) and U(&yji, N yji) respectively. (c) is due to g( fj f;) being equal to ¢ (fri i)
(refer to Equation (C.16)).

C.6.3 Details of Equation C.12

mion Equation (C.10)

ni

h i
= ingpi kf f-(k2+ ka(fi my) aXf> mdk3
' h
= infE, kf fok2 + kakgs? + kakss® 2a'a%,, fif’ mp
Pi Pi i I’Th i
' h

inf Ep, kf fok2 + kakgsZ + kaksS’+ aTa®%,, kfi &G 2 (f)%+ 2mym?

h
inf Ep, kf f(kz + kakgss + kaksS’+ aTa%,, kfi 3G (fi my)?

2fimm+”§ (f° m)?  2fId+ (md)?+ 2mym?

= (1+ a'a)W5(,N;) + kakssZ + kakss® a'a® sZ + nf + S+ (m)?  2mym?

h i
= (1+ a'a)W5(a,Nj) + kakssZ + kakss® a'a®sZ+ S+ (my  mp)?
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C.6.4 Details of Equation C.12

We rst use Proposition 1 to reformulate the L, WD W3(g,N;) as:
Zy q — 1 2
wie,N)=  FMy) m  2sbrf Y2y 1)
0
z

q —
ol(Feﬁ(y) m)?+ 2sferf Y2y 1?2 2srf M2y (R My) m) dy,

z, q__
(F y) my+my m%zdyﬂio 2 25k,

s2+(my m)P+ S 2cq glo,

R
where Fy 1(y) is the quantile function of g(f;) and Cq 01 Ry Yy)erf Y2y 1) dy.
Next, we plug this reformulation into Equation (C.12):
h [
Equation (C.12) = W5(q,N;) + a’aW5(,N;) + kakssZ + ka%kss® a'a®sZ + +(my m)?

h q __i
Wi(a, N+ aTa® s (e (RIGE 2cq 280 + kaks] + kadkes!

aTaO (32 g {_((ng( ?nég

W3(a, Ni) Zcq ZSOaTa0+ kak3s2 + ka%3s]

C.7 More Details of EP

i), and

We use the expressionse(f) = o (f)p(yijfi)/ Zqand q"(f) = o(f)/ (ti(f)Zyp

the derivation of KL (g(f)kq(f)) = KL(g(fi)kq(f;)) is shown as below:

z

_ q"(f)p(yii i)
KL(e(f)ka(f)) = ) g(f) log W df

_ q(f) p(yij fi)
= q(f)log qm qq(f)t(f)df

z p(yii fi)
= Q(fi)|097qm Zati () df;

Z
2 qih)plyih)
a(fi) |Og ZnZe (fi)ti(F)

z
_ &(fi)
= g(f)log (f)df

= KL(e(fi)ka(f))
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C.8 Predictive Distributions of Poisson Regression

Given the approximate predictive distribution f(x ) = N (m,s?) and the relation
g(f) = f?, itis straightforward to derive the corresponding g(x ) Gamma(k ,c )?!
where the shape k and the scalec are expressed as [Walder and Bishop, 2017Zhang
et al., 2020Db]:

K = (n? + s2)? . = 2s?(2nt + s?)
Co2s2(2m?+s2)’ T mR+s?2

Furthermore, the predictive distribution of the count value y 2 N can also be derived
straightforwardly:
Zy
p(y)= _ p(9)p(yig) dg
Z
= Gamma(g jk ,c )Poisson(yjg ) dg

_d(c+1 * vgk +y)
y'Gk )

where g = g(x ) and NB denotes the negative binomial distribution. The mode is
obtainedasbc (k 1)cif k > 1lelseO.

= NB(yjk ,c/(1+ c)),

C.9 Proof of Corollary 3.2

Since the site approximations of both EP and QP are Gaussian, we may analyse
the predictive variances using results from the regression with Gaussian likelihood
function case, namely the well known Equation (3.61) in [Rasmussen and Williams,
2005]:

s?(f)= k(x ,x) k'(K+8) %k, (C.17)

where f = f(x ) is the evaluation of the latent function at x and k =[k(x ,x)]X]
is the covariance vector between the test datax and the training data fx;gl ,, K is the
prior covariance matrix and § is the diagonal matrix with elements of site variances
8?.

After updating the parameters of a site function t;(f;), the term (K+ 8) 1 is
updated to (K+ 8+ (87, 87)ee’) ! where gy is the site variance estimated
by EP or QP and g is a unit vector in direction i. Using the Woodbury, Sherman &
Morrison formula [Rasmussen and Williams, 2005, A.9], we rewrite (K+ € + ( efnew
e?)ee’) las

(K+ 8+ (8w 8)ae) ' (A T+ (8%, 8)eg) *

= A Ae(8 8?) 1+ ¢ Ag] A

i,new

1Gamma(xjk,c) = G(lf)ckxk le X/c,
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A Si[(siz,new ei2) L+ Aii] lsiT
1 T

SiS;
(siz,new si2) L+ A I

= A

where A = (K+ 8) !and s is the i'th column of A. Putting the above expression
into Equation (C.17), we have that the predictive variance is updated according to:

1

(eiz,new elz) L+ A

s2(f)=k(x ,x) kTAk + kTsis'k .

In EP and QP, the rst two terms on the r.h.s. of the above equation are equivalent. As
the site variance provided by QP is less or equal to that by EP, i.e., , 8% 87 the
third term on the r.h.s. for QP is less or equal to that for EP. Therefore, the predictive
variance of QP is less or equal to that of EP:s3p(f )  sZp(f ).

C.10 Lookup Tables

To speed up updating variances sép in QP, we pre-compute the integration in Equa-
tion (5.1) over a grid of cavity parameters mand s, and store the results into lookup
tables. Consequently, each update step obtainssép simply based on the lookup tables.
Concretely, for the GP binary classi cation, we compute Equation (5.1)with m s and
y varying from -10 to 10, 0.1 to 10 and f 1, 1g respectively. mand s vary in a linear
scale and a log10 scale respectively, and both have a step size of 0.001. The resulting
lookup tables has a size 0f 20001 2001 In a similar way, we make the lookup table
for the Poisson regression. In the experiments, we exploit the linear interpolation to

t sép given m2 [ 10,10 and s 2 [0.1, 14, and if mand s lie out of the lookup table,
s&p is approximately computed by the EP update formula, i.e., sp s On Intel(R)
Xeon(R) CPU E5-2680 v4 @ 2.40GHz, we observe the running time of EP and QP is
almost the same.
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Algorithm 2 Expectation (Quantile) Propagation
Input:  p(f), p(yijfi), ti(fi),i=1, ,N,q

Output: g(f) approximate posterior
1: repeat
2. compute q(f) p p(f) O;ti(fi) by (2.8)
3: repeat
4: fori=1toNdo
5: compute g™(f;) u q(f)/ ti(f) cavity
6: compute g(f;) u g™ (f;)p(yij fi) tilted
7 if EPthen _
8: ti(fi) W projy [a(fi)]/ o™ (fi) by (2.10)(2.11)
9: else if QP then _
10: ti(fi) u projy[a(fi)l/ o™ (fi) by (5.1)(2.11)
11: end if
12: update q(f) p p(f) O;ti(f;) by (2.8)
13: end for
14: until convergence
151 = argmax, log q(D) by (2.9)

16: until convergence
17: return q(f)




Appendix D

Appendix: Kernel Maximum
Moment Restriction

D.1 Integrally Strictly Positive De nite (ISPD) Kernels

Popular kernel functions that satisfy Assumption 1 are the Gaussian RBF kernel and
Laplacian kernel

2
kz z%3 Kz = exp kz 2%,

k(z,29) = exp 552 , —

where s is a positive bandwidth parameter. Another important kernel is an inverse
multiquadric (IMQ) kernel

k(z,29 = (P+ kz z%3) 9

where ¢ and g are positive parameters [Steinwart and Christmann, 2008, Ch. 4].
This class of kernel functions is closely related to the notions of universal kernels
[Steinwart, 2002] and characteristic kernels [Fukumizu et al., 2004]. The former
ensures that kernel-based classi cation/regression algorithms can achieve the Bayes
risk, whereas the latter ensures that the kernel mean embeddings can distinguish
different probability measures. In principle, they guarantee that the corresponding
RKHSs induced by these kernels are suf ciently rich for the tasks at hand. We refer
the readers to Sriperumbudur et al. [2011] and Simon-Gabriel and Scholkopf [2018]
for more details.

D.2 Detailed Proofs

This section contains detailed proofs of the results that are missing in the main paper.
Most of the proofs on consistency and asymptotic normality take advantages of the
useful resource by Newey and McFadden [1994]. Readers are referred to it for more
detailed discussions on e.g. assumptions.

97
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D.2.1 Proof of Lemma 1

Proof. SinceH is the RKHS, we can rewrite (6.2) as

Re(f)=  sup  (E[(Y f(X)hhk(Z, )in])?

h2H khk 1
= sup  (ME[Y f(X)KZ, )in)
h2H  khk 1
= KE[(Y f(X))K(Z, )IKE, , (D.1)

where we used the reproducing property of Hy in the rst equality and the fact
that H is a vector space in the last equality. By assumption, E[(Y f(X))k(Z, )] is
Bochner integrable [Steinwart and Christmann, 2008, Def. A.5.20]. Hence, we can
write (D.1) as

KE[(Y f(X)K(Z, )k,

FEL(Y  fOX))K(Z,)LELY  F(X)DKZ, iy,
E[NY  f(X)K(Z, ). E[(Y F(X)K(Z, )in,]
E Y f(X)DK(Z, ). (Y® FXDKZ® )in,
E (Y fOONY° f(Xk(z,29 ,

as required. O

D.2.2 Proof of Theorem 6

Proof. First, the law of iterated expectation implies that
EI(Y  fXDK(Z, )] = Ez[Exy[(Y f(X)K(Z,)jZ]] = Ez[Exvy[Y f(X)iZ]k(Z, )].

By Lemma 1, we know that R (f) = KE[(Y f(X))k(Z, )]szk. As aresult, R(f) = 0
if E[Y f(X)jz] = 0 for Pz-almost all z. To show the converse, we assume that
Rk(f) = O and rewrite it as
2z
Re(f) = ] 9(2)k(z, 2%9(z% dzdz°= 0,

where we de ne g(z) := Exy[Y f(X)]jz]p(z). Sincek is ISPD by assumption, this
implies that g is a zero function with respect to Pz, i.e., E[Y f(X)jz] = 0 for
Pz-almost all z. O

D.2.3 Convexity Result

Theorem 12. If F is a convex set and Assumptions 1, 2 hold, then the Rglgiven in (6.3)
is strictly convex orfF .

Proof. Given a 2 (0, 1) and any functions f,g: X ! R, we will show that

Raf+(1 a)g) aRy(f) (1 a)R(g) <O.
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By Lemma 1, we know that Ry(f) = KE[(Y f(X))k(Z, )]szk. Hence, we can rewrite
the above function as

Rdaf+(1 a)g) aRd(f) (1 a)R(9)

= KE[(Y af(X) (1 a)g(X)k(Z )IKi, akE[(Y FX)KZ, )IKE,
(1 akE[Y g(X)k(Z, )]k,

Da@ DKEIY FX)KZ)IKE, +a@ DKE[Y g(X)kZ, IKE,
2a(a DIE[Y F(X)KZ LEIY g(X)KZ, i,

® a(a DKELT) K2, kG < 0

>0

The equality (a) is obtained by considering Y = a¥Y+ (1 a)Y in KE[(Y af(X)

(1 a)g(X))k(z, )]k2Hk on the left hand side of (a). We note that the right hand side
of (a) is quadratic in KE[(Y  f(X))k(Z, )]kn, and KE[(Y  g(X))k(Z, )]kn,, and can
be further expressed as a square binomial as the right hand side of (b). Therefore, the
convexity follows from the fact that ks the ISPD kernel, KE[(f(X) g(X))jZ]k. 6 O
anda(a 1)< 0. O

D.2.4 Uniform Convergence of Risk Functionals

The results presented in this section are used to prove the consistency of fy and fy.

Lemma 2 (Uniform consistency of Ry (f)). Assume thatE[jYj?] < ¥, F is compact,
E[sup;,e jf(X)j%] < ¥, and Assumption 1 holds. Then, the rif( ) is continuous about

f2F andsup,,e jRv(f) Re(f)j!" O.

Proof. First, let u := (x,y,2), u® := (x%y%29, and h;(u,ud = (y f(x))(y°
f(x9)k(z,29 for some (x,y,2),(x°y%z% 2 X Y Z . To prove that Ry converges
uniformly to Ry, we nﬁed to show that (i) ihf(u, u9 is continHous at each f withi prob-

ability one; (i) Eyyo sups,r jhe(U,U9j < ¥, and Eyy supsye jhi(U,U)j < ¥
Newey and McFadden [1994, Lemma 8.5]. To this end, it is easy to see that

jhe(uudi = iy FONY® FONk(z i
iy fiiy° f(X(ﬁJ'J'qk(Z,Z(ﬁJ'
iy fOiy? O] k(Z,z)k(ZO,Z%
Gyi + iTOOD3YT + if(x9)  k(z2)k(z%29.

The third inequality follows from the Cauchy-Schwarz inequality. Since F is compact,
every f 2 F has f(x) bounded for kxk < ¥ . In term of k(, ) is bounded as per
Assumption 1, we have h;(u,u% < ¥ and thus h¢(u,u% continuous at each f with
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probability one. Furthermore, we obtain the following inequalities

# " #
q
Euuoe supjhe(U,U9j  E sup(Yj+jf(X)DNGYF+if(X%) Kz, 2)k(z°29
f2F . f2F 4
E sup(jYj+ jf(X)j)sup(jYd + if(X9j) supk(z 2)
f2F f2F z
n #2
= E sup(jYj+ jf(X)j) supk(z,2)
f2F z
mn #2
= E jYj+ supjf(X)] supk(z,z) < ¥
f2F z
# " #
Euu supjhsi(U,U)j  Eu sup(jYj+jf(X)j)* supk(z2)
f2F f2F z
n #
= E (jYj+ supjf(X)j)? supk(z2)
f2F z
n #!
2 E jYj2 +E supjf(X)j> supk(zz)< ¥
f2F z
Hence, our assertion follows from Newey and McFadden [1994, Lemma 8.5]. O

Lemma 3 (Uniform consistency of Ry(f)). Assume thatE[jYj] < ¥, F is compact,
E[j f(X)j] < ¥ and Assumption 1 holds. TheRy( f) is continuous abouf andsup . jRu ()

Re(H)j I° .

Proof. First, let u := (x,y,2), u% := (x%y%29, and h{(u,u® = (y f(x))(y°
f(x9))k(z, 29 for some (x,y,2),(x%y%2z%) 2 X Y Z . To prove the uniform con-
sistency of Ry, we need to show that (i) h¢(u,ud is continuous at each f with
probability one; (i) there is d(u,u% with jh;(u,u%j  d(u,u9 forall f 2 F and
Eyuod(U,U9] < ¥ [Newey and McFadden, 1994, Lemma 2.4]; (iii) (uj, uj)g] has
strict stationarity and ergodicity in the sense of Newey and McFadden [1994, Footnote
18 in P.2129]. To this end, it is easy to see that

ine(u,udi = ity FONY® Fxk(z 2]
iy fiiy° f(X%jqk(Z, 29)]
iy f0iy° O] k(Zyzq)k(ZO,ZO)
(i + ifOOD3YT + if (<) k(z2k(Z%2)  d(u,u).

The third inequality follows from the Cauchy-Schwarz inequality. Since F is compact,
every f 2 F has f(x) bounded for kxk < ¥ . In terms of k(, ) is bounded as per
Assumption 1, we have h;(u,u% < ¥ and thus it proves that (i) h;(u,u9 is continuous
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at each f with probability one. To prove (i) Ey ydd(U,U9] < ¥, we show that

Euudd(U,U%  E[Yj+ jf(X)j°supk(z,2) < ¥

Furthermore, we show that (uj, Uj)inér} has strict stationarity and ergodicity. Strict
stationarity means that the distribution of a set of data (u;, ujgi)::ﬂ’jjlmo does not
depend on the starting indices i, j for any m and m® which is easy to check. Ergodicity
means that Ry (f) P Re(f) forall f 2 F and E[jh;(U,U9j] < ¥. We have already
shown that hy(u,u9 is bounded and E[jhs(U,U9%j] < ¥, soRy(f) P Ry(f) follows by
Hoeffding [1963, P.25]. Therefore, ergodicity holds, and we have shown all conditions
required by extended results of Newey and McFadden [1994, Lemma 2.4]. Then, it

follows that sup .,r jRU(f) Re(f)j I° 0and Ry(f) is continuous. O

D.2.5 Inde niteness of Weight Matrix Wy
Theorem 13. If Assumption 1 holds, W is inde nite.
Proof. By de nition, we have

1

Wy = ;[K(z,z) diag(k(z1,21),...,k(zn, zn))] = mKU,

n(n 1)

where diag(ay,...,a,) denotes ann n diagonal matrix whose diagonal elements
are ay, ..., a,. We can see that the diagonal elements ofKy are zeros and therefore
trace(Wy) = 0. Let us denote the eigenvalues of Wy by fl;gL,. Sincedl,l; =
trace(Wy ), we conclude that there exist both positive and negative eigenvalues (all
eigenvalues being zeros yields trivial Wy = 0). As a result, Wy is inde nite. O

D.2.6 Consistency of fy with Convex W(f)

Theorem 14 (Consistency of fy with convex W(f)). Assume that is a convex seff is
an interior point ofF , W(f) is convex abouf, | I 0and Assumptions 1, 2 holds. Thefy,
exists with probability approaching one amg o
Proof. Given W( f) is convex about f, we prove the consistency based on Newey and
McFadden [1994, Theorem 2.7] which requires (i) Ri(f) is uniquely maximized at f ;
(i) Ry(f)+ | W(f) is convex; (iii) Ry(f)+ | W(f) I” Re(f) forall f2F.

Recall that Ry (f) = k2aL (yi  f(x))k(z, )k .. and by the law of large number,
we have that 281, (yi  f())k(z, ) I” E[(Y F(X)k(Z, )]. Then Ry(f) I” R(f)
follows from the Continuous Mapping Theorem [Mann and Wald, 1943] based on
the fact that the function g() = k kak is continuous. As | I 0, we obtain (iii)
Ry (f) + | W(f) P Rk(f) by Slutsky's theorem [Van der Vaart, 2000, Lemma 2.8].

Besides, it is easy to see thathv( f) is convex because the weight matrix Wy, is positive
de nite, and (i) Ry (f)+ | W(f) is convex due to convex W( f). Further, the condition
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(i) directly follows from Theorem 12, and given that f is an interior point of the
convex set F, our assertion follows from Newey and McFadden [1994, Theorem
2.7]. O

D.2.7 Proof of Theorem 8

Proof. From the conditions of Lemma 2, we know that F is compact, Ry(f) is contin-
uous about f and sup;,¢ jRv(f)  Re(f)j 0. As Assumptions 1, 2 hold, Ry(f) is

uniquely minimized at f . Based on the conditions that W( f) is bounded and | P 0,

we obtain by Slutsky's theorem that

sup Ry(f)+ I W(f) Re(f) sup Ry(f) Ry(f) +1 supW(f) " 0.
foF foF foF

Consequently, we assert the conclusion by Newey and McFadden [1994, Theorem
2.1]. O

D.2.8 Consistency of fy

Theorem 15 (Consistency of fu). Assume that conditions of Lemma 3 and Assumption 2
hold, W( f) is a bounded function and I® 0. Then fu o

Proof. By the conditions of Lemma 3, we know that F is compact, Ry(f) is continuous
about f and sup;,e jRuU(f)  Re(f)] ® 0. As Assumptions 1, 2 hold, Ry(f) is

uniquely minimized at f . Based on the conditions that W( f) is bounded and | P 0,
we obtain by Slutsky's theorem that

sup Ru(F)+ IW(F) R(f) sup Ru(f) R(f) +1 supW(f)!” 0.
foF f2F foF

Consequently, we assert the conclusion by Newey and McFadden [1994, Theorem
2.1]. O

D.2.9 Asymptotic Normality of oy

In this section, we consider the regularized U-statistic risk RUJ (fq). Foru; == (x,Yi,z)
and u; := ( xj,Yj,zj), we express it in a compact form

(U
Ry, (fq) n(n 1) g_ a hqg(ui, u;) +1 W(Q)
| i= Zj@l }
pU(fq)

hq(u;i, uj)

(yi  fq(xi)k(zi,z)(y;  fq(x))).
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We will assume that fq and W(q) are twice continuously differentiable about ¢. The
rst-order derivative r 4Ry (fq) can also be written as

n n
1 o o]

r qhu,l (fq) m.a . 'I’ qhq(ui,uj)+| r qW(q)
| |:11{62| }
r gRu(fq)
rghg(ui,up) = (i fq(xi)r oqfq()+(y;  fg(X))r ofq(xi) k(zi,z).

Asymptotic normality of r qhw (fq ). We rst show the asymptotic normality of
r qRUJ (fq ). We assume that there existsz 2 Z such that Ex[r 4fy (X)]z]p(z) & O
or Exy[Y fq (X)]z]p(z) & 0. Both terms being equal to zeros for all z2 Z leads to
a singular r ghu(fq ) and the asymptotic distribution therefore becomes much more
complicated to analyze.

Lemma 4. Suppose that, andW(q) are rst continuously differentiable abouwg E [kr 4hq (U,U9Kk3] <
¥, there existz 2 Z such thatEx[r 4fq (X)]jz]p(z) 8 OorExy[Y fq(X)]jz]p(z) € O,

andpﬁl ® 0. Then,
P ar qRuj (fg) 1" N(0,4diag(Ey[E3dr ghg (U, U9I)).

Proof. The proof follows from Ser ing [1980, Section 5.5.1 and Section 5.5.2] and we
need to show that (i) r qPu(fq) I’ 0and (i) whether Vary[Eydr qhg (U,U9]] > Oor
not. (i) can be obtained by the law of large numbers because r qPu(fq ) is a sample
average ofr 4Ry(fq )= 0.
To prove (ii), we rstnote that Vary[Eydr ghg (U,U9]] = Ey[EZdr qhgq (U,UY]]
Fauo[r q?g (U,U(ﬁ; 0, where equality holds if for any U, there isEydr 4hq (U,U9] =
=0

0, i.e.,

Eudr ghg (U,U9]
= Exedr ofg (XOK(ZOZ)I(Y  fq (X))  Exoyozo[(YO fq (XPKZO2)Ir ofq (X)

= 0.
As the above equation holds for any Y, the coef cient of Y must be O:
Exozdlr ofq (XOk(Z%2)] = EZzExdr ofq (X9jZ29k(Z°2)] = o,

where we note that E[r 4fq (X9jZ9p(z9 = 0 for any z%implied by the second
function above. Similarly, the coef cient of r ¢fq (X) must be zero, which implies that
Exoro[(YO 4 (X9)jZ9p(Z29 = 0for any Z° The two coef cients cannot be zero at
the same time (otherwise against the given conditions), so Vary[Eyd[r ¢hq (U,U9]] >
0. Further due to the given condition E[kr g h(U,U9k3] < ¥, we obtain P nr qhu(fq ) P
N (0, 4Ey[EZdr ghg (U,U9])) as per Sering [1980, Section 5.5.1]. Finally, as nl ® 0
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and r qW(q ) < ¥ by the condition that W(q) is rst continuously differentiable, we
assert the conclusion by Slutsky's theorem,

Par oRuy ()= " ar qRu(fq)+ "l r W(g ) N(O, 4diag(Eu[E2dr ohg (U, UY])).

This concludes the proof. O

Uniform consistency of r PU | (fq). Next, we consider the second derivative
hU| (fq) and show its umform consistency. In what follows, we denote by Kk kg
the Frobenius norm. We can expressr hu | (fq) as

1 g J
r 2Ry, (fg) = " D) _al%_r ahg(ui, up) +1 1 2W(a)
i=1j6i
| {z }
r ghu(fq)
rahg(uiu) = [r ofq(x)r ofg (4)  (vi f0a))r Gfa(x))

1 gfg(x)r ofg () (v fg(x)1 Gfa(x)Ik(zi, 2).

Lemma 5. Suppose thafy and W(q) are twice continuously differentiable abaytQ is
compactE [[fo(X)j] < ¥, E[kr ¢fg(X)ka] < ¥, E kr éfq(X)kF < ¥, E[Y]] < ¥,
| 1” 0and Assumption 1 holds. Theg|[r ghq(U,Ufb] is continuous aboug and

sup 1 2Ry (fy) E[r 2hq(u,u%] 1°
®2Q F

Proof. The proof is similar to that of Lemma 3 and both applies extended results of
Newey and McFadden [1994, Lemma 2.4]. As (u;, u;)is; being strictly stationary in
the sense of Newey and McFadden [1994, Footnote 18 in P.2129] has been shown
in Lemma 3, we only need to show that (i) r ghq(u uY is continuous at each q2 Q
with probability one and (i) there exists d(u,u® kr aha(u, u9ke forall g2 Q and
E[d(U,U9] < ¥ . We exploit the triangle inequality of the Frobenius norm and obtain

2h g(u,u9 o .
2kr afq(OT ofg ke + (Jyj + f(0DKr Zfq(xYke + (jyd + jf(xAj)kr 3f (X)kF k(z,29

d(u, u9,

We rst show d(u,u9 is bounded for bounded u,u® As fq is twice continuously
differentiable about g and Q is compact, we have fy(x) bounded as well as each
entry of r fy(x) and r 2fq(x) for kxk < ¥ . Further taking into account that k(, ) is
bounded as per Assumption 1, we know that d(u,u® < ¥ if u,u®are bounded, and it
follows that (i) r gh (u,u9 is continuous at each g2 Q with probability one as fqis
twice continuously differentiable.
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We then show that (i) Ey ydd(U,U9] < ¥ by the following inequalities:

EU,UO[?](U,U%]

i
2E kr ofq(X)r qfy (XYKe+ (jYj+ jfa(X))kr 2f(XOke supk(z,z)
0 . z 1

h i
— > . . . . 2
= Z@F [kr q<{fg;,(x)kFﬂE kr qfq (X‘)kp + F[ij E{éfq(x)@F kr qgg(XO)kF}A SLij k(z,z)

< ¥.

Therefore, we obtain sup, q kr ﬁhu(fq) E[r ﬁhq(U,UO)]kF I’ 0 following from
the extended results in the remarks of Newey and McFadden [1994, Lemma 2.4].
Furthermore, from the conditions that W(q) is twice continuously differentiable and
the parameter space Q is compact, we obtain that kr SW(q)kF < ¥ forany g2 Q.
Finally, it follows from the Slutsky's theorem that

sup r 2Ry, (fg) E[r 3hg(U,U9] _

a2Q
p
sup r ZRy(fg) E[r 3hg(U,U9] _+ 1 sup r2w(g) ! o.
a2Q 20
This concludes the proof. O

Theorem 16 (Asymptotic normality of qy). Suppose thaH = E[r (2]hq (U,U9] is non-
singular, Q compactE [j f4(X)j] < ¥, E[jY]] < ¥, fy andW(q) are twice continuously
differentiable about, E [kr 4fq(X)k2] < ¥,E kr éfq(X)kF < ¥, P n ® o Ri(fg) is

uniquely minimized atg which is an interior point 0fQ, E[kr ghy (U,U9K3] < ¥ and

Assumptions 1 hold. Then

PR q) " N(.4H diag(Eu[E3dhg (U UYH Y.

Proof. The proof follows by Newey and McFadden [1994, Theorem 3.1] and we
need to show that (i) &J P q ; (i) RUJ () is twice continuously differentiable; (iii)
P nr qRUJ (fq) P N (0, 4Ey[EZdhg (U,U9]D; (iv) there is H(q) that is continuous at
q and supgq kr SRUJ (fe)  H(ake ® o; (v) H(q ) is non-singular.

The proof of (i) is very similar to Theorem 15 except that we consider nite
dimensional parameter space instead of functional space. For a neat proof, we
would like to omit the detailed proof here. We can rst show the uniform consistency
supqujRUJ (f)  Re(fyi ” 0and Rk(fg) is continuous about gsimilarly to Lemma 3.
Here, the proof is based on the conditions E[jYj] < ¥, Q is compact, E[j fy(X)]j] < ¥
and fq is twice continuously differentiable about g, and Assumption 1 holds. Then,

&J P g similarly to Theorem 15, because of the extra condition Ry(fg) is uniquely
minimized at q .
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Furthermore, from the conditions that Q is compact, fq is twice continuously
differentiable about q, E [jfo(X)j] < ¥, E [kr ofq(X)kz] < ¥ E kr 2fq(X)ke < ¥,
E[jYj] < ¥ and k(z,2z9 is bounded as implied by Assumption 1, we can obtain (ii)
Ry (q) is twice continuously differentiable about q. Given H = E[r 2h (U,U9] =
r 2Rk(q) is non-singular and Ry(fq) is uniquely minimized at q , we can obtain that
the Hessian matrix H is positive de nite,

h [
H = 2E(xyz)yxovezg T gfq (X)F ofg (X9 (Y fq (X)) 2fq (X9 k(Z,29) o

If forall z2 Z, there is Ex[r fq (X)jz]p(z) = Oand Exy[Y fq(X)jz]p(z) = O,
then we can see that the above function H = 0 which contradicts H 0. Therefore,
there must exist zs.t. Ex[r fq (X)jz]p(z) 8 Oor Exy[Y fq (X)]z]p(z) & O. Then,
it follows by Lemma 4 that (i) = nr thJ (fq) P N (O, 4EU[E60[hq (U,uo).
Finally by Lemma 5, we know that H(q) = E[r ghq(U,UO)] and H(q ) = H, so
(iv) and (v) are satis ed. Now, conditions of Newey and McFadden [1994, Theorem
3.1] are all satis ed, so we assert the conclusion. O

D.2.10 Proof of Theorem 9

We restate the notations

n
o

ér{ah(U.,U)HW(q)

i P
hV(fq)

ho(ui, b)) = (yi  fa(xi))k(zi, z)(y;  fq(X))),

1
n?

Ry, (fq)

Lemma 6. Suppose that conditions of Lemma 4 hold. Then
P P
nr Ry, (fq) 1" N(O,4Ey[EZdr 4hgq (U,UO])).

Proof. As E[kr qhq (U,U9K3] < ¥, P nr qh\,(fq ) has the same limit distribution as

that of ~ nr qi‘«‘u(fq) by Sering [1980, Section 5.7.3]. Furthermore, by pﬁl ® 0
and r qW(q ) < ¥ from that W(q) is rst continuously differentiable, we assert the
conclusion by Slutsky's theorem

P aRv, (fq) = P Ry + Pair W(a) 1” N(0,4Ey[EZdr 4hg (U,UO)).
O

Lemma 7. Suppose thaf, andW(q) are twice continuously differentiable abaytQ is com-
pact,E[supy, o i fa(X)j?] < ¥, E[supgo kr ofg(X)K3] < ¥, E[supg,q kr 2fg(X)kE] <
¥, E[Yj?] < ¥,1 | 1” 0and Assumption 1 holds. Thefg[r ghq(U,UO)] is continuous
aboutq andsup,o kr 2Ry (fg)  E[r 2hg(U, U9 ke ® 0
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Proof. We apply Newey and McFadden [1994, Lemma 8.5] for this proof and need
to show (i) r f‘hq(u, uY is continuous about each q 2 Q with probability one, and (ii)
E[supgyq kr 5hq(U,U9ke] < ¥ and E[sup o kr 2hg(U,U)ke] < ¥ .

We rst see that kr 2hq(u u9ke and kr 2hq(u u)ke are bounded for nite u,u®
becausefy is twice contlnuously dlfferentlable about q. It follows that (i) r 2hq(u ud
is contlnuous about g with probability one. We then derive upper bounds for
E[supg,q Kr ghq(u ,U9kg] and E[supgq Kr 2hq(U, U)Ke] so as to show their bound-
edness,

E[supkr 2hg(U,U%ke]

02Q u #
2E supkr ofq(X)r fy (XOKe+ (jYj+ jfa(X)j)kr Zfg(XOke supk(z 7)
2Q
o #s " # " #
2E supkr ¢fg(X)kz + 2E jYj+ supjfe(X)j E supkr 3fq(X9ke sup k(z, 2)
a2Q a2Q q2Q
<y,
and
E[supkr Zhg(U, U)ke]
02Q u #
2E supkr fg(X)r qfq>(X)kF+(ij + JTq(X)))kr gfq(x)kp supk(z,z)
2
. e g 2 1,3 ‘ #
2E supkr gfq(X)k3 + 2E4 jYj+ supij(X)J S5E supkr 3fq(X9KkE supk(z 2)
a2Q q2Q z
# " # " #
2E supkr ofg(X)k3 + E (jYj+ supjfe(X)j)?> + E supkr 3fo(X9kZ supk(z 2)
2Q a2Q 42Q z
# " # " #
2E supkr ofg(X)k3 + 2E jYj?+ supjfy(X)j® + E supkr 3fq(XOkE supk(z2)
02Q 2Q a2Q z

< ¥.

Thus, we assert the conclusion by Newey and McFadden [1994, Lemma 8.5]. [

Proof of Theorem 9The proof is the same as that of Theorem 16 except that Ry is
replaced by Ry . O
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D.2.11 Asymptotic Normality in the In nite-dimension Case

We rstly state the asymptotic normality theorem for fu and its proof. Afterwards,
we provide the proof of Theorem 10 whose proof is a slightly modi ed version of that
of fy.

Theorem 17. Suppose Assumption 1 holdsis a bounded kernek,is a uniformly bounded

function, andl | o holds. Also, suppose tht, Z, andY are compact spaces, and there
existss 2 (0,2) and a constanCy > O such thatlog N (#H,,k k¥x) Cu# Sfor any
#2 (0,1.1f1 1o=o(n ¥2) holds, then there exists a Gaussian pro&&ssuch that

pﬁ(f\u f|0) Gpin H,.

An exact covariance of G, is described in the proof. The proof is based on the
uniform convergence of U-processes on the function space [Arcones and Gine, 1993]
and the functional delta method using the asymptotic expansion of the loss function
[Hable, 2012]. This asymptotic hormality allows us to perform statistical inference,
such as tests, even in the non-parametric case.

We discuss the boundedness and covering number assumptions in Theorem 10
and Theorem 17. For the boundedness assumption, many common kernels, such
as the Gaussian RBF kernel, the Laplacian kernel, and the Mercer kernel, satisfy it.
For the covering number, the common kernels above also satisfy it with a certain
parameter con guration. For example, the Gaussian kernel (see Section 4 in Steinwart
and Christmann [2008]) and the Mercer kernel (explained in Zhou [2002]).

To prove the theorem, we provide some notation. Let P be a probability measure
which generates u = (x,y,z) and W = X Y Z . Also, we de ne a function
he(u,u)=(y  FON(Y? fF(xPk(z,2). LetH = fhy:W W! Rjf2H,g For
preparation, we de ne Ph; :W ! R asPh;()=( h¢(u, )+ he(,u)dP(u))/ 2 for
hf 2 H. For a signed measureQ on W, we de ne ameasure Q2:= Q QonW W .
Then, we can rewrite the U-statistic risk as

n 22 2
Ry(f) = ( v ) a & he(uj,u)) =:UZhy,
- 1j6i

1=
where Uy, is an empirical measure for the U-statistics. Similarly, we can rewrite the
V-statistic risk as
1

n n
2 a & he(u,u)) =: P?hy,

i=1j=1

Ry(f) =

where P, is an empirical measure of u.

Further, we de ne a functional associated with measure. We consider functional
spacesG, ;= fg: W W! [0,1] j a convex setw s.t.g = 1f wggand G =
fg:W W! [0,1]9f,f92 H,,g(u,u® = he(u,u9(fAx)+ f(x9)g. Note that
G contains a functional which corresponds to the UZ2. Then, we consider a set of
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functionals
Z
Bsi= F:G[G,! Rj9non-zero nite Q?s.t.F(g)= gdQ@? 8g2G;[G>

and also let By be the closed linear span of Bs. For a functional F 2 Bg, let i(F) be a

measure which satis es
z

F(9) = gdi(F).

Uniform Central Limit Theorem : We rstly achieve the uniform convergence.
Note that a measure P? satis es P?h; := E(U,Ug[hf(U,UO)]. The convergence theorem
for U-processes is as follows:

Theorem 18 (Theorem 4.4 in Arcones and Gine [1993]). Supposeé is a set of uniformly
bounded class and symmetric functions, such fiath; j h; 2 H g is a Donsker class and
lim, E[n Y21ogN (n Y2#H Kk kiayz)]= 0

holds, for al#> 0. Then, we obtain
P n(U2 P?)  2Gp, in ¥ (H).

Here,Gp: denotes a Brownian bridge, which is a Gaussian proces$ aith zero mean and
a covariance

Eu[P*hi(U)P*h(U)]  Ey[P*h¢(U)IEU[PhE(U)],

with he,h9 2 H.,

To apply the theorem, we have to show that H satis es the condition in Theorem 18.
We rstly provide the following bound:

Lemma 8. For any f, f92 H, such thatkfk,x _kf%. Bholds,y,y°2 [ B,B]and
u,u’2 W, we have

jhi(u,u®  hio(u,udj  4Bjk(z, Ok f%x.
Proof of Lemma 8We simply obtain the following:

jhe(u,ud  heo(u, u9)j

=jly OOk 1(x9) (v DKz OG® 1Y)

= jk(z iy  feNY° (X)) (v N XY

= Jk(z 25y A% f))+ y(FAxY  f(x9)+ 100 F(xY  1Ux) FYx9j

= jk(z 5yt o))+ y(FAX)  fO) + FOY(F0)  fAx)  F)(F(xY FAxD)]

j k@O y3ifr) i+ iy fAxY O+ it f(x) %) § FAif(x)  fAx9jg
4Bjk(z, 9jkf  f%.v,
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as required. O

Lemma 9. Suppose the assumptions of Theorem 10 hold. Then, the followings hold:
1. fPth; j hy 2 H g is a Donsker class.
2. For any#> 0, the following holds:

lim E[n *2logN (n Y2#H .k kuyg)l = 0.

Proof of Lemma 9For preparation, x #> 0Oand setN = N (#H,,k k. ¥). Also, let
Q be an arbitrary nite discrete measure. Then, by the de nition of a bracketing
number, there exist N functions ff; 2 H ,gi’\il such that for any f 2 H, there exists
i2f1,2,...Ngsuchaskf fikyx #

For the rst condition, as shown in Equation (2.1.7) in Van der Vaart and Wellner
[1996], it is suf cient to show

suplog N (#fPh jhe 2 Hg k kizq) o @ (#! 0),
Q

for arbitrary d 2 (0, 1). Here, c> 0is some constant, and Q is taken from all possible
nite discrete measure. To this end, it is suf cient to show that log N (#f Pth; j h; 2
Hg k kizq) ClogN (#H k ki) with a constant c®> 0. Fix P*h¢ 2 f Phy |
ht 2 H g arbitrary, and set f; which satises kf fik2(qy # Then, we have

2
P'h¢  P'hy,
L2(Q)
Z Z

2
(hi(u,u) + h(uOu))/2  (hg(u,u)+ he(uOu))/2 dP(UY  dQ(u)
z z 2
he(u,u®  he(u,u9dPU®  dQ(u)
zZ z 2
C jk(z,Z%jdP(u)  dQ(u)kf  fik?

Ckf fk?
Cc%,

with constants C,C%> 0. The rst inequality follows Lemma 8 with the bounded
property of f,f%and Y. The second inequality follows the bounded condition of kin
Theorem 17. Hence, the entropy condition shows the rst statement.

For the second condition, we have the similar strategy. For any hs 2 H, we
consideri 2f1,2,...,Ngsuch that kf fik.x # Then, we measure the following

value
Z

khf hfikLl(U%) = jhf(U,U() hfi(u,u(bj dUrz](U,U(b COP(f fikL¥ CO%{’
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with a constant C°% 0. Hence, we have

E[n Y?logN (n Y2#H k ki)l n YlogN(n Y2#H k k)

yp N2 S_ (s 12
Cn 5 = Cn 0, (n! ¥),

sinces 2 (0,1). O

From Theorem 18 and Lemma 9, we rewrite the central limit theorem utilizing
terms of functionals. Note that i 1(U2),i 1(P?) 2 Bs holds. Then, we can obtain

IDﬁ(i Yu2)y i Y(P?)  2Gpin T¥(H).

Learning Map and Functional Delta Method : We consider a learning map S :
Bs! H . For afunctional F 2 Bg, we de ne

S (F) := argmin i(F)hs + | kfkj .
f2H,

Obviously, we have
f=5( YUd), and f;, = S (i }(P?).

We consider a derivative of § in the sense of the Gateau differentiation by the
following steps.

Firstly, we de ne a partial derivative of the map Rq:(f). To investigate the
optimality of the minimizer of

Z
Roz, (f) == hy(u,u% dQ?(u,u + | kfkj .

To this end, we consider the following derivative r Rqz) [f]: H; ! H | with a direction
f as

Z
I Rz, [F1(fY := 21 £+ Fr1he(u,ud FYx) + T 2he(u, u FYxY dQ%(u, u9.

Here, 1 1h; is a partial derivative of h¢ in terms of the input f(x) as
Trahr(uu) = =10y DKz OB fx = (° 1(x)kz 2,
and Tz oh; follows it respectively. The following lemma validates the derivative:

Lemma 10. If the assumptions in Theorem 10 hold, themRy., [f] is a Gateau-derivative of
Rg2, Wwith the direction f2 H .

Proof of Lemma 10We consider a sequence of functionsh, 2 H, for n 2 N, such that
hh(x) & 0,8x 2 X and khpkx !' Oasn! ¥. Then, for f 2 H,, a simple calculation
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yields

Rozy (f+ hn)  Ragz; (f) 1 Rgz; [f](hn)
khnkL¥

khnk ik(z, 2y £(x)) hn(x)
Z+(y0 FxD) n(x) + () (x9) T Razy [F1(Mn)j dQ*(u,u)

khnk k(2. 29 hn(x) hn(x9] dQ?(u, u9)
A
khnk }jk(z, 29 khnk?s j dQ?(u, u9
Z
k hoker  jk(z,29jdQ%(u,ud ! 0, (n! ¥).

z

The convergence follows the de nition of h, and the absolute integrability of k, which
follows the bounded property of k and compactness of Z. Then, we obtain the
statement. O

Here, we consider its RKHS-type formulation of r Roz) » which is convenient to
describe a minimizer. Let F, : X ' H | be the feature map associated with the RKHS
H, such that hF [x], fiy, = f(x) forany x 2 X and f 2H . Letr Rgz; :H;!H |
be an operator such that

VA
rRoey (f) =20 f+  Trahe(u,udF IX10) + Tr 2he (u, uYFIXA() dQP(u, u9.

Obviously, r Rgz, [f]() = hr IinJ (f), i4,- Now, we can describe the rst-order
condition of the minimizer of the risk. Namely, we can state that

f = argmin Rozy () , 1 IinJ (f)= o.
f2H,

This equivalence follows Theorem 7.4.1 and Lemma 8.7.1 in Luenberger [1997].
Next, we apply the implicit function theorem to obtain an explicit formula of the
derivative of S. To this end, we consider a second-order derivative r ZRQZJ H'H |

as
z

r 2Ry ()= 2 f+ Kz 2(FOOF X))+ FOAFIXA()) dQ(u,u9,

which follows (b) in Lemma A.2 in Hable [2012]. Its basic properties are provided in
the following result:

Lemma 11. If Assumption 1 and the assumptions in Theorem 10 hold, nhéﬁEQzJ is a
continuous linear operator and it is invertible.

Proof of Lemma 11By (b) in Lemma A.2 in Hable [2012], r ZIinR is a continuous linear
operator. In the following, we dene A:H;!H ,asA(f)= k(z,29)f(X)F[x]()+
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F(xYF[x9( ) dQ*(u,u9. To show r 2Rqz, is invertible, it is suf cient to show that
@r 2RQ2’| is injective, and (i) A is a compact operator.
For the injectivity, we x non-zero f 2 H, and obtain

kr ?Roz; (f)KG,
kel f+ A(f), 2 f+ A(f)in,
41 2kfkyy, + 4l hf, A(f)iy, + KA(F)KE,

> 41 hf, A(f)in
Z Z
=4 f, k(zZOfOF[X]dQ%(u,ud) +4 f,  ki(z.ZOf(xYF[x9dQ%(u,ud
7 7 Hi Hi
=4 Kz, 29f(x)2dQ%(u,ud) + 4l k(z 29 f(x92dQ?(u,u
0.

The last equality follows the property of F| and the last inequality follows the ISPD
property in Assumption 1.
For thngompactness, we follow Lemma A.5 in Hablg [2012] and obtain that opera-

tors (f 7! k(z, 29 f(X)F,[x]( ) dQ%(u,u9) and (f 7!  k(z,29 f(xXOF [x9() dQ?(u,u?)
O

are compact.

We de ne the Gateau derivative of S. For a functional F°2 ¥ (G, [ G ), we de ne
the following function

Zz
S (FY:= 1 2Ry3 Trahe, (U UuFIXIC) + T 2hy , (u,uF [XA() di(FI(u,u)

where fo2 = § (i 1(Q?)) and Q?is a signed measure onW W . Then, we provide
the following derivative theorem:

Proposition 3. Suppose the assumptions in Theorem 10 hold FF2rBs, F°2 ¥ (G, [ G »),
and s2 R such that F+ sF°2 Bg, r S, (F9) is a Gateau-derivative of Snamely,

in S(F+s® S

st 0 S

r Sy (F) =0
H
Proof of Proposition 3This proof has the following two steps, (i) de ne a proxy opera-
tor G then (ii) prove the statement by the implicit function theorem.
() Dene G Note that i(F9 exists sinceF+ sF°2 Bgimplies FO2 Bg. We de ne
the following operator (s, f,1) :H; 'H | for f 2 H:

Qs f,1) = rﬁi(F)Esi(F‘b,l

= 2 f+Z Te.ahe (U, uF [XIC) + Te2he(u, udF [x9() di(F)(u,u9

+s  f1hi(u,uYF [X]() + Ts2he(u, uYF [x9() di(FY(u, u9.
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For simple derivatives, Lemma A.2 in Hable [2012] provides
z

r Qs f,1)= Trihe(u,uYF [X]0) + Tr 20 (u, uYF [X9() di(FO(u,u9,
and
r qu, f,| ) =r zﬁi(F)_'_ Si(FO),l -

(ii) Apply the implicit function theorem  : By its de nition and the optimal condi-
tions, we have

Qs f.1)=0, f=5(i(F)+ si(FY).
Also, we obtain
r ¢&0,S (F),l1)=r 2|ii(|:),| :

Then, for each| > 0, by the implicit function theorem, there exists a smooth map
j1 :RTH | such that

Asji(s),1)=0,8s,

and it satis es

rsii (0= 1 ¢Q0,j;(0),1) *(rsd0,ji(0),1))=r S, (F.

Also, we have j | (s) = S(Q?+ snf). Then, we have

. S (F+sM) s (F9
lim s r S (F) "
—im (& 1 () Ji1(0 =o
st 0 S HI
Then, we obtain the statement. O

Now, we are ready to prove Theorem 10 and Theorem 17.

Proof of Theorem 17As a preparation, we mention that S is differentiable in the
Hadamard sense, which is Gateau differentiable by Proposition 3. Lemma A.7 and
A.8 in Hable [2012] show that r Sy i(e) is Hadamard-differentiable for any |, G
and F.

Then, we apply the functional delta method. As shown in Theorem 18 and
Lemma 9, we have

PAG YUy i YPY)  2Gm.
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Hence, we obtain

IOﬁ((lo/l)i Ywud) i YP?) = Ilopn(i ) i P+ ”('I | 0) 2Gp1,
sincel 1= o(n 2). Utilizing the result, we can obtain
p

— 7 P : .
n(f fi)= " nS,(1o1)i H(UD) S, *(P)))+ op(1) 1 Spzy,(2Gp),
in “¥ (H). The convergence follows the functional delta method. O

Proof of Theorem 10This proof is completed by substituting the Central Limit Theorem

part (Theorem 18) of the proof of Theorem 17. From Section 3 in Akritas et al. [1986],
the V- and U- processes have the same limit distribution asymptotically, so the same
result holds. O

D.3 Gaussian Process (GP) Interpretation

We present the close connection between the non-parametric model and the Gaussian
process (GP) in this section. We will show that the RKHS solution of our objective
function (6.6)is equivalent to the maximum function of the posterior distribution of
the GP. The relationship is inspired by the similarity of our objective function to that
of GLS, and it will be used to derive an ef cient cross validation error.

By Mercer theorem, the kernel I(x, x% can be expanded asl(x,x% = & ,'1 LF i) (x9,
where f ;(x) are orthonormal in L2(R¢Y), a space of square-integrable real-valued func-
tions, and N < ¥ for degenerate kernels and N = ¥ otherwise. To satisfy for
arbitrary f(x) = &1, a;f ;(x) the reproducing property

* +

é aifi,l(X, ) = f(X)a
i H,

we choosef j(x) such that f ; is orthogonal in H; as the Mercer expansion is not unique.
Based on the reproducing property, we can obtain hf;,f iy, = d;l ; * where dj = 1, if
i = j, and zero otherwise. Similar settings can be found in Walder and Bishop [2017],
for example.

Let us consider a GP over a space of functions

f(x) = F(xX)w,

where F (x) = [f 1(x),f 2(X),...,f n(X)] is the feature vector and w is the parameter
vector. We assume a prior distribution of w  N(0,dL )*where L = diag(l 1,1 2,...,I n)
is a diagonal matrix with eigenvalues 1 4,...,1 n, and d > 0 is a hyper-parametetr,
which plays the same role as the regularization hyper-parameter (as we show later).

IThroughout the paper, we denote by N(ms2) a Gaussian distribution with the mean mand variance
2
s,
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This de nition is equivalent to assuming that on a set of input  x, f(x)  GP(0,dI(x, X))
because

E[f(x)]
Var[f(x)]

F(X)E[w] = 0,
dF (X)LF (x)” = di(x, x).

We refer the interested readers to Rasmussen and Williams [2005] for further
details on Gaussian process models.

D.3.1 Likelihood Function

Given the prior distribution on w, we aim to characterize the posterior distribution
p(wjD) pu p(Djw)p(w) where D = f(x;,yi,z)gL, is an i.i.d. sample of size n, and
f(x) = F(x)w where the i's row of F(x) contains the feature vector of x;, namely,
F (x;)”. To de ne the likelihood p(D jw), we recall from Lemma 1 that the risk Ry(f)
can be expressed in terms of two independent copies of random variables (X,Y,Z)
and (X%Y©Z9. To this end, let D°:= f(x0y®zgL, be an independent sample
of size n with an identical distribution to D. Given a pair of samples (x,y,z) and
(x®y0% 20 from D and D9 respectively, we then de ne the likelihood as

o (x,y,2), 0620 Dgiw) wexp (v FOOwkz 2 F(xIw)
=ep Sy TOOKZ 1(xY)

Hence, the likelihood on both D and D°can be expressed as

4 0 .
p(fD,.DGjw) u O O p(f (xi.yiz), (¥l Z)gjw)
i=1j=1
! #

A0 k@A f(x0) . (017)

i=1j=1

NI -

= exp

In practice, however, we only have access to a single copy of sample, i.e.,D, but not D°
One way of constructing DCis through data splitting: the original dataset is split into
two halves of equal size where the former is used to construct D and the latter is used
to form DO Unfortunately, this approach reduces the effective sample size that can be
used for learning. Alternatively, we propose to estimate the original likelihood (D.17)
by using M-estimators: given the full dataset D = f (x;,yi, z)gdL ;, our approximated
likelihood can be de ned as

p(Djw) 1 O O p(f (xi,vi,2), (.Y, Z)gjw)
i=1j=1
" #
Yaam foak@zy ()

i=1j=1

=}

= exp

N
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