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Abstract. The nano-porosity of metakaolin-based geopolymers and the effect of heat-treatment 

on porosity have been studied with conventional and beam-based positron annihilation lifetime 

spectroscopy (PALS). Conventional PALS found significant nano-porosity in the geopolymers, 

as indicated by the presence in the PALS spectrum of two long lifetime components, 3 = 1.58 

ns and 4 = 47 ns, associated with pore diameters of approximately 0.5 and 3 nm respectively. 

The lifetime of the shorter component was found to decrease monotonically with successive 

heat treatments of 300°C and 600°C. Beam-based PALS, conducted at 5 keV, also indicated 

two long lifetime components, 3 = 4.84 ns and 4 = 54.6 ns. These are significantly longer than 

those observed by conventional PALS and the monotonic decrease of 3 with successive heat 

treatments was not observed. As the beam-based PALS probed only the near-surface region, 

with an average implantation depth of about 350 nm, these results suggest that the near-surface 

structure may vary significantly from that of the bulk. This could be an inherent property of the 

samples or an artefact caused by surface effects or sample outgassing.  

1. Introduction 

Geopolymers are a class of inorganic polymers that are based on aluminosilicates. They are a potential 

replacement for traditional building materials such as Portland cement because of their superior fire 

and acid resistance and their manufacture requires a much lower calcining temperature and produces 

only 10-20% of the CO2 per unit mass compared to ordinary cement. Other potential applications 

include, for example, immobilisers for radioactive and toxic waste, as refractory and fire resistant 

products, and composite materials for aircraft and automobile interiors [1]. 

Geopolymers are usually produced by adding a reactive aluminosilicate precursor, such as fly ash 

or metakaolin, to a highly alkaline silicate solution in order to facilitate the break-up of the primary 

aluminosilicate framework, leading to polymerisation and solidification. Then curing at 25-90°C in a 

humid atmosphere for hours or days completes the process. If the Si/Al molar ratio is ≥ 1.5 the 

resulting structure does not display long-range atomic order; it is amorphous with respect to X-ray 
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powder diffraction. The amorphous regions are comprised of SiO4 and AlO4 tetrahedra distributed 

randomly along cross-linked polymeric chains creating a complicated network of pores [1-3]. 

The mechanical properties of cementitious materials are heavily influenced by porosity, since the 

volume and size distribution of pores control both their strength and durability [4, 5]. A detailed 

characterisation of the pore structure and the factors that affect it are thus crucial to advancing the 

design of these materials; however, classical porosimetry methods such as mercury intrusion and gas 

adsorption cannot always be relied upon to extract information on pores smaller than a few 

nanometres [3-5]. Positron annihilation lifetime spectroscopy (PALS) possesses several advantages 

over these conventional techniques. It is sensitive to both open and closed porosity, and pores in the 

size range of 0.1-10 nm typically can be resolved. In this paper the porosity of metakaolin-based 

geopolymers and the effect of heat treatment on porosity has been investigated by both beam-based 

and conventional PALS.  

2. Experimental procedure 

The geopolymers studied have Si/Al and Na/Al molar ratios of 2.0 and 1.0 respectively. Metakaolin is 

produced by heating kaolinite at 750°C for 15 hours in air, which renders the kaolinite X-ray 

amorphous.  The batch compositions consisted of 33.7% metakaolin, 63.0% sodium silicate D solution 

and 3.3% deionized water. The sodium silicate solution was added to a mixture containing the various 

additives, and after agitating for 5 minutes, the composite solution was poured into a polycarbonate 

cylindrical jar and covered with a screw cap. The samples were shaken for 5 minutes on a vibrating 

table to de-air. They were cured at ambient for 24 hours and then at 40°C for a further 24 hours. To 

ascertain the effect of heat treatment on porosity, two of the samples were heated in air at either 300°C 

or 600°C for 3 hours.  

Conventional PALS measurements were obtained using a fast-fast spectrometer with detectors 

comprising of a BC418 plastic scintillators coupled to a Burle 8850 photomultiplier tube.  In these 

measurements about 30 µCi of 
22

NaCl was deposited on 7µm Kapton foil (grade HN from 

Goodfellow) and sandwiched between two identical geopolymer samples. The time resolution of the 

system is about 200 ps as determined from analysis of a spectrum of high purity, annealed nickel. The 

spectra comprise of at least 2 million counts and have been analysed using PAScual version 1.3.0 [6].  

Beam-based PALS was performed at the Australian Positron Beamline [7], which is based on the 

Surko buffer-gas trap system. This technique has been implemented to produce sub-nanosecond 

positron pulses, enabling positron lifetime studies of materials to be performed. For gamma detection a 

BaF2 scintillator and an XP2020Q photomultiplier are employed. Timing information is obtained using 

a Comtech P7889 Fast Timing Card and the timing resolution of the system was approximately 800 

ps. Analysis of lifetime spectra has been carried out with custom-written Matlab software CAMSfit 

[7]. 

3. Results and discussion 

Table 1 shows results obtained with conventional and beam-based PALS for the three geopolymer 

samples studied, one without any heat treatment, and the others after being heated to either 300°C or 

600°C. With conventional PALS, four lifetime components could be extracted from the spectra for 

each sample. The two shortest components are associated with p-Ps and free positron annihilation in 

the bulk of the material, as well as annihilations in the source material and supporting foil. One of the 

longer lifetime components (3 = 1.58 ns) extracted from the spectrum of the untreated geopolymer is 

close to the approximate 1.7 ns o-Ps lifetime of free water [8]. Similar lifetimes have also been 

observed in cement and the intensity of this spectral component has been used to monitor changes in 

hydration over time [4, 5].   

Heat treatments of 300°C and 600°C led to a monotonic decrease in 3 and after heating to 300°C 

the intensity of this component (I3) decreased by a factor of about 1.5. The decrease in the lifetime and 

intensity after heat treatment may be due to the removal of free water from pores, because heating to 

greater than 150°C is sufficient for this purpose [9]. The decrease in the lifetime after the 600°C heat 
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treatment could be due to the early stages of a transition to a dense glass ceramic. However, the 

intensity (I3) is approximately the same as that of the 300°C sample. Using the RTE model [10] these 

longer lifetimes correspond to pore diameters in the range of 0.5 nm.  

The behaviour of 3 is in broad agreement with the results of Vance et al [11], where conventional 

PALS was performed on metakaolin geopolymers subjected to heat treatments over a larger 

temperature range. However, Vance et al did not observe the fourth lifetime component, 4, of about 

50 ns observed in these samples, corresponding to pore sizes in the range of 3 nm. The intensity of this 

component varied from 7 to 9%, however, it did not show a dependence on heat treatment, as identical 

results were obtained for the untreated geopolymers and the 600°C sample. The absence of strong 

temperature dependence could suggest that this component is associated with o-Ps annihilation in 

empty pores, that is, pores that do not contain water.    

There are differences in the lifetimes and intensities obtained with conventional and beam-based 

PALS. Like conventional PALS, beam-based PALS produces two long lifetime components; however, 

there are significant differences in the lifetimes measured using the two techniques. 3 for beam-based 

PALS is larger by a factor of 2.8-4.4, and the monotonic decrease in lifetime with heating seen with 

conventional PALS is not observed. The trend in the intensity of this component is similar however to 

conventional PALS and I3 decreases by a factor of about 2.3 after the 300°C heat treatment. Using the 

RTE model, this lifetime can be equated to pores with diameter 0.9-1.2 nm. The 4 values from beam-

based PALS are in closer agreement to those from conventional PALS; however, they still differ by 

about 14%. As with the data from conventional PALS, this component does not display a strong 

dependence on heat treatment and would correspond to pores of diameter 2.8-3.4 nm.  

In conventional PALS the energy spectrum of 
22

Na positrons has its peak at 0.545 MeV - hence 

positrons penetrate deep into the sample and the signal is averaged over a large volume (thus in this 

case positrons are implanted within about 1mm of the geopolymers’ surface). In contrast, beam-based 

PALS provides the means to study near-surface layers and to obtain information as a function of 

depth. In this study the measurements were conducted at an incident energy of 5 keV; for which 

99.9% of positrons thermalise within 1µm of the surface and the mean implantation depth is about 350 

nm [12]. The differences observed could suggest that the porosity in the near surface region differs 

from that of the bulk material. However, these differences may also be the result of outgassing, or 

surface effects associated with beam-based PALS. Outgassing of the samples could selectively modify 

the near surface region, giving rise to significant differences between the two methods. Beam-based 

PALS was performed at approximately 10
-7

 Torr and outgassing of the samples was observed; 

conventional PALS measurements were then carried out in air. PALS studies of zeolites and 

mesoporous silicates performed at different vacuum levels reveal that very long lifetime components 

emerge when measurements are performed under vacuum conditions [14]. This is largely attributed to 

the quenching of ortho-Positronium by air; such dramatic differences are not seen in the data presented 

here. Only a moderate increase in 3 is seen in the beam-based data and the 4 values are comparable. 

Surface effects associated with Positronium escaping from the surface and annihilating outside of the 

viewing angle of the detector may distort beam-based PALS data. To reduce the contribution from 

surface effects, and to facilitate a better comparison between beam-based and conventional PALS, 

future studies will be performed over a wider range of energies (0.5-20 keV).   

4. Conclusion  

Studies of metakaolin-based geopolymers with conventional and beam-based PALS reveal two long 

lifetime components, indicating that the geopolymers contain significant nano-porosity. 3 obtained 

with conventional PALS is close to that of free water and a monotonic decrease in the lifetime and 

intensity of this spectral component is observed upon heating to 300°C and then 600°C, which may 

signal the removal of free water. 3 for beam-based PALS conducted at 5 keV is larger by a factor of 

2.8-4.4 and the decrease in lifetime with heating is not observed. This could suggest that the porosity 

in the near-surface region is greater than the average porosity in the underlying bulk. However, we 

cannot eliminate sample outgassing or surface effects as the underlying cause of these differences.  
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Table 1. Lifetimes and intensities obtained with conventional and beam-based PALS 

for the three geopolymers studied. Standard deviations are given in the brackets.  

Geopolymer 

treatment 

Conventional PALS Beam based PALS at 5 keV 

 3 (ns) I3 (%) 4 (ns) I4 (%) 3 (ns) I3 (%) 4 (ns) I4 (%) 

No heat 1.58  

(0.02) 

6.2  

(0.1) 

47 (2) 7.2  

(0.2) 

4.84 3.1 54.6 6.0 

300°C 1.42  

(0.03) 

4.1  

(0.3) 

50 (2) 9.2  

(0.6) 

6.22 1.3 58.5 6.4 

600°C 1.34  

(0.03) 

4.3  

(0.2) 

47 (2) 7.4  

(0.2) 

3.70 0.9 41.4 4.1 
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Figure 1. Lifetime spectra obtained with conventional PALS of an untreated geopolymer and a 

geopolymer heated at 600°C for 3 hours  
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