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Abstract

The amount of data from languages spoken all over the world is rapidly increasing. Tradi-

tional manual methods in historical linguistics need to face the challenges brought by this

influx of data. Automatic approaches to word comparison could provide invaluable help to

pre-analyze data which can be later enhanced by experts. In this way, computational

approaches can take care of the repetitive and schematic tasks leaving experts to concen-

trate on answering interesting questions. Here we test the potential of automatic methods to

detect etymologically related words (cognates) in cross-linguistic data. Using a newly com-

piled database of expert cognate judgments across five different language families, we com-

pare how well different automatic approaches distinguish related from unrelated words. Our

results show that automatic methods can identify cognates with a very high degree of accu-

racy, reaching 89% for the best-performing method Infomap. We identify the specific

strengths and weaknesses of these different methods and point to major challenges for

future approaches. Current automatic approaches for cognate detection—although not per-

fect—could become an important component of future research in historical linguistics.

Introduction

Historical linguistics is currently facing a dramatic increase in digitally available datasets [1–5].

The availability of data for more and more languages and language families challenges the

ways in which we traditionally compare them. The comparative method has been the core

method for linguistic reconstruction for the past 200 years [6], and is based on manually iden-

tifying systematic phonetic correspondences between many words in pairs of languages. How-

ever, there are too few expert historical linguists to analyse the world’s more than 7500

languages [7] and, consequently, only a small percentage of these languages have been thor-

oughly investigated leaving us in the dark about their history and relationships. This becomes

especially evident in largely understudied linguistic areas like New Guinea, parts of South

America, or the Himalayan region, and our lack of knowledge about these languages has

immediate implications for our understanding of human prehistory.
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Over the last two decades computational methods have been become more prevalent in his-

torical linguistics. Advocates of computational methods emphasize the speed and replicability

as the main advantage of computational techniques [8, 9]. However, sceptics criticise the valid-

ity and accuracy of these methods as lagging far behind those achieved by human experts. [10].

One approach in computational historical linguistics is to design fully-automated methods to

identify language relationships with no input from researchers [11, 12]. Although these meth-

ods may provide interesting insights into linguistic macroareas [13], their “black-box” charac-

ter makes it difficult to evaluate the results, as judgements about sound correspondences and

decisions of cognacy are hidden. This opacity makes it difficult to improve the algorithms.

More problematically, however, it limits the scientific value of these methods, as we do not just

want to know how languages are related, but why and which pieces of evidence support this

conclusion. As a result, there is much suspicion about these methods in historical linguistics

[14–16].

Another approach—the one we take here—is to opt for a computer-assisted framework. In

contrast to fully automated frameworks, computer-assisted frameworks seek to support and

facilitate the task of language comparison by using human expertise where available to correct

errors and improve the quality of the results. One of the core tasks of the comparative method

is the identification of cognate words in multiple languages. If two words are cognate, this

means that they are genetically related, and have descended from a common ancestor [17].

Cognate identification, along with the identification of regular sound correspondences, is the

basis for proving that two or more languages are genetically related. It is also the basis for the

reconstruction of ancestral word forms in historically unattested languages, and for the genetic

classification of language families. In practice, cognate identification is a time-consuming pro-

cess that is based on an iterative manual procedure where cognate sets are proposed, evaluated,

and either kept or rejected [18].

This process of manual cognate identification should be an ideal candidate for computer-

assisted tasks. As a possible workflow, scholars could first run an automatic cognate detection

analysis and then edit the algorithmic findings. Even an iterative workflow in which the data is

passed between computers and experts would be fruitful. An important question which arises

in this context concerns the quality of automatic methods for cognate detection: Are these

methods really good enough to provide concrete help to a highly trained expert? In order to

find an answer to this question, we tested four publicly available methods and one newly pro-

posed method for automatic cognate detection on six test sets covering five different language

families, evaluated the performance of these methods, and determined their shortcomings.

Materials and Methods

Materials

There are few datasets available for testing the potential of cognate detection methods on lan-

guage data, As such, testing algorithms run the risk of over-fitting. When developing an algo-

rithm, one usually trains it on some datasets. If those datasets are afterwards used to also test

the algorithm, the accuracy should be quite high, but we cannot tell whether the method will

work on datasets apart from the ones on which the algorithm was trained. For this reason, it is

important to split the available data into a training set and a test set. In our case, the training

set will be used to determine the best parameters for each of the algorithms we test, while the

test set will be used to carry out the actual test of cognate recovery.

For this study, we took training data from existing sources [19], while a new test dataset was

compiled from scratch. The new test set consists of six datasets from five language families.

These data were collected from different sources, including published datasets [3, 20–23],
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books [24], and ongoing research by scholars who allowed us to use parts of their data in

advance (Uralex project, [25]). All datasets were formatted to tabular format and semi-auto-

matically cleaned for various kinds of errors, like misspelled phonetic transcriptions, empty

word slots, or obviously erroneous cognate judgments. We further linked all languages to Glot-

tolog [7], and all wordlist concepts to the Concepticon [26].

Table 1 lists all datasets along with additional details, such as the number of words, con-

cepts, languages, and cognate sets in the data. The diversity index given in the last column of

the table is calculated by dividing the difference between cognate sets and meanings with the

difference between words and meanings [19]. This score, which ranges between 0 and 1, indi-

cates whether large numbers of words in a given dataset are unrelated (high index) or are cog-

nate (low index). As can be seen from the diversity indices listed in the table, our test sets have

varying degrees of diversity, ranging from 0.07 (Romance, Saenko, 2015) to 0.57 (Uralic).

As mentioned above, training data is needed for parameter estimation. The key parameter

we need to estimate is the best thresholds for cognate identification in some of the methods. As

training data we employed the collection of benchmark datasets for automatic cognate detec-

tion by List [19], which also covers six datasets from five language families. Details for this

dataset (number of words, concepts, languages, cognate sets, and the diversity index) are given

in Table 2. This dataset is available online at http://dx.doi.org/10.5281/zenodo.11877.

Methods

Automatic Cognate Detection. Many methods for automatic cognate detection have

been proposed in the past (see Table 3 below). Unfortunately, only a few of these methods

qualify as candidate methods for computer-assisted language comparison, since the majority

are either (a) not able to analyse multiple languages at once, (b) have further requirements

making their use more complicated [31, 32] e.g. require a user-specified reference phylogeny

(and therefore assume that language groupings are already known), or need extensive training

sets, or (c) are not freely available (see Table 3).

Table 1. Test data used in our study.

Dataset Words Conc. Lang. Cog. Div.

Bahnaric (Sidwell, 2015) [20] 4546 200 24 1055 0.20

Chinese (Běijīng Dàxué, 1964) [24] 3653 180 18 1231 0.30

Huon (McElhanon, 1967) [22] 1668 139 14 855 0.47

Romance (Saenko, 2015) [21] 4853 110 43 465 0.07

Tujia (Starostin, 2013) [23] 513 109 5 179 0.17

Uralic (Syrjänen et al, 2013) [25] 1401 173 7 870 0.57

TOTAL 16634 911 111 4655 0.30

doi:10.1371/journal.pone.0170046.t001

Table 2. Training data used in our study.

Dataset Words Conc. Lang. Cog. Div.

Austronesian (Greenhill et al., 2008) [1] 4358 210 20 2864 0.64

Bai (Wang, 2006) [27] 1028 110 9 285 0.19

Chinese (Hóu, 2004) [28] 2789 140 15 1189 0.40

IndoEuropean (Dunn, 2012) [2] 4393 207 20 1777 0.38

Japanese (Hattori, 1973) [29] 1986 200 10 460 0.15

ObUgrian (Zhivlov, 2011) [30] 2055 110 21 242 0.07

TOTAL 16609 977 95 6817 0.30

doi:10.1371/journal.pone.0170046.t002
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We decided to take four publicly available methods as the basis of our test study, the

Turchin Method, the Edit Distance Method, the SCA Method, and the LexStat Method. Addi-

tionally, we tested a modified version of the LexStat method which we call Infomap. In this

modified version of LexStat we introduced an improved partitioning method based on the

Infomap algorithm for community detection [33]. All methods are presented in more detail

below.

The four publicly available methods are all implemented as part of the same software pack-

age (LingPy, http://lingpy.org, [42]), and represent different degrees of algorithmic sophistica-

tion and closeness to linguistic theory, with the Turchin Method being very simple and

computationally extremely fast, and the LexStat Method being rather complex and time-con-

suming. For the usage of the fifth method, we wrote a small LingPy plugin which builds on the

python-igraph package (http://igraph.org/python-igraph/, [43], see details below) and is pro-

vided along with our supplementary material.

Cognate Detection following Turchin et al [44]. The Turchin method (also called Conso-
nant Class Matching approach) was proposed by Turchin et al. [44]. In this method, the conso-

nants of the words are converted to one of 10 possible consonant classes. The idea of

consonant classes (also called sound classes) was proposed by Dolgopolsky [45], who stated

that certain sounds occur more frequently in correspondence relation than others and could

therefore be clustered into classes of high historical similarity. In the approach by Turchin

et al., two words are judged to be cognate, if they match in their first two consonant classes.

Cognate Detection using the Edit Distance approach. A second method provided by

LingPy, the Edit Distance approach, takes the normalized Levenshtein distance [46], between

all word pairs in the same meaning slot and clusters these words into potential cognate sets

using a flat version of the UPGMA algorithm [47] which terminates once a certain threshold

of average distances between all words is reached. This general procedure of flat clustering,

which is also employed for the two remaining cognate detection methods provided by LingPy,

is illustrated in Fig 1A and 1B.

Cognate Detection using the Sound Class Algorithm. A third method available in the

LingPy package, the SCA method, uses the same threshold-based clustering algorithm as the

Edit Distance but employs distance scores derived from the Sound-Class Based Alignment

Table 3. Recent approaches to cognate detection. A plus “+” indicates that the algorithm meets the require-

ment, a minus “-” indicates that its failure. ML (multilingual) refers to the ability of an algorithm to identify cog-

nate words across more than two languages at the same time. RQ (requirements) refers to additional

requirements apart from the raw word list data, such as needing reference phylogenies or extensive training

data. FA (free availability) means that the method has a useable public implementation.

Cognate Detection Approach ML? RQ? FA?

Mackay and Kondrak, 2005, [34] - + -

Bergsma and Kondrak, 2007, [35] + + -

Turchin et al., 2010, [44] + + +

Berg-Kirkpatrick and Klein, 2011, [36] - + -

Hauer and Kondrak, 2011, [37] + + -

Steiner et al., 2011, [38] + + -

List, 2014, [19] + + +

Beinborn et al., 2013, [31] - - -

Bouchard-Côté, et al. 2013, [32] + - -

Rama, 2013, [39] - + -

Ciobanu and Dinu, 2014, [40] - + -

Jäger and Sofroniev 2016, [41] + - -

doi:10.1371/journal.pone.0170046.t003
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(SCA) method [19]. This method for pairwise and multiple alignment analyses uses expanded

sound class models along with detailed scoring functions as its basis. In contrast to previous

alignment algorithms [48], the SCA algorithm takes prosodic aspects of the words into account

and is also capable of aligning within morpheme boundaries, if morpheme information is

available in the input data [19].

Cognate Detection using the LexStat method. The last publicly available method we

tested, the LexStat method, is again based on flat UPGMA clustering, but in contrast to both

the Edit-Distance method and the SCA method, it uses language-specific scoring schemes

which are derived from a Monte-Carlo permutation of the data [19]. This permutation, by

which the wordlists of all language pairs are shuffled in such a way that words denoting differ-

ent meanings are aligned and scored, is used to derive a distribution of sound-correspondence

frequencies under the assumption that both languages are not related. The permuted distribu-

tion is then compared with the attested distribution, and converted into a language-specific

scoring scheme for all language pairs. Using this scoring scheme, the words in the data are

aligned again, and distance scores are derived which are then used as the basis for the flat clus-

ter algorithm.

Differences between algorithms. In order to illustrate the differences between these four

algorithms, we analysed the test set by Kessler [49]. This dataset is particularly interesting for

the task of cognate detection, since the sample of languages contains not only four Indo-Euro-

pean languages with different degrees of genetic affiliation, but also unrelated languages from

different language families. When running the algorithm with default thresholds as proposed

in List [19], LexStat performs best, showing the smallest amount of false positives and false

negatives, followed by SCA, Edit-Distance, and Turchin. When looking at specific results of

this analysis, like the cognate judgments for the concept ‘there’, given in Table 4, for example,

we can immediately see the shortcomings of the language-independent methods. The Turchin

method (T), for example, links Albanian [aty] and Navajo [ʔaːdi] as cognate, where these are a

Fig 1. Workflows for automatic cognate detection. In LingPy, cognate detection is treated as a hierarchical clustering task.

After distances or similarities between word pairs have been determined (A), a hierarchical clustering algorithm is applied to the

matrix and terminates when a certain threshold is reached (B). Similarity networks start from a graph-representation of the

similarity or distance matrix (C). In a first step, edges whose score exceeds a certain threshold are removed from the graph (D). In

a second step, state-of-the-art algorithms for community detection are used to partition the graph into groups of cognate words (E).

doi:10.1371/journal.pone.0170046.g001
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clear chance resemblance in the consonant class structure. Note that initial vowel is treated

identical with initial glottal stop in the Turchin method, following the original sound class pro-

posal by [45].

The Edit Distance (E) method also identifies a chance resemblance by proposing that

French [la] and Hawaian [laila] are cognate. The Edit-Distance method is especially prone to

identifying chance similarity as cognacy, and this risk increases as languages get more and

more different [15]. The threshold of the SCA method (S) is too low to identify any cognate set

for the concept ‘there’. Only the LexStat method (L) correctly identifies English [ðεr] and Ger-

man [daː] as cognates, but not due to the phonetic similarity of the words, but due to the fact

that matches of English [ð] and German [d] recur frequently in the dataset.

Similarity Networks. All the above cognate detection methods currently use a rather sim-

ple flat clustering procedure. The basis of this procedure is a clustering algorithm which termi-

nates when average distances among sequences exceed a certain threshold. In evolutionary

biology, the task of homolog detection is often approached from a network perspective. In simi-
larity networks, for example, gene or protein sequences are modeled as the nodes of a network,

and edges between the nodes are drawn with weights representing the pairwise similarities [50,

51]. Homolog detection is then modeled as a network partitioning task by which the network

is divided into subgraphs with some objective criterion being used to define the best partition

of the original network. While originally developed for the application in evolutionary biology,

sequence similarity networks are now increasingly being tested on linguistics data [52, 53] and

it was proposed that they might not only help to detect both genetically related words as well

as words which have been borrowed [54]. Many strategies for network partitioning exist. The

most common methods used in biology are Markov Clustering [55], k-means [56], and Affin-

ity Propagation [57]. k-means has the strong disadvantage that it requires that the number of

clusters into which the data shall be partitioned needs to be specified in advance. Tests in evo-

lutionary biology have further shown that Markov Clustering outperforms Affinity Propaga-

tion [58]. This finding suggests that Markov Clustering would be an ideal choice for linguistic

applications. However, when testing the approach on our training data, the results were incon-

clusive, and no real improvement compared with the default clustering algorithm used in

LingPy could be observed.

For this study, we followed List et al. [53] in testing a partitioning approach which was orig-

inally developed for the task of community detection in social network analysis [59] and has

shown to perform with a high accuracy: The Infomap algorithm [33] uses random walks to

identify the best way to assign the nodes in a network to distinct communities. In order to con-

vert the matrix of pairwise distances between words into a graph, we first define a threshold,

Table 4. Cognate detection algorithms in LingPy. Columns show the performance of cognate identification

for the given wordforms in the International Phonetic Alphabet (IPA). The algorithms are the Turchin, Edit dis-

tance, Sound Class Algorithm, and LexStat methods. Italic numbers indicate false positives (forms incorrectly

identified as cognate) and bold numbers indicate false negatives (forms incorrectly identified as not cognate)

in comparison with the Gold Standard.

Language Word IPA T E S L G

Albanian aty aty 1 1 1 1 1

English there ðεr 2 2 2 2 2

French là la 3 3 3 3 3

German da daː 4 4 4 2 2

Hawaiian laila laila 5 3 5 4 4

Navajo ’áadi ʔaːdi 1 5 6 5 5

Turkish orada ora 6 6 7 6 6

doi:10.1371/journal.pone.0170046.t004
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and then add edges between all words whose pairwise distance is below the threshold. The

edge weight is the distance score converted to a similarity score by subtracting it from 1. We

use the pairwise distance matrices produced by the LexStat method, since this was shown to

outperform the other three methods implemented in LingPy [19]. How cognate detection is

modeled as a graph partitioning problem applied to similarity networks is displayed in more

detail in Fig 1C and 1D.

Evaluation. It is not necessarily an easy task to compare how well an algorithm for auto-

matic cognate detection performs in comparison with a “gold” standard. In our study, our

gold standard are the expert cognate decisions by historical linguists using the comparative

method. Scholars often use pairwise scores [32] for evaluation. In these scores, all words in a

concept slot are assembled into pairs. The pair score is then calculated by comparing how

many pairs in the gold standard are identically clustered by the algorithm, and vice versa. This

is simple and straightforward, since, for pairs, there are only two possible decisions, namely

whether they are cognate or not. We can then simply count how many pairs in the gold stan-

dard are also judged to be cognate by the algorithm, or how many pairs proposed to be cognate

by the algorithm are also cognate according to the gold standard. The advantage of this score is

that we can directly convert it into an intuitive notion of false positives and false negatives ver-

sus true positives and true negatives.
Breaking down the comparison of two different clusters into pairs is, however, problematic,

since it has a strong bias in favoring datasets containing large amounts of non-cognate words

[19]. In order to avoid these problems, we used B-Cubed scores as our primary evaluation

method [37, 60, 61]. For the calculation of B-Cubed scores, we need to determine for each of

the words the intersection of words between its cognate set in the gold standard and its cognate

set proposed by the algorithm, as well as the size of the respective cognate sets. This is illus-

trated in Table 5 for a fictive test analysis of the five words in Fig 1, which wrongly clusters the

Greek word with the English and the German word. For the B-Cubed precision we then aver-

age the size of the intersection divided by the size of the cognate set proposed by the algorithm

for each of the words in our sample:

P ¼
1

3
þ 2

3
þ 2

3
þ 2

2
þ 2

2

5
¼ 0:73 ð1Þ

For the B-Cubed recall we average the intersection size divided by the cognate set size in the

gold standard:

R ¼
1

1
þ 2

2
þ 2

2
þ 2

2
þ 2

2

5
¼ 1:0 ð2Þ

Table 5. Preliminaries for B-Cubed score calculation. Cognate clusters, cluster size and cluster intersection for a fictive test analysis of the five words from

Fig 1 compared to a gold standard.

Word Cogn. Clusters Cluster Size Intersection

Gold Test Gold Test

çeri 1 1 1 3 1

hant 2 1 2 3 2

hænd 2 1 2 3 2

ruka 3 2 2 2 2

r~εŋka 3 2 2 2 2

doi:10.1371/journal.pone.0170046.t005
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The B-Cubed F-Score is then computed as usual:

F ¼ 2�
P � R
P þ R

¼ 2�
0:73 � 1

0:73 þ 1
¼ 0:846153 ð3Þ

Threshold and Parameter Selection

Apart from the Turchin method, all analyses require a threshold which ranges between 0 and

1, denoting the amount of similarity needed to judge two items as cognate. In order to find the

most suitable threshold for each of the three methods, we used the expert cognate decisions in

our training set and ran the analyses on these data with varying thresholds starting from 0.05

up to 0.95. Fig 2 shows box-plots of the training analyses for the four methods, depending on

Fig 2. Determining the best thresholds for the methods. The y-axis shows the B-Cubed F-scores averaged over all training sets, and the x -axis shows

the threshold for the 5 methods we tested. Infomap shows the best results on average, Edit Distance performs worst. Dots in the plots indicate the mean for

each sample, with triangular symbols indicating the peak.

doi:10.1371/journal.pone.0170046.g002
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the threshold. As can be seen from this figure, all methods show a definite peak where they

yield the best results for all datasets. In order to select the best threshold for each of the four

methods, we selected the threshold which showed the best average B-Cubed F-Score (i.e. the

best accuracy at recovering the known cognate sets). For the Edit Distance Method, the thresh-

old was thus set to 0.75, for the SCA Method it was set to 0.45, for the LexStat Method, it was

set to 0.60, and for the Infomap method, it was set to 0.55. The B-Cubed scores for these analy-

ses are given in Table 6. These results indicate that the Infomap method performs best, fol-

lowed by LexStat and SCA. Of the two worst-performing methods, the Turchin method

performs worst in terms of F-Scores, but shows a much higher precision than the Edit-Dis-

tance method.

Results

We analyzed the datasets with each of the five methods described above, using the individual

thresholds for each method, setting the number of permutations to 10,000, and using the

default parameters in LingPy. For each analysis, we further calculated the B-Cubed scores to

evaluate the performance of each method on each dataset.

Table 7 shows the averaged results of our experiments. While the LexStat method shows the

highest precision, the Infomap method shows the highest recall and also the best general per-

formance. The results are generally consistent with those reported by List [19] for the perfor-

mance of Turchin, Edit Distance, SCA, and LexStat: The Turchin method is very conservative

with a low amount of false positives as reflected by the high precision, but a very large amount

of undetected cognate relations as reflected by the low recall. The Edit Distance method shows

a much higher cognate detection rate, but at the cost of a high rate of false positives. The SCA

method outperforms the Edit Distance, thus showing that refined distance scores can make a

certain difference in automatic cognate detection.

However, as the performance of LexStat and Infomap shows: Language-specific approaches

for cognate detection clearly outperform language-independent approaches. The reason for

this can be found in the specific similarity measure that is employed by the methods: the better

performing methods are not based on surface similarities, but on similarities derived from pre-

viously inferred probability scores for sound correspondences. These methods are therefore

Table 6. Results of the training analysis to identify the best thresholds. Bold numbers indicate best values.

Method Thr. Prec. Recall F-Score

Turchin - 0.8953 0.7276 0.8006

Edit Distance 0.75 0.8341 0.8101 0.8144

SCA 0.45 0.8650 0.8449 0.8529

LexStat 0.60 0.9204 0.8287 0.8700

Infomap 0.55 0.9012 0.8712 0.8830

doi:10.1371/journal.pone.0170046.t006

Table 7. General results of the test analysis.

Method Prec. Recall F-Score

Turchin 0.9108 0.7501 0.8175

Edit Distance 0.8397 0.8484 0.8396

SCA 0.8826 0.8492 0.8632

LexStat 0.9227 0.8488 0.8831

Infomap 0.9031 0.8898 0.8942

doi:10.1371/journal.pone.0170046.t007
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much closer to the traditional comparative method than methods which employ simple surface

similarities between sounds. Our experiment with the Infomap algorithm shows that a shift

from simple agglomerative clustering approaches to a network perspective may further

strengthen the results. Similarity networks have been successfully employed in evolutionary

biology for some time now and should now become a fruitful topic of research in computa-

tional historical linguistics as well.

Dataset Specific Results

There are interesting differences between method performance across language datasets, with

marked variation in cognate identification accuracy between different languages. Fig 3 shows

the performance of the methods on the individual test sets, indicating which method per-

formed best and which method performed worst. These results confirm the high accuracy of

the LexStat method and the even better accuracy of the Infomap approach. All methods apart

from the Turchin method perform the worst on the Chinese data. Since compounding is very

frequent in Chinese, it is difficult to clearly decide which words to assign to the same cognate

set. Often, words show some overlap of cognate material without being entirely cognate. This

is illustrated in Fig 4, where cognates and partial cognates for Germanic and Sinitic languages

are compared. We followed a strict procedure by which only words in which all morphemes

are cognate are labelled as cognate [62], rather than loosely placing all words sharing a single

Fig 3. Individual test results (B-Cubed F-Scores). The figure shows the individual results of all algorithms

based on B-Cubed F-Scores for each of the datasets. Results marked by a red triangle point to the worst

result for a given subset, and results marked by a yellow star point to the best result. Apart from Uralic, our

new Infomap approach always performs best, while the Turchin approach performs worst in four out of six

tests.

doi:10.1371/journal.pone.0170046.g003
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cognate morpheme in the same cognate set [63]. Since neither of the algorithms we tested is

specifically sensitive for partial cognate relations (for a recent proposal for this task, see [53]),

they all show a very low precision, because they tend to classify only partially related words as

fully cognate.

The Turchin method has three extreme outliers in which it lags far behind the other meth-

ods: Chinese, Bahnaric and Romance. There are two major reasons for this. First, the Turchin

method only compares the first two consonants and will be seriously affected by the problem

of partial cognates discussed above. These partial cognates are especially prevalent in Chinese

and Bahnaric where compounding is an important linguistic process. Second, a specific weak-

ness of the Turchin method is the lack of an alignment and words are not exhaustively com-

pared for structural similarities but simply mapped in their first two initial consonants. When

there is substantial sound change, as is evident in both Bahnaric and some branches of

Romance, this may lead to an increased amount of false negatives. Since the Turchin method

only distinguishes 10 different sound classes and only compares the first two consonant classes

in each word in the data, it is very likely to miss obvious cognates. The main problem here is

that the method does not allow for any transition probabilities between sound classes, but

treats them as discrete units. As a result, it is likely that the Turchin method often misses valid

cognate relations which are easily picked up by the other methods. This shortcoming of the

Turchin approach is illustrated in Fig 5, where the amount of true positives and negatives is

contrasted with the amount of false positives and negatives in each dataset and for each of the

five methods. This figure indicates that the Turchin method shows exceptionally high amounts

of false negatives in Bahnaric and Romance. The clear advantage of the Turchin method is its

speed, as it can be computed in linear time. Its clear disadvantage is its simplicity which may

under certain circumstances lead to a high amount of false negatives.

The Edit-Distance method also performs very poorly. While, on average, it performs better

than the Turchin approach, it performs considerably worse on the Chinese and Huon test sets.

The reason for this poor performance can be found in a high amount of false positives as

shown in Fig 5. While the Turchin method suffers from not finding valid cognates, the Edit-

Distance method suffers from the opposite problem—identifying high amounts of false cog-

nates. Since false positives are more deleterious for language comparison, as they might lead to

false conclusions about genetic relationship [15], the Edit-Distance method should be used

with very great care. Given that the SCA method performs better while being similarly fast,

there is no particular need to use the Edit-Distance method at all.

In Fig 6, we further illustrate the difference between the worst and the best approaches in

our study by comparing false positives and false negatives in Turchin and Infomap across all

language pairs in the Chinese data. As can be seen from Fig 5, the Turchin approach has about

Fig 4. Partial and non-partial cognate relations. The word for “moon” in Germanic and Sinitic languages is

mono-morphemic in Germanic languages, while it is usually compounded in Chinese dialects, with the first

element in the compound meaning “moon” proper, while the second often originally meant “shine” or “glance”.

The different cognate relations among the morphemes in the Chinese words make it impossible to give a

binary assessment regarding the cognacy of the four words.

doi:10.1371/journal.pone.0170046.g004
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as many false positives as false negatives. The Infomap approach shows slightly more false posi-

tives than false negatives. This general picture, however, changes when looking at the detailed

data plotted in Fig 6. Here, we can see that false positives in the Turchin approach occur in

almost all dialect pairings, while the major number of cognates is missed in the mainland dia-

lects (bottom of the y-axis). Infomap, on the other hand, shows drastically fewer false positives

and false negatives, but while false negatives can be mostly observed in the Northern dialects

(bottom of y-axis), false positives seem to center around the highly diverse Southern dialects

(top of the y-axis). This reflects the internal diversity in Northern and Southern Chinese dia-

lects, and the challenges resulting from it for automatic cognate detection. While word com-

pounding is very frequent in the North of China, where almost all words are bisyllabic and

bimorphemic, the Southern dialects often preserve monosyllabic words. While Northern dia-

lects are rather homogeneous, showing similar sound systems and a rather large consonant

inventories, Southern dialects have undergone many consonant mergers in their development,

and are highly diverse. The unique threshold for cognate word detection overestimates similar-

ities among the Southern dialects (upper triangle, left quarter), while it underestimates similar-

ities among Northern dialects compared to Southern dialects (lower triangle, left quarter).

What further contributes to this problem is also the limited size of the word lists in our sample,

which make it difficult for the language-specific algorithms to acquire enough deep signal.

Discussion

In this study we have applied four published methods and one new method for automated cog-

nate detection to a set of six different test sets from five different language families. By training

our data on an already published dataset of similar size, we identified the best thresholds to

obtain a high accuracy for detecting truly related words for four out of the five methods (Edit-

Distance: 0.75, SCA: 0.45, LexStat: 0.6, Infomap: 0.55). Using these thresholds, we tested the

Fig 5. Distribution of true and false positives and true and false negatives.

doi:10.1371/journal.pone.0170046.g005
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methods on our new gold standard, and found that most methods identified cognates with a

considerable amount of accuracy ranging from 0.82 (Tuchin) to 0.89 (Infomap). Our new

method, which builds on the LexStat method but employs the Infomap algorithm for commu-

nity detection to partition words into cognate sets, outperforms all other methods in almost all

regards, slightly followed by the LexStat approach. Given that the LexStat method and our

Infomap approach are based on language-specific language comparison, searching for similar

patterns in individual language pairs, our results confirm the superiority of cognate detection

approaches which are closer to the theoretical foundation of the classical comparative method

in historical linguistics. The Consonant Class Matching method by Turchin et al. confirmed

worst in our experiment, followed by the Edit-Distance approach, which was criticized in ear-

lier work [15]. While the major drawback of the Turchin approach is a rather large amount of

false negatives, the Edit-Distance approach shows the highest amount of false positives in our

test.

Fig 6. Comparing false positives and false negatives in the Chinese data. The figure compares the amount of false positives and false negatives, as

measured in pairwise scores for the Turchin method and our Infomap approach for all pairs of language varieties in the Chinese test set. The upper triangle of

the heatmaps shows the amount of false positives, while the lower triangle shows the amount of false negatives.

doi:10.1371/journal.pone.0170046.g006
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The method of choice may well depend on the task to which cognate detection is to be

applied. If the task is to simply identify some potential cognates for future inspection and

annotation, then a fast algorithm like the one by Turchin et al. should provide enough help to

get started. This practice, which is already applied by some scholars [64], is further justified by

the rather small amount of false positives. While the use of the Turchin method may be justi-

fied in computer-assisted workflows, the use of the Edit-Distance approach should be discour-

aged, since it lacks the speed advantages and is very prone to false positives.

When searching for deeper signals in larger datasets, however, we recommend using the

more advanced methods, like SCA, LexStat or our new Infomap approach. LexStat and Info-

map have the great advantage of taking regular sound correspondences into account. As a

result, these methods tend to refuse chance resemblances and borrowings. Their drawback is

the number of words needed to carry out the analysis. As we know from earlier tests [65], lan-

guage-specific methods require at least 200 words for moderately closely related languages.

When applied to datasets with higher diversity among the languages, the number of words

should be even higher. Thus, when searching for cognates in very short word lists, we recom-

mend using the SCA method to achieve the greatest accuracy. However, as demonstrated by

the poorer performance of all methods on the Chinese language data where compounding has

played a major role in word formation, language family specific considerations about the

methods and processes need to be taken into consideration.

Our results show that the performance of computer-assisted automatic cognate detection

methods has advanced substantially, both with respect to the applicability of the methods

and the accuracy of the results. Moreover, given that the simple change we made from

agglomerative to network-based clustering could further increase the accuracy of the

results, shows that we have still not exhausted the full potential of cognate detection meth-

ods. Future algorithms may bring us even closer to expert’s judgments, and it seems worth-

while to invest time to increase the performance of our algorithms. Essential tasks for the

future include (a) the work on parameter-free methods which do not require user-defined

thresholds and state the results as probabilities rather as binary decisions, (b) the further

development of methods for partial cognate detection [53], (c) approaches that search for

cognates not only in the same meaning slot but across different meanings [66], and (d)

approaches that integrate expert annotations to allow for a true iterative workflow for com-

puter-assisted language comparison. A key problem to solve is the performance of these

methods on larger datasets that trace language relationships to a greater depth. Most of our

test cases in this paper are shallow families or subgroups of larger families. Deeper relation-

ships between languages spoken in more complicated language situations are where the real

challenge lies.

Currently automatic cognate detection algorithms are highly accurate at detecting a sub-

stantial proportion of the cognates in a lexical dataset. Tools like LingPy are already at a stage

where they can act as a computer-assisted framework for language comparison. These tools

therefore provide a powerful way of supplementing the historical linguistics toolkit by enabling

linguists to rapidly identify the cognate sets which can then be checked, corrected, and aug-

mented as necessary by experts. In regions where there has been an absence of detailed histori-

cal comparative work, these automated cognate assignments can provide a way to pre-process

linguistic data from less well studied languages and speed up the process by which experts

apply the comparative method. Additionally, these tools can be employed for exploratory data

analysis of larger datasets, or to arrive at preliminary classifications for language families

which have not yet been studied with help of the classical methods.
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