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Abstract: Schistosomiasis is an infectious disease caused by helminth parasites of the genus
Schistosoma. Worldwide, an estimated 250 million people are infected with these parasites with
the majority of cases occurring in sub-Saharan Africa. Within Asia, three species of Schistosoma cause
disease. Schistosoma japonicum is the most prevalent, followed by S. mekongi and S. malayensis. All three
species are zoonotic, which causes concern for their control, as successful elimination not only requires
management of the human definitive host, but also the animal reservoir hosts. With regard to Asian
schistosomiasis, most of the published research has focused on S. japonicum with comparatively
little attention paid to S. mekongi and even less focus on S. malayensis. In this review, we examine
the three Asian schistosomes and their current status in their endemic countries: Cambodia, Lao
People’s Democratic Republic, Myanmar, and Thailand (S. mekongi); Malaysia (S. malayensis); and
Indonesia, People’s Republic of China, and the Philippines (S. japonicum). Prospects for control that
could potentially lead to elimination are highlighted as these can inform researchers and disease
control managers in other schistosomiasis-endemic areas, particularly in Africa and the Americas.

Keywords: Asia; control; elimination; epidemiology; Schistosoma japonicum; Schistosoma malayensis;
Schistosoma mekongi; schistosomiasis

1. Introduction

Schistosomiasis is a parasitic disease caused by blood flukes of the genus Schistosoma. Six species
of schistosomes infect humans: Schistosoma mansoni (occurring in Africa, South America, the Caribbean,
and the Middle East), S. haematobium (mainly occurring in Africa and the Middle East, with recent
autochthonous transmission observed in Corsica, France), S. intercalatum and S. guineensis (two rare
species confined to a few countries in Central Africa), S. japonicum (Asia), and S. mekongi (Mekong Delta
including Cambodia, Lao People’s Democratic Republic (Lao PDR), and previously Thailand whose
current status is transmission interruption) [1–3]. A seventh species, S. malayensis, which is thought

Trop. Med. Infect. Dis. 2019, 4, 40; doi:10.3390/tropicalmed4010040 www.mdpi.com/journal/tropicalmed

http://www.mdpi.com/journal/tropicalmed
http://www.mdpi.com
https://orcid.org/0000-0002-1509-5220
https://orcid.org/0000-0002-6858-7501
https://orcid.org/0000-0003-1417-8427
https://orcid.org/0000-0001-6443-1449
http://dx.doi.org/10.3390/tropicalmed4010040
http://www.mdpi.com/journal/tropicalmed
https://www.mdpi.com/2414-6366/4/1/40?type=check_update&version=2


Trop. Med. Infect. Dis. 2019, 4, 40 2 of 29

to be closely related to S. mekongi, is endemic in Malaysia [4]. In this review, we focus on only those
species currently occurring in Asia: S. japonicum, S. mekongi, and S. malayensis, which cause intestinal
schistosomiasis. The three Asian schistosomes are all zoonotic, whereas the remaining species infecting
humans are generally considered human-only parasites, with some notable exceptions [5–10].

Schistosomiasis has a long history in Asia with the first descriptions and reports of the disease in
modern times appearing in the early 1900s, although it is thought to have been endemic for at least
400 years earlier in Japan, and at least 2200 years ago in the People’s Republic of China (P.R. China)
after the discovery of S. japonicum eggs in a mummy [11–14]. To date, Japan is the only country in Asia
to have eliminated schistosomiasis, while Thailand is awaiting verification of transmission interruption
by the World Health Organization (WHO) [15]. Currently, schistosomiasis is endemic in six Asian
countries: P.R. China, the Philippines, Indonesia, Lao PDR, Cambodia, and Malaysia, and is emerging
in a seventh—Myanmar (Figure 1) [16]. Considerable progress in control has been made in recent
decades, largely through praziquantel-based preventive chemotherapy (i.e., periodic administration of
praziquantel to entire at-risk populations without prior diagnosis). However, preventive chemotherapy
alone is insufficient to break the transmission cycle. Lack of safe water, poor sanitation, inadequate
hygiene practices, limited health education, and the presence of animal reservoirs are known barriers
to the elimination of schistosomiasis from a region [17]. Old challenges remain while new ones emerge,
requiring a comprehensive, multi-sectoral, and multifaceted approach across the region to control this
disease, and to reach the desired goal of elimination by 2030 [17].

The aim of this review is to provide an overview of the current status of schistosomiasis in
Asia, with a particular focus on endemic countries in the region and the unique challenges they
face. Our review also aimed to identify current knowledge gaps and future research needs as the
affected countries move toward the ultimate goal of control and elimination of this persistent and
debilitating disease.
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Unique amongst the trematode class, schistosomes have separate sexes as adults, whereas all other 
trematodes are hermaphrodites. The Asian schistosomes discussed in this review are considered 
zoonotic, unlike schistosome species occurring elsewhere, which are largely human-only excepting 
some hybrid forms in Africa [5,6,9,10,18], and cases of S. mansoni infecting non-human primates in 
Africa and the Caribbean, and rats in Guadeloupe and Brazil [7,8]. S. japonicum is the most 
cosmopolitan, with 46 mammalian definitive hosts identified thus far, whereas S. mekongi has been 
found in dogs, and S. malayensis in rodents, specifically Rattus muelleri [19–22] (Table 1). Pigs have 
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2. Parasite Features

The genus Schistosoma is a group of parasitic blood flukes, or flatworms, of the class Trematoda.
Unique amongst the trematode class, schistosomes have separate sexes as adults, whereas all other
trematodes are hermaphrodites. The Asian schistosomes discussed in this review are considered
zoonotic, unlike schistosome species occurring elsewhere, which are largely human-only excepting
some hybrid forms in Africa [5,6,9,10,18], and cases of S. mansoni infecting non-human primates
in Africa and the Caribbean, and rats in Guadeloupe and Brazil [7,8]. S. japonicum is the most
cosmopolitan, with 46 mammalian definitive hosts identified thus far, whereas S. mekongi has been
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found in dogs, and S. malayensis in rodents, specifically Rattus muelleri [19–22] (Table 1). Pigs have
been experimentally infected with S. mekongi, but, to date, no natural infections have been identified in
these hosts [23]. Morphologically, the eggs and adults of the three species are very similar; the eggs are
ovoid with a small ‘nubby’ lateral spine (Table 1) [24].

Table 1. A comparison of features of the three Asian schistosome species that can infect humans [4,25,26].

Geographic Distribution Animal Definitive Hosts Intermediate Hosts Eggs

S. japonicum Indonesia, the Philippines,
P. R. China

46 known mammalian hosts
including water buffalo and

cattle, dogs, pigs, and rodents

Oncomelania spp.
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2.1. Lifecycle

The schistosome lifecycle is complex with an intermediate molluscan host, definitive host,
and seven lifecycle stages involving both asexual and sexual reproductive phases (Figure 2).
An in-depth understanding of social-ecological systems is required to grasp the spatial focality of
schistosomiasis distributions [27].

2.1.1. S. japonicum

S. japonicum is the most prevalent of the Asian schistosomes. It is endemic in P.R.
China, the Philippines, and small foci occur in Indonesia. There are 46 known mammalian definitive
hosts of S. japonicum, although water buffalo and cattle have previously been shown to be the major
reservoirs of infection [19,28,29]. S. japonicum was first identified in Japan in 1901, whereas the last
new human case was recorded there in 1977. S. japonicum parasites in P.R. China and the Philippines
have distinct genetic differences, resulting from geographic isolation over time. In general, the strain
of S. japonicum in P.R. China is more virulent than the parasite in the Philippines; additional genetically
variant geographic isolates are known to be present in both countries [30–32].
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Figure 2. Schistosome lifecycle. Adult worms (1) reproduce sexually in the mesenteric veins
surrounding the small intestine of the definitive mammalian host. Female worms deposit eggs (2),
which are excreted in the feces. Upon contact with freshwater, the eggs hatch miracidia (3), which
penetrate a snail intermediate host (4) and undergo asexual reproduction; this includes development of
mother and daughter sporocysts, which produce cercariae (5). Cercariae exit the snail and swim around
until they penetrate the skin of the mammalian definitive host, potentially causing cercarial dermatitis
(I), shed their tail and become schistosomula (6). The schistosomula migrate through the body to the
lungs before migrating and maturing to adult worms in the mesenteric veins. Chronic schistosomiasis
occurs as the result of an immune reaction to the eggs resulting in granuloma formation in tissues
where eggs are lodged. This most commonly occurs in the liver and spleen (II), which can result
in hepatosplenomegaly and portal hypertension; in the walls of the intestine (IV) as eggs pass from
the blood into the intestine; and less commonly in the brain (III), causing neuroschistosomiasis,
characterized by a range of neurological symptoms. (Abbreviation: GIT, gastrointestinal tract).

2.1.2. S. mekongi

S. mekongi was first identified in 1857 [33]. While morphologically very similar to S. japonicum, S.
mekongi differs in a number of characteristics that indicate it is a distinct species. These differences
include the morphology of the testis and ovary in adult worms [34] and the eggs of S. mekongi are
smaller and more round than those of S. japonicum (Table 1) [35]. Morphological differences in the
miracidial stage of the two species are also apparent [35]. Early genetic studies showing electrophoretic
enzyme variation indicated sequence differences between S. japonicum and S. mekongi [36].

Apart from human infection, S. mekongi has only been identified naturally in dogs, although
there have been successful laboratory infections of pigs. The intermediate host of S. mekongi is
Neotricula aperta (previously Lithoglyphopsis aperta), and studies have found Oncomelania spp. snails to
be refractory to infection with S. mekongi [34].

2.1.3. S. malayensis

As with the other Asian schistosomes, S. malayensis is zoonotic and is primarily a parasite of the
rodent R. muelleri (Table 1). S. malayensis is a sister species to S. japonicum, as is S. mekongi, to which it is
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more closely related [24]. Early studies identified the intermediate host of S. malayensis as Robertsiella
karporensis [4,24].

2.2. Clinical Features

There are three clinical stages of schistosome infection. The initial early stage, a second ‘silent’
phase, also known as Katayama fever (or Katayama syndrome, named after the prefecture in Japan
where it was first identified), and the third ‘chronic’ stage [1,37]. As the average life of an adult
schistosome is 10 years and may be as long as 30 years, assuming no treatment, chronic infection can
be lifelong [38,39].

The initial disease phase begins as a skin rash caused by an immune reaction to the penetrating
cercariae (Figure 2, I). After penetrating the definitive host, the cercariae transform into schistosomula,
which migrate to the lungs where they can cause pulmonary schistosomiasis, characterized as small
nodules on a chest x-ray and a dry cough in the infected individual. After the lungs, the worms migrate
to the venus plexus of the intestine, where they mature and pair up, reproducing sexually (Figure 2, 1).
There is little immune response generated against the adult worms; thus, the second silent stage lasts
for six to eight weeks post-infection when eggs begin to be produced. At this point, the acute Katayama
fever begins, manifesting as fever, cough, rash, abdominal pain, nausea, diarrhea, and eosinophilia.
Acute disease is more commonly seen in naïve persons, whereas chronic disease, the third phase,
is more likely to occur in individuals resident in schistosome-endemic areas. Chronic disease occurs
due to retention of eggs in the liver, spleen, and intestinal walls, and is the result of an immune response
generated against the eggs, which causes granuloma formation in the various tissues (Figure 2, II and
III). This can result in hepatosplenomegaly, portal hypertension, abdominal pain, and bloody diarrhea.
A rarer manifestation of disease is neuroschistosomiasis (Figure 2, IV), which causes neurological
symptoms, such as seizures and headaches, due to a granulomatous response against eggs in the brain,
appearing as lesions on scans [40–43]. Infection in children is associated with growth stunting and
intellectual disability and, in adults, with a reduced ability to work [44,45].

2.3. Diagnostics

A number of diagnostics are available, including coproparasitological examination (CopE), as well
as molecular and immunological diagnostics. CopE methods rely on direct detection and visualization
of parasite eggs in feces and include the Kato-Katz (KK) thick smear procedure, which is a mainstay
of control programs due to the relative ease of performing the test at low cost, although it lacks
sensitivity in low-intensity infections [46,47] and FLOTAC [48,49]. Other diagnostic approaches include
formal-ethyl acetate sedimentation-digestion (FEA-SD) [50], the Danish Bilharziasis Laboratory (DBL)
technique [51,52], and the miracidial hatching technique (MHT) [53,54], which also tests egg viability.
Molecular diagnostics rely on detection of parasite DNA in clinical samples, often stool but also in urine,
blood, and saliva, and include loop-mediated isothermal amplification (LAMP) [55–58], conventional
polymerase chain reaction (cPCR) [59,60], real-time PCR (qPCR) [28,61–64], and digital droplet PCR
(ddPCR) [65–67]. Immunological diagnostics rely on detection of circulating parasite antigens or
antibodies generated against parasite antigens. Antibody detection might lack specificity and generally
does not distinguish between past and current infections. A study by Cai et al., however, suggested
that an immunological test combining two antigens (SjSAP4 + Sj23-LHD) may be useful for monitoring
schistosomiasis control programs in the Philippines [68]. The main immunological methods include
the enzyme-linked immunosorbent assay (ELISA) [69–72] and the rarely used circumoval precipitation
test (COPT) [73,74]. Comprehensive reviews of the current diagnostic methods for schistosomiasis
were provided by Weerakoon et al. and Utzinger et al. [58,75].

Sensitive and specific diagnostic procedures are required to monitor the success or failure of
schistosomiasis control programs as well as to determine whether control efforts have resulted
in elimination. However, the most sensitive diagnostics, involving molecular or immunological
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techniques, can be expensive and require specialized facilities and equipment and trained personnel to
perform the procedures [57,76].

2.4. Treatment

Laboratory studies and clinical trials have shown that praziquantel, a pyrazinoisoquinoline
derivative, is a safe and highly efficacious oral drug that is active against all schistosome species,
although it is less active against juvenile schistosomes compared with adult worms and eggs [77–81].
The effective clinical praziquantel dosage regimen is 60 mg/kg orally in divided doses over one
day (3 × 20 mg/kg doses 4-hourly, or 2 × 30 mg/kg either 4- or 6-hourly) for S. japonicum and S.
mekongi [77,78]. Praziquantel is also the mainstay for preventive chemotherapy for morbidity control
of schistosomiasis. In the Philippines, the efficacy of a single dose of 40 mg/kg vs. 60 mg/kg was
compared; 40 mg/kg was effective and better tolerated and thus 40 mg/kg was adopted for preventive
chemotherapy [82]. A single dose is beneficial for large-scale administration as it does not require
follow up treatment as occurs with split doses. Despite the reliance on 40 mg/kg for preventive
chemotherapy programs, two doses of 60 mg/kg separated by two weeks is recommended by the
Philippine government in case finding, i.e., eggs identified in the stool [82].

Treatment with praziquantel does not prevent reinfection [83] and is therefore relatively ineffective
at interrupting the transmission cycle. Praziquantel is principally aimed at reducing the prevalence and
intensity of infection and to control morbidity over the longer term. Some concern has been expressed that
praziquantel-resistant schistosomes may develop, most likely in Africa [84,85], and there is thus a pressing
need to develop new anti-schistosomal drugs [86] and other non-pharmaceutical interventions.

3. Epidemiology

Due to the requirement of an intermediate host snail, schistosomiasis is a focal disease,
occurring in areas where snail habitats and susceptible transmitting snails are present. This means
that village-level prevalence can be very high, whereas country and province prevalence can be
low. Demographic factors such as age, sex, and occupation are strongly associated with risk of
infection [87,88]. Open defecation remains a common phenomenon in schistosomiasis-endemic
countries and is strongly associated with transmission.

Snail habitats generally occur in still or slow moving water bodies such as streams, lakes, dammed
waterways, and rice fields. The susceptible snails also have a preference for vegetation and snail
control measures can include the removal of this vegetation.

3.1. Mammalian Definitive Hosts

Of the 46 known S. japonicum hosts, bovines, particularly water buffalo, are considered the
most important for transmission due to the high levels of schistosome eggs they excrete into the
environment [89,90] and their predisposition to natural infection. Epidemiological studies conducted
in the Poyang and Dongting Lake regions of P.R. China revealed that water buffaloes account for up
to 75–80% of S. japonicum infections, and hence are considered to be the most important reservoir
hosts [29,89–91]. In mountainous and hilly endemic areas, water buffaloes are frequently used for
ploughing rice fields and, while rodents have been considered to be important reservoirs, Van Dorssen
et al. posited that this may not be the case owing to low levels of egg output and questions around
egg viability [92,93]. Other potentially important animal reservoir hosts for S. japonicum in P.R.
China include goats, pigs, and dogs due to their close contact with humans and water [93,94].

In Indonesia, 13 mammalian species, mostly wild animals (wild rodents, wild pigs, wild deer,
wild celedus, and wild civet cats), but also cattle, water buffalo, horses, and dogs, have been identified
as susceptible hosts for S. japonicum [95]. The prevalence of S. japonicum in water buffalo (known also
as carabao) in the Philippines has been reported to be as high as 80%, particularly in agricultural areas,
and water buffalo are thought to be a major reservoir [96]. In both the Philippines and P.R. China, there
are fewer cattle than water buffalo/carabao. Cattle are more susceptible to infection than water buffalo,
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likely due to their more recent introduction into Asia compared with water buffalo, which have
co-evolved with S. japonicum for much longer. Although studies suggested that water buffalo exhibit
some age-acquired resistance to infection and self-cure [28,97,98], there is still uncertainty regarding
this phenomenon [99].

Due to the close genetic relationship between S. japonicum and S. mekongi, bovines could act as
reservoir hosts of S. mekongi but, to date, this has not been demonstrated. A range of potential animal
hosts have been examined for S. mekongi, but currently dogs are the only animal species that have been
confirmed as natural hosts of this species [22].

In regards to control, little has been done to target definitive hosts of S. japonicum, with the
exception of P.R. China, which has practiced both chemotherapy of bovines and removal of the animals,
facilitated by mechanization of agriculture (i.e., replacing water buffalo with tractors) [16,29,89,100,101].
Without targeting intermediate host snails, re-infection of humans after treatment can occur almost
instantaneously. Animals can also contribute to rebounding infections in areas where humans have
been declared free of schistosomiasis [102]. In Lao PDR, chemotherapy of dogs against S. mekongi
has been highlighted as a priority. This has been proposed as part of community-led initiatives to
eliminate schistosomiasis that combine deworming with water, sanitation, and hygiene interventions:
community-led school, water, sanitation, and hygiene (CL-SWASH) activities [103].

Animal vaccines against schistosomiasis have been developed and used in controlled
trials [104–107]. Whereas none of the currently developed vaccines provide 100% immune protection
(0–80% worm reduction in mice and baboons [108]; 41–51% in water buffalo [109]), they do induce a
significant reduction in adult worms, decreased egg output, and stunting of adults. A knockdown in
adult worm fecundity alone can have a huge impact on transmission. Modeling has shown that an
animal vaccine with 75% efficacy will be required to ensure long-term control of schistosomiasis [110].

3.2. Molluscan Intermediate Hosts

The intermediate snail hosts of S. japonicum are amphibious and belong to the genus Oncomelania,
with species dependent on geographical location. Studies investigating the susceptibility of snails
from different geographic locations to cercariae from disparate locations have produced mixed results,
indicating a certain amount of genetic drift of the parasite [111,112]. Although Japan has successfully
eliminated schistosomiasis, the requisite intermediate host snail species, Oncomelania hupensis nosphora
and O. hupensis formosana, are still present [113].

In P.R. China, four sub-species of the intermediate host Oncomelania hupensis have been identified
based on morphological and molecular characteristics [114–116], each with different growth rates,
population genetics, and ecological niches. Control measures have been successful in reducing the
populations of O. h. guangxiensis and O. h. tangi [13] leaving O. h. hupensis and O. h. robertsoni as the
dominant sub-species [114]. Of these, O. h. hupensis is the most widely distributed [114]. Few studies
have reported S. japonicum infection rates in Oncomelania snails in endemic regions of P.R. China in
the last decade. One study in the marshland regions along the Yangtze River [114] examined more
than 70,000 snails over a 15-year period (2001–2015) and found an overall prevalence of 0.05% with
no new infections since 2007 [117]. An earlier study reported a decline from 0.88% in 2009 to zero
in 2012 in Jiangling county, Hubei province [118]. According to a 2017 WHO meeting report on
Asian schistosomiasis, an active sentinel surveillance program, conducted in 2016 in areas where
transmission was considered interrupted or under control, also failed to identify infected snails [119].
However, the same report indicated that in two other studies undertaken in 2012 and 2017, in four and
seven provinces, respectively, infected snails were found based on LAMP analysis, but no infection was
recorded by microscopy, although actual infection rates for the LAMP analysis were not provided [119].
As snail infection rates continue to decline, consistent and highly sensitive diagnostic tests, such as
LAMP, will be required to provide accurate information [75,120].

In the Philippines, the sole intermediate host snail for S. japonicum is O. h. quadrasi. It is amphibious
but prefers an aquatic environment, such as wet soil surfaces, swamps, rice fields, ponds, and stream
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banks, thus making chemical snail control difficult due to the risk of contaminating the water or
food source [17]. The current status of S. japonicum infection in the snail intermediate hosts in the
Philippines is poorly understood. One study, conducted in Samar province, found a mean infection
rate of 1.09% across 147 sites with higher infection among snails located in irrigated compared to
rain-fed villages [121]. More recent data from 2013 to 2015 indicate infection rates of less than 2% in
most endemic provinces, although Northern Samar was found to have a prevalence of above 12% [76].

In Indonesia, the intermediate snail host of S. japonicum is O. h. lindoensis, which is located focally
around Lake Lindu. In 2011, the prevalence of infected O. h. lindoensis snails in Lindu Valley was
3.6% and 4.0% in Napu Valley, although the prevalence has fluctuated between 0 and 13.4% in Napu
Valley and between 0% and 9.1% in Lindu Valley since 2005 [95]. Prevalence of infected snails in Bada
Valley appears to be much lower, with a survey conducted in 2010 identifying a prevalence of only 1%
(3 among 299 snails sampled) [122].

The intermediate hosts of S. mekongi are Neotricula spp., and endemic areas are closely associated
with the Mekong Delta where these snails occur. The prevalence of infected snails in Lao PDR was
quite low, 0.01% on the Mekong Islands [123] and 0.22% in Khong District, although the snail density
was quite high [124]. Neotricula aperta snail density in Thailand decreased between 2005 and 2011 in
the downstream area of the Nam Theun 2 hydroelectric dam, which began operation in 2010 [125].
A similar decrease in Oncomelania snails in low-land areas was initially seen in P.R. China after the
building of the Three Gorges Dam [126]. However, snail density began to increase in 2011 after
initially decreasing in the years immediately after completion of the dam in 2003. A similar trend may
eventually be seen in Thailand with the Nam Theun 2 Dam.

Control of intermediate host snails is an important aspect of schistosomiasis control programs,
particularly as the stage of the lifecycle occurring in snails is asexual and involves an exponential
increase in parasite numbers. Snail control measures previously implemented in Asia have involved
environmental modification and chemical mollusciciding. The snails live in vegetation around rivers
and lakes and removal of this vegetation can lead to removal of the snails themselves. This method
was used with great success in Japan in combination with mollusciciding. In Japan, the most common
method of environmental modification was the use of concreting canals where the snails lived [113].
This method is more difficult to implement in areas where the snail habitats are rice fields or marshland.
Early reports from Mindanao in the Philippines showed that the method of farming (weeding and
ploughing) practiced in Mindanao reduced snail habitat on the rice fields, and thus snails were
primarily found in swampland, at least when intensive farming was practiced [127]. Changing land
use in Japan from rice crops to either housing or fruit trees, which did not require flood irrigation and
thus no longer provided snail habitats, was an important feature for control.

Mollusciciding has also been used in P.R. China, Indonesia, and the Philippines, although to a
limited degree in the latter two countries. Environmental contamination with chemical molluscicides
is an important issue, and a number of previously used compounds have been abandoned due to these
concerns and as a result of the damage they cause to the environment. In the schistosomiasis foci in
Indonesia, the snail habitats occur close to the Lore Lindu National Park, which precludes the use of
molluscicides [128] and environmental modification. Early molluscicides included lime, which proved
inefficient, calcium cyanamide, and, later, sodium pentachlorohenate (Na-PCP), which was eventually
stopped in all countries due to environmental toxicity [129]. In P.R. China, the molluscicide of choice
has been niclosamide, used in two different formulations: (1) a 50% niclosamide ethanolamine salt
wettable powder and (2) a 4% niclosamide ethanolamine powder [106,130]. Both formulations resulted
in substantial, but not 100%, killing of snails, which meant that mollusciciding needed to be performed
more than once a year.

Neotricula spp., the intermediate host snails of S. mekongi, exhibit a different ecological niche
than those transmitting S. japonicum in that, rather than being present in marshlands and rice fields,
these snails are primarily found in shallow areas of rivers (particularly the Mekong River) and
tributaries. Thus, snail control for S. mekongi has largely been deemed infeasible [17], although
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ecological management of snail habitats upstream of human habitation, as occurs in P.R. China, should
be explored. Instead, preventive chemotherapy, along with improved WASH is practiced. Lao PDR has
previously used niclosamide for snail control, although this did not significantly impact the numbers
of snails in the treatment areas [124].

3.3. Environment

The majority of environmental factors associated with S. japonicum transmission are related
to distance to a snail habitat or those that influence snail habitats, such as the building of dams.
The majority of S. japonicum-endemic zones are within 1 km of water bodies such as rivers, lakes,
or wetlands [131,132]. Environmental factors that influence snail habitat include land cover, particularly
the presence of flooded agricultural land [133,134], seasonal land surface temperature (LST), elevation,
and rainfall [131].

In P.R. China, endemic areas occupy three different geographical landscapes: (1) marshland and
lake areas, (2) mountainous and hilly areas, and (3) water network areas. Of these, marshland and lake
areas are characteristic of the major endemic foci for S. japonicum, and might account for 95% of the
snail habitats [17,87]. Oncomelania snails survive best at areas of low elevation—one of the potential
environmental factors associated with high prevalence of snails in marshy areas. A study on snail
habitats in mountainous and hilly areas identified a maximum elevation of 2300 m above sea level for
snail survival [131]. The same study identified an ideal LST of ≥22.7 ◦C and a normalized difference
vegetation index (NDVI) of ≥0.446 in the mountainous areas. Distance from the nearest stream was
also important, as the Oncomelania snails are amphibious; yet, require water to survive. A distance of
≤1000 m from the nearest stream was found to be ideal for snail habitats [131].

As the marshy and lake areas are categorized by the presence of water bodies, more areas are
available for the snails to exist. The area of these landscapes, which cover the four provinces of Hunan,
Jiangxi, Anhui, and Hubei, is vast, complicating snail control in these locations [135]. Mountainous and
hilly areas, located primarily in the western part of P.R. China in the provinces of Yunnan and
Sichuan [131], account for approximately 5% of the remaining snail habitats [17]. The complex
environmental conditions present in these areas make it difficult to control snail populations [131].
The third type of landscape are water network areas, mainly located around the Yangtze River, which
account for <1% of snail habitats in endemic areas of P.R. China [17].

Local epidemic outbreaks and the geographic distribution of snail hosts are heavily influenced by
flooding events caused by the Yangtze River as they facilitate snail dispersion to new localities such
as rivers, lakes, and wetlands [136,137]. Large-scale water development projects [138], particularly
the aforementioned Three Gorges Dam and the South-North Water Diversion project (SNWD), also
influence the transmission and geographic distribution of schistosomiasis [139,140]. The SNWD plans
to divert water from the Yangtze River to the North [141]. Climate prediction models have indicated
that this project may result in the expansion of viable snail habitats for the main snail intermediate
host O. h. hupensis as well as O. h. robertsioni and O. h. guangxiensis [141]. The Three Gorges Dam,
begun in 2003 and completed in 2012, was built to decrease flooding events as well as to generate
power. As a consequence, it has changed the ecology of the surrounding area and impacted the habitat
of Oncomelania spp. snails. The decrease in flooding events has decreased the density of snails in some
areas, although in others, the density appears unchanged, or is on the increase [126].

In the Philippines, more than 3000 bodies of water are thought to be infested with snails susceptible
to S. japonicum infection: 80% in Mindanao, 18% in Visayas, and 2% in Luzon [76]. Endemic regions
have no distinct dry season and are predominantly comprised of rice fields, where contact between
humans and snails is maximized [11,82]. Environmental factors, such as close proximity to large
perennial water bodies (PWB), LST, NDVI, and precipitation, influence S. japonicum infection prevalence
differently in the three main regions of the Philippines [87]. As is the case in P.R. China, the distance
from water is an important factor for snail habitats, with the prevalence of schistosomiasis in humans
decreasing with distance to PWB [87]. Some differences exist between the three regions, with
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increased distance to PWB associated with decreased prevalence in Luzon and the Visayas, but not
Mindanao, whereas LST increase only significantly associated with decreased prevalence in Luzon.
Similarly increased precipitation was associated with higher prevalence in the Visayas but decreased
prevalence in Mindanao [87]. A confounding factor may be the differences in average socioeconomic
status between the three areas: people in Luzon tend to have higher socioeconomic status compared
to schistosomiasis-endemic areas of the Visayas and Mindanao. Natural habitats of O. h. quadrasi
include flood plains, forests, and swamps, whereas man-made habitats resulting from agricultural
development are thought to be important habitats (e.g., drainage channels, roadside ditches, small
canals, and drainage canals of irrigation works). These snails are generally found on banks but also
occur in shallow water (depth <20 cm) [121]. O. h. quadrasi snails prefer areas shaded by vegetation
where the temperature is relatively stable and cool.

Endemic regions of Indonesia are located in marshland areas around Lake Lindu and Napu and
Bada valleys. Prevalence of S. japonicum in snails from this area ranged from 0 to 13.4% in the Lindu
Valley and 0 to 9.1% in the Napu Valley, although human prevalence remained <1% as of 2006 [128].

S. mekongi transmission occurs in the Mekong Delta. In Khong and Mounlapamok districts in Lao
PDR, 202 villages are situated along the Mekong River with 114 currently or previously endemic for
schistosomiasis. The only villages with zero prevalence for S. mekongi are in parts of the river where
the riverbed is sandy, which is not conducive to the intermediate host snail, or those villages that are
more than 6 km away from the river [142].

Limited information is available regarding risk factors and snail intermediate hosts in
Myanmar [16]. The current areas where schistosomiasis occurs are around Lake Inlay in Shan State,
although a recent outbreak has occurred in Rakhine State on the Coast of the Bay of Bengal [143].
The wet season runs from May to October.

3.4. Transmission and Control

In P.R. China, transmission usually occurs across two distinct seasons [17], coinciding with the
natural annual flooding events in the Yangtze River: firstly in April to June/July when flooding is at
its peak, and secondly after the waters subside in September/October with transmission continuing
until November [140]. Although environmental factors heavily influence the snail intermediate
hosts, demographic factors and the presence of host reservoirs play a more significant role in
human transmission of S. japonicum. Infection with S. japonicum is strongly associated with age,
sex, and occupational exposure. Males aged 40 years and above who engage in fishing, farming,
and herding are at greatest risk of infection [144]. Defecation into lake waters or marshlands by
fishermen and grazing water buffalo facilitate the continuance of transmission.

In the Philippines, there is no distinct dry season on the main endemic islands of Leyte and Samar
and the province of Mindanao. Hence, transmission is not as variable by season as in P.R. China and
occurs all year round [82]. The most common crop in these endemic areas is rice, which provides
contact between snails that live in the rice paddies, swamps, and streams, whereas water buffalo and
cattle are used to work on the fields (Figure 3). In addition to farming, washing, and recreational use
of rivers are associated with higher risk of infection (Figure 4).
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(Image from the Philippines, captured by C.A.G.).

Whereas 13 species of mammalian hosts have been identified in Indonesia, limited research
has been undertaken on their involvement in transmission. Rodents of the genus Rattus have been
suggested as the primary source of transmission, with a peak prevalence of 20% found in one endemic
village [128]. Primary species thought to be involved in transmission are R. exulans, R. hoffmani, R.
chysocomus rallus, R. marmosurus, and R. celebensis [128]. Reservations around the role that rodents can
play in transmission were addressed earlier [92,93]. As in P.R. China, Indonesia experiences wet and
dry seasons; hence, it is likely that schistosome transmission is also seasonal there, with increased
transmission occurring in the wet season (November–March).

The transmission season for S. mekongi is matched with the lifecycle of the snail. During times
of high water levels (2–3 m), the majority of available snails are young, while in times of low
water (April–May; 10–60 mm), the snails have matured to adults capable of carrying the infection.
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Peak transmission of S. mekongi in Cambodia occurs between February and April coinciding with peak
water use for fishing [17]; whereas in Lao PDR, the main transmission season occurs in April and May.

In Malaysia, the wet season differs between the southwest where the monsoon season is
May–October, and the northeast where the monsoon season runs from November to March, and the
typhoon season occurs from April to November. It is therefore difficult in the absence of yearly surveys
to pinpoint when transmission in Malaysia might peak, but it is certainly influenced by rainfall brought
by the monsoons and typhoons.

Preventive chemotherapy with praziquantel has been the mainstay of schistosomiasis morbidity
control and, in addition to targeting mammalian and snail hosts mentioned earlier, efforts to
control transmission have also included programs aimed at improving WASH and health education.
Until relatively recently, the role of WASH in schistosomiasis control was limited [145–148], despite the
strong association of the disease with poverty and poor sanitation. In 2012, the World Health Assembly
(WHA) encouraged the incorporation of WASH into control and elimination strategies [149]. Due to the
transmission dynamics of schistosomiasis, WASH primarily limits environmental contamination with
schistosome eggs and reduces human contact with potentially infested waters [150]. Improvements in
sanitation and access to clean water have been shown to reduce the risk of schistosome infection [151],
and have the added benefit of reducing infection with other parasites such as soil-transmitted
helminths [146]. The impact of WASH is, however, dependent on the setting [151]. For example,
access to clean water is not considered to play a significant role in endemic areas where schistosome
infections are attributed to occupational or recreational contact with water as opposed to water used
for drinking or for everyday activities (e.g., laundry and bathing) [151]. Traditional WASH practices,
such as handwashing, have little impact on schistosome infection as the parasite eggs excreted in stools
are not infective to human or animal hosts. However, water use practices involving rivers, such as
bathing and washing clothes, will increase risk of contact with the infectious cercariae. Hence, much of
the WASH emphasis to date has focused on sanitation and sanitary behavior. A number of programs
focusing on improving access to clean water and improved sanitation outside of schistosomiasis
control are ongoing throughout schistosomiasis-endemic countries in Asia [152–157].

Health education is important not only for educating the public on risk reduction measures and
changing behavior, but has also been found to facilitate diagnosis, surveillance, and treatment [157].
Through health education activities and water contact studies, many high-risk behaviors and at-risk
populations have been identified [158]. This has enabled health messages to be tailored to specific
groups, such as school-age children swimming in freshwater and farmers and fishermen, and has
largely been aimed at methods of avoiding water contact and self-protection [158]. However, it can
be difficult to change behavior in some groups, such as fishermen or farmers, due to the nature
of their occupations [158]. The support of local and national governments, through implementing
infrastructure such as public toilets and using sanitary containers for stool on fishing boats, is therefore
important in these situations [117,159]. The vehicles used for health education messages are many-fold
and include audio-visual (radio, television, film, drama, traditional opera, and exhibits), print media
(poems, slogans, posters, magazines, and newspaper), and other daily articles such as printed
shirts, towels, fans, and umbrellas, among others [158]. Health information can also be passively
disseminated through the community by students, teachers, village leaders, and parents [158].
Although health education is considered an important component of an integrated control program
for schistosomiasis [160–163], it needs to be thoroughly planned, targeted, trialed, and evaluated prior
to implementation [158], and needs to be sustained over a long period of time in order to maximize
effectiveness [164]. To date, health education has been a major focus in P.R. China. Elsewhere, health
education has generally been combined with preventive chemotherapy and has played a limited role
in schistosomiasis control and elimination programs [82,165].

Research is ongoing for the development of schistosomiasis vaccines targeting humans and,
unlike the African schistosomes, the zoonotic nature of the Asian schistosomes allow for the targeting
of animal hosts. With bovines, particularly water buffalo/carabao confirmed as the major reservoirs of
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S. japonicum, there is the rationale for the development and deployment of a transmission-blocking
anti-S. japonicum vaccine targeting bovines [29,91,166,167]. The SjCTPI-Hsp70 vaccine is one of the
most efficacious to date with an experimental efficacy of ~52% [101] and cluster-randomized controlled
trials are currently being finalized to determine efficacy in natural settings. Vaccines may be the
key for long-term sustainable control and elimination of schistosomiasis but research needs to be
ongoing [167].

4. Current and Historical Status of Schistosomiasis in Asia

Notably, most prevalence estimates reported are based on microscopic detection of schistosome
eggs in stool samples, usually using the KK thick smear technique [87,168,169]. However, numerous
studies have demonstrated significantly higher prevalence when molecular detection methods have
been applied on the same set of samples, with differences of up to 70% reported [28,60,63,170].
Prevalence is also largely influenced by the size of the sampled population. This is particularly
relevant to the Philippines and Indonesia where funds are often limited, thus restricting the number of
personnel available to interview and process collected samples. Another confounding factor, which
is also common in P.R. China, is a fall in participation rates in many endemic areas, often referred to
as treatment fatigue. Some communities in highly endemic areas have been participating in surveys
for decades; hence, it is not surprising that these villagers have tired of the routine. In areas where
prevalence has dropped significantly, the disease is no longer seen as a priority. Based on these factors,
it is conceivable that the prevalence of schistosomiasis is considerably underestimated.

4.1. S. japonicum

The first reports of S. japonicum in P.R. China and the Philippines occurred around the same time
in the early 1900s [171,172] and the epidemiology of the disease is similar in the two countries.
The presence of the disease in Indonesia was first reported about three decades later, with an
autochthonous infection in a 35-year-old male suffering from chronic schistosomiasis resulting in his
death in 1937 [128].

4.1.1. Japan

As indicated in the species name, S. japonicum was once found in Japan, the last reported human
case was in 1977, and elimination of schistosomiasis was declared in 1996 [17]. There were a number of
endemic areas in Japan pre-elimination, including Kofu basin, Fukuoka, and Saga prefectures, which
appeared to have had the highest prevalence [173]. Due to a successful control program, transmission of
the parasite no longer occurs there, although the requisite intermediate host snail species, Oncomelania
nosphora, is still present [113]. In addition to the control initiatives implemented, modernization and
socioeconomic development had a large impact on elimination of this parasite in Japan. Elimination of
schistosomiasis in Japan occurred pre-praziquantel and the available drug at the time, stibnal, caused
severe adverse events, which resulted in low treatment compliance. Thus, most control efforts focused
on targetting the snail intermediate hosts and preventing transmission to humans.

Environmental modification in the form of concreting canals, where the Oncomelania snails bred,
began in 1938 and was the primary method used [17]. In addition, the Japanese government purchased
and buried snails from people in the endemic areas. Mollusciciding using lime, which proved to be
inefficient; calcium cyanamide, which proved to be more efficient; and later Na-PCP were trialed.
The use of Na-PCP was eventually stopped after 13 years due to its environmental toxicity. Hot water
and flamethrowers were also used to kill snails, and proved effective in small areas. In addition,
geese and firefly larvae were released into endemic fields to eat snails, although these measures
proved unsuccessful [129]. Land use was changed, with increased urbanization meaning that many
paddy fields were converted to housing, and in other areas, crops changed from rice to fruit trees;
this precluded the use of flood watering and thus no longer provided areas for snail breeding [17].
Education of farmers to prevent the use of “night soil” as fertilizer was also performed, thus limiting
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environmental contamination with schistosome eggs from human feces. Bovines were replaced with
horses, which can act as reservoir hosts but are less efficient transmitters, and other potential reservoirs
such as wild populations of mice and dogs were controlled.

4.1.2. P.R. China

In P.R. China, S. japonicum is predominantly found in areas along the middle and upper reaches
of the Yangtze River Valley in the southern part of the country where the climate and environment are
highly suitable for the propagation of Oncomelania snails. Endemic regions are concentrated in the lake
regions and in the mountainous region in the western part of the country [131]. Until relatively recently,
S. japonicum was endemic in 12 provinces, but due to political will and sustained efforts, primarily
through snail control and preventive chemotherapy, five provinces have achieved transmission
interruption. Of the remaining seven provinces, four (Sichuan, Yunnan, Jiangsu, and Hubei) achieved
transmission control (prevalence <5% in humans and animals) by 2014, whereas Anhui, Jiangxi,
and Hunan are still in the infection control stage (prevalence <1% in humans and animals) [174,175].
In 2012, an estimated 800,000 people were infected and 65 million people considered at risk [24]. In 2016,
the number of reported cases had dropped considerably and was just over 77,000 [17]. Current human
prevalence in most endemic villages is between 1% and 3% but among the high-risk population, such
as those who have extensive contact with water, infection levels may still exceed 10% [17].

Control approaches in P.R. China have been extensive due to the strong commitment by the
national government. Funds from a 10-year World Bank Loan Project (WBLP) implemented in the
1990s [176] were put toward control and prevention strategies for schistosomiasis, including preventive
chemotherapy, snail control, and WASH interventions. The mainstay of schistosomiasis control is
preventive chemotherapy with praziquantel. In P.R. China, preventive chemotherapy is primarily
targeted at fishermen and boat people living within half a kilometer of schistosomiasis-infested water
bodies and is administered biannually. Treatment in other high-risk populations is selective, based on
the extent of water contact [16]. P.R. China is the only endemic country that also practices mass drug
administration for bovines, which are treated annually. The government is replacing animals used for
farming with tractors and is removing bovines [16,89,100]. Mollusciciding occurs annually and usually
coincides with the onset of the transmission seasons. Ecological methods of snail control have been
used in P.R. China, such as changing farming practices, submerging snail habitats, and placing black
plastic film over banks post-mollusciciding [17]. P.R. China’s efforts to improve WASH began during
the third phase of their national schistosomiasis control program (initiated in 2004), which focused on
an integrated approach to control transmission [177]. WASH interventions mainly center on fishermen
and boatmen [178] in the Poyang and Donting Lake regions and include supplying tap water and
stool containers and building latrines close to boat anchoring points [159,179]. Health education has
been an integral component of P.R. China’s schistosomiasis control program since its inception in the
1950s [164].

4.1.3. Philippines

In the Philippines, S. japonicum is distributed throughout all three major island groups (Luzon,
Mindanao, and Visayas), although the majority of cases occur in Mindanao and the Visayas [87,180]
(Figure 1). Schistosomiasis is currently endemic in 28 of the country’s 80 provinces, mostly in Mindanao,
with more than 12 million people estimated to be at risk and 2.5 million directly exposed [76].
Distribution of S. japonicum is more widespread in the Visayas compared to Luzon and Mindanao,
where it is more focal [87]. Among endemic provinces, 10 are considered highly endemic (prevalence
>5%), six moderately (1–4.9%), and 12 low or close to elimination levels (<1%) [76]. Prevalence studies
conducted since 2000 indicate infection levels vary based on location. In 2000, Acosta et al. reported a
prevalence of 60% in adolescent and young adults (aged 15–30 years) in three villages in Leyte [181].
In 2005, a cross-sectional survey in Western Samar Province reported a prevalence range of 0.7%
to 47% [182], which is similar to that reported by Ross et al. in 2012 from Northern Samar [96].
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A nationwide prevalence study in 2015 identified infection levels >5% in one province, 1–5% in
12 provinces, and less than 1% in 14 provinces [87]. However, a diagnostic study conducted in 2014 in
Northern Samar compared the prevalence determined using the gold standard KK method against
qPCR results and found a discrepancy of nearly 70% (23% for KK vs. 90% for qPCR) [64], demonstrating
the need for more sensitive diagnostic methods to determine true prevalence.

The Philippines experienced a period of success in controlling schistosomiasis after the launch of
the Philippines Health Development Project (PHDP) in 1991, which was financially backed by a World
Bank loan. The focus shifted to active case finding and mass drug administration with praziquantel;
WASH interventions and snail control were included as additional measures. Drug coverage of the
target population was reported to be 100% during the 1990s [76]. However, the prevalence of S.
japonicum increased after the cessation of the program due to a lack of financial support; inadequate
resources from the government also led to a diminished capacity to control schistosomiasis in the
Philippines compared to P.R. China, where the government has strongly supported control efforts for
over 50 years [17,183,184]. Due to insufficient funds to support the continuation of mass examination
and treatment of at-risk populations, the Department of Health in the Philippines moved to targeting
only high-prevalence endemic areas with mass drug administration [17,183].

In the Philippines, niclosamide has been banned for use in snail control under the Clean Water
Act [17]. So, while mollusciciding has been performed in the past, special exemption would be needed
for future use. A combination of methods employed in Japan was trialed on Bohol Island in the
Philippines, focusing on grass cutting in swamps, followed by mollusciciding. Land reformation from
swamps to rice fields, combined with mass drug administration, was effective in reducing prevalence
to less than 1% [17]. In general, snail control measures successfully used in P.R. China have not been
applicable to the Philippines due to differences in ecology and habitat of the local intermediate host
snails [11]. Historically, environmental modification has been used in the Philippines to decrease
snail habitats [127,185,186]. This rarely occurs now, and the mainstay of control in the Philippines
is preventive chemotherapy with praziquantel [187]; yet, there is low compliance in taking the drug
due to a variety of reasons, such as poor community engagement and fear of adverse events, which
reduces the effectiveness of this intervention [82,188–191]. A cross-sectional survey undertaken in
2015 in Northern Samar, an area with high prevalence of schistosomiasis, reported treatment coverage
of only 27% [28,190].

The success of P.R. China’s efforts since after the launch of the WBLP compared to the Philippines
is largely attributable to the Chinese targeting both human and animals for chemotherapy as opposed to
humans only in the Philippines, which ultimately proved to be far less effective [183]. The Philippines
is currently undertaking measures to address the issue of S. japonicum infection in animals by
strengthening veterinary health teams in priority areas through capacity building and operational
research and moving toward implementation of WASH programs, as outlined during the 17th Meeting
of the Regional Program Review Group on Neglected Tropical Diseases in the Western Pacific (175).
These efforts are laudable and it can be anticipated that WASH will feature more prominently in
the Philippines than in the past [187]. Lessons from early efforts (before the advent and wide use of
praziquantel) to improve sanitation should be considered [82,96].

4.1.4. Indonesia

In contrast to P.R. China and the Philippines, schistosomiasis in Indonesia is endemic in three
comparatively small, isolated highland regions surrounding Lore Lindu National Park in central
Sulawesi. These areas include marshes around Lake Lindu, particularly in the villages of Anca,
Langko, Tomado, and Puro’o; Napu Valley [11] located 30–50 km southeast of Lake Lindu; and
the more recently identified focus of Bada Valley [95]. Although the prevalence of S. japonicum has
fluctuated over the last decade, prevalence tends to be higher in Napu Valley and overall appears to
demonstrate an upward trend. Up to 2005, control efforts had decreased prevalence from 37% to 1% or
less in Napu and Lindu valleys, but in the period from 2008 to 2011, prevalence varied between 0.3%
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and 4.8% in Napu and 0.8% to 3.2% in Lindu [95]. When Badu was first recognized as a new endemic
area in 2008, prevalence was 0.5%, which later increased to 5.9% in 2010 [122].

Schistosomiasis control strategies set by the National Objectives for Health (NOH) directive
for 2011–2016 varied based on the degree of endemicity, but overall took a multifaceted approach.
Control objectives included mass drug administration coverage of 85% of the entire population in high
endemic areas, active selective treatment in moderate endemic areas, and passive selective treatment
in low endemic areas. Preventive chemotherapy has been supplemented with strategies that also
focused on treating domestic animals, snail control, health education, improving water, and sanitation,
and monitoring and evaluation and capacity building [76] in an effort to meet the 2020 elimination
goal set by the Indonesian Ministry of Health [192]. Although Indonesia has made great strides in
reducing the prevalence of schistosomiasis, control and prevention efforts have been inhibited by a
lack of coordination and collaboration between the Ministry of Health and other ministries, as well as
insufficient financial and human resources. The lack of funds dedicated to surveillance and control by
the Ministry of Health may, in part, be due to the limited area and population affected by the disease
or as a result of the decentralized and autonomous government system in Indonesia [193].

4.1.5. Myanmar

Myanmar has been previously thought to be non-endemic for schistosomiasis, although
there have been some historical unconfirmed reports of the presence of both S. japonicum and S.
mekongi [16]. Recent studies have indicated that schistosomiasis has been emerging/re-emerging
around Lake Inlay in central Myanmar [194]. Serological analysis of patient samples between
2012 and 2013 identified a prevalence of 23.8% (n = 315), whereas 302 cases were identified between
2016 and 2018 [16,195]. The WHO has been involved in supporting efforts to diagnose and treat
infections in Myanmar, providing praziquantel, KK thick smear equipment, and urine tests [194].
Recently, molecular diagnostics determined a S. mekongi prevalence of 3.9% (n = 205) in the Bago
Region of Myanmar [196,197].

A recent schistosomiasis outbreak occurred in Rakhine State with >400 confirmed cases and
>800 suspected cases as of August 2018 [143]. Rakhine is the site of unrest due to political strife with
Rohingya refugees and is also one of the poorest in terms of socioeconomic status in Myanmar, with a
high number of households without access to clean water and proper sanitation [198]. This outbreak is
occurring outside the area where schistosomiasis has previously been identified (Figure 1B). A technical
team from the WHO and Myanmar Health and Sports Ministry have been to the area and suggested a
special control team to carry out activities aimed at treating and preventing infection including health
education in schools, diagnostics, treatment, and snail mapping [143]. The schistosome and snail
species responsible for this current outbreak have not yet been identified.

It is not immediately clear from published reports if S. japonicum has been definitively diagnosed
in Myanmar. Until the status of schistosomiasis is further clarified, ideally by molecular methods with
which S. mekongi has already been confirmed, we rely on early reports that suggest both species are
present [196,197].

4.2. S. mekongi

4.2.1. Cambodia

The first case of schistosomiasis occurring in Cambodia was identified in 1968 in Eastern Cambodia
and was seemingly confined to Vietnamese fishermen living in raft houses. Prevalence among children
was higher (14–22%) than in adults (7–10%) [199]. At present, there are an estimated 80,000 people at
risk of infection in Cambodia [142].

Control of schistosomiasis in Cambodia has been impacted by political unrest and upheaval
through the 1970s and 1980s [200]. It was not until 1993 that control programs targeting schistosomiasis
commenced. At the onset of the control program, drug compliance was low due to the treatment not
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being free. Subsequently, mass drug administration was provided free of charge [200]. This approach
has been the mainstay of control in Cambodia for the last 20 years and, in 2016, the schistosome
prevalence determined by the KK thick smear technique was 0%. In addition to preventive
chemotherapy, CL-WASH programs were implemented in endemic villages in 2016. Facilitators were
initially trained in CL-WASH, who then helped lead community-based training when education on
schistosomiasis transmission was provided and linked to sanitation and hygiene habitats. In each
community, CL-WASH teams, composed of volunteers from each community as well as a facilitator,
conducted surveys on village households to determine the provision of sanitation and the level of
malnutrition [201]. Initial surveys found that >60% of households did not have toilets and many
still practiced open defecation. Survey results were mapped and presented to the community
members who discussed how their behaviors led to schistosome infection (and other parasitic worm
and intestinal protozoa infections) and how infection could be prevented with the development
and implementation of CL-WASH plans. These plans included the building and use of latrines in
villages [201]. Elimination was planned for 2017, although this was reliant on more sensitive diagnostic
tools being employed, an increase in sentinel site surveillance, and increased use of CL-WASH in
endemic areas [202].

4.2.2. Thailand

The first case of S. mekongi, described as a S. japonicum-like infection, was reported in 1950 in
Thailand [199]. This ‘patient zero’ was a Thai native and thus it is likely this was an autochthonous
case. Further investigations identified an endemic region and susceptible intermediate host snail in
southern Thailand. In 1964, further cases were identified in northern Thailand. Animals including
water buffalo, cattle, dogs, cats, pigs, and rats were also surveyed in the endemic areas but none were
positive at that time [199]. Thailand is currently in transmission interruption, waiting on investigation
and ratification by the WHO [203].

4.2.3. Lao PDR

Lao PDR followed Thailand in the identification of S. mekongi in 1957 in a patient who had
been living in Paris for nine years, but had spent the first nine years of life in Lao PDR [34,199].
This observation indicated that the adult worms can live for many years. The patient was admitted
with what was thought to be cirrhosis of the liver; a liver biopsy revealed the presence of a S.
japonicum-like egg. It was not until 1966 that a second case was identified in Lao PDR and, in 1969,
an epidemiological survey determined a prevalence of 14.4% (n = 72) on Khong Island. As with
S. japonicum, hepatosplenomegaly was associated with infection [34,199,204]. On Khong Island,
the parasite was first found in animals, specifically in a dog [34].

A study examining the prevalence of a range of parasites in islands of the Mekong in Lao PDR
performed in 2011 determined a prevalence of 22.2% (n = 994) in humans and 14.7% (n = 68) in dogs
for S. mekongi [123]. The infected snail prevalence was very low with 0.01% (n = 29,583) of collected
snails being positive [123]. More recent cases have been identified in returning travelers who visited
these historically endemic areas, including a Belgian visitor to Khong Island in 2013 and a French
woman who was exposed to freshwater habitats in southern Lao PDR [205,206]. These cases indicate
that transmission is ongoing.

Mass drug administration in Lao PDR was first carried out yearly from 1989 to 1998. In the first
year of the program, only selective chemotherapy was practiced but this was expanded in subsequent
years [200]. Before the onset of this preventive chemotherapy-based program, there were an estimated
11,000 cases with a further 60,000 deemed to be at risk of infection. By 1999, the prevalence was
significantly reduced, but after cessation of yearly mass drug administration, the prevalence rebounded
to pre-intervention levels. Hence, mass drug administration was recommenced in 2007 with financial
support from WHO [202]. CL-WASH was implemented in 10 villages in 2016, to be expanded to all
endemic villages by 2020 [202].
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4.2.4. Myanmar

See Section 4.1.5. for Myanmar under S. japonicum.

4.3. S. malayensis

Malaysia

Schistosomiasis resembling S. japonicum was first identified in Malaysia in 1973 during an
autopsy [199]. Previous schistosome infections identified in Malaysia were S. japonicum in foreign
nationals from P.R. China and Singapore [207]. A review of autopsy materials between 1967 and
1975 uncovered a further nine cases of S. japonicum-malaysia (later classified as S. malayensis in
1988) [199,207]. No animal infections, snail hosts, or new human cases in the areas that the infected
deceased came from could be identified [199]. The strain that caused schistosomiasis in these cases
was thought to be different from the Mekong schistosome [199], and likely represents the first case of
S. malayensis.

Until 1978, all cases of S. malayensis were identified in patients who were deceased with
schistosomiasis identified in autopsies, although not as the reported cause of death [207,208].
In general, cases of S. malayensis have been aboriginal Malaysians (Orang Asli) living in rural
areas and patients were either previously or concurrently co-infected with other infectious diseases.
The first case identified in a living patient occurred in Selangor State and the patient presented with
hepatosplenomegaly [207,208].

In the meantime, S. malayensis has only been recorded sporadically in humans, with few recent
accounts of infected individuals. The most recent identification of infection in humans was reported in
a pathology report of an individual in 2011 [209]. In this case, histology slides of the liver identified liver
granulomas, although schistosomiasis had not been diagnosed prior to the death of the patient [209].

5. Concluding Remarks

Multi-component, intersectoral, and integrated control approaches provide a promising path
forward for the elimination of schistosomiasis in Asia. Behavioral changes that prevent infection, such
as avoiding the practice of open defecation and contact of open freshwater bodies in endemic areas,
are necessary. However, without accompanying infrastructure, such as toilets provided in WASH
programs, these behaviors will continue. Combined with chemotherapy of both humans and reservoir
hosts (e.g., water buffalo), snail control, animal vaccination, health education, and WASH targeting
multiple points in the schistosome life cycle will significantly impact the prevalence and re-infection
of schistosomiasis. The success achieved in P.R. China in schistosomiasis control and elimination
is due to the commitment and support of the Chinese government, including the removal of water
buffalo—a major reservoir host in P.R. China—from endemic areas, thus effectively removing them
from the transmission cycle. Without such governmental support, sustaining control programs is
difficult, particularly those that include more than preventive chemotherapy and require considerable
resources to implement, such as required for CL-WASH. There is a niche role for health education
that is missing from many schistosomiasis control programs, as knowledge remains limited about the
parasite and which behaviors lead to infection in endemic populations.

Limited data are available on prevalence for S. mekongi, particularly for S. malayensis, the number
of human cases, and the role played by animal reservoirs in transmission. Thus, assessing the true
importance of schistosomiasis in the countries where these two schistosome species are endemic
is difficult.

The true S. japonicum prevalence is conceivably underestimated, both in P.R. China and the
Philippines, due to the lack of sensitive diagnostics used in control programs. While P.R. China closes
in on elimination targets, the use of sensitive diagnostics will be important to determine whether
elimination has indeed occurred and to prevent re-bounding infections after treatment and the cessation
of the control program. A recent study in P.R. China found a human prevalence <1% by the MHT
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but 11% by qPCR [63]. Although the majority of the cases detected by qPCR were light-intensity
infections, they do present a significant number of individuals who were not identified by widely used
diagnostic methods, and who could contribute to resurgence after interventions cease. Limited case
finding and prevalence studies have been performed in either country by their national control
programs. Another limitation is the lack of snail prevalence surveys performed in many of the
schistosome-endemic countries.

Future challenges for schistosomiasis control and elimination include climate change and the
potential spread of the disease to new areas [141,210–212]. Europe has, for example, seen a return
of autochthonous schistosomiasis cases, although this may initially be due to human migration
from endemic areas [213]. Increases in temperature due to climate change will shift the tropical
zone, the band in which schistosomiasis currently occurs. In P.R. China, this may lead to a shift in
endemic areas further North in the country as the climate changes, and with the implementation of the
SNWD project.
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