Relationship between poles and zeros of input-output and chain-scattering systems

Guangying Zhang ${ }^{\mathrm{a}, 1}$, Alexander Lanzon ${ }^{\mathrm{b}, \mathrm{c}, *, 2}$
${ }^{a}$ The Department of Control Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
${ }^{\mathrm{b}}$ Research School of Information Sciences and Engineering, The Australian National University, Canberra, ACT 0200, Australia
${ }^{\mathrm{c}}$ National ICT Australia Ltd., Locked Bag 8001, Canberra ACT 2601, Australia

Received 22 April 2004; received in revised form 17 August 2005; accepted 18 August 2005
Available online 13 October 2005

Abstract

A system is frequently represented by transfer functions in an input-output characterization. However, such a system (under mild assumptions) can also be represented by transfer functions in a port characterization, frequently referred to as a chain-scattering representation. Due to its cascade properties, the chain-scattering representation is used throughout many fields of engineering. This paper studies the relationship between poles and zeros of input-output and chain-scattering representations of the same system.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Input-output systems; Chain-scattering systems; Poles; Zeros; Two-port networks

1. Introduction

The chain-scattering representation is used extensively in various fields of engineering to represent the scattering properties of a physical system [9], especially in circuit theory where it has been widely used to deal with the cascade connection of circuits originating in analysis and synthesis problems [3,15,14]. In circuit theory, the chain-scattering representation is also called a scattering matrix of a twoport network [22]. Compared with the usual input-output (I/O) representation (Fig. 1), the chain-scattering representation (Fig. 2) is in fact an alternative way of representing a system. Cascade structure is the main property of the

[^0]chain-scattering representation, which enables feedback in the I/O representation (Fig. 3) to be represented simply as a matrix multiplication in the chain-scattering representation (Fig. 4). Duality of transformation between the chainscattering transformation and its inverse is its another useful property in the analysis of such systems [8,16]. Due to these features, Kimura [9] and others used the chain-scattering representation to provide a unified framework of cascade synthesis for H_{∞} control theory [11-13,17]. Within this cascade framework, the H_{∞} control problem is reduced to a factorization problem called a J-lossless factorization.

Pole-zero analysis is one of the most elementary tools of control theory to study the properties of a system [1,2,18]. It is consequently desirable to understand the connection between poles and zeros of the I/O representation with poles and zeros of the corresponding chain-scattering representation. For example, in deriving necessary and sufficient conditions for the solvability of the H_{∞} control problem in terms of a J-lossless factorizations, one would typically impose certain conditions on the poles and zeros of the chain-scattering system [9]. It is natural to try to understand what these conditions correspond to in the I/O representation.

Nomenclature

$\mathbb{R}[s] \quad$ polynomial matrices with real coefficients
$\mathbb{R}_{P}(s) \quad$ proper real rational transfer function matrices
\mathbb{C} field of complex numbers
$\Omega \quad$ subset in \mathbb{C}
$\operatorname{pole}(G) \quad$ the set of all poles of $G(s) \in \mathbb{R}_{P}(s)$ including repeated poles ${ }^{3}$
zero $(G) \quad$ the set of all transmission zeros of $G(s) \in \mathbb{R}_{P}(s)$ including repeated zeros ${ }^{3}$
$\left\{\Gamma_{1}, \Gamma_{2}\right\} \quad$ the set of all elements of set Γ_{1} and set Γ_{2} including repetitions, e.g. if $\Gamma_{1}=\{1,1,2\}$ and $\Gamma_{2}=\{1,3\}$, then $\left\{\Gamma_{1}, \Gamma_{2}\right\}=\{1,1,1,2,3\}$
$\mathbf{R H}_{\infty} \quad$ the set of all stable proper real rational transfer function matrices
$\|G\|_{\infty} \quad$ the H_{∞}-norm of $G(s) \in \mathbf{R H}_{\infty}$
$\mathbf{B H}_{\infty} \quad$ a subset of $\mathbf{R} \mathbf{H}_{\infty}$ containing all $G(s) \in \mathbf{R H}_{\infty}$ satisfying $\|G\|_{\infty}<1$

Numerous papers have been written on poles and zeros of linear systems. Notable publications on zeros of multivariable systems in the period 1970-1987 are surveyed in [19]. [22] presents relationships between the transmission zeros of an impedance and the two-port impedance parameters $z_{i j}(s)(i, j=1,2)$ or the chain parameters of its Darlington equivalent. [4,5] investigate the pole/zero analysis of

Fig. 1. Input-output representation.

Fig. 2. Chain-scattering representation.

Fig. 3. Feedback connection in I/O representation.

Fig. 4. Cascade connection in chain-scattering representation.

[^1]analog circuits. [20] studies a problem of robust pole placement design for a system with zeros located on the boundary of the stability region.

This paper will study the relationship between poles and zeros of I/O and chain-scattering representations. Firstly, the I/O and chain-scattering representations are presented. Secondly, explicit relationships between poles and zeros of I/O and chain-scattering representations are derived. Lastly, some application examples are given.

2. I/O and chain-scattering representations

Consider a multiple-input multiple-output (MIMO) system with two kinds of inputs $\left(b_{1}, b_{2}\right)$ and two kinds of outputs $\left(a_{1}, a_{2}\right)$, as shown in Fig. 1, represented as
$\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]=P(s)\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]=\left[\begin{array}{ll}P_{11}(s) & P_{12}(s) \\ P_{21}(s) & P_{22}(s)\end{array}\right]\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$.

The chain-scattering representation of $P(s)$, as shown in Fig. 2 , is

$$
\left[\begin{array}{l}
a_{1} \tag{2}\\
b_{1}
\end{array}\right]=G(s)\left[\begin{array}{l}
b_{2} \\
a_{2}
\end{array}\right]=\left[\begin{array}{ll}
G_{11}(s) & G_{12}(s) \\
G_{21}(s) & G_{22}(s)
\end{array}\right]\left[\begin{array}{l}
b_{2} \\
a_{2}
\end{array}\right]
$$

where

$$
\begin{align*}
G(s) & : \\
& =\operatorname{CHAIN}(P) \\
& =\left[\begin{array}{cc}
P_{12}-P_{11} P_{21}^{-1} P_{22} & P_{11} P_{21}^{-1} \\
-P_{21}^{-1} P_{22} & P_{21}^{-1}
\end{array}\right] \tag{3}\\
& =\left[\begin{array}{cc}
I & P_{11} \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
P_{12} & 0 \\
0 & P_{21}^{-1}
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
-P_{22} & I
\end{array}\right]
\end{align*}
$$

and exists if $P_{21}(s)$ is invertible in $\mathbb{R}_{P}(s)$.

Then the mapping from chain-scattering representation to I/O representation is

$$
\begin{align*}
P(s) & =\operatorname{CHAIN}^{-1}(G) \\
& =\left[\begin{array}{cc}
G_{12} G_{22}^{-1} & G_{11}-G_{12} G_{22}^{-1} G_{21} \\
G_{22}^{-1} & -G_{22}^{-1} G_{21}
\end{array}\right] \\
& =\left[\begin{array}{cc}
I & G_{12} \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
G_{11} & 0 \\
0 & G_{22}^{-1}
\end{array}\right]\left[\begin{array}{cc}
0 & I \\
I & -G_{21}
\end{array}\right], \tag{4}
\end{align*}
$$

where $G_{22}(s)=P_{21}^{-1}(s)$ is invertible in $\mathbb{R}_{P}(s)$.

3. Pole-zero relations between I/O and chain-scattering systems

Poles and transmission zeros of any real rational transfer function matrix $G(s) \in \mathbb{R}_{P}(s)$ are obtained from its socalled McMillan form $U(s) G(s) V(s)=M(s)$ through some pre- and post-unimodular polynomial matrices $U(s), V(s) \in$ $\mathbb{R}[s]$. Please refer to standard texts such as $[6,23]$ for a McMillan decomposition of a real rational transfer function matrix and related definitions of poles and (transmission) zeros.

The following lemma studies the poles and transmission zeros of a cascade connection of MIMO systems.

Lemma 1. Given a cascade connection $G(s)=G_{1}(s) G_{2}(s)$.
(1) If $G_{1}(s)$ has full column normal rank ${ }^{4}$ or $G_{2}(s)$ has full row normal rank, then $\operatorname{zero}(G) \subset\left\{\operatorname{zero}\left(G_{1}\right)\right.$, $\left.\operatorname{zero}\left(G_{2}\right)\right\}$;
(2) $\operatorname{pole}(G) \subset\left\{\operatorname{pole}\left(G_{1}\right)\right.$, pole $\left.\left(G_{2}\right)\right\}$.

Proof. (1) Suppose $G_{1}(s)$ has full column normal rank. Then the McMillan decompositions $[6,23]$ of $G_{1}(s)$ and $G_{2}(s)$ are given by

$$
\begin{aligned}
& G_{1}(s)=U_{1}(s)\left[\begin{array}{c}
\wedge_{1}(s) \\
0
\end{array}\right] V_{1}(s), \\
& G_{2}(s)=U_{2}(s)\left[\begin{array}{cc}
\wedge_{2}(s) & 0 \\
0 & 0
\end{array}\right] V_{2}(s),
\end{aligned}
$$

where $U_{i}(s), \quad V_{i}(s)$ are unimodular polynomial matrices and $\wedge_{i}(s)$ are diagonal square transfer function matrices with full normal rank. Then,

$$
\begin{align*}
G(s)= & G_{1}(s) G_{2}(s) \\
= & U_{1}(s)\left[\begin{array}{cc}
\wedge_{1}(s) V_{1}(s) U_{2}(s)\left[\begin{array}{c}
\wedge_{2}(s) \\
0
\end{array}\right] & 0 \\
0
\end{array}\right] \\
& \times V_{2}(s) \tag{5}
\end{align*}
$$

[^2]It is clear that
$F(s):=\wedge_{1}(s) V_{1}(s) U_{2}(s)\left[\begin{array}{c}\wedge_{2}(s) \\ 0\end{array}\right]$
has full column normal rank. Suppose $z_{0} \in \operatorname{zero}(G)$, which is equivalent to $z_{0} \in \operatorname{zero}(F)$. Then there exists a $0 \neq u_{0} \in$ \mathbb{C}^{k} such that $F\left(z_{0}\right) u_{0}=0[23]$. If $z_{0} \notin \operatorname{zero}\left(\wedge_{2}\right)$, then
$0 \neq V_{1}\left(z_{0}\right) U_{2}\left(z_{0}\right)\left[\begin{array}{c}\wedge_{2}\left(z_{0}\right) \\ 0\end{array}\right] u_{0} \in \mathbb{C}^{r}$.

And thus $z_{0} \in \operatorname{zero}\left(\wedge_{1}\right)$. Hence a transmission zero of $F(s)$ is a transmission zero of either $\wedge_{1}(s)$ or $\wedge_{2}(s)$. This is equivalent to the statement that a transmission zero of $G(s)$ is a transmission zero of either $G_{1}(s)$ or $G_{2}(s)$. That is $\operatorname{zero}(G) \subset\left\{\operatorname{zero}\left(G_{1}\right)\right.$, zero $\left.\left(G_{2}\right)\right\}$.

Similarly, a dual result can be proved that if $G_{2}(s)$ has full row normal rank, then $\operatorname{zero}(G) \subset\left\{\operatorname{zero}\left(G_{1}\right)\right.$, zero $\left.\left(G_{2}\right)\right\}$.
(2) It is trivial to show that $\operatorname{pole}(G) \subset\left\{\operatorname{pole}\left(G_{1}\right)\right.$, pole $\left.\left(G_{2}\right)\right\}$.

Now, we are ready to give some pole-zero relations between I/O and chain-scattering representations in the following theorem.

Theorem 2. The poles and transmission zeros of chainscattering system $G(s)=\operatorname{CHAIN}(P)$ have the following relations with the poles and transmission zeros of I/O system $P(s)$:
(1) $\operatorname{zero}(G) \subset\left\{\operatorname{pole}\left(P_{11}\right), \operatorname{zero}\left(P_{12}\right)\right.$, pole $\left(P_{21}\right)$, pole $\left.\left(P_{22}\right)\right\}$;
(2) $\operatorname{pole}(G) \subset\left\{\operatorname{pole}\left(P_{11}\right)\right.$, pole $\left(P_{12}\right)$, zero $\left(P_{21}\right)$, pole $\left.\left(P_{22}\right)\right\}$;
(3) zero $\left(P_{21}\right) \subset \operatorname{pole}(G)$;
(4) zero $\left(P_{12}\right) \subset \operatorname{zero}(G)$.

Proof. (1) In (3),
$G(s)=\left[\begin{array}{cc}I & P_{11} \\ 0 & I\end{array}\right]\left[\begin{array}{cc}P_{12} & 0 \\ 0 & P_{21}^{-1}\end{array}\right]\left[\begin{array}{cc}I & 0 \\ -P_{22} & I\end{array}\right]$.

Since both $\left[\begin{array}{cc}I & P_{11} \\ 0 & I\end{array}\right]$ and $\left[\begin{array}{cc}I & 0 \\ -P_{22} & I\end{array}\right]$ have full normal rank, using Lemma 1, we have

$$
\begin{aligned}
\operatorname{zero}(G) \subset\{ & \operatorname{zero}\left(\left[\begin{array}{cc}
I & P_{11} \\
0 & I
\end{array}\right]\right) \\
& \operatorname{zero}\left(\left[\begin{array}{cc}
P_{12} & 0 \\
0 & P_{21}^{-1}
\end{array}\right]\right) \\
& \left.\operatorname{zero}\left(\left[\begin{array}{cc}
I & 0 \\
-P_{22} & I
\end{array}\right]\right)\right\}
\end{aligned}
$$

It is clear that

$$
\begin{aligned}
\operatorname{zero}\left(\left[\begin{array}{cc}
I & P_{11} \\
0 & I
\end{array}\right]\right) & =\operatorname{pole}\left(\left[\begin{array}{cc}
I & P_{11} \\
0 & I
\end{array}\right]^{-1}\right) \\
& =\operatorname{pole}\left(\left[\begin{array}{cc}
I & -P_{11} \\
0 & I
\end{array}\right]\right) \\
& =\operatorname{pole}\left(P_{11}\right) \\
\operatorname{zero}\left(\left[\begin{array}{cc}
P_{12} & 0 \\
0 & P_{21}^{-1}
\end{array}\right]\right) & =\left\{\operatorname{zero}\left(P_{12}\right), \operatorname{pole}\left(P_{21}\right)\right\} \\
\operatorname{zero}\left(\left[\begin{array}{cc}
I & 0 \\
-P_{22} & I
\end{array}\right]\right) & =\operatorname{pole}\left(\left[\begin{array}{cc}
I & 0 \\
-P_{22} & I
\end{array}\right]^{-1}\right) \\
& =\operatorname{pole}\left(\left[\begin{array}{cc}
I & 0 \\
P_{22} & I
\end{array}\right]\right) \\
& =\operatorname{pole}\left(P_{22}\right)
\end{aligned}
$$

Thus, zero $(G) \subset\left\{\operatorname{pole}\left(P_{11}\right), \quad \operatorname{zero}\left(P_{12}\right), \quad \operatorname{pole}\left(P_{21}\right)\right.$, pole $\left.\left(P_{22}\right)\right\}$.
(2) Using Lemma 1 and (3), we have
$\operatorname{pole}(G) \subset\left\{\operatorname{pole}\left(\left[\begin{array}{cc}I & P_{11} \\ 0 & I\end{array}\right]\right)\right.$,

$$
\begin{aligned}
& \text { pole }\left(\left[\begin{array}{cc}
P_{12} & 0 \\
0 & P_{21}^{-1}
\end{array}\right]\right) \\
& \left.\operatorname{pole}\left(\left[\begin{array}{cc}
I & 0 \\
-P_{22} & I
\end{array}\right]\right)\right\}
\end{aligned}
$$

$$
=\left\{\operatorname{pole}\left(P_{11}\right), \operatorname{pole}\left(P_{12}\right),\right.
$$

$$
\left.\operatorname{zero}\left(P_{21}\right), \operatorname{pole}\left(P_{22}\right)\right\}
$$

(3) In (3),
$G(s)=\left[\begin{array}{cc}P_{12}-P_{11} P_{21}^{-1} P_{22} & P_{11} P_{21}^{-1} \\ -P_{21}^{-1} P_{22} & P_{21}^{-1}\end{array}\right]$.
It is easy to see that $\operatorname{zero}\left(P_{21}\right)=\operatorname{pole}\left(P_{21}^{-1}\right) \subset \operatorname{pole}(G)$.
(4) Perform a McMillan decomposition of $P_{11}(s)$ as $P_{11}(s)=U(s) N_{\alpha}(s) N_{\beta}^{-1}(s) V(s)$, where $U(s), V(s)$ are unimodular polynomial matrices, and $N_{\alpha}(s), N_{\beta}(s)$ are given by
$N_{\alpha}(s):=\left[\begin{array}{cccc}\alpha_{1}(s) & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & \alpha_{r}(s) & 0 \\ 0 & \cdots & 0 & 0\end{array}\right]_{m \times n}$,
$N_{\beta}(s):=\left[\begin{array}{cccc}\beta_{1}(s) & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & \beta_{r}(s) & 0 \\ 0 & \cdots & 0 & I\end{array}\right]_{n \times n}$,
where $\alpha_{i}(s), \beta_{i}(s)$ are scalar polynomials.

Then from (3), we have

$$
\begin{align*}
G(s)= & {\left[\begin{array}{cc}
I & P_{11} \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
P_{12} & 0 \\
-P_{21}^{-1} P_{22} & P_{21}^{-1}
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
I & U N_{\alpha} N_{\beta}^{-1} V \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
P_{12} & 0 \\
-P_{21}^{-1} P_{22} & P_{21}^{-1}
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
U & 0 \\
0 & V^{-1} N_{\beta}
\end{array}\right]\left[\begin{array}{cc}
I & N_{\alpha} \\
0 & I
\end{array}\right] } \\
& \times\left[\begin{array}{cc}
U^{-1} & 0 \\
0 & N_{\beta}^{-1} V
\end{array}\right]\left[\begin{array}{cc}
P_{12} & 0 \\
-P_{21}^{-1} P_{22} & P_{21}^{-1}
\end{array}\right] . \tag{6}
\end{align*}
$$

Thus,

$$
\begin{align*}
& {\left[\begin{array}{cc}
U^{-1} & 0 \\
0 & N_{\beta}^{-1} V
\end{array}\right] G(s)} \\
& \quad=\left[\begin{array}{cc}
I & N_{\alpha} \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
U^{-1} & 0 \\
0 & N_{\beta}^{-1} V
\end{array}\right]\left[\begin{array}{cc}
P_{12} & 0 \\
-P_{21}^{-1} P_{22} & P_{21}^{-1}
\end{array}\right] \\
& \quad=\left[\begin{array}{cc}
I & N_{\alpha} \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
U^{-1} P_{12} & 0 \\
-N_{\beta}^{-1} V P_{21}^{-1} P_{22} & N_{\beta}^{-1} V P_{21}^{-1}
\end{array}\right] \tag{7}
\end{align*}
$$

Then we have

$$
\begin{aligned}
& \operatorname{zero}\left(P_{12}\right) \\
& \quad=\operatorname{zero}\left(U^{-1} P_{12}\right) \\
& \quad \subset \operatorname{zero}\left(\left[\begin{array}{cc}
U^{-1} P_{12} & 0 \\
-N_{\beta}^{-1} V P_{21}^{-1} P_{22} & N_{\beta}^{-1} V P_{21}^{-1}
\end{array}\right]\right) \\
& \quad=\operatorname{zero}\left(\left[\begin{array}{cc}
I & N_{\alpha} \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
U^{-1} P_{12} & 0 \\
-N_{\beta}^{-1} V P_{21}^{-1} P_{22} & N_{\beta}^{-1} V P_{21}^{-1}
\end{array}\right]\right) \\
& \quad=\operatorname{zero}\left(\left[\begin{array}{cc}
U^{-1} & 0 \\
0 & N_{\beta}^{-1} V
\end{array}\right] G\right)
\end{aligned}
$$

$$
\begin{equation*}
\subset \operatorname{zero}(G) \tag{8}
\end{equation*}
$$

since $\left[\begin{array}{cc}I & N_{\alpha} \\ 0 & I\end{array}\right]$ is also a unimodular polynomial matrix and $\left[\begin{array}{cc}U^{-1} & 0 \\ 0 & N_{\beta}^{-1} V\end{array}\right]$ has full normal rank and has no transmission zeros. That is zero $\left(P_{12}\right) \subset \operatorname{zero}(G)$.

In order to visualize the relationship between poles and zeros of I/O and chain-scattering representations, we will next analyze situations where $P(s)$ or $G(s)$ has no poles or zeros in some region in the complex plane \mathbb{C}. Suppose Ω is a subset of \mathbb{C}, as shown in Fig. 5, which can be any region of the s-plane. The following is a corollary to Theorem 2.

Corollary 3. Suppose $P(s)$ has no poles in Ω. Then the following results hold:
(1) $G(s)$ has no transmission zeros in Ω if and only if $P_{12}(s)$ has no transmission zeros in Ω;
(2) $G(s)$ has no poles in Ω if and only if $P_{21}(s)$ has no transmission zeros in Ω.

Fig. 5. Subset Ω in \mathbb{C}.
We now give a slightly different result that requires a milder assumption in the corollary statement. This result considers the situation where $G(s)$ has no poles nor zeros in Ω and gives a necessary and sufficient condition for the case.

Corollary 4. Suppose $P_{21}(s)$ has no poles in Ω. Then $G(s)$ has no poles nor transmission zeros in Ω if and only if $P(s)$ has no poles in Ω and $P_{12}(s), P_{21}(s)$ have no transmission zeros in Ω.

Proof. (\Leftarrow) It is easy to prove using Corollary 3.
(\Rightarrow) First, we will prove that $P_{21}(s)$ has no transmission zeros in Ω and $P(s)$ has no poles in Ω. From (3),
$G(s)=\left[\begin{array}{cc}P_{12}-P_{11} P_{21}^{-1} P_{22} & P_{11} P_{21}^{-1} \\ -P_{21}^{-1} P_{22} & P_{21}^{-1}\end{array}\right]$.
It is easy to see that if $G(s)$ has no poles in Ω, then none of $P_{21}^{-1}, P_{11} P_{21}^{-1}, P_{21}^{-1} P_{22}$ and $P_{12}-P_{11} P_{21}^{-1} P_{22}$ has poles in Ω. Since $P_{21}(s)$ is also assumed to have no poles in $\Omega, P_{21}(s)$ has no poles nor zeros in Ω. Consequently, also $P_{11}(s), P_{22}(s), P_{12}(s)$ have no poles in Ω which in turn implies that $P(s)$ has no poles in Ω. Next, from result (4) of Theorem 2, if $G(s)$ has no transmission zeros in $\Omega, P_{12}(s)$ has no transmission zeros in Ω.

4. Dual results

This section contains dual results to Theorem 2 and Corollaries 3 and 4, given for completeness. Proofs are not given as they are similar to those given in the previous section.

Theorem 5. The poles and transmission zeros of I/O system $P(s)$ have the following relations with the poles and transmission zeros of chain-scattering system $G(s)=\operatorname{CHAIN}(P)$:
(1) $\operatorname{zero}(P) \subset\left\{\operatorname{zero}\left(G_{11}\right)\right.$, pole $\left(G_{12}\right)$, pole $\left(G_{21}\right)$, $\left.\operatorname{pole}\left(G_{22}\right)\right\}$;
(2) $\operatorname{pole}(P) \subset\left\{\operatorname{pole}\left(G_{11}\right)\right.$, pole $\left(G_{12}\right)$, $\operatorname{pole}\left(G_{21}\right)$, $\left.\operatorname{zero}\left(G_{22}\right)\right\}$;
(3) $\operatorname{zero}\left(G_{22}\right) \subset \operatorname{pole}(P)$;
(4) $\operatorname{zero}\left(G_{11}\right) \subset \operatorname{zero}(P)$.

Corollary 6. Suppose $G(s)$ has no poles in Ω. Then the following results hold:
(1) $P(s)$ has no transmission zeros in Ω if and only if $G_{11}(s)$ has no transmission zeros in Ω;
(2) $P(s)$ has no poles in Ω if and only if $G_{22}(s)$ has no transmission zeros in Ω.

Corollary 7. Suppose $G_{22}(s)$ has no poles in Ω. Then $P(s)$ has no poles nor transmission zeros in Ω if and only if $G(s)$ has no poles in Ω and $G_{11}(s), G_{22}(s)$ have no transmission zeros in Ω.

5. Application examples

In this section, we will use the above results in some application examples.

Consider a generalized plant $P(s) \in \mathbb{R}_{P}(s)$ described in the I/O representation (1). If a_{2} is fed back to b_{2} by
$b_{2}(s)=K(s) a_{2}(s)$,
where $K(s) \in \mathbb{R}_{P}(s)$ is a controller, then the closed-loop transfer function $\Phi(s)$ from b_{1} to a_{1} is given by $a_{1}(s)=$ $\Phi(s) b_{1}(s)$. This closed-loop transfer function $\Phi(s)$ is given in the following expression:

$$
\begin{align*}
\Phi(s) & =\mathrm{LF}(P, K) \\
& :=P_{11}+P_{12} K\left(I-P_{22} K\right)^{-1} P_{21} \tag{10}
\end{align*}
$$

$\mathrm{LF}(P, K)$ is called a linear fractional transformation (LFT) in the control literature. See $[6,9]$ for extensive discussions on properties of LFTs.

The same relation can be described in terms of the chainscattering representation (2). Substitution of (9) in (2) yields

$$
\begin{align*}
\Phi(s) & =\mathrm{HM}(G, K) \\
: & =\left(G_{11} K+G_{12}\right)\left(G_{21} K+G_{22}\right)^{-1} \tag{11}
\end{align*}
$$

$\mathrm{HM}(G, K)$ is called a homographic transformation, which was used in classical circuit theory. Again, see $[6,9]$ for extensive discussions on properties of homographic transformations. In classical circuit theory, (9) represents the "termination" of a port by a load. The "termination" of a chain-scattering representation is thus the same as feedback in an I/O representation of the same system.

The chain-scattering representation is for example used to provide a framework of cascade synthesis for H_{∞} control theory. Within this cascade framework, the H_{∞} control problem is reduced to a factorization problem called a J lossless factorization. See $[8,9]$ for a definition of a J-lossless factorization.

The "normalized H_{∞} control problem" is to synthesize a stabilizing controller $K(s)$ such that the closed-loop transfer function $\Phi(s)$ given in (10) or (11) satisfies $\|\Phi\|_{\infty}<1$. The following result has been established in $[8,9]$.

Theorem 8. Assume that the generalized plant $P(s)$ given in (1) has a chain-scattering representation $G(s)=\operatorname{CHAIN}(P)$ such that $G(s)$ is left invertible and has no poles nor zeros on the $j \omega$-axis. Then the normalized H_{∞} control problem

Fig. 6. Unity feedback scheme.
is solvable for $P(s)$ if and only if $G(s)$ has a J-lossless factorization ${ }^{5}$
$G(s)=\operatorname{CHAIN}(P)=\Theta(s) \Pi(s)$,
where $\Theta(s)$ is a J-lossless matrix ${ }^{5}$ and $\Pi(s)$ is unit in $\mathbf{R} \mathbf{H}_{\infty}$. In that case, $K(s)$ is a desired controller if and only if
$K(s)=\mathrm{HM}\left(\Pi^{-1}, S\right) \quad$ for an $S(s) \in \mathbf{B H}_{\infty}$.
From Corollary 4, we can see that $G(s)=\operatorname{CHAIN}(P)$ having no poles nor zeros on the $j \omega$-axis is a key in this theorem. Using the derived results in Section 3, we will understand what this assumption condition corresponds to in the I/O representation via some examples.
(1) Sensitivity reduction problem: Consider the feedback interconnection given in Fig. 6. In a sensitivity reduction problem, the designer is interested in synthesizing a $K(s)$ such that the transfer function $\widehat{\Phi}(s)$ from " r " to " e " is made as small as possible over a specified frequency range Ψ, thereby forcing " y " to closely follow " r ". This transfer function $\widehat{\Phi}(s)$ is given by $\widehat{\Phi}(s)=(I+H(s) K(s))^{-1}$.

Choosing an appropriate (square) frequency weighting function $W(s)$ which is significant on $s=j \omega \in \Psi$, the problem is reduced to finding a controller $K(s)$ that stabilizes the closed-loop system of Fig. 6 and satisfies $\|W \widehat{\Phi}\|_{\infty}<1$. It is clear (by inspection) that if we set the generalized plant
$P(s)=\left[\begin{array}{cc}W(s) & -W(s) H(s) \\ I & -H(s)\end{array}\right]$,
then $\Phi(s):=W(s) \widehat{\Phi}(s)=\operatorname{LF}(P, K)$.
Then, via (3),
$G(s)=\operatorname{CHAIN}(P)=\left[\begin{array}{cc}0 & W(s) \\ H(s) & I\end{array}\right]$.
Hence the sensitivity reduction problem specified by $\|W \widehat{\Phi}\|_{\infty}<1$ reduces to solving the normalized H_{∞} control problem for the generalized plant given by (13). Since $P_{21}(s)$ has no poles on the $j \omega$-axis, we can use Corollary 4 to derive an equivalent condition to the assumption in Theorem 8 that $G(s)$ has no poles nor zeros on the $j \omega$ axis. In fact, this equivalent condition is that $P(s)$ has no poles on the $j \omega$-axis and $P_{12}(s), P_{21}(s)$ have no zeros on the $j \omega$-axis. From (13), this reduces to $W(s)$ and $H(s)$ having no poles on the $j \omega$-axis and $W(s) H(s)$ having no transmission zeros on the $j \omega$-axis.

[^3](2) Robust stabilization problems [7,21]: Now, let $H(s)$ in Fig. 6 be replaced by
$H(s)=H_{0}(s)+\Delta(s) W(s)$,
where $H_{0}(s)$ is a given nominal plant, $W(s)$ is a given weighting function (square) and $\Delta(s)$ is an unknown transfer function that is only known to be stable and satisfies $\|\Delta\|_{\infty}<1$ (i.e. $\Delta(s) \in \mathbf{B H}_{\infty}$). Consequently, we now are considering an uncertain plant class
\[

$$
\begin{align*}
\mathscr{H}= & \left\{H(s)=H_{0}(s)\right. \\
& \left.+\Delta(s) W(s): \Delta(s) \in \mathbf{B H}_{\infty}\right\} . \tag{16}
\end{align*}
$$
\]

It is well known [23] that a controller $K(s)$ stabilizes the closed-loop system of Fig. 6 for all systems $H(s) \in \mathscr{H}$ if and only if $K(s)$ stabilizes $H_{0}(s)$ and satisfies
$\left\|W K\left(I+H_{0} K\right)^{-1}\right\|_{\infty}<1$.
The problem can again be reduced to a normalized H_{∞} control problem by choosing a generalized plant $P(s)$ for which $\Phi(s):=W(s) K(s)\left(I+H_{0}(s) K(s)\right)^{-1}=\mathrm{LF}(P, K)$. Such a $P(s)$ is given by (by inspection) plant
$P(s)=\left[\begin{array}{cc}0 & W(s) \\ I & -H_{0}(s)\end{array}\right]$.
Then, via (3),
$G(s)=\operatorname{CHAIN}(P)=\left[\begin{array}{cc}W(s) & 0 \\ H_{0}(s) & I\end{array}\right]$.
Since $P_{21}(s)$ has no poles on the $j \omega$-axis, we can use Corollary 4 to derive an equivalent condition to the assumption in Theorem 8 that $G(s)$ has no poles nor zeros on the $j \omega$ axis. From (18), the equivalent condition reduces to $W(s)$ having no poles nor zeros on the $j \omega$-axis and $H_{0}(s)$ having no poles on the $j \omega$-axis.

We will now attempt to motivate that the derived relationships between poles and zeros of chain-scattering representations and input-output representations also give control engineers information beyond just the simple interpretation of a technical supposition in a theorem.

From Theorem 8, note that when the normalized H_{∞} control problem is solvable for $P(s)$, then

$$
\begin{equation*}
G(s)=\Theta(s) \Pi(s) \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
K(s)=\operatorname{HM}\left(\Pi^{-1}, S\right) \tag{21}
\end{equation*}
$$

This is drawn in Fig. 7. It is easily seen from this figure that the unimodular (in $\mathbf{R H}_{\infty}$) portion $\Pi(s)$ of $G(s)$ is totally cancelled out by the controller and the resulting closed-loop mapping becomes $\operatorname{HM}(\Theta, S)$.

If $\Pi(s)$ contain lightly damped stable poles or zeros as depicted in Fig. 8, then these lightly damped poles/zeros are cancelled out by the controller. Such a cancellation is typically very dangerous in real-life systems, because

Fig. 7. Closed-loop structure of H_{∞} control.

Fig. 8. Poles/zeros of $\Pi(s)$.
uncertainty in modelling may vary the frequencies of these lightly damped modes, thus cause poor closed-loop performance on the real system when such controllers are used. Similar issues are discussed in [10].
The derived results in this paper can hence assist the control engineer to determine what objects need to be "tweaked" in $P(s)$ such that $\Pi(s)$ is not too lightly damped.

6. Conclusions

This paper studies the relationship between poles and zeros of input-output and chain-scattering representations for systems whose $P_{21}(s)$ is invertible in $\mathbb{R}_{P}(s)$.
If $P_{12}(s)$ rather than $P_{21}(s)$ is invertible in $\mathbb{R}_{P}(s)$, a dual chain-scattering representation of $P(s)$ exists, denoted DCHAIN (P). Dual results on poles and zeros of I/O and dual chain-scattering systems can very easily be derived in the same way. Preliminary parts of this work were presented at IFAC world congress [24].

References

[1] K. Arent, R. Ortega, J.W. Polderman, I.M.Y. Mareels, On identification of non-linear regression models: application to the polezero cancellation problem in adaptive control, European J. Control 4 (3) (1998) 235-240.
[2] H. Bourles, M. Fliess, Finite poles and zeros of linear systems: an intrinsic approach, Internat. J. Control 68 (4) (1997) 897-922.
[3] A. Fettweis, S. Basu, On improved representation theorems for multidimensional lossless bounded matrices, International Journal of Circuit Theory and Applications 19 (5) (1991) 453-457.
[4] O. Guerra, J.D. Rodriguez-garcia, F.V. Fernandez, A. Rodriguezvazquez, A symbolic pole/zero extraction methodology based on analysis of circuit time-constants, in: Analog Integrated Circuits and Signal Processing, vol. 31, 2002, pp. 101-118.
[5] E. Hennig, Matrix approximation techniques for symbolic extraction of poles and zeros, in: Analog Integrated Circuits and Signal Processing, vol. 31, 2002, pp. 81-100.
[6] T. Kailath, Linear Systems, Information and Systems Science Series, Prentice-Hall, Englewood Cliffs, NJ, 1980.
[7] H. Kimura, Robust stabilizability for a class of transfer functions, IEEE Trans. Automat. Control 27 (1984) 788-793.
[8] H. Kimura, Chain-scattering representation, J-lossless factorization and H^{∞} control, J. Math. Systems Estimation Control 5 (1995) 203-255.
[9] H. Kimura, Chain-Scattering Approach to H_{∞}-Control, Birkhauser, Boston, 1997.
[10] R. Kondo, S. Hara, On cancellation in H_{∞} optimal control, Systems Control Lett. 13 (3) (1989) 205-210.
[11] A. Lanzon, B.D.O. Anderson, X. Bombois, On uniqueness of central H_{∞} controllers in the chain-scattering framework, in: Proceedings of the Fourth IFAC Symposium on Robust Control Design, Milan, Italy, June 2003.
[12] A. Lanzon, B.D.O. Anderson, X. Bombois, Selection of a single uniquely specifiable H_{∞} controller in the chain-scattering framework, Automatica 40 (6) (2004) 985-994.
[13] P. Le, H. Kimura, Y. Soh, Characterizations of J-lossless timevarying systems via the chain scattering approach, Internat. J. Robust Nonlinear Control 8 (1) (1998) 39-48.
[14] A. Maffucci, G. Miano, Time-domain two-port representation of some nonuniform two-conductor transmission lines, IEEE Trans. Circuits Systems I: Fundamental Theory Applications 49 (11) (2002) 1639-1645.
[15] R. Pauli, On complex normalized scattering matrics, IEEE Trans. Circuits Systems 37 (11) (1990) 1452-1454.
[16] S.M. Potirakis, G.E. Alexakis, G.S. Tombras, Alternative two-port feedback analysis approach, Proceedings of the IEEE International Conference on Electronics, Circuits, and Systems, vol. 1, Rodos, Greece, 1996, pp. 156-159.
[17] A.C. Pugh, L. Tan, Non-standard H_{∞} control problem: a generalized chain-scattering representation approach, Internat. J. Control 75 (11) (2002) 775-783.
[18] C.A. Rabbath, N. Hori, Structural interpretation of matched pole-zero discretisation, IEE Proceedings: Control Theory and Applications, vol. 149, July 2002, pp. 257-262.
[19] C.B. Schrader, M.K. Sain, Research on system zeros: a survey, in: Proceedings of the 27th IEEE Conference on Decision and Control, vol. 2, 1988, pp. 890-901.
[20] P. Suchomski, J-lossless and extended J-lossless factorizations approach for δ-domain H_{∞} control, Internat. J. Control 76 (8) (2003) 794-809.
[21] M. Vidyasagar, H. Kimura, Robust controllers for uncertain linear multivariable systems, Automatica 22 (1986) 85-94.
[22] Q. Zha, W. Chen, Transmission zeros and the two-port parameters, J. Franklin Inst. 334B (4) (1997) 599-609.
[23] K. Zhou, J. Doyle, K. Glover, Robust and Optimal Control, PrenticeHall, Englewood Cliffs, NJ, 1996.
[24] G. Zhang, A. Lanzon, On poles and zeros of input-output and chainscattering systems, Proceedings of the 16th IFAC World Congress, Prague, Czech Republic, July 2005.

[^0]: * Corresponding author. Tel.: +61 26125 8674; fax: +61 261258660.

 E-mail addresses: zzgy1029@hit.edu.cn (G. Zhang), Alexander.Lanzon@anu.edu.au (A. Lanzon).
 ${ }^{1}$ The work of the first author was supported by China Scholarship Council.
 ${ }^{2}$ The work of the second author was supported by an ARC DiscoveryProjects Grant (DP0342683) and National ICT Australia Ltd. National ICT Australia Ltd. is funded through the Australian Government's Backing Australia's Ability initiative, in part through the Australian Research Council.

[^1]: ${ }^{3}$ For example, $\operatorname{pole}(G)=\{-1,-1-1,-2\}$ and $\operatorname{zero}(G)=\{-2\}$ for $G(s)=\left[\begin{array}{cc}\frac{1}{(s+1)^{2}(s+2)} & 0 \\ 0 & \frac{s+2}{s+1}\end{array}\right]$, see [23] for details. Similarly for repeated
 zeros.

[^2]: ${ }^{4}$ The normal rank of $G(s)$ is the maximally possible rank of $G(s)$ for at least one $s \in \mathbb{C}$.

[^3]: ${ }^{5}$ Definitions and properties of a J-lossless matrix and a J-lossless factorization can be found in [9].

