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Abstract

A system is frequently represented by transfer functions in an input–output characterization. However, such a system (under mild
assumptions) can also be represented by transfer functions in a port characterization, frequently referred to as a chain-scattering represen-
tation. Due to its cascade properties, the chain-scattering representation is used throughout many fields of engineering. This paper studies
the relationship between poles and zeros of input–output and chain-scattering representations of the same system.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The chain-scattering representation is used extensively
in various fields of engineering to represent the scattering
properties of a physical system [9], especially in circuit the-
ory where it has been widely used to deal with the cascade
connection of circuits originating in analysis and synthesis
problems [3,15,14]. In circuit theory, the chain-scattering
representation is also called a scattering matrix of a two-
port network [22]. Compared with the usual input–output
(I/O) representation (Fig. 1), the chain-scattering represen-
tation (Fig. 2) is in fact an alternative way of representing
a system. Cascade structure is the main property of the
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chain-scattering representation, which enables feedback in
the I/O representation (Fig. 3) to be represented simply as
a matrix multiplication in the chain-scattering representa-
tion (Fig. 4). Duality of transformation between the chain-
scattering transformation and its inverse is its another useful
property in the analysis of such systems [8,16]. Due to these
features, Kimura [9] and others used the chain-scattering
representation to provide a unified framework of cascade
synthesis for H∞ control theory [11–13,17]. Within this cas-
cade framework, the H∞ control problem is reduced to a
factorization problem called a J-lossless factorization.

Pole-zero analysis is one of the most elementary tools of
control theory to study the properties of a system [1,2,18].
It is consequently desirable to understand the connection
between poles and zeros of the I/O representation with
poles and zeros of the corresponding chain-scattering rep-
resentation. For example, in deriving necessary and suf-
ficient conditions for the solvability of the H∞ control
problem in terms of a J-lossless factorizations, one would
typically impose certain conditions on the poles and ze-
ros of the chain-scattering system [9]. It is natural to try
to understand what these conditions correspond to in the
I/O representation.
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Nomenclature

R[s] polynomial matrices with real coefficients
RP (s) proper real rational transfer function matrices
C field of complex numbers
� subset in C

pole(G) the set of all poles of G(s) ∈ RP (s) including repeated poles3

zero(G) the set of all transmission zeros of G(s) ∈ RP (s) including repeated zeros3

{�1, �2} the set of all elements of set �1 and set �2 including repetitions, e.g. if �1 = {1, 1, 2} and
�2 = {1, 3}, then {�1, �2} = {1, 1, 1, 2, 3}

RH∞ the set of all stable proper real rational transfer function matrices
‖G‖∞ the H∞-norm of G(s) ∈ RH∞
BH∞ a subset of RH∞ containing all G(s) ∈ RH∞ satisfying ‖G‖∞ < 1

Numerous papers have been written on poles and zeros
of linear systems. Notable publications on zeros of multi-
variable systems in the period 1970–1987 are surveyed in
[19]. [22] presents relationships between the transmission
zeros of an impedance and the two-port impedance param-
eters zij (s)(i, j = 1, 2) or the chain parameters of its Dar-
lington equivalent. [4,5] investigate the pole/zero analysis of
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Fig. 1. Input–output representation.
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Fig. 2. Chain-scattering representation.
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Fig. 3. Feedback connection in I/O representation.
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Fig. 4. Cascade connection in chain-scattering representation.

3 For example, pole(G) = {−1, −1 − 1, −2} and zero(G) = {−2} for

G(s)=
[

1
(s+1)2(s+2)

0

0
s+2
s+1

]
, see [23] for details. Similarly for repeated

zeros.

analog circuits. [20] studies a problem of robust pole place-
ment design for a system with zeros located on the boundary
of the stability region.

This paper will study the relationship between poles and
zeros of I/O and chain-scattering representations. Firstly,
the I/O and chain-scattering representations are presented.
Secondly, explicit relationships between poles and zeros of
I/O and chain-scattering representations are derived. Lastly,
some application examples are given.

2. I/O and chain-scattering representations

Consider a multiple-input multiple-output (MIMO) sys-
tem with two kinds of inputs (b1, b2) and two kinds of out-
puts (a1, a2), as shown in Fig. 1, represented as

[
a1
a2

]
= P(s)

[
b1
b2

]
=
[
P11(s) P12(s)

P21(s) P22(s)

] [
b1
b2

]
. (1)

The chain-scattering representation of P(s), as shown in Fig.
2, is

[
a1
b1

]
= G(s)

[
b2
a2

]
=
[
G11(s) G12(s)

G21(s) G22(s)

] [
b2
a2

]
, (2)

where

G(s) := CHAIN(P )

=
[
P12 − P11P

−1
21 P22 P11P

−1
21

−P −1
21 P22 P −1

21

]
=
[
I P11
0 I

] [
P12 0
0 P −1

21

] [
I 0

−P22 I

]
(3)

and exists if P21(s) is invertible in RP (s).
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Then the mapping from chain-scattering representation to
I/O representation is

P(s) = CHAIN−1(G)

=
[
G12G

−1
22 G11 − G12G

−1
22 G21

G−1
22 −G−1

22 G21

]
=
[
I G12
0 I

] [
G11 0

0 G−1
22

] [
0 I

I −G21

]
, (4)

where G22(s) = P −1
21 (s) is invertible in RP (s).

3. Pole-zero relations between I/O and chain-scattering
systems

Poles and transmission zeros of any real rational trans-
fer function matrix G(s) ∈ RP (s) are obtained from its so-
called McMillan form U(s)G(s)V (s)=M(s) through some
pre- and post-unimodular polynomial matrices U(s), V (s) ∈
R[s]. Please refer to standard texts such as [6,23] for a
McMillan decomposition of a real rational transfer function
matrix and related definitions of poles and (transmission)
zeros.

The following lemma studies the poles and transmission
zeros of a cascade connection of MIMO systems.

Lemma 1. Given a cascade connection G(s)=G1(s)G2(s).

(1) If G1(s) has full column normal rank4 or G2(s) has full
row normal rank, then zero(G) ⊂ {zero(G1), zero(G2)};

(2) pole(G) ⊂ {pole(G1), pole(G2)}.

Proof. (1) Suppose G1(s) has full column normal rank.
Then the McMillan decompositions [6,23] of G1(s) and
G2(s) are given by

G1(s) = U1(s)

[∧1(s)

0

]
V1(s),

G2(s) = U2(s)

[∧2(s) 0
0 0

]
V2(s),

where Ui(s), Vi(s) are unimodular polynomial matrices and
∧i (s) are diagonal square transfer function matrices with
full normal rank. Then,

G(s) = G1(s)G2(s)

= U1(s)

[
∧1(s)V1(s)U2(s)

[∧2(s)

0

]
0

0 0

]
× V2(s). (5)

4 The normal rank of G(s) is the maximally possible rank of G(s)

for at least one s ∈ C.

It is clear that

F(s) := ∧1(s)V1(s)U2(s)

[∧2(s)

0

]

has full column normal rank. Suppose z0 ∈ zero(G), which
is equivalent to z0 ∈ zero(F ). Then there exists a 0 �= u0 ∈
Ck such that F(z0)u0 = 0 [23]. If z0 /∈ zero(∧2), then

0 �= V1(z0)U2(z0)

[∧2(z0)

0

]
u0 ∈ Cr .

And thus z0 ∈ zero(∧1). Hence a transmission zero of F(s)

is a transmission zero of either ∧1(s) or ∧2(s). This is
equivalent to the statement that a transmission zero of G(s)

is a transmission zero of either G1(s) or G2(s). That is
zero(G) ⊂ {zero(G1), zero(G2)}.

Similarly, a dual result can be proved that if G2(s) has full
row normal rank, then zero(G) ⊂ {zero(G1), zero(G2)}.

(2) It is trivial to show that pole(G) ⊂ {pole(G1),

pole(G2)}. �

Now, we are ready to give some pole-zero relations be-
tween I/O and chain-scattering representations in the fol-
lowing theorem.

Theorem 2. The poles and transmission zeros of chain-
scattering system G(s)=CHAIN(P ) have the following re-
lations with the poles and transmission zeros of I/O system
P(s):

(1) zero(G)⊂{pole(P11), zero(P12), pole(P21), pole(P22)};
(2) pole(G)⊂{pole(P11), pole(P12), zero(P21), pole(P22)};
(3) zero(P21)⊂pole(G);
(4) zero(P12)⊂zero(G).

Proof. (1) In (3),

G(s) =
[
I

0

P11

I

] [
P12

0

0

P −1
21

] [
I

−P22

0

I

]
.

Since both
[

I
0

P11
I

]
and

[
I

−P22

0
I

]
have full normal rank,

using Lemma 1, we have

zero(G) ⊂
{

zero

([
I P11
0 I

])
,

zero

([
P12 0
0 P −1

21

])
,

zero

([
I 0

−P22 I

])}
.
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It is clear that

zero

([
I P11
0 I

])
= pole

([
I P11
0 I

]−1
)

= pole

([
I −P11
0 I

])
= pole(P11),

zero

([
P12 0
0 P −1

21

])
= {zero(P12), pole(P21)},

zero

([
I 0

−P22 I

])
= pole

([
I 0

−P22 I

]−1
)

= pole

([
I 0

P22 I

])
= pole(P22).

Thus, zero(G) ⊂ {pole(P11), zero(P12), pole(P21),

pole(P22)}.
(2) Using Lemma 1 and (3), we have

pole(G) ⊂
{

pole

([
I P11
0 I

])
,

pole

([
P12 0
0 P −1

21

])
,

pole

([
I 0

−P22 I

])}
= {pole(P11), pole(P12),

zero(P21), pole(P22)}.
(3) In (3),

G(s) =
[
P12 − P11P

−1
21 P22 P11P

−1
21

−P −1
21 P22 P −1

21

]
.

It is easy to see that zero(P21) = pole(P −1
21 ) ⊂ pole(G).

(4) Perform a McMillan decomposition of P11(s) as
P11(s) = U(s)N�(s)N

−1
� (s)V (s), where U(s), V (s) are

unimodular polynomial matrices, and N�(s), N�(s) are
given by

N�(s) :=

⎡⎢⎢⎣
�1(s) · · · 0 0

...
. . .

...
...

0 · · · �r (s) 0
0 · · · 0 0

⎤⎥⎥⎦
m×n

,

N�(s) :=

⎡⎢⎢⎣
�1(s) · · · 0 0

...
. . .

...
...

0 · · · �r (s) 0
0 · · · 0 I

⎤⎥⎥⎦
n×n

,

where �i (s), �i (s) are scalar polynomials.

Then from (3), we have

G(s) =
[
I P11
0 I

] [
P12 0

−P −1
21 P22 P −1

21

]
=
[
I UN�N

−1
� V

0 I

] [
P12 0

−P −1
21 P22 P −1

21

]
=
[
U 0
0 V −1N�

] [
I N�
0 I

]
×
[
U−1 0

0 N−1
� V

] [
P12 0

−P −1
21 P22 P −1

21

]
. (6)

Thus,[
U−1 0

0 N−1
� V

]
G(s)

=
[
I N�
0 I

] [
U−1 0

0 N−1
� V

] [
P12 0

−P −1
21 P22 P −1

21

]
=
[
I N�
0 I

] [
U−1P12 0

−N−1
� V P −1

21 P22 N−1
� V P −1

21

]
. (7)

Then we have

zero(P12)

= zero(U−1P12)

⊂ zero

([
U−1P12 0

−N−1
� V P −1

21 P22 N−1
� V P −1

21

])
= zero

([
I N�
0 I

] [
U−1P12 0

−N−1
� V P −1

21 P22 N−1
� V P −1

21

])
= zero

([
U−1 0

0 N−1
� V

]
G

)
⊂ zero(G), (8)

since
[

I
0

N�
I

]
is also a unimodular polynomial matrix and[

U−1

0
0

N−1
� V

]
has full normal rank and has no transmission

zeros. That is zero(P12) ⊂ zero(G). �

In order to visualize the relationship between poles and
zeros of I/O and chain-scattering representations, we will
next analyze situations where P(s) or G(s) has no poles or
zeros in some region in the complex plane C. Suppose � is
a subset of C, as shown in Fig. 5, which can be any region
of the s-plane. The following is a corollary to Theorem 2.

Corollary 3. Suppose P(s) has no poles in �. Then the
following results hold:

(1) G(s) has no transmission zeros in � if and only if P12(s)

has no transmission zeros in �;
(2) G(s)has no poles in � if and only if P21(s) has no

transmission zeros in �.
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Fig. 5. Subset � in C.

We now give a slightly different result that requires a
milder assumption in the corollary statement. This result
considers the situation where G(s) has no poles nor ze-
ros in � and gives a necessary and sufficient condition for
the case.

Corollary 4. Suppose P21(s) has no poles in �. Then G(s)

has no poles nor transmission zeros in � if and only if P(s)

has no poles in � and P12(s), P21(s) have no transmission
zeros in �.

Proof. (⇐) It is easy to prove using Corollary 3.
(⇒) First, we will prove that P21(s) has no transmission

zeros in � and P(s) has no poles in �. From (3),

G(s) =
[
P12 − P11P

−1
21 P22 P11P

−1
21

−P −1
21 P22 P −1

21

]
.

It is easy to see that if G(s) has no poles in �, then none
of P −1

21 , P11P
−1
21 , P −1

21 P22 and P12 − P11P
−1
21 P22 has poles

in �. Since P21(s) is also assumed to have no poles in
�, P21(s) has no poles nor zeros in �. Consequently, also
P11(s), P22(s), P12(s) have no poles in � which in turn
implies that P(s) has no poles in �. Next, from result (4) of
Theorem 2, if G(s) has no transmission zeros in �, P12(s)

has no transmission zeros in �. �

4. Dual results

This section contains dual results to Theorem 2 and Corol-
laries 3 and 4, given for completeness. Proofs are not given
as they are similar to those given in the previous section.

Theorem 5. The poles and transmission zeros of I/O system
P(s) have the following relations with the poles and trans-
mission zeros of chain-scattering system G(s)=CHAIN(P ):

(1) zero(P )⊂{zero(G11), pole(G12), pole(G21), pole(G22)};
(2) pole(P )⊂{pole(G11), pole(G12), pole(G21), zero(G22)};
(3) zero(G22)⊂pole(P );
(4) zero(G11)⊂zero(P ).

Corollary 6. Suppose G(s) has no poles in �. Then the
following results hold:

(1) P(s) has no transmission zeros in � if and only if
G11(s) has no transmission zeros in �;

(2) P(s) has no poles in � if and only if G22(s) has no
transmission zeros in �.

Corollary 7. Suppose G22(s) has no poles in �. Then P(s)

has no poles nor transmission zeros in � if and only if G(s)

has no poles in � and G11(s), G22(s) have no transmission
zeros in �.

5. Application examples

In this section, we will use the above results in some
application examples.

Consider a generalized plant P(s) ∈ RP (s) described in
the I/O representation (1). If a2 is fed back to b2 by

b2(s) = K(s)a2(s), (9)

where K(s) ∈ RP (s) is a controller, then the closed-loop
transfer function �(s) from b1 to a1 is given by a1(s) =
�(s)b1(s). This closed-loop transfer function �(s) is given
in the following expression:

�(s) = LF(P, K)

:= P11 + P12K(I − P22K)−1P21. (10)

LF(P, K) is called a linear fractional transformation (LFT)
in the control literature. See [6,9] for extensive discussions
on properties of LFTs.

The same relation can be described in terms of the chain-
scattering representation (2). Substitution of (9) in (2) yields

�(s) = HM(G, K)

:= (G11K + G12)(G21K + G22)
−1. (11)

HM(G, K) is called a homographic transformation, which
was used in classical circuit theory. Again, see [6,9] for
extensive discussions on properties of homographic trans-
formations. In classical circuit theory, (9) represents the
“termination” of a port by a load. The “termination” of a
chain-scattering representation is thus the same as feedback
in an I/O representation of the same system.

The chain-scattering representation is for example used
to provide a framework of cascade synthesis for H∞ con-
trol theory. Within this cascade framework, the H∞ control
problem is reduced to a factorization problem called a J-
lossless factorization. See [8,9] for a definition of a J-lossless
factorization.

The “normalized H∞ control problem” is to synthesize a
stabilizing controller K(s) such that the closed-loop transfer
function �(s) given in (10) or (11) satisfies ‖�‖∞ < 1. The
following result has been established in [8,9].

Theorem 8. Assume that the generalized plant P(s) given in
(1) has a chain-scattering representation G(s)=CHAIN(P )

such that G(s) is left invertible and has no poles nor zeros
on the j�-axis. Then the normalized H∞ control problem
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Fig. 6. Unity feedback scheme.

is solvable for P(s) if and only if G(s) has a J-lossless
factorization5

G(s) = CHAIN(P ) = �(s)�(s),

where �(s) is a J-lossless matrix 5 and �(s) is unit in RH∞.
In that case, K(s) is a desired controller if and only if

K(s) = HM(�−1, S) f or an S(s) ∈ BH∞. (12)

From Corollary 4, we can see that G(s) = CHAIN(P )

having no poles nor zeros on the j�-axis is a key in this
theorem. Using the derived results in Section 3, we will
understand what this assumption condition corresponds to
in the I/O representation via some examples.

(1) Sensitivity reduction problem: Consider the feedback
interconnection given in Fig. 6. In a sensitivity reduction
problem, the designer is interested in synthesizing a K(s)

such that the transfer function �̂(s) from “r” to “e” is made
as small as possible over a specified frequency range 	,
thereby forcing “y” to closely follow “r”. This transfer func-
tion �̂(s) is given by �̂(s) = (I + H(s)K(s))−1.

Choosing an appropriate (square) frequency weighting
function W(s) which is significant on s=j� ∈ 	, the prob-
lem is reduced to finding a controller K(s) that stabilizes
the closed-loop system of Fig. 6 and satisfies ‖W �̂‖∞ < 1.
It is clear (by inspection) that if we set the generalized plant

P(s) =
[
W(s) −W(s)H(s)

I −H(s)

]
, (13)

then �(s) := W(s)�̂(s) = LF(P, K).
Then, via (3),

G(s) = CHAIN(P ) =
[

0 W(s)

H(s) I

]
. (14)

Hence the sensitivity reduction problem specified by
‖W �̂‖∞ < 1 reduces to solving the normalized H∞ con-
trol problem for the generalized plant given by (13). Since
P21(s) has no poles on the j�-axis, we can use Corollary
4 to derive an equivalent condition to the assumption in
Theorem 8 that G(s) has no poles nor zeros on the j�-
axis. In fact, this equivalent condition is that P(s) has no
poles on the j�-axis and P12(s), P21(s) have no zeros on
the j�-axis. From (13), this reduces to W(s) and H(s)

having no poles on the j�-axis and W(s)H(s) having no
transmission zeros on the j�-axis.

5 Definitions and properties of a J-lossless matrix and a J-lossless
factorization can be found in [9].

(2) Robust stabilization problems [7,21]: Now, let H(s)

in Fig. 6 be replaced by

H(s) = H0(s) + �(s)W(s), (15)

where H0(s) is a given nominal plant, W(s) is a given
weighting function (square) and �(s) is an unknown trans-
fer function that is only known to be stable and satisfies
‖
‖∞ < 1 (i.e. �(s) ∈ BH∞). Consequently, we now are
considering an uncertain plant class

H = {H(s) = H0(s)

+ �(s)W(s) : �(s) ∈ BH∞}. (16)

It is well known [23] that a controller K(s) stabilizes the
closed-loop system of Fig. 6 for all systems H(s) ∈ H if
and only if K(s) stabilizes H0(s) and satisfies

‖WK(I + H0K)−1‖∞ < 1. (17)

The problem can again be reduced to a normalized H∞
control problem by choosing a generalized plant P(s) for
which �(s) := W(s)K(s)(I + H0(s)K(s))−1 = LF(P, K).
Such a P(s) is given by (by inspection) plant

P(s) =
[

0 W(s)

I −H0(s)

]
. (18)

Then, via (3),

G(s) = CHAIN(P ) =
[

W(s) 0
H0(s) I

]
. (19)

Since P21(s) has no poles on the j�-axis, we can use Corol-
lary 4 to derive an equivalent condition to the assumption
in Theorem 8 that G(s) has no poles nor zeros on the j�-
axis. From (18), the equivalent condition reduces to W(s)

having no poles nor zeros on the j�-axis and H0(s) having
no poles on the j�-axis.

We will now attempt to motivate that the derived relation-
ships between poles and zeros of chain-scattering represen-
tations and input–output representations also give control
engineers information beyond just the simple interpretation
of a technical supposition in a theorem.

From Theorem 8, note that when the normalized H∞ con-
trol problem is solvable for P(s), then

G(s) = �(s)�(s) (20)

and

K(s) = HM(�−1, S). (21)

This is drawn in Fig. 7. It is easily seen from this figure that
the unimodular (in RH∞) portion �(s) of G(s) is totally
cancelled out by the controller and the resulting closed-loop
mapping becomes HM(�, S).

If �(s) contain lightly damped stable poles or zeros as
depicted in Fig. 8, then these lightly damped poles/zeros
are cancelled out by the controller. Such a cancellation
is typically very dangerous in real-life systems, because
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Fig. 7. Closed-loop structure of H∞ control.

Fig. 8. Poles/zeros of �(s).

uncertainty in modelling may vary the frequencies of these
lightly damped modes, thus cause poor closed-loop perfor-
mance on the real system when such controllers are used.
Similar issues are discussed in [10].

The derived results in this paper can hence assist the con-
trol engineer to determine what objects need to be “tweaked”
in P(s) such that �(s) is not too lightly damped.

6. Conclusions

This paper studies the relationship between poles and
zeros of input–output and chain-scattering representations
for systems whose P21(s) is invertible in RP (s).

If P12(s) rather than P21(s) is invertible in RP (s), a
dual chain-scattering representation of P(s) exists, denoted
DCHAIN(P ). Dual results on poles and zeros of I/O and
dual chain-scattering systems can very easily be derived in
the same way. Preliminary parts of this work were presented
at IFAC world congress [24].
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