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Invariant subspaces of submarkovian semigroups
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Abstract. We characterize the invariance under a submarkovian semigroup of a measurable subset by capacity
conditions on its boundary.

1. Introduction

Let S be a submarkovian semigroup acting on L2(X ;µ) where X is a locally compact
σ-compact metric space and µ a Radon measure with suppµ = X (see [7] and [3]). If �
is a measurable subset ofX we give characterizations of the S-invariance of L2(�), i.e. the
property StL2(�) ⊆ L2(�) for all t > 0. This corresponds to S-invariance of the set � in
the terminology of [7], Section 1.6.

If one interprets S as describing a dissipative evolution then the invariance of � corre-
sponds to impenetrability of the boundary ∂�. Therefore one would expect the invariance
to be characterized by properties of the boundary. Our main result establishes that this is
indeed the case; invariance of � is equivalent to a capacity condition on the boundary ∂�.
In this respect it differs from the standard characterizations of invariance. These are either
in terms of local properties of the generator of S (see, for example, [7], Section 1.6 and [10],
Section 2.1) or, in the case of irreducibility of the semigroup, in terms of spectral properties
or algebraic properties (see [11], Section XIII.12, and [12], Proposition 2.1).

In order to formulate our main result we must first introduce some basic definitions and
notation.

Let H denote the positive self-adjoint generator of S and h the corresponding Dirichlet
form (see [7] and [3]). We assume that h is regular in the sense of [7], i.e. D(h) ∩ Cc(X)
is dense in D(h) with respect to the graph norm ϕ �→ ‖ϕ‖D(h) = (h(ϕ) + ‖ϕ‖2

2)
1/2 and

also dense in C0(X) with respect to the uniform norm. Moreover, we define h to be local
if h(ϕ,ψ) = 0 for all ϕ,ψ ∈ D(h) with ϕψ = 0. This notion appears slightly stronger
than locality as defined in [7] but it is in fact equivalent by a result of Schmuland [13].
Nevertheless, it is weaker than the form of locality introduced in [3]. Next if � is a subset
of X and A ⊆ � then we define cap�(A) ∈ [0,∞] by

Mathematics Subject Classifications (2000): 28A12, 31C15, 47A35.
Key words: invariance, capacity, Dirichlet form.



662 A. F. M. ter Elst and D. W. Robinson J.evol.equ.

cap�(A) = inf
{
‖ϕ‖2

D(h) : ϕ ∈ D(h) and there exists an open V ⊂ X

such that A ⊂ V and ϕ ≥ 1 a.e. on V ∩�
}
.

If there is any possible ambiguity then we use the notation cap�,h(A) instead of cap�(A).
Note that� �→ cap�(A) is a monotonically increasing function for each fixedA. Moreover,
capX(A) = cap(A) where cap(A) is the usual capacity of A with respect to h as defined in
[7], Section 2.1, or [3], Section 1.8. A similar definition of relative capacity is introduced
in [1] [2] and in special cases the two definitions coincide, e.g. if H is the Laplacian on Rd

and � is a bounded set with Lipschitz boundary. We do not know, however, whether the
definitions coincide in general or whether our results are valid when reformulated in terms
of this alternative definition.

The main result of this note is the following statement.

THEOREM 1.1. Let� be a measurable subset ofX and suppose that the regular Dirich-
let form h is local. The following conditions are equivalent.

I. StL2(�) ⊆ L2(�) for all t > 0.
II. There existA1, A2 ⊆ ∂� such that ∂� = A1 ∪A2 and cap�(A1) = 0 = cap�c(A2).

The proof of the implication I⇒II in Theorem 1.1 does not require locality of h but this
property is used in proving the converse. In the course of the proof we also derive several
alternative characterizations of the S-invariance of L2(�). Another characterization of
S-invariance for general measurable subsets � is given in [5], Theorem 1.3.

Theorem 1.1 extends to local regular Dirichlet forms a result of [12] for forms defined
by degenerate elliptic operators on Rd and open subsets �. Theorem 1.1 in [12] states
that if the coefficients of the degenerate operator are Lipschitz continuous and � is a
Lipschitz domain then S-invariance of L2(�) is equivalent to cap(∂�) = 0. Nevertheless it
is straightforward to construct examples of S-invariant subspacesL2(�)with |∂�| > 0. But
then cap(∂�) ≥ |∂�| > 0. So the condition cap(∂�) = 0 does not give a characterization of
S-invariance in general. The current results show that S-invariance of the subspace L2(�)

can indeed be characterized by conditions of small capacity of sets close to the boundary
of � without any detailed assumptions of regularity.

In the last section we illustrate our results with various examples of degenerate elliptic
operators. Note that for degenerate operators a general sufficient criterion for the existence
of invariant subspaces was given in [6], Lemma 6.4 and Proposition 6.10.

2. Invariance criteria

We begin with a useful corollary of a theorem of Ouhabaz valid for ‘local’ accretive
closed sesquilinear forms.
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PROPOSITION 2.1. Let a be an accretive closed sesquilinear form in a Hilbert space
L2(Y), where Y is a measure space. Suppose that a(ϕ, ψ) = 0 for all ϕ,ψ ∈ D(a) with
ϕψ = 0. Let T be the semigroup associated to a and let � be a measurable subset of Y .
Then the following are equivalent.

I. TtL2(�) ⊆ L2(�) for all t > 0.
II. 1�ϕ ∈ D(a) for all ϕ ∈ D(a).

III. There exists a core D for a such that 1�ϕ ∈ D(a) for all ϕ ∈ D.

Proof. Let P be the orthogonal projection of L2(Y) onto L2(�). By [10], Theorem 2.2,
the invariance of L2(�) under T is equivalent to the statement(s) that there exists a core D
for a (or for every core) such that P(D) ⊆ D(a) and Re a(Pϕ, ϕ − Pϕ) ≥ 0 for all ϕ ∈ D.
This implies that I⇒II⇒III. But Pϕ = 1�ϕ and ϕ−Pϕ = 1�cϕ. So if P(D) ⊆ D(a) then
by ‘locality’ a(Pϕ, ϕ − Pϕ) = 0 for all ϕ ∈ D. This proves the proposition. �

As a preliminary for the proof of Theorem 1.1 we derive some criteria for the S-
invariance property. The first result is an implication of invariance which does not require
locality of the form h.

PROPOSITION 2.2. Let � be a measurable subset of X. If St L2(�) ⊆ L2(�) for
all t > 0 then for all ε > 0 there exist open sets U,V1, V2 ⊆ X such that cap(U) < ε,
∂� ⊆ V1 ∪ V2, |V1 ∩� ∩ Uc| = 0 and |V2 ∩�c ∩ Uc| = 0.

Proof. Let W be a relatively compact open subset of X. We first show that for all ε > 0
there exists an open set U ⊆ X such that cap(U) < ε and for all x ∈ W ∩ ∂� there exists a
δ > 0 such that |B(x ; δ) ∩� ∩ Uc| = 0 or |B(x ; δ) ∩�c ∩ Uc| = 0.

Since h is regular there exists a ϕ ∈ D(h) ∩ Cc(X) with 0 ≤ ϕ ≤ 1 and ϕ|W = 1.
Set ψ = ϕ 1�. Then since L2(�) is S-invariant it follows, by [7], Theorem 1.6.1, that
ψ ∈ D(h) . Let ψ̃ be a quasi-continuous representative of ψ. Then there exists an open set
U ⊆ X such that cap(U) < ε and ψ̃|Uc is continuous. Then

ψ̃|W∩�∩Uc = ψ|W∩�∩Uc = 1 a.e.

and
ψ̃|W∩�c∩Uc = ψ|W∩�c∩Uc = 0 a.e.

by construction of ϕ and ψ.
Let x ∈ W ∩ ∂�. If x ∈ U then clearly there exists a δ > 0 such that B(x ; δ) ⊆ U.

Hence |B(x ; δ) ∩ � ∩ Uc| = 0. So suppose that x ∈ Uc. Since ψ̃|Uc is continuous at x
there exists a δ > 0 such that

|ψ̃(y)− ψ̃(x)| < 1

2
(2.1)
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for all y ∈ B(x ; δ) ∩ Uc. We may assume that B(x ; δ) ⊆ W . Since B(x ; δ) ∩ � ∩ Uc ⊆
W ∩� ∩ Uc it follows that ψ̃(y) = 1 for a.e. y ∈ B(x ; δ) ∩� ∩ Uc. Similarly ψ̃(y) = 0
for a.e. y ∈ B(x ; δ)∩�c ∩Uc. Hence if |B(x ; δ)∩�∩Uc| > 0 then it follows from (2.1)
that |B(x ; δ) ∩�c ∩ Uc| = 0.

SinceX is σ-compact, for all ε > 0 there exists an open setU ⊆ X such that cap(U) < ε

and for all x ∈ ∂� there exists δx > 0 with |B(x ; δx)∩�∩Uc| = 0 or |B(x ; δx)∩�c∩Uc| =
0. Define

A1 = {x ∈ ∂� : |B(x ; δx) ∩� ∩ Uc| = 0}
and

A2 = {x ∈ ∂� : |B(x ; δx) ∩�c ∩ Uc| = 0}.
By the basic covering theorem, [8] Theorem 1.2, there exists a subset A′

1 ⊆ A1 such
that

⋃
x∈A1

B(x ; 5−1δx) ⊆ ⋃
x∈A′

1
B(x ; δx) and the sets B(x ; 5−1δx) with x ∈ A′

1 are

pairwise disjoint. Since X is σ-compact, it is separable. Therefore A′
1 is countable. Set

V1 = ⋃
x∈A′

1
B(x ; δx). Then V1 is open in X and A1 ⊆ ⋃

x∈A1
B(x ; 5−1δx) ⊆ V1.

Moreover,
|V1 ∩� ∩ Uc| ≤

∑
x∈A′

1

|B(x ; δx) ∩� ∩ Uc| = 0.

Similarly there exists an open V2 ⊆ X such that A2 ⊆ V2 and |V2 ∩�c ∩Uc| = 0. Finally,
∂� = A1 ∪ A2 ⊆ V1 ∪ V2. �

The implication I⇒II in Theorem 1.1 follows from Proposition 2.2 and the next
proposition. We emphasize that the following proposition does not require locality of
the form h.

PROPOSITION 2.3. Let � be a measurable subset of X. If for all ε > 0 there exist
open sets U,V1, V2 ⊆ X such that cap(U) < ε, ∂� ⊆ V1 ∪ V2, |V1 ∩ � ∩ Uc| = 0
and |V2 ∩ �c ∩ Uc| = 0, then there exist A1, A2 ⊆ ∂� such that ∂� = A1 ∪ A2 and
cap�(A1) = 0 = cap�c(A2).

Proof. By assumption for all n ∈ N there exist open sets Un, V1n, V2n ⊆ X such that
cap(Un) < 2−n, ∂� ⊆ V1n ∪ V2n, |V1n ∩ � ∩ Uc

n| = 0 and |V2n ∩ �c ∩ Uc
n| = 0. Then

cap(
⋃∞
k=n Uk) < 2−n+1,∣∣∣∣∣

( ∞⋃
k=n

V1k

)
∩� ∩

( ∞⋃
k=n

Uk

)c∣∣∣∣∣ ≤
∞∑
k=n

|V1k ∩� ∩ Uc
k | = 0

and a similar expression involving the V2k, for all n ∈ N. So without loss of generality we
may assume that U1 ⊇ U2 ⊇ . . . , V11 ⊇ V12 ⊇ . . . and V21 ⊇ V22 ⊇ . . . . Define

A1 =
∞⋂
n=1

V1n ∩ ∂� and A2 =
∞⋂
n=1

V2n ∩ ∂�.
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Let x ∈ ∂� and suppose that x �∈ A1. Then there exists an n ∈ N such that x �∈ V1n.
Therefore x �∈ V1k for all k ≥ n. Since ∂� ⊆ V1k∪V2k for all k ∈ N it follows that x ∈ V2 k

for all k ≥ n and x ∈ A2. Therefore ∂� = A1 ∪ A2.
Finally, let n ∈ N. Since cap(Un) < 2−n there exists a ϕ ∈ D(h) such that ϕ ≥ 1 a.e. on

Un and ‖ϕ‖2
D(h) < 2−n. Because |V1n ∩�∩Uc

n| = 0 it follows that ϕ ≥ 1 a.e. on V1n ∩�.
So cap�(A1) = 0. Similarly, cap�c(A2) = 0. �

If the form h is local then there is also a converse of Propositions 2.2 and 2.3. In fact
there is even a seemingly weaker version. The next theorem amplifies the characterizations
of Theorem 1.1.

THEOREM 2.4. Let� be a measurable subset ofX and suppose that the regular Dirich-
let form h is local. Then the following conditions are equivalent.

I. St L2(�) ⊆ L2(�) for all t > 0.
II. For all ε > 0 there exist open sets U,V1, V2 ⊆ X such that cap(U) < ε, ∂� ⊆

V1 ∪ V2, |V1 ∩� ∩ Uc| = 0 and |V2 ∩�c ∩ Uc| = 0.
III. There existA1, A2 ⊆ ∂� such that ∂� = A1 ∪A2 and cap�(A1) = 0 = cap�c(A2).
IV. There exists an M > 0 such that for all ε > 0 there exist open sets V1, V2 ⊆ X and

a function ψ ∈ D(h) such that ∂� ⊆ V1 ∪ V2, h(ψ) ≤ M, ‖ψ‖2 < ε and ψ = 1
a.e. on (V1 ∩�) ∪ (V2 ∩�c).

Proof. The implication I⇒II follows from Proposition 2.2, the implication II⇒III by
Proposition 2.3 and the implication III⇒IV from the estimate ‖ϕ ∨ ψ‖2

D(h) ≤ ‖ϕ‖2
D(h) +

‖ψ‖2
D(h) for all ϕ,ψ ∈ D(h) (see [3], Lemma 8.1.2.1).

‘IV⇒I’. Let ϕ ∈ D(h) ∩ Cc(X) and let M > 0 be as in Condition 2.4. Let n ∈ N.
By assumption there exist open sets V1n, V2n ⊆ X and a function ψn ∈ D(h) such that
∂� ⊆ V1n ∪ V2n, h(ψn) ≤ M, ‖ψn‖2 ≤ n−1 and ψn = 1 a.e. on (V1n ∩�) ∪ (V2n ∩�c).
We may assume that 0 ≤ ψn ≤ 1. Set

ϕn = (ϕ − ϕψn)1�.

We shall prove that ϕn ∈ D(h).
Set K = suppϕ. Define

K10 = K ∩� ∩ V c
1n, K20 = K ∩�c ∩ V c

2n,

K1 = K10 and K2 = K20. Then K1 and K2 are compact. We next show that K1 and
K2 are disjoint. Let x ∈ K1 ∩ K2. Then x ∈ � ∩ �c = ∂� ⊆ V1n ∪ V2n. Suppose
x ∈ V1n. Now x ∈ K1 = K10, so V1n ∩ K10 �= ∅. This is a contradiction. Similarly
x ∈ V2n gives a contradiction. HenceK1 andK2 are disjoint. Since h is regular there exists
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a χn ∈ D(h) ∩ Cc(X) such that χn|K1 = 1 and χn|K2 = 0. In particular χn(x) = 1 for all
x ∈ K10 and χn(x) = 0 for all x ∈ K20. Note that

K ∩
(
(V1n ∩�) ∪ (V2n ∩�c)

)c ∩� = K10

and
K ∩

(
(V1n ∩�) ∪ (V2n ∩�c)

)c ∩�c = K20.

Hence it follows that ϕn = (ϕ − ϕψn)χn a.e. So ϕn ∈ D(h).
Since ϕ−ϕψn ∈ D(h) and ϕn ∈ D(h) it follows that (ϕ−ϕψn)1�c ∈ D(h). Then, by

locality of h,

h(ϕ − ϕψn) = h((ϕ − ϕψn)1�)+ h((ϕ − ϕψn)1�c) ≥ h(ϕn).

Moreover,

h(ϕ ψn)
1/2 ≤ h(ϕ)1/2 ‖ψn‖∞ + ‖ϕ‖∞ h(ψn)

1/2 ≤ h(ϕ)1/2 +M1/2 ‖ϕ‖∞

for all n ∈ N. So the sequence ϕ1, ϕ2, . . . is bounded in D(h). Therefore this sequence
has a weakly convergent subsequence. Passing to a subsequence, if necessary, there exists
a ϕ̂ ∈ D(h) such that limn→∞ ϕn = ϕ̂ weakly in D(h). Then limn→∞ ϕn = ϕ̂ weakly in
L2(X). But limn→∞ ϕψn = 0 in L2(X). So

lim
n→∞ϕn = lim

n→∞(ϕ − ϕψn)1� = ϕ 1�

in L2(X). Therefore ϕ 1� = ϕ̂ ∈ D(h). Now the Statement I follows from Propostion 2.1
since D(h) ∩ Cc(X) is a core for h. �

A combination of Theorem 1.1 and Proposition 2.1 gives the following corollary.

COROLLARY 2.5. Let � be a measurable subset of X and suppose that the regular
Dirichlet form h is local. The following conditions are equivalent.

I. 1�ϕ ∈ D(h) for all ϕ ∈ D(h).
II. There existA1, A2 ⊆ ∂� such that ∂� = A1 ∪A2 and cap�(A1) = 0 = cap�c(A2).

We end this section with some remarks concerning comparison with the ordinary
capacity.

COROLLARY 2.6. Suppose the regular Dirichlet form h is local. If cap(∂�) = 0 then
L2(�) is S-invariant.

Proof. The condition cap(∂�) = 0 clearly implies Condition II of Theorem 1.1. �
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This corollary extends to regular local Dirichlet forms an earlier result in [12] valid
for forms defined by degenerate elliptic operators on Rd . In fact Theorem 2.4 gives the
following improvement.

COROLLARY 2.7. Let � be a measurable subset of X and suppose that the regular
Dirichlet form h is local. Let M ∈ R. Suppose for all ε > 0 there exists a ψ ∈ D(h) such
that h(ψ) ≤ M, ‖ψ‖2 < ε andψ ≥ 1 on a neighbourhood of ∂�. Then St L2(�) ⊆ L2(�)

for all t > 0.

The space L2(�) is clearly unchanged if� is modified by a set of measure zero. There-
fore the S-invariance, Condition I of Theorem 1.1, is not sensitive to modifications of this
type. Alternatively, if �1 and �2 are two measurable subsets of X with �1 = �2 and
|�1	�2| = 0 then cap�1

(A) = cap�2
(A) for all A ⊆ �1. This follows immediately

from the definition. On the other hand, the boundaries of �1 and �2 may be different.
The capacity assumptions of Condition II of the theorem are therefore more sensitive to
variations of � since there are sets of measure zero which have strictly positive capacity.
Nevertheless these assumptions do not depend necessarily on the entire boundary of �.

An open set� is called topologically regular if� is equal to the interior of its closure, i.e.

if � = �
◦

or, equivalently, if ∂� = ∂(�
c
). For any set � the set �

◦
is topologically regular.

If� is a measurable subset of X with |∂�| = 0 then ∂�
◦

⊆ ∂� ⊆ ∂�, so |∂�
◦
| = |∂�| = 0.

Hence L2(�) = L2(�) = L2(�
◦
). Therefore L2(�) is S-invariant if and only if L2(�

◦
) is

also S-invariant. Next, note that if in addition � is open then � ⊆ �
◦

and

∂� = ∂�
◦

∪
(
�
◦

\�
)
.

Moreover, by definition of cap�c(A) it follows (withV = �
◦

andϕ = 0) that cap�c(�
◦
\�) =

0, although in general cap(�
◦

\ �) �= 0. (See Example 3.2) Consequently one has the
following extension of Theorem 1.1 for open sets �.

COROLLARY 2.8. Let � be an open subset of X with |∂�| = 0 and suppose that the
regular Dirichlet form h is local. The following conditions are equivalent.

I. StL2(�) ⊆ L2(�) for all t > 0.

II. There existA1, A2 ⊆ ∂� such thatA1 ∪A2 = ∂�
◦

and cap�(A1) = 0 = cap
�

c(A2).

Note that in Condition II the open set �
c

is used instead of �c.

The sets A1 and A2 in Theorem 1.1 might have a non-empty intersection and we next
prove that the capacity of A1 ∩ A2 vanishes. This is a consequence of a more general
statement which again does not require locality of the Dirichlet formh. Note that a condition
on |A\(�1∪�2)| is necessary in the next lemma since cap(B) ≥ |B| for any measurable set.
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LEMMA 2.9. Let �1, �2 be two subsets of X and let A ⊆ �1 ∩ �2. Suppose that
cap�1

(A) = cap�2
(A) = 0. Moreover, suppose that there exists an open set U in X such

that A ⊆ U and |U \ (�1 ∪�2)| = 0. Then cap(A) = 0.

Proof. Let ε > 0. There exist openV1, V2 inX andϕ1, ϕ2 ∈ D(h) such that ‖ϕ1‖2
D(h) < ε,

‖ϕ2‖2
D(h) < ε, A ⊆ V1, A ⊆ V2, ϕ1 ≥ 1 a.e. on V1 ∩ �1 and ϕ2 ≥ 1 a.e. on V2 ∩ �2.

Then ‖ϕ1 ∨ ϕ2‖2
D(h) < 2ε, V1 ∩ V2 ∩U is open, A ⊆ V1 ∩ V2 ∩U and ϕ1 ∨ ϕ2 ≥ 1 a.e. on

(V1 ∩�1) ∪ (V2 ∩�2). Clearly ϕ1 ∨ ϕ2 ≥ 1 a.e. on the null set U \ (�1 ∪�2). But

V1 ∩ V2 ∩ U ⊆ (V1 ∩�1) ∪ (V2 ∩�2) ∪
(
U \ (�1 ∪�2)

)
.

Therefore ϕ1 ∨ ϕ2 ≥ 1 a.e. on V1 ∩ V2 ∩U. Consequently cap(V1 ∩ V2 ∩U) < 2ε. Hence
cap(A) = 0. �

COROLLARY 2.10. Let � be a subset of X and let A ⊆ ∂� be such that cap�(A) =
0 = cap�c(A). Then cap(A) = 0.

Finally we establish a type of domination for invariant subspaces.

COROLLARY 2.11. Let h, k be two regular Dirichlet forms on X with k ≤ h and k
local. Further let S, T be the associated semigroups on L2(X) and � a measurable subset
of X. If L2(�) is S-invariant then L2(�) is T -invariant.

Proof. It follows by definition of the order relation for quadratic forms thatD(h) ⊆ D(k)

and k(ϕ) ≤ h(ϕ) for all ϕ ∈ D(h). Therefore if W is a subset of X and A ⊆ W then
capW,k(A) ≤ capW,h(A).

It follows from Propositions 2.2 and 2.3 that there exist A1, A2 ⊆ ∂� such that ∂� =
A1 ∪ A2 and cap�,h(A1) = 0 = cap�c,h(A2). Therefore cap�,k(A1) = 0 = cap�c,k(A2).
Hence the corollary follows from Theorem 1.1. �

A similar conclusion can be drawn from Theorem 1.6.1 in [7] ifD(h) is a core forD(k).
(See also [7], Corollary 4.6.4.)

3. Examples

We present several examples of degenerate elliptic operators.

EXAMPLE 3.1. Let X = R, � = 〈0,∞〉, D(h) = W1,2(�) ⊕ L2(�
c) and h(ϕ) =∫

�
|ϕ′|2, where ϕ′ is the distributional derivative. Then� is topologically regular, |∂�| = 0

and h is a regular local Dirichlet form. Moreover, cap�c(∂�) = cap〈−∞,0〉({0}) = 0, so
L2(�) is S-invariant. But cap(∂�) = cap�(∂�) = cap〈0,∞〉({0}) �= 0.
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EXAMPLE 3.2. LetX = R,D(h) = W1,2(R) and h(ϕ) = ∫
R |ϕ′|2. The corresponding

operator is the one-dimensional Laplacian. If� = R \ {0} then |∂�| = 0 and h is a regular
local Dirichlet form. Since �

c = ∅ one has cap
�

c(∂�) = 0 and L2(�) is S-invariant. The
set � is not topologically regular and cap(�) �= 0. Nevertheless, H is a strongly elliptic
operator with constant, and therefore Lipschitz continuous, coefficients. This example
shows that a converse of Corollary 2.6 is not valid for degenerate elliptic operators on Rd

with coefficients in W1,∞(Rd).
The latter remark is of interest since it is proved in [12] that if h is the local regular

Dirichlet form obtained as the closure of the form

ϕ �→
∑∫

cij ∂iϕ ∂jϕ (ϕ ∈ W1,2(Rd))

with cij ∈ W1,∞(Rd), cij = cji and (cij(x)) ≥ 0 for all x ∈ Rd , and if � is a Lipschitz
domain in Rd such that L2(�) is S-invariant, then cap(∂�) = 0. It is unclear whether the
Lipschitz property of � could be replaced by the assumption that � is regular in topology.

EXAMPLE 3.3. Let X = R, V = 〈−∞,−1〉 ∪ 〈0, 1〉, D(h) = W1,2(V)⊕L2(V
c) and

h(ϕ) = ∫
V

|ϕ′|2. Then h is a local regular Dirichlet form. Choose � = 〈−1, 1〉. Then �
is topologically regular. Moreover, cap�({−1}) = 0 and cap

�
c({1}) = 0. Hence L2(�) is

S-invariant. But cap�(∂�) = cap�({1}) �= 0 and cap
�

c(∂�) = cap
�

c({−1}) �= 0.

EXAMPLE 3.4. LetX = R2,� = 〈0,∞〉× R the right half-plane and V = (〈0,∞〉×
〈0,∞〉) ∪ (〈−∞, 0〉 × 〈−∞, 0〉) the union of the first and third quadrants. Let D(h) =
W1,2(V) ⊕ L2(V

c) and h(ϕ) = ∫
V

|∇ϕ|2. Then h is a local regular Dirichlet form. It is
easy to verify that there exists an open set U such that the requirements in Condition II
of Theorem 2.4 are valid for all x ∈ ∂� \ {(0, 0)}. But if l is the form associated to the
Laplacian on R2 then the capacity of the set {(0, 0)} with respect to the form l is zero.
Hence cap({(0, 0)}) = 0 where the capacity is with respect to the form h. Therefore the
requirements in Condition II of Theorem 2.4 are also valid for (0, 0) by adjusting the open
set U around (0, 0). So L2(�) is S-invariant. Alternatively, Condition II of Theorem 1.1
is satisfied with A1 = {0} × 〈−∞, 0] and A2 = {0} × [0,∞〉.

The next example is a multi-dimensional elliptic operator.

EXAMPLE 3.5. Let X = Rd and h the relaxation, or viscosity closure, of the elliptic
form

ϕ �→
d∑

i,j=1

∫
Rd
cij(∂iϕ)(∂jϕ) (ϕ ∈ C∞

c (R
d)),

where the coefficients cij = cji ∈ L∞(Rd) are real and the matrix C = (cij) is positive-
definite almost everywhere in Rd . (The relaxation of a quadratic form is described in [4]
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(see page 28) and the viscosity closure is defined in [6], Section 2.) Then h is again a local
regular Dirichlet form (see [5], Theorem 1.1). Assume that c1i = 0 for all i ∈ {2, . . . , d}.
Moreover, assume that there exists a positive function c̃ ∈ Cb(R) such that c11(x) ≤ c̃(x1)

for almost all x = (x1, . . . , xn) ∈ Rd . Let k be the closure of the form ψ �→ ∫
R c̃ |ψ′|2,

with ψ ∈ C∞
c (R

d). Then k is a local regular Dirichlet form on L2(R). Assume that c̃ is
such that cap〈0,∞〉,k({0}) = 0. If ψ ∈ D(k) and τ ∈ C∞

c (R
d−1) then ψ ⊗ τ ∈ D(h) and

one has an estimate
‖ψ ⊗ τ‖D(h) ≤ M ‖ϕ‖D(k) ‖τ‖W1,2(Rd−1)

where M = 1 + maxi,j ‖cij‖∞. Therefore setting � = 〈0,∞〉 × Rd−1 one deduces that
cap�(∂�) = cap�({0} × Rd−1) = 0. Hence one can choose A1 = ∂� in Condition II of
Theorem 1.1 and L2(�) is invariant under the semigroup corresponding to h.

One can construct more complicated examples by combination with the idea underlying
Example 3.4.

Assume that there exist positive functions c̃1, c̃2 ∈ Cb(R) such that

c11(x) ≤
{
c̃1(x1) if x2 > 0

c̃2(x1) if x2 < 0

for almost all x ∈ Rd . Let k1 and k2 denote the Dirichlet forms on L2(R) with coefficients
c̃1 and c̃2, respectively. Suppose cap〈0,∞〉,k1

({0}) = 0 and cap〈−∞,0〉,k2
({0}) = 0. Then one

may choose A1 = {0} × [0,∞〉 × Rd−2 and A2 = {0} × 〈−∞, 0] × Rd−2 in Condition II
of Theorem 1.1, and L2(�) is again invariant under the semigroup corresponding to h.

Finally we note that these examples can all be extended by application of the domination
principle given by Corollary 2.11.

The regularity of the form k in Corollary 2.11 is essential as the next example shows.

EXAMPLE 3.6. LetX = 〈0, 1〉∪〈2, 3〉,D(h) = W
1,2
0 (X) and h(ϕ) = ∫

X
|ϕ′|2. Define

the form k by

D(k) = {ϕ ∈ W1,2(X) : ϕ(0) = ϕ(3) and ϕ(1) = ϕ(2)}
and k(ϕ) = ∫

X
|ϕ′|2. Then h ≤ k. Let S, T be the associated semigroups onL2(X). Choose

� = 〈0, 1〉. Then � is S-invariant, but not T -invariant.
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