
 

Adiabatic Expansion of Electron Gas in a Magnetic Nozzle
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A specially constructed experiment shows the near perfect adiabatic expansion of an ideal electron gas
resulting in a polytropic index greater than 1.4, approaching the adiabatic value of 5=3, when removing
electric fields from the system, while the polytropic index close to unity is observed when the electrons are
trapped by the electric fields. The measurements were made on collisionless electrons in an argon plasma
expanding in a magnetic nozzle. The collision lengths of all electron collision processes are greater than the
scale length of the expansion, meaning the system cannot be in thermodynamic equilibrium, yet
thermodynamic concepts can be used, with caution, in explaining the results. In particular, a Lorentz
force, created by inhomogeneities in the radial plasma density, does work on the expanding magnetic field,
reducing the internal energy of the electron gas that behaves as an adiabatically expanding ideal gas.
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The first law of thermodynamics is that the change in the
internal energy of a closed system (ΔU) is equal to the
added heat (Q) minus the net work (W) done by the system:
ΔU ¼ QþW, and for an expanding system, W can be
calculated by the pressure P and the change in volume ΔV
as ΔU ¼ Q − PΔV. These changes are identified using a
calorimeter; for plasmas, a detailed energy distribution of
the charged particles can be obtained using a Langmuir
probe [1].
Isothermal and adiabatic processes must occur slowly to

keep the gas temperature constant and rapidly without any
flow of heat in or out of the system, respectively. In
practice, most expansion and compression processes are
somewhere in between or said to be polytropic [2].
Examples of an adiabatic process are a piston working
in a cylinder and can also be found in astrophysics, nature,
and quantum mechanical descriptions of simple atomic
systems. A detailed study of the limits of adiabaticity
in such slowly varying processes has been recently
reported [3].
When a star explodes and becomes a supernova, the time

scale of the ejected material can be short compared to the
radiative cooling time scale, resulting in a roughly adiabatic
expansion. Adiabatic cooling occurs in the terrestrial
atmosphere with the formation of clouds as well. For
closed systems, the concepts of an adiabatic enclosure
and of an adiabatic wall are fundamental. The first law is
constructed on the concept of a wall with certain properties:
those enclosing arbitrary systems that allow them to remain
in their own states of internal thermodynamic equilibrium
are defined as adiabatic. Easy to state, but difficult to
construct in the real world. In the examples above, which
are generally considered adiabatic, a good 40% of the

internal energy is lost as heat, somewhere, somehow. The
primary culprit is the walls, and where do we draw the
boundaries of our little universe?
The expansion of a gas has been understood using

traditional thermodynamics. It is convenient to characterize
the expansion of a gas using the concept of a polytropic
index γ as PVγ ¼ const, where γ is equal to unity for the
isothermal expansion and to the specific heat ratio γa for the
adiabatic expansion; i.e., γ ¼ γa ¼ ðNd þ 2Þ=Nd, where
Nd, the number of degrees of freedom, is 3 for monatomic
(γa ¼ 5=3). The polytropic relation can be rewritten using
the normalized temperature T=T0 and density n=n0 as

T=T0 ¼ ðn=n0Þγ−1: ð1Þ

Whereas experiments with simple gases can be easily
carried out in laboratories, those involving gaseous plasmas
of astrophysical and solar interest pose a number of
extremely difficult problems. Observations near the Sun
and at Earth orbit have been interpreted as demonstrating
that the solar wind does not expand adiabatically from the
Sun as would have been expected for this near collisionless
environment. Rather, it expands isothermally, implying that
heating of the plasma occurs as it propagates through
interplanetary space [4–6]. Many laboratory experiments
under adiabatic conditions [7–9] have also shown a nearly
isothermal expansion with γ ∼ 1.0 − 1.2 in magnetic noz-
zles, and the relation with astrophysical plasmas has been
discussed [10]. However, in these expanding adiabatic
systems, it appears that electric fields may have a signifi-
cant nonlocal effect on the dynamics of the electrons; many
of them are trapped in the system by the ambipolar and wall
sheath electric fields, allowing an isothermal equilibrium to
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be established after sufficient time has elapsed, while some
of the electrons having the energy overcoming the potential
drop can escape from the system. Hence, both the trapped
and free electrons coexist in different proportions. A very
fundamental question then arises: what would happen if
there were no electric fields trapping the electrons?
Here, energy distribution of the magnetically expanding

electron gas whose charges are neutralized by background
ions is measured when removing the electric field from the
system. Since the magnetic field can behave as a flexible
wall with no physical boundary, it can be considered as a
boundary with no heat transfer, i.e., an adiabatic wall. The
results demonstrate that the electron gas behaves like an
ideal gas expanding adiabatically in the absence of electric
fields, while showing isothermal properties when trapped
by the electric fields in the system.
The experimental apparatus in Fig. 1(a) is separated into

two systems that are electrically isolated from each other by
a 2.6-cm-inner-diameter quartz tube: an electron beam
source (left) and a grounded diffusion chamber (right)
pumped down to a base pressure of 5 × 10−7 Torr. Argon
gas of 5 sccm is introduced from the left side of the beam
source resulting in a pressure of 0.5 mTorr in the diffusion
chamber. A voltage VD of 200 V is pulsed for 55 msec
through a 15 Ω resistor between a hot spiral tungsten
filament placed at z ¼ −25 cm and an anode mesh at
z ¼ −20 cm, causing the thermionic electrons from the
filament to be accelerated into the quartz tube, producing a
high density plasma. The voltage drop across the resistor
reduces the accelerating potential to about 100 V. Two
solenoids centered at z ¼ −1.3 and −15.8 cm provide a
uniform magnetic field at the beam source and along the
quartz tube before expanding in the diffusion chamber, as
seen in Fig. 1(b). The electron Larmor radius is ∼4 mm at
z ¼ 30 cm assuming a temperature of 5 eV; hence, the
magnetic field strength is sufficiently high to magnetize the

electrons in the chamber. Electrons can be drawn from the
source plasma to the right end wall by applying a voltage
(VA) between the beam source and the chamber. The
ambipolar and end sheath electric fields are profoundly
influenced by changing VA, as described later.
The electron energy probability functions (EEPFs) are

measured using a radially oriented 0.9-mm-diameter and
3-mm-long cylindrical Langmuir probe and an analogue
differentiation technique [11]. About 20 msec after the
initiation of the plasma pulse, the plasma density has
stabilized, allowing the probe bias voltage to be swept
for 30 msec. The signals are digitized by a 16-bit data
acquisition system and averaged over 100 shots. The
electron density ne and the effective electron temperature
Teff can be obtained by integrating the EEPFs as Eq. (10) in
Ref. [11]. The plasma potential Vp corresponds to the bias
voltage for the zero crossing of the second derivative curve.
Since the phase lag of the differentiator causes a small error
in the measurement of Vp (typically a few volts), more
precise Vp values are obtained from the numerical deriv-
atives of the I-V characteristics.
Figure 2(a) shows the measured axial profiles of Vp for

VA ¼ 60 and 0 V. A high plasma potential is maintained for
the VA ¼ 60 V case, decreasing about 5 V along the axis.
The potential of the end wall (z ¼ 51 cm) is shown by a
triangle with the dotted lines being visual guides that
include the wall sheath. Electrons having an energy less
than the ambipolar and sheath potential drops are trapped,
as illustrated by the arrow, and an electron current flows
toward the anode rather than toward the end wall. A very
different scenario is obtained by setting the anode potential
VA ¼ 0 V: Vp was measured to be zero along the axis right
up to the end wall as shown by the open circles in Fig. 2(a).
In this case, there is an electron current away from the
anode and electrons from the plasma source freely escape
to the end wall. Since a lot of electrons are injected from the
source to the diffusion chamber, both the sheath and
ambipolar potential drops inhibiting the electron loss are
not required to maintain the charge neutrality; hence, the

(a)

(b)

FIG. 1. (a) Schematic of the experimental setup. (b) Axial
profile of the magnetic field on axis.

(a)

(b) (c)

FIG. 2. (a) Axial profile of Vp for VA ¼ 60 V (filled squares)
and 0 V (open circles). A triangle shows the grounded wall
potential at z ¼ 51 cm, the dashed lines being added as visual
guides. (b) Axial profile of ne for the same values of VA.
(c) Radial profile of Vp (open circles) and ne (filled triangles)
taken at z ¼ 10 cm for VA ¼ 0 V.
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zero plasma potential is formed for the VA ¼ 0 V case.
Since there are now no electric fields in the expansion
region, there are no electrons returning to the magnetic
nozzle throat. Figure 2(b) shows the axial profiles of ne for
both cases; regardless of the presence or not of the axial
electric fields, ne decreases along the axis due to the
expansion along the magnetic nozzle. The radial profiles of
Vp and ne for VA ¼ 0 V in Fig. 2(c) show that the radial
electric field is completely removed for VA ¼ 0 V, clearly
demonstrating that there are no electric fields within the
plasma, while maintaining the radial density gradient. For
the present electron density and neutral pressure in the
chamber, all the collision lengths relating to electrons are
longer than the chamber length; i.e., the electrons are
collisionless in the diffusion chamber.
Figure 3(a) shows that Vp can be controlled over a wide

range by varying VA. To distinguish between the trapped
and free electrons, the typical EEPFs measured at z ¼
25 cm are shown in Fig. 3(b) for different values of VA. For
the VA ¼ 60 V case, most of the electrons are reflected by
the ambipolar and sheath electric fields, and these trapped
electrons include the low energy electrons from the source
and the remnants from the beam. But as Vp decreases with
decreasing VA, fewer and fewer electrons in the EEPF are
reflected until at VA ¼ 0 V when there are no electric fields
in the plasma, no electrons are reflected, and all directly
escape to the grounded right end wall. The measured
electric currents Ichamber, Ik, and IA [labeled in Fig. 1(a)]
in Fig. 3(a) show the net flow of electrons to the chamber
for the VA ¼ 0 V case, while the negligible electron flow
and the ion flow to the chamber are confirmed by the small
negative current for VA ¼ 60 V. It is mentioned that the
EEPFs in Fig. 3(b) include the hot tail electrons rather than
the beam electrons, which is expected to be due to energy
scattering via a convective beam-plasma instability and the
plasma-wave interaction [12,13]. This Letter focuses on the
magnetic nozzle region (diffusion chamber), and measure-
ment of the EEPFs in the source, which would affect the
EEPFs entering the chamber, is a subject for further study.

These EEPFs can be more easily understood if plotted
from the viewpoint of an energy frame, meaning that Vp is
taken as zero energy. The EEPFs are shown measured along
z for the VA ¼ 0 V [Fig. 4(a)] and VA ¼ 60 V [Fig. 4(b)]
cases. The same EEPFs plotted over the energy range up to
25 eVare also shown in Figs. 5(a) and 5(b) for clarification
of the low energy part and further discussion later. The
EEPFs for VA ¼ 0 V show a very rapid decrease of the
energetic tail electrons as z is increased, while for
VA ¼ 60 V, the energetic electrons exist for all values of
z. For the latter case, most of the electrons are reflected by
the grounded wall sheath and return to the source; hence,
the density of the energetic electrons is much greater than
that for the VA ¼ 0 V case.
The ne and Teff can be obtained by integrating the EEPFs

in Figs. 4(a) and 4(b) over the whole energy range in the
measurements. By plotting the normalized ne and Teff in
Fig. 4(c), together with the curves calculated using Eq. (1),
the polytropic behavior of the electrons can be examined.
Electrons in the plasma containing the electric fields are
very close to isothermal with γ ∼ 1–1.2 being consistent
with the previous measurement of the nonlocal EEPFs [7],
as can also be seen from Figs. 4(b) and 5(b), where the
slopes of the bulk electrons (hence their temperatures) are
comparable for all values of z. It should be noted that
the filled squares plotted in upper right of Fig. 4(c)
(Teff=Teff0 > 0.9) include a significant contribution from
the remnant beam electrons and this strongly affects Teff .
The decrease in Teff and increase in γ toward ∼1.2 for
Teff=Teff0 < 0.9 are due to the decay of the beam electrons.
For the case containing no trapped electrons, the slopes of
the EEPFs shown in Figs. 4(a) and 5(a) increase with the
increase in z, representing a decrease in the temperature of
the bulk electrons. Here, the remnant beam electrons are

(a) (b)

FIG. 3. (a) Vp (open squares) measured at z ¼ 25 cm and the
electric currents Ichamber (filled triangles), Ik (crosses), and IA
(open diamonds). (b) EEPFs plotted versus the probe bias voltage
Vbias, measured at z ¼ 25 cm as a function of VA.

(a)

(b)

(c)

FIG. 4. EEPFs over the range of 0–80 eV as a function of z for
(a) VA ¼ 0 V and (b) VA ¼ 60 V. (c) Polytropic relation ob-
tained using the data in Figs. 4(a) and 4(b), together with the
calculated curves from Eq. (1) for various values of γ, ranging
from isothermal (γ ¼ 1) to adiabatic expansion (γ ¼ 5=3).
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about an order of magnitude less intense compared to the
case with the trapped electrons and they play a far less
significant role in determining Teff . The polytropic index γ
given by the circles in Fig. 4(c) is above 1.4, much larger
than that given by the filled squares, and approaches the
adiabatic value of 5=3.
Clearly, the remnant beam components close to the noise

level of the measurement affect the derivation of Teff .
Consequently, the effective temperatures of the bulk
electrons need to be looked at in further detail. There
are two particular phenomena that contribute to possible
errors in the derivation of Teff : the remnant beam electrons
and the magnetic field effects on the Langmuir probe
diagnosis. The former was investigated by excluding the
tail component and truncating the data by only considering
the energy less than 25 eV, yielding the results shown in
Fig. 5. The gyroradius has to be larger than the probe tip
radius for the present analysis to be valid. The probe tip
radius of 0.45 mm corresponds to the Larmor radius of
representative low-energy electrons at 1 eV for a magnetic
field of 75 G. To minimize these effects, measurements are
only considered for z having a magnetic field strength less
than about 50 G, which corresponds to z > 15 cm.
The slopes of the EEPFs in Fig. 5(a) increase, represent-

ing electron cooling, as a function of z, while the slopes in
Fig. 5(b) are nearly constant, as mentioned earlier. Teff
obtained by integrating the EEPFs over the energy less than

25 eV is plotted in Fig. 5(c), showing a clear decrease of the
bulk electron temperature along the axis for the free
expansion case (VA ¼ 0 V), as would be expected for
an adiabatic expansion, and a constant temperature (iso-
thermal expansion) for the trapped electrons (VA ¼ 60 V).
The polytropic relations obtained from the EEPFs in
Figs. 5(a) and 5(b) are plotted together with the theoretical
curves [Eq. (1)]. This result shows that the electrons are
effectively adiabatic for VA ¼ 0 V and isothermal for
VA ¼ 60 V. In other words, when the electric field is
eliminated from the system, the electrons effectively
behave like an adiabatic ideal gas in the magnetic nozzle.
Keeping in mind the first law of thermodynamics, there

must be no heat transfer, but work must be done on the
walls surrounding the system. Here, the expanding mag-
netic field can be considered as the wall that has work done
on it, but as it is not a physical boundary, no heat is
transferred. When the boundary sheath and ambipolar
electric fields within the plasma are removed, none of
the electrons are trapped in the plasma system and they can
only interact with the confining magnetic wall: the plasma
pressure force does work on the magnetic boundary.
This can also be understood via the Lorentz force. When

the electric field is removed, the force to the electron gas
can be given by J ×B, where the major component of J is
the electron diamagnetic current resulting from the pressure
gradient [14]. A force equal in magnitude and opposite in
direction to the J × B force is exerted on the magnetic field
lines; it is often observed either via the modification of the
magnetic field lines [15–17] being considered as the
flexible adiabatic wall or directly measured as a thrust
force propelling the spacecraft [18]. Hence, the decrease in
the electron temperature results from lowering the internal
energy of this adiabatic system when the electron gas does
work on the expanding magnetic field. This implies that
classical thermodynamic principles can be extended to the
expansion of a collisionless electron gas in a magnetic
nozzle.
The extension of classical thermodynamics for modern

physics (non-Gaussian Brownian diffusion in soft-matter
[19], microscale engines, and motors [20–22]) out of
equilibrium systems (granular gas and materials [23–25],
the construction of phase diagrams in hard sphere packing
in three dimension [26], and plasma [27]) and open systems
is an active emerging field of research. The limit and
breakdown of adiabaticity has been analytically and
numerically studied in quantum systems [3]; subsequently,
possible experimental testing using ultracold gases has
been discussed [28,29]. Here, we have removed the effect
of plasma boundaries and related electric field on a far-
from-equilibrium magnetically expanding electron gas,
allowing it to interact solely with the magnetic wall,
demonstrating an adiabatic expansion.

The authors would like to thank Professor M. Shats,
Dr. N. Francois, and Dr. H. Xia for their useful discussion

(a) (b)

(c) (d)

FIG. 5. EEPFs extracted from Fig. 4 data (less than 25 eVand z
greater than 15 cm) as a function of z for (a) VA ¼ 0 V and
(b) VA ¼ 60 V. (c) Teff obtained by integrating the EEPFs over
the energy less than 25 eV for VA ¼ 0 V (open circles) and VA ¼
60 V (filled squares). (d) Polytropic relation obtained from the
data in Figs. 5(a) and 5(b), together with the calculated curves
from Eq. (1).
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