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ABSTRACT

We prove that the ramification of the endomorphism algebra of the

Grothendieck motive attached to a non-CM cuspform of weight two or

more is completely determined by the slopes of the adjoint lift of this

form, when the slopes are finite. We treat all places of good and bad

reduction, answering a question of Ribet about the Brauer class of the

endomorphism algebra in the finite slope case.

1. Introduction

Let f =
∑∞

n=1 anq
n be a primitive non-CM cusp form of weight k ≥ 2, level

N ≥ 1 and character ε, and let Mf be the motive attached to f . If f has weight

2, Mf is the abelian variety attached to f by Shimura [Sh71], and for weights

larger than 2, Mf is the Grothendieck motive attached to f by Scholl in [Sc90].

In all cases, Mf is a pure motive of rank 2, weight k−1, with coefficients in the
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Hecke field E = Q(an) of f . Let End(Mf ) denote the ring of endomorphisms

of Mf defined over Q̄ and let

Xf = End(Mf )⊗Z Q

be the Q-algebra of endomorphisms of Mf . One knows that Xf is a central

simple algebra over a subfield F of E, and that the class of Xf in the Brauer

group Br(F ) of F is 2-torsion. Ribet has remarked that it seems difficult to

describe this class by pure thought. The goal of this paper is to give a complete

description of the class of Xf in terms of the slopes of a functorial lift of f ,

under a finiteness hypothesis on these slopes.

That Xf is a central simple algebra over F follows from an explicit structure

theorem forXf which shows that Xf is isomorphic to a crossed product algebra.

Let Γ ⊂ Aut(E) be the group of extra twists of f . Recall that a pair (γ, χγ),

where γ ∈ Γ ⊂ Aut(E) and χγ is an E-valued Dirichlet character, is called an

extra twist for f if fγ = f ⊗χγ , i.e., a
γ
p = ap ·χγ(p), for all primes p � N . Define

the E-valued Jacobi sum 2-cocycle c on Γ by

c(γ, δ) =
G(χ−γ

δ )G(χ−1
γ )

G(χ−1
γ·δ)

∈ E,

for γ, δ ∈ Γ, where G(χ) is the usual Gauss sum attached to the character χ.

Let X be the corresponding crossed product algebra defined by

(1.1) X =
⊕

γ∈Γ
E · xγ ,

where the xγ are formal symbols satisfying the relations

xγ · xδ = c(γ, δ) · xγδ,

xγ · e = γ(e) · xγ ,

for γ, δ ∈ Γ and e ∈ E. Clearly X is a central simple algebra over F , the fixed

field of Γ in E. A fundamental result due to Momose [Mo81] and Ribet [Ri80]

in weight 2, and [BG04] (see also [GGQ05]) in higher weight, says that Xf
∼= X .

Moreover, F ⊂ E is known to be the subfield generated by a2pε
−1(p), for primes

p � N .

To study the Brauer class of X = Xf , the standard exact sequence from

classfield theory

0 → 2Br(F ) → ⊕v 2Br(Fv) → Z/2 → 0,
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where v runs over all places of F , shows that it is enough to study the class of

Xv = X⊗F Fv in Br(Fv), for each place v. It is well known that 2Br(Fv) ∼= Z/2,

including if v is infinite since F is totally real, and Xv is a matrix algebra over

Fv if the class of Xv is trivial, and is a matrix algebra over a quaternion division

algebra over Fv if the class of Xv is non-trivial. A theorem of Momose [Mo81]

says that X is totally indefinite if k is even, and totally definite if k is odd, giving

complete information about the Brauer class at the infinite places v. When v

is a finite place, we shall prove in this paper that the class of Xv in Br(Fv) is

completely determined in terms of the parity of the slope at v of the adjoint lift

of f (when this slope is finite).

According to Langlands principle of functoriality, given two reductive alge-

braic groups H and G over Q and a homomorphism between their L-groups

u : LH → LG, there should be a way to lift cuspidal automorphic repre-

sentations π of H(AQ) to cuspidal automorphic representation Π of G(AQ),

so that the Langlands L-functions of π and Π are related by the formula

L(s,Π, r) = L(s, π, r ◦ u). In the case that H = GL2 and G = GL3, and u

is the adjoint map, it is (by now) a classical theorem of Gelbart and Jacquet

[GJ78] that every cuspidal automorphic form π on GL2(AQ) has a lift ad(π),

called the Gelbart–Jacquet adjoint lift, to an automorphic representation of

GL3(AQ). If the Satake parameters at an unramified prime p of π are αp and

βp, then the Satake parameters of the adjoint lift ad(π) are
αp

βp
, 1,

βp

αp
.

Let now π = πf be the automorphic representation attached to the non-

CM form f as above, and let Ad(π) = ad(π) ⊕ 1 be the automorphic form on

GL4(AQ) obtained from the Gelbart–Jacquet adjoint lift by adding the trivial

representation. Finally, let

Π = Ad(π)(k − 1)

be the automorphic representation on GL4(AQ) obtained by taking the (k−1)-st

twist of Ad(π).

The following meta-theoremmay be considered as a summary of all the results

of this paper.

Theorem 1: If v is a finite place of F , then the class of Xv in Br(Fv) is

determined by the parity of the slope mv ∈ Z∪ {∞} of Π at v, when this slope

is finite.
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Before we proceed further, we wish to remark that the theorem above is an-

other instance of a recurring theme in the theory of the arithmetic of automor-

phic forms, wherein arithmetic information about an object attached to a form

(in this case the endomorphism algebra) is contained in the Fourier coefficients

of a suitable lift of the original form (in this case the twisted adjoint lift). The

most striking example of this theme occurs in the correspondence between forms

of even integral weight k and forms of half-integral weight (k+1)/2 as in [Sh73],

[Wa81], [KZ91]. Here, twisted central critical L-values of the original form on

PGL2 occur as Fourier coefficients of the Shimura–Shintani–Waldspurger lift of

this form to the metaplectic group S̃L2. The meta-theorem above establishes

another instance where this theme is played out.

The slope mv of Π at a place v | p of F in Theorem 1 is defined to be a

suitably normalized v-adic valuation of the trace of Frobenius at p in the Galois

representation corresponding to Π. In general, the trace depends on a choice of

Frobenius, but is independent of this choice for primes of semistable reduction.

Equivalently, on the automorphic side, the slope mv may also be defined as a

suitably normalized v-adic valuation of the sum of certain parameters coming

from the local automorphic representation of Π at p. Though the shape of the

trace of Frobenius, or the shape of the specific parameters, vary in different

cases, they can be made completely precise. As a result we obtain various

explicit versions of the above meta-theorem which we state now.

For instance, suppose that v | p with p � N , so that πp is an unramified

representation. Then the slopemv of Π at v is the (normalized) v-adic valuation

of the sum of the Satake parameters of Πp. Since Ad(π) has Satake parameters
αp

βp
, 1,

βp

αp
, 1, we have

mv := [Fv : Qp] · v
((αp

βp
+ 1 +

βp

αp
+ 1
)
· pk−1

)
= [Fv : Qp] · v

((αp + βp)
2

αpβp
· pk−1

)
= [Fv : Qp] · v(a2pε−1(p)) ∈ Z ∪ {∞},

where v is normalized so that v(p) = 1. We remark that F may be considered

as the Hecke field of the adjoint lift Π, since it is generated by the quantities

a2pε
−1(p), for p � N . Moreover, the slope mv of Π at v is an integer because of

the local degree term [Fv : Qp] (unless of course ap = 0, in which case mv is

infinite). We prove (cf. Theorem 10):
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Theorem 2 (Spherical case): Assume gcd(p,N) = 1. Let v be a place of F

lying over p. Assume ap �= 0. Then Xv is a matrix algebra over Fv if and only

if mv = [Fv : Qp] · v(a2pε(p)−1) ∈ Z is even.

The case k = 2 and mv = 0 (good, ordinary reduction) is due to Ribet [Ri81].

The general case for odd primes, and for p = 2 when F = Q, was proved in

[BG04] and [GGQ05, Thm. 2.2], under a mild hypothesis. Here we include the

case p = 2 for all F , and remove this hypothesis. The proof we give in this

paper is much simpler, and was motivated by the recent proof of an analogous

theorem for weight one forms [BG11] (this is also where the idea of using the

adjoint lift in higher weight germinated).

However, the main point of this article is to treat completely the primes of

bad reduction, i.e., the primes v | p of F with p | N . LetNp ≥ 1 be the exponent

of the exact power of p dividing N . Let C denote the conductor of ε and let

Cp ≥ 0 be the exponent of the exact power of p dividing C. Note Np ≥ Cp.

Since p | N , we no longer have the Satake parameters of πp at our disposal.

However, we can replace these numbers by the corresponding eigenvalues of 	-

adic Frobenius in the 	-adic Weil–Deligne representation corresponding to πp,

for 	 �= p, or equivalently by [Sa97], with the eigenvalues of crystalline Frobenius

on the filtered (ϕ,N)-module attached to πp as in [GM09], and can still compute

the slope of Π at v.

For example, in the case that Np = 1 and Cp = 0, it is well known that πp is

an unramified twist of the Steinberg representation. In this case, the eigenvalues

of 	-adic Frobenius are nothing but αp = ap and βp = pap, up to multiplication

by the same constant. We thus have

mv := [Fv : Qp] · v
( (αp + βp)

2

αpβp
· pk−1

)
= [Fv : Qp] · (k − 2) ∈ Z.

In Theorem 15 we prove

Theorem 3 (Steinberg case): Suppose v | p with Np = 1 and Cp = 0. Then

Xv is a matrix algebra over Fv if and only if mv = [Fv : Qp] · (k − 2) ∈ Z is

even.

The proof of Theorem 3 uses the structure of the 	-adic Galois representation

attached to f at p, for 	 �= p, due to Langlands. The case k = 2 is due to Ribet
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[Ri81], who in fact showed that the algebra X is trivial in the Brauer group

of F , using the fact that the corresponding residual abelian variety has toric

reduction. Ribet’s result was extended to forms of even weight k in [BG04,

Thm. 1.0.6]. In this paper examples were also given of forms of odd weight for

which the endomorphism algebra is ramified at Steinberg primes. The above

theorem gives a complete criterion for the ramification of X at Steinberg primes

in all weights k.

We now turn to the very interesting case when Np = Cp ≥ 1 and πp is in the

ramified principal series. The behaviour of the local Brauer class in this case

is mysterious, but has now become possible to treat using the adjoint lift. The

eigenvalues of 	-adic or crystalline Frobenius are not well-defined in this case

since the Weil–Deligne parameter corresponding to πp is ramified. However, one

more or less canonical choice is αp = ap and βp = āpε
′(p), where we decompose

ε = ε′ · εp into its prime-to-p conductor and p-power conductor parts. We then

have

mv := [Fv : Qp] · v
( (αp + βp)

2

αpβp
· pk−1

)
= [Fv : Qp] · v(a2pε′(p)−1 + 2p(k−1) + ā2pε

′(p)) ∈ Z ∪ {∞}.
It can be checked that the three-term expression in the last line above is indeed

an element of F . It is clearly fixed by complex conjugation; it is in fact fixed by

all elements of Γ (cf. Lemma 16). Note again that mv ∈ Z (unless it is infinite).

In view of the two previous theorems, one might conjecture:

(??)
If mv < ∞, then Xv is a matrix algebra over Fv

if and only if mv is even.

We prove that (??) is essentially true. In particular, when the slopes of αp and

βp are unequal, or equivalently, when mv < [Fv : Qp] · (k − 1), we prove (in

Theorem 22, for odd primes p, and in Theorem 27, for p = 2)

Theorem 4 (Ramified principal series unequal slope case): Assume that v | p
and Np = Cp ≥ 1. Suppose mv < [Fv : Qp] · (k − 1). Then Xv is a matrix

algebra over Fv if and only if

mv = [Fv : Qp] · v
(

a2p
ε′(p)

+ 2p(k−1) +
ā2p
ε̄′(p)

)
∈ Z

is even.
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We remark that while a partial result in the ‘if’ direction was proved in

[GGQ05, Thm. 5.1], Theorem 4 gives complete information about the ramifica-

tion of Xv in the unequal slope case.

When the slopes of αp and βp are the same, or equivalently, mv ≥
[Fv : Qp] · (k − 1), the guess (??) is, somewhat surprisingly, false, even when

mv < ∞. Counterexamples are given in Examples 5–7 at the end of the paper.

This is related to the fact that the eigenvalues of 	-adic Frobenius are not well-

defined. To salvage the situation, we introduce two new quantities m±
v , which

may be thought of as replacements of mv. Let ev and fv be the ramification

index and residue degree of v | p, let Gv be the decomposition group of F at v,

and set

m±
v = ev · v((a2pε′(p)−1)fv ± 2p(k−1)fv + (ā2pε

′(p))fv ) ∈ Z ∪ {∞},
where v is normalized so the v(p) = 1. Again the three-term expression lies in

F , so m±
v are well-defined, and at least one of m±

v is finite. Then we prove (see

Theorems 28, 30 and 32 for precise statements)

Theorem 5 (Ramified principal series equal slope case): Assume that v | p and

Np = Cp ≥ 1. Suppose mv ≥ [Fv : Qp] · (k − 1).

(1) If p is odd and the tame part of εp is not quadratic on Gv, then Xv is

a matrix algebra over Fv if and only if one of

m±
v = ev · v

((
a2p
ε′(p)

)fv

± 2p(k−1)fv +

(
ā2p
ε̄′(p)

)fv)
∈ Z

is even.

(2) If p = 2 and ε2 is not quadratic on Gv, there exists an integer nv mod

2 depending only on ε2 such that Xv is a matrix algebra over Fv if and

only if one of

m±
v + nv ∈ Z

is even.

(3) Finally, if p is odd and the tame part of εp is quadratic on Gv, or if

p = 2 and ε2 is quadratic on Gv, then there is an integer nv mod 2

defined in terms of a Hilbert symbol (t, d)v, with t depending only on

εp and d on an explicit Fourier coefficient of f , such that Xv is a matrix

algebra over Fv if and only if a particular choice of

m±
v + nv ∈ Z

is even.
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In parts (1) and (2), m±
v have the same parity if both are finite (and if −1 lies

in the image of εp). Also, the theorem reduces to the previous theorem when

the slopes are unequal. Indeed the quantities m±
v = mv coincide in the unequal

slope case, since evfv = [Fv : Qp], and it turns out that nv = 0 as well. Thus

we may think of nv as an error term to the truth of (??) in the equal slope case.

The above results give a complete answer to Ribet’s question on the Brauer

class of Xf = X in the cases of finite slope. These results cover all forms

f of square-free level, and more generally all forms f for which Mf has either

semistable or crystabelian (crystalline over an abelian extension of Q) reduction.

The remaining finite places of bad reduction occur when Np > Cp. In such cases

ap = 0 and even the slope of f is not finite. We hope to return to the infinite

slope cases in subsequent work (for a weak result, see Proposition 33).

In closing, we note that although Theorems 2 through 5 are proved separately,

there is the tantalizing possibility that there is a more uniform, conceptual proof

of these results along the following lines. The Tate conjecture for the motive

Mf says that the natural map Xf⊗Q� → End(M�)
H is an isomorphism, for any

prime 	, and for a sufficiently deep finite index subgroup H of the full Galois

group GQ (cf. [Ri80] and [GGQ05]). Here M� is the 	-adic realization of Mf .

Now GQ acts via the adjoint (conjugation) action on M�, so clearly the local

algebra X ⊗ Q� and certain fixed points in the adjoint representation of M�

are related. Moreover, Pink [Pi98] has shown that a compact subgroup of GLn

over a local field is essentially determined by its sln-adjoint representation. It

would be interesting to see if these remarks can be made into a direct proof of

Theorem 1.

2. Functoriality and the adjoint lift

We start by recalling a few more details about the adjoint lift mentioned above.

2.1. Functoriality. Let H and G be reductive algebraic groups defined over

Q, and let LH = LH0�GQ and LG = LG0�GQ be the corresponding L-groups.

Let u : LH → LG be an L-homomorphism (this map is identity on the second

factor). According to Langlands’ principle of functoriality there should be a

way to lift automorphic forms on H(AQ) to those on G(AQ), using the map u.

The lifting is in fact done locally. Let Gp ⊂ GQ be the decomposition sub-

group at the prime p. The corresponding local L-groups are LHp=
LH0�Gp⊂LH
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and LGp = LG0�Gp ⊂ LG. Let up : LHp → LGp be the local L-homomorphism

obtained by restricting u on the second factor to Gp. We now define the local

lift with respect to the local L-homomorphism up. Let πp be an irreducible ad-

missible representation of H(Qp), with parameter an admissible homomorphism

φp : W ′
p → LHp, where W ′

p is the Weil–Deligne group at p. The composition

φ′
p = up ◦φp is an admissible (if G is quasi-split) homomorphism of W ′

p to LGp.

Then φ′ (conjecturally) parametrises a local L-packet and the elements of this

L-packet are the local functorial lifts Πp of πp.

Let now π = ⊗′πp be an irreducible automorphic representation of H(AQ).

An automorphic representation Π = ⊗′Πp of G(AQ) is a weak functorial lift of

π with respect to u, if for all but finitely many places p, Πp is a local functorial

lift of πp with respect to up. Similarly, we call Π a strong functorial lift of π, if

Πp is a local functorial lift of πp, for all places p. By definition, if Π is a weak

lift of π, then for all representations r : LG → GLn(C) we have the identity of

partial Langlands L-functions

LS(s, π, r ◦ u) = LS(s,Π, r),

where S is a finite set of places where we do not know how to locally lift πp.

Note S = ∅ if Π is a strong functorial lift of π.

2.2. Adjoint lift. Now suppose that H = GL2 and G = GL3 are defined

over Q. By definition, the connected parts of the corresponding L-groups are
LH0 = GL2(C) and LG0 = GL3(C). The adjoint action of GL2(C) on the

Lie algebra of SL2(C), namely the trace zero matrices of M2×2(C), induces L-

homomorphisms u, and up, for each prime p. On diagonal elements (of the first

factor) the map up is easily checked to be given by(
α 0

0 β

)
�→

⎛⎜⎝
α
β 0 0

0 1 0

0 0 β
α

⎞⎟⎠ .

By a classical theorem of Gelbart and Jacquet [GJ78], every automorphic

representation of H has a strong lift to G. If π = πf is the automorphic

representation of GL2(AQ) corresponding to f ∈ Sk(N, ε), let ad(π) denote the

automorphic lift to G(AQ). The image of arithmetic Frobenius Frobp at p under

φp is of the form ((
αp 0

0 βp

)
, Frobp

)
.
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If p � N is an unramified prime, αp and βp are the Satake parameters of πp.

Then by definition of up it is clear that the image of Frobp under φ
′
p is a diagonal

matrix with entries
αp

βp
, 1,

βp

αp
(on the first factor, and just Frobp on the second

factor).

It is more convenient to work with Π = (ad(π)⊕1)(k−1), the (k−1)-th twist

of the automorphic representation on GL4(AQ) obtained by adding the trivial

representation to ad(π). We define the slope mv of Π at v | p to be

mv := [Fv ·Qp] · v(tp),
where v is normalized so that v(p) = 1 and tp ∈ F is defined to be the sum of

the four parameters of Πp, namely

tp =

(
αp

βp
+ 1 +

βp

αp
+ 1

)
· pk−1 =

(αp + βp)
2

αpβp
· pk−1.

We note that tp can be computed easily in various cases. When p � N an easy

check shows

tp =
a2p
ε(p)

.

When p | N and Np = 1 and Cp = 0, it is known that αp = ap and βp = pap

(up to multiplication by a constant), and so

tp = pk−2(p+ 1)2.

Finally, if Np = Cp, then a natural choice is αp = ap and βp = āpε
′(p) (again

up to multiplication by a constant), so

tp =
ap

2

ε′(p)
+ 2pk−1 +

ā2p
ε̄′(p)

,

noting |ap|2 = pk−1. In fact the Weil–Deligne parameter in this case is ramified

at p, so there are other choices for αp and βp and hence for tp. This causes

some complications in the statements and the proofs of results in this case.

2.3. Galois representations. All the above formulas can be computed on

the Galois side as well. Let ρf : GQ → GL2(Eλ) be an 	-adic Galois represen-

tation attached by Deligne to f , for a prime λ | 	 of E with 	 �= p. Let λ(x) be

the unramified character which takes arithmetic Frobenius Frobp to x ∈ Eλ.

Theorem 6 (Langlands): The local behaviour of ρf |Gp at a decomposition

group Gp at p is as follows.
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• If p � N , let αp and βp be roots of the polynomial x2 − apx+ ε(p)pk−1.

Then

ρf |Gp ∼
(
λ(βp) 0

0 λ(αp)

)
.

• If Np = 1 and Cp = 0, let αp = ap and βp = pap. Then

ρf |Gp ∼
(
λ(βp) ∗
0 λ(αp)

)
.

• If Np = Cp ≥ 1, let αp = ap and βp = āpε
′(p). Then

ρf |Gp ∼
(
λ(βp) · εp 0

0 λ(αp)

)
.

• If Np ≥ 2 > Cp and p > 2, and πp is supercuspidal, then ρf |Gp ∼
Ind

Gp

GK
χ, for a quadratic extension K of Qp, and a character χ of GK .

Let π = πf be the automorphic representation corresponding to f . Then ρπ,

the Galois representation attached to π, differs a bit from ρf (e.g., the Satake

parameters differ from the roots of the polynomial x2−apx+ε(p)pk−1 by a factor

of p(k−1)/2, and similarly the L-functions satisfy L(s, f) = L(s − k−1
2 , π, 1)).

However, the resulting adjoint Galois representation obtained by making GQ

act by conjugation on M2×2(Eλ) is the same, and we let

ρAd(π) : GQ → GL4(Eλ)

be defined by ρAd(π)(g)(X) = ρπ(g)Xρπ(g)
−1, for all X ∈ M2×2(Eλ) and g ∈

GQ. Finally, let

ρΠ = ρAd(π) ⊗ χk−1
�

be the representation obtained by taking the (k − 1)-fold twist of the adjoint

representation by the 	-adic cyclotomic character.

Corollary 7: We have:

• If p � N , then trace(ρΠ(Frobp)) = a2p/ε(p).

• If Np = 1 and Cp = 0, then trace(ρΠ(Frobp)) = pk−2(p+ 1)2.

• If Np = Cp ≥ 1, then in many cases there exists an arithmetic Frobenius

Frobp such that trace(ρΠ(Frobp)) = a2p/ε
′(p) + 2pk−1 + ā2p/ε̄

′(p).

Proof. If

ρπ(Frobp) ∼
(

αp 0

0 βp

)
,
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then

ρAd(π)(Frobp) ∼

⎛⎜⎜⎜⎝
αp

βp
0 0 0

0 1 0 0

0 0
βp

αp
0

0 0 0 1

⎞⎟⎟⎟⎠
and χ�(Frobp)

k−1=pk−1. Taking the trace of ρΠ(Frobp) gives the corollary.

3. The Brauer class of X

3.1. Definition of α. Recall that for γ ∈ Γ, there is a unique E-valued Dirich-

let character χγ such that fγ = f ⊗χγ , and hence ρfγ ∼ ρf ⊗χγ . For γ, δ ∈ Γ,

the identity

χγδ = χγχ
γ
δ

shows that γ �→ χγ is a 1-cocycle. Specialising to g ∈ GQ, we see that γ �→ χγ(g)

is an E-valued 1-cocycle as well. By Hilbert’s theorem 90, H1(Γ, E∗) is trivial,
so there is an element α(g) ∈ E∗ such that

(3.1) α(g)
γ−1

= χγ(g),

for all γ ∈ Γ (cf. [Ri85]). Clearly, α(g) is completely determined up to multipli-

cation by elements of F ∗. Varying g ∈ GQ, we obtain a well-defined map

α̃ : GQ → E∗/F ∗.

Since each χγ is a character, α̃ is a homomorphism.

We can and do lift α̃ to a map α : GQ → E∗. The following result summarizes

some well-known properties of these maps. The proofs given in [Ri75, Thm. 1.1],

[Ri04, Thm. 5.5] for k = 2 (see also [Ri85], [BG11, Lem. 9]) easily extend to

higher weight.

Proposition 8 (Ribet): We have:

(1) α̃ : GQ → E∗/F ∗ is unramified at all primes p of semistable reduction.

(2) α2(g) ≡ ε(g) mod F ∗, for all g ∈ GQ.

(3) α(Frobp) ≡ ap mod F ∗, for primes p � N , if ap �= 0.

(4) α(g) ≡ trace(ρf (g)) mod F ∗, for g ∈ GQ, if trace(ρf (g)) �= 0.
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3.2. The 2-cocycle cα. By [Ri81, Prop. 1], whose proof holds for weights

k ≥ 2 as well, the class of X in Br(F ) = H2(GF , Q̄
∗) is given by the 2-cocycle

(g, h) �→ χg(h), for g, h ∈ GF , where χg := χγ for γ the image of g in Γ.

By the definition of α, this 2-cocycle is the same as the 2-cocycle given by

(g, h) �→ α(h)g

α(h) , which differs from the 2-cocycle

cα(g, h) =
α(g)α(h)

α(gh)
(3.2)

by a coboundary. Hence, the class of X is given by the 2-cocycle cα(g, h) above.

Observe that the class of cα is independent of the lift α of α̃. Suppose α′ is
another lift of α̃. Then α′(g) = α(g)f(g), for some map f : GF → F ∗. Then cα

and cα′ differ by the map (g, h) �→ f(g)f(h)
f(gh) , which is clearly a 2-coboundary.

We also note that the class of cα (hence X) is 2-torsion in the Brauer group of

F , since c2α(g, h) =
d(g)d(h)
d(gh) is a 2-coboundary, where d(g) := α2(g)/ε(g) ∈ F ∗,

by part (2) of Proposition 8.

3.3. Invariant map. To study the Brauer class of X , it suffices to study the

Brauer class of Xv := X⊗F Fv in Br(Fv), for each place v of F . It is well known

that if v is finite, then

invv : Br(Fv) � Q/Z

via the invariant map invv at v. Since the class of X is 2-torsion in the Brauer

group of F , we have that invv(Xv) ∈ 1
2Z/Z. Identifying this group with Z/2,

we see that Xv is a matrix algebra over Fv if invv(Xv) = 0 mod 2, and is a

matrix algebra over a quaternion division algebra over Fv if invv(Xv) = 1 mod

2.

To aid in the computation of invv(Xv), for finite places v, it is useful to recall

the explicit definition of the invariant map, which we do now. Let Iv be the

inertia subgroup of GF at the prime v. Let Gal(F nr
v /Fv) be the Galois group

of F nr
v , the maximal unramified extension of Fv, over Fv. The inflation map

Inf : H2(Gal(F nr
v /Fv), F

nr
v ) → Br(Fv)

is well-known to be an isomorphism. Now, the surjective valuation v : F ∗ → Z

can be extended uniquely to (F nr
v )∗ which we continue to call v. This gives rise

to a map

v : H2(Gal(F nr
v /Fv), F

nr
v ) → H2(Gal(F nr

v /Fv),Z)
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which we again denote by v. Also, the short exact sequence of abelian groups

0 → Z → Q → Q/Z → 0

gives rise to a long exact sequence of cohomology groups, with boundary map

δ : H1(Gal(F nr
v /Fv),Q/Z) → H2(Gal(F nr

v /Fv),Z)

which is an isomorphism since Hi(Gal(F nr
v /Fv),Q) = 0 for i = 1, 2. We recall

the definition of δ. If χ : Gal(F nr
v /Fv) → Q/Z is a homomorphism, and χ̃ is a

lift of χ to Q, then δ(χ) is the Z-valued 2-cocycle on Gal(F nr
v /Fv) given by

(g, h) �→ χ̃(g)χ̃(h)

χ̃(gh)
.

Finally, there is a map, say Ev (for evaluation)

Ev : H1(Gal(F nr
v /Fv),Q/Z) → Q/Z,

obtained by evaluating a homomorphism at the arithmetic Frobenius at v.

Then, by definition, the invariant map at v is given by

invv = Ev ◦ δ−1 ◦ v · Inf−1 : Br(Fv) → Q/Z.

3.4. Local 2-cocycle. Now let K : Gv → F̄ ∗
v be any map. Then

cK(g, h) =
K(g)K(h)

K(gh)

defines a local 2-cocycle on Gv, if cK(g, h) ∈ Fv, for all g, h ∈ Gv. We call it the

local 2-cocycle defined by the function K. The following general lemma regard-

ing the Brauer class of this local 2-cocycle will be very useful in computations.

Lemma 9: Let K : Gv → F̄ ∗
v be a map and let t : Gv → F̄ ∗

v be an unramified

homomorphism such that

(1) K(i) ∈ F ∗
v , for all i ∈ Iv,

(2) K(g)2/t(g) ∈ F ∗
v , for all g ∈ Gv.

Then, for any arithmetic Frobenius Frobv at v, we have

invv(cK) =
1

2
· v
(
K(Frobv)

2

t(Frobv)

)
∈ 1

2
Z/Z,

where v : F ∗
v → Z is the surjective valuation.
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Proof. We will calculate invv(cK), step by step, using the definition of invv just

recalled.

Replacing the induced homomorphism K : Gv → F̄ ∗
v /F

∗
v with another lift

K : Gv → F̄ ∗
v which we again call K does not change the cohomology class of

cK . By property (1) we may choose a lift K such that for g ∈ Gv, K(gi) = K(g),

for all i ∈ Iv. Denote the image of g under the projection map Gv → Gv/Iv = Ẑ

by ḡ. Define cK̄ : Ẑ × Ẑ → F ∗
v by cK̄(ḡ, h̄) = cK(g, h). Then cK̄ is clearly a

well-defined 2-cocycle on Ẑ whose image under the inflation map is cK .

Now, by definition, v(cK̄) is the 2-cocycle defined by

(g, h) �→ v

(
K(g)K(h)

K(gh)

)
∈ Z,

for g, h ∈ Gv.

By property (2), d(g) = K2(g)/t(g) ∈ F ∗
v , for g ∈ Gv. The 2-cocycle above

is the same as the 2-cocycle induced by

(g, h) �→ 1

2
· v
(
d(g)d(h)

d(gh)

)
∈ Z.

Consider now the map χ : Gal(F nr
v /Fv) → Q/Z defined by

χ(g) =
1

2
· v(d(g)) mod Z.

Under the boundary map δ the 1-cocycle χ maps to the 2-cocycle above, so

(δ−1 ◦ v ◦ Inf−1)(cK)) is just χ. Hence

invv(cK)=(Ev◦δ−1◦v◦Inf−1)(cK)=χ(Frobv)=
1

2
·v
(
K(Frobv)

2

t(Frobv)

)
mod Z.

4. Good primes

Theorem 10: Assume gcd(p,N) = 1 and assume ap �= 0. Let v be a place of

F lying over p. Then Xv is a matrix algebra over Fv, if and only if the slope

mv = [Fv : Qp] · v(a2p/ε(p)) ∈ Z

is even, where v is normalized such that v(p) = 1.

Proof. This follows immediately from the lemma above taking K = α and t = ε.

Indeed, we have invv(cα) = 1
2v(α

2(Frobv)/ε(Frobv)) mod Z, and α(Frobv) ≡
afvp mod F ∗, by part (3) of Proposition 8.
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For the cases where ap = 0 we have the following criterion (which is not in

terms of a slope). Let p† � N be a prime such that p† ≡ p mod N and ap† �= 0.

Let

m†
v := [Fv : Qp† ] · v(a2p†/ε(p

†)) ∈ Z,

where v is normalized so that v(p) = 1.

Theorem 11: Let gcd(p,N) = 1 and suppose ap = 0. Let v be a place of F

lying over p. Then Xv is a matrix algebra over Fv if and only if m†
v ∈ Z is even.

Proof. The proof is similar to that of the previous theorem, with minor changes.

Note that p† ≡ p mod N implies χγ(p) = χγ(p
†), for all γ ∈ Γ. So, if Frobp

and Frobp† denote the Frobenii at the prime p and p†, then by (3.1), we have

α(Frobp) ≡ α(Frobp†) ≡ ap† mod F ∗. Hence

invv(cα) =
1

2
v

(
α2(Frobv)

ε(Frobv)

)
=

1

2
· fv · v

(
α2(Frobp)

ε(p)

)
=
1

2
· fv · v

(
a2p†

ε(p†)

)
mod Z.

5. Steinberg primes

Let us now turn to the cases where p | N . In this section we assume that Np = 1

and Cp = 0. Thus N = Mp, where M is a positive integer with (M,p) = 1,

and ε is a character mod M .

Lemma 12: If (γ, χγ) is an extra twist for f , then the conductor of χγ divides

M .

Proof. A general result due to Atkin–Li [AL78, Thm. 3.1] allows one to calculate

the exact level of the newform attached to a twisted form f ⊗χ. We recall this

now. Let f ∈ Sk(N, ε) be a newform of weight k ≥ 2, and nebentypus ε. In the

notation of loc. cit., let q | N be a prime and let Q be the q-primary factor of

N . So N = QM , with (M, q) = 1. Let the conductor of εQ, the q-part of ε, be

qα, for α ≥ 0. Let χ be a character of conductor qβ , with β ≥ 1. Set

Q′ = Max{Q, qα+β, q2β}.
According to the theorem, the level of the newform attached to f ⊗χγ is Q′M ,

provided that
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• max {qα+β , q2β} ≤ Q, if Q′ = Q, or

• Conductor of εQχ = max {qα, qβ}, if Q′ > Q.

In our case, taking Q = q = p, we have εQ = εp = 1. We let χ be the p-part

of χγ . Suppose towards a contradiction that χγ has level divisible by p. Then

α = 0 and β = 1. Then Q′ = p2 > Q = p and the Q-part of the conductor

of εQχγ = χγ is p. So the second condition above is satisfied and we get the

p-part of the level of the newform attached to f ⊗χγ is p2. On the other hand,

f ⊗ χγ = fγ has the same level as f , namely Mp, which is not divisible by

p2, a contradiction. Thus the p-part of the conductor of χγ must be trivial, as

desired.

Recall that aγ� = a� · χγ(	) for all primes 	 � N . We show that this also holds

for p||N .

Lemma 13: aγp = χγ(p) · ap, for all γ ∈ Γ.

Proof. We use the precise form of the local Galois representation at p from

Langlands’ theorem (Theorem 6, see also [Hi00, Thm. 3.26]). We have

ρf |Gp ∼
(

λ(pap) ∗
0 λ(ap)

)
,

where λ(x) : Gp −→ Z∗
l is the unramified character taking arithmetic Frobenius

to x. Note that both characters make sense since both pap and ap are 	-

adic units. By the previous lemma, the conductor of χγ , for γ ∈ Γ, is prime

to p and so χγ(p) makes sense, and is an 	-adic unit, and locally we have

χγ |Gp = λ(χγ(p)). Applying Langlands’ theorem for fγ , we get

ρfγ |Gp ∼
(

λ(paγp) ∗
0 λ(aγp )

)
.

Since fγ = f ⊗ χγ implies ρfγ ∼ ρf ⊗ χγ , we have locally that(
λ(paγp) ∗

0 λ(aγp)

)
∼
(

λ(pap)λ(χγ(p)) ∗
0 λ(ap)λ(χγ(p))

)
.

An important part of Langlands’ theorem (not mentioned explicitly above) is

that ∗ �= 0, since the inertia group Ip acts unipotently with infinite image. Thus

comparing like diagonal entries, we see that aγp = χγ(p) · ap.
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Recall that the map α̃ : GQ → E∗/F ∗ is unramified at primes of semistable

reduction, and α(Frobp) ≡ ap mod F ∗ at primes of good reduction (cf. Propo-

sition 8). We now observe that this last formula continues to hold for primes of

semistable reduction.

Proposition 14: Suppose p is a prime such that Np = 1 and Cp = 0. Then

α(Frobp) ≡ ap mod F ∗.

Proof. Since, for γ ∈ Γ, the conductor of χγ is prime to p, we have χγ(i) = 1,

for i ∈ Ip. By (3.1), we deduce α(i) ∈ F ∗, for all i ∈ Ip. Thus we recover

the fact that α̃ is unramified at the Steinberg primes for any k ≥ 2. In any

case, it makes sense to speak of α(Frobp) mod F ∗. By Lemma 13, we have

aγ−1
p = χγ(p), for γ ∈ Γ. By (3.1), α(Frobp)

γ−1 = χγ(p). Since these identities

hold for all γ ∈ Γ, we deduce that α(Frobp) ≡ ap mod F ∗.

Theorem 15: Let Np = 1 and Cp = 0 and let v | p be a prime of F . Then Xv

is a matrix algebra if and only if [Fv : Qp] · (k − 2) is even.

Proof. Applying Lemma 9 to K = α and t = ε, we get

invv(cα) =
1

2
v
(α2(Frobv)

ε(Frobv)

)
mod Z.

By the previous proposition, α(Frobv) = afvp mod F ∗. Thus

invv(cα) =
1

2
· fv · v

( a2p
ε(p)

)
.

By Theorem 4.6.17 [Mi89],

a2p
εM (p)

= pk−2.

Also, we may replace the valuation v by ev ·v, where the second v is normalized

such that v(p) = 1. We obtain that invv(cα) = [Fv : Qp] · (k − 2) mod 2, as

desired.

6. Ramified principal series primes

We now assume that Np = Cp ≥ 1. Let v be a place of F lying above p. Let ev

and fv be the ramification degree and inertia degree of v over p. Recall that in

this case πp is in the ramified principal series.
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Recall that ε = ε′ · εp is a decomposition of the nebentypus ε into its prime-

to-p part and p part. We use repeatedly a fundamental theorem of Langlands

(Theorem 6), which states that the local Galois representation at the prime p

is given by

ρf |Gp ∼
(

λ(āpε
′(p)) · εp 0

0 λ(ap)

)
,

where λ(x) is the usual local unramified character.

Lemma 16: Let μ =
a2
p

ε′(p) and ν = μ̄ =
ā2
p

ε̄′(p) . Then μf + νf ∈ F , for all integers

f ≥ 1.

Proof. Let (γ, χγ) be an extra twist for the form f . Thus we have ρfγ ∼ ρf⊗χγ .

Hence, by Langlands’ theorem, locally on Gp we have(
λ(āγpε

′(p)γ) · εγp 0

0 λ(aγp)

)
∼
(

λ(āpε
′(p)) · εp · χγ 0

0 λ(ap) · χγ

)
.

One of the two characters on the left is unramified and the other one is ramified.

Thus the same must be true on the right-hand side. Moreover, the unramified

characters on both sides must be equal and the ramified characters must also

be equal.

We decompose χγ into its prime-to-p and p parts, namely χγ = χ′
γ · χγ,p.

First, assume that χγ is unramified at p. Then, χγ = χ′
γ = λ(χγ(p)), and

comparing unramified characters, we get aγp = χγ(p)ap. Using the fact that

χ2
γ = εγ−1, we have χ2

γ(p) = ε′(p)γ−1. Thus (μf )γ = μf and (νf )γ = νf , since

Γ is abelian, so complex conjugation commutes with γ. Hence, γ fixes μf + νf .

Now assume that χγ is ramified at p. Comparing ramified characters, we get,

on Ip, that χγ,p = εγp and εpχγ,p = 1. Thus ε̄p = εγp = χγ,p. Now, comparing

unramified characters, we get aγp = āp·ε′(p)·χ′
γ(p). Again, since (χ

′
γ)

2 = (ε′)γ−1,

we deduce that
(a2p)

γ

ε′(p)γ
=

ā2p
ε̄′(p)

.

In other words, μγ = ν, and hence (μf )γ = νf , for all integers f ≥ 1. Applying

complex conjugation we see that similarly (νf )γ = μf . Hence again γ fixes

μf + νf .

In both cases γ ∈ Γ = Gal(E/F ) is arbitrary, so μf + νf must belong to F ,

for all integers f ≥ 1.
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For later use we state the following generalization of Lemma 16 which can be

proved in a similar manner, or directly by noting that α2 ≡ ε mod F ∗.

Lemma 17: Let Frobv be an arithmetic Frobenius at v, and let ζ = εp(Frobv).

Then μfv · 1/ζ + νfv · ζ ∈ F .

6.1. Unequal slope. In this section, we assume that

v

(
a2p
ε′(p)

+ 2p(k−1) +
ā2p
ε̄′(p)

)
< k − 1.

Here v is the valuation such that v(p) = 1.

By an elementary calculation it can be shown that the above assumption is

equivalent to the assertion that for every place w of E lying over v, we have

w(ap) �= w(āp). Let Ov be the ring of integers of Fv. Let Pv be the prime ideal

of Ov and let πv be a prime element of Ov. Let U
(n)
v = 1 + Pn

v , for n ≥ 1.

Lemma 18: μ and ν belong to Fv.

Proof. By Lemma 16, μ+ ν belongs to F . Consider the quantity

(μ− ν)2

(μ+ ν)2
= 1− 4

μ · ν
(μ+ ν)2

.

Now μν = p2(k−1). Since the slopes of μ and ν are not the same, the expression

on the right-hand side belongs to U
(1)
v = 1+ πvOv, for p odd, and it belongs to

U
(3ev)
v = 1+π3ev

v Ov, for p = 2. It therefore has a square root in U
(1)
v = 1+πvOv,

in both cases. Hence, μ−ν
μ+ν belongs to Fv. Since we have already proved that

μ+ ν belongs to F , we see μ− ν belongs to Fv. Hence, individually, both μ and

ν belong to Fv.

6.1.1. The case of odd primes. We now assume that p is an odd prime. We say

that εp is tame if the order of εp divides p− 1.

Lemma 19: If εp is tame, then for any arithmetic Frobenius Frobv at v,

(afvp + εp(Frobv)(āpε
′(p))fv )2

a2fvp + (āpε′(p))2fv
∈ F ∗

v
2

is a square.
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Proof. We may rewrite this expression as

μfv + ε2p(Frobv)ν
fv

μfv + νfv
·
(
1 + 2εp(Frobv) · p(k−1)fv

μfv + ε2p(Frobv)ν
fv

)
,

where μ and ν are as above. By the previous lemma, μ and ν belong to Fv.

Since εp is tame, the image of εp belongs to Qp, and hence to Fv. Thus all

terms in the display above are in Fv. Now, since p is odd, and the slopes

are unequal, the second term (in parentheses) is in U
(1)
v , hence a square. If

w(ap) > w(āp), the first term is of the form ε2p(Frobv) times an element of U
(1)
v ,

and if w(ap) < w(āp), then the first term is in U
(1)
v , so in both cases, the first

term is also a square.

Lemma 20: If εp is tame and Frobv is an arithmetic Frobenius at v, then

α2(Frobv) ≡ a2fvp + (āpε
′(p))2fv mod F ∗2

v .

Proof. If the trace of ρf (g) is non-zero, for g ∈ GQ, then (cf. part (4) of Propo-

sition 8)

α2(g) ≡ (trace ρf (g))
2 mod F ∗2.

Since w(ap) �= w(āp), the trace of ρf(Frobv) is non-zero. Using Langlands’

theorem to compute the trace, we obtain

α2(Frobv) ≡ (afvp + εp(Frobv)(āpε
′(p))fv )2 mod F ∗2.

The lemma now follows from the previous lemma.

Lemma 21: If εp is tame, then α(i) belongs to F ∗
v , for i ∈ Iv.

Proof. If i ∈ Iv, and σv is an arithmetic Frobenius at v, then σ′
v = σvi is also

an arithmetic Frobenius at v. By the lemma above, α(σv) ≡ ±α(σ′
v) mod F ∗

v .

Since

cα(σ, i) =
α(σv)α(i)

α(σ′
v)

∈ F ∗,

we see that α(i) belongs to F ∗
v .

Theorem 22: Let p be an odd prime such that p | N and Np = Cp. Let v

be a place of F lying above p. Let w be an extension of v to a place of E. If

w(ap) �= w(āp), then Xv is a matrix algebra if and only if

mv = [Fv : Qp] · v
(
μ+ 2pk−1 + ν

) ∈ Z

is even, where v is normalized so that v(p) = 1.
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Proof. Let L be the extension of Fv cut out by the wild part of εp. So εp,

thought of as a character of GL, is tame. Note that L/Fv is a totally ramified

extension of odd (p-power) degree. By Lemma 21, α̃ : GL → F̄ ∗
v /F

∗
v is an

unramified character. On GL, we have α2 ≡ ε′ mod F ∗
v , since this is true with

ε′ replaced with ε, and on GL we have ε′ ≡ ε mod F ∗
v , since εp(GL) ⊂ Q∗

p ⊂ F ∗
v ,

since εp|GL is tame. We calculate invL(resFv/Lcα) using Lemma 9 applied to

K = α|GL and t = ε′|GL . Let u be the prime of L lying over v and let Frobu be

an arithmetic Frobenius at u. We obtain

invL(resFv/Lcα) =
1

2
· u
(
α2(Frobu)

ε′(Frobu)

)
mod Z ∈ 2Br(L).

Since fv is also the residue degree of u | p, by Lemma 20 we obtain

α2(Frobu) ≡ a2fvp + (āpε
′(p))2fv mod F ∗2

v .

Hence
α2

ε′
(Frobu) ≡ μfv + νfv mod F ∗2

v .

Now [L : Fv] · invv(cα) = invL(resFv/Lcα), and for x ∈ Fv, u(x) = [L : Fv] ·v(x),
where both u and v are the surjective valuations onto Z. But [L : Fv] is a power

of p, so is odd, and so in both cases can be ignored. We obtain

invv(cα)=
1

2
·v
(
α2

ε′
(Frobu)

)
=

1

2
·v(μfv+νfv )=

1

2
·v(μfv+νfv+2p(k−1)fv ) mod Z.

Since the last three terms lie in F and have distinct valuations, replacing v with

the valuation v satisfying v(p) = 1, we obtain the theorem.

6.1.2. The case of p = 2. We now assume that p = 2, so that N2 = C2 ≥ 2. We

continue to assume that w(a2) �= w(ā2).

Lemma 23: There exists an arithmetic Frobenius Frobv such that εp(Frobv)=1.

Proof. Let σv be an arithmetic Frobenius at v. Then εp(σv) = ζ2n , a 2n-th root

of unity, for n ≥ 0. If n = 0, we are done. Otherwise, since εp(Gv) = εp(Iv),

there exists i ∈ Iv such that εp(σ
2n−1
v ) = εp(i). Hence ε2np (σv) = 1 = εp(σv) ·

εp(i) = εp(σ̃v), where σ̃v = σvi is another arithmetic Frobenius at v.

Lemma 24: If Frobv is an arithmetic Frobenius at v, then εp(Frobv) belongs to

F ∗
v .
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Proof. Let σv = Frobv. Assume εp(σv) is a primitive 2m-th root of unity, for

m ≥ 0. Let r ≥ 1 be such that Fv contains a primitive 2r-th root of unity, but

not a 2r+1-th root of unity. It is enough to prove m ≤ r.

Assume, towards a contradiction, that m ≥ r + 1. Then ε2
m−r−1

p (σv) is a

2r+1-th root of unity. Using the fact that εp(Gv) = εp(Iv), we can find i ∈ Iv

such that ε2
m−r−1

p (σv) = εp(σv · i) (see proof of previous lemma). For example,

if m = r + 1, we can take i = 1. Now σ′
v = σvi is another arithmetic Frobenius

at v. Using Langlands’ theorem to compute the (non-zero) trace of ρf (σ
′
v), we

obtain

α(σ′
v) ≡ afvp + εp(σ

′
v)(āpε

′(p))fv mod F ∗.

Since α2 ≡ ε mod F ∗, we deduce that

μfv + ε2p(σ
′
v)ν

fv

εp(σ′
v)

∈ F ∗.

By Lemma 18, μfv and νfv belong to Fv. Also, ε
2
p(σ

′
v) is a primitive 2r-th root

of unity, so belongs to Fv. We conclude that the primitive 2r+1-th root of unity

εp(σ
′
v) = ε2

m−r−1

p (σv) belongs to Fv, a contradiction.

Lemma 25: If i ∈ Iv, then α(i) belongs to F ∗
v .

Proof. If εp(Gv) = ±1, then by Langlands’ theorem

α(Frobv) ≡ afvp ± (āpε
′(p))fv mod F ∗.

Let i be an arbitrary element of Iv and let σv and σ′
v = σvi be two arithmetic

Frobenii at v. The above congruence for α (and a calculation similar to that in

Lemma 18 and Lemma 20 in the case of unequal sign) guarantees that α(σv) ≡
α(σ′

v) mod F ∗
v . Since α(σv)α(i)/α(σ

′
v) ∈ F ∗, so α(i) ∈ Fv.

Let us assume now that εp(Gv) �= ±1. We first show that if εp(i) �= −1, then

α(i) ∈ Fv. We first choose an arithmetic Frobenius σv such that εp(σv) = 1, by

Lemma 23. Then εp(i) = εp(σv) ·εp(i) = εp(σ
′
v), for σ

′
v = σvi. Hence εp(i) ∈ Fv,

by Lemma 24. By Langlands’ theorem, we know α(i) ≡ 1 + εp(i) mod F ∗.
Hence, α(i) belongs to F ∗

v . If εp(i) = −1, we choose j ∈ Iv such that εp(j) �= ±1,

using the fact that εp(Gv) = εp(Iv). Since εp(j) and εp(ij) �= −1, the previous

argument shows that α(j) and α(ij) belongs to Fv. Since α(i)α(j)/α(ij) ∈ F ∗,
we see that α(i) ∈ F ∗

v .
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Lemma 26: Let Frobv be an arithmetic Frobenius at v. Then

α2(Frobv) ≡ a2fvp + (āpε
′(p))2fv + 2p(k−1)fvε′(p)fv mod F ∗2

v .

Proof. Let σv be a Frobenius as in Lemma 23, and let σ̃v be any arithmetic

Frobenius at v. Then σv and σ̃v will differ by an element of Iv. By Lemma 25,

α(σ̃v) ≡ α(σv) mod F ∗
v .

Since εp(σv) = 1, we get by Langlands’ theorem

α2(σv) ≡ a2fvp + (āpε
′(p))2fv + 2p(k−1)fvε′(p)fv mod F ∗2.

Hence,

α2(σ̃v) ≡ a2fvp + (āpε
′(p))2fv + 2p(k−1)fvε′(p)fv mod F ∗2

v .

Theorem 27: Let p = 2 and assume N2 = C2 ≥ 1. Let v | 2 be a place of F .

Assume that w(a2) �= w(ā2). Then Xv is a matrix algebra over Fv if and only

if

mv = [Fv : Q2] · v(μ+ 2pk−1 + ν) ∈ Z

is even, where v is normalized such that v(p) = 1.

Proof. By Lemma 25, the map α : Gv−→F̄ ∗
v /F

∗
v is unramified. Applying

Lemma 9 with K = α|Gv and t = ε′|Gv , we have

invv(cα) =
1

2
· v
(
α2

ε′
(Frobv)

)
=

1

2
· v(μfv + 2p(k−1)fv + νfv ) mod Z,

where the last equality follows from Lemma 26. The theorem now follows

replacing v by the valuation v normalized such that v(p) = 1.

6.2. Equal slope. In this section, we assume that

v

(
a2p
ε′(p)

+ 2p(k−1) +
ā2p
ε̄′(p)

)
≥ k − 1,

where v(p) = 1. So w(ap) = w(āp), for every place w of E lying above v. In

this case it is possible for mv = ∞. To avoid this we introduce a new quantity

mζ
v, for any root of unity ζ in the image of εp, defined by

mζ
v := ev · v

(
μfv · 1/ζ + 2p(k−1)fv + νfv · ζ

)
∈ Z ∪ {∞},

where v is normalized such that v(p) = 1. By Lemma 17, the three-term

expression above is in F , so the above expression is well-defined. Moreover, for
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some ζ, the three-term expression above is non-zero and mζ
v ∈ Z is finite. When

ζ ∈ F ∗
v , e.g., if ζ is the value of the tame part of εp, then we may rewrite

mζ
v = ev · v

(
μfv + 2ζp(k−1)fv + ζ2νfv

)
∈ Z ∪ {∞}.

Note that in the unequal slope case mζ
v = mv, if ζ ∈ F ∗

v , so the quantities

mζ
v may be considered as generalizations of mv in the equal slope case. In

particular, taking ζ = ±1 we have

m±
v = ev · v

(
μfv ± 2p(k−1)fv + νfv

)
∈ Z ∪ {∞}.

We remark that m+
v is finite if and only if afvp + (āpε

′(p))fv �= 0, and m−
v is

finite if and only if afvp − (āpε
′(p))fv �= 0, so that one of the two quantities m±

v

is always finite.

6.2.1. The case of odd primes. We now assume that p is odd and work under a

condition on the tame part of εp.

Theorem 28: Let p be an odd prime with Np = Cp ≥ 1 and v | p be a place

of F . Assume that the tame part of εp on Gv is not quadratic. Let ζ be in the

image of the tame part of εp on Gv. Then the parity of

mζ
v = ev · v

(
μfv + 2ζp(k−1)fv + ζ2νfv

)
∈ Z ∪ {∞}

is independent of ζ when it is finite, and then Xv is a matrix algebra over Fv if

and only if mζ
v ∈ Z is even.

Thus, if −1 lies in the image of the tame part of εp on Gv, and

• if afvp +(āpε
′(p))fv �= 0, then Xv is a matrix algebra over Fv if and only

if m+
v ∈ Z is even,

• if afvp − (āpε
′(p))fv �= 0, then Xv is a matrix algebra over Fv if and only

m−
v ∈ Z is even,

noting that one of m±
v is always finite, and both have the same parity if both

are finite. If −1 does not lie in the image of the tame part of εp on Gv (e.g.,

if the tame part of εp is trivial on Gv) and if m+
v < ∞, then Xv is a matrix

algebra over Fv if and only if m+
v ∈ Z is even.

Proof. The proof goes along the lines of the proof of Theorem 22, with a few

modifications. We base change to L so that εp|GL is tame, compute the invariant

there, and then descend back to Fv.
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We first show that α̃ : GL → F̄ ∗
v /F

∗
v is unramified. If the trace of ρf (g)

is non-zero, then α(g) ≡ trace ρf (g) mod F ∗, for g ∈ GL (cf. part (4) of

Proposition 8). If the tame part of εp is trivial on Gv, then by Langlands’

theorem α(i) ≡ 1 + εp(i) = 2 mod F ∗, for all i ∈ IL. So we may assume that

the tame part of εp is non-trivial on Gv. If εp(i) �= −1, for i ∈ IL, then α(i)

belongs to F ∗
v . Indeed by Langlands’ theorem again, α(i) ≡ 1 + εp(i) mod

F ∗, and since εp is tame on GL, εp(i) ∈ Q∗
p ⊂ F ∗

v . If εp(i) = −1, for i ∈ IL,

we choose j ∈ IL such that εp(j) �= ±1. Such a choice is possible since by

assumption the tame part of εp is not quadratic. The above argument shows

that α(j) and α(ij) belong to F ∗
v , and since α(i)α(j)/α(ij) ∈ F ∗, α(i) ∈ F ∗

v as

well.

Write u for the prime of L lying over v and let Frobu be an arithmetic

Frobenius at u. We calculate invL(resFv/Lcα) using Lemma 9 applied to K =

α|GL and t = ε′|GL , and get

invL(resFv/Lcα) =
1

2
· u
(
α2

ε′
(Frobu)

)
mod Z.

Since [L : Fv] is odd (a power of p), we may descend to Fv as before to get

invv(cα) =
1

2
· v
(
α2

ε′
(Frobu)

)
mod Z.

Let ζ = εp(Frobu) ∈ Q∗
p ⊂ F ∗

v . Then the usual argument using Langlands’

theorem shows that

α2

ε′
(Frobu) ≡ μfv + 2ζp(k−1)fv + ζ2νfv mod F ∗2

v

and replacing v with the valuation v such that v(p) = 1 we obtain the theorem.

We note that the parity of mζ
v is independent of ζ since α̃ is unramified on

GL.

6.2.2. The case of p = 2. We now show that if p = 2 and ε2 is not quadratic on

Gv, then the ramification of Xv is also determined by m±
v , up to an error term

nv which depends purely on the nebentypus ε2, which we define now.

If ε2 is trivial on Gv, set nv = 0. If ε2 has order 2r on Gv, for r > 1, let

Fv(
√
t)/Fv, for t ∈ F ∗

v , be the quadratic extension of Fv cut out by the quadratic

character ε2
r−1

2 on Gv. Let ζ2r be a primitive 2r-th root of unity and define

z =
(1 + ζ2r )

2

ζ2r
∈ F ∗
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noting that z ∈ F ∗ by Langlands’ theorem. Define nv mod 2 by

(−1)nv = εv(−1) · (t, z)v,

where εv is the restriction of ε2 to Gv and (t, z)v is the Hilbert symbol of t and

z at v.

Lemma 29: Assume ε2 has order 2r on Gv, for r > 1. Let h be the function on

Gv defined by

h(g) =

⎧⎨⎩
1+ε2(g)√

ε2(g)
if ε2(g) �= −1,

1 if ε2(g) = −1,

and let ch be the corresponding F -valued 2-cocycle on Gv. Then the class of ch

in 2Br(Fv) is given by the symbol (t, z)v.

Proof. We first claim that if −1 �= ζ = ε2(g) is not a primitive 2r-th root of

unity, then 1+ζ√
ζ
∈ F ∗. Indeed, choose g ∈ Gv such that ε2(g) = ζ2r , where ζ2r is

a primitive 2r-th root of unity. We may assume g ∈ Iv, and applying Langlands’

theorem we obtain that (1+ε2(g))
2

ε2(g)
∈ F ∗, and hence that

1+ζ2r−1√
ζ2r−1

∈ F ∗, where

ζ2r−1 = ε2(g
2) is a primitive 2r−1-th root of unity. Now set h = g2 ∈ Iv. Set

d = α2

ε2
on Iv. Then by Langlands’ theorem d(h) ∈ F ∗2. Since d : Iv → F ∗/F ∗2

is a homomorphism we see that d(ha) ∈ F ∗2, for all integers a. Hence by

Langlands’ theorem again we deduce that
(1+ζa

2r−1 )
2

ζa
2r−1

∈ F ∗2, if it is non-zero.

Hence
1+ζa

2r−1√
ζa
2r−1

∈ F ∗, for all integers a, if it is non-zero, proving the claim. We

now claim that if ε2(g
b) with b odd is any primitive 2r-th root of unity, then

h(gb) ≡ h(g) mod F ∗. Indeed by the discussion above h(gb−1) ∈ F ∗ since b− 1

is even.

The two claims above show that the 2-cocycle ch is cohomologous to the

2-cocycle cl where

l(g) =

⎧⎨⎩1 if ε2
r−1

2 (g) = 1,
1+ζ2r√

ζ2r
if ε2

r−1

2 (g) = −1.
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Let σ be the non-trivial element of the Galois group Gal(Fv(
√
t)/Fv). Let

z =
(

1+ζ2r√
ζ2r

)2
∈ F ∗. Then the class of cl is completely determined by the table

1 σ

1 1 1

σ 1 z

which is precisely the symbol (t, z)v.

Theorem 30: Let p = 2 and assume that ε2 is not quadratic on Gv. If ε2 is

trivial on Gv and m+
v < ∞, then Xv is a matrix algebra if and only if m+

v ∈ Z

is even. If ε2 on Gv has order 4 or more and if

• afvp +(āpε
′(p))fv �= 0, thenXv is a matrix algebra if and only ifm+

v +nv ∈
Z is even,

• afvp −(āpε
′(p))fv �= 0, thenXv is a matrix algebra if and only ifm−

v +nv ∈
Z is even,

noting that if both afvp ± (āpε
′(p))fv �= 0, then m±

v have the same parity.

Proof. If ε2 is trivial on Gv, then by Langlands’ theorem, α(i) ≡ 2 mod F ∗, for
all i ∈ Iv. Lemma 9 applies directly to prove the first statement. So we may

assume that ε2 is not of order 1 or order 2 on Gv. Hence there exists i ∈ Iv,

such that ε2(i) =
√−1. If ε2(j) = −1, for j ∈ Iv, then a short computation

using the fact that cα(i, j) ∈ F ∗ shows that α(j) ≡ √−1 mod F ∗.
We define a function f : Gv → E∗ by

f(g) =

⎧⎨⎩1 + ε2(g) if ε2(g) �= −1,
√−1 if ε2(g) = −1.

Now define K : Gv → E∗ by K(g) = α(g)
f(g) , for g ∈ Gv. Then the cocycle cα can

be decomposed as cα = cKcf , where cK and cf are the cocycles corresponding to

K and f respectively. That these are indeed cocycles follows from the fact that

they are F -valued, which can be proved using ε2(Gv) = ε2(Iv) and Langlands’

theorem.

We first calculate invv(cK). By choice of f , K(i) belongs to F ∗, for all i ∈ Iv.

Since ε2(Gv) = ε2(Iv), a computation using Langlands’ theorem shows that
K2(g)
ε′(g) ∈ F ∗, for all g ∈ Gv. Let σv be the Frobenius at the prime v. By
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Lemma 9 applied to K as above and t = ε′ we have

invv(cK) =
1

2
· v
(K2

ε′
(σv)

)
mod Z.

Assume afv2 �= −(ā2ε
′(2))fv ; then we choose σv in such a way that ε2(σv) = 1.

Then α(σv) ≡ (afv2 +(ā2ε
′(2))fv ) mod F ∗, so that K2

ε′ (σv) ≡ μfv+νfv+2p(k−1)fv

mod F ∗2. Finally, the valuation considered in the statement of the theorem is

normalized so that v(2) = 1, and differs from the valuation used in the proof

by ev. Noting evfv = [Fv : Q2], we obtain

invv(cK) =
1

2
·m+

v mod Z.

If afv2 = −(ā2ε
′(2))fv , then we choose σv in such a way that ε2(σv) = −1. Then

α(σv) ≡ (afv2 − (ā2ε
′(2))fv ) mod F ∗, so that K2

ε′ (σv) ≡ μfv + νfv − 2p(k−1)fv

mod F ∗2. We obtain

invvcK =
1

2
·m−

v mod Z.

We also remark that since K2/ε′ : Gv → F ∗/F ∗2 is an unramified homomor-

phism, invv(cK) does not depend on the choice of arithmetic Frobenius at v,

and in particular m±
v have the same parity if both are simultaneously finite.

Now we calculate invv(cf ). Let cε be the cocycle

cε(g, h) =

√
ε(g)

√
ε(h)√

ε(gh)
,

for g, h ∈ GQ. We have invv(cf ) = invv(ch) + invv(cε), where h is the function

defined in the previous lemma. The theorem now follows from the previous

lemma and the fact that invv(cε) is trivial if and only if εv(−1) = 1 [Qu98].

Corollary 31: Assume that p = 2 and ε2 is not quadratic on Gv. Assume

also that F = Q. Then:

(1) If ε2(−1) = 1, then Xv is a matrix algebra over Fv if and only if one of

m±
v ∈ Z is even.

(2) If ε2(−1) = −1, then Xv is a matrix algebra over Fv if and only if one

of m±
v ∈ Z is odd.

Proof. We show that the symbol (t, z)v vanishes when F = Q, so that nv = 0

mod 2 if and only if ε2(−1) = 1. Note that Q has three quadratic extensions of

absolute discriminant a power of 2, namely Q(i), Q(
√
2) and Q(

√−2), but only
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the middle one is cut out by the quadratic character ε2
r−1

2 , since it is an even

character of level 8. It follows that t = 2 ∈ Q2 and (t, z)v = (t, NFv/Q2
(z))2.

To compute the norm, we assume F is general. Now NQ(ζ2r )/Q(ζ2r) = 1 and

NQ(ζ2r )/Q(1 + ζ2r ) = 2 for all r > 1, since the minimal polynomial of 1 + ζ2r is

(x−1)2
r−1

+1 = 0. Since the local norm is the same as the global norm, we have

NQ2(ζ2r )/Q2
(z) = 4. We have Q2 ⊂ Q(z)v ⊂ Q2(ζ2r ). Noting that the second

index is 2, by the transitivity of the norm in towers we have NQ(z)v/Q2
(z)2 = 4,

and we obtain NQ(z)v/Q2
(z) = ±2. Since z ∈ F , by the transitivity of the norm

again, we obtain NFv/Q2
(z) = (±2)d where d = [Fv : Q(z)v].

Thus (t, z)v = (t, NFv/Q2
(z))2 = (2,±2)d2 = 1, since (2,±2)2 = 1, as one can

check directly.

The corollary predicts that when p = 2 and F = Q, there is a switch in the

parity ofm±
v in determining the triviality of the class ofXv, when ε2 moves from

even to odd characters. For a numerical example of this interesting phenomenon,

see Example 5 at the end of the paper.

6.2.3. Remaining quadratic cases. If the tame part of εp is quadratic on Gv for

an odd prime p or if p = 2 and ε2 is quadratic on Gv, we again show that Xv

is determined completely by m±
v up to an extra Hilbert symbol. The following

results are quite general and hold for the unequal slope case also. In the case

of unequal slope the extra symbol is trivial.

We need some notation.

Assume that the quadratic extension cut out by the tame part of εp if p is

odd, or by εp if p = 2, is Fv(
√
t), for some t ∈ F ∗

v .

Define

a =
μfv + νfv + 2p(k−1)fv

μfv + νfv − 2p(k−1)fv
∈ F ∗ ∪ {0,∞}.

Note a ∈ F ∗ if and only if afvp �= ±(āpε
′(p))fv . In this case define the integer nv

mod 2 by (−1)nv = (t, a)v. Let p
† � N be an auxiliary prime such that ap† �= 0

and such that, for all γ ∈ Γ,

χγ(p
†) =

⎧⎨⎩-1 if χγ is ramified at p,

1 if χγ is unramified at p.
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We can always choose p† as above, since f is a non-CM form. Since ε−1 is an

extra twist, we have ε(p†) = −1. Let

b = a2p† = − a2p†

ε(p†)
∈ F ∗.

If afvp = (āpε
′(p))fv , define an integer nv mod 2 by (−1)nv = (t, b)v, and if

afvp = −(āpε
′(p))fv , define nv by (−1)nv = (t, b)v · (−1)(evv(b)).

Theorem 32: Assume that the tame part of εp is quadratic for an odd prime

p, or p = 2 and ε2 is quadratic.

(1) Assume that a ∈ F ∗. Then, Xv is a matrix algebra over Fv if and only

if

m+
v + nv

is even.

(2) If afvp = (āpε
′(p))fv , then Xv is a matrix algebra over Fv if and only if

m+
v + nv

is even.

(3) If afvp = −(āpε
′(p))fv , then Xv is a matrix algebra over Fv if and only

if

m−
v + nv

is even.

Proof. If εp(i) = −1, for i ∈ Iv, then α2(i) ∈ F ∗. We claim that the image

of α(i)2 in F ∗
v /F

∗2
v is constant, i.e., there exists d ∈ F ∗

v such that α2(i) ≡ d

mod F ∗2
v . Indeed, a priori α(i) =

√
t(i)d(i), for some t(i), d(i) ∈ F ∗

v . If j ∈ Iv

with εp(j) = −1, then by Langlands’ theorem, since εp(ij) = 1, α(ij) ∈ F ∗.
Since cα(i, j) ∈ F ∗, we get

√
t(i) ≡ √t(j) mod F ∗

v , as desired. Thus
√
t(i) ≡√

d mod F ∗
v for all i ∈ Iv such that εp(i) = −1. We compute d and show

that the ramification of Xv is controlled by m±
v , and an extra Hilbert symbol

involving d. In case (1) we show we can take d = a, whereas in case (2) and (3)

we show we can take d = b.

For p odd, we do a base change as in Theorem 22 and assume without loss of

generality that εp is tame (and quadratic).

Assume we are in case (1), so that a ∈ F ∗. Let σv be an arithmetic Frobenius

at v, such that εp(σv) = 1. Let i ∈ Iv be such that εp(i) = −1. By Langlands’
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theorem,
α(σv)

α(σvi)
≡ √

a mod F ∗.

Since cα(σv, i) ∈ F ∗, and a belongs to F ∗, we have α(i) ≡ √
a mod F ∗. We

define a function f on Gv by

f(g) =

⎧⎨⎩1 if εp(g) = 1,
√
a if εp(g) = −1.

Let K(g) = α(g)
f(g) on Gv. Then the cocycle cα can be decomposed as cα = cKcf .

Clearly K(i) belongs to F ∗
v , for all i ∈ Iv. Using Lemma 9 applied to K and

t = ε′, we have

invv(cK) =
1

2
· v
(
K2

ε′
(σv)

)
=

1

2
·m+

v mod Z.

To compute invv(cf ), let σ be the nontrivial element of Gal(Fv(
√
t)/Fv). Then

the cocycle table of the cocycle cf is given by

1 σ

1 1 1

σ 1 a

which gives the symbol (t, a)v. This proves (1).

We now turn to parts (2) and (3). We wish to find d ∈ F ∗, such that

α(i) ≡ √
d mod F ∗

v , if εp(i) = −1. We cannot take d = a in parts (2) and (3)

since a = 0 or ∞. So we argue a bit differently.

Let i ∈ Iv with εp(i) = −1. We claim that α(i) ≡ ap† mod F ∗. By (3.1) and

the proof of Theorem 16, if χγ is unramified at p, then α(i)γ = α(i). Similarly,

if χγ is ramified at p, then α(i)γ = χγ(i)α(i) = εp(i)α(i) = −α(i). Thus, if

Frobp† is an arithmetic Frobenius at the prime p†, then α(i) ≡ α(Frobp†) ≡ ap†

mod F ∗, as claimed. Define f on Gv by

f(g) =

⎧⎨⎩1 if εp(g) = 1,

ap† if εp(g) = −1.

Let K(g) = α(g)
f(g) on Gv. Then the cocycle cα can be decomposed as cα = cKcf .

We now proceed as in the proof of part (1). If afvp +(āpε
′(p))fv �= 0, the cocycle

cK has invariant invv(cK) = 1
2 ·m+

v mod Z. If afvp − (āpε
′(p))fv �= 0, then we

get an extra term on evaluating α at an arithmetic Frobenius Frobv for which
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εp(Frobv) = −1, and get invv(cK) = 1
2 · (m−

v − ev · v(b)). It remains to calculate

invv(cf ). Let σ be the nontrivial element of the Galois group of the quadratic

field cut out by εp. The table for the cocycle cf is given by

1 σ

1 1 1

σ 1 b

which is clearly the symbol (t, b)v. This proves (2) and (3).

The above theorem shows that the ramification of X at the place v is deter-

mined by m±
v and one extra Hilbert symbol. We can calculate those symbols

using the formulas of pages 211–212 of [Se80], except if p = 2 and Fv �= Q2, in

which case we can use the formulas stated, e.g., in [Sn81] and [FV93].

7. Supercuspidal primes

We assume in this section that p is an odd prime, Np ≥ 2 and Np > Cp, and

prove a weak result on the ramification of Xv. Since ap = 0, results of the kind

proved so far, relating the ramification to the valuations of expressions involving

the Fourier coefficients at p, are no longer possible.

Note that when the local Galois representation is a twist of cases already

treated above we can often predict the ramification since the Brauer class of

the endomorphism algebra is invariant under twist. Thus we may assume that

the local Galois representation is supercuspidal, and is induced by a character

χ of an index two subgroup GK of the local Galois group Gp = GQp , i.e.,

ρf |Gp ∼ Ind
Gp

GK
χ.

We manage to sometimes predict the ramification of Xv in terms of this char-

acter. Let σ be the non-trivial automorphism of K/Qp. We define an extension

L of Fv and for an arithmetic Frobenius Frobu of L set

mv := ev · v
(
(χ(Frobu) + χσ(Frobu))

2

ε′(p)fv

)
∈ Z ∪ {∞},

where v is normalized such that v(p) = 1. Note

mv < ∞, if χ(Frobu) + χσ(Frobu) �= 0.

Proposition 33: Assume Fv contains K. If mv is finite, then Xv is a matrix

algebra over Fv if and only if mv is even.
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Proof. Since Fv contains K, we have

ρf |Iv ∼
(

χ 0

0 χσ

)
.

So if i ∈ Iv and χ(i) �= −χσ(i), then by part (4) of Proposition 8

α(i) ≡ (χ(i) + χσ(i)) mod F ∗.

If K = Qp2 is unramified, then we may write χ|IK = ωj
2χ1χ2, where, following

the notation of [GM09, §3.3], ω2 is the fundamental character of level two and

χi, for i = 1, 2, are characters of p-power order. On the other hand, if K/Qp

is ramified then, in the notation of [GM09, §3.4], we may write χ|IK = ωjχ1χ2,

where ω is the Teichmüller character and again the χi have p-power order.

Choose an extension L of odd degree over Fv such that εp is tame and χi, for

i = 1, 2, are trivial, when restricted to IL. In the unramified case, ωσ
2 = ωp

2 ,

and we get α(i) ≡ ωj
2(i) + ωpj

2 (i) mod F ∗, for i ∈ IL such that the expression

on the right is non-zero. Since ω2 takes values in the (p2 − 1)-th roots of unity

and Fv contains Qp2 , we see that α(i) ∈ F ∗
v , for i ∈ IL, under the non-vanishing

assumption. Since, α̃ is a homomorphism, we can show α(i) belongs to F ∗
v

even if the expression on the right vanishes, by the usual argument. In the

ramified case, ω = ωσ, and we have α(i) ≡ (ωj(i) + ωσj(i)) = 2ωj(i) mod F ∗,
for i ∈ IL. Since ω takes values in the (p−1)-th roots of unity, we again deduce

that α(i) ∈ F ∗
v , for i ∈ IL.

Let u be the prime of L lying over v. By Lemma 9 applied to K = α and

t = ε′, both restricted to GL, we have

invL(resFv |Lcα) =
1

2
· u
(
α2

ε′
(Frobu)

)
mod Z.

Here as usual, since εp is tame when restricted to L, εp(g) ∈ Q∗
p, and since

α2

ε (g) ∈ F ∗, we get α2

ε′ (g) ∈ F ∗
v , for all g ∈ GL. If [L : Fv] = pt, then

invL(resFv |Lcα) = pt · invv(cα), so Xv is a matrix algebra over Fv if and only

if eL/Fv
· v(α2

ε′ (Frobu)) is even, where eL/Fv
= pt is the degree of the totally

ramified extension L/Fv and v is the surjective valuation of F ∗
v onto Z. If we

choose the valuation v such that v(p) = 1, then Xv is a matrix algebra if and

only if ev · v(α2

ε′ (Frobu)) is even. Since the inertia degree of L/Fv is also fv, we

get the desired result.
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8. Numerical examples

We end this paper with some examples. For forms of quadratic nenbetypus, the

examples were generated by the program Endohecke due to Brown and Ghate,

which was made by suitably modifying the C++ program Hecke created by

W. Stein. The notation for the nebentypus is the one used in these programs

(and not that used in [GGQ05]). For forms of non-quadratic nebentypus, we

used tables of Quer [Qu05]. The first example is a Steinberg case, the next two

are unequal slope ramified principal series (RPS) cases, whereas the remaining

examples are equal slope RPS cases.

(1) Let f ∈ S5(15, [2, 1]) be the unique primitive form. It is Steinberg at the

prime 5 since N5 = 1 and C5 = 0. F is a cubic extension of Q. Now, 5

decomposes into two distinct primes v1, v2 in F with ramification index

and inertia degree (1, 1) and (2, 1) respectively. It turns out that Xv1

is ramified but Xv2 is not ramified, as predicted by Theorem 15.

(2) Let f ∈ S3(35, [2, 2]) be the unique primitive form of orbit size 4. F = Q

and X is ramified at the RPS prime 5. Also v5(μ+ν) = v5(μ+ν+10) =

1, corroborating Theorem 22.

(3) Let f ∈ S2(88, [2, 2, 2]) be the unique primitive form of orbit size 4.

Then F = Q(
√
2) and X is ramified at the unique prime v of F lying

above the RPS prime 2. One checks μ + ν = −√
2 so v(μ + ν) =

v(μ + ν + 4) = 1/2, hence mv = [Fv : Q2] · 1/2 = 1 is odd, supporting

Theorem 27.

(4) Let f ∈ S2(35, [4, 2]) be the unique primitive form of orbit size 4. Then

F = Q and X is ramified at the RPS prime 5 (and also at the good

prime 2). One checks μ = −ν = −5i, so v5(μ + ν + 10) = 1, hence

m+
v = 1 is odd, supporting Theorem 28.

(5) Let f ∈ S2(112, [2, 4, 2]) be the primitive form of orbit size 4 with a2 =

1+i. Then F = Q and p = 2 is an RPS prime, since ε2 has level 16, with

‘tame’ part of order 2, and ‘wild’ part of order 4. Now μ = −ν = 2i,

so v(μ + ν ± 2p) = v(±4) = 2 is even, yet X is ramified at 2 (X is

also ramified at 3). This interesting ‘switch in parity’ is predicted by

part (2) of Corollary 31. We thank E. González-Jiménez for finding this

example.
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(6) Let f ∈ S2(363, [2, 2]) be the unique eigenform of orbit size 4. Then

F = Q and X is ramified at the RPS prime 3. Yet mv = m+
v =

v3(μ+ ν + 6) = 2 is even. This is an equal slope case, so we use Theo-

rem 32. We compute that a = −3 and t = −3. Since (−3,−3)3 = −1,

we have nv = 1 mod 2. Thus part (1) of Theorem 32 holds, and explains

the switch in parity.

(7) Let f ∈ S3(91, [2, 2]) be the eigenform of orbit size 4. Then F = Q and

X is not ramified at the RPS prime 7. Now a7 = ±7i = ā7ε
′(7), so

we cannot use part (1) of Theorem 32, since μ = ν = 49 and a = ∞.

We use part (2) instead. We take p† = 3 and see b = a23 = −26. Also,

t = −7 and m+
v = 2 is even. We have (−26,−7)7 = 1, so nv = 0. This

corroborates part (2) of Theorem 32.
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modular forms, Université de Grenoble. Annales de l’Institut Fourier 53 (2003),

1615–1676.

[FV93] I. Fesenko and S. Vostokov, Local Fields and Their Extensions. A Constructive

Approach, Translations of Mathematical Monographs, Vol. 121, American Mathe-

matical Society, Providence, RI, 1993.

[GJ78] S. Gelbart and H. Jacquet, A relation between automorphic representations of

GL(2) and GL(3), Annales Scientifiques de l’École Normale Supérieure 11 (1978),
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