
Learning to Enhance RGB and
Depth Images with Guidance

Kaiyue Lu

A thesis submitted for the degree of
Doctor of Philosophy

The Australian National University

January 2022

Draft Copy – 28 January 2022



© Kaiyue Lu 2022

Draft Copy – 28 January 2022



Except where otherwise indicated, this thesis is my own original work.

Kaiyue Lu
28 January 2022

Draft Copy – 28 January 2022



Draft Copy – 28 January 2022



to my beloved family.

Draft Copy – 28 January 2022



Draft Copy – 28 January 2022



Acknowledgments

It is approaching the end of my PhD career. I would like to take this opportunity to
express my greatest appreciation to those people who support and help me during
this long journey.

First of all, I would like to thank my primary/chair supervisor, Prof. Nick Barnes.
Nick is my first foreign supervisor in my life. He is a very professional and expe-
rienced scholar, and he can always share his excellent ideas with me and give con-
structive suggestions to my research. He is also very patient in revising my papers,
i.e., he highlights all the revisions so that I can learn how to improve the paper writ-
ing by comparing against my previous version. Nick is very kind and he can always
respect my thinking. He is humorous and easy-going, and I particularly like his
laugh, which has the magic of effectively reducing my stress. Indeed, I have learned
a lot from his sophisticated and critical thinking on research, and his optimism and
kindness. He is my best teacher and best collaborator in my PhD study. I feel very
happy when he was promoted as the professor several months ago, and it is a great
honor for me to work with him.

I would like to thank my associate supervisor Dr. Liang Zheng. He is the most
hard-working teacher I have ever met. His paper writing skill is very excellent, and he
can always highlight the most important parts in the paper and summarize them as
concrete contributions. He consistently seeks for truth, and always tells me to focus
on the fundamental problem itself rather than using fancy descriptions to package
methods. I think this is the true essence of research, and I will stick to it forever.

I would like to thank my another associate supervisor Dr. Saeed Anwar. He is
my Data61 supervisor, and supports me a lot in using the computational resources
there. He is also very professional in revising papers, which can always enlighten
me with deeper thinking to the problem. Saeed kindly shares his experience in thesis
writing with me, which is quite helpful and valuable.

I would like to give special thanks to my previous supervisor Dr. Shaodi You.
Shaodi is the one who recommended me to Data61 via the summer scholar program
in late 2016. He also introduced the image smoothing topic to me. Without him, I
could not enter Data61 and do my PhD degree. However, something unexpected and
unhappy happened in late 2018, and he left my supervisory panel at that time. I fully
understood his situation then, but I just wanted to concentrate all my attention on
the research. I will always remember him and be grateful to his help in my previous
research on image smoothing. Although we have no collaboration now, I wish him
good luck on whatever he does from here on out.

I sincerely appreciate the financial support from the Australian National Univer-
sity (ANU) and Data61. ANU exempted my tuition fees and Data61 awarded me

vii

Draft Copy – 28 January 2022



sufficient scholarships. They significantly reduce my daily economic pressure on
basic necessities and let me concentrate on the research work. I also acknowledge
Data61 that provides me comfortable office and convenient facilities such as comput-
ing machines (with GPUs), printers, and meeting rooms.

I would like to thank my initial supervisor Dr. Siyu Xia when I did the bachelor
degree in Southeast University. My research dream was started by him, and he was
the first supervisor who instructed me how to do research, how to write papers, and
how to clearly present works to the audience. All my research achievements can be
attributed to him to some extent.

I am also grateful to a number of friends who bring me lots of happiness and sup-
port. They are Weixuan Sun, Zipeng Hu, Changkun Ye, Peipei song, Ziang Cheng,
Yiran Zhong, Jing Zhang, Hao Zhu, Haoyang Zhang, Chengyue Zhou, Qixin Xu,
Liangjun Zhang, Shiyong Tian, and Peng Tao.

I also would like to express my gratefulness and love to my family, including
my wife, my son, my parents, my parents-in-law, and my sister. They selflessly
provide mental and daily support to me, allowing me to focus on my research and
thesis writing. My wife, Lina Cheng, has been looking after our son by herself for
the purpose of not distracting my attention. She always tells me to be persistent in
research and she will give me consistent understanding and support until I finish it.
It is such a great fortune that I met and married her. Lina, I am willing to hold hands
with you all my life and age together. I love you!

Last but not least, I want to thank my grandparents and express my deepest
missing to them. They both passed away in 2019, at which time I was doing the
PhD degree in Australia. Until now, I have been feeling very sad and regretful that I
did not spare much time to accompany them. My grandparents brought me up, and
dedicated all their love to me. I once made a silent vow in front of their deadee to
complete my PhD and never give up. Now I am finishing the study, but can they see
it? Can they hear me? Let this thesis dedicated to them. I know they never left me,
and they are just watching and waiting for me in the heaven.

Draft Copy – 28 January 2022



Abstract

Image enhancement improves the visual quality of the input image to better iden-
tify key features and make it more suitable for other vision applications. Structure
degradation remains a challenging problem in image enhancement, which refers to
blurry edges or discontinuous structures due to unbalanced or inconsistent intensity
transitions on structural regions. To overcome this issue, it is popular to make use of
a guidance image to provide additional structural cues. In this thesis, we focus on
two image enhancement tasks, i.e., RGB image smoothing and depth image comple-
tion. Through the two research problems, we aim to have a better understanding of
what constitutes suitable guidance and how its proper use can benefit the reduction
of structure degradation in image enhancement.

Image smoothing retains salient structures and removes insignificant textures in
an image. Structure degradation in image smoothing results from the difficulty in
distinguishing structures and textures with low-level cues such as gradients and in-
tensity difference. Specifically, structures may be inevitably blurred if the filter tries
to remove some strong textures that have high contrast. Moreover, these strong tex-
tures may also be mistakenly retained as structures. We address this issue by apply-
ing two forms of guidance for structures and textures respectively. We first design
a kernel-based double-guided filter (DGF), where we adopt semantic edge detection
as structure guidance, and texture decomposition as texture guidance. The DGF is
the first kernel filter that simultaneously leverages structure guidance and texture
guidance to be both “structure-aware” and “texture-aware”. It can remove strong
textures without blurring main structures. Considering that textures present high
randomness and variations in spatial distribution and intensities, it is not robust to
localize and identify textures with hand-crafted features. Hence, we take advantage
of deep learning for richer feature extraction and better generalization. Specifically,
we generate synthetic data by blending natural textures with clean structure-only im-
ages. With the data, we build a texture prediction network (TPN) that estimates the
location and magnitude of textures. We then combine the texture prediction results
from TPN with a semantic structure prediction network (SPN) so that the final tex-
ture and structure aware filtering network (TSAFN) is able to differentiate between
structures and textures more effectively and robustly. Our model achieves superior
smoothing results than existing filters.

Depth completion recovers dense depth from sparse measurements, e.g., LiDAR.
Existing depth-only methods use sparse depth as the only input and suffer from
structure degradation, i.e., failing to recover semantically consistent boundaries or
small/thin objects due to (1) the sparse nature of depth points and (2) the lack of im-
ages to provide structural cues. In the thesis, we attempt to deal with the structure
degradation issue by using RGB image guidance in both supervised and unsuper-
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x

vised depth-only settings. For the supervised model (IR), the unique design is that it
simultaneously outputs a reconstructed image and a dense depth map. Specifically,
we treat image reconstruction from sparse depth as an auxiliary task during training
that is supervised by the unlabelled image. For the unsupervised model, we regard
dense depth as a reconstructed result of the sparse input, and formulate our model
as an auto-encoder (UDAE). To reduce structure degradation, we employ the image
to guide latent features by penalizing their difference in the training process. The im-
age guidance loss in both models enables them to acquire more dense and structural
cues that are beneficial for producing more accurate and consistent depth values.
For inference, the two models only take sparse depth as input and no image is re-
quired. On the KITTI Depth Completion Benchmark, we validate the effectiveness
of the proposed image guidance through extensive experiments and achieve compet-
itive performance over state-of-the-art supervised and unsupervised methods. Our
approach is also applicable to indoor scenes.
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List of Figures

1.1 Image enhancement. (a) Typical enhancement tasks include image
smoothing, image completion, image super-resolution, and contrast
enhancement. (b) Structure degradation widely exists in image en-
hancement, generally referring to blurry edges or discontinuous struc-
tures. Both image smoothing examples are from our paper [Lu et al.,
2018a]. Both image completion examples are from [Li et al., 2020b].
The left image super-resolution example is from [Hussein et al., 2020],
and the right one is from [Liu et al., 2020a]. The left contrast enhance-
ment example is from [Liu et al., 2019], and the right one is from [Chien
et al., 2019]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Close observation of structures and textures. The general assump-
tion in image smoothing is that structures always have larger gradi-
ents (strong structures) while the gradients of textures are smaller (weak
textures). It is easy for existing filters, e.g., GF [He et al., 2013] and
SDF [Ham et al., 2017] to preserve strong structures and remove weak
textures. However, some strong textures, e.g., stripe textures within
books, are either mistakenly retained as edges or suppressed with im-
portant structures blurred as a side effect, e.g., weak structures of the
arm and chair. Thus, only using gradients cannot effectively differ-
entiate between structures and textures. Our filter, e.g., TSAFN, can
remove strong textures without blurring main structures. . . . . . . . . 4

1.3 Randomness of textures in natural images. Natural textures present
various scales with significant spatial distortions and/or color varia-
tions. Hand-crafted features cannot robustly and precisely reflect the
random nature of textures. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Guidance in image smoothing. Existing filters only use a single struc-
ture guidance, while our filter simultaneously employs independently-
generated structure guidance and texture guidance. . . . . . . . . . . . . 6

1.5 Depth completion from sparse depth. Without the image as guidance,
existing depth-only models, e.g., SparseConvs [Uhrig et al., 2017] and
S2D [Ma et al., 2019], present severe structure degradation, i.e., inap-
propriately recovering semantically consistent object boundaries (e.g.,
the car) and small/thin objects (e.g., the pole). Our supervised model
(IR) outperforms SparseConvs and S2D in better reducing structure
degradation. All the depth maps are colorized for better visualization. 7
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1.6 Supervised depth completion models. (a) Our model, i.e., depth com-
pletion via image reconstruction (IR), takes sparse depth as the only
input, and outputs a reconstructed image and dense depth simultane-
ously. Image reconstruction is only used as an auxiliary task at the
training stage. During testing, no image is required. (b) Depth-only
models input sparse depth and output the dense map. (c)-(d) Multiple-
input models take the image as an additional input with an early or
late fusion strategy, and the image is required in both training and
testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7 Unsupervised depth completion models. (a) Existing models, e.g., S2D
[Ma et al., 2019] and DDP [Yang et al., 2019], take the image as an ad-
ditional input in both training and test phases. A second stereo image
constructs the image warping loss, which gives implicit supervision
for dense depth. (b) Our model, i.e., the unsupervised depth comple-
tion auto-encoder (UDAE), only uses a single image for training. At
test time, we recover dense depth only from the sparse input. . . . . . . 9

2.1 Illustration of kernel filtering in typical regions. (a) Texture regions.
The filter should involve all the local pixels to suppress textures. (b)
Edge regions. Only pixels on the same side of the edge should be
involved to prevent edge blurriness. Image taken from [Shang et al.,
2021]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Illustration of reference-guided kernel filters. (a) The joint bilateral
filter [Petschnigg et al., 2004; Eisemann and Durand, 2004] calculates
the range kernel from the guidance image. (b) The guided filter (GF)
[He et al., 2013] assumes the target image can be linearly transformed
from the guidance image. Image taken from [He et al., 2013]. . . . . . . 17

2.3 Illustration of structure and texture layer decomposition in global im-
age smoothing methods. Image taken from [Subr et al., 2009]. . . . . . . 18

2.4 Network architecture of the deep edge-aware filter (DEAF) [Xu et al.,
2015]. The network is built on the gradient domain of the image, which
benefits the recovery of sharp edges. The output is reconstructed from
gradients. Image taken from [Xu et al., 2015]. . . . . . . . . . . . . . . . . 21

2.5 Network architecture of the deep joint image filter [Li et al., 2016]. The
network is composed of three sub-networks, i.e., CNNT for extract-
ing features from the target image, CNNG for extracting features from
the guidance image, and CNNF for aggregating target and guidance
features. Image taken from [Li et al., 2016]. . . . . . . . . . . . . . . . . . 22

2.6 Network architecture of SparseConvs [Uhrig et al., 2017]. (a) A sparse
convolution is incorporated into the standard convolutional layer to
indicate the validness of depth points (1 for points that have depth
values and 0 for none). (b) Detailed architecture of the sparse convo-
lution. Image taken from [Uhrig et al., 2017]. . . . . . . . . . . . . . . . . 26
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2.7 Network architecture of supervised Sparse-to-Dense (S2D) [Ma et al.,
2019]. This is a standard late fusion framework, where depth and
image features are first encoded by two separate networks and then
aggregated. Skip connections [He et al., 2016] are used to reduce in-
formation loss. Image taken from [Ma et al., 2019]. . . . . . . . . . . . . 28

2.8 Network architecture of unsupervised Sparse-to-Dense (S2D) [Ma et al.,
2019]. In this framework, the registered image is combined with sparse
depth. During training, sparse depth is used as a supervision signal,
and a second image is required to construct the photometric loss. Im-
age taken from [Ma et al., 2019]. . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Framework of the proposed double-guided filter (DGF) and smooth-
ing results with different methods. (a) DGF utilizes two independent
structure and texture guidance for better discrimination of structures
and textures. (b)-(e) Dotted textures on the vase are strong and they
are mistakenly retained as structures by existing methods, e.g., BLF
[Tomasi and Manduchi, 1998], GF [He et al., 2013], L0 [Xu et al., 2011],
WLS [Farbman et al., 2008]. Also, the main structures, especially the
base of the vase, are severely blurred in GF, L0 and WLS. Our DGF can
remove these strong textures and preserve main structures at the same
time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Structure confidence maps of the “Vase" example. From left to right:
input, structure map calculated from [Xu et al., 2012], structure map
calculated from [Cho et al., 2014], semantic edge map [Hallman and
Fowlkes, 2015]. The semantic edge detection can help to form mean-
ingful edges that are closer to human perception. It also outperforms
other algorithms that simply use gradients to differentiate between
structures and textures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Illustration of texture guidance. The texture confidence map indicates
both the position and magnitude of textures. Larger magnitude (or
color contrast) of textures corresponds to higher confidence, which
means the textures are stronger and harder to remove. . . . . . . . . . . 43

3.4 Illustration of the double guidance process. The gradient map widely
used by existing methods is largely affected by textures. The semantic
structure map we use can reflect more semantically meaningful struc-
tures. Only using structure guidance cannot fully get rid of the influ-
ence of strong textures and only using texture guidance will blur main
structures. The combination of two guidance yields a better smoothing
result in both structure preservation and texture removal. . . . . . . . . 45

3.5 Double-guided filtering with different kernel sizes and iterations. A
larger kernel size and more iterations make it easier to suppress textures. 46
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3.6 Double-guided filtering with different σs and σt. The two user-specified
parameters control the effect of smoothing in terms of structure preser-
vation and texture removal respectively. A smaller σs can retain more
edges and a smaller σt can smooth out more textures. . . . . . . . . . . . 47

3.7 Comparison of image smoothing results with different methods. The
methods we compare include TV [Rudin et al., 1992], BLF [Tomasi
and Manduchi, 1998], RTV [Xu et al., 2012], GF [He et al., 2013], RGF
[Zhang et al., 2014b], Fast L0 [Nguyen and Brown, 2015], SGF [Zhang
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3.8 Image denoising results with different methods. The methods we com-
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Chapter 1

Introduction

Image enhancement aims to improve the visual quality of the input image in order
to better identify key features and make it more suitable for specific vision tasks
[Wang et al., 1983; Shukla et al., 2017], such as edge detection [Bao et al., 2005; Galun
et al., 2007], object detection [Zhang et al., 2003; Zhou and Gu, 2018], semantic seg-
mentation [Cho et al., 2020; Wang et al., 2020], and so on. It is an active topic in
Digital Image Processing and normally used as a preprocessing technique. In ad-
dition to RGB images from cameras, image enhancement has broad applications to
images captured from other sensors or devices, e.g., LiDAR depth images [Uhrig
et al., 2017], X-ray images [Ahmad et al., 2012], and MRI images in medicine [George
and Karnan, 2012].

Image enhancement involves low-level and primitive operations [Gonzalez and
Woods, 1977], typically including image smoothing, image completion, image super-
resolution, and contrast enhancement. One common goal of these operations is to
enhance object structures/edges, which are characterized by sharp intensity transi-
tions on boundaries [Gonzalez and Woods, 1977]. They are essential features for
segmenting and recognizing objects. Specifically, image smoothing removes insignifi-
cant details, e.g., textures and noise, without blurring edges [Tomasi and Manduchi,
1998; He et al., 2013]. Image completion, also known as image inpainting, fills in miss-
ing values or damaged regions and recovers continuous structures based on available
pixel values [Komodakis and Tziritas, 2007; He and Sun, 2014]. Image super-resolution
restores the high-resolution image from the low-resolution input, in which case the
sharpness of edges is boosted [Yang, 2010; Dong et al., 2016]. Contrast enhancement
increases the contrast of the image content for clearer visualization [Abdullah-Al-
Wadud et al., 2007; Arici et al., 2009]. Fig. 1.1(a) displays some examples of these
tasks.

Both aiming for image quality improvement, image enhancement has some over-
lap with image restoration in concept and applications. Differently, image restoration
focuses more on restoring the original image from its degraded version by assuming
a priori knowledge and modelling the degradation [Gonzalez and Woods, 1977], e.g.,
image denoising [Tao et al., 2000; Burger et al., 2012], deblurring [Katkovnik et al.,
2005; Danielyan et al., 2012], dehazing [He et al., 2010; Ancuti and Ancuti, 2013].
Normally, there is an objective comparison between the output and the original, e.g.,
calculating their difference. By contrast, image enhancement does not need to know

1
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Image smoothing Image completion

Image super-resolution Contrast enhancement

Image smoothing Image completion

Image super-resolution Contrast enhancement

Figure 1.1: Image enhancement. (a) Typical enhancement tasks include image
smoothing, image completion, image super-resolution, and contrast enhancement.
(b) Structure degradation widely exists in image enhancement, generally referring to
blurry edges or discontinuous structures. Both image smoothing examples are from
our paper [Lu et al., 2018a]. Both image completion examples are from [Li et al.,
2020b]. The left image super-resolution example is from [Hussein et al., 2020], and
the right one is from [Liu et al., 2020a]. The left contrast enhancement example is
from [Liu et al., 2019], and the right one is from [Chien et al., 2019].

how the input image is corrupted, so it is a more subjective process [Gonzalez and
Woods, 1977]. The goodness of the enhanced output is largely dependent on whether
the output is visually pleasing to humans. Human judges are primarily concerned
with whether object structures are sharp in intensity and continuous in appearance.

However, structure degradation remains a challenging problem in image en-
hancement. It basically refers to blurry edges or discontinuous structures due to
unbalanced or inconsistent intensity transitions around structural regions [Gonza-
lez and Woods, 1977; Huang and Aizawa, 1993]. For example, in image smoothing,
edges are prone to be blurred when the filter tries to remove some strong textures
that also have high contrast. Some image completion methods fail to recover con-
sistent structures as too much structural information is missing in the input. It is
difficult for super-resolution methods to sharpen edges because the general intensity
changes in the low-resolution image are relatively small and flat. Noise amplifica-
tion widely occurs in contrast enhancement, which inevitably degrades edges and
makes them look discontinuous. Structure degradation examples are displayed in
Fig. 1.1(b).

To reduce structure degradation, it is popular to make use of a guidance image to
provide extra structural cues. We follow [Guo et al., 2020] and classify structure guid-
ance into two categories: (1) self-guidance, and (2) reference-guidance. Self-guidance
means the guidance contains certain attributes that are derived from the input image
itself, e.g., gradients, intensity difference, edge maps. Reference-guidance is another
image that is captured in different conditions, e.g., daytime and night [Guo et al.,
2020], flash and non-flash [Petschnigg et al., 2004], or from different modalities, e.g.,
depth [Kopf et al., 2007], NIR [Yan et al., 2013]. The structural features offered by the
guidance are complementary to the original input, so they can improve the overall
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§1.1 Image Smoothing 3

performance in enhancing images without degrading structures.
For the use of structure guidance, traditional non-learning methods usually cal-

culate the correlations between the guidance and target images within a local kernel
or patch [Tomasi and Manduchi, 1998; He and Sun, 2012; Zhang et al., 2012; Tung
and Fuh, 2021], or define a data term (involving each pixel and avoiding significant
intensity shift from the input) and a smoothness term (constraining nearby pixels
and acting as a regularizer based on guidance) for iterative optimization [Farbman
et al., 2008; Komodakis, 2006; Shi et al., 2015; Liu et al., 2019]. They do not need
ground truth labels but may suffer from poor robustness to various image content
and long processing time. In the deep learning era, Convolutional Neural Networks
(CNNs) are able to extract richer features from the guidance image and transfer them
into the target image more effectively [Fan et al., 2017b; Yang et al., 2020; Ma et al.,
2020; Lv et al., 2021]. These methods are data-driven, and have better robustness
and generalization ability after being fully trained with ground truth. Learning to
enhance images with guidance has become a new trend.

In this thesis, we focus on two image enhancement tasks, i.e., RGB image smooth-
ing (image smoothing for short) and depth image completion (depth completion for
short). For image smoothing, we study self-guidance, i.e., using semantic structure
guidance and proposing a novel texture guidance to improve the discrimination of
textures and structures. We design both hand-crafted and deep learning filters for
this task. For depth completion, we propose two deep learning models and explore
reference-guidance, i.e., the RGB image. We employ the image to facilitate the re-
covery of structure-consistent dense depth and exploit a new approach for image
guidance by incorporating it into the training loss in both supervised and unsuper-
vised settings. Through the two research problems, we aim to have a better under-
standing of what constitutes suitable guidance and how its proper use can benefit
the reduction of structure degradation in image enhancement.

1.1 Image Smoothing

1.1.1 Background

Image smoothing, a fundamental technology in image processing and computer vi-
sion, aims to enhance images by retaining salient structures and removing insignifi-
cant textures. In the top left image in Fig. 1.1(a), the vase is covered with black dotted
textures. The removal of these textures does not affect the main structure and our
recognition of the vase, so they are insignificant details that can be removed. Image
smoothing has extensive applications such as denoising [Gu et al., 2014], detail en-
hancement [Fattal et al., 2007], image abstraction [Winnemöller et al., 2006], image
dehazing [Li and Zheng, 2017], and segmentation [Wang and He, 2012].

In image smoothing, structures are generally referred to as large intensity differ-
ence between pixels, while textures are small intensity oscillations [Tomasi and Man-
duchi, 1998; He et al., 2013; Xu et al., 2011; Ham et al., 2017]. Essentially, retaining
structures is to keep intensity transitions on edges as sharp as possible. By contrast,
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Strong structure Weak texture

Weak structure Strong texture

Figure 1.2: Close observation of structures and textures. The general assumption
in image smoothing is that structures always have larger gradients (strong structures)
while the gradients of textures are smaller (weak textures). It is easy for existing filters,
e.g., GF [He et al., 2013] and SDF [Ham et al., 2017] to preserve strong structures and
remove weak textures. However, some strong textures, e.g., stripe textures within
books, are either mistakenly retained as edges or suppressed with important struc-
tures blurred as a side effect, e.g., weak structures of the arm and chair. Thus, only
using gradients cannot effectively differentiate between structures and textures. Our
filter, e.g., TSAFN, can remove strong textures without blurring main structures.

removing textures is to flatten the sharpness of intensity changes in texture regions.
They are two opposite processes, so image smoothing algorithms have to balance
structure preservation and texture removal. There are mainly two types of methods
for image smoothing. (1) Kernel-based methods that calculate the weighted average
of pixel values within a local squared kernel, such as the bilateral filter (BLF) [Tomasi
and Manduchi, 1998], the guided filter (GF) [He et al., 2013], and the segment graph
filter (SGF) [Zhang et al., 2015]. (2) Global methods that decompose the image into
a structure layer and a texture layer by optimizing a globally-defined objective func-
tion, such as total variation (TV) [Rudin et al., 1992], `0 smoothing [Xu et al., 2011],
and the static and dynamic guidance filter (SDF) [Ham et al., 2017]. These methods
address “structure-awareness” by leveraging a single structure guidance to indicate
the location of structures. Structure guidance is mostly derived from hand-crafted
features that are largely dependent on low-level cues, e.g., gradients, intensity differ-
ence. Here we take gradients for example. For a pixel value f (x, y) in the image, its
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Figure 1.3: Randomness of textures in natural images. Natural textures present var-
ious scales with significant spatial distortions and/or color variations. Hand-crafted
features cannot robustly and precisely reflect the random nature of textures.

gradient gd( f ) at coordinates (x, y) are defined as the first-order derivatives along x
and y directions, i.e.,

gd( f ) =

[
∂ f (x,y)

∂x
∂ f (x,y)

∂y

]
≈
[

f (x + 1, y)− f (x, y)
f (x, y + 1)− f (x, y)

]
=

[
gdx
gdy

]
. (1.1)

The magnitude of the gradient is calculated as

m(x, y) =
√

gd2
x + gd2

y. (1.2)

For simplicity, in the rest of the thesis, the gradient consistently refers to the mag-
nitude of the gradient unless otherwise specified. The gradient depicts the relative
changes in intensity, and existing structure guidance generally assumes that struc-
tures always have larger gradients while the gradients of textures are smaller [Guo
et al., 2020; Kim et al., 2019b]. However, this assumption is not robust enough to
precisely differentiate between structures and textures [Subr et al., 2009; Karacan
et al., 2013; Kim et al., 2019b; Fang et al., 2019a; Liu et al., 2020e]. In many cases,
structures with relatively small gradients (named weak structures) may also have im-
portant semantic meaning, and they are prone to be smoothed out as textures. Also,
some textures are likely to have large gradients (named strong textures), in which case
they are either mistakenly retained as edges or suppressed with important structures
blurred as a side effect (see Fig. 1.2 for close observation of structures and textures).

In fact, textures are inherently difficult to identify and extract, especially in nat-
ural images. This is because textures are essentially repeated patterns regularly or
randomly distributed within object structures. They may present various scales with
significant spatial distortions and/or color variations (see Fig. 1.3). Hand-crafted
features, e.g., intensity difference (or gradients) [Tomasi and Manduchi, 1998], region
covariances [Karacan et al., 2013], co-occurrence [Jevnisek and Avidan, 2017], local
extrema [Subr et al., 2009], cannot robustly and precisely reflect the random nature
of textures, so the discrimination of structures and textures becomes even harder.
Recently, deep learning based methods [Xu et al., 2015; Liu et al., 2016; Li et al., 2016;
Fan et al., 2017b; Chen et al., 2017a; Fan et al., 2017a; Shen et al., 2017] take advan-
tage of deep neural networks that are beneficial for extracting richer image features.
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Filter

Structure guidance

Input Output Filter

Texture guidance
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Structure guidance

Figure 1.4: Guidance in image smoothing. Existing filters only use a single structure
guidance, while our filter simultaneously employs independently-generated struc-
ture guidance and texture guidance.

However, these deep models have to use the output of hand-crafted filters as ground
truth for training. Therefore, they are limited by the shortcomings of these filters,
and cannot learn how to appropriately distinguish structures and textures.

1.1.2 Our Motivation

Motivated by the aforementioned challenges in differentiating between structures
and textures, we propose to use independent structure guidance and texture guid-
ance. Structure guidance should indicate semantically meaningful object structures
regardless of their gradients. This can be achieved by making use of existing se-
mantic edge detection methods [Hallman and Fowlkes, 2015; Xie and Tu, 2015]. To
lower the possibility of treating strong textures as edges, we introduce the concept
of “texture-awareness” as a primary novelty. We realize it by using texture guid-
ance to indicate (1) the texture region (where the texture is), and (2) the texture
magnitude (strong textures have larger magnitude). Although the proposed texture
guidance does not directly supply structural cues like structure guidance does, it
provides more effective discrimination of textures. This is complementary to the role
of structure guidance. Combining the two forms of guidance is beneficial for better
identifying and removing textures without blurring structures.

1.1.3 Our Contributions

In this thesis, we introduce the new concept of “texture-awareness” that indicates
the position and magnitude of textures. We also give theoretical insights on the
relationship between “structure-awareness" and “texture-awareness", which are in-
dependent but complementary to each other. Based on this, we propose two novel
image smoothing methods that simultaneously leverage structure guidance and tex-
ture guidance (see Fig. 1.4):

1. Kernel-based double-guided filter (DGF): DGF is the first kernel filter that
incorporates both structure guidance and texture guidance into local filtering.
It is free from the negative impact of gradients (or intensity difference), and
able to better differentiate between structures and textures than existing hand-
crafted methods. This work has been published in DICTA 2017 [Lu et al., 2017].
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Figure 1.5: Depth completion from sparse depth. Without the image as guidance,
existing depth-only models, e.g., SparseConvs [Uhrig et al., 2017] and S2D [Ma et al.,
2019], present severe structure degradation, i.e., inappropriately recovering semanti-
cally consistent object boundaries (e.g., the car) and small/thin objects (e.g., the pole).
Our supervised model (IR) outperforms SparseConvs and S2D in better reducing
structure degradation. All the depth maps are colorized for better visualization.

2. Texture and structure aware deep filtering network (TSAFN): TSAFN is the
first deep filter that learns to robustly predict natural textures and combines the
learned texture guidance and structure guidance to facilitate image smoothing.
We also present synthetic data to enable the training of texture prediction and
image smoothing. This work has been published in ECCV 2018 [Lu et al.,
2018a].

Experimental results demonstrate that using the two forms of guidance enables
to remove strong textures without degrading main structures, which significantly
improves image smoothing performance.

1.2 Depth Completion

1.2.1 Background

Dense and accurate depth is beneficial to many computer vision tasks, e.g., 3D object
detection [Chen et al., 2016b; Wang et al., 2019a], optical flow estimation [Ranjan
et al., 2019; Zhu et al., 2019a], and semantic segmentation [Ye et al., 2019; Zhang
et al., 2019b]. However, depth maps acquired from sensors, like LiDAR, are of low
quality as they are too sparse to fulfill some practical needs (see Fig. 1.5(b)). Depth
completion, an enhancement technique for incomplete depth [Chen et al., 2012; Gu
et al., 2017], thus aims to recover dense depth from sparse measurements.

Deep learning based depth completion models [Ma et al., 2019; Qiu et al., 2019; El-
desokey et al., 2019] have shown superior performance over traditional non-learning
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Figure 1.6: Supervised depth completion models. (a) Our model, i.e., depth com-
pletion via image reconstruction (IR), takes sparse depth as the only input, and out-
puts a reconstructed image and dense depth simultaneously. Image reconstruction
is only used as an auxiliary task at the training stage. During testing, no image is
required. (b) Depth-only models input sparse depth and output the dense map. (c)-
(d) Multiple-input models take the image as an additional input with an early or late
fusion strategy, and the image is required in both training and testing.

methods [Kopf et al., 2007; Silberman et al., 2012; Barron and Poole, 2016; Ferstl et al.,
2013] that largely rely on hand-crafted features. Hence, in this thesis, we mainly fo-
cus on learning based methods. Given dense depth ground truth available, existing
studies for supervised depth completion are generally classified into depth-only and
multiple-input methods. Depth-only (self-guided) methods use sparse depth as the
only input [Uhrig et al., 2017; Ma et al., 2019; Eldesokey et al., 2019], as shown in
Fig. 1.6(b). However, they may fail to recover semantically consistent boundaries, or
full structures of small/thin objects due to the high sparsity of input depth points
(see Fig. 1.5(d) and (e)). This problem, known as structure degradation in depth, can
be partly resolved by using dense depth ground truth. However, most ground truth
depth is not purely dense (see Fig. 1.5(c)). For example, on the KITTI Depth Comple-
tion Benchmark [Uhrig et al., 2017], the ground truth is generated by accumulating
LiDAR measurements from adjacent frames with manually-removed outliers (usu-
ally existing around occluded boundaries), and it only accounts for around 30% of
the image domain. Therefore, the ground truth cannot supervise every pixel, espe-
cially in important regions like boundaries. In that case, structure degradation can
be further addressed by treating the RGB image as a reference-guidance. The ba-
sic assumption is that depth structures coincide with image edges [Schneider et al.,
2016] and the image can provide more dense and consistent structural cues. To this
end, multiple-input (reference-guided) methods take the RGB image as an additional
input and incorporate image features through early or late fusion [Qiu et al., 2019;
Van Gansbeke et al., 2019; Cheng et al., 2018; Jaritz et al., 2018], as illustrated in
Fig. 1.6(c) and (d). Nevertheless, aggregating features from two modalities is chal-
lenging and complicated [Eldesokey et al., 2019; Qiu et al., 2019]. Also, calibrating
images to depth maps can be expensive in practice [Henry et al., 2012; Kerl et al.,
2015]. Further, for end-use systems such as autonomous vehicles, incorporating
additional calibrated sensors and associated processing modules may significantly
increase the cost.

Another practical concern is that purely-dense and high-quality depth ground
truth is hard and expensive to obtain [Uhrig et al., 2017; Ma et al., 2019]. The in-
tuitive solution is to train the model without ground truth, i.e., unsupervised. For

Draft Copy – 28 January 2022



§1.2 Depth Completion 9

Sparse

Image1
Dense

Image2

CNN
Sparse

Image1
DenseCNN Sparse Dense

Image

CNN Sparse DenseCNN

Training: Testing:

Training: Testing:

Input Output Guidance

Figure 1.7: Unsupervised depth completion models. (a) Existing models, e.g., S2D
[Ma et al., 2019] and DDP [Yang et al., 2019], take the image as an additional input
in both training and test phases. A second stereo image constructs the image warp-
ing loss, which gives implicit supervision for dense depth. (b) Our model, i.e., the
unsupervised depth completion auto-encoder (UDAE), only uses a single image for
training. At test time, we recover dense depth only from the sparse input.

unsupervised depth completion, structure degradation becomes even harder to over-
come because the input itself is used as a supervision signal and it is too sparse to
contain appropriate structure information [Zhang et al., 2019a; Wong et al., 2020].
Existing unsupervised works have to take the RGB image as an additional input
and calculate the image warping loss either from stereo images [Yang et al., 2019]
or adjacent video frames [Ma et al., 2019; Wong et al., 2020, 2021a] during training
(see Fig. 1.7(a)). Clearly, compared with supervised methods where plain early and
late fusion strategies are readily available, there are far fewer options for integrating
image features in the unsupervised community. Moreover, the high dependence on
RGB images limits the efficiency of these models in real-world applications.

1.2.2 Our Motivation

Motivated by the structure degradation issue in depth-only models and the practical
concern of using RGB images, we continue the depth-only paradigm and aim to inject
more image features so as to provide richer structural cues to reduce structure degra-
dation in supervised and unsupervised settings. Moreover, in both frameworks,
sparse depth is the only input and the image is only employed during training. At
test time, we do not need any extra information other than the sparse input.

1.2.3 Our Contributions

In this thesis, we exploit a new approach to integrating image features in depth
completion, i.e., only resorting to it during training time by incorporating it as part of
the training loss rather than taking it as an extra input. Based on this, we propose two
novel depth completion models that employ the image as guidance only in training:

1. Supervised depth completion via auxiliary image reconstruction (IR): IR re-
covers dense depth and reconstructs the image from the sparse input simulta-
neously (see Fig. 1.6(a)), where dense depth ground truth and the image are
used to supervise depth completion and image reconstruction respectively. It
enables our model to acquire more image features from the image reconstruc-
tion branch, and thus improve the overall performance. This work has been
published in CVPR 2020 [Lu et al., 2020].
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2. Unsupervised depth completion auto-encoder (UDAE): UDAE is formulated
as an auto-encoder, where sparse depth is first transformed into latent features
and then recovered into dense depth (see Fig. 1.7(b)). We employ the image
to guide latent features to inject more structural cues. This work has been
published in WACV Workshops [Lu et al., 2022].

Experimental results show that using image guidance in training significantly im-
proves depth completion performance in both supervised and unsupervised settings
only with sparse depth as input. Note that in both models, the image is only required
at the training stage, and no image is used during test time. Hence, the proposed
method is more practical and deployable in real-world applications where a jointly
calibrated camera is not available at run-time.

1.3 Thesis Outline

The remainder of the thesis is organized as follows.
Chapter 2 In this chapter, we review existing literature on image smoothing and
depth completion. Through an extensive literature review, we can have a compre-
hensive understanding of the two tasks, including their history, mainstream methods,
and up-to-date progress.
Chapter 3 In this chapter, we propose a novel kernel-based double-guided filter
(DGF). To enhance the identification of textures, for the first time, we introduce
the concept of “texture guidance” to indicate the position and magnitude of tex-
tures. Additionally, we adopt semantic edge detection as structure guidance, which
is beneficial for preserving more semantically meaningful structures. The proposed
DGF incorporates the two forms of guidance into the kernel operation to be both
“structure-aware” and “texture-aware”. Through extensive experiments, we provide
the appropriate usage of the DGF and demonstrate that it can effectively remove
strong textures without blurring main structures. The content in this chapter is based
on our published paper [Lu et al., 2017].
Chapter 4 In this chapter, we aim to employ deep neural networks to make the filter
more adaptive to various types of textures than hand-crafted methods. To this end,
we generate synthetic data by blending natural textures with clean structure-only
images. With the data, we build a texture prediction network (TPN) that indicates
the location and magnitude of textures, i.e., texture guidance. We additionally take
advantage of a semantic structure prediction network (SPN) to generate structure
guidance. We then incorporate the two forms of guidance into the filtering network
that constitutes our texture and structure aware filtering network (TSAFN). TSAFN
is able to more effectively identify the textures to remove (“texture-awareness") and
the structures to preserve (“structure-awareness"). Experimental results demonstrate
that the proposed model achieves superior performance in image smoothing, and
generalizes well to natural images. The content in this chapter is based on our pub-
lished paper [Lu et al., 2018a].
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Chapter 5 In this chapter, we introduce a novel supervised depth completion model.
The unique design is that it simultaneously outputs a reconstructed image and a
dense depth map. Specifically, we formulate image reconstruction from sparse depth
as an auxiliary task during training that is supervised by the unlabelled image. Dur-
ing testing, our system accepts sparse depth as the only input, i.e., the image is not
required. Our design enables the depth completion network to learn complementary
image features that help to better understand object structures. The extra supervi-
sion incurred by image reconstruction is minimal, because no annotations other than
the image are needed. We evaluate our method on the KITTI Depth Completion
Benchmark [Uhrig et al., 2017] and show that depth completion can be significantly
improved via auxiliary image reconstruction. Our algorithm consistently outper-
forms depth-only methods and is also suitable for indoor scenes. The content in this
chapter is based on our published paper [Lu et al., 2020].
Chapter 6 In this chapter, we focus on a more challenging task, i.e., unsupervised
depth completion only from sparse depth. Instead of resorting to the image as in-
put and a second image for training like existing works, we propose to employ a
single image to guide the learning process. This idea is inspired by the image guid-
ance approach in the last chapter, but is more specific to the unsupervised setting.
Specifically, we regard dense depth as a reconstructed result of the sparse input, and
formulate our model as an auto-encoder. To reduce structure degradation resulting
from sparse depth, we employ the image to guide latent features by penalizing their
difference in the training process. The image guidance loss enables our model to ac-
quire more dense and structural cues that are beneficial for producing more accurate
and consistent depth values. For inference, our model only takes sparse depth as in-
put and no image is required. Our paradigm is new and pushes unsupervised depth
completion further than existing works that require the image at test time. On the
KITTI Depth Completion Benchmark [Uhrig et al., 2017], we validate its effectiveness
through extensive experiments and achieve good performance compared with other
unsupervised works. The proposed method is also applicable to indoor scenes. The
content in this chapter is based on our published paper [Lu et al., 2022].
Chapter 7 In this chapter, we summarize main contributions of the thesis, and pro-
pose potential future work for both image smoothing and depth completion.

1.4 Publications

The contributions in this thesis are based on the following four published papers.

1. Kaiyue Lu, Nick Barnes, Saeed Anwar, Liang Zheng. “From Depth What Can
You See? Depth Completion via Auxiliary Image Reconstruction”. Proceedings
of the International Conference on Computer Vision and Pattern Recognition (CVPR),
2020.

2. Kaiyue Lu, Shaodi You, Nick Barnes. “Deep Texture and Structure Aware
Filtering Network for Image Smoothing”. Proceedings of the European Conference
on Computer Vision (ECCV), 2018.
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3. Kaiyue Lu, Nick Barnes, Saeed Anwar, Liang Zheng. “Unsupervised Depth
Completion Auto-Encoder”. Proceedings of the Winter Conference on Applications
of Computer Vision (WACV) Workshops, 2022.

4. Kaiyue Lu, Shaodi You, Nick Barnes. “Double-Guided Filtering: Image Smooth-
ing with Structure and Texture Guidance”. Proceedings of the International Con-
ference on Digital Image Computing: Techniques and Applications (DICTA), 2017.

1.5 Summary

In this chapter, we have given a high-level review on image enhancement, which is a
typical task in image processing. We have found that structure degradation widely
exists in image enhancement. To address this issue, we have focused on two specific
tasks, i.e., image smoothing and depth completion, and illustrated our motivation on
employing guidance to improve the overall performance. We have summarized main
contributions in the thesis. We have also overviewed the thesis outline and listed our
publications. From next chapter, we will first review existing literature on the two
tasks, and then detail our research works.
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Chapter 2

Literature Review

2.1 Image Smoothing

Given an image I, the goal of image smoothing is to remove insignificant textures in
the image and generate a smoothed output Ĩ that contains main structures.

2.1.1 Kernel Methods

The target pixel p is located at the centre of the squared kernel (kernel-centred), and
its new value is a weighted average of pixels in its neighborhood Ω:

Ĩp =
1
κp

∑
q∈Ω

wpq Iq, (2.1)

where wpq is the weight between p and its neighbor q and κp = ∑
q∈Ω

wpq is used

for normalization. For kernel methods, wpq is the most essential coefficient to be
designed and adjusted. The key principle is that only pixels with similar color fea-
tures to the kernel-centred one should be smoothed together [Shang et al., 2021].
Based on this, we illustrate two typical cases in Fig. 2.1: (a) Textured regions, where
smoothing should involve all the local pixels to suppress textures; (b) Edge regions,
where only pixels on the same side of the edge should be involved to prevent edge
blurriness. The weight should be adaptive to different region characteristics in order
to effectively differentiate between structures and textures. Moreover, this weight is
calculated either from the input itself, i.e., self-guided, or another guidance image,
i.e., reference-guided. We review the two categories of kernel methods below.

2.1.1.1 Self-guided methods

Color/intensity difference is the mostly widely-used quantity in kernel methods to
identify edges, i.e., the difference is normally large across edges. The bilateral filter is
one typical filter that is dependent on color difference. For better performance, color
difference is often combined with other statistics or methods, e.g., region covariances,
co-occurrence, superpixels, geometrically adaptive support regions, and edge maps.

13
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Figure 2.1: Illustration of kernel filtering in typical regions. (a) Texture regions. The
filter should involve all the local pixels to suppress textures. (b) Edge regions. Only
pixels on the same side of the edge should be involved to prevent edge blurriness.
Image taken from [Shang et al., 2021].

Bilateral filter. The bilateral filter (BLF) was first proposed in [Tomasi and Man-
duchi, 1998], where the weight is composed of a spatial kernel and a range kernel,
i.e.,

wBLF
pq = exp(−‖p− q‖2

2σ2
s
−
∥∥Ip − Iq

∥∥2

2σ2
r

). (2.2)

where σs and σr control the sensitivity of spatial and range support respectively.
Intuitively, pixels that are closer to the centre of the kernel with similar intensities
are more likely to be smoothed together with larger weights. The impact of far-away
pixels or those with large color difference (on the other side of the edge) should be
lowered by being assigned with smaller weights. However, the BLF has three major
disadvantages: (1) Inefficiency. The combination of the two Gaussian kernels makes
the BLF suffer from high computational costs. Several works attempt to accelerate
the BLF [Paris and Durand, 2006; Yang et al., 2009; Gastal and Oliveira, 2012; Porikli,
2008; Durand and Dorsey, 2002; Yang et al., 2009, 2015]. (2) Lack of robustness
to strong textures. Only using color difference to differentiate between structures
and textures is not robust because some strong textures may also present large color
contrast. In that case, structures may be blurred when the filter tries to remove strong
textures. (3) Gradient reversal. A small σr may lead to over-sharpened edges in the
smoothed image, so that they are reversely amplified in detail enhancement [He
et al., 2013; Bae et al., 2006; Durand and Dorsey, 2002]. The latter two issues can be
improved by incorporating the edge sharpness term [Khetkeeree and Thanakitivirul,
2020], constraining the range kernel [Yang, 2015], leveraging adaptive kernel sizes
[Ghosh et al., 2019], or making use of the inherent and discriminative properties of
structures and/or textures (introduced below).

Region covariances. Region covariances, a kind of region descriptor, are second-
order statistics which are robust to illumination changes [Tuzel et al., 2006]. Karacan
et al. [2013] observe that patches with similar structure or texture patterns tend to
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have similar covariances, so they can be used to measure the local similarity of pixels.
The feature representation of each pixel consists of 7 components, i.e., intensity, first
and second order derivatives along x and y directions, and coordinates. Assisting the
intensity with other statistics is beneficial for better grouping similar image patterns
and achieving more robust smoothing performance.

Co-occurrence. Textures are normally regarded as repetitive patterns in the im-
age regardless of their intensities [Cai and Baciu, 2012]. Co-occurrence information,
originally used to describe textures [Haralick et al., 1973], is useful in measuring
repetitive pixel values. The co-occurrence filter (COF) [Jevnisek and Avidan, 2017] is
thus designed to identify textural regions. Specifically, the COF replaces the range
kernel in the BLF with a normalized co-occurrence matrix. This new weight becomes
larger when neighbouring pixel values co-occur more frequently, i.e., texture regions.
In that case, those pixels can be smoothed together. For structures, the co-occurrence
is less so that the weight is smaller to avoid edge blurriness. Users can freely choose
the region to calculate the co-occurrence, e.g., the entire image or local patches.

Superpixels. Superpixels divide the image into several non-overlapping regions
that have similar intensities and adhere to boundaries [Achanta et al., 2012]. The seg-
ment graph filter (SGF) [Zhang et al., 2015] takes advantage of superpixels and makes
the filter edge-aware by introducing a weight calculated from sliding a window to-
wards adjacent superpixels. Li et al. [2018] empirically observe that hard superpixels,
e.g., SLIC [Achanta et al., 2012] used in the SGF, may result in artifacts around bound-
aries. To deal with this issue, they alternatively employ a soft clustering algorithm
[Adams et al., 2010] that enables gradual changes along boundaries. By iteratively
performing soft clustering, smoothing results can be significantly improved.

Geometrically adaptive support regions. Most kernel filters assume that the
kernel is a fixed box which largely limits its ability to keep consistent with object
boundaries. Even though superpixels are more structure-friendly, they only describe
local regions that cannot reflect full object structures. To realize arbitrary shapes for
support regions, the cross-based local multipoint filter (CLMF) [Lu et al., 2012] first
selects certain points from a series of candidates within a shape-adaptive local region,
and then aggregates several multipoint estimates vertically and horizontally (or the
reverse order). However, the support region of the CLMF is largely dependent on
the order of aggregation, and the complexity may be increased due to the long arms.
The local polynomial approximation based multipoint filter (MLPA) [Tan et al., 2014]
is proposed to improve the CLMF by using a 2D quadratic spatial regularization
term and expanding support regions in both horizontal and vertical directions. The
tree filter (TF) [Bao et al., 2014] enables a longer distance propagation through the
Minimum Spanning Tree (MST) [Frieze, 1985] but with larger computational costs.
Dai et al. [2015] propose the fully connected guided filter (FCGF) to take advantage
of MST [Frieze, 1985] to estimate the support region from the entire image, and apply
the local multipoint filtering framework [Katkovnik et al., 2010] to achieve linear-time
filtering. The FCGF is able to acquire more relevant pixels for smoothing.

Edge maps. Edge maps provide direct structure information. The key point is
how to generate proper edge guidance and incorporate it into the filter. Shang et al.
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[2021] utilize the classical Canny operator [Canny, 1986] for edge detection, and ap-
ply it as a constraint to the Gaussian kernel. However, Canny edges always contain
noise, which causes confusion between edges and textures. To acquire more ap-
propriate edges, Cho et al. [2014] propose modified Relative Total Variation (mRTV)
based on gradients within a local patch to infer edges. Zang et al. [2015] summarize
three essential properties of edges, i.e., anisotropy (intensity variations in different
orientations), non-periodicity (main structures have less oscillation of intensity vari-
ation while textures have more), and local directionality (the intensity variation of
main structures has more consistent local directionality than textures). Based on
these, they design the directional anisotropic structure measurement (DASM), which
effectively identifies structures and is robust to color contrast and object scales. Note
that the three edge methods above are hand-crafted, so they are not close to human
perception due to the lack of semantic meaning. To deal with this issue, Yang [2016]
makes use of the semantic edge detection model [Dollár and Zitnick, 2015] trained on
human-labelled data, and incorporates the semantic edge map as a confidence value
to constrain intensity difference. This approach can produce more human-pleasing
smoothing results, especially in preserving semantic boundaries.

2.1.1.2 Reference-guided methods

In many cases, the single image alone cannot provide sufficient structure information
for smoothing. Hence, another image, named the guidance image, is employed to
supply more structural cues. In image smoothing, the guidance may come from
different conditions, e.g., flash and no-flash [Petschnigg et al., 2004], daytime and
night [Guo et al., 2020], or different modalities, e.g., depth [Kopf et al., 2007; Lo et al.,
2017], NIR [Yan et al., 2013; Sharma et al., 2017].

Joint bilateral filter. The joint bilateral filter (JBF) [Petschnigg et al., 2004; Eise-
mann and Durand, 2004] extends the BLF by computing the range weight from the
guidance image IRe f (see Fig. 2.2(a)). That is,

wJBF
pq = exp(−‖p− q‖2

2σ2
s
−

∥∥∥IRe f
p − IRe f

q

∥∥∥2

2σ2
r

). (2.3)

Although the JBF is equipped with more structure information, the guidance is static,
i.e., fixed in all iterations. In that case, with the progress of smoothing, some irrel-
evant content, e.g., textures, in the original guidance image may be continuously
transferred into the smoothed image.

Rolling guidance filter. Considering the static nature of the guidance image in
the JBF, the rolling guidance filter (RGF) [Zhang et al., 2014b] is proposed to update
the guidance image iteratively. Specifically, the RGF is composed of two steps, i.e.,
small structure removal and edge recovery. Small structure removal is achieved by
applying the Gaussian filter with different scales to remove most details. However,
this operation inevitably blurs structures as the Gaussian filter does not consider
any intensity cues. Afterwards, the blurred image is used as guidance to smooth
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Figure 2.2: Illustration of reference-guided kernel filters. (a) The joint bilateral filter
[Petschnigg et al., 2004; Eisemann and Durand, 2004] calculates the range kernel from
the guidance image. (b) The guided filter (GF) [He et al., 2013] assumes the target
image can be linearly transformed from the guidance image. Image taken from [He
et al., 2013].

the original input, and then the guidance image is replaced with the new smoothed
output. By this means, structures can be gradually recovered without introducing
unwanted details. Although the guidance image is obtained from the input itself, we
still categorize the RGF as a reference-guided method because the guidance image is
obtained from different conditions, i.e., the blurred version.

Guided filter. When comparing the RGF and the JBF, we realize the importance of
accurately capturing the structure dependency/consistency between the input image
and its guidance [Liu et al., 2017c]. The guided filter (GF) [He et al., 2013] gives
new insight on this problem by assuming a linear relationship between the two,
i.e., the input image can be linearly transformed from its guidance (see Fig. 2.2(b)).
Compared with the BLF (or the JBF, depending on whether the guidance is the input
itself or another image), the GF has three major advantages: (1) Better smoothing
performance. The GF can preserve edges more effectively without introducing the
gradient reversal artifact. (2) More efficiency. The time complexity of BLF is O(Nr2),
where N is the number of pixels and r is the kernel radius. By contrast, the GF is an
O(N) approach. Hence, the GF is more efficient, and the complexity is not affected
by the kernel radius. (3) Broader applications. The GF can be more broadly applied
to various applications with higher quality, e.g., HDR compression, image dehazing,
image matting.

However, the GF still suffers from two problems: (1) halo artifacts (blurred edges
due to their low color contrast or being close to strong textures), and (2) the fixed
box window (no arbitrary kernel sizes adaptive to image content and the weight of
each pixel is 1). To reduce halo artifacts, the edge-aware weighting scheme is widely
adopted, which is based on normalized local variances of pixels [Li et al., 2014c,b],
gradients [Kou et al., 2015], edge direction via the steering kernel regression [Sun
et al., 2019], or coefficient propagation [Mun et al., 2018]. To enable arbitrary kernel
sizes, Fukushima et al. [2018] make use of the binary weighting function to assign
different weights to neighbouring pixels. This operation is implicit because it does
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Figure 2.3: Illustration of structure and texture layer decomposition in global image
smoothing methods. Image taken from [Subr et al., 2009].

not change the spatial size but the weight values.

2.1.2 Global Methods

Global methods assume the image can be decomposed into a structure layer (smoothed
output) and a texture layer (always discarded), as shown in Fig. 2.3. They achieve
the decomposition by solving a globally-defined objective function, i.e.,

Ĩ∗ = arg min
Ĩ

∑
p
(Ip − Ĩp)

2
+ λ · R( Ĩ), (2.4)

where (Ip − Ĩp)
2 is the data term that maintains the similarity between the input

and output, and R( Ĩ) is the regularization term that contains image priors and reg-
ulates the smoothness of the output. λ controls the impact of the regularizer and
is non-negative. Compared with kernel filters, global methods are usually better at
suppressing textures because they are performed on the entire image domain and
can process textures in a global view. The limitation is the lack of efficiency resulting
from optimizing the non-convex objective function [Pan et al., 2019; Liu et al., 2020d].
Considering that the priors are either from the input itself or the guidance image, in
the following, we review global algorithms in terms of the property of guidance, i.e.,
self-guided and reference-guided.

2.1.2.1 Self-guided methods

Gradients defined in Eq. 1.2 are widely adopted as part of the regularizer because
structures normally have large gradients while textures are just small oscillations in
intensity. In self-guided methods, the regularizer manipulates different levels of gra-
dients so that they are gradually smoothed from small to large. However, similar to
color difference in kernel methods, gradients are not robust enough to identify strong
textures. Some other constraints are also frequently employed in the regularization
process, e.g., local extrema, co-occurrence, edge maps, and combination with kernel
filters (this is mainly for accelerating global optimization).

Gradients. The pioneering work, Total Variation (TV) [Rudin et al., 1992], directly
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penalizes the `1 norm of gradients. This prior has been widely used in other global
methods [Yin et al., 2005; Aujol et al., 2006; Dou et al., 2017]. However, as discussed
above, simply relying on gradients may not accurately differentiate between struc-
tures and textures. To improve it, Relative Total Variation (RTV) [Xu et al., 2012]
is proposed to consider their different properties, i.e., the direction of gradients is
more similar in local edges than textures. Based on this, RTV computes total vari-
ations in a box window by simultaneously including the magnitude and direction
of gradients. Zhao et al. [2019] extend RTV by individually processing each channel
to obtain color-sharing and color-discriminative information. However, RTV suffers
from a lack of robustness to different scales of textures. `0 smoothing [Xu et al.,
2011], which constrains the number of non-zero gradients, is more adaptive to scales
because the optimization process involves a discrete metric that is free of scales. The
extension of `0 smoothing includes using the truncated operation to prevent the al-
gorithm from penalizing large gradients [He and Wang, 2018], making the parameter
choice more adaptive [Ni and Wu, 2018], improving the robustness to high-contrast
textures [Fang et al., 2019a], and accelerating the optimization process [Nguyen and
Brown, 2015], combining it with the `1 fidelity [Shen et al., 2012]. Although the `2

norm is also used in optimization [Farbman et al., 2008; Liu et al., 2013b; Min et al.,
2014; Liu et al., 2017b], its performance is generally behind `1 and `0 with more halo
artifacts introduced [Shen et al., 2012]. In summary, constraining gradients is popular
in global smoothing, but how to distinguish structures and textures more effectively
based on gradients is still under study.

Local extrema. For the purpose of reducing the impact of color contrast in distin-
guishing structures and textures, Subr et al. [2009] propose to use the local extrema,
i.e., maxima and minima in a local region, for characterization. Specifically, struc-
tures are regarded as large variations in intensities of local neighbouring extrema,
while textures are oscillations between local maxima and minima. The advantage
of this assumption is that it is not affected by contrast, i.e., even weak structures
and strong textures can be identified. Minimal and maximal extremal envelopes are
computed by interpolating local intensities through optimization. The smoothed val-
ues are the mean between the two envelopes. This method gives new insight into
structure-texture discrimination, but the overall performance is largely restricted by
the quality of local extrema, e.g., they may be affected by the size of the local region
or the mixture of structures and textures.

Co-occurrence. The co-occurrence can describe the repetitive property of tex-
tures, and has been applied in the kernel filter [Jevnisek and Avidan, 2017] (see
Section 2.1.1.1). However, two problems may exist: (1) The co-occurrence may not
be intuitive in weakly-periodic or highly-random textures; (2) Intensities along edges
may also present co-occurrence, which is likely to cause confusion with textures. To
overcome the two issues, Xu et al. [2021] exploit a discriminative prior on patch co-
occurrence, i.e., recurrent patches along edges tend to have a major direction while
those of textures just scatter around. Hence, structures and textures can be distin-
guished via the spatial distribution of recurrent patches. This prior is incorporated
into the Morphology Component Analysis (MCA) framework [Starck et al., 2005],
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which largely reduces the ambiguity in differentiating between structures and tex-
tures.

Edge maps. Edge maps intuitively supply structure information. Liu et al. [2020e]
find that some weak edges with small gradients are prone to be over-smoothed, so
they first use the Canny operator [Canny, 1986] to generate edge maps and then en-
hance those regions containing edges with histogram equalization. Afterwards, they
perform `0 smoothing to enhanced images for better structure preservation. Guo
et al. [2018] slightly modify the Canny operator and propose to refine edge maps si-
multaneously with image smoothing. The edges in these two works are hand-crafted,
so they may be not close to human perception. To inject more semantic information,
Li et al. [2017] incorporate (1) the edge potential, i.e., edge confidence from [Dollár
and Zitnick, 2015] to measure the boundary strength between two pixels, and (2)
the semantic potential, i.e., semantic labels from [Krähenbühl and Koltun, 2011] to
enforce the consistency of two pixels that belong to the same semantic category, into
the regularization term. Zhu et al. [2018] jointly optimize saliency object detection,
semantic edge detection [Xie and Tu, 2015], and image smoothing, which is beneficial
for preserving more semantically meaningful structures.

Combination with kernel filters. Generally, global methods lack efficiency due
to the iterative optimization process while kernel methods run faster but may more
easily suffer from heavy halo or gradient reversal artifacts. Combining the two can
achieve both desirable efficiency and smoothing quality, as demonstrated in [Barron
and Poole, 2016; Liu et al., 2018a] (both works embed the bilateral filter [Tomasi and
Manduchi, 1998] to WLS [Farbman et al., 2008]).

2.1.2.2 Reference-guided methods

The guidance image offers additional structural cues to the original input. However,
most works ignore that fact that there may exist structure inconsistency between the
two images, i.e., edges appear in one image but not in the other image [Shen et al.,
2015]. In that case, some irrelevant or even erroneous structures may be transferred
to the target image and thus degrades the smoothing performance. Reference-guided
global methods aim to deal with the structure inconsistency issue.

Mutual structure filter. The goal of the mutual structure filter (MSF) [Shen et al.,
2015] is to capture the common structure information (named as mutual structures)
between the target and guidance images while suppressing or discarding uncommon
structures (named inconsistent structures). To this end, normalized cross correlation
(NCC) based on gradients is employed to measure the structure similarity between
two image patches, i.e., a large NCC (e.g., close to 1) indicates the two patches have
common edges. With this constraint, the negative impact of inconsistent structures
can be reduced. Moreover, the guidance image is jointly optimized with the target
one, which is beneficial for obtaining more accurate structures from guidance [Perona
and Malik, 1990; Zhang et al., 2014b].

Static and dynamic filter. The static and dynamic filter (SDF) [Ham et al., 2015,
2017] aims to capture structural dependencies and inconsistencies between the target
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Figure 2.4: Network architecture of the deep edge-aware filter (DEAF) [Xu et al.,
2015]. The network is built on the gradient domain of the image, which benefits the
recovery of sharp edges. The output is reconstructed from gradients. Image taken
from [Xu et al., 2015].

and guidance images more robustly. This is based on a further observation that both
the initial guidance image (named as static guidance) and the smoothed image (named
as dynamic guidance) are useful to image smoothing. Specifically, static guidance
contains the original and rich structure information (but also some irrelevant cues).
Structures in dynamic guidance are more appropriate, but some of them may be
lost after several iterations (see the analysis of the Rolling Guidance Filter in Section
2.1.1.2). Hence, the SDF adaptively acquires structure information from both static
and dynamic guidance images, which is achieved by incorporating static guidance
as a constraint to the gradients of dynamic guidance.

Mutually guided filter. The mutually guided filter (muGIF) [Guo et al., 2017,
2020] further improves the MSF and SDF by considering three modes, i.e., static/dy-
namic guidance, dynamic/dynamic guidance, and only dynamic guidance. The dis-
tinction is that the pixel-level measurement of structure similarity using the newly-
defined relative structure. This filter is a more general framework in reference-guided
methods, and achieves superior smoothing results by making full use of guidance.

2.1.3 Deep Learning Methods

2.1.3.1 Self-guided methods

The pioneering work in self-guided deep image smoothing is the deep edge-aware
filter (DEAF) [Xu et al., 2015] (see Fig. 2.4). It aims to approximate existing hand-
crafted filters, i.e., using filtered results as ground truth. The network is built on the
gradient domain of the image, which benefits the recovery of sharp edges. Com-
pared with hand-crafted filters, the DEAF has three advantages: (1) More robust
edge-awareness (it comprehensively learns the edge preservation ability from vari-
ous filters); (2) Higher efficiency (the optimization and inference speed is much faster
than hand-crafted approaches because of the linear complexity); (3) A more unified
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Figure 2.5: Network architecture of the deep joint image filter [Li et al., 2016]. The
network is composed of three sub-networks, i.e., CNNT for extracting features from
the target image, CNNG for extracting features from the guidance image, and CNNF
for aggregating target and guidance features. Image taken from [Li et al., 2016].

framework (the network can approximate any filter). Subsequent works follow the
setting of approximating existing filters, and propose diverse network architectures.
Liu et al. [2016] first use CNNs to generate an edge map from the input, and then the
edge guidance is incorporated into a recurrent neural network for recurcive filtering
(this method assumes the image is a group of sequences and the RNN architecture
can reduce parameters and enhance the stability of network training). Similarly, Fan
et al. [2017b] construct the edge network (E-CNN) to predict the edge confidence
map based on local gradients, and use it to guide the filtering network (I-CNN).
For better performance and faster convergence, both networks take advantage of the
residual block [He et al., 2016]. The use of edge guidance can also be found in [Kim
et al., 2019a]. Chen et al. [2017a] utilize the context aggregation network (CAN) [Yu
and Koltun, 2015] to capture more contextual information. Wu et al. [2018] consider
the guided filter [He et al., 2013] as a group of spatial varying linear transforma-
tion matrices, which can be end-to-end learned. The network absorbs the benefits of
the guided filter in structure preservation and high processing efficiency. Zhu et al.
[2020] design the non-local block to enhance the connection between pixels.

One common issue of these deep filters is that they have to take the output of
existing filters as ground truth. Even though Zhu et al. [2019b] provide a dataset for
training smoothing networks, the ground truth images are still obtained from hand-
crafted filters, i.e., selecting the best smoothed results by manually tuning parameters.
Hence, current deep models are unable to overcome the natural deficiency of hand-
crafted filters, i.e., poor discrimination of structures and textures.

2.1.3.2 Reference-guided methods

In deep filters, the role of the guidance image is also to provide more structural
cues to the target image. Li et al. [2016, 2019] design three sub-networks for feature
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extraction from the target image, feature extraction from the guidance image, and
feature aggregation respectively (see Fig. 2.5). Shi et al. [2021] take advantage of the
unsharp masking [Polesel et al., 2000] to enhance edges without introducing addi-
tional coefficients, which contributes to both improved results and good efficiency.
The convolutional kernel in conventional CNNs is a regular grid, which may not be
adaptive to spatially-variant image content. To improve it, Kim et al. [2021] propose
the deformable kernel network (DKN) to adaptively learn both neighbours and cor-
responding weights for each pixel. This data-driven approach yields more robust
smoothing results. A similar usage of the deformable network can be found in [Fang
et al., 2019b]. In addition to image smoothing, these reference-guided deep filters
can also applied to depth map upsampling, image colorization, noise reduction in
RGB/NIR and flash/non-flash image pairs, and so on [Li et al., 2016].

2.1.3.3 Unsupervised methods

As mentioned above, the ground truth for training deep filters is not reliable enough
as it is derived from hand-crafted methods. However, involving human annotations
for desirable ground truth is hard to achieve. Thus, unsupervised models are pro-
posed to relax the need of resorting to pre-generated labels. Fan et al. [2018] decom-
pose the objective function into three parts: (1) A data term to enforce the structural
similarity between the input and the smoothed output; (2) An edge-preserving term
to penalize important structural responses between the guidance and target images
(indicated by a binary edge map); (3) A smoothness term to regulate intensity differ-
ence between neighbouring pixels. The three terms are jointly optimized by the deep
network without any supervision. Zhou et al. [2019] facilitate the data term by incor-
porating distinctive structure and texture measures into the network. Specifically, the
structure-aware measure relies on gradients (edges have larger gradients and the di-
rections of their gradients are more uniform). Meanwhile, the texture-aware measure
is obtained by searching repetitive patterns within a local neighbourhood based on
HOG features [Dalal and Triggs, 2005]. This method enables better discrimination of
structures and textures. Generally, in terms of the objective function, unsupervised
methods are similar to hand-crafted global approaches. However, they contain more
constraints and have better optimization capacity and efficiency with deep networks
than hand-crafted ones.

2.2 Depth Completion

2.2.1 Non-Learning Methods

Non-learning depth completion is always associated with depth image upsampling,
which improves the quality of low-resolution, noise-corrupted, or incomplete depth.
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2.2.1.1 Depth-only (Self-guided) methods

Non-learning depth-only methods produce a dense depth map only from the sparse
input. Traditional interpolation approaches, e.g., nearest, bilinear, bicubic, can naively
fill in missing values by searching nearby available values, but they purely ignore
the structural prior inherent in depth and may generate undesirable artifacts [Yao
et al., 2020]. Hornácek et al. [2013] exploit the patch-wise self-similarity in the depth
map, e.g., repetition of geometric primitives and object symmetry. This helps with
the recovery of more consistent depth boundaries and fine details. Ku et al. [2018]
treat depth completion as a pure image processing problem, and use kernel opera-
tions, e.g., dilation, closure, Gaussian blurring, to generate dense depth and enhance
boundaries. This method is efficient, and can be cheaply deployed on embedded sys-
tems. Currently, there are very few works falling into the non-learning depth-only
category. Without image guidance and only dependent on hand-crafted features,
these approaches cannot produce high-quality depth values, especially around ob-
ject boundaries.

2.2.1.2 Multiple-input (Reference-guided) methods

Given the registered RGB image with depth available, multiple-input methods show
superior performance over depth-only approaches because the image provides more
dense and structural cues. How to effectively make use of image guidance has drawn
much attention. Existing non-learning methods with image guidance generally have
two categories, i.e., local and global methods.

Local methods. Local methods take the similar form of kernel filtering, i.e., filling
in missing depth values within a local squared region with the target pixel located
at the centred position. They basically assume that: (1) pixels with similar inten-
sities in the RGB image are more likely to have similar depth values, and (2) large
intensity changes in the image tend to correspond to depth edges. The joint bilateral
filter [Haralick et al., 1973] and its variants [Riemens et al., 2009; Chen et al., 2016a;
Lu et al., 2018b; Kim et al., 2014; Silberman et al., 2012] calculate the intensity/color
distance from the image instead of the depth map. To involve more neighbouring
pixels, the color distance can be replaced by the geodesic distance, which is defined
in the 8-connected image grid [Liu et al., 2013a]. This is beneficial for generating
sharper boundaries because it integrates intensity changes along geodesic curves. In
addition, anisotropic diffusion treats available depth values as heat sources and dif-
fuses depth from these sources to unknown regions [Liu and Gong, 2013; Yao et al.,
2020]. Another strategy for enhancing depth edges is to first interpolate the depth
input with bicubic interpolation, and then refine and sharpen depth edges with im-
age guidance as a post-processing step [Hua et al., 2015]. Miao et al. [2012] divide
depth completion into two sub-tasks, i.e., smooth region inpainting and edge region
inpainting. They design different algorithms for the two tasks for the purpose of
improving various scales of hole filling and edge alignment. To further boost the
consistency between the image and depth, Yang et al. [2014] propose an adaptive
autoregressive model to minimize prediction errors. However, as Lu et al. [2014]
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point out, depth edges cannot be well enhanced if the image is noisy or the inten-
sity changes on edges are small, in which case the correlation between the image
and depth is relatively weak. To deal with this issue, they assume similar RGB-D
patches mostly exist in a low-dimensional sub-space, and impose a low-rank con-
straint. This method significantly strengthens the correlation between the image and
depth especially in structural regions. The depth completion performance can be
largely improved.

Global methods. Global methods assume that depth values vary smoothly across
the entire depth map. They formulate depth completion as a constrained optimiza-
tion problem, which consists of a data term, i.e., the matching cost between predicted
and known depth values, and a smoothness term, i.e., penalizing edge discontinu-
ities based on image guidance [Hawe et al., 2011]. The data term is used in almost
all cases, so the research focus is to design a proper smoothness term in order to
maintain consistent depth structures. Many works take advantage of Markov Ran-
dom Fields (MRF) [Li, 1994] for constructing the smoothness term as well as op-
timization. In a standard MRF framework, the depth smoothness potential is de-
fined as a weighted quadratic distance between neighbouring depth points, and the
weighting factors connect image edge information to depth [Diebel and Thrun, 2005].
Other smoothness terms used in MRF research include bidirected image gradients
and region segmentation [Kim and Yoon, 2012], edge patches [Xie et al., 2015], self-
similarity of patches [Li et al., 2014a], non-local structure regularization [Park et al.,
2014, 2011], and so on. Another popular method for depth smoothness is total vari-
ation (TV) [Barbero and Sra, 2011], which aims to preserve depth edges with the
assumption that depth values and image intensities have a linear correlation within
a small local patch [Liu et al., 2013c; Ferstl et al., 2013]. Additionally, compressive
sensing [Hawe et al., 2011], adaptive region selection [Chen et al., 2013], semantic seg-
mentation [Schneider et al., 2016], the combination of local and global information
[Barron and Poole, 2016], have also been successfully applied in global optimization.

2.2.2 Supervised Learning Methods

2.2.2.1 Depth-only (Self-guided) methods

The sparse depth input usually presents irregular depth point distribution and/or
large holes (missing areas). Standard CNNs, which are designed for processing dense
data, have to be aware of the sparseness of the input. The naive approach either sets
invalid pixels that do not have depth values to zero [Chen et al., 2017b] or adds an
extra guidance mask to the network [Köhler et al., 2014] to indicate the validity of
each pixel (this mask is from the input itself so it is a self-guidance). However, it
cannot effectively improve the performance of the network because invalid pixels
are normally irregular and cannot be aligned and consistent with the regular pixel
grid, e.g., the squared kernel [Uhrig et al., 2017]. Additionally, CNNs perform poorly
when the levels of sparsity significantly vary in training and test sets [Uhrig et al.,
2017]. To deal with the sparsity issue, Sparsity Invariant CNNs (SparseConvs) [Uhrig
et al., 2017] are proposed as a pioneering work for sparsity awareness, as illustrated
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Figure 2.6: Network architecture of SparseConvs [Uhrig et al., 2017]. (a) A sparse con-
volution is incorporated into the standard convolutional layer to indicate the valid-
ness of depth points (1 for points that have depth values and 0 for none). (b) Detailed
architecture of the sparse convolution. Image taken from [Uhrig et al., 2017].

in Fig. 2.6. The motivation is to make the network output invariant of various lev-
els of sparsity, i.e., keeping robustness to different numbers of missing points. This
is achieved by defining a binary mask (1 for valid pixels and 0 for invalid) for only
evaluating valid pixels during network propagation. This mask is updated and prop-
agated with the max pooling operation to indicate remaining locations of incomplete
data. Within a local region, a pixel is identified as “unobserved” if all of its neigh-
bouring values are missing. In that case, the sparsity can be explicitly modelled in the
training procedure. It also enables the network to be more robust to sparsity at test
time. It has been proved that SparseConvs outperform standard CNNs with more
accurate depth completion results as well as faster and smoother network training.

SparseConvs still have three primary limitations: (1) It gradually downsamples
feature maps and does not effectively integrate low-level and high-level features
[Huang et al., 2019]; (2) It is easy to produce blurry edges [Jaritz et al., 2018]; (3)
The validity mask is prone to be saturated in early layers so the validity information
is quickly lost in later layers [Jaritz et al., 2018]. The first issue is related to the net-
work architecture, so HMS-Net [Huang et al., 2019] handles it by making use of a
encoder-decoder network and integrating multi-scale features from different layers.
Furthermore, HMS-Net also improves the sparsity invariant operation in SparseC-
onvs by designing three variants, i.e., sparsity invariant bilinear upsampling, spar-
sity invariant average, and joint sparsity invariant concatenation and convolution.
These new operations are more useful for integrating various levels of feature maps.
However, a natural deficiency of using this validity mask is that depth edges would
be blurred. In [Jaritz et al., 2018], this problem is attributed to the validity domain
extension, i.e., sparse data are “dilated” in each layer with a full convolutional oper-
ation [Graham and van der Maaten, 2017]. Consequently, large intensity transitions
are averaged and reduced, resulting in blurry edges. This problem always comes
along with another issue, i.e., the saturation of the validity mask in early layers. It
implies that the validity information cannot be further propagated to subsequent lay-
ers. Hence, it may not be necessary to use the validity mask if the network is large
enough to extract sufficient features [Jaritz et al., 2018].

Several works have verified the above inference. NASNet [Zoph et al., 2018], a
recurrent model initially designed for image recognition, is employed as the encoder
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in [Jaritz et al., 2018]. This network is powerful enough in feature extraction such
that incorporating the validity mask shows no improvement. Ma et al. [2019] take
advantage of residual blocks [He et al., 2016] to extract both low-level and high-
level features and fuse them via long skip connections. The two networks have
significantly improved depth completion results even without the validity mask but
they normally have complicated network structures and involve extensive parameters
for training.

In essence, the validity mask is a quite hard constraint because it is binary and
the feature activation is biased to valid regions [Jaritz et al., 2018]. This bias makes
it harder to differentiate between missing points and zero values, and may degrade
the performance in invalid regions to be completed. To soften the constraint, El-
desokey et al. [2019] alternatively propose to treat the validity mask as a continuous
confidence field. Using confidence has two primary advantages: (1) Confidence mea-
sures the reliability of data, which is more desirable in learning based systems; (2)
Confidence can be propagated through the entire network without being saturated
in later layers. They calculate confidence from the input by leveraging Normalized
Convolution [Knutsson and Westin, 1993]. It also enables the adaptive propagation
of confidence throughout the learning process. Output confidence is coherent with
the density of input confidence, i.e., pixels within high-density valid regions tend to
have higher confidence. The proposed confidence is incorporated into a loss func-
tion for the purpose of minimizing prediction errors and maximizing confidence at
the same time. A desirable consequence is that reliable points contribute more to
final results, further improving the performance with the reduced effect of unreliable
depth values.

However, in depth completion, the input is always highly sparse, e.g., valid points
only account for 5% in KITTI [Uhrig et al., 2017]. Object structures cannot be appro-
priately localized due to the sparsity, and the lack of structural cues makes self-
guided methods fail to recover semantically consistent boundaries and thin/small
objects. This can be improved by using the registered RGB image (captured from the
camera) as a reference-guidance, which will be detailed below.

2.2.2.2 Multiple-input (Reference-guided) methods

The RGB image contains dense and rich structural information, e.g., object structures
can be easily identified by sharp intensity changes. Existing image guided models
take the RGB image as an extra input to the network, and design various approaches
to effectively aggregating image features. In the following, we review some repre-
sentative methods in reference-guided depth completion. They mainly cover three
aspects: (1) Plain fusion of image features, i.e., focusing on network architectures that
transfer image features to depth features; (2) Enhanced fusion of image features, i.e.,
making use of some other techniques (not simply modifying networks) to facilitate
feature fusion such as confidence propagation, spatial affinity, residual learning, un-
certainty, domain adaptation, conditional prior, and the improved loss function; (3)
Extra fusion, i.e., leveraging additional cues that are relevant and complementary to
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Figure 2.7: Network architecture of supervised Sparse-to-Dense (S2D) [Ma et al.,
2019]. This is a standard late fusion framework, where depth and image features are
first encoded by two separate networks and then aggregated. Skip connections [He
et al., 2016] are used to reduce information loss. Image taken from [Ma et al., 2019].

images like semantic information, 3D point clouds, and surface normal (note that
in the literature review, we only care about how existing methods use these cues to
improve depth completion rather than the full review of these cues).

Plain image feature fusion. In general, there are two types of fusion strategies
for image features, i.e., early fusion and late fusion. Early fusion simply concatenates
sparse depth and the image in a channel-wise manner, and then feeds them into
the network, i.e., they share the same feature encoder [Masci et al., 2013; Ma and
Karaman, 2018; Qu et al., 2020]. However, depth and the image are two different
modalities, i.e., depth measures distance while the image consists of RGB intensities.
It is hard for a single encoder to fit the data and reduce their domain shift [Liu et al.,
2020c; Jaritz et al., 2018; Qiu et al., 2019]. To deal with this issue, late fusion is widely
used as an alternative, where depth features and image features are extracted with
two separate CNNs and then aggregated. The advantage is that the domain shift can
be effectively reduced after transforming the two modalities into a similar feature
space [Shivakumar et al., 2019]. Jaritz et al. [2018] have justified that late fusion
always outperforms early fusion.

A standard late fusion architecture consists of a depth feature encoder, the image
feature encoder, and a depth completion decoder (see Fig. 2.7 for a representative
late fusion architecture S2D [Ma et al., 2019]). Depth and image features from their
corresponding encoders are concatenated or summed as a hybrid feature [Jaritz et al.,
2018; Shivakumar et al., 2019]. This is then fed into the decoder for dense depth
recovery. Specifically, Jaritz et al. [2018] utilize NASNet [Zoph et al., 2018] to encode
richer depth and image features via a larger convolutional kernel size. Shivakumar
et al. [2019] alternatively leverage Spatial Pyramid Pooling [He et al., 2015] to learn
coarse-to-fine feature representations by taking both local and global information into
account. They also empirically find that the depth encoder should have larger kernel
sizes with fewer convolutional layers to cover most missing regions. By contrast,
the image encoder should have smaller kernel sizes with more convolutional layers
to better extract low-level image features, e.g., edges. However, as Liu et al. [2020c]
point out, late fusion may suffer from information loss during feature propagation
(features are gradually compressed) and limited feature interaction (features from
two modalities interact only at the end of the encoder). Both factors are likely to lead
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to sub-optimal performance.
To address the above issue, skip connections [He et al., 2016] are embedded into

the network to reduce information loss [Ma et al., 2019; Fu et al., 2020; Schuster et al.,
2021]. Yan et al. [2020] use skip connections to link the encoder and decoder, i.e.,
transferring low-level and mid-level depth and image features to the decoder. To
boost feature interaction, it is also useful to build connections between intermediate
features of depth and image encoders. Huang et al. [2019] first employ six blocks
of ERFNet [Romera et al., 2017] that consists of two downsampling blocks and four
residual blocks to extract image features, and then concatenate them into depth fea-
tures at multiple scales.

Although feature concatenation is simple to implement, it fuses the two types
of features as a whole and cannot provide discriminative image cues that specially
complement depth features. To learn more selective image features, Tang et al. [2020]
take advantage of the guided image filter [He et al., 2013] and design a guided convo-
lution module to generate content-dependent (kernel weights are dynamically varied
based on image content) and spatially-variant (kernels also change with different spa-
tial positions) kernels. This operation enables the model to adaptively acquire more
specific image features. Lee et al. [2020] propose the concept of “cross-guidance”,
which means depth and image features can guide and complement each other. This
is achieved by introducing a learnable attention map and refining features with atten-
tion weights. Depth and image features, in that case, can retain their own distinctive
features, and simultaneously improve the feature representation by incorporating
complementary information from the other. A multi-scale guided framework is in-
troduced in [Li et al., 2020a], where sparse depth is first downsampled into lower
resolutions, i.e., 1/2 and 1/4, and the two resized maps together with the original
input are fed into three cascade Hourglass networks [Newell et al., 2016]. Multi-scale
image features, extracted by a separate encoder, are added to corresponding depth
features with identical scales. The distinction is that predictions from three Hour-
glass networks are all supervised by dense depth ground truth. The final output is
improved with the integration of features at multiple scales.

Hu et al. [2021] study depth and image features from a new perspective, i.e.,
extracting and fusing depth-dominant and image-dominant features by modifying
the network input. Specifically, two branches are designed, i.e., color dominant and
depth dominant, and they have the same encoder-decoder architecture. The color
dominant branch takes the image and sparse depth as input, and outputs a raw dense
depth map. This raw map is combined with sparse depth and then fed into the depth
dominant branch for another dense prediction. Moreover, the decoder features of the
color branch are concatenated with the depth encoder features at various scales. The
two branches also output corresponding weighting maps to adaptively merge two
dense outputs. This model comprehensively covers feature fusion, feature selection,
and output refinement.

In summary, plain image feature fusion methods focus on the design of network
architectures to fuse depth and image features. It has been demonstrated that incor-
porating image features can significantly improve depth completion performance.
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Selective/Adaptive feature fusion is currently a hot topic in this filed.
Confidence propagation. As introduced in Section 2.2.2.1, confidence measures

the reliability of output depth and can be learned and propagated through the net-
work training. The necessity of using confidence owes to the fact that input LiDAR
values are always noisy. Noise is accumulated after projecting raw LiDAR point
clouds to the image plane, e.g., mixed depth values around occluded object bound-
aries [Gu et al., 2021; Qiu et al., 2019]. Since the image can provide complementary
structural cues to depth, confidence measurement becomes more faithful after being
combined with image information. The usage of confidence is generally divided into
two types, i.e., output fusion and intermediate constraint (detailed below).

Output fusion means the confidence map works as a per-pixel weighting function
to fuse various outputs for the final prediction (the sum of weights for all pixels is
equal to 1). To generate different outputs, Van Gansbeke et al. [2019] design a global
branch that takes the image and sparse depth as input and a local branch that only
inputs sparse depth. The global branch highlights image features to reduce incorrect
predictions caused by input depth noise and enforces depth smoothness. The local
branch focuses more on depth features, which are further refined by global branch
features. In essence, the global branch functions as a prior to regularize the local one.
Both branches output a dense depth map, and the two maps are fused as per the pre-
dicted confidence. A similar strategy is employed in [Lee et al., 2020]. Hu et al. [2021]
merge outputs from the color-dominant branch and the depth-dominant branch. A
general finding from aforementioned works is that depth confidence presents higher
values in most regions while image confidence is higher around object boundaries.
Note that the confidence map is learned by the network itself.

Intermediate constraint refers to the confidence map is applied in the intermedi-
ate step to constrain features, i.e., only features with high confidence can be fur-
ther propagated. Intermediate confidence can be either automatically generated
and updated within the network or trained with ground truth confidence. For
automatically-learned confidence, Park et al. [2020] combine the image and sparse
depth as a hybrid input to an encoder-decoder network. The predicted confidence
map from that network further facilitates the learned affinity (depicting correlations
between pixels). Eldesokey et al. [2019] first use a multi-scale unguided network to
produce the confidence map, and then concatenate it with the image as the input to
the feature extraction network. The input to the unguided network for confidence es-
timation is a binary mask, which may cause undesirable artifacts in recovered depth
[Eldesokey et al., 2020]. This can be improved by learning input confidence in a
self-supervised manner [Eldesokey et al., 2020]. Qiu et al. [2019] utilize two types of
confidence, one for intermediate constraint and the other for output fusion. For the
trained confidence, Xu et al. [2019] generate confidence ground truth by calculating
the Laplace difference between input values and depth ground truth. An additional
loss that penalizes confidence is added as part of the training loss. Xu et al. [2020]
also train confidence in this way.

In summary, using confidence can largely lower the negative impact of noisy val-
ues in input depth. However, this method, in essence, prevents low-confident points
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from propagating through the network, which may further increase the sparsity of
the depth map, i.e., reducing the number of available depth points. A potential solu-
tion is to correct these noisy values directly in a data-driven manner prior to network
training.

Spatial affinity. Spatial affinity generally reflects dense and global pairwise re-
lationships of an image, i.e., the similarity between two pixels [Liu et al., 2017a]. In
depth completion, the recovery of depth largely relies on neighbouring points. The
lack of this contextual information would result in blurry edges or structure mis-
alignment [Cheng et al., 2018]. Hence, it is important to figure out the appropriate
spatial affinity for propagating context.

Spatial Propagation Network (SPN) [Liu et al., 2017a] adopts three-way connec-
tion in four directions, i.e., left-to-right, top-to-bottom, and their opposite directions.
The spatial affinity is learned through a network in a data-driven manner, which
is more effective than hand-crafted affinities. However, SPN cannot involve all the
neighbouring information at the same time, so it is less robust to the sparsity and
irregular distribution of the input [Park et al., 2020]. To deal with this issue, Convo-
lutional Spatial Propagation Network (CSPN) [Cheng et al., 2018] updates all pixels
within a local field simultaneously. It is also able to capture the long-range de-
pendency via a recurrent architecture. Nevertheless, CSPN treats all the local pix-
els equally, which cannot give more specific attention to some key regions such as
boundaries. Moreover, the recurrent operation occupies substantial computational
resources. CSPN++ [Cheng et al., 2020] improves CSPN by introducing context and
resource awareness. Context awareness is achieved by assembling the outputs from
multiple convolutional kernel sizes and different iterations. Based on this, the net-
work sequentially selects a kernel size and a number of iterations for each pixel,
which is adaptive to various image content and significantly reduces computational
costs. One common issue of SPN, CSPN, and CSPN++ is that their local field for
calculating the affinity is fixed, in which case some farther but useful context cannot
be well captured and some irrelevant information within the local region may be
inevitably retained.

To enlarge the receptive field and reduce the impact of irrelevant local neighbours,
Non-Local Spatial Propagation Network (NLSPN) [Park et al., 2020] is proposed for
the purpose of (1) predicting non-local neighbours for each depth point, and (2)
integrating relevant features with spatially-varying affinities. Deformable Spatial
Propagation Network (DSPN) [Xu et al., 2020] uses an offset estimator to generate
the offset for each pixel so that the receptive field for affinity propagation is increased
and becomes adaptive. Adaptive Context-Aware Multi-Modal Network (ACMNet)
[Zhao et al., 2021] makes use of the graph network [Wang et al., 2019b] and obtains
adaptive contextual information via graph propagation.

In summary, spatial affinity improves depth completion by taking more contex-
tual information into account. The fundamental problem is how to make the recep-
tive field for affinity propagation more adaptive to image content, especially around
object boundaries. Recent progress on non-local and deformable propagation can
inspire more research into this direction.
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Residual learning. Most methods treat depth completion as a one-stage task,
i.e., mapping directly from the sparse input to the dense output. This framework
may have two limitations: (1) Depth pixels without input values are filled with zero,
which increases the ambiguity between valid pixels that have depth values and these
zero-filled pixels [Liu et al., 2021; Dimitrievski et al., 2018; Liao et al., 2017]; (2) The
network has to first eliminate the aforementioned ambiguity, which limits its capacity
in learning sufficient features.

To solve above issues, the residual learning framework is employed, which is
derived from the residual network [He et al., 2016]. It basically has two stages: (1)
Sparse-to-coarse, i.e., transforming the sparse input to a coarse dense depth map;
(2) Coarse-to-fine, i.e., refining the coarse map by adding the learned depth residual
to it [Liu et al., 2020b]. In essence, residual learning recovers high-frequency depth
such as boundaries and some details, which are not always accurately completed in
one-stage methods [Gu et al., 2021]. In the sparse-to-coarse stage, coarse depth is
computed from the sparse input via the nearest neighbour interpolation [Chen et al.,
2018], morphological operations [Gu et al., 2021], kernel regression [Liu et al., 2021],
or some simple depth completion approaches [Liu et al., 2020b]. The coarse-to-fine
stage normally takes advantage of more powerful networks or techniques to learn
the depth residual more effectively, e.g., DenseNet blocks [Huang et al., 2017] used
in [Chen et al., 2018], Depth Completion Unit (DCU) [Qiu et al., 2019] used in [Gu
et al., 2021], UNet [Ronneberger et al., 2015] used in [Liu et al., 2021], channel shuffle
[Zhang et al., 2018] used in [Liu et al., 2020b]. Note that coarse dense depth can
also be replaced by other dense representations, e.g., the plane-residual (representing
the distance from the closest pre-defined discretized depth planes) [Lee et al., 2021],
reference depth (a group of lines constituting the surface vertical to the ground) [Liao
et al., 2017].

In summary, residual learning enables depth completion from coarse to fine,
which reduces the impact of zero-filled pixels. It also effectively refines and improves
coarse depth, especially around boundaries.

Uncertainty. Although CNNs have been successfully applied to various vision
tasks, there is little interpretation on how the network makes predictions and how re-
liable these predictions are. The uncertainty is quantified by leveraging the Bayesian
Neural Network to output the probabilistic distribution parameterized by mean and
variance [Kendall and Gal, 2017]. The uncertainty in depth completion mainly comes
from the noisy nature of the sparse input [Eldesokey et al., 2020] but few works inves-
tigate the uncertainty measure. Eldesokey et al. [2020] fill in this gap by introducing
uncertainty analysis to depth completion. By modelling the variance of input noise
and combining it with output confidence, they quantify the uncertainty of predic-
tions, i.e., output confidence is strongly correlated with prediction errors. This is a
useful method to measure the reliability of output depth values.

Note that although the uncertainty is also mentioned in [Van Gansbeke et al.,
2019], it refers to the difference between the predictions from depth-only and RGB-D
branches, which is not the probabilistic analysis as in [Eldesokey et al., 2020].

Domain adaptation. Considering dense depth ground truth is hard and expen-

Draft Copy – 28 January 2022



§2.2 Depth Completion 33

sive to acquire in practice, Lopez-Rodriguez et al. [2020] train the model on synthetic
data and adapt it to real-world cases. To reduce the LiDAR gap, CARLA [Dosovit-
skiy et al., 2017], an autonomous driving simulator, is employed to generate synthetic
LiDAR that has similar input distribution as the real data. Moreover, it simulates the
see-through artifacts by setting up a multicamera environment and projecting the
virtual LiDAR to the RGB image frame. For RGB, they make use of CycleGAN [Zhu
et al., 2017] for style transfer from the real domain to synthetic examples.

Conditional prior. It is a fact that the correlation between the RGB image and
dense depth is stronger than that between the image and sparse depth, because the
image itself is dense. Yang et al. [2019] argue that the performance of directly com-
bining the image with sparse depth would be less good than exploiting a prior from
the image and its corresponding dense depth. They make use of the Conditional
Prior Network (CPN) [Yang and Soatto, 2018], and calculate the prior by taking the
image and dense depth to the network on the Virtual KITTI dataset [Gaidon et al.,
2016]. This prior represents the conditional probability of dense depth given the
image, and generates the posterior estimate of depth after being incorporated into
a likelihood term. The proposed approach is beneficial for analyzing the underly-
ing probabilistic relationship between the image and depth, but requires additional
resources to train the CPN in advance.

Improved loss function. The depth mixing problem, i.e., ambiguous depth val-
ues between the foreground and background, is a fundamental challenge in depth
completion [Imran et al., 2019, 2021; Qiu et al., 2019]. It leads to discontinuous bound-
aries or distorted object shapes in the output. Popular loss functions for training the
completion model, e.g., MSE and MAE, would even promote depth mixing [Imran
et al., 2019]. To solve this problem, Imran et al. [2019] propose a novel representation
for depth, i.e., Depth Coefficients (DC). The general idea is to convert sparse depth
into multiple channels, and each channel represents a fixed depth range. Any depth
value is the weighted sum of these channel bins. The discrete nature of DC largely
preserves the depth continuity, so that depth mixing can be reduced. Another ad-
vantage of DC is that it represents depth in a probabilistic way, and the model can
be trained with the cross-entropy loss. Using this loss can accelerate the convergence
speed, and more importantly, reduce depth mixing. However, converted channels
share the identical resolution with the input, and always have large computational
costs and occupy substantial memory [Imran et al., 2021]. Instead of relying on multi-
ple channels, Imran et al. [2021] alternatively introduce a two-surface representation,
i.e., foreground depth and background depth. This is more intuitive and efficient.
Moreover, a pair of asymmetric loss functions [Vogels et al., 2018] are employed to
focus on foreground and background depth respectively, which is beneficial for sepa-
rating ambiguous depth values. A fusion module is incorporated for final prediction,
i.e., adaptively selecting foreground or background depth in ambiguous regions and
fusing the two depth in other regions. Both methods exploit new depth representa-
tions to handle the depth mixing problem, and design corresponding loss functions
to further improve the accuracy of depth completion.

Use of semantic information. Although RGB images can provide structural
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cues that facilitate depth completion, they may suffer from the sensitivity to opti-
cal changes and complex textures. For example, a car may present different colors
due to reflection or shadows. Differently, semantic labels are more robust to these
factors. Motivated by this, Zhang et al. [2021] combine semantic segmentation and
depth completion as a multi-task learning framework. The two tasks are trained
with separate networks and synergized via the semantic guided smoothness loss.
This method enhances the consistency between semantic and geometric structures,
which effectively improves the robustness to various scenes.

Use of 3D point clouds. Depth is highly associated with the scene geometry, but
the RGB image cannot explicitly provide geometric cues [Fu et al., 2020; Wong et al.,
2021a]. 3D geometric information gives better discrimination of occlusion boundaries
and foreground/background objects, which is complementary to RGB and useful for
depth completion [Chen et al., 2019]. Initial LiDAR scans are 3D point clouds, but
they cannot be directly convolved with standard CNNs. Hu et al. [2021] design
a geometric convolutional layer that concatenates a 3D position map (three maps
including X, Y, and Z) to the input of the layer. Chen et al. [2019] employ continuous
convolutions [Wang et al., 2018] performed on 3D points. Afterwards, the learned 3D
features are fused with 2D appearance features through the 2D-3D fuse block. They
demonstrate that leveraging geometric cues enables the model to recover sharper and
more accurate object boundaries.

Use of surface normal. Another widely-used geometric cue is the surface nor-
mal, which is determined by the tangent plane of the local surface [Chen and Schmitt,
1992]. The surface normal can be estimated from depth, and depth can also be in-
ferred from the surface normal by linear operations [Qi et al., 2018]. Hence, the
surface normal and depth are strongly interrelated [Xu et al., 2019], and using the
normal to guide depth can reduce depth distortion in planar regions [Qi et al., 2018].
Zhang and Funkhouser [2018] first predict the surface normal and occlusion bound-
aries from the RGB image. Considering the normal and boundaries are local proper-
ties of the surface, they are then combined with sparse depth, and the dense output
is produced by optimizing a globally defined linear function. In essence, this method
is a post-processing step for the sparse input. However, the surface normal is sep-
arately generated, and depth-normal correlations are not well exploited [Xu et al.,
2019]. To enhance their correlations, Qiu et al. [2019] design two pathways, i.e., the
color pathway and the surface normal pathway, and produce two dense depth maps
from them separately. The final output is the weighted sum of the two maps, and
the weights are automatically learned by the network. The two pathways are jointly
trained so that surface normal estimation and depth completion can facilitate each
other. Xu et al. [2019] study depth-normal constraints by modelling their locally
linear orthogonality in the plane-origin distance space (the distance from the corre-
sponding tangent plane to the camera centre). To maintain the consistency between
depth and the surface normal, Lee et al. [2019a] introduce the depth-normal consis-
tency loss to minimize their inner product. The effectiveness of the surface normal
has been well justified in depth completion. How to better aggregate depth and
surface normal features is worthy of further exploration.
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Figure 2.8: Network architecture of unsupervised Sparse-to-Dense (S2D) [Ma et al.,
2019]. In this framework, the registered image is combined with sparse depth. Dur-
ing training, sparse depth is used as a supervision signal, and a second image is
required to construct the photometric loss. Image taken from [Ma et al., 2019].

2.2.3 Unsupervised Learning Methods

Unsupervised depth completion aims to recover dense depth from the sparse input
without the supervision of dense depth ground truth1. The pioneering work [Ma
et al., 2019], shown in Fig. 2.8, provides four basic components for the unsupervised
learning framework:

(1) RGB image as input. The RGB image is taken as an additional input to the
network.

(2) Sparse depth supervision. The sparse input itself is used as a supervision
signal for depth by penalizing the difference between the input and output in valid
pixels (with depth values in the input).

(3) Photometric loss. Sparse depth cannot supply per-pixel supervision due to its
high sparsity [Zhang et al., 2019a]. To deal with this issue, stereo information, e.g., a
left-right image pair [Yang et al., 2019] or temporally consecutive video frames [Ma
et al., 2019; Wong et al., 2020, 2021a,b], can implicitly give dense supervision to depth.
Specifically, the left image (or Frame 1) can be transformed into the right image (or
Frame 2) based on the depth from the right view (or Frame 2), and vice versa. The
transformation process is different under the two settings. The use of the left-right
image pair generally assumes a displacement (also known as disparity) exists between
the two images, which is formulated as an intensity constancy constraint. Depth can
be computed from the disparity based on the focal length and the baseline of left
and right cameras. Consequently, we can approximate the second image from the
first one with the predicted disparity (or depth). Differently, using video frames
for constructing the photometric loss requires pose estimation first, i.e., calculating
the relative pose between two frames. Given the intrinsic matrix of the camera, the
second image can be warped to the first one according to the relative transformation
and estimated depth.

1Although non-learning methods in section 2.2.1 do not use ground truth either, they are not in the
same category of unsupervised learning methods because they do not involve any network training.
In this thesis, “unsupervised depth completion” refers to learning-based depth completion without
ground truth.
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Hence, the quality of the transformed image is largely dependent on the depth
map. This, in turn, indirectly supervises depth completion by penalizing the photo-
metric loss between the transformed image and the target one. This supervision is
implicit because it does not directly penalize depth, but the result derived from it,
i.e., the transformed image. The second image is not required during test time.

(4) Smoothness loss. This loss aims to reduce local discontinuities and sharpen
boundaries in output depth.

Subsequent works [Wong et al., 2020; Yang et al., 2019; Wong et al., 2021a,b] follow
this framework but have their own distinctions. Wong et al. [2020] add SSIM [Wang
et al., 2004] to the photometric loss to enhance the robustness to local illumination
changes and the sharpness of boundaries in color images, similar to [Yang et al.,
2019] and [Wong et al., 2021a]. Yang et al. [2019] make use of the dense depth prior
obtained from CPN [Yang and Soatto, 2018] to model the likelihood and conditional
distribution of depth. Furthermore, they leverage the disparity loss combined with
left-right image transformation. Wong et al. [2021a] learn the scene topology as a
prior from synthetic data, which has good generalization to various scene geometry.
It is also incorporated as part of the loss function, aiming to enhance the compatibility
of the prior and predicted depth with the image. Wong et al. [2021b] treat sparse
depth supervision as the data fidelity term, and other losses as the regularization
term. They observe that in occluded regions, the disparity is not correct, so the depth
penalty there is uninformative and should be discarded. This can be compensated by
increasing the impact of regularization. Another observation is that depth errors in
homogeneous regions with large disparities are easy to minimize, in which case the
regularization naturally has more impact on completion results. Motivated by the
two cases, they introduce an adaptive weighting scheme that varies over the image
domain and training epochs. It consists of (1) the weight for the data fidelity term
determined by the probability of a given pixel co-visible in two images; and (2) the
weight for the regularization term determined by the depth residual at each pixel
over each training step. In essence, the two weights are complementary to each
other, and they can be conveniently incorporated into existing unsupervised models
and improve their performance.

In summary, unsupervised depth completion has achieved good progress since
2019. However, existing methods heavily rely on RGB images for additional input
and constructing the photometric loss. In this thesis, we explore how to realize
unsupervised depth completion only from the sparse input.

2.3 Summary

In this chapter, we have reviewed existing literature on image smoothing and depth
completion respectively. For image smoothing, we have introduced kernel methods,
global methods, and deep learning methods. In each type, we have further stud-
ied the usage of self-guidance and reference-guidance. For depth completion, we
have given an overview of non-learning methods, supervised learning methods, and
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unsupervised learning methods. We have also investigated self-guided (depth-only)
and reference-guided (multiple-input) settings. Through the extensive literature re-
view, we can have a comprehensive understanding of the two tasks, including their
history, mainstream methods, and up-to-date progress.
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Chapter 3

Kernel-Based Double-Guided Filter

From the following two chapters, we will introduce our research work on image
smoothing, i.e., retaining main structures and removing insignificant textures in the
image. Existing methods make use of structure guidance by generally assuming
structures have large intensity difference or gradients. However, this assumption
is not reliable when there exist strong textures with large color contrast. In that
case, some structures may be blurred as the filter attempts to remove these textures.
Also, some strong textures are mistakenly retained as structures. In our work, we
aim to improve the discrimination of structures and textures by using independent
structure guidance and texture guidance so as to reduce structure degradation/edge
blurriness. We develop both the hand-crafted kernel filter (this chapter) and deep
filter (Chapter 4).

In this chapter, we propose a novel kernel-based double-guided filter (DGF). To
enhance the discrimination of textures, for the first time, we introduce the concept of
“texture guidance” to indicate the position and magnitude of textures. Additionally,
we adopt semantic edge detection as structure guidance, which is beneficial for pre-
serving more semantically meaningful structures. The proposed DGF incorporates
the two forms of guidance into the kernel operation to be both “structure-aware” and
“texture-aware”. Through extensive experiments, we provide the appropriate usage
of the DGF and demonstrate that it can effectively remove strong textures without
blurring main structures.

In the remainder of this chapter, Section 3.1 introduces our motivation of using
structure guidance and texture guidance, and summarizes primary contributions.
Section 3.2 further illustrates our motivation and the generation of structure guid-
ance and texture guidance. We provide details of the proposed DGF in Section 3.3.
Section 3.4 discusses the parameter setting of the DGF, and compares our filter with
other methods in terms of visual results, denoising performance, and three typical
applications. Section 3.5 summarizes the chapter and proposes the future work.

3.1 Introduction

Image smoothing, which aims to preserve main structures/edges and remove in-
significant details/textures, plays an important role in many computer vision ap-

39
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Double-guided filter
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Texture guidance
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(a) Framework of proposed double-guided filter

(b) BLF (c) GF (d) L0 (e) WLS

Figure 3.1: Framework of the proposed double-guided filter (DGF) and smoothing
results with different methods. (a) DGF utilizes two independent structure and tex-
ture guidance for better discrimination of structures and textures. (b)-(e) Dotted
textures on the vase are strong and they are mistakenly retained as structures by
existing methods, e.g., BLF [Tomasi and Manduchi, 1998], GF [He et al., 2013], L0 [Xu
et al., 2011], WLS [Farbman et al., 2008]. Also, the main structures, especially the
base of the vase, are severely blurred in GF, L0 and WLS. Our DGF can remove these
strong textures and preserve main structures at the same time.

plications, such as image abstraction [Winnemöller et al., 2006], detail enhancement
[Fattal et al., 2007], image denoising [Gu et al., 2014].

Existing image smoothing methods can be roughly classified into two types:
kernel-based local filtering, and global-based structure and texture separation. Both
types of methods largely focus on “structure-awareness”. For example, the bilateral
filter (BLF) [Tomasi and Manduchi, 1998] and guided filter (GF) [He et al., 2013]
calculate a local average of intensities by convolving with a positive kernel. This
operation can retain large gradients by adjusting weights of neighboring pixels ac-
cording to their intensity difference. The averaging operation is able to suppress
weak textures (small oscillations in intensities) effectively. However, as Zhang et al.
[2015] point out, the essential deficiency of this type of method is the lack of discrimi-
nation of strong textures (insignificant details with high contrast) and structures. For
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example, as shown in Fig. 3.1, the input image contains a vase covered with black
dots. The removal of these black dots will not affect our recognition of the vase, thus
we regard them as insignificant details that can be removed. However, since their
contrast is very high, they are mistakenly regarded as structures (see filtering results
of the BLF and GF in Fig. 3.1(b) and (c)). Global-based separation methods extract
textures from the input image by optimizing a globally-defined objective function.
This is based on the assumption that an image can be decomposed into a structure
layer and a texture layer, and structures tend to have larger gradients. Hence, penal-
izing gradients is a normal setting to regulate the smoothing process. For example,
L0-smoothing [Xu et al., 2011] manipulates the total number of non-zero gradients,
and WLS [Farbman et al., 2008] leverages the total variation between two layers in
terms of gradients. As Fig. 3.1(d) and (e) show, the overall structure of the vase is
over-smoothed when the two methods attempt to remove dotted textures (the over-
smoothing is especially severe at the base of the vase, which has low contrast but
important semantic meaning). Therefore, only relying on intensity difference or gra-
dients is not always reliable in differentiating between structures and textures.

Our idea is to leverage two forms of independent guidance, i.e., structure guid-
ance and texture guidance, to infer structures and textures respectively. To this end,
we design a double-guided kernel-based filter (DGF). It is able to preserve mean-
ingful structures with the guidance of the newly-proposed semantic edge detection
method [Hallman and Fowlkes, 2015] (structure guidance), and distinguish and re-
move textures with the guidance of image separation [Liu et al., 2013b] (texture guid-
ance). Fig. 3.1(a) illustrates the framework of the DGF. It achieves better smoothing
results than other methods in the vase example. More importantly, the proposed
DGF is easy to use because the kernel only involves two parameters that correspond
to “structure-awareness” and “texture-awareness”.

In summary, we make the following major contributions:

• We give theoretical insights into balancing ”structure-awareness” and “texture-
awareness” for image smoothing.

• It is the first time that structure guidance and texture guidance are applied to
image smoothing at the same time. Furthermore, the two guidance maps are
generated independently.

• The proposed easy-to-use double-guided filter outperforms existing methods
by simultaneously achieving “structure-awareness” and “texture-awareness”.
Hence, it can remove even stronger textures without blurring main structures.

3.2 Structure Guidance and Texture Guidance

To the best of our knowledge, most existing image smoothing methods only depend
on structure guidance. However, this is not sufficient because in many case textures
may also have strong edges, which will confuse the structure guidance map. Thus,
we need texture guidance to tell the filter where to remove (smooth more), especially
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Figure 3.2: Structure confidence maps of the “Vase" example. From left to right: in-
put, structure map calculated from [Xu et al., 2012], structure map calculated from
[Cho et al., 2014], semantic edge map [Hallman and Fowlkes, 2015]. The semantic
edge detection can help to form meaningful edges that are closer to human percep-
tion. It also outperforms other algorithms that simply use gradients to differentiate
between structures and textures.

when the filter encounters strong textures. We note that separation-based methods
decompose the image into structure and texture layers, which achieve a better trade-
off between preserving structures and removing textures than kernel filters. Here we
use the texture layer to guide local filtering. In essence, texture guidance reduces the
possibility of retaining strong textures. The two forms of guidance will be introduced
in the following.

3.2.1 Structure Guidance

Ideal structure guidance should give high confidence to meaningful structures, no
matter their gradients are large or small. Moreover, it is expected to give relatively
low confidence to insignificant textures regardless of their gradients either. As we
know, humans can easily distinguish textures from structures due to the advanced
cognition system built in our brains. Semantic edge detection makes structure per-
ception closer to humans because it is based on learning from a large number of
human-labelled images. We apply the recently proposed approach [Hallman and
Fowlkes, 2015] to generate semantic structure guidance. The confidence map E is
obtained by normalizing the detection result into 0-1, as shown in Fig. 3.2(d).

It should be noted that the choice of structure guidance is an open question. To
demonstrate the effectiveness of our choice of semantic guidance, we compare it with
other two gradient-based approaches: Windowed Inherent Variation (WIV) [Xu et al.,
2012] and modified Relative Total Variation (mRTV) [Cho et al., 2014]. Specifically,
WIV constructs the confidence map by considering the gradients of all the neighbor-
ing pixels, and mRTV extends it by taking intensity difference into account. We refer
the reader to the two papers for more details.

Edge confidence maps from three approaches are shown in Fig. 3.2 and we select
representative close-ups for further illustration. In the “Vase" example, with semantic
edge detection, there forms a clear boundary at the top of the vase, which cannot be
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Low High
Texture color contrast

Texture confidence

Figure 3.3: Illustration of texture guidance. The texture confidence map indicates
both the position and magnitude of textures. Larger magnitude (or color contrast)
of textures corresponds to higher confidence, which means the textures are stronger
and harder to remove.

achieved by the other two methods. Also, for textures on the surface, although the se-
mantic detection result cannot fully remove the negative influence of extremely high
contrast, it effectively weakens texture edges. In essence, MIV and mRTV are both
derived from gradients directly, which limits their ability in differentiating between
structures and textures.

3.2.2 Texture Guidance

Ideal texture guidance should indicate both the position and magnitude of textures.
This can be revealed by a texture confidence map. As shown in Fig. 3.3, the position
of textures can be easily observed from the confidence map as non-textured regions
tend to have zero confidence. The magnitude of textures is reflected by the spe-
cific confidence value, i.e., larger confidence corresponds to stronger textures that are
harder to remove. It is important to know that texture guidance does not directly re-
flect structure information as structure guidance does, it provides special estimation
of textures. This, in turn, improves structure preservation by reducing the confusion
between structures and textures.

To generate texture guidance, we take advantage of global methods as they show
better robustness in extracting textures than kernel approaches. We note that al-
though the SGTD algorithm [Liu et al., 2013b] is also based on the gradient assump-
tion (see Section 3.1), it explores a new way to minimize the correlation between
structure gradients and texture components (magnitude). The two measurements are
different in nature so that we can generally think the two layers are independently
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generated. This method has shown superior performance over existing separation-
based methods in removing textures, which can be used to construct texture guid-
ance.

In detail, given the input image I, the output S∗ is generated as follows:

S∗ = arg min
S

∑
p
(Sp − Ip)

2 +
∣∣∇Sp

∣∣+ ∣∣Sp − Ip
∣∣ · ∣∣∇Sp

∣∣, (3.1)

where ∇Sp =
√
(∂xSp)

2 + (∂ySp)
2 is the gradient at pixel p. We calculate the mag-

nitude of the texture layer |S∗ − I| and normalize it to 0-1, and then get the texture
confidence map T.

3.3 Double-Guided Filter

Based on the analysis above, we define the double-guided filter (DGF) which only
relies on one parameter for each guidance. Given the input I1, the DGF is defined as:

Ĩp =
1
κp

∑
q∈Ω

wT
q wE

pq · Iq, (3.2)

where Ω is a k× k squared kernel centered at p. κp is used for normalization. wE
pq

and wT
pq represent the structure weight and texture weight respectively, which are

detailed below.

3.3.1 Structure Weight

Given structure guidance E, wE
pq takes the form of:

wE
pq = (1− E(q)) · exp(

−‖I(p)− I(q)‖2

2σ2
s

), (3.3)

where σs is a user-specified parameter. The right part of the structure weight is
the range kernel found in the bilateral filter [Tomasi and Manduchi, 1998], which
modulates smoothing by intensity difference. This kernel essentially retains strong
textures in the bilateral filter because both main structures and strong textures have
large intensity difference. To improve it, we multiply it by (1− E(q)), so that intensity
difference will only be retained if the corresponding edge confidence is high. Even though
some part of the structures is weak but with semantic meaning, this guidance can
give more confidence and lower the weight to preserve intensity difference.

1The input can be either a gray or a RGB image. If it is an RGB image, the filter is performed on
each color channel separately.

Draft Copy – 28 January 2022



§3.3 Double-Guided Filter 45

A

B

A. Texture region

Figure 3.4: Illustration of the double guidance process. The gradient map widely
used by existing methods is largely affected by textures. The semantic structure map
we use can reflect more semantically meaningful structures. Only using structure
guidance cannot fully get rid of the influence of strong textures and only using tex-
ture guidance will blur main structures. The combination of two guidance yields a
better smoothing result in both structure preservation and texture removal.
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Input 3, 1, 23.34itrk N SNR   3, 3, 18.84itrk N SNR  

7, 2, 18.61itrk N SNR   11, 1, 22.32itrk N SNR   11, 3, 17.59itrk N SNR  

Figure 3.5: Double-guided filtering with different kernel sizes and iterations. A larger
kernel size and more iterations make it easier to suppress textures.

3.3.2 Texture Weight

Given texture guidance T, wT
q is defined as:

wT
q = exp(

−T(q)2

2σ2
t

), (3.4)

where σt is a user-specified parameter. Intuitively, pixels with high texture confidence
should be smoothed without affecting structure pixels, so they are assigned with
small weights. Other non-texture pixels have relatively larger weights to facilitate
smoothing out textures.

3.3.3 Effect of Single and Double Guidance

The highlight of the proposed DGF is that structure guidance and texture guidance
support each other in preserving structures and removing textures. To illustrate this,
Fig. 3.4 shows an example and its smoothing results with single structure or texture
guidance and double guidance. Intuitively, the result only using structure guidance
preserves edges but some strong textures are still retained. By contrast, the result
only using texture guidance does not contain textures but overall structures appear
blurred. To visualize the effect, we plot the color intensity distribution along one
line (marked in the image) in Fig. 3.4(h). We first find that in texture regions (e.g.,
dashed box A), the results with texture guidance and double guidance overlap in
most circumstances while the structure-guided result shows apparent deviation and
oscillations. This is because the semantic structure map is not perfect and still cannot
get rid of the negative effect of some strong textures. On the contrary, in regions with
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Figure 3.6: Double-guided filtering with different σs and σt. The two user-specified
parameters control the effect of smoothing in terms of structure preservation and
texture removal respectively. A smaller σs can retain more edges and a smaller σt can
smooth out more textures.

edges (e.g., dashed box B), the results with structure guidance and double guidance
are almost the same (except the texture regions near edges), indicating that our DGF
can properly preserve structures. However, the result of texture guidance in this
case is less comparable because edges are over-smoothed (the green line is more
rounded and less sharper). From the analysis, we find that structure guidance and
texture guidance have different impact on image smoothing, i.e., structure guidance
focuses more on structure preservation while texture guidance aims more for texture
removal. They are independent in effect but related in the smoothing result. Clearly,
the proposed DGF combines the advantages of two guidance effectively.

3.4 Experiments

In this section, we demonstrate the effectiveness of the proposed DGF through both
visual and quantitative comparison. We also introduce three typical applications of
image smoothing at the end.

3.4.1 Parameter Adjustment

Kernel size and iterations. In our method, the kernel size k, and the number of iter-
ations Nitr, determine the scale of textures to be smoothed and the extent of texture
suppression respectively. Fig. 3.5 shows smoothing results with various kernel sizes
and iterations to an image with artificial random noise. We examine the signal-to-
noise-ratio (SNR) to measure the effect of removing noise quantitatively. Compared
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with the noisy input, a smaller SNR indicates that noise is better suppressed. With
an increasing kernel size, larger-scale textures are removed more effectively. This can
also be achieved by increasing the number of iterations. Empirically, 3-5 iterations
with the kernel size of {5, 7, 9, 11} can yield desirable results.

Smoothing effect factors σs and σt. The two parameters control the effect of
smoothing in terms of preserving structures and removing textures respectively. Nor-
mally, a smaller σs can retain more edges and a smaller σt can smooth out more tex-
tures. Empirically2., for good performance, σs falls into [0.1, 0.3] and σt into [0.2, 0.4].
Fig. 3.6 shows results with various σs and σt.

3.4.2 Comparison with Existing Methods

Visual comparison. In Fig. 3.7, we compare our filter with two classical algorithms
(total variation (TV) [Rudin et al., 1992], bilateral filter (BLF) [Tomasi and Manduchi,
1998]), and six state-of-the-art algorithms (relative total variation (RTV) [Xu et al.,
2012], guided filter (GF) [He et al., 2013], rolling guidance filter (RGF) [Zhang et al.,
2014b], fast L0 smoothing [Nguyen and Brown, 2015], segment graph filter (SGF)
[Zhang et al., 2015], static and dynamic guidance filter (SDF) [Ham et al., 2015]).
Among them, BLF, GF, RGF, SGF are kernel filters, while TV, RTV, fast L0 smoothing,
SDF are global approaches. We use the default parameters defined in their open-
source codes. In our method, we set k = 9, σs = 0.15, σt = 0.2, and Nitr = 3.
With a clearer visualization with close-ups, the DGF outperoforms other methods in
suppressing textures more effectively without over-smoothing main structures.

One special and difficult example is the vase image, in which the vase body is
covered with very strong textures while the object (vase boundary and base) itself has
relatively low contrast to the background. Ideally, the textures should be removed
while object-background contrast should be retained. As can be observed, only our
DGF removes all the black textures on the vase and preserves weak structures of
the vase simultaneously. Other methods cannot achieve both goals. Even though in
some cases, e.g., the results produced by TV, RTV and SGF, textures are suppressed
somewhat. However, the base-background contrast is completely lost as a side-effect.
This example further shows the superior performance of our method in preserving
main structures and removing textures.

Quantitative evaluation. Since denoising is a basic function of image smoothing,
we can further evaluate the denoising performance with SNR quantitatively, similar
to [Zhang et al., 2015; Liu et al., 2013b; Zhang et al., 2014b; Nguyen and Brown,
2015; Yang, 2016]. More specifically, we first take a smoothed image3 as ground truth
(original signal), and then add Gaussian noise with the standard deviation as 0.05.
The SNR here measures the effect of removing noise (compared with ground truth,
a larger SNR indicates that the noise is better removed). We show three groups of

2We determine the range of σs and σt on visual results by looking at 100 natural images from the
Internet. Some of them are displayed in Fig. 3.5, Fig. 3.6, Fig. 3.7, Fig. 3.8, and Fig. 3.9

3The smoothed image is generated by manually tuning the parameters of RTV [Xu et al., 2012] to
produce the most human-pleasing results.
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Figure 3.7: Comparison of image smoothing results with different methods. The
methods we compare include TV [Rudin et al., 1992], BLF [Tomasi and Manduchi,
1998], RTV [Xu et al., 2012], GF [He et al., 2013], RGF [Zhang et al., 2014b], Fast L0
[Nguyen and Brown, 2015], SGF [Zhang et al., 2015], and SDF [Ham et al., 2015]. Our
DGF consistently performs better in preserving structures and removing textures.
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Figure 3.8: Image denoising results with different methods. The methods we com-
pare include BLF [Tomasi and Manduchi, 1998], GF [He et al., 2013], RGF [Zhang
et al., 2014b], L0 [Xu et al., 2011], Fast L0 [Nguyen and Brown, 2015], SGF [Zhang
et al., 2015], and SDF [Ham et al., 2015]. Our DGF has consistently better denoising
performance.

Draft Copy – 28 January 2022



§3.4 Experiments 51

(a) Image abstraction

(b) JPEG artifacts removal

(c) Detail enhancement

Figure 3.9: Image smoothing applications. The methods we compare are L0 [Xu
et al., 2011] and RGF [Zhang et al., 2014b]. Our DGF consistently outperforms the
two methods in producing better visual results.

results in Fig. 3.8, and list corresponding SNR values in Table 3.1. It is clear that SNR
values of our filter are the best in all the three examples, showing that our method
can suppress noise better. Moreover, our results are visually closer to ground truth
images. It should be noted that although RGF [Zhang et al., 2014b] and Fast L0
[Nguyen and Brown, 2015] can both yield relatively large SNR, their visual results
are less competitive. RGF makes the output look blurry, especially around edges and
corners. Fast L0 introduces more noticeable quantization artifacts into results.

3.4.3 Applications

Image abstraction. Image abstraction aims to create a cartoon-like style from an
input image. We use the method in [Winnemöller et al., 2006] for image abstraction.
The results of a mountain are shown in Fig. 3.9(a). It is clear that our method can
suppress more details on the surface of the mountain while well preserving its main
structure.

JPEG artifacts removal. The quality of JPEG compression images are always
degraded by unwanted artifacts, which can be removed by image smoothing algo-
rithms. The results are shown in Fig. 3.9(b). We observe that our method removes
artifacts more effectively than the other two methods.

Detail enhancement. Suppose I is the input image, and S is the smoothed output.
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Method Fig. 3.8(1) Fig. 3.8(2) Fig. 3.8(3) Average

Noisy input 30.99 33.12 36.06 33.39

BLF [Tomasi and Manduchi, 1998] 45.73 44.54 48.28 46.18

GF [He et al., 2013] 44.77 42.95 47.59 45.10

RGF [Zhang et al., 2014b] 54.45 49.59 56.20 53.41

L0 [Xu et al., 2011] 35.82 45.37 48.14 43.11

Fast L0 [Nguyen and Brown, 2015] 47.37 47.10 51.73 48.73

SGF [Zhang et al., 2015] 50.63 42.25 50.45 47.78

SDF [Ham et al., 2015] 41.39 42.01 46.82 43.41

Ours 58.36 63.25 62.69 61.43

Table 3.1: SNR values of images in Fig. 3.8. Our DGF achieves the best quantitative
results in all the three examples.

We define detail enhancement DE as: DE = S + α · (I − S), where α ≥ 1 controls
the extent (α = 2 in our case). The results with different methods are shown in
Fig. 3.9(c). With close inspection of some texture regions, our method performs better
in boosting the details without affecting the overall color tone and over-boosting
edges.

3.5 Conclusion

In this chapter, we have proposed the double-guided filter (DGF) that utilizes struc-
ture guidance and texture guidance simultaneously. As a primary novelty, we have
introduced the concept of texture guidance which fundamentally improves tradi-
tional kernel-based methods in differentiating between structures and textures more
effectively. The combination of structure guidance and texture guidance makes the
filter both “structure-aware” and “texture-aware”. The proposed DGF outperforms
existing image smoothing methods in preserving main structures and removing in-
significant textures. Extensive experiments have demonstrated the effectiveness of
the DGF. Our future work will focus on implementing new methods for constructing
structure guidance and texture guidance, and accelerating the filtering process with
GPU parallel computing.
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Chapter 4

Texture and Structure Aware
Filtering Network for Image
Smoothing

In the previous chapter, we proposed a kernel-based double-guided filter (DGF)
which leverages structure guidance and texture guidance at the same time. Struc-
ture guidance comes from a semantic edge detection method, which is beneficial for
preserving more semantically meaningful structures. As a primary novelty, we intro-
duced the concept of “texture guidance” that indicates the position and magnitude
of textures with a confidence map. It is obtained by normalizing the texture layer of
a global method. Double guidance equips the proposed filter with both “structure-
awareness” and “texture-awareness”, and improves image smoothing in removing
strong textures without degrading main structures.

In this chapter, we push structure guidance, texture guidance, and image smooth-
ing further by leveraging deep neural networks. The motivation is that hand-crafted
features cannot appropriately and robustly identify and extract natural textures as
they present high randomness in appearance, i.e., spatial distortion and color varia-
tions. Although several deep smoothing networks have been proposed for extracting
richer image features, they mainly approximate existing hand-crafted filters by using
their output as ground truth. Hence, they still cannot overcome the shortcomings
of these filters in differentiating between structures and textures. To deal with this
fundamental problem, we generate synthetic data by blending natural textures with
clean structure-only images. With the data, we build a texture prediction network
(TPN) that estimates the location and magnitude of textures, i.e., texture guidance.
We additionally take advantage of a semantic structure prediction network (SPN) to
generate structure guidance. We then incorporate the two forms of guidance into
the filtering network that constitutes our texture and structure aware filtering net-
work (TSAFN). TSAFN is able to more effectively identify the textures to remove
(“texture-awareness") and the structures to preserve (“structure-awareness"). Experi-
mental results demonstrate that the proposed model achieves superior performance
in texture prediction and image smoothing, and generalizes well to natural images.

In the reminder of this chapter, Section 4.1 introduces our motivation and summa-

53
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rizes primary contributions. Section 4.2 illustrates the properties of natural textures
and the process of blending textures with structure-only images, and depicts the tex-
ture prediction network. We incorporate texture guidance and semantic structure
guidance into the deep filtering network in Section 4.3. Section 4.4 validates the ef-
fectiveness of the proposed deep filtering model through qualitative and quantitative
results. Section 4.5 summarizes the chapter and proposes the future work.

4.1 Introduction

Image smoothing, a fundamental technology in image processing and computer vi-
sion, aims to enhance images by retaining salient structures (to the structure-only
image) and removing insignificant textures (to the texture-only image).

There are mainly two types of methods for image smoothing: (1) kernel-based
methods, that calculate the weighted average of neighbouring pixels, such as the
guided filter (GF) [He et al., 2013], rolling guidance filter (RGF) [Zhang et al., 2014b],
segment graph filter (SGF) [Zhang et al., 2015]; and (2) separation-based methods,
which decompose the image into a structure layer and a texture layer, such as relative
total variation (RTV) [Xu et al., 2012], fast L0 [Nguyen and Brown, 2015], and static
and dynamic guidance filter (SDF) [Ham et al., 2017]. These approaches rely on
hand-crafted features to distinguish textures from structures, which are largely based
on low-level appearance. They generally assume that structures always have larger
gradients, while textures are just smaller oscillations in color intensities.

In fact, it is quite difficult to identify and extract textures. The main reasons are
twofold: (1) Textures are essentially repeated patterns regularly or irregularly dis-
tributed within object structures, and they may present significant spatial distortion
and color variations (Fig. 4.1(a) and Fig. 1.3), making it hard to explicitly define and
model them mathematically; (2) There are strong textures with large gradients and
color contrast to the background in some images, which are easy to confuse with
structures (such as white stripes on the giraffe’s body in Fig. 4.1(c)). We see from
Fig. 4.1 that GF, RGF, SGF, fast L0, and SDF perform poorly on the giraffe image. The
textures are either not removed, or suppressed with the structure severely blurred.
This is because the hand-crafted nature of these filters makes them less robust when
applied to various types of textures, which leads to poor discrimination of textures
and structures. Some other methods [Xu et al., 2015; Liu et al., 2016; Li et al., 2016;
Fan et al., 2017b; Chen et al., 2017a; Fan et al., 2017a; Shen et al., 2017] take advantage
of deep neural networks, and aim for improving the performance by extracting richer
features. However, existing networks use the output of various hand-crafted filters
as ground truth during training. These deep learning approaches are thus limited
by the shortcomings of these hand-crafted filters, and cannot learn how to effectively
differentiate between textures and structures.

The double-guided filter (DGF) [Lu et al., 2017] proposed in the previous chapter
addresses this issue by introducing the idea of “texture guidance", which infers the
location and magnitude of textures, and combines it with “structure guidance" to
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Figure 4.1: (a) Texture in natural images is often hard to identify due to spatial
distortion and high contrast. (b) Illustration of learning “texture awareness". We
generate training data by adding spatial and color variations to natural texture pat-
terns and blending them with structure-only images, and then use the result to train
a multi-scale texture network with texture ground-truth. We test the network on both
generated data and natural images. (c) The proposed deep filtering network is com-
posed of a texture prediction network (TPN) for predicting textures (white stripes
with high-contrast); a structure prediction network (SPN) for extracting structures
(the giraffe’s boundary, which has relatively low contrast to the background); and a
texture and structure aware filtering network (TSAFN) for image smoothing. (d)-(i)
Existing methods, e.g., GF [He et al., 2013], RGF [Zhang et al., 2014b], SGF [Zhang
et al., 2015], Fast L0 [Nguyen and Brown, 2015], SDF [Ham et al., 2017], cannot dis-
tinguish high-contrast textures from structures effectively.

achieve both goals of texture removal and structure preservation. However, the DGF
uses a hand-crafted separation-based algorithm called Structure Gradient and Tex-
ture Decorrelating (SGTD) [Liu et al., 2013b] to construct the texture confidence map
that still cannot essentially overcome the natural deficiency. We argue that this is not
true “texture awareness", because in many cases, some structures are still blurred
when the filter tries to remove strong textures after several iterations. As can be
seen in Fig. 4.1(i), although the stripe textures are mostly smoothed out, the giraffe’s
structure is severely blurred, especially around the head and the tail (red boxes).
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In this chapter, we hold the idea that “texture awareness" should reflect both the
texture region (where the texture is) and texture magnitude (texture with high contrast
to the background is harder to remove). Thus, we take advantage of deep learning
and propose a texture prediction network (TPN) that aims to learn textures from
natural images. However, since there are no available datasets containing natural
images with labelled texture regions, we make use of texture-only datasets [Cimpoi
et al., 2014; Dana et al., 1999]. The process of learning “texture awareness" is shown
in Fig. 4.1(b). Specifically, we generate the training data by adding spatial and color
variations to natural texture patterns and blending them with structure-only images.
Then we construct a multi-scale network (containing different levels of contextual
information) to train these images with texture ground truth. The proposed TPN
is able to predict textures through a full consideration of both low-level appearance,
e.g., gradients, and other statistics, e.g., repetition, tiling, spatial varying distortion. In
both our synthetic data and natural images, the network achieves good performance
on locating texture regions and measuring texture magnitude by assigning different
confidence values, as shown in Fig. 4.1(b).

For the full problem, we are inspired by the idea of “double guidance" introduced
in [Lu et al., 2017] and propose a deep neural network based filter that learns to pre-
dict textures to remove (“texture-awareness" by our TPN) and structures to preserve
(“structure-awareness" by HED semantic edge detection [Xie and Tu, 2015]). This
is an end-to-end image smoothing architecture which we refer to as “Texture and
Structure Aware Filtering Network" (TSAFN), as shown in Fig. 4.1(c). The network is
trained with our synthetic data. Different from the DGF [Lu et al., 2017], we generate
texture guidance and structure guidance with deep learning approaches, and replace
the hand-crafted kernel filter with the model to achieve a more effective combination
of the forms of guidance. Experimental results show that the proposed deep filter
outperforms the DGF [Lu et al., 2017] and other state-of-the-art smoothing methods
significantly on synthetic and natural images.

In summary, we make the following major contributions:

• We give more theoretical insight into textures and propose a deep neural net-
work to robustly predict textures in natural images.

• We present synthetic data that enable the training of texture prediction and
image smoothing. It also allows to objectively evaluate smoothing results via
quantitative comparison.

• We propose an end-to-end deep neural network for image smoothing that
achieves both “texture-awareness" and “structure-awareness", and outperforms
existing methods on challenging natural images.

4.2 Texture Prediction Network

In this section, we give insights into textures in natural images, which inspire the
design of the texture prediction network (TPN) and the synthetic data for training.
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Figure 4.2: Illustration of synthetic data generation. (a) We blend natural texture
patterns with structure-only images, adding spatial and color variations to increase
texture diversity. (b) We show more examples of generated data, and textures there
present various levels of contrast to the background.

4.2.1 Textures in Natural Images

Generally, textures are repetitive patterns regularly or irregularly distributed within
object structures [Yalniz and Aksoy, 2010; Cai and Baciu, 2013]. Texture appearance
in natural images presents random and diverse variations in spatial arrangement
and color intensities (see Fig. 1.3), i.e., spatial distortion and color variations are two
essential properties of natural textures. In addition to the inherent appearance of tex-
tures, these variations may also be related to the object surface property and camera
conditions. In the natural world, object surfaces always have different orientations
caused by their underlying curvature. After projected to an image with perspective
distortion, texture appearance presents significant variations in size, density, place-
ment, and color. However, it is unrealistic to represent object surfaces uniformly
and record the camera condition of every image. Considering all these factors, it
is difficult for hand-crafted features, i.e., low-level cues like intensity difference or
gradients, to robustly model and identify textures, especially in natural images.

To tackle these issues, we take advantage of deep networks that can extract richer
image features and generalize better to randomness of image patterns without ex-
plicit modelling [Krizhevsky et al., 2012; He et al., 2016]. Provided sufficient training
examples are available, the network is able to learn to predict textures more robustly.

4.2.2 Data Generation

We aim to provide training data so that the deep network can learn to predict tex-
tures. Ideally, we would like to learn directly from natural images. However, man-
ually annotating pixel-wise labels would be costly. Moreover, it would require a full
range of textures, each with a full range of distortion in a broad array of natural
scenes. Labelling them becomes extremely difficult. Therefore, we propose an ap-
proach to generating synthetic training data. Later, we will demonstrate that the
texture prediction network can effectively predict natural textures with our data.

We observe that cartoon images have only structural edges filled with pure color,
and can be safely considered as “structure-only images". Specifically, we select 174
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Figure 4.3: The proposed network architecture. The outputs of the texture prediction
network (TPN) and structure prediction network (SPN) are concatenated with the
original input, and then fed to the texture and structure aware filtering network
(TSAFN) to produce the final smoothing result. (k,k,c,s) for a convolutional layer
means the kernel is k× k in size with c feature maps, and the stride is s.

cartoon images from the Internet and 233 different types of natural textures from
public datasets [Cimpoi et al., 2014; Dana et al., 1999]. The data generation process
is illustrated in Fig. 4.2(a). Note that texture images in these datasets only contain
pure textures and most of them have regular patterns, so separating them from the
background is quite simple even with a hand-crafted method. We use Relative Total
Variation (RTV) [Xu et al., 2012] for its efficiency and flexible parameter tuning. We
obtain textures by normalizing the texture layer from RTV into [0, 1].

To mimic natural textures, we employ both spatial and color variations to afore-
mentioned RTV-extracted textures during data generation. As shown in Fig. 4.2(a),
we blend textures with structure-only images. In detail, we first rescale normalized
texture images from RTV to 100× 100. For spatial variations, we perform geometric
transformations including rotation, scaling, shearing, and some irregular and ran-
dom pixel displacement. We randomly select parameters for these random transfor-
mations. Based on the deformed result, we generate a binary mask M, i.e., values
larger than 0.2 are updated to 1.

As for color variations, given the structure-only image S, the value of pixel i in
the jth channel of the generated image I(j)

i is determined by both S and the mask M.

If Mi = 1, I(j)
i = rand[κ · (1− S(j)

i ), 1− S(j)
i ], where κ is used to control the range

of random generation and empirically set as 0.75. Otherwise, I(j)
i = S(j)

i . We repeat
this by sliding the mask over the whole image without overlapping. Ground truth
texture confidence is calculated by averaging the values of the three channels of the
texture layer:

T∗i = δ(
1
3

3

∑
j=1

∣∣∣I(j)
i − S(j)

i

∣∣∣), (4.1)

where δ(x) = 1/(1+ exp(−x)) is the sigmoid function to scale the value to [0, 1]. We
use color variations to generate various levels of contrast between textures and the
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Figure 4.4: Texture prediction results. First row: input (including both generated
and natural images). Second row: texture extraction results by RTV [Xu et al., 2012].
Third row: texture prediction results by the proposed TPN. TPN is able to localize
textures in both generated and natural images effectively, and indicate the magni-
tude of textures by assigning pixel-level confidence. By contrast, RTV cannot appro-
priately extract textures.

background (most color contrast is large, i.e., corresponding to strong textures). With
this approach, it is less likely that two images have identical (or very similar) texture
patterns even when the textures come from the same original pattern. Fig. 4.2(b)
shows some examples of generated images.

Finally, we generate 30,000 images in total (a handful of low-quality images have
been manually removed). For ground truth, besides purely-clean structure-only im-
ages, we also provide binary structure maps and texture confidence maps of all the
synthetic data. Currently we distribute textures over the entire image and the tex-
tures are not object-dependent, which may not be typical appearance in natural im-
ages. To bridge the gap, in addition to utilizing natural textures and increasing their
variations as illustrated above, we also use patch learning, i.e., training the network
on image patches. This is motivated by the fact that textures are always clustered in
local regions. Moreover, we aim to let the network learn the statistics of the appear-
ance of local textures rather than their global structures. Transfer learning [Dai et al.,
2007; Noroozi et al., 2018] can be employed to further enhance texture adaptation in
our future work.

4.2.3 Network Architecture

Network design. We propose the texture prediction network (TPN), which is trained
on our generated data. Considering that textures have various colors, scales, and
shapes, we employ a multi-scale learning strategy. Specifically, we apply 1/2, 1/4,
and 1/8 down-sampling to the input respectively. For each image, we use 3 convo-
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lutional layers for feature extraction, with the same size 3× 3 kernel but different
numbers of feature maps. Then, all the feature maps are resized to the original input
size and concatenated to form a 16-channel feature map. They are further convolved
with a 3× 3 layer to yield the final 1-channel result. Note that each convolutional
layer is followed by ReLU except for the output layer. The output layer uses the sig-
moid activation function to scale values to [0, 1]. The architecture of TPN is shown
in Fig. 4.3. Consequently, given the input image I, the predicted texture guidance T̃
is obtained by:

T̃ = TPN
(

I,
1
2

I,
1
4

I,
1
8

I
)

. (4.2)

Loss function. The network is trained by minimizing the mean squared error
(MSE) between the predicted texture guidance map and ground truth:

`T =
1
N ∑

i

∥∥T̃i − T∗i
∥∥2

2, (4.3)

where N is the number of pixels in the image, ∗ denotes ground truth data. More
training details can be found in Section 4.4.1.

Texture prediction results. We display texture prediction results on our gener-
ated images in Fig. 4.4(a) and natural images in Fig. 4.4(b). The network is able to
localize textures in both generated and natural images effectively, and indicate the
magnitude of textures by assigning pixel-level confidence (the third row). For com-
parison, we also visualize texture extraction results from these examples by RTV [Xu
et al., 2012] in the second row. RTV performs less competitively on these complex
scenes. This is because just like other hand-crafted filters, RTV also assumes struc-
tures have large gradients, so it has poor discrimination of strong textures. Hence,
in RTV results, most strong textures are not properly extracted, and some structure
components are incorrectly included in the texture map.

4.3 Texture and Structure Aware Filtering Network

As shown in Fig. 4.3, our deep filtering network consists of three parts:

1. Texture prediction network TPN, that constructs texture guidance to indicate
texture regions and magnitude (texture confidence).

2. Structure prediction network SPN, that constructs structure guidance to indi-
cate meaningful structures (structure confidence).

3. Texture and structure aware filtering network TSAFN, that concatenates tex-
ture guidance and structure guidance with the original input and generates the
smoothed output.

Since TPN has been discussed in the previous section, we give more details on SPN
and TSAFN in the following.
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4.3.1 Structure Prediction Network

Structure information is an essential cue for image smoothing, which indicates the
structures to be preserved. Ideal structure guidance should give high confidence to
meaningful structures, regardless of their gradients. We utilize a recently-proposed
holistically-nested edge detection (HED) [Xie and Tu, 2015] as the structure predic-
tion network (SPN):

Ẽ = HED(I) = fuse(Ẽ(1),...,Ẽ(5)), (4.4)

where Ẽ(m) is the side output from the mth stage (each stage contains several con-
volutional and pooling layers). The final loss is denoted as `E. Please refer to the
original paper [Xie and Tu, 2015] for more details.

4.3.2 Deep Filtering Network

Once structure guidance and texture guidance are generated, the texture and struc-
ture aware filtering network (TSAFN) concatenates them with the input to form a
5-channel tensor. TSAFN consists of 4 layers. We set a relatively large kernel (7× 7)
in the first layer to contain more original information. The kernel size decreases in
the following two layers (5× 5, 3× 3 respectively). In the last layer, the kernel size is
increased to 5× 5 again. The first three layers are followed by ReLU, while the last
layer has no activation function (transforming the tensor into the 3-channel output).
Empirically, we remove all pooling layers, the same as [Xu et al., 2015; Li et al., 2016;
Fan et al., 2017b; Chen et al., 2017a]. The whole process can be denoted as:

Ĩ = TSAFN(I, Ẽ, T̃). (4.5)

The network is trained by minimizing:

`D =
1
N ∑

i
(
∥∥Ĩi − I∗i

∥∥2
2). (4.6)

where I∗ is the structure-only image that is used as ground truth. Note that the
`2 loss is widely employed in image smoothing [Xu et al., 2015; Li et al., 2016; Fan
et al., 2017b], and has been proved to be effective in producing higher accuracy in
quantitative evaluation [Chen et al., 2017a] and facilitating convergence [Zhao et al.,
2016].

4.4 Experiments

In this section, we demonstrate the effectiveness of the proposed deep image smooth-
ing network through extensive experiments.
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Figure 4.5: Smoothing results on generated images. Our filter can smooth out var-
ious types of textures while preserving main structures more effectively than other
approaches, i.e., SDF [Ham et al., 2017], DGF [Lu et al., 2017], DFF [Chen et al.,
2017a], and CEILNet [Fan et al., 2017b] (DFF and CEILNet are trained on our data).

4.4.1 Implementation Details

Environment setup. We construct networks in Tensorflow [Abadi et al., 2016], and
train and test all the data on a single NVIDIA Titan X graphics card.

Dataset. Because there is no publicly-available image smoothing dataset, we per-
form training using our generated images. More specifically, we select 19,505 images
(65%) from synthetic data for training, 2,998 (10%) for validation, and 7,497 (25%) for
testing (all test images are resized to 512× 512). There is no overlapping of structure-
only and texture images between training, validation and testing samples.

Training procudure. We first train the three networks separately. 300,000 patches
with the size 64× 64 are randomly and sparsely collected from training images. We
use gradient descent with a learning rate of 10−4, and momentum of 0.9. Finally,
we perform fine-tuning by jointly training the entire network with a smaller learning
rate of 10−5, and the same momentum 0.9. The fine-tuning loss is

`F = γ · `D + λ · (`T + `E), (4.7)

where we empirically set γ = 0.6 and λ = 0.2 according to the validation set.

4.4.2 Comparison with Existing Methods

Methods to compare. For non-learning methods, we compare the proposed method
with two classical filters: Total Variation (TV) [Rudin et al., 1992], bilateral filter (BLF)
[Tomasi and Manduchi, 1998], and recently-proposed filters: L0 [Xu et al., 2011], Rel-
ative Total Variation (RTV) [Xu et al., 2012], guided filter (GF) [He et al., 2013], Struc-
ture Gradient and Texture Decorrelation (SGTD) [Liu et al., 2013b], rolling guidance
filter (RGF) [Zhang et al., 2014b], fast L0 [Nguyen and Brown, 2015], segment graph
filter (SGF) [Zhang et al., 2015], static and dynamic filter (SDF) [Ham et al., 2017],
double-guided filter (DGF) [Lu et al., 2017] proposed in Chapter 3. Note that, BLF,
GF, RGF, SGF, DGF are kernel-based, while TV, L0, RTV, SGTD, fast L0, SDF are
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separation-based. We use default parameters defined in their open-source codes for
each method.

We additionally compare five state-of-the-art deep filtering models: deep edge-
aware filter (DEAF) [Xu et al., 2015], deep joint filter (DJF) [Li et al., 2016], deep
recursive filter (DRF) [Liu et al., 2016], deep fast filter (DFF) [Chen et al., 2017a], and
cascaded edge and image learning network (CEILNet) [Fan et al., 2017b] . We retrain
all the models with our data.

PSNR ↑ SSIM ↑ Time ↓ PSNR ↑ SSIM ↑ Time ↓

TV 11.33 0.6817 2.44 RGF 15.73 0.7173 0.87

BLF 10.89 0.6109 4.31 Fast L0 15.50 0.7359 1.36

L0 14.62 0.7133 0.94 SGF 13.92 0.7002 2.26

RTV 14.07 0.7239 1.23 SDF 16.82 0.7633 3.71

GF 12.22 0.6948 0.83 DGF 17.89 0.7552 8.66

SGTD 16.14 0.7538 1.59 Ours 25.07 0.9152 0.16

Table 4.1: Quantitative evaluation of different non-learning filters tested on our test
data. The methods we compare include TV [Rudin et al., 1992], BLF [Tomasi and
Manduchi, 1998], L0 [Xu et al., 2011], RTV [Xu et al., 2012], GF [He et al., 2013],
SGTD [Liu et al., 2013b], RGF [Zhang et al., 2014b], fast L0 [Nguyen and Brown,
2015], SGF [Zhang et al., 2015], SDF [Ham et al., 2017], and DGF [Lu et al., 2017]. ↑
means larger is better, and ↓ means smaller is better. The best results are marked as
bold.

Results on generated images. We first compare the average PSNR [Hore and
Ziou, 2010], SSIM [Wang et al., 2004], and processing time (in seconds) of non-
learning filters on our testing data in Table 4.1. Our method achieves the the best
PSNR (closer to ground truth) and SSIM (more accurately preserving structures), and
lowest running time, indicating its superiority in both effectiveness and efficiency.

We also compare the quantitative results on different deep models trained and
tested on our synthetic data in Table 4.2. Our model achieves the best PSNR and
SSIM with comparable efficiency. We additionally select 4 state-of-the-art methods
(SDF [Ham et al., 2017], DGF [Lu et al., 2017], DFF [Chen et al., 2017a], and CEILNet
[Fan et al., 2017b]) for visual comparison in Fig. 4.5. The textures in the first example
have relatively large scale. SDF, DGF, and CEILNet attempt to remove these textures
but the structures are severely blurred as a side effect. In the second example, the
textures are densely distributed and have relatively large contrast. SDF does not
have good performance in this example due to the poor texture discrimination. DGF
and CEILNet can suppress these textures, but the structures are blurred. Although
DFF can smooth out almost all the textures, the final results present unexpected
artifacts and color shift, and look less similar to ground truth. Our filter performs
consistently well in both examples. We provide more qualitative results on synthetic
data in Fig. 4.9.
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PSNR ↑ SSIM ↑ Time ↓ PSNR ↑ SSIM ↑ Time ↓

DEAF 20.62 0.8071 0.35 DFF 22.21 0.8675 0.07

DJF 19.01 0.7884 0.28 CEILNet 22.65 0.8712 0.13

DRF 21.14 0.8263 0.12 Ours 25.07 0.9152 0.16

Table 4.2: Quantitative evaluation of deep models trained and tested on our data.
The methods we compare include DEAF [Xu et al., 2015], DJF [Li et al., 2016], DRF
[Liu et al., 2016], DFF [Chen et al., 2017a], CEILNet [Fan et al., 2017b]. ↑ means larger
is better, and ↓ means smaller is better. The best results are marked as bold.

PSNR ↑ SSIM ↑

No guidance (Baseline) 20.32 0.7934

Only structure guidance 21.71 0.8671

Only texture guidance 23.23 0.8201

Two guidance (trained separately) 24.78 0.9078

Two guidance (fine-tuned) 25.07 0.9152

Table 4.3: Ablation study of image smoothing results with no guidance, only struc-
ture guidance, only texture guidance, and two guidance (trained separately and fine-
tuned). ↑ means larger is better. The best results are marked as bold.

Results on natural images. We visually compare smoothing results on five chal-
lenging natural images1 with SDF [Ham et al., 2017], DGF [Lu et al., 2017], DFF
[Chen et al., 2017a], and CEILNet [Fan et al., 2017b] in Fig. 4.6. In the first example,
the leopard is covered with black textures, and its structure is relatively weak, i.e., it
has low contrast to the background. Only our filter smooths out all the textures while
effectively preserving the structure. The next four examples present various texture
types with different shapes, contrast, and distortion. Our filter performs consistently
well in all the examples. We analyze the last challenging vase example in more de-
tail. The vase is covered with strong dotted textures, which are densely distributed
on the surface. SDF fails to remove these textures since they are regarded as struc-
tures with large gradients. DGF smooths out more black dots but the entire image
looks blurry. This is because a larger kernel size and more iterations are required to
remove more textures, which inevitably leads to blurred structures. The two deep
filters do not demonstrate much improvement over the hand-crafted approaches be-
cause “texture-awareness" is not specially addressed in their network design. Our
filter outperforms these methods in removing more textures (including strong tex-
tures) without degrading main structures. We provide more qualitative results on
natural images in Fig. 4.10.

1These natural images are from the BSDS dataset [Arbelaez et al., 2010] and the Internet.
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Figure 4.6: Smoothing results on natural images. The methods we compare are SDF
[Ham et al., 2017], DGF [Lu et al., 2017], DFF [Chen et al., 2017a], and CEILNet [Fan
et al., 2017b]. The first example shows the ability of weak structure preservation
and enhancement in textured scenes. The next four examples present various texture
types with different shapes, contrast, and distortion. Our filter performs consistently
better in removing textures without degrading main structures.

4.4.3 Model Analysis & Ablation Studies

Effect of each guidance. To investigate the effect of each guidance, we train the
filtering network with no guidance (baseline), only structure guidance, only texture
guidance, and two guidance respectively. We report the average PSNR and SSIM of
testing results in Table 4.3. Clearly, the use of two guidance produces better quanti-
tative results. Also, fine-tuning further improves the filtering network by facilitating
the synergy among three sub-networks. Additionally, we display two natural images
in Fig. 4.7. Compared with the baseline without guidance, the result only with struc-
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Figure 4.7: Image smoothing results with no guidance, only structure guidance, only
texture guidance, and two guidance (trained separately, and fine-tuned). With only
structure guidance, the main structures are retained as well as some strong textures.
With only texture guidance, textures are mostly smoothed out but the structures
are severely blurred. The use of two guidance leads to better structure preserva-
tion and texture removal. Fine-tuning the whole network can further improve the
performance. The two images are from the BSDS dataset [Arbelaez et al., 2010].

ture guidance retains more structures, as well as textures (this is mainly because HED
[Xie and Tu, 2015] may also be negatively affected by strong textures). By contrast,
the structures are severely blurred with only texture guidance, even though most
textures are suppressed. Combining both structure guidance and texture guidance
produces a better smoothing effect in both texture removal and structure preserva-
tion2. Fine-tuning further improves results (in the red rectangle of the first example,
the structures are sharper; in the second example, the textures within the red re-
gion are further smoothed). Both quantitative and visual results demonstrate the
effectiveness of simultaneously employing the two guidance. This conclusion is also
consistent with the use of double guidance, i.e., DGF [Lu et al., 2017], in Chapter 3.

Challenging case. We provide a challenging case in Fig. 4.8, where the eyes,
nose, and the number of the runner are removed as textures. Nevertheless, they have
important semantic meaning in the real world, but our texture prediction network
cannot distinguish such a high-level semantic. This could motivate a future direction,
i.e., preserving semantically meaningful textures.

4.5 Conclusion

In this chapter, we have proposed an end-to-end texture and structure aware filtering
network that is able to smooth images with both “texture-awareness" and “structure-
awareness". “Texture-awareness" benefits from the proposed texture prediction net-
work. To facilitate training, natural textures are blended with structure-only cartoon
images with spatial and color variations. “Structure-awareness" is realized by seman-
tic edge detection. Experimental results have demonstrated that the texture network
can detect various types of textures effectively, showing good robustness to contrast,

2We provide more ablation results on synthetic images in Fig. 4.11 and natural images in Fig. 4.12.
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Figure 4.8: Challenge case. The texture prediction network cannot distinguish se-
mantically meaningful textures, e.g., eyes, nose, and numbers. They are smoothed
out in the output. The image is from the BSDS dataset [Arbelaez et al., 2010].

scales, and distribution of these textures. Due to the good discrimination of struc-
tures and textures, our filtering network outperforms both non-learning and learning
filters on synthetic and natural images. Our future work will focus on incorporating
more high-level semantic information into the image smoothing network.
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Fast L0 SGF SDFSGTD RGF Ours

Fast L0 SGF SDFSGTD RGF Ours

Fast L0 SGF SDFSGTD RGF Ours

Fast L0 SGF SDFSGTD RGF Ours

Figure 4.9: More image smoothing results with different methods on synthetic im-
ages.
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Figure 4.10: More image smoothing results with different methods on natural images.
These images are all from the BSDS dataset [Arbelaez et al., 2010].
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Figure 4.11: More ablation studies on synthetic images.
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Figure 4.12: More ablation studies on natural images. These images are all from the
BSDS dataset [Arbelaez et al., 2010].
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Chapter 5

Supervised Depth Completion via
Auxiliary Image Reconstruction

In the last two chapters, we focused on the reduction of structure degradation in
image smoothing by leveraging additional structure guidance and texture guidance.
To further verify the effectiveness of using guidance in image enhancement, from
the following two chapters, we will introduce a new enhancement task, i.e., depth
completion that recovers dense depth from sparse measurements. The main focus is
on dealing with the structure degradation issue, i.e., failing to produce semantically
consistent boundaries or small/thin objects, in depth-only models that only take
sparse depth as input. Our work continues the depth-only paradigm and aims to
reduce structure degradation in both supervised (this chapter) and unsupervised
(Chapter 6) settings. Our research handles a fundamental and challenging problem
in depth completion, i.e., how to improve performance without the image as an extra
input. Besides, it is practical for some real-world applications where RGB images are
not available at test time or images have degraded quality due to poor calibration
between image and depth, bad weather, and nighttime.

In this chapter, we introduce a novel supervised depth completion model. The
unique design is that it simultaneously outputs a reconstructed image and a dense
depth map. Specifically, we formulate image reconstruction from sparse depth as an
auxiliary task during training that is supervised by the unlabelled image. During
testing, our system accepts sparse depth as the only input, i.e., the image is not re-
quired. Our design enables the depth completion network to learn complementary
image features that help to better understand object structures. The extra supervi-
sion incurred by image reconstruction is minimal, because no annotations other than
the image are needed. We evaluate our method on the KITTI Depth Completion
Benchmark [Uhrig et al., 2017] and show that depth completion can be significantly
improved via auxiliary image reconstruction. Our model outperforms depth-only
methods and is also suitable for indoor scenes like NYUv2 [Silberman et al., 2012].

In the remainder of this chapter, Section 5.1 introduces our motivation and sum-
marizes primary contributions. Section 5.2 gives additional review on multi-task
learning and its variant, auxiliary learning. Section 5.3 illustrates our method. We
provide experimental results, model analysis, and ablation studies in Section 5.4.

73
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Figure 5.1: Depth completion from sparse depth. Only given (a) sparse depth as
input without (b) the corresponding image, existing depth-only methods, like (c)
Glob_guide [Van Gansbeke et al., 2019] and (d) S2D [Ma et al., 2019] cannot ap-
propriately complete depth of objects with specific boundaries (e.g., the car) and
small/thin objects (e.g., the pole), due to the lack of depth points and no images to
provide structural cues. (e) Different from theirs, we recover these structural cues via
image reconstruction directly from sparse depth. It helps (f) our depth completion
recover more semantically consistent boundaries and small/thin objects more accu-
rately. Our results are closer to (g) ground truth. All depth maps are colorized for
better visualization.

Section 5.5 summarizes the chapter and proposes the future work.

5.1 Introduction

Depth-only depth completion models [Uhrig et al., 2017; Ma et al., 2019; Eldesokey
et al., 2019] suffer from structure degradation when recovering dense depth only
from the sparse input. Essentially, this issue results from the high input sparsity,
which cannot provide sufficient information to localize object structures, as illus-
trated in Fig. 1.5 and Fig. 5.1. Existing works [Xu et al., 2019; Qiu et al., 2019; Cheng
et al., 2018] take the image as an additional input to the network (named multiple-
input methods), and employ early or late fusion (see Fig. 1.6) to incorporate image fea-
tures to depth. Resorting to the image at both training and testing phases, however,
may arise practical concerns due to the complicated process of aggregating features
from two modalities [Eldesokey et al., 2019; Qiu et al., 2019] and highly-expensive
depth-image calibration [Henry et al., 2012; Kerl et al., 2015].

The question arising from above is, can we continue the depth-only paradigm
but incorporate more image features so as to provide richer structure information
to overcome the shortcomings of this paradigm? To answer this, we start from an
observation that, from sparse depth we can still roughly see some object structures
according to their general shape and depth difference to the background, e.g., car and
pole examples in Fig. 5.1. This motivates us into thinking if some image structures
can be recovered from sparse depth, we will be able to relax the need of taking the
image as input.

Motivated by the above considerations, we propose a depth completion model
that takes sparse depth as the only input and at the same time has the ability to learn
from image features to provide structural cues. Specifically, we train the network to
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output a reconstructed image and a dense depth map simultaneously, as illustrated
in Fig. 1.6(a). We formulate image reconstruction from sparse depth as an auxiliary
task during training that is supervised by the unlabelled image. During testing,
no image is required. The unique design of our model allows the depth completion
network to learn complementary image features that help to better understand object
structures, and thus, produce more semantically consistent and accurate results than
existing depth-only methods (see Fig. 5.1). Moreover, the extra supervision incurred
by image reconstruction at the training stage is minimal, because no annotations
other than the image are needed. Therefore, our method is practical in use. We eval-
uate our method on the KITTI Depth Completion Benchmark [Uhrig et al., 2017] and
show that depth completion can be significantly improved via the auxiliary learning
of image reconstruction.

In summary, we make the following major contributions:

• We propose a depth completion network that only takes sparse depth as in-
put and outputs a reconstructed image and a dense depth map simultaneously.
This practice largely overcomes the shortcomings of existing depth-only meth-
ods, i.e., the lack of structural cues.

• By formulating image reconstruction as an auxiliary task during training, we
do not need additional annotations other than the image. This is cheap and
easy to implement. During testing, no image is required.

• We demonstrate that our approach significantly outperforms depth-only meth-
ods on the KITTI Depth Completion Benchmark and can be applied to indoor
scenes.

5.2 Related Work

The related work on depth completion is introduced in Section 2.2. In this section,
we add the brief review of multi-task learning and its variant, i.e., auxiliary learning.
The latter is directly related to our network training.

Multi-task learning. Multi-Task Learning (MTL) aims to improve performance
by learning individual yet related tasks simultaneously [Argyriou et al., 2007]. Fea-
tures are shared among these tasks to exploit common representations, while they
can also be complementary to each other [Kendall et al., 2018]. This learning strategy
has been successfully employed in semantic segmentation [Kendall et al., 2018; Pham
et al., 2019], object detection [Lee et al., 2019b; Liang et al., 2019], single image depth
estimation [Atapour-Abarghouei and Breckon, 2019; Zhang et al., 2019b], and so on.

Auxiliary learning. Recently, a variant of MTL, known as Auxiliary Learning
(AL), is becoming popular. In this framework, a primary task is defined while all
other tasks serve as auxiliary regularizers that enhance the primary one [Romera-
Paredes et al., 2012]. AL has been proven to be effective in a number of computer
vision tasks, e.g., hand-written digit recognition [Zhang et al., 2014a], semantic seg-
mentation [Liebel and Körner, 2018], face anti-spoofing [Liu et al., 2018b], visual
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odometry [Valada et al., 2018]. We also employ it and focus on depth completion as
the primary task. We expect the auxiliary task, i.e., image reconstruction, to facilitate
it with complementary image features that can help to better understand object struc-
tures. To the best of our knowledge, our work is the first one to introduce auxiliary
learning to depth completion.

5.3 Methodology

In this section, we first give a general formulation to describe existing supervised
depth completion models and contrast them with ours. We then illustrate the details
of our method.

5.3.1 Depth Completion Models

Given a sparse depth map x where the empty locations are filled with zeros, a general
depth completion model learns to recover dense depth x̃ supervised by its ground
truth x∗.

Depth-only model. A depth-only model D only takes sparse depth, x, as input:

x̃ = D(x; θD), (5.1)

where θD denotes the model parameters. The optimal model is parameterized by θ∗D,
and obtained during training by minimizing the loss function L, i.e.,

θ∗D = arg min
θD

L(x̃, x∗). (5.2)

Multiple-input model. A multiple-input model T combines sparse depth x and
the corresponding calibrated image r as input:

x̃ = T(x, r; θT), (5.3)

and the optimal model is
θ∗T = arg min

θT

L(x̃, x∗). (5.4)

Our model. As illustrated in Fig. 5.2, our model G takes sparse depth x as the
only input, and outputs dense depth x̃ and a reconstructed image r̃ simultaneously:

x̃, r̃ = G(x; θG)⇒
{

x̃ = Gdpt(F (x; θF ); θdpt, θshr)
r̃ = Gimg(F (x; θF ); θimg, θshr)

, (5.5)

where F parameterized by θF extracts features from the input, θdpt and θimg are
parameters for the depth completion module Gdpt and image reconstruction mod-
ule Gimg respectively, and θshr represents feature sharing between the two modules.
During training, the parameters of the joint model, θG =

(
θF , θdpt, θimg, θshr

)
, are
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Depth features 𝐺𝑑1

Shared features

Depth 
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Reconstructed image ෤𝐫 (auxiliary)

Image
decoder 𝐺𝑟2

Dense depth ෤𝐱 (primary)

Sparse depth 𝐱

Image reconstruction module 𝐺𝑖𝑚𝑔

Depth completion module 𝐺𝑑𝑝𝑡

Gray-scale image 𝐫

Depth ground truth 𝐱∗

Feature sharing module

Figure 5.2: Network architecture for training our model. It contains: (1) the feature
encoder - extracting initial features from the sparse input; (2) the depth completion
module - specializing depth features and producing dense depth; (3) the image re-
construction module - specializing image features and reconstructing the image from
sparse depth; and (4) the feature sharing module - aggregating features from depth
and image modules and transferring them to each module. Depth completion is the
primary task, while image reconstruction is an auxiliary task and supervised by the
gray-scale image.

optimized such that

θ∗G = arg min
θG

(wdpt · L(x̃, x∗) + wimg · L(r̃, r)), (5.6)

where wdpt and wimg are weighting factors of the two tasks. This is a typical multi-
task learning framework [Argyriou et al., 2007], where the network jointly learns to
recover dense depth and reconstruct the image directly from the sparse input. More
specifically, we treat depth completion as the primary task, and image reconstruc-
tion as an auxiliary task, which is known as auxiliary learning [Romera-Paredes et al.,
2012]. The purpose is to transfer useful knowledge from the auxiliary task to the pri-
mary one to enhance the feature learning of the latter [Dai et al., 2007]. In our case, by
enforcing feature correlations via sharing, we expect the depth completion network
to learn more complementary image features to provide structural cues for under-
standing object structures. Note that the auxiliary image reconstruction is supervised
by unlabelled camera images, which are cheaper to acquire than manually-labelled
data. In the following, we illustrate the network architecture, loss functions, and how
image reconstruction facilitates depth completion.

During testing, we only focus on the primary depth completion and no image is
required, i.e.,

x̃ = Gdpt(F (x; θ∗F ); θ∗dpt, θ∗shr). (5.7)

5.3.2 Network Architecture

The overall network architecture for training our model is based on Eq. 5.5 and Eq. 5.6,
and illustrated in Fig. 5.2.

Feature encoder F . We extract multi-scale features from the input by convolving
it with different kernel sizes. This is inspired by the Inception architecture [Szegedy
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Figure 5.3: Structure of the feature sharing module. It aggregates depth and image
features by element-wise summation, followed by convolutions in each layer. The
depth and image feature modules output the concatenation of their last layer features
and the shared features.

et al., 2015], but with 3× 3, 5× 5, 7× 7, 9× 9 kernels instead. In the last layer, all the
feature maps are with 1/16 resolution to the input and concatenated in a channel-
wise manner. We denote the output of this encoder, representing initial features from
the sparse input, as f0 = F (x).

Depth completion module Gdpt. It is composed of a depth feature extractor
Gd1 and depth decoder Gd2. Gd1 focuses on learning depth-specific features and
gradually upsamples f0 with transpose convolutions (1/16 → 1/8 → 1/4 → 1/2).
The intermediate features in Gd1 are also transferred to the feature sharing module
(see Fig. 5.3). Its output, Gd1( f0), containing both depth and shared features, is fed
into Gd2 to produce dense depth.

Image reconstruction module Gimg. The underlying architecture of the image re-
construction module is identical to the depth completion module, where Gr1 special-
izes and transfers image features. The image decoder, Gr2, outputs the reconstructed
image based on image-specific and shared features.

Feature sharing module. This module aggregates features from depth and im-
age feature modules via element-wise summation followed by convolutions in each
layer, as illustrated in Fig. 5.3. Suppose there are Nt layers in each module, and
we denote the feature maps in n-th convolutional layer in Gd1, Gr1, and the sharing
module as fd(n), fr(n), and fs(n) respectively. We use Φ(·) to represent the general
convolutional operator. In the first layer, i.e., n = 1,

fr(1) = Φ( f0)
fd(1) = Φ( f0)
fs(1) = fr(1)⊕ fd(1)

, (5.8)

where ⊕ is element-wise summation. In subsequent layers before the last layer, i.e.,
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Figure 5.4: Feature visualization. (a) The RGB image is used for reference and sparse
depth is the only input. (b) Depth features emphasize more on objects that are visible
in both near and far regions of the depth map. (c) Image features highlight global
visual structures as well as some details that are not reflected in depth. (d) Shared
features take advantage of both depth and image features, and cover most objects
(upper) as well as some details like their boundaries (bottom).

1 < n < Nt, 
fr(n) = Φ( fr(n− 1))
fd(n) = Φ( fd(n− 1))
fs(n) = fr(n)⊕ fd(n)⊕Φ( fs(n− 1))

. (5.9)

In the last layer where n = Nt, only convolutions are performed,
fr(Nt) = Φ( fr(Nt − 1))
fd(Nt) = Φ( fd(Nt − 1))
fs(Nt) = Φ( fs(Nt − 1))

. (5.10)

The final output of both Gd1 and Gr1 is the channel-wise concatenation of their cor-
responding feature maps and the shared features, i.e.,{

Gd1( f0) = Cat( fd(Nt), fs(Nt))
Gr1( f0) = Cat( fr(Nt), fs(Nt))

. (5.11)

The two concatenated features are further fed into depth and image decoders to
produce dense depth x̃ and the reconstructed image r̃, i.e.,{

x̃ = Gdpt( f0) = Gd2(Gd1(F (x)))
r̃ = Gimg( f0) = Gr2(Gr1(F (x)))

. (5.12)

Loss functions. To train the network, we first define the `2 loss for depth com-
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pletion (primary task):

`dpt =
1

N1
‖Ψ� (x̃− x∗)‖2

2 , (5.13)

where N1 is the number of pixels that have depth values in ground truth x∗, Ψ is a
binary mask of x∗ where 1 means the input pixel has a depth value and 0 for none,
and � is the element-wise multiplier. We use the gray-scale image, r, to supervise
auxiliary image reconstruction. The `2 loss function is:

`img =
1

N2
‖r̃− r‖2

2 , (5.14)

where N2 is the number of pixels in the image. Hence, the total loss for the entire
network is:

`total = wdpt · `dpt + wimg · `img. (5.15)

Eq. 5.15 indicates that `img serves as a regularizer during training to facilitate param-
eter learning of depth completion and thus improves its overall performance.

5.3.3 Discussion

To further investigate the learning ability of our network, we select and visualize two
representative feature maps from the first and second channels in the last layers of
depth features, image features, and shared features respectively, i.e., fd(Nt), fr(Nt),
and fs(Nt). Depth features shown in Fig. 5.4(b) indicate that they emphasize more
on visible objects in both near and far regions of the depth map, e.g., cars and poles.
However, due to the sparsity of depth points and lack of image information, these
features only partially reflect the real shape of these objects.

Image features in Fig. 5.4(c), by contrast, highlight the global structure, e.g., the
road, and some details that are not reflected in depth, e.g., the missing parts around
car boundaries and poles. These features are beneficial for better distinguishing ob-
ject boundaries and recovering the full structure of small/thin objects. Therefore, im-
age features are complementary to depth features. After aggregating these features
via the sharing module, the shared features shown in Fig. 5.4(d) take advantage of
both depth and image features, i.e., covering most objects as well as some details
like their boundaries. In summary, the auxiliary learning of image reconstruction
enables the depth completion network to learn useful and complementary image
features via sharing, and thus obtains more structural cues for better completion.
This can be achieved even without the image as input.

5.4 Experiments

In the following, we show the effectiveness of our method through extensive ex-
periments. This includes quantitative and visual comparison with state-of-the-art
approaches, ablation studies on several factors that affect completion performance,
and the application to indoor scenes.
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Method RMSE ↓ MAE ↓ iRMSE ↓ iMAE ↓
SparseConvs [Uhrig et al., 2017] 1601.33 481.27 4.94 1.78
ADNN [Chodosh et al., 2018] 1325.37 439.48 59.39 3.19
Spade-sD [Jaritz et al., 2018] 1035.29 248.32 2.60 0.98
NConv-CNN (d) [Eldesokey et al., 2019] 1268.22 360.28 4.67 1.52
S2D (d) [Ma et al., 2019] 954.36 288.64 3.21 1.35
Glob_guide [Van Gansbeke et al., 2019] 922.93 249.11 2.80 1.07
Ours (`2 loss) 901.43 292.36 4.92 1.35
Ours (`1 loss) 915.86 231.37 3.19 1.23
DeepLiDAR [Qiu et al., 2019] 758.38 226.50 2.56 1.15
PwP [Xu et al., 2019] 777.05 235.17 2.42 1.13
S2D (gd) [Ma et al., 2019] 814.37 249.95 2.80 1.21
NConv-CNN (gd) [Eldesokey et al., 2019] 829.98 233.26 2.60 1.03
CSPN [Cheng et al., 2018] 1019.64 279.46 2.93 1.15

Table 5.1: Quantitative comparison with state-of-the-art methods on the KITTI test
set. The best results are marked with bold among methods that do not use any
images during testing (gray region). ↓ means smaller is better.

5.4.1 Implementation Details

Dataset. The KITTI Depth Completion Benchmark [Uhrig et al., 2017] contains
raw, sparse depth maps collected by LiDAR which are further separated into 85,898
frames for training, 1,000 for validation, and 1,000 for testing. Each depth map has
the corresponding RGB image, and we convert the RGB image to gray-scale to super-
vise image reconstruction only at the training stage (we empirically find that using
the gray image for supervision generates slightly better results, which is consistent
with the observation in [Ma et al., 2018]). The KITTI ground truth is generated by
accumulating multiple LiDAR frames, and removing outliers by semi-global match-
ing [Uhrig et al., 2017]. Hence, depth ground truth is semi-dense (depth completion
becomes harder in this case because semi-dense ground truth cannot completely re-
flect the depth of some object boundaries and small objects). Test samples have no
ground truth available, and the results are evaluated on the benchmark server.

Training configuration. The network is implemented in PyTorch [Paszke et al.,
2017]. During training, the input is cropped from the bottom to 352 × 1216. We
train the network on two NVIDIA 1080 Titan GPUs with a batch size of 16. The loss
function is defined in Eq. 5.15, where wdpt = 1 and wimg = 10−4. We use the Adam
optimizer [Kingma and Ba, 2014], and the initial learning rate is 10−3 and decayed
by half every five epochs.

Evaluation metrics. Following the benchmark [Uhrig et al., 2017], we use four

evaluation metrics: (1) rooted mean squared error (RMSE):
√

1
N1

∑N1
i=1(x∗i − x̃i)2; (2)

mean absolute error (MAE): 1
N1

∑N1
i=1 |x∗i − x̃i|; (3) inverse rooted mean squared error

(iRMSE):
√

1
N1

∑N1
i=1(

1
x∗i
− 1

x̃i
)2; (4) inverse mean absolute error (iMAE): 1

N1
∑N1

i=1

∣∣∣ 1
x∗i
− 1

x̃i

∣∣∣.
Here x∗, x̃, and N1 represent ground truth depth, predicted depth, and the number
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Figure 5.5: Visual comparison with state-of-the-art depth-only methods on the KITTI
test set. The methods we compare include Glob_guide [Van Gansbeke et al., 2019],
S2D (d) [Ma et al., 2019], and NConv-CNN (d) [Eldesokey et al., 2019]. Our model can
produce more accurate depth completion results in small/thin objects, boundaries,
and distant regions. To the right of each close-up is the error map, where small errors
are displayed in blue and large errors in red. Black regions mean the ground truth
labels are not used for evaluation. The contrast of our reconstructed images has been
enhanced for better visualization.
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Figure 5.6: Visual comparison of depth completion results after incorporating image
reconstruction and feature sharing. (a) RGB images for reference. (b) Only with
depth features cannot recover the full structure of objects. (c) With image features
but without sharing, the results are slightly improved. (d) With shared features,
the model performs better in recovering consistent object structures and small/thin
objects.

RMSE ↓ MAE ↓
B 1267.01 322.32
B + I 1103.85 301.64
B + I + S (ours) 914.65 297.38

Table 5.2: Ablation study on the KITTI validation set. “B”, “I”, and “S” represent the
baseline only with depth features, image features, and feature sharing respectively.
The best results are marked with bold. ↓ means smaller is better.

of valid pixels in ground truth depth respectively. RMSE and MAE are measured
by mm, and iRMSE and iMAE are measured by 1/km. RMSE calculates depth com-
pletion errors directly and penalizes more on undesirable larger errors. Differently,
MAE treats all the errors equally. Hence, we consider RMSE to be the more important
metric, which is consistent with the benchmark where RMSE is used for ranking.

5.4.2 Comparison with Existing Methods

Quantitative comparison. In Table 5.1, we report quantitative results of our method
as well as the state-of-the-art approaches on the KITTI test set. Compared with depth-
only methods (highlighted in gray), our model trained with the `2 loss achieves the
best RMSE = 901.43, ranking first among them and surpassing the second place by
21.50 (2.33%). Our MAE and iMAE are both comparable to others. However, our
iRMSE is less competitive. The underlying reason is iRMSE measures the accuracy
of inverse depth, in which case depth points in closer regions with relatively smaller
errors are more dominant. By contrast, we use the `2 loss for depth to penalize
larger errors. There thus exists a trade-off in balancing large and small errors with
this metric. We consider that iRMSE is less reliable than RMSE in reflecting the
model accuracy mainly because iRMSE is not a direct metric to measure depth errors.
We refer the reader to Fig. 5.7(c) where our model performs competitively against
the state-of-the-art methods in close regions, e.g., 0-40m. iMAE has the same issue.
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Figure 5.7: Quantitative comparison with the baseline and state-of-the-art methods
Glob_guide [Van Gansbeke et al., 2019], S2D [Ma et al., 2019] in three cases on the
KITTI validation set. “B”, “I”, and “S” represent baseline only with depth features,
image features, and feature sharing respectively. Our model performs consistently
better in all cases.

Consequently, we still consider RMSE as the primary metric.
In fact, several studies have observed that training with different loss functions

may yield different results [Chen et al., 2019; Eldesokey et al., 2019]. For example,
Spade-sD [Jaritz et al., 2018] achieves the best iRMSE and iMAE because it is directly
trained on inverse depth. To further validate our method, we re-train the model with
the `1 loss with the same network setting in Section 5.4.1. Unsurprisingly, using the
`1 loss yields a smaller MAE (best among depth-only methods) but slightly larger
RMSE (it still ranks first among depth-only methods). Since we mainly focus on
RMSE, in the following, our default model refers to the one trained with the `2 loss
unless otherwise specified.

Our model is also comparable to multiple-input methods, e.g., it surpasses CSPN
[Cheng et al., 2018] in terms of RMSE, and outperforms PwP [Xu et al., 2019], S2D
(gd) [Ma et al., 2019], NConv-CNN-L2 (gd) [Eldesokey et al., 2019], and CSPN [Cheng
et al., 2018] in MAE if trained with the `1 loss. In summary, our approach generally
lies in between depth-only and multiple-input methods, showing competitive perfor-
mance even without using the image as input.

Visual comparison. We present qualitative results in Fig. 5.5 and compare with
three state-of-the-art depth-only methods, i.e., Glob_guide [Van Gansbeke et al.,
2019], S2D (d) [Ma et al., 2019], and Nconv-CNN (d) [Eldesokey et al., 2019]. For
each example, we also provide the RMSE and close-ups (left) with corresponding
error maps (right). Overall, our model is able to produce more accurate depth com-
pletion results for small/thin objects, boundaries, and distant regions. Specifically,
our method recovers the depth of narrow poles in Example 1 and 3 more appro-
priately in preserving their general structures. Besides, our completion results also
have smaller errors along boundaries of the tree and car, as well as the distant re-
gions, e.g., the right close-up in Example 2 where the white car and its surroundings
are relatively far away.

Moreover, our RMSE in these three examples is significantly better than others.
The good performance is mainly owing to image reconstruction as an auxiliary task1,
because it enables our depth completion network to acquire more image features and

1These reconstructed images displayed in Fig. 5.5 are less comparable to the original images from
appearance. However, for image reconstruction, we only care about the object structures it can reveal,
rather than the specific intensity.
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RMSE ↓ REL ↓ δ1.25 ↑ δ1.252 ↑ δ1.253 ↑
Bilateral [Silberman et al., 2012] 0.479 0.084 92.4 97.6 98.9
TVG [Ferstl et al., 2013] 0.635 0.123 81.9 93.0 96.8
Zhang et al. [Zhang and Funkhouser, 2018] 0.228 0.042 97.1 99.3 99.7
Ma et al. [Ma and Karaman, 2018] 0.204 0.043 97.8 99.6 99.9
Nconv-CNN [Eldesokey et al., 2019] 0.129 0.018 99.0 99.8 100
CSPN [Cheng et al., 2018] 0.117 0.016 99.2 99.9 100
DeepLiDAR [Qiu et al., 2019] 0.115 0.022 99.3 99.9 100
Ours 0.125 0.030 99.1 99.8 100

Table 5.3: Quantitative comparison on the NYUv2 dataset. Note that ours is the only
one that does not use the image during testing, while others take the image as an
additional input at both training and testing stages. The best results are marked with
bold. ↓ means smaller is better, and ↑ means larger is better.

understand object structures better. Besides, since the image is truly dense, it can also
overcome the shortcoming of semi-dense ground truth in reflecting the full structure
of objects. Therefore, our performance is largely improved over depth-only methods.
More visual results can be found in Fig. 5.9.

5.4.3 Model Analysis & Ablation studies

Impact of image reconstruction. Our proposed auxiliary image reconstruction can
largely facilitate depth completion. To justify this, we set the baseline B as the com-
bination of the feature encoder and depth completion module. Based on it, B + I
denotes the incorporation of the image reconstruction module but without feature
sharing, while B + I + S is our ultimate model with shared features. The quanti-
tative comparison in terms of RMSE and MAE is reported in Table 5.2. With only
image reconstruction as an additional task but no shared features, depth comple-
tion performance is slightly boosted. This is mainly because more parameters are
introduced but the image features are not sufficiently transferred to the depth com-
pletion network. Feature sharing between depth and image modules enables the
depth completion network to better take advantage of image features, and thus the
overall performance is further improved. Fig. 5.6 shows the qualitative comparison,
where after feature sharing, the model performs better in recovering consistent object
structures and small/thin objects.

Robustness to input density. We randomly drop depth points in the sparse input
with different ratios, and compare RMSE with the baseline and other two state-of-
the-art methods Glob_guide [Van Gansbeke et al., 2019] and S2D [Ma et al., 2019]
in Fig. 5.7(a). Our model performs consistently better than others, indicating its
robustness to input sparsity.

Comparison in different semantic classes. To validate that our model is able to
acquire semantically meaningful image features and use them to facilitate depth com-
pletion, we compare results within different semantic classes. Specifically, we fine-
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Figure 5.8: Visual comparison with state-of-the-art multiple-input methods on the
KITTI test set. The methods we compare are DeepLiDAR [Qiu et al., 2019], PwP [Xu
et al., 2019] and S2D (gd) [Ma et al., 2019].

tune the off-the-shelf PSPNet [Zhao et al., 2017] pre-trained on Cityscapes [Cordts
et al., 2016] with 400 labelled images from the KITTI Semantic Segmentation Bench-
mark [Alhaija et al., 2018]. We use this model to generate semantic masks for the
KITTI validation set. We calculate the RMSE of depth completion in six represen-
tative classes, i.e., Road, Car, Tree, Building, Pole, and Traffic sign, as shown in
Fig. 5.7(b). The performance in Road and Building classes of different methods is
similar, mainly because these large and flat regions have more depth points in the
input and thus are easier to complete. Our model performs significantly better than
others in Car, Tree, Pole, and Traffic sign classes, which tend to have more specific
boundaries and smaller structures. The good performance largely benefits from the
effective understanding and incorporation of object structures with auxiliary image
reconstruction and feature sharing.

Results in different distance ranges. Next, we compare completion results in
different distance ranges. As illustrated in Fig. 5.7(c), our model performs slightly
better in near regions (0-40m) but significantly better in distant regions (40-80m). This
is mainly owing to (1) the use of the `2 loss which penalizes more on larger errors that
mostly exist in distant regions, and (2) image features can reflect the global structure
like the road (see Fig. 5.4(c)) which facilitates our model with a better discrimination
in near and distant regions. Besides, the results in the nearest regions, i.e., 0-20m, are
competitive to others, which is not properly reflected by iRMSE and iMAE.

Application to indoor scenes. We study the applicability of our model in indoor
scenes, i.e., NYUv2 [Silberman et al., 2012]. Following [Ma and Karaman, 2018], we
only retain 500 points in each depth map, the same for other methods we compare.
We re-train our network from scratch with this new dataset (nearly 50K images from
249 scenes for training, and 654 for testing). The evaluation metrics are RMSE, REL
(mean absolute relative error), and the percentage of completed depth with both the

Draft Copy – 28 January 2022



§5.5 Conclusion 87

relative error and its inverse under a threshold t, i.e., t = 1.25, 1.252, 1.253. Quan-
titative results are reported in Table 5.3. Note that all the methods for comparison
take the RGB image as an additional input. Our model outperforms non-learning
based Bilateral [Silberman et al., 2012] and TVG [Ferstl et al., 2013], and deep learn-
ing methods Zhang et al. [Zhang and Funkhouser, 2018], Ma et al. [Ma and Karaman,
2018] and NConv-CNN [Eldesokey et al., 2019] in terms of RMSE. Our performance
is also comparable to CSPN [Cheng et al., 2018] and DeepLiDAR [Qiu et al., 2019].
In summary, our model can also be applied to other scenes, and thus is a generic
approach for depth completion.

Visual comparison with state-of-the-art multiple-input methods. In Fig. 5.8, we
display two examples compared with state-of-the-art multiple-input methods, i.e.,
DeepLiDAR [Qiu et al., 2019], PwP [Xu et al., 2019], and S2D (gd) [Ma et al., 2019]. In
the first example, we achieve competitive performance in recovering the depth of the
traffic board, i.e., our model produces even smoother boundary at the top. However,
in the second example, our results are less comparable especially on the bicycle wheel
and the human head. This is because these regions tend to have more complex
structures and illumination changes, and the corresponding image reconstruction
becomes more difficult. To address this issue, semantic segmentation results, e.g.,
edges or labels, can be used to provide more specific structure information of objects.
We will explore this in the future work.

5.5 Conclusion

In this chapter, we have proposed a depth completion model that takes sparse depth
as the only input and outputs dense depth and a reconstructed image simultaneously.
The auxiliary learning of image reconstruction from sparse depth during training en-
ables the depth completion network to acquire more complementary image features
for understanding object structures. On the KITTI Depth Completion Benchmark
[Uhrig et al., 2017], our model has achieved competitive performance in producing
more consistent boundaries and recovering the depth of small/thin objects more ap-
propriately. It largely overcomes the shortcomings of existing depth-only approaches
due to the lack of structural cues from images. Our model can also be applied to
indoor scenes. Potential future work can be recovering other useful information di-
rectly from sparse depth if ground truth is available, e.g., semantic labels, surface
normal, to facilitate depth completion.
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Figure 5.9: More visual comparison with state-of-the-art depth-only methods. The
methods we compare are Glob_guide [Van Gansbeke et al., 2019], S2D (d) [Ma et al.,
2019], and Nconv-CNN (d) [Eldesokey et al., 2019]. These results are obtained from
the KITTI benchmark. Our method can produce more semantically-consistent depth
values on boundaries and small/thin objects.
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Chapter 6

Unsupervised Depth Completion
Auto-Encoder

In the last chapter, we exploited a new usage of the RGB image to guide supervised
depth completion that only takes sparse depth as input, i.e., incorporating it to the
training loss. This is achieved by simultaneously recovering dense depth and recon-
structing the image from the sparse input, and transferring image features to the
depth branch. The proposed method can effectively reduce structure degradation in
depth-only models, and significantly improve depth completion performance.

In this chapter, we focus on a more challenging task, i.e., unsupervised depth
completion only from sparse depth. Instead of resorting to the image as input and a
second image for training like existing works, we propose to employ a single image
to guide the learning process. This idea is inspired by the image guidance approach
in the last chapter, but is more specific to the unsupervised setting. Specifically, we
regard dense depth as a reconstructed result of the sparse input, and formulate our
model as an auto-encoder. To reduce structure degradation resulting from sparse
depth, we employ the image to guide latent features by penalizing their difference
in the training process. The image guidance loss enables our model to acquire more
dense and structural cues that are beneficial for producing more accurate and con-
sistent depth values. For inference, our model only takes sparse depth as input
and no image is required. Our paradigm is new and pushes unsupervised depth
completion further than existing works that require the image at test time. On the
KITTI Depth Completion Benchmark [Uhrig et al., 2017], we validate its effectiveness
through extensive experiments and achieve good performance compared with other
unsupervised works. The proposed method is also applicable to indoor scenes such
as NYUv2 [Silberman et al., 2012].

In the reminder of this chapter, Section 6.1 introduces our motivation and main
contributions. Section 6.2 reviews auto-encoders. Section 6.3 revisits existing unsu-
pervised depth completion models. We illustrate the details of our method in Section
6.4 and validate its effectiveness through extensive experiments in Section 6.5. Sec-
tion 6.6 summarizes the chapter and proposes the future work.

89

Draft Copy – 28 January 2022



90 Unsupervised Depth Completion Auto-Encoder

Figure 6.1: Unsupervised depth completion from sparse depth. Compared with (a)
the RGB image, object structures are more difficult to be identified and localized in (b)
sparse depth due to too many missing depth values. (c) Existing unsupervised model
S2D [Ma et al., 2019] takes the RGB image as an additional input. (d) Our model
only inputs sparse depth. We achieve comparable performance to S2D in producing
consistent depth values, especially around object boundaries, even without access to
the image at test time.

6.1 Introduction

Unsupervised depth completion aims to recover dense depth from the sparse in-
put without the supervision of dense ground truth. Compared with the supervised
setting, unsupervised models do not involve expensive manual annotations.

In the depth completion community, a commonly acknowledged challenge is
structure degradation, i.e., object structures cannot be correctly localized and recov-
ered [Lu et al., 2020; Qiu et al., 2019; Eldesokey, 2018]. Essentially, this problem is
caused by the sparse nature of the input, e.g., we can hardly tell where the car bound-
ary is in Fig. 6.1(b) due to too many missing depth values. Fully-supervised models
can reduce structure degradation by making use of dense ground truth, which pro-
vides per-pixel supervision1 and covers most object structures. Many supervised
works also address this problem by taking the RGB image as an extra input and fus-
ing image features with sparse depth either through early or late fusion [Qiu et al.,
2019; Van Gansbeke et al., 2019; Cheng et al., 2018; Jaritz et al., 2018].

For unsupervised depth completion, structure degradation becomes even harder
to overcome because there is no dense ground truth available. Among the few works
in the unsupervised setting, traditional non-learning (hand-crafted) methods [Kopf
et al., 2007; Silberman et al., 2012; Barron and Poole, 2016; Ferstl et al., 2013] use hand-
crafted matrix interpolation operations to fill in missing values, but lack effective

1In real practice, purely dense depth ground truth is difficult to acquire. Per-pixel supervision is not
guaranteed in real-word datasets like KITTI [Uhrig et al., 2017] and NYU [Silberman et al., 2012].
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image guidance. Recently, an alternative practice is to make use of network training,
i.e., taking the RGB image as an additional input and calculating the image warping
loss either from stereo [Yang et al., 2019] or adjacent video frames [Ma et al., 2019;
Wong et al., 2020, 2021a]. Clearly, compared with supervised methods where plain
early and late fusion strategies are readily available, there are far fewer options for
integrating image features in the unsupervised community.

In this chapter, we propose a new approach to integrating image features in un-
supervised depth completion. In a nutshell, our method is formulated as an auto-
encoder [Hinton and Zemel, 1993; Hinton et al., 2006], where sparse depth is first
transformed into latent features and then recovered into dense depth. The sparse
input serves as a supervision signal for the network. Besides the lack of structural
cues, a vanilla auto-encoder will not give good performance on depth completion
due to its trivial nature, i.e., generating a trivial mapping from input to output as the
input is also used for supervision. To improve performance, we employ an image to
guide latent features during training, as illustrated in Fig. 1.7(b). In addition to pro-
viding dense structural cues, the image guidance constrains latent features to reduce
the trivial solution. We show that this practice yields a large improvement over the
vanilla baseline and allows our method to be competitive on public benchmarks.

We emphasize two distinctive characteristics of our design which make it novel
and insightful. First, our method introduces a new setting in unsupervised depth
completion, i.e., only using sparse depth as the network input in both training and
testing. In comparison, previous unsupervised works assume structure degradation
can only be reduced by adopting the image and sparse depth at both training and test
phases. We demonstrate the feasibility of this new setting with effective reduction
of structure degradation and satisfying depth completion accuracy, which benefits
the scientific body of literature in this area. Second, we provide insights on the
appropriate use of image guidance through various studies, such as the position
where image guidance is imposed, and the impact of feature resolution and channels.

In summary, we make the following major contributions:

• We propose a new paradigm for unsupervised depth completion that recovers
dense depth only from the sparse input in both training and testing. We push
this task further beyond existing unsupervised works that take the image as an
additional input and employ a second image for training.

• Our method is formulated as an auto-encoder and uses the image to directly
guide latent features in training. This enables our model to acquire more dense
and structural cues, which improve the depth completion accuracy and reduce
structure degradation even without the image input.

• We validate the effectiveness of the proposed image guidance and achieve good
performance on the KITTI Depth Completion Benchmark compared with other
unsupervised methods. Our model is also applicable to indoor scenes, e.g.,
NYUv2.
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6.2 Related Work

The related work on supervised depth completion is reviewed in Section 2.2.2, and
unsupervised studies are introduced in Section 2.2.3. In this section, we give addi-
tional review on auto-encoders as our model takes the auto-encoder framework.

Conventional auto-encoders. Auto-encoders aim to generate a compressed fea-
ture representation by learning an identity mapping from the input to the output
[Hinton et al., 2006]. The input itself is used as a supervision signal for the training
process. Auto-encoders have been widely employed as an unsupervised learning
technique in image denoising [Vincent et al., 2010, 2008], super-resolution [Rong
et al., 2018; Zeng et al., 2015], multi-view learning [Wang et al., 2016], etc.

Constrained auto-encoders. The limitation of conventional auto-encoders is that
in many cases, encoders cannot consistently extract discriminative and useful fea-
tures. In that case, some irrelevant information may be retained [Wang and Ding,
2017]. To deal with this issue, the sparse auto-encoder is proposed to enhance the
discrimination ability by constraining the output from hidden layers to a small value,
e.g., zero [Coates et al., 2011]. Other useful constraints include graph embeddings [Yu
et al., 2013], non-negativity [Hosseini-Asl et al., 2016; Teng et al., 2019], label consis-
tency [Hu et al., 2018], hierarchical feature selection [Masci et al., 2011], etc.

Guided auto-encoders. In addition to incorporating constraints, guiding latent
features with a certain signal, known as guided auto-encoders [Bengio et al., 2007],
is another useful strategy. The key idea is to add a supervised loss to the latent
representation as guidance [Le et al., 2018]. This guidance encourages the network to
acquire more relevant features in latent space (also referred to as latent representation
disentanglement learning [Ding et al., 2020]), which is beneficial for the decoder to
generate more satisfactory output. In the literature, those signals used for guidance
include label information [Snoek et al., 2012], pose estimation [Li and Ji, 2020], feature
selection [Wang and Ding, 2017], and so on. Our work uses the image to guide latent
features, which supplies more structural cues to depth.

6.3 Unsupervised Depth Completion Revisited

Unsupervised depth completion models assume there is no dense ground truth or
any other manual annotations available. To reduce structure degradation resulting
from the sparse input d ∈ RH×W (H and W represent the height and width respec-
tively), existing studies [Ma et al., 2019; Yang et al., 2019; Wong et al., 2020, 2021a]
further assume an associated RGB image r ∈ RH×W×C is available (C is the num-
ber of channels, e.g., 3 for an RGB image and 1 for its grayscale), and take it as an
additional input, i.e.,

d̃ = f (d, r), (6.1)
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where d̃ ∈ RH×W is dense depth output. In this formulation, the sparse input is used
as a supervision signal for depth, i.e.,

`d =
1

N1

∥∥M� (d− d̃)
∥∥η

, (6.2)

where M is a binary mask that indicates validness of input depth (1 for points with
depth values and 0 for none), and N1 is the total number of valid points. η is the
norm of the loss, i.e., 1 for `1 (MAE) and 2 for `2 (MSE). � denotes element-wise
multiplication. Additionally, a second image, either from stereo or adjacent frames,
is employed to construct the disparity loss [Yang et al., 2019] or photometric loss [Ma
et al., 2019; Wong et al., 2020, 2021a]. This loss is essentially implicit supervision
to depth since it does not directly penalize depth reconstruction but the result de-
rived from depth, i.e., the warped image. Without loss of generality, we denote the
additional loss as `c, and thus the entire training loss `t becomes

`t = `d + wc · `c, (6.3)

where wc controls the impact of `c. At test time, the second image is not required,
but the image associated with sparse depth is still taken as input.

In addition, the models in [Yang et al., 2019; Wong et al., 2021a] have to learn prior
information, e.g., dense depth prior or topology prior, with another network pre-
trained on the Virtual KITTI dataset [Gaidon et al., 2016]. Ma et al. [2019] compute
feature correspondences from adjacent images for pose estimation, similar to [Wong
et al., 2020]. These operations heavily rely on RGB images and other image related
information, which are less practical in real-world applications. Also, the use of
additional resources, e.g., extra image, dataset or technique, further indicates the
difficulty in integrating image features in unsupervised depth completion models.

6.4 Our Method

Section 6.3 motivates us to think about an easier but effective usage of RGB images,
in which case structure degradation can still be reduced even without the image
input. To this end, we formulate our model as an auto-encoder and propose to guide
latent features with the image. The general framework is illustrated in Fig. 6.2. This
approach generally has two distinctions: (1) It enables our model to recover dense
depth only from the sparse input, which is a normal setting in supervised works
[Uhrig et al., 2017; Chodosh et al., 2018; Ma et al., 2019; Eldesokey et al., 2019] but has
not been well studied in the unsupervised area; (2) It is effective in better reducing
structure degradation than using an auto-encoder without image guidance.
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Encoder 𝑔1 Decoder 𝑔2

Sparse input 𝐝 Latent features ෤𝐫

Image 𝐫

Dense output ሚ𝐝

𝒍𝒅 (input as supervision)

𝒍𝒓 (guidance)

Figure 6.2: Proposed auto-encoder framework for training unsupervised depth com-
pletion. The encoder transforms sparse depth input into latent features, which are
then fed into the decoder to produce dense depth. The sparse input itself is used as
the supervision signal for training. In the figure, the latent feature map is obtained
from our default model (see Section 6.5.1) and visualized by normalizing the values
into 0-1.

6.4.1 Depth Completion as an Auto-Encoder

We aim to construct a model g that recovers dense depth only from the sparse input,
i.e.,

d̃ = g(d). (6.4)

To achieve this, we regard the dense output as a reconstructed result of the sparse
input, and formulate g as an auto-encoder [Hinton and Zemel, 1993; Hinton et al.,
2006] to realize this reconstruction. More specifically, we divide g into an encoder g1

and a decoder g2. g1 transforms the sparse input d into latent features r̃ ∈ RH1×W1×C1

where H1 and W1 represent the height and width, and C1 is the number of feature
channels. g2 recovers dense depth from r̃. The entire process is described as:

d̃ = g(d)→ d̃ = g2(r̃ = g1(d)). (6.5)

The model can be trained with the identity mapping loss defined in Eq. 6.2. We
name this model the vanilla auto-encoder because it does not incorporate any extra
information. Below, we list two major problems with the vanilla auto-encoder.

Insufficient structural cues. Without additional guidance, e.g., the image, both
the sparse input and its latent features cannot provide sufficient structural cues for
accurate depth completion, particularly around object boundaries. For example, in
Fig. 6.3(c), the latent features of the sparse input are still highly sparse, and we can
hardly find any clear and useful structural information of the car and tree from
them. The completed results based on these features present inconsistent depth
values around boundaries (see Fig. 6.3(e)). Hence, it is difficult to recover consistent
and accurate dense depth only from the sparse input.

Trivial solution. g takes the sparse input d as both input and supervision, which
may produce a trivial solution that d̃ is infinitely close to d in valid positions that
contain input values. The accuracy of other missing values to be completed is largely
sacrificed. As shown in Fig. 6.3(e) and (f), even though the difference between the
output and the sparse input is smaller with the vanilla model, the errors, i.e., RMSE,
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𝑙𝑑 =147.428
RMSE=1483.21

𝑙𝑑 =162.119
RMSE=1003.20

𝑙𝑑 =230.052
RMSE=1935.92

𝑙𝑑 =242.711
RMSE=1174.43

Figure 6.3: Comparison between vanilla and our image guided auto-encoders. (a)
and (b) are the RGB image (not used as input) and the sparse input. (c) Vanilla
latent features directly from sparse depth are also highly sparse, and they cannot
indicate any clear or useful structural information. (d) Our image-guided latent
features, by contrast, are able to acquire more dense and structural cues, e.g., the
general shapes of the car and tree are clearer than (c). (e) Dense depth from the
vanilla auto-encoder fails to complete object boundaries properly. It has a smaller
difference `d to the input, but larger errors compared with ground truth. (f) Our
depth with guided latent features produces more visually consistent boundaries and
more accurate depth values. This also indicates the reduced impact of the trivial
solution as `d is slightly larger, but the RMSE is much smaller. The latent feature map
is obtained from our default model (see Section 6.5.1) and visualized by normalizing
the values into 0-1.

are larger. This can also be reflected by visual results, where stripe artifacts with sim-
ilar patterns to horizontally scanned LiDAR points, exist around object boundaries.
The negative impact of the trivial solution should be reduced.

6.4.2 Image Guidance to Latent Features

To deal with above issues, we propose to use the image to guide latent features
in the training process (see Fig. 6.2). It aims to regularize latent features to obtain
more structural cues from the image and reduce the trivial solution. We define a
function φ that converts the image r ∈ RH×W×C into the image feature representation
φ(r) ∈ RH1×W1×C1 that shares the identical feature sizes with the latent features r̃. φ is
either (1) a self mapping, i.e., φ(r) = r, or (2) a CNN to extract convolutional features.
The guidance works by penalizing the difference between the two features, i.e.,

`r =
1

H1W1C1
‖φ(r)− r̃‖γ , (6.6)

where γ determines the norm of the loss. Combined with the sparse depth loss
defined in Eq. 6.2, the total training loss of the proposed model is

`total = `d + wr · `r, (6.7)

where wr weighs the impact of the image guidance loss `r. Both the encoder and de-
coder share the same U-shaped architecture, i.e., simplified SegNet [Badrinarayanan
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et al., 2017] with 14 convolutional layers (pooling layers are removed). It gradually
downsamples feature maps to 1/16 of the input resolution and upsamples them to
produce the full-sized output.

6.4.3 Discussion

Why can dense depth be directly constructed from sparse input only? For a spe-
cific position in sparse depth, convolving with a squared kernel is like performing
a weighted sum within the local region. If that position has no depth value, it will
be updated based on nearby points with values. This is the underlying reason that
dense depth can be directly constructed from the sparse input. Note that supervised
by valid points in sparse depth, the weights are learnable. This is an advantage over
traditional hand-crafted methods such as nearest neighboring and bilinear interpo-
lation. We will later show through experiments that our model can produce more
accurate results than these methods.

The role of image guidance. Image guidance enables latent features to better
acquire dense and structural cues that can facilitate depth completion. In Fig. 6.3(d),
guided latent features of the car and tree reveal their general shapes more clearly
than vanilla (unguided) ones that only have sparse representations. As illustrated
in Fig. 6.3(f), both examples have a larger `d but lower RMSE than vanilla results,
indicating the reduced impact of the trivial solution.

In fact, the proposed image guidance is inspired by the work in Chapter 5, which
acquires image features by reconstructing the image from sparse depth [Lu et al.,
2020]. The similarity with ours is that both works add the image loss as part of the
training loss. However, the underlying insights of such image guidance are different.
In terms of the network architecture, our method does not have an image decoder
separate from the main branch, so it is not aimed for image reconstruction. Function-
ally, our image guidance is directly imposed to latent depth features by penalizing
their difference (regarded as explicit guidance), and dense depth has to be recovered
from the refined features. By contrast, in the previous chapter, we implicitly generate
image-related features by reconstructing the image as an output. We will justify the
effectiveness of our method in the unsupervised setting through experiments.

Relationship with existing unsupervised models. Our formulation for training
the model in Eq. 6.7 is consistent with the general form of the unsupervised frame-
work defined in Eq. 6.3. The image guidance loss `r, similar to `c in Eq. 6.3, is an
extra loss that facilitates network training. However, it is essentially different from
other unsupervised works [Ma et al., 2019; Yang et al., 2019; Wong et al., 2020, 2021a]
in that (1) it focuses on enhancing intermediate latent features, and (2) it does not
require a second image for training.

Inference. Learning the proposed depth completion auto-encoder only requires
the image during training. At test time, our model only takes sparse depth as input
(see Fig. 1.7(b)), i.e.,

d̃ = g(d; θ∗g), (6.8)

where θ∗g denotes the parameters of the optimal model.

Draft Copy – 28 January 2022



§6.5 Experiments 97

Figure 6.4: Qualitative comparison with IR* [Lu et al., 2020] proposed in the previous
chapter. It is retrained with the unsupervised setting, i.e., using the input as supervi-
sion. Our model outperforms it in some key regions such as object boundaries with
smaller errors.

6.5 Experiments

In this section, we demonstrate the effectiveness of our method through both quan-
titative and qualitative results.

6.5.1 Implementation Details

Dataset. We report depth completion results on the KITTI Depth Completion Bench-
mark [Uhrig et al., 2017]. The KITTI depth maps are acquired by reprojecting LiDAR
points taken over a short time window onto an image, and around 5% of the pix-
els have depth values. When counting sparse depth maps, there are 85,898 training,
1,000 validation, and 1,000 test images in total. Ground truth depth maps are gener-
ated by accumulating LiDAR points from adjacent frames using semi-global match-
ing, with outliers manually removed [Uhrig et al., 2017]. Test set results are evaluated
on the online benchmark server with no ground truth available to the public.

Evaluation metrics. Following the benchmark [Uhrig et al., 2017], we use four
quantitative evaluation metrics: (1) root mean square error (RMSE in mm), (2) mean
absolute error (MAE in mm), (3) RMSE of inverse depth (iRMSE in 1/km), and
(4) MAE of inverse depth (iMAE in 1/km). Among them, RMSE is used to rank
approaches on the benchmark.

Training procedure. We implement our network with PyTorch [Paszke et al.,
2017], and train and test the model on one NVIDIA Titan X GPU. All the training
data have a resolution of 352× 1216. The model is trained with the Adam optimizer
[Kingma and Ba, 2014], where the initial learning rate is set as 0.001. In our default
model, η = 1, γ = 1, wr = 0.1. Besides, latent features r̃ ∈ R352×1216×1 share
the same spatial resolution, i.e., height and width, with the input. Also, they only
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RMSE = 1341.95

RMSE = 1057.00

RMSE = 879.08RMSE = 897.65

RMSE = 1167.97

RMSE = 1547.75

Figure 6.5: Qualitative comparison with the unsupervised learning model S2D [Ma
et al., 2019] on the KITTI test set. S2D inputs RGB images at both training and test
phases and employs a second image during training for implicit depth supervision.
Our RMSE in three examples is better than S2D, and our results present smaller
errors in some challenging regions, e.g., car boundaries and poles.

have one feature channel that is directly guided by the gray-scale image without
any convolutional layers to extract image features, i.e., φ(r) = r ∈ R352×1216×1. The
default vanilla auto-encoder has identical latent feature resolution and number of
feature channels to our default model.

6.5.2 Comparison with Existing Methods

We compare four published unsupervised works, S2D [Ma et al., 2019], DDP [Yang
et al., 2019], VOICED [Wong et al., 2020], and ScaffFusion [Wong et al., 2021a]. Note
that although IR [Lu et al., 2020] introduced in the previous chapter is not specially
designed for unsupervised depth completion, its usage of RGB images is similar to
the proposed unsupervised model, i.e., incorporating the image loss in training. For
a fair comparison, we retrain IR by replacing dense ground truth with sparse depth.
To distinguish it from the original fully-supervised model, we rename it as IR*. We
additionally compare several hand-crafted methods.

IR*. We report quantitative results in Table 6.1. Our model significantly outper-
forms IR* [Lu et al., 2020], i.e., surpassing RMSE by 491.61 (25.3%), MAE by 111.62
(20.6%), iRMSE by 12.99 (72.65%), and iMAE by 5.98 (77.1%). Qualitative results
in Fig. 6.4 also indicate the superiority of our model in key regions such as object
boundaries.

The primary reason for our superior performance over IR* is that the proposed
image guidance gives direct and explicit refinement to latent features. This can be re-
garded as a “brute-force” or “passive” refinement because we directly penalize their
difference. By contrast, IR* implicitly learns image-related features by reconstructing
the image from sparse depth. There is no guarantee that image features can be prop-
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Method #Param. RMSE ↓ MAE ↓ iRMSE ↓ iMAE ↓
Unsupervised

(only sparse input)
IR* 11.63M 1943.28 541.36 17.88 7.76
Ours 2.29M 1451.67 429.74 4.89 1.78

Unsupervised
(sparse & RGB inputs)

S2D 18.8M 1299.85 350.32 4.07 1.57
DDP 27.8M 1263.19 343.46 3.58 1.32
VOICED 9.7M 1169.97 299.41 3.56 1.20
ScaffFusion 7.8M 1121.89 282.86 3.32 1.17

Table 6.1: Quantitative comparison with unsupervised methods on the KITTI test set.
The methods we compare include IR* [Lu et al., 2020] (this method is retrained with
the unsupervised setting, i.e., replacing dense ground truth with input sparse depth),
S2D [Ma et al., 2019], DDP [Yang et al., 2019], VOICED [Wong et al., 2020], and
ScaffFusion [Wong et al., 2021a]. These results are calculated from the benchmark
server, and no ground truth is available to the public. ↓ means smaller is better.

Figure 6.6: Qualitative comparison with VOICED [Wong et al., 2020] and ScaffFu-
sion [Wong et al., 2021a] on the KITTI test set. Our model produces more visually-
consistent depth values.

erly transferred to the depth branch. This is because (1) there is no penalty between
depth and image features, and (2) it is more difficult for depth features to coincide
with image features with such limited depth points for supervision. Another reason
is a too complicated network, i.e., IR* has nearly 5 times more parameters than ours,
does not necessarily yield good performance in the auto-encoder framework (IR*
also works like an auto-encoder when trained with sparse depth). This issue will be
further discussed in Section 6.5.3.

S2D, DDP, VOICED, and ScaffFusion. Quantitative results on the KITTI test
set are reported in Table 6.1. Naturally, our method does not beat the four works
in numbers due to the input difference and less additional information used during
training. Even so, we still achieve competitive performance in some visual examples.

We provide qualitative comparison with S2D [Ma et al., 2019], including the out-
put dense depth and its error maps2, in Fig. 6.5. Compared with S2D [Ma et al.,

2These error maps are copied directly from the benchmark. Lighter regions correspond to larger er-
rors. Note that we did not find the unsupervised results of DDP [Yang et al., 2019] from the benchmark,
and no code was published. Hence, there is no qualitative comparison with it.
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Figure 6.7: Model analysis on the KITTI validation set. (a) Impact of the resolution
and number of channels of latent features. “c” means that we use CNNs to extract the
image features. (b) Comparison with the vanilla auto-encoder with different feature
resolutions and channels. “v” represents the vanilla auto-encoder. (c) Robustness to
input densities. Here the vanilla auto-encoder share the same latent feature resolu-
tion and channel with our default image guided model.

2019], we demonstrate competitive performance in producing accurate depth results
in some challenging regions that have few input sparse depth values, such as object
boundaries (e.g., the cars in three examples and the tree in the third example) and
small objects (e.g., the poles in the first two examples). It reveals that our model can
reduce structure degradation even without the image as input at test time. Besides,
we achieve a smaller RMSE in all the three examples than S2D [Ma et al., 2019].
We additionally compare VOICED [Wong et al., 2020] and ScaffFusion [Wong et al.,
2021a] in Fig. 6.6. Our model can produce more consistent object structures than the
two works.

Hand-crafted methods. We give quantitative comparison with hand-crafted meth-
ods on the KITTI validation set in Table 6.2. Overall, our performance is significantly
better than all the hand-crafted methods in terms of RMSE and MAE. Among them,
traditional interpolation methods, i.e., nearest, bilinear, and bicubic, have much larger
errors because these interpolation approaches only perform a naive local operation
based on available depth values. Other methods, i.e., TGV [Ferstl et al., 2013], Bilat-
eral [Silberman et al., 2012], Fast [Barron and Poole, 2016], are based on hand-crafted
features that are less informative and robust than learnable features in our model
(see Section 6.4.3). Thus, they are much less comparable to our performance even
with RGB as input.

6.5.3 Model Analysis & Ablation Studies

Impact of the resolution and number of channels of latent features. For clarity, the
feature resolution refers to the spatial dimension, i.e., height and width, and chan-
nels represent the number of feature maps. We first investigate their impact to our
image-guided model. For the self-mapping, we set the latent channel number as 1,
and then use the one-channel gray-scale image to directly guide latent features. For
the CNN mapping, we apply a 3-layer convolutional network with 3× 3 kernels to
extract image features from the image. From Fig. 6.7(a), we observe that using CNNs
to extract image features does not bring significant performance gain, i.e., using the
original image to directly guide latent features yields the best RMSE in all feature
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Figure 6.8: Depth completion with different resolutions of latent features. Compared
with our default model that retains the full resolution of latent features, reducing
the resolution leads to less consistent and accurate depth completion results. The
number of feature channels in all cases is 1, i.e., our default setting.

resolutions. Moreover, adding extra channels with CNNs reduces performance. The
degraded results can also be found in the vanilla auto-encoder (see Fig. 6.7(b)). We at-
tribute the performance degradation after using more parameters to the over-complete
auto-encoder [Vincent et al., 2010], i.e., the model tends to simply copy the input to
the output without learning useful features. This problem is primarily caused by
having excessive parameters in the hidden layer, e.g., using too many channels or
a very complex network. In our system, the sparse input only has one channel, so
we design latent features to have one channel and the network to be light-weight.
Experimental results have validated the effectiveness of our design.

For the feature resolution, we find that reducing the height and width leads to
larger errors. This is because the spatial correspondence at each position between
the input, image, and output cannot be well preserved with the reduced resolution.
This can also be reflected in visual results, as illustrated in Fig. 6.8. Reducing the fea-
ture resolution yields worse results, especially in regions that require strong spatial
correspondence between depth and the image, e.g., the car boundary.

Effectiveness of image guidance over the vanilla auto-encoder. To validate the
effectiveness of image guidance, we compare the vanilla auto-encoder and our image-
guided model. In Fig. 6.7(b), our model outperforms the vanilla one to a large mar-
gin with various settings of feature resolutions and channels. Besides, combining
Fig. 6.7(a) and (b), the overall performance after using image guidance is signifi-
cantly better than the vanilla model in all cases. For quantitative results in Table 6.2,
our model surpasses its RMSE by 1108.02 (43.1%) and MAE by 265.3 (38.1%). We give
visual comparison in Fig. 6.9. Our image guidance is indeed effective in improving
depth completion accuracy.

Reasons for intermediate guidance. To verify intermediate guidance to latent
features, we place this guidance to the encoder (EG), the decoder (DG), and output
(OG) respectively, and then retrain the model. From Table 6.2, employing image
guidance to the encoder produces slightly worse results, which is because depth
features from the sparse input have not been sufficiently encoded. By contrast, the
performance after moving the guidance to the decoder is significantly degraded. The
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Method RMSE ↓ MAE ↓

Unsupervised
(only sparse input)

Vanilla 2572.71 696.53
Ours 1464.69 431.23
EG 1985.38 583.01
DG 2496.80 682.19
OG 2723.14 711.77

Hand-crafted
(only sparse input)

Nearest 4268.83 1934.50
Bilinear 3844.69 1820.03
Bicubic 3821.33 1779.58

Hand-crafted
(sparse & RGB

inputs)

TGV 2761.29 1068.69
Bilateral 2989.02 1200.56
Fast 3548.87 1767.80

Table 6.2: Quantitative comparison with the vanilla auto-encoder, different positions
of image guidance, and hand-crafted methods on the KITTI validation set. “EG”,
“DG”, and “OG” mean image guidance is placed to the encoder, decoder, and output
respectively. In addition to simple interpolation methods, i.e., nearest, bilinear, and
bicubic, we also compare TGV [Ferstl et al., 2013], Bilateral [Silberman et al., 2012],
and Fast [Barron and Poole, 2016]. ↓ means smaller is better.

underlying reason is the decoder’s task is to recover dense depth from latent features.
Requiring an additional task of the decoder detracts from the depth completion task.
An extreme case is after we place image guidance at the output layer, the results
become even worse than the vanilla model (the decoder has to both recover dense
depth and reconstruct the image, which is difficult to work well). In conclusion,
applying image guidance to intermediate latent features yields the best results, where
the original depth features have been well encoded and refined, and the decoder can
focus on depth completion.

RGB vs. gray guidance. We can use either the RGB image or its grayscale (gray =
0.3× R + 0.59×G + 0.11× B, where R, G, and B represent three channels of the RGB
image respectively) to guide latent features. They do not differ too much in terms
of the final performance because the image content in two color space is similar, e.g.,
important structures contained in RGB are also mostly visible in gray. Fig. 6.10 shows
the RGB image (c) and its gray image (d), as well as their guided latent features (e
and f) and corresponding dense depth (m and n). We do not see obvious difference
between two types of latent features and dense output, except that latent features
guided by the gray image present brighter appearance. According to the quantitative
results in Table 6.3, we find that using the gray image for guidance yields slightly
better results. This is because it is harder to penalize RGB and latent features as it
involves three channels. Also, more feature channels make the model easier to be
affected by the over-complete issue (see above). In fact, in Fig. 6.10(e), we show that
the learned 3-channel latent feature (visualized like an RGB image) does not present
obvious colors, i.e., it still looks gray. It suggests that the network does not rely on
specific colors for completion. Structure information indicated by intensity difference
is more important. A similar phenomenon on better results with the gray image is

Draft Copy – 28 January 2022



§6.5 Experiments 103

Method RMSE ↓ MAE ↓

Guiding LF
RGB 1485.85 439.76
Gray 1464.69 431.23

Replacing LF
(w/o retraining)

RGB 24499.30 9209.43
Gray 16107.76 8867.21

Replacing LF
(with retraining)

RGB 4615.71 2003.55
Gray 5134.19 2321.09

Table 6.3: Quantitative results of using RGB and gray images to guide or replace
latent features on the KITTI validation set. ↓ means smaller is better. There is not
significant difference between using the RGB or gray image to guide latent features.
Replacing latent features with the image, either with or without retraining, produces
poor results. “LF” represents latent features.

Figure 6.9: Qualitative comparison with the vanilla auto-encoder on the KITTI test
set. Our model significantly outperforms it in producing more consistent and accu-
rate depth values.

observed in [Ma et al., 2018; Lu et al., 2020]. Moreover, in terms of practical use, the
gray image occupies less storage than RGB. Hence, by default, we use the gray image
to guide latent features.

Replacing latent features with the image. The image guidance loss defined
in Eq. 6.6 facilitates latent features with more structural cues beneficial for depth
completion. It is achieved by penalizing the difference between latent features and
the image. A natural question is, what will the performance be if we replace latent
features with the image, i.e., the image guidance loss is equal to zero?

The first experiment is, given our trained model with default settings, we replace
latent features with the image directly at test time. As shown in Fig. 6.10(g) and (h),
the decoder cannot recover any correct depth, which is also reflected by the extremely
poor quantitative results in Table 6.3. The underlying reason is that the trained
parameters are fixed, and the direct replacement destroys the learned information
in latent layers. In that case, the decoder, originally having latent features as input,
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Method RMSE ↓ REL ↓

Unsupervised
(only sparse input)

Vanilla 0.449 0.081
IR* 0.358 0.062
Ours 0.315 0.053

Hand-crafted
(sparse & RGB inputs)

TGV 0.635 0.123
Bilateral 0.479 0.084

Table 6.4: Quantitative comparison with the vanilla auto-encoder and hand-crafted
methods on the NYUv2 test set. ↓ means smaller is better. Here the vanilla auto-
encoder share the same latent feature resolution and channel with our default image-
guided model. Our model outperforms the vanilla auto-encoder, IR* [Lu et al., 2020],
and hand-crafted methods (TGV [Ferstl et al., 2013] and Bilateral [Silberman et al.,
2012]). It indicates that our method has good applicability to other dataset.

does not know how to extract useful features from the image.
The second experiment is that we replace latent features with the image and

retrain the entire model. This makes more sense as it actively adjusts parameters.
In that case, the encoder is blocked and the network becomes to use the decoder
to recover dense depth directly from the image, i.e., depth estimation from a single
image supervised by the sparse input. We can observe in Fig. 6.10(i) and (k) as
well as Table 6.3 that this approach produces better results than the model above
without retraining. However, the performance is still less competitive than ours.
Visual results indicate that the depth of some important details, e.g., trees and car
boundaries, cannot be properly recovered.

Based on these results, we find that replacing latent features with the image is
less effective for depth completion. Specifically, latent features guided by the image
and the image itself are two different concepts. Latent features are a type of feature
representation of sparse depth. Guided by the image, they are embedded with more
consistent structural cues, but are still conditioned on sparse depth rather than the
image. By contrast, the image is another modality inherently different from depth.
It cannot be regarded as a latent representation of sparse depth, so recovering depth
directly from the image is less accurate (we refer the reader to the KITTI Depth
Estimation Benchmark [Uhrig et al., 2017] where the overall accuracy is much worse
than depth completion results, and the same conclusion is also drawn in [Liu et al.,
2021; Qu et al., 2020]). In summary, guiding latent features with the image is more
beneficial for depth completion than directly replacing them with the image.

Robustness to input densities. We also analyze the robustness to different input
densities. The valid points with depth values in the original sparse input account
for around 5% of the entire depth map. We further reduce the input sparsity by ran-
domly retaining points with ratios from 90% to 10%. Our results in Fig. 6.7(c) demon-
strate good robustness of our model to different densities (measured by RMSE). With
an increased density, depth completion performance is gradually enhanced because
more input data is provided. An extreme case is when the input data is too lim-
ited, e.g., 10% remaining, our model presents much larger errors because there is
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Figure 6.10: Qualitative results of using RGB and gray images to guide or replace la-
tent features. There is no significant difference between using the RGB or gray image
to guide latent features. Replacing latent features with the image, either retraining
or not retraining the model, cannot produce better results than ours. “LF” represents
latent features.
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Figure 6.11: Challenge cases. When the height of ground truth depth is much higher
than sparse depth, more errors will occur in upper regions.

little structure information acquirable and recoverable from the input. Moreover, our
model performs consistently better in all cases than the vanilla auto-encoder, which
further indicates its effectiveness.

Application to Indoor Scenarios. Our depth completion auto-encoder can also
be applied to indoor scenes, e.g., NYUv2 [Silberman et al., 2012]. Each sparse input
for training has 500 randomly selected depth values, the same as [Lu et al., 2020;
Qiu et al., 2019]. We evaluate the proposed model on the official labelled test set that
contains 654 samples. In Table 6.4, we report RMSE and REL. Our model significantly
outperforms the vanilla auto-encoder, IR* [Lu et al., 2020], and hand-crafted methods
(TGV [Ferstl et al., 2013] and Bilateral [Silberman et al., 2012]).

Challenging cases. In some cases, the actual height of ground truth depth is
much higher than sparse depth, i.e., there are few or even no input values in upper
regions. Our model cannot perform well on these unseen pixels due to the severe
lack of depth information for completion. Hence, compared with ground truth, our
model produces larger errors there (see Fig. 6.11). How to solve this problem can be
a potential direction for future research.

6.6 Conclusion

In this chapter, we have proposed a new unsupervised depth completion model. For-
mulated as an auto-encoder, our model only takes sparse depth as input, which is
essentially different from existing unsupervised works that use the RGB image as
an additional input at both training and test phases. To reduce structure degrada-
tion, we have proposed to employ the image to guide latent features in the training
process. This approach enables the acquisition of more dense and structural fea-
tures beneficial for producing more consistent and accurate depth values. We have
validated its effectiveness through extensive experiments on the KITTI Depth Com-
pletion Benchmark [Uhrig et al., 2017] and achieved competitive performance against
competing approaches. We have also given insights on the appropriate use of image
guidance in terms of the resolution and number of channels of latent features. Our
method has good applicability to indoor scenes, e.g., NYUv2 [Silberman et al., 2012].
Our future work will focus on leveraging other information, e.g., 3D point clouds,
surface normal, to enhance latent features.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we have explored the use of guidance to reduce structure degradation
in two typical image enhancement tasks, i.e., image smoothing and depth comple-
tion. For image smoothing, we have found that single structure guidance based on
gradients or intensity difference in existing methods is not robust enough to prop-
erly differentiate between structures and textures. To address this issue, we have
introduced the novel concept of “texture guidance” that indicates the location and
magnitude of textures. We have combined it with semantic structure guidance and
equip the filter with robust “structure-awareness” and “texture-awareness”. Exper-
imental results have demonstrated that with the two forms of guidance, the filter is
able to remove strong textures without degrading main structures. For depth com-
pletion, we aim to deal with the structure degradation issue in depth-only models
that only take sparse depth as input. Instead of resorting to the RGB image as an
extra input, we have incorporated it as part of the training loss. In the supervised
model, we have treated image reconstruction from sparse depth as an auxiliary task
and used the image to supervise the reconstruction process, where image features
can be transferred to the depth completion branch. For the unsupervised model, we
have used the image to guide latent features by penalizing their difference. Hence,
more dense and structural information can be aggregated with depth features. This
new usage of image guidance is beneficial for enhancing depth-only depth comple-
tion accuracy in both supervised and unsupervised settings, e.g., recovering more
semantically-consistent object boundaries and small/thin objects. In the following,
we highlight primary advantages of each method.

Double-guided filter (Chapter 3): (1) It is the first kernel filter that simultane-
ously employs structure guidance and texture guidance. (2) It provides an appropri-
ate use of structure guidance and texture guidance within a kernel, which is intuitive
and effective. (3) It eliminates the negative effect of gradients or intensity difference
and can better differentiate between structures and textures, which benefits removing
strong textures without blurring main structures.

Texture and structure aware filtering network (Chapter 4): (1) It overcomes
the natural shortcomings of hand-crafted features in poor discrimination of textures
when they present various spatial and color variations. (2) It provides an approach

107
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to generating synthetic data for training both texture prediction and image smooth-
ing and evaluating existing smoothing methods. (3) The learned texture guidance
effectively adapts to different types of textures and significantly improves smoothing
results after being combined with semantic structure guidance.

Supervised depth completion via auxiliary image reconstruction (Chapter 5):
(1) It exploits a new usage of the RGB image in supervised depth completion, i.e.,
incorporating it into the training loss. (2) It significantly outperforms existing depth-
only models in recovering more consistent boundaries and small/thin objects. (3) It
only requires the image at the training stage, which is practical and easy to imple-
ment in real-world applications.

Unsupervised depth completion auto-encoder (Chapter 6): (1) It provides a new
approach to integrating image features, which enriches the scientific body of litera-
ture in the unsupervised depth completion community. (2) It provides a large reduc-
tion in structure degradation in the unsupervised depth-only setting and achieves
comparable performance with existing unsupervised works that take the image as
an extra input and use a second image during training time. (3) It does not need any
image in testing, which is more practical and implementable than other unsupervised
methods.

Through the four research works, we have a better understanding of the underly-
ing reasons for structure degradation and how to handle it with the proper definition
and use of guidance. In the next section, we will discuss several potential directions
for further research.

7.2 Future Work

We provide several potential directions below to extend our research in the future.

7.2.1 Image Smoothing

(1) Incorporating more semantic cues
As illustrated in Fig. 4.8, the eyes, nose and other semantically-important infor-

mation are undesirably removed as textures because they have texture-like patterns,
e.g., small-scale dotted appearance. We can hardly recognize the person after they are
removed, which deviates from the essential definition of image smoothing, i.e., only
smoothing out insignificant details. To deal with this issue, we can incorporate more
semantic cues, e.g., semantic labels, to make sure that important semantic objects
should not be removed. This can be realized by either taking semantic information
as an additional input or employing it as a mask or a confidence map to constrain
the filtering process.
(2) Task-driven smoothing

Currently, image smoothing is performed on the entire image domain, i.e., cov-
ering every pixel. It would be time-consuming when processing a high-resolution
(large spatial size) image. Moreover, in many tasks, we are only interested in certain
regions. For example, for object segmentation, we only care about the object and its
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surroundings, so specially enhancing them will be more efficient. The regions can be
selected either through semantic segmentation or manually.
(3) Natural data for training and evaluation

Although we present synthetic data in Chapter 4 for training the deep filtering
model and evaluating other methods, they inevitably have domain gaps with nat-
ural images. Recently, Zhu et al. [2019b] have proposed a new dataset composed
of natural images, but the ground truth images are from hand-crafted filters with
manually-tuned parameters. In essence, training the network based on their data is
still like approximating existing filters, which may be affected by their shortcomings
in differentiating between structures and textures. In fact, it is quite difficult to label
natural images for image smoothing because textures spread across the image and
most of them do not have regular patterns and clear boundaries. Moreover, some
textures are very tiny in scale, so annotating them is even harder. How to effectively
label natural images is still under our consideration.

7.2.2 Depth Completion

(1) Correcting LiDAR noise
In the sparse depth input, there always exist obvious errors (referred to as LiDAR

noise) around object boundaries, particularly with moving and small objects as well as
partially transparent ones [Merriaux et al., 2017; Qiu et al., 2019]. A few studies have
noted this noise problem and attempted to construct a confidence map to measure
the reliability of LiDAR scans [Eldesokey, 2018; Van Gansbeke et al., 2019; Qiu et al.,
2019]. For those points with potentially larger input errors, they lower the confidence
to separate them from the interpolation process. However, this decreases the number
of available depth points, making the input more sparse. Alternatively, we can correct
these noisy points prior to feeding them into the completion network. A further
problem here is that ground truth depth in real-world datasets is not purely dense,
i.e., not covering all positions. In that case, ground truth cannot supervise every valid
pixel in the input, so some noisy points cannot be corrected. To handle this, we can
take advantage of stereo fusion [Cheng et al., 2019] to generate fully dense pseudo
labels for correcting input LiDAR noise in a data-driven manner. Stereo information
is no longer required in testing. We think correcting LiDAR noise could further
improve the depth completion performance.
(2) Using other cues for guidance

The RGB image can indeed provide more structural cues, but it lacks geometric
information that is also necessary for depth completion. 3D information, e.g., point
clouds and surface normals, is more beneficial for reflecting the overall structure
of the scene, reducing ambiguities around occluded boundaries, and distinguishing
foreground/background objects. Existing studies [Xu et al., 2019; Chen et al., 2019]
extract geometric features from pre-generated 3D and incorporate them into depth
via a specially-designed feature fusion module. In our future work, we plan to obtain
these features directly from the 2D depth map by reconstructing 3D from it (similar
to image reconstruction in our work). This facilitates the acquisition of more depth-
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related features and reduces the needs of additional 3D data at test time. To this end,
we need to consider two main problems: (1) how to better extract 3D features from
depth (and/or the image if it is combined with depth); and (2) how to bridge the gap
between 2D and 3D features more effectively.
(3) Enhancing the accuracy in distant regions

The depth completion accuracy is always worse in distant regions than near ones
(see Fig. 5.7(c)). This is caused by the perspective effect where distant objects are
smaller and more densely distributed. In that case, object structures are less clear
and CNN features are less reliable and informative. To enhance the accuracy, we
can try two methods: (1) penalizing more on errors from distant regions (the MSE
loss discussed in Chapter 5 somewhat has this effect but it is not specially aimed for
distant points); and (2) designing a global structure guidance which gives a coarse
estimation of overall depth (only roughly depicting near and far regions and tem-
porarily ignoring detailed objects) and then refining it by recovering more details.
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