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We solve the time-dependent Schrödinger equation describing a water molecule driven by a superpo-
sition of the extreme ultraviolet and IR pulses typical for a reconstruction of attosecond beating by
interference of two-photon transitions experiment. This solution is obtained by a combination of the
time-dependent coordinate scaling and the density functional theory with self-interaction correction.
Results of this solution are used to determine the time delay in photoionization of the water and
hydrogen molecules. Published by AIP Publishing. https://doi.org/10.1063/1.4993493

I. INTRODUCTION

Time delay in molecular photoionization can now be mea-
sured by using the RABBITT technique (Reconstruction of
Attosecond Beating By Interference of Two-photon Transi-
tions). In the pioneering experiment, Huppert et al.1 deter-
mined the relative delay in photoemission of the outer-most
valence shells of the H2O and N2O molecules. The Eisenbud-
Wigner-Smith component of the measured time delay (Wigner
time delay for brevity), related to the extreme ultraviolet
(XUV) photon absorption, was evaluated from the complex
dipole matrix elements provided by molecular quantum scat-
tering theory.2 The Coulomb-laser coupling (CLC) correc-
tion, associated with the IR dressing field, was accounted for
separately in an atomic-like fashion.

In the present work, we provide an alternative approach
where the ionizing XUV field and the dressing IR field drive
the molecular time-dependent Schrödinger equation (TDSE).
This equation is solved by a combination of the time-dependent
coordinate scaling (TDCS) and the density functional theory
with self-interaction correction (DFT-SIC). We applied the
TDCS technique in our earlier work to describe a RABBITT
measurement on the molecular H+

2 ion.3 An advantage of this
technique is that the TDSE is solved directly in the XUV and
IR fields, and the calculated (and measurable) time delay is
not artificially split into the Wigner and CLC components.
The earlier application to H+

2 was based on the explicit form
of the one-electron potential. For more complex molecules
such as H2 and H2O, this potential can be evaluated within the
DFT-SIC approach.

II. THEORETICAL METHODS
A. Time-dependent scaling method

We restrict ourselves with a single active electron (SAE)
approximation and write the TDSE as

i
∂Ψ(r, t )
∂t

= ĤΨ(r, t) (1)

with the Hamiltonian

Ĥ =
p̂ 2

2
− A(t)p̂ + U(r). (2)

Here p̂ = −i∇ is the momentum operator, U(r) is the effec-
tive potential of the interaction of an active electron with the
ion remainder, and A(t) is the vector potential of the external
electromagnetic field. The latter is defined as

A(t) = −
∫ t

0
qE(t ′)dt . (3)

Here E(t) is the electric field vector. The atomic units are in
use throughout the paper such that e = m = ~ = 1. The factor
1/c with the speed of light c ' 137 and the electron charge q
= �1 are absorbed into the vector potential.

In a RABBITT measurement, a target atom or molecule
is subjected to an attosecond pulse train (APT) and infrared
(IR) waveform . The vector potential of these two fields

A(t) = AAPT(t) + AIR(t − τ), (4)

where τ is the relative displacement of the XUV and IR pulses.
The APT field can be represented as

AAPT(t) =
bNAPT/2c∑

ν=−bNAPT/2c

(−1)νf env(tν)AXUV(t − tν) , (5)

where NAPT is the number of pulses in the APT and the arrival
time of each pulse

tν =
T IR

2
ν (6)

is a half integer of the period of the IR oscillation T IR = 2π/ω.
The envelope of the APT is modeled by

f env(t) = exp *
,
−2 ln 2

t2

τ2
APT

+
-

, (7)

where τAPT is the full width at half maximum (FWHM) of
train.
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We model each ultrashort XUV pulse in train by the
function

AXUV(t) = −nXUVAXUV exp *
,
−2 ln 2

t2

τ2
XUV

+
-

cosωXUVt ,

(8)

with the FWHM τXUV of pulse. The long-duration IR pulse is
described by the continuous wave

AIR(t) = −nIRAIR cosωt. (9)

The vectors nXUV and nIR are polarization directions of XUV
and IR fields, respectively.

As the XUV field is typically weak, we can calculate
contributions of each XUV pulse to ionization, and after that
summarize these contributions to get the ionization amplitude
for all train.3 Due to such split, we can assume evolution only
in field single XUV pulse and IR wave,

A(t) = AXUV(t) + AIR(t − τ). (10)

After the end of the XUV pulse, we employ an expanding
coordinate system.4 In this method, which we term the time-
dependent coordinate scaling (TDCS), the following variable
transformation is made:

r = a(t)ξ . (11)

Here a(t) is a scaling factor with an asymptotically linear time
dependence a(t→∞) = ȧ∞t and ξ is a coordinate vector. Such
a transformation makes the coordinate frame to expand along
with the wave packet. In addition, the following transformation
is applied to the wave function:

Ψ(a(t)ξ , t) =
1

[a(t)]3/2
exp

(
i
2

a(t)ȧ(t)ξ2
)
ψ(ξ , t). (12)

Such a transformation removes a rapidly oscillating phase fac-
tor from the wave function in the asymptotic region.4 Thus the
transformed wave function satisfies the equation

i
∂ψ(ξ , t)
∂t

=



p̂ 2
ξ

2[a(t)]2
−

A(t) · p̂ξ
a(t)

+ U[a(t)ξ]

+
a(t)ä(t)

2
ξ2 − ȧ(t)A(t) · ξ

]
ψ(ξ , t), (13)

where p̂ξ = −i∇ξ = −i
(
∂
∂ξx

, ∂
∂ξy

, ∂
∂ξz

)
. A remarkable prop-

erty of the expanding coordinate system is that the ionization
amplitude f (k) is related with the wave function ψ(ξ , t) by a
simple formula,4

|f (k)|2 = ȧ−3
∞ lim

t→∞
|ψ(k/ȧ∞, t)|2. (14)

In practice, the evolution is traced for a very large time tf

>> T IR and then the ionization probability density is obtained
from the expression

P(3) ≡
dP

dkxdkydkz
= |f (k)|2 ' ȧ−3

∞ |ψ(k/ȧ∞, tf )|2. (15)

We use the piecewise linear scaling

a(t) =



1, t < t1,

ȧ∞t, t > t1.
(16)

The expansion of the frame starts at the moment t1 >> τXUV.
We choose ȧ∞ = 1/t1. Such a choice ensures that the wave
packet remains stationary in the expanding frame at t > t1.

The coordinate frame (11) is well suited for approximat-
ing an expanding wave packet. However, its drawback is that
the bound states are described progressively less accurately as
the coordinate frame and its numerical grid expands. In our
approach, bound states are suppressed after the start of coordi-
nate system expansion by introducing an imaginary absorbing
potential near the origin,

Usa(ξ, t) = −i
s(t)
a(t)

e−ξ
2
. (17)

Unlike in the previous treatment,3 here we use a smooth
switching of the imaginary absorbing potential by setting

s(t) =




0, t < t1,

(1 + cos[π(t − 2t1)/t1])/2, t ∈ [t1, 2t1],

1, t > 2t1.

(18)

This reduces spurious transitions from the bound states to
continuum.

B. Density functional theory
with self-interaction correction

We employ the density functional theory (DFT) with the
self-interaction correction (SIC).5 This correction is necessary
to restore the Coulomb asymptotics of the photoelectron inter-
action with the residual ion which is essential for time delay
calculations.

The density functional with the SIC5 contains the Hartree
EH{ρ} and the exchange-correlation EXC{ρ↑, ρ↓} compo-
nents,

ESIC = EH{ρ} + EXC{ρ↑, ρ↓} − [EH{ρi} + EXC{ρi, 0}], (19)

where the electron density

ρ(r) =
Ne∑
i=1

ρi(r) (20)

is the sum of the particle densities of the ith electron orbital

ρi(r) = |ϕi(r)|2 . (21)

Here we consider only molecules with fully coupled electrons
and hence the density of the spin-up and spin-down electrons
are equal,

ρ↑(r) = ρ↓(r) = ρ(r)/2. (22)

The Hartree energy is

EH{ρ} =
1
2

∫∫
ρ(r)ρ(r′)
|r′ − r|

dr′dr. (23)

The exchange-correlation functional is expressed in the local
density approximation (LDA),

EXC{ρ↑, ρ↓} =
∫

[ρ↑(r) + ρ↓(r)]εXC[ρ↑(r), ρ↓(r)]dr, (24)

where εXC[ρ↑(r), ρ↓(r)] is the exchange-correlation energy
per an electron. The effective potential acting upon an ith elec-
tron by the rest of the many-electron ensemble is expressed as
a functional derivative,

ui(r) =
δESIC

δρi(r)
. (25)
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The Kohn-Sham effective potential is the sum of the nuclear
and electron components,

U(r) = unucl(r) + ui(r). (26)

The SIC can be applied to any density functional. In
the present application, we used two different correlation-
exchange functionals: the one proposed in Ref. 6 (GL76-SIC)
and a simpler pure exchange functional (X-SIC).

The calculation of the one-electron orbitals ϕi(r) and cor-
responding one-electro potentials ui(r) is carried out by the
imaginary time evolution based on the solution of the equation

−
∂ϕi(r, t)
∂t

=

[
p̂ 2

2
+ unucl(r) + αkui(r)

]
ϕi(r, t). (27)

The orthogonality to the occupied states is enforced on each
step of the time evolution,

ϕi(r, t + 0) = ϕi(r, t) −
i−1∑
j=1

〈ϕj(r)|ϕi(r, t)〉ϕj(r). (28)

The stationary orbital is evaluated as the limit,

ϕi(r) = lim
t→∞

ϕi(r, t) (29)

After finding ϕi(r), a new set of potentials ui(r) is determined
and fed into Eq. (27) to start the next iteration. On the first
iteration, the parameter α1 = 0, i.e., only the nuclear term is
taken into account in Eq. (27). On the next iterations, αk>1

grows linearly with k reaching the value of αk>>1 = 1. This
way the inter-electron interaction is switched on gradually thus
ensuring a smooth convergence of the solution.

The orbital energies are calculated as

ε i = −
1
2

lim
t→∞

[
1

〈ϕi(r, t)|ϕi(r, t)〉
d〈ϕi(r, t)|ϕi(r, t)〉

dt

]
. (30)

Thus determined the ionization potential of the H2 molecule
is equal to |ε1| = 16.1 eV for X-SIC and 16.7 eV for GL76-
SIC whereas the experimental value is 15.6 eV. The calcu-
lated ionization potentials |ε i | of the H2O molecule are shown
in Table I in comparison with the experimental values from
Ref. 7.

To solve the TDSE (13), we employed the one-electron
effective potential ui(r) corresponding to the ground stationary
state, and this potential was frozen during the whole ionization
process (the frozen-core approximation).

C. Numerical implementation

In all the calculations, we assumed coincident polarization
directions of XUV and IR fields, nXUV = nIR. The electron
ejection direction was assumed collinear to the polarization
direction, i.e., an electron momentum ke||nIR.

TABLE I. Calculated and experimental ionization potentials of the H2O
molecule.

Orbital X-SIC GL76-SIC Experiment7

1b1 11.6 12.3 12.6
3a1 14.2 14.9 14.8
1b2 17.5 18.3 18.7
2a1 33.5 34.3 32.4

Below, we denote θe and φe as the polar and azimuthal
angles that specify the direction of emission of an electron in
a coordinate system tied to a molecule. The coordinate sys-
tems for H2 and H2O are shown in Fig. 1. The interatomic
distances were assumed to coincide with the equilibrium posi-
tions, i.e., the distance between the hydrogen atoms in the
hydrogen molecule was assumed to be 1.4 a.u., the distance
between the oxygen atom and the hydrogen atoms in the water
molecule was 1.811 a.u., and the angle between H atom was
104.45◦.

A long IR pulse is modeled by a continuous wave with
the frequency ω = 0.058 41 a.u. (photon energy 1.59 eV,
λ = 780 nm) and the vector potential amplitude AIR = 0.025.
The APT is modeled by a series of NAPT = 21 with APT width
τAPT = 2T IR (5.2 fs). The maximal amplitude of the XUV pulse
was AXUV = 0.025 a.u.

The APT for H2 is modeled by pulses with the width τXUV

= 1 a.u. (24 as). Such a short pulse duration leads to a large
spectral width and allows us to obtain the time delay results in
a wide range of photoelectron energies. The central frequency
was ωXUV = 29ω. The APT for H2O is modeled by pulses
with the width τXUV = 2 a.u. (48 as). The central frequency
was ωXUV = 29ω.

By exposing an atom or a molecule to the APT with
the central frequency ωXUV = (2q0 + 1)ω, the photoelectrons
will be emitted with the energies E2q+1 = (2q + 1)ω � E0

corresponding to the odd harmonics of the IR frequency ω.
Superimposing a dressing IR field will add additional peaks
in the photoelectron spectrum at E2q = 2qω � E0. These addi-
tional peaks, known as the sidebands (SBs), correspond to the
even harmonics. The sideband amplitudes will vary with the
relative time delay τ of the APT and the IR pulses as8

S2q(τ) = A + B cos[2ω(τ − τa)], (31)

where τa is the atomic time delay. The atomic time delay can
be written in a form

τa = τW + τCLC , (32)

where τW is the Wigner time delay9 and τCLC is the Coulomb-
laser coupling (CLC) correction.10 Here we assume that there
is no group delay (chirp) in the APT spectrum and all the
harmonics have the same phase.

We solve the TDSE (13) using the orthogonal fast spher-
ical Bessel transform as described in Ref. 11. In all the cal-
culations, we set the box size to ξmax = 102.4 a.u. The radial
grid step was set to ∆ξ = 0.2 a.u. The angular basis parameters
were Nθ = 16 and Nφ = 4 for H2, and Nθ = 4 and Nφ = 6
for H2O. We tested the convergence of the calculated results

FIG. 1. Coordinate systems for H2 and H2O.
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with the number of angular points both for the energies and
time delays. The expansion of the coordinate grid starts at t1

= 0.25T IR = 26.9 a.u.
The relative APT/IR time delay τ was varied from 0 to

0.5T IR with a step 0.031 25T IR. The atomic time delay τa was
obtained by fitting of the dependence of the magnitude of the
SB on τ by the cosine curve Eq. (31) using the method of least
squares.

To calculate the time delay for a non-aligned molecule, we
numerically integrated the ionization differential cross section
over the Euler angles (α, β, γ), which determines the orienta-
tion of the molecule with respect to the direction of polarization
nIR. The number of angular grid points was Nα = 8, Nβ = 4,
and Nγ = 1. A uniform grid was used for the angle α, and the
Gauss-Legendre quadrature was used for the angle β. A single
node was sufficient for the angle γ since we considered only
the case ke||nIR, and in this case, the differential cross section
does not depend from the angle γ.

III. RESULTS

In Fig. 2, we display the atomic time delay of H2 calculated
by the TDCS method. Every energy point on the graph cor-
responds to a given SB. For comparison, another calculation
is shown in which the Wigner time delay is calculated by the
prolate spheroidal exterior complex scaling (PSECS),12 and
the CLC correction is introduced analytically.13 The PSECS
is an ab initio technique, and it returns the exact Wigner time
delay for diatomic molecules. However, in the photoelectron
energy range between 10 and 36 eV, the PSECS calculation

FIG. 2. Atomic time delay of H2 as a function of the photoelectron energy Ee
for emission in the polarization direction. The molecular axis is aligned along
(top panel) and perpendicular (bottom panel) to the polarization direction.

on H2 did not converge. Most likely, this is because of a large
number of quasi-stationary states in this spectral range.

The TDCS and PSECS + CLC results agree very well
close to the threshold and are qualitatively similar at large
excess energies. In the parallel molecular orientation, both
set of calculations display a peak in the atomic time delay.
However, in the TDCS calculation, this peak is shifted by
7 eV towards lower photoelectron energies (Ee = 35 eV in
TDCS versus 42 eV in PSECS + CLC). Such a large dif-
ference can be explained by the poor performance of the
DFT for such a few-electron systems such as H2. We note
that the peak displacement by 7 eV far exceeds an error of
1 eV in the ionization potential. This indicates that such a
dynamic quantity as the atomic time delay is much more sen-
sitive to inter-electron correlation than the static ionization
potential.

On the other hand, the atomic time delay results, calcu-
lated with the help of the different density functionals (X-SIC
and GL76-SIC), are very close each other, that is, a change
in the effective potential caused by the introduction of corre-
lation energy into the functional has almost no effect on the
delay. Judging by this, it is hardly possible to improve the
results of DFT for the time delay, remaining within the LDA
framework. However, the apparent accuracy is sufficient to
trust the results of our method for more complex targets such
as the water molecule, especially for low energies, where the
contribution of quasi-stationary states is absent.

Then, we calculated the atomic time delay in H2O
molecule corresponding to the ionization of the HOMO 1b1

and the HOMO-1 3a1 (see Fig. 3). After the emission of the
electron from the 1b1 orbitals, an ion is formed in the X̃+ state,
and after the emission of an electron from the 3a1 orbitals, an
ion is formed in the Ã+ state.

Various plotting symbols in Fig. 4 display the time delay
for randomly oriented and aligned molecules. The aligned
results correspond to photoelectron emission in the direction
perpendicular to the nodal plane of the given orbital. In the
case of 1b1, this plane contains the H atoms and the molec-
ular dipole momentum vector. Therefore both perpendicular
orientations produce identical results. The nodal plane of 3a1

is perpendicular to the dipole momentum and hence there are
two distinctive perpendicular orientations: in the direction of
the H atoms (θ = 0◦) and the reverse direction (θ = 180◦).

In the case of the 1b1 orbital, the randomly oriented time
delay is nearly identical to the aligned results as the perpendic-
ular emission is by far dominant. In the case of the 3a1 orbital,
results are more complicated. At large photoelectron energies,
the atomic time delay for θ = 180◦ is more negative than that

FIG. 3. The states of H2O under consideration.
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FIG. 4. Atomic time delay in H2O for randomly oriented and aligned
molecules. The top panel—the 1b1 orbital and the bottom panel—the 3a1
orbital.

for θ = 0◦ which means the escape is faster in the O direction
than in the H direction. However, this trend is reversed near
threshold. Far away from the threshold, the non-aligned time
delay is close to the one for θ = 0◦. Near the threshold, the
non-aligned time delay is close to the one for θ = 180◦.

In Fig. 5, we display the time delay difference between
the 3a1 and 1b1 orbitals at the same photon energy. It may
seem surprising that the time delay difference is nearly van-
ishing in the whole studied energy range. This, however, may
be explained by the fact that the randomly oriented water
molecule may look like the neon atom and these two states in
Ne differ only by the nodal plane orientation. In the same fig-
ure, we plot the experimental results by Huppert et al.1 which

FIG. 5. Time delay difference between the 3a1 and 1b1 orbitals in the H2O
molecule as a function of the photon energy. The filled (red) squares—TDCS
calculation, the (green) dashed line—the FCHF calculation,1,2 and the filled
black circles with error bars—experiment.1

FIG. 6. Atomic time delays in H2O calculated using GL76-SIC (circles) and
X-SIC (rectangles) density functionals.

show a sign variation of the time delay difference. The frozen-
core Hartree–Fock (FCHF) calculation by the same authors
Refs. 1 and 2 is also overplotted.

Both calculations are close to each other except for the
very low photoelectron energy. Away from the threshold, both
theories agree between each other, but their difference from
the experimentally measured time delay exceeds a standard
deviation. This disagreement between the two theories and the
experiment may be due to the single active electron approxima-
tion adopted in both calculations. This approximation neglects
the autoionizing states of the target molecule. The autoioniz-
ing states can strongly affect the measured time delay since
the electron can remain in them long after the absorption
of the photon before the electron is finally emitted from the
molecule. The autoionizing states have been shown to affect
the anisotropic time delay in the H2 molecule.14 It is known
that the H2O molecule has a number of autoionizing series in
the energy range of interest.15 The most suspicious one in the
sense of influencing the experiment is a series resulting from
excitation of an electron from the 2a1 orbital to a state above
the HOMO. This series lies below the 2a1 ionization threshold
of 32.4 eV.

Figure 6 shows that the choice of the exchange-correlation
functional does not alter our results significantly. Even though
the orbital energies are shifted for GL76-SIC relative to ones
for X-SIC (Table I), the atomic time delays for both functionals
lie on one curve.

IV. CONCLUSIONS

We combined the time-dependent coordinate scaling
(TDCS) method, which we developed earlier for modeling of
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RABBITT experiments,3 with the density functional theory
with self-interaction correction (DFT-SIC). An advantage of
the TDCS method is the direct solution of the time-dependent
Schrödinger equation driven by the superposition of the XUV
and IR pulses without the splitting of the atomic time delay into
the Wigner and CLC components. By using this technique, we
calculated the photoionization time delay of the H2 and H2O
molecules. In the case of H2, we made a comparison with the
ab initio PSECS calculations and found good agreement. In
the case of H2O, a comparison was made with experiment and
agreement was found poor, but other theoretical methods such
as FCHF did not perform any better.

The theory consistently points to nearly identical time
delay from the HOMO and HOMO-1 orbitals of the randomly
oriented water molecule. However, this time delay difference
becomes noticeable on the oriented H2O molecule. Hence,
the experiments will be highly desirable in this oriented con-
figuration which may reveal a reach and anisotropic ultrafast
photoelectron dynamics. At the same time, the development
of the theory beyond the single active electron approximation
is necessary to account for autoionizing doubly excited states.
These states have been shown to affect the anisotropic time
delay in the H2 molecule.14
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