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Abstract—This paper investigates the zero properties of
networks of linear multi-agent control systems, where the
coupling parameters between the agents are assumed to be
constant. We characterize the zeros both for heterogeneous and
homogeneous networks. Moreover, for homogenous networks
with time-invariant interconnection dynamics and SISO agents,
we illustrate how zeros of each individual agent and zeros of
interconnection dynamics contribute to the zero properties of
the whole network. We also investigate the effects of blocking
on the zeros.

I. INTRODUCTION

The importance of zeros for the analysis and design
of linear control systems has been recognized in system
engineering for a very long time. Early work in this di-
rection is due to Rosenbrock [19] who emphasized the
relevance of multivariable zeros in systems theory. Zeros
provide obstructions to the existence of inverses of linear
systems and the zero dynamics of a system are important
in adaptive control and high gain feedback analysis. In this
paper, we examine the zero properties of networks of linear
dynamical systems that arise through static interconnections
of a finite number of linear control systems. Such networks
occur naturally in modelling multi-agent linear systems, with
applications to e.g. cyclic pursuit [14]; shortening flows
in image processing [4] or for the discretization of partial
differential equations [3]. It is also worthwhile mentioning
that analysis of networks of multi-agent systems has recently
absorbed even more attentions, due to its importance in
cyber-physical security [15] and [20]'.

Dynamics of networks of multi-agent systems have been
extensively studied in the literature [17], [16]. For instance,
in [16] the stability properties of a network of agents
interconnected by the consensus law are explored. However,
the zero properties of a network of multi-agent systems
have not been studied so far and require a more detailed
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study; this paper is a step in that direction.

An important step for the future planned extension of
our analysis to periodic, or more generally time-varying,
interconnection parameters is to study blocking or lifting
techniques for networks with time-invariant interconnections.
This topic is also addressed in this paper. Note that blocking
of linear time-invariant systems is useful in the multirate
sampled-data systems controller design as shown by [5] and
[13]. Furthermore, from a theoretical perspective, the pole
properties of the blocked systems are well understood, see
e.g. [1], [13], whereas much less is known about the zero
properties of the blocked systems. References [2], [11], [23]
and [6] have analysed the zero properties of blocked systems
obtained from blocking of time-invariant systems. The results
in those references show under restrictive assumptions that
the blocked system has a zero if and only if its associated
linear time-invariant unblocked system has a zero. The as-
sumptions in [23], [6] on the normal rank and the structure of
the transfer function matrices were subsequently relaxed by
[22]. Proofs provided in the above references are lengthy and
do not take any underlying network structure consideration.
In the last part of this paper, we extend these results for
arbitrary heterogeneous networks of linear systems using a
much simpler proof idea based on circulant-like matrices.
This technique provides additional insight into the problem,
enables us to deal with the system matrix directly and
almost certainly should help in tackling the zero properties
of systems with periodic topology.

The structure of this paper is as follows. First, in Section
II we introduce state-space and higher order polynomial
system models for time-invariant networks of linear control
systems. A central result stated here is the strict system
equivalence between these different system representations.
Section III characterizes completely the finite and infinite
zeros of arbitrary heterogeneous networks. For homogeneous
networks of identical SISO systems more explicit results are
shown. Homogeneous networks with a circulant coupling
topology are studied as well. In Section IV first a relation
between the transfer function of blocked systems and the
transfer function of the associated unblocked systems is
recalled. We then relate the zeros of blocked networked
control systems to the zeros of their corresponding unblocked
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systems. Finally, Section V provides the concluding remarks.

II. MODELS OF INTERCONNECTED SYSTEMS

We consider networks of N linear multi-agent systems,
coupled through constant interconnection parameters. Each
agent is assumed to have the state-space representation of a
linear discrete-time control systems

xi(t + 1) = Azl‘L(t) + Bﬂ)j,(t)
’U)i(t) = Ci.’L‘i(t), 1= 1, N 7]\/v.
Here A; € R*i*"i B, € R™*X™i and C; € RPi*™ are the
associated system matrices. We assume that each system is

controllable and observable. We assume that each agent is
interconnected by static coupling laws as

(D

N
j=1

with L;; € R™*P; and R, € R™*™ and u(t) an
external input to the whole network. Further, there is an
interconnected output given by

N
y(t) = Spw;(t)+Du(t) with S; € R, i=1,...,N.

i=1
Define m = Zij\ilmi, D= Z;N:lpi, n = vazl n; and
matrices as
Ry
L = (Lij)y €ER™P R=| : | eR™™
Ry
S = (S1,...,5y) € RP*" D g RP*™
and
A =diag(As,...,AN), B =diag(B1,...,Bn)
x1(t)
C = diag(Cy,...,Cn), z(t):= : e R™
xn(t)

Then the closed-loop system is

Ax(t) + Bu(t) )
Cux(t) + Du(t),

z(t+1) =
y(t) =
with matrices

A=A+ BLC B:=BR, C:=S5C. 3)

One can also start by assuming that system (1) is defined
in terms of Rosenbrock-type equations [18] i.e. by systems
of higher order difference equations

Ti(o)6i = Ui(o)v

w; = Vi(o)&.

Here o denotes the backwards shift operator that acts
on sequences of vectors (£(t)): as (0€)(t) = &(t — 1).

Furthermore, T}, U;, V; denote polynomial matrices of sizes
T;(z) € R"*" U(z) € R#*™i and Vi(z) € RPi*"i,

“4)

respectively. We always assume that T;(2) is nonsingular, i.e.
that det T;(z) is not the zero polynomial. Moreover, system
(4) is assumed to be strictly proper, i.e. we assume that the
associated transfer function

Gi(2) = Vi(2)Tu(2) "' Uil2) 5)

is strictly proper. Following Fuhrmann [10], any strictly
proper system (4) of higher order difference equations has
an associated state-space realization (A, B, C), the so-called
shift realization, such that the polynomial matrices

_(z2I-A -B _(T(z) -U(»)
Z(Z)_( C 0)’ H(Z)_<V(z) 0 )
(6)
are strict system equivalent [10]. If a first order representation
(1) is strict system equivalent to the higher order system (4)

then of course the associated transfer functions coincide, i.e.
we have

Throughout this paper we assume that the first order
and higher order representations i.e. systems (1) and (4),
are chosen to be of minimal order, respectively. This is
equivalent to the controllability and observability of the shift
realizations (1) associated with these representations (4).
It is also equivalent to the simultaneous left coprimeness
of T;(z),U;(z) and the right coprimeness of T;(z), Vi(z).
Proceeding as above, define polynomial matrices

T(z) =

diag(Ty(2),...,Tn(2)) € R[z]™" (8)

and similarly for V(z) and U(z). Here 7 = Zil r;. Using
this notation, we write all N systems of (4) in the matrix

form as
o= (3 4)(6) o

0

I V(o) 0
Then we have the left- and right coprime factorizations of
the node transfer function as

G(2)=C(zI — A 'B=V(2)T(2)"'U(z).
The interconnections are given, as before, by

Lw + Ru
Sw + Du.

v o=
y =

The resulting network representation then becomes

( ? )y _ ( T (o) fS[‘//:(((;))LV(J) —U(DJ)R ) ( 5(?0)

with network transfer function defined as

I'(z) =C(z2I —A)"'B+D
= SV()(T(2) —U(2)LV(2)) 'U(2)R+ D
The connection between the state-space and polynomial
matrix representations (2) and (10), respectively, is clarified

by the following recent result. This theorem implies that
important system-theoretic properties such as reachability

(1)
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and observability, as well as the poles and zeros of the
network (2) of multi-agent systems can all be characterized
by the polynomial system matrix (10).

Theorem 1 ([9]): The interconnected systems (2) and (10)
are strict system equivalent. In particular, there exist unimod-
ular matrices P(z), Q(z) such that for each ¢ > max(7,7)

Iow 0O 0
Pz)| 0 2I—-A —-B|Q(2) =
0 C D
Ir 0 0
0 T()-U()LV(z) -U()R
0 SV (2) D

III. ZEROS OF MULTI-AGENT NETWORKS

As a consequence of Theorem 1 we derive a complete
characterization for the zeros of network of systems (2). We
first present an extension of the classical definition of zeros
[12] to higher order systems. Note that the normal rank
grk G(z) of a rational matrix function G(z) is defined as

grk G(z) = max{rank G(z) | z € C,G(z) # o}.

Definition 1: Let U(z),V (z),T(z) be polynomial matri-
ces with T'(z) € R[z]"™*" nonsmgular such that the p x m
transfer function V' (2)T(2)~1U(z) is strictly proper; let D
be a constant p X M matrix. A finite zero of a polynomial

system matrix
T = (L(2) —U(2)
i) = (V(z) D
is any complex number z € C such that

rank I1(z) < grk I1(z2)

(12)

holds. TI(z) is said to have a zero at infinity if
7+ rank D < grk I1(2).

As a consequence of Fuhrmann’s result [10], a polynomial
system matrix (12) has a finite or infinite zero if and only if
the polynomial matrix

S0 = (zfg A 39)

of the associated shift realization (A, B,C, D) has a finite
or infinite zero. Theorem 1 thus leads to our first main
result on zeros of interconnected systems; see [9] for a
proof. We emphasize that the characterization of zeros in
the subsequent Theorem 2 holds for any interconnection
matrices and does not require any assumptions on
reachability or observability of the network, except of those
for the individual node systems.

Theorem 2: Consider the strictly proper node transfer
function G(z) with minimal representations

G(2)=C(zI — A 'B=V()T(2)"'U(2).

Let L, R, S, D denote arbitrary constant interconnection ma-
trices and let

[(z) = SV(2)(T'(2) —
denote the network transfer function. Then
1) Forall ze€ C

3 21 —A—BLC —-BR
ran e D

_ T(z)—U(2)LV(z) -U(2)R
:n—r—i—rank( SV(2) D )

2) (A+ BLC,BR,SC, D) has a finite zero at z € C if

U(2)LV(2))"'U(2)R+ D

and only if
T(z) —U(2)LV(z) -U(2)R
rank ( SV(2) D <
7+ grk I'(2).
3) (A+ BLC,BR,SC,D) has a zero at infinity if and
only if

rank D < grk T'(z).

In particular, if D has full row rank or full column
rank, then (A+BLC, BR, SC, D) has no infinite zero.

A. Homogeneous Networks

The preceding result has a nice simplification in the case
of homogeneous networks of SISO agents, i.e. where the
node systems (A;, B;,C;) are identical SISO systems. Let
us define the interconnection transfer function as

#(z) = S(zI — L) 'R+ D;

note that in the SISO case L;; is a scalar; hence, L is a
square matrix.

Theorem 3: Assume that (A;,b;,¢;) are identical SISO
systems; let p(z)/q(z) be a coprime polynomial factorization
of the identical transfer functions g(2) = ¢;(21—A;)~'b; and
define h(z) = 1/g(z). Let L, R, S, D denote any constant
interconnection matrices.

1) The homogeneous network (A, B, C, D) has a finite
zero at z € C with p(z) # 0 if and only if h(z) € C
is a finite zero of (L, R, S, D).

2) (A,B,C,D) has a zero at infinity if and only if
(L, R, S, D) has a zero at infinity.

3) (A,B,C, D) has a finite zero at z € C with p(z) =0
if and only if (L, R, S, D) has a zero at infinity.

Proof: Note that the network transfer function I'(z) =
D + p(2)S(q(2)In — p(z)L)"'R has normal rank equal
to the normal rank of ¢(z) = D + S(zIxy — L)7'R, ie.
it coincides with the normal rank of L, R,S,D. By the
preceding theorem, z € C is a zero of (A, B, C, D) if and
only if

rank ( q(z)Istp(z)L —pg)R ) < N+ grk ¢(2).

13)
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For p(z) # 0 this is equivalent to

mnk( h(z)Ig L DR ) < N + grk ¢(z),
i.e., to h(z) being a finite zero of (L, R, S, D). The statement
of the second item follows easily from item 3 in Theorem 2
and the fact that T'(z) and ¢(z) have the same normal rank.
Now, we prove item 3; z € C is a zero of (A, B,C, D)
if and only if inequality (13) holds. If p(z) = 0, then by
coprimeness we have ¢(z) # 0 and therefore we can restate
(13) as

rank < q(ngN g ) < N + grk ¢(z).

This implies that rank D < grk ¢(z). Thus a zero of the
node transfer function g(z) is a zero of (A, B, C, D) if and
only if (L, R, S, D) has a zero at infinity. This completes the
proof. [ ]

Now assume that D has full column rank or full row rank.
Then the homogeneous network realization (A, B, C, D) has
no zero at infinity. Thus in this case the finite zeros of
(A, B, C, D) are exactly the preimages of the finite zeros of
(L, R, S, D) under the rational function h(z). We conclude
with a result that is useful for the design of networks with
prescribed zero properties. The result below has a certain
similarity with a result in Fax and Murray [8]. As shown by
them, a formation of N identical vehicles can be analysed
for stability by analysing a single vehicle with the same
dynamics modify by only a scalar, which assumes values
equal to the eigenvalues of the interconnection matrix. Such
a result is to do with poles, linking those of the individual
agent and the overall system via the eigenvalues (which are
pole-like) of the interconnection matrix. Our result is to do
with zeros, but still links those of the individual agent, those
of the interconnection matrix (suitably interpreted) and those
of the whole system.

Recall, that a strictly proper real rational transfer function
g(z) is called lossless [21] if all poles of g(z) are in the
open unit disc and |g(z)| = 1 holds for all |z] = 1. A
key property used below is that |g(z)| > 1 if |z] < 1 and
lg(z)] < 1if |z| > 1.

Corollary 1: Assume that D has full column rank or full
row rank. Then

1) The homogeneous network (A, B, C, D) has no zeros
at infinity. A complex number z is a finite zero of
(A,B,C, D) if and only if h(z) # oo is a finite zero
of L,R, S, D.

2) Assume that the agent transfer function g(z) is lossless.
Then (A,B, C, D) is a minimum phase network, i.e.
all of its zeros have absolute value < 1, if and only if
(L, R, S, D) is minimum phase.

Proof: The first claim is an immediate consequence
of Theorem 3. If g(z) is lossless then |g(z)| < 1 holds if
and and only if |z] > 1. Thus h(z) = 1/g(z) maps the

complement of the open unit disc onto itself. Thus |z| > 1
if and only if |h(z)| > 1. Therefore (L, R, S, D) has a finite
zero w with |w| > 1 if and only if each z with h(z) = w
satisfies |z| > 1 and is a zero of (A, B, C, D). Note that for
any finite w, there is necessarily a z satisfying h(z) = w,
since this is a polynomial equation for z. This proves the
result. [ ]

We now extend the second part of the above corollary for
the choice of passive transfer functions [21]. Let us recall
that g(z) is passive if and only if

1) all poles of g(z) are in |z| < 1
2) lg(x)| =1V |2[=1

and it is further true that

1) g(z)| <1 V]z|>1
2) If |g(z)| > 1, then |z| < 1.

Corollary 2: Assume that D has full column rank or
full row rank and g(z) is passive. Then (A,B,C,D) is a
minimum phase network, i.e. all of its zeros have absolute
value < 1, if (L, R, S, D) is minimum phase.

Proof: Suppose |z| is a finite zero of {A, B,C, D}.
Then h(z) is a finite zero of {L,S, R, D}. Then 1/g(z)
is a finite zero of {L,S,R,D}. By the minimum phase
assumption, |(1/g(z))| < 1 or |g(z)| > 1. By the observation
above applying to passive transfer functions, |z| < 1. ]

B. Design of Networks

An important issue is the construction of network topolo-
gies so that the resulting multi-agent network is zero-free,
i.e. it does not have any finite zeros (but still may have
a zero at infinity). We derive a simple sufficient condition
for homogeneous networks. By Corollary 1, a homogeneous
network (A, B, C, D) is zero-free if and only if (L, R, S, D)
is zero-free. For simplicity, we assume m = p = 1 and
D = 0. Thus the interconnection transfer function ¢(z) =
S(zIn — L)7'R is scalar strictly proper rational. The next
result characterizes which outputs of the SISO interconnected
system lead to a network without finite zeros, for given state
and input interconnection matrices.

Theorem 4 (SISO Design Condition): Assume that
(A;,b;,¢;) are identical minimal SISO systems. Let
(L, R) be reachable with L € R¥*Y R € RYM. Then a
network output S € RN defines a minimal network
realization (A, B, C,0) without finite zeros if and only if
S(zIn — L)"'R has relative degree N.

Proof: By Corollary 1, the homogeneous network
(A,B,C,0) has no finite zeros if and only if this holds
for (L, R, S,0). In the SISO case this is equivalent to the
transfer function S(zIy — L)~ R having no zeros. By [9],
(A, B, C,0) is minimal if and only if (L, R, S) is minimal.
In either case, S(zIy — L)"'R has McMillan degree N
and has no zeros if and only if the relative degree of
S(zIx — L)™' R is equal to N.

u
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C. Circulant Homogeneous Networks

Homogeneous networks with special coupling structures
appear in many applications, such as cyclic pursuit [14];
shortening flows in image processing [4] or the discretization
of partial differential equations [3]. Here we characterize
zeros for interconnections that have a circulant structure. A
homogeneous network (2) is called circulant if the state-to-
state coupling matrix L is a circulant, i.e.

L = Circ(cg, ..., cN—1)

Co C1 CN—2 CN-1
CN—-1 Co C1 T CN-2
C2 CN-1 €o C1
C1 C2 T CN-1 Co

The book [7] provides algebraic background on circulant
matrices. A basic fact on circulant matrices is that they are
simultaneously diagonalizable by the Fourier matrix:

1 1 1 - 1
1 w w? wlV-1
o= 1 1 w2 wh W2N-2
VN |
1 WwN-1 2N-2 w(N71)2

where w = e2™/N denotes a primitive N —th root of unity.
Note, that ¢ is both a unitary and a symmetric matrix.
It is then easily seen that any circulant matrix L has the
form L = ®diag(pr(1),pr(w),...,pr(wN~1))®*, where
pr(z) == ZkN;(} cx2"~1. As a consequence of the preceding
analysis we obtain

Theorem 5: Let D be full rank and M =
diag(pr,(1),...,pr(wN"Y)) and wi,...,wy denote
the complex roots of

det(wIN_M (I)R):O.

S D
Then
N
U{z € Cla(z) — wip(z) = 0}
k=1
are the finite zeros of the homogeneous network
(A,B,C, D).

IV. ZEROS FOR BLOCKED INTERCONNECTED SYSTEMS

The well-known technique of blocking or lifting has been
developed in systems and control [5] and signal processing
[21]. In the systems and control literature, this method
has mostly been exploited to transform linear discrete-time
periodic systems to linear time-invariant systems so that the
well-developed tools for linear time-invariant systems can
be extended for design and analysis of linear discrete-time
periodic systems; see [1] and the literature therein. Here we
show how this technique can be applied to network control
systems of the form

z(t+1) Az(t) + Bu(t)
y(t) = Cux(t) + Du(t),

(14)

with matrices

A=A+ BLC B:=BR, C:=5C.
and network transfer function

I'(z) =D+ SC(2I — A— BLC) 'BR.

Here z(t) € R", y(t) € RP and u(t) € R™ and
A = diag(Al, ey AN); B = diag(Bl, ey B]\[)7 C =
diag(C1,...,Cy) are block-diagonal. Given an integer T >
1 as the block size, we define for ¢t = 0,7, 2T, ...

+
U= (u)” ut+1)T w(t+T-1)" ),
-
vy = (v ye+nT oye+T-1T )
The blocked system then is defined as [1]:
x(t+T) = Apx(t) + BU (1),

15
Y (1) = Cha(t) + DyU(H), ()
where
A, = AT, B,=( AT"'B AT ’B B ),
T
c, = (cT ATCT A(T‘l)TCT) :
D 0 ... 0
CB D .0
D, = (16)
CAT2B CAT3B ... D

The transfer function T'y(27) = Dy 4+ Cy(271 — Ay)"'By
of (15), see [1], [13], has the circulant-like structure as

Hy(z) Hr_1(2) Hs(z) Hi(z)
zH1(2) Hy(z) Hr_1(2) .. Ha(z)
SHp o(2) .. SHi(2)  Ho(2) Hp1(2)
zHr_1(z) zHrp_2(2) zH1(z) Ho(z)

where Hy(2) = D+ C(21 — AT)"1AT~1B and Hy(z) =
C(zl — AT)"'A'Bk = 1,...,T — 1. It is worth-
while pointing out that the blocked transfer function has
the structure of a generalized circulant matrix. The theory
of generalized circulant matrices is very similar to that of
classical circulant matrices; see [7]. Using such techniques
we obtain the following result.

Proposition 1: Let ® denote the Fourier matrix and
I'(z) = P(2)Q(z)~! a right coprime factorization of the
network transfer function.

1) For all nonzero complex numbers z € C, the transfer
function of the blocked system is

T'(2) 0
I'(wz)
Iy (") = Lr(2) Rr(z)
TN(wT—1z
17)
where
Lr(z) = diag(1,z,..., 2" " He oI, (18)
Rr(z) = diag(1,z,..., 20 " Ho o I,
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are invertible for z # (. Moreover, we have the

factorization
Ty(z") = Py(2)Qu(2) " (19)
which is coprime for z # 0. Here
Py(2) = Lr(2)diag(P(z),..., P(w™12))
Qu(2) = Re(2)diag(@(:). ... QW™ 2).
2) Consider the system matrices
N

s = (M0 o)

There exist polynomial matrices L(z) and R(z), that
are invertible for all nonzero complex numbers z € C,
such that

3 (27) =

zIm— A —-B 0
C D

0 wl='2Im— A -B
C D

The preceding results lead to the following conclusion
concerning finite zeros of interconnected systems. Thus
consider the interconnected system (A, B, C, D) defined in
(2). Let (Ap, By, Cp, Dy) denote the associated blocked
system. The proof of the next result uses techniques from
[22]. We omit the details.

Theorem 6: 1) A complex number Z # 0 is a finite
zero of the blocked network (Ay, By, Cyp, D;) if and
only if there exists z € C with 27 = Z such that z is
a finite zero of (A,B,C, D).

2) Let D be full rank and (A, B, C, D) a homogeneous
network. Then the blocked network (A, By, Cp, D)
has no zeros at infinity. The finite zeros of
(Ap,Bp, Cp, Dy) are exactly all Z = 27 such that
h(w*2) is a finite zero of (L, R, S, D) for some 0 <
E<T-1.

L(2) R(2)

V. CONCLUSIONS

In this paper, we study the zero properties of networks of
linear multi-agent systems. It is assumed that the parameters
defining the interconnection topology are constant. The zeros
are characterized for both homogenous and heterogenous
networks. In particular, it is shown that for homogenous
networks with a direct feedthrough matrix of full rank,
then the finite zeros of the whole network are exactly the
preimages of zeros by inverse of an agent transfer function.
We then discussed the condition under which networks
of multi-agent systems have no finite nonzero zeros. The
tool of generalized circulant matrices is introduced for a
concise analysis of zeros of blocked network systems. In
future work we will address open problems such as the
consideration of periodically varying network topologies and
MIMO dynamics for each agents.
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