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ABSTRACT

Recent theories, models, and observations have suggested the presence of significant spontaneous internal

wave generation at density fronts near the ocean surface. Spontaneous generation is the emission of waves by

unbalanced, large Rossby number flows in the absence of direct forcing. Here, spontaneous generation is

investigated in a zonally reentrant channel model using parameter values typical of the Southern Ocean. The

model is carefully equilibrated to obtain a steady-state wave field for which a closed energy budget is for-

mulated. There are two main results: First, waves are spontaneously generated at sharp fronts in the top 50m

of the model. The magnitude of the energy flux to the wave field at these fronts is comparable to that from

other mechanisms of wave generation. Second, the surface-generated wave field is amplified in the model

interior through interactionwith horizontal density gradients within themain zonal current. Themagnitude of

the mean-to-wave conversion in the model interior is comparable to recent observational estimates and is the

dominant source of wave energy in the model, exceeding the initial spontaneous generation. This second

result suggests that internal amplification of the wave fieldmay contribute to the ocean’s internal wave energy

budget at a rate commensurate with known generation mechanisms.

1. Introduction

Internal waves perform a vital role in the ocean en-

ergy cycle by exchanging energy with themesoscale flow

and ultimately breaking and driving mixing in the deep

ocean (Wunsch and Ferrari 2004). The classical picture

of the ocean wave field has sources of wave energy at

ocean boundaries due to barotropic tides washing over

rough bottom topography and high-frequency surface

wind stresses (Munk 1981). More recently, it has been

shown that geostrophic eddies interacting with rough

bottom topography can generate significant internal

lee waves (Nikurashin and Ferrari 2011). Surface wave

generation is also anticipated due to ‘‘forced imbalances’’

(such as from surface buoyancy fluxes), which can

drive geostrophic adjustment (e.g., Blumen 1972) or

dynamical instabilities, which then generate waves as

they evolve (e.g., Plougonven and Zeitlin 2009; Ribstein

et al. 2014; Grisouard et al. 2016). Nagai et al. (2015) and

Shakespeare and Taylor (2016), among others, have

further argued that there can be significant spontaneous

wave generation in regions of highly unbalanced flow

near the ocean surface. Lee waves generated from geo-

strophic flow and spontaneous generation both transfer

energy from the mesoscale flow to the wave field and are

thus potentially important both as sources for the global

internal wave field and as sinks of mesoscale energy.

Nikurashin and Ferrari (2011) have quantified the wave

energy source associated with lee waves generated from

geostrophic flow as 0.2 TW, similar to the estimated en-

ergy input to the wave field due to high-frequency winds.

The spontaneous generation of internal waves near the

ocean surface has not yet been quantified.

Spontaneous generation occurs in regions of highly

unbalanced flow near the ocean surface, characterized

by order one Rossby numbers (Ro). Modeling studies

(e.g., Danioux et al. 2012) indicate that much of this

generation occurs at sharp density fronts and filaments

when they are being actively strained, sheared, or oth-

erwise sharpened—a process known as frontogenesis.

Shakespeare and Taylor (2016) and Lott et al. (2010)

have presented linear theories for the spontaneous

generation of waves as a result of the horizontal strain-

ing and vertical shearing of potential vorticity anomalies

(fronts). While these theories demonstrate the potential
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for an energy transfer from the larger-scale flow to the

wave field (Shakespeare 2015), the linear nature and

approximations implicit in these theories prevent de-

finitive estimates of the net wave energy flux for realistic

ocean fronts. An alternative approach is to quantify the

spontaneous generation directly from an idealized nu-

merical model, such as the Nagai et al. (2015) study of the

Kuroshio Current. Crucial to this analysis is a rigorous

definition of the wave field in the numerical model,

thereby allowing quantification of the energy flux into the

wave field. An internal wave may be defined as a motion

of Lagrangian frequency (i.e., the frequency following the

local flow) exceeding the inertial frequency (Polzin and

Lvov 2011). This Lagrangian definition of internal waves

addresses the issue of significant Doppler shifting of the

wave frequency by the nonwave flow,which is common in

regions of spontaneous generation (e.g., Shakespeare and

Taylor 2016). To our knowledge, Nagai et al. (2015) are

the first to directly apply such a Lagrangian filter to the

output fields of a large-scale numerical model to deter-

mine the internal wave and nonwave constituents. A

similar approach is taken in the present work.

Explicit expressions for the internal energy fluxes to and

from the wave field may be determined by (Lagrangian)

filtering the momentum and buoyancy equations to form a

wave energy equation (e.g., Muller 1976; Polzin 2010). In

the absence of boundary forcing, the only possible sources

of wave energy are mean-to-wave conversions within the

flow. However, the presence of a positive mean-to-wave

conversion does not necessarily imply local spontaneous

generation, since these terms also describe the amplifica-

tion of a preexisting wave field (e.g., Whitt and Thomas

2015). Furthermore, Thomas (2012) describes how internal

waves can both extract energy from and transfer energy to

the nonwave flow, in the presence of frontogenetic strain

and vertical shear, even in a highly idealized flow. Spon-

taneous generation is only likely to be active when there

is highly unbalanced flow and strong frontogenesis coin-

cident with large, positive, mean-to-wave energy fluxes

(e.g., Nagai et al. 2015), although a rigorous separation of

spontaneous generation versus secondary amplification is

not possible. Spontaneously generated waves may be re-

absorbed by the mean flow; for example, when they ap-

proach a critical layer (Booker and Bretherton 1967).

In their Kuroshio model, Nagai et al. (2015) report

O(10)mWm22 spontaneous wave generation, with 85%

of this being reabsorbed by themean flownear the surface.

These studies suggest that waves continually transfer en-

ergy to and from nonwave flows and thereby play a rather

complex role in the ocean’s energy budget, something that

will be further investigated in the present work.

In this paper, we configure a model to examine the

rate of spontaneous generation of internal waves in an

idealized domain with a Southern Ocean–like parameter

regime. Our model differs from that of Nagai et al. (2015)

in several ways. The most significant difference is that we

examine a model in a statistical steady state rather than a

spindown simulation of a current, as in Nagai et al. (2015).

Furthermore, we have a larger domain (500-km square) at

higher resolution (200m rather than 500m), permitting

a better representation of smaller-scale internal waves.We

use lower explicit viscosity and diffusivity, with parameters

chosen to minimize the spurious decay of resolved waves

while maintaining model stability (Shakespeare and Hogg

2017). Our analysis methodology also differs. We find it

necessary to modify the classical internal wave energy

budget (Muller 1976), which assumes a quasigeostrophic

(QG) large-scale flow, to account for generation fromnon-

QG surface flows and associated wave–mean temporal

correlations. Thismodification permits us to fully close the

wave energy budget in our model and to quantify the

magnitude and spatial locations of individual sources and

sinks ofwave energy. Intriguingly, this analysis reveals that

the model interior is a very significant source of wave

energy, with waves drawing from the available potential

energy of finescale buoyancy gradients. Toour knowledge,

this behavior has not been previously observed in a nu-

merical model, but similar results have been obtained

from analysis of mooring data from the Gulf Stream re-

circulation region (Polzin 2010).

The paper is set out as follows: In section 2, we in-

troduce the numerical model configuration and describe

the filtering of the model fields into wave and nonwave

parts (section 2a). We close the wave energy budget for

the model in section 3 and identify four depth bands that

correspond to distinct sources and sinks of wave energy.

The behavior of internal waves in each layer is then de-

scribed in detail. Last, in section 4, we discuss the signif-

icance of our results in quantifying sources and sinks of

wave energy in the global ocean.

2. Methods

We use the Massachusetts Institute of Technology

Global Circulation Model (MITgcm; Marshall et al.

1997) to simulate the hydrostatic primitive equations

in a 500-km-square, 3.7-km-deep, zonally reentrant, flat-

bottomed, f-plane channel at 200-m horizontal resolu-

tion. The vertical grid consists of 200 points with grid

spacing of 1.5m at the surface; increasing to 40m at

middepth and reducing to 20m in the deepest 1 km of

the domain (see Fig. 1a). The model is forced by

‘‘sponges’’ of 30-km width just inside the northern and

southern boundaries where densities (temperatures;

salinity is constant) are restored to specified profiles

(shown in Fig. 1b, chosen to approximate the parameter
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regime of the Southern Ocean) on a 10-day time scale.

The restoring period and spatial extent of the sponges

are chosen such that the sponge will not affect the wave

field (see the appendix). There is no surface buoyancy

flux or wind stress. A quadratic bottom drag with

dimensionless coefficient Cd 5 1 3 1023 is applied.

Subgrid turbulence is parameterized via Laplacian

diffusion and viscosity.However, our turbulent parameter

choices are not intended to be a realistic representation of

subgrid processes and are chosen purely to minimize their

effect on the resolved wave field while maintaining nu-

merical stability (Shakespeare and Hogg 2017). To this

end, we use a horizontal viscosity ofAh5 3m2 s21 (shown

in Fig. 1c) near the surface to prevent the collapse of flow

gradients below the grid scale. This viscosity decays in a

Gaussian fashion over the top 200m to a negligible in-

terior value (1026m2 s21) so that any effect on the wave

field will be localized to the surface region. Guided by the

results of Shakespeare and Hogg (2017), in order to

maintain stability in the model interior with negligible

spurious wave decay, we apply a uniform horizontal dif-

fusivity of kh 5 0.1m2 s21 (constant over the entire do-

main). In the absence of boundary fluxes there is no

requirement for significant vertical viscosity or diffusivity,

and these parameters are set to a negligible value ev-

erywhere (Ay 5 ky 5 1026m2 s21). Last, we employ a

viscous sponge (Ah 5 100m2 s21) in the bottom 900m of

the domain to absorb downward-propagating waves and

minimize reflection of waves off the flat bottom.

The 200-m-resolution model is initialized from a

500-m-resolution model with a fully equilibrated me-

soscale eddy field. The 200-m-resolution model is run

for 2 months to permit the submesoscale and wave fields

to equilibrate, after which we output 1 week of model

data at hourly time intervals and analyze the internal

wave field. This relatively long spinup procedure en-

sures that the wave field does not contain signals from

adjustment or equilibration processes. Furthermore,

the absence of topography and surface forcing means

that there is no external forcing of the wave field and

thus all waves observed have been generated sponta-

neously by the flow. The temporal and horizontally

averaged stratification in the model at steady state is

shown in Fig. 1d, and the Rossby and Froude numbers

are shown in Fig. 1e (see caption for definitions). At the

surface the mean strain Rossby number is 0.21 and the

mean Froude number is 0.32, implying an active sub-

mesoscale is present.

a. Defining internal waves in the numerical model

Before analyzing the model output, we must specify

exactly how the wave field is defined. Theoretically,

FIG. 1. Configuration of the numerical model. (a)Vertical resolution. (b)Density profiles to which themodel is restored at the north (black)

and south (gray) boundaries on a 10-day time scale. (c) The horizontal Laplacian viscosity. (d) Time- and space-averaged stratificationN2 in

the model at steady state. (e) The time- and space-averaged strain Rossby number Ro5 f21
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(›u/›x)2 1 (›u/›y)2 1 (›y/›x)2 1 (›y/›y)2

q
(black) and Froude number Fr5N21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(›u/›z)2 1 (›y/›z)2

q
(gray) at steady state.
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hydrostatic internal waves may be defined as motions with

Lagrangian frequencies—that is, the frequency measured

in a coordinate following the flow—exceeding j fj (Polzin
and Lvov 2011). This definition accounts for the Doppler

shifting associated with stationary and trapped waves,

which are common near the ocean surface. To apply this

definition in our model, we initialize a flow-following

particle at every model grid point (1.4 billion particles

in total) at the start of the 1-week analysis period and

compute the particle trajectory over this week. Similar to

Nagai et al. (2015), here we use a ‘‘semi-Lagrangian’’ ap-

proachwherewe follow the flow in the horizontal direction

only. The semi-Lagrangian approach does not account

for Doppler shifting due to the vertical velocity, but this

effect is not expected to be particularly significant.1

The (Eulerian) model fields are interpolated to the

particle trajectories to yield Lagrangian fields. Fourier

transforming the Lagrangian fields in time yields the

Lagrangian frequency spectrum.

Figure 2 shows the frequency spectrum for particle-

averaged kinetic energy as a function of depth. For

1 week of hourly data the maximum frequency re-

solvable is p/(1 hour) 5 6.9f, and the frequency reso-

lution is p/(1 week) 5 0.04f. Even near the surface

(where submesoscales are present) there is a clear

time-scale separation between nonwave energy con-

centrated at frequencies less than 0.5f and wave energy

at frequencies greater than or equal to f. The wave field

is obtained by applying a high-pass filter with a sharp

cutoff at 0.9f (indicated by the dashed vertical line in

Fig. 2a) to ensure that the inertial peak in the spectrum

is fully included in the wave field. The high-pass fil-

tering inevitably causes ringing at the beginning and

end of the 1-week period. To avoid this effect we

truncate the first and last 36 h and use only the middle

4 days of filtered data in our analysis and space–time

averaging. The final step is to interpolate the filtered

(wave) field defined along particle paths back to the

original model grid at each time to yield the wave field

FIG. 2. The kinetic energy spectrum (m2 s21) averaged along particle trajectories as a func-

tion of Lagrangian frequency v (normalized by f ) and depth z. (a) Contour plot over all depths

with the cutoff frequency for the high-pass filter is indicated by a dashed line. (b) Log–log plot

for three individual depths (see legend).

1 To estimate the error, note that (from classical ray tracing theory)

theDoppler shift due to a uniform velocityW for a wavenumberm in

the same direction is Dv5mW. If we consider the extreme case of a

submesoscale front with a depth-averaged (over the top 200m) ver-

tical velocity of 50mday21 acting on a wave with m 5 2p/200m21,

the error in Lagrangian frequency would be 0.14f. For comparison,

the horizontal Doppler shift due to a front with horizontal velocity

U 5 0.05m s21 and k 5 2p/2000m21 is Dv 5 Uk 5 1.25f.
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defined in Eulerian space, denoted by a tilde ~h (where

h is a dummy variable representing any field of in-

terest). The ‘‘nonwave’’ or mean field, denoted by a bar

h, is the difference between the original unfiltered field

and the wave field, h5h2 ~h (both described in

Eulerian space). We note that the mean field defined in

this manner is time dependent and is entirely different

from the long-term, temporal-averaged ‘‘mean’’ de-

fined in eddy–mean frameworks. The above filtering

procedure is applied to the pressure and the three ve-

locity components (u, y, w) independently. The wave

buoyancy is then computed assuming hydrostatic bal-

ance: ~b5 ›z~p/r0.

Figure 3 shows a snapshot of the model zonal ve-

locity filtered into its wave and nonwave components

as described above. Wave horizontal flow speeds are

typically 1 to 3 cms21 or about 10% of mean flow speeds.

Waves exist in the model over all horizontal scales but

with peak wave kinetic energy (relative to the nonwave

flow) at wavelengths between 5 and 20km.

b. Wave energy budget

In the appendix, we derive a generic wave energy

budget for a hydrostatic, flat-bottomed numerical

model. Unlike previous wave energy equations (Muller

1976) we make no assumption as to the quasigeostrophy

of the nonwave flow fields. The resultant wave energy

budget possesses analogous terms to the Muller (1976)

equations (see also Polzin 2010; Nagai et al. 2015) but

with different space and time averaging. Here, we use

FIG. 3. The zonal velocity (m s21) from the model at an instant in time. (a) The net zonal

velocity u. (b) The nonwave zonal velocity u. (c) The wave zonal velocity ~u; the difference

between (a) and (b).
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angled brackets to denote horizontal space and time

averaging:

hhi5

ðT
0

ðð
hdx dy dtðT

0

ðð
1 dx dy dt

, (1)

where h is again a dummy variable. The only assumption

required in the derivation of the energy budget is that there

exists a spatiotemporal-scale separation between the wave

and nonwave fields (which we have already shown to ap-

proximately hold; e.g., Fig. 2) such that the spatiotemporal

average of the product of any wave field ~h and any non-

wave field u is zero: h~hui5 0. The details of the derivation

are in the appendix; here, we will merely define the rele-

vant energy reservoirs and significant energy sources and

sinks in our model. The wave kinetic energy is defined as

~K5

�
1

2
(~u2 1 ~y2)

�
, (2)

and consistent with Polzin (2010), we define the wave

available potential energy (APE) as

~A5

*
~b2

2N2

+
, (3)

where N2 5 ›zhbi is the mean stratification at depth z.2

The sign-definite energy sinks are the interior viscous

dissipation of wave kinetic energy

~«5

�
A

h
j=

h
~u
h
j2 1A

y

����›~uh

›z

����2
�
, (4)

the irreversible mixing of density by waves

~f
i
5

*
k
h

N2
j=

h
~bj2 1 k

y

N2

 
› ~b

›z

!2+
, (5)

and the quadratic bottom drag on the wave field

~D5

ð
bot

~u
h
� ~t

h
dS , (6)

where ~th 5Cd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 1 y2

p
~uh is the parameterized stress

(due to the wave field) in the bottom layer of the model.

In the absence of boundary wave sources such as wind

stresses or flow–topography interactions, as in the present

model, the only other significant energy exchanges are

mean-to-wave (MTW) interactions:

MTW5

�
2 ~w~u

h
� ›uh

›z

�
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

vert: shear

1

*
2~b~u

h
� =h

b

N2

+
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

potential

1

�
2~u2›u

›x
2 ~y2

›y

›y

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

strain

1

�
2~u~y

�
›u

›y
1

›y

›x

��
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

hz: shear

.

(7)

The sign convention adopted here is that a positive

value of MTW is a transfer from the mean to the wave

field. The vertical shear term describes a transfer of

mean kinetic energy to wave kinetic energy through the

mean vertical shear. The potential term describes a

transfer of mean APE associated with horizontal buoy-

ancy gradients (fronts) to waveAPE. The vertical shear

and potential terms are closely related when the mean

flow is geostrophic. The strain term describes the transfer

of mean kinetic energy to wave kinetic energy in a con-

fluent mean flow (and is the energy source term that ap-

pears in the theory of spontaneous generation at strained

fronts; see Shakespeare 2015). The horizontal shear

term describes the transfer of mean kinetic energy to

wave kinetic energy associated with horizontal mean

shear (i.e., cross derivatives).

The above definition of the mean-to-wave interaction

terms [Eq. (7)] differs from previous implementations

[e.g., Nagai et al. 2015, their Eq. (2)] in that the time

averaging is carried out after the multiplication of the

mean and wave terms. Our approach accounts for tem-

poral correlations ofmeanflowgradients and anomalously

large wave amplitudes. Such correlations are expected to

result from spontaneous generation events where, for ex-

ample, large wave amplitudes will occur at the same time

as large mean flow strain rates (e.g., Shakespeare and

Taylor 2016). Tests using our model output (not shown)

indicate that ignoring these temporal correlations leads

to a consistent underestimate of the mean-to-wave terms

by up to 50% near the surface.

3. Results

The time- and space-averaged interior wave energy

sources and sinks identified in Eqs. (4)–(7) are shown in

Fig. 4 as a function of depth. First, consider the sign-

definite wave energy sinks: irreversiblemixing (dotted–

dashed blue) and viscous dissipation (dashed blue).

The irreversible mixing by waves is substantial near the

surface (;1029Wkg21) and decays smoothly with depth

2 The APE defined by Eq. (3) is not the exact Winters et al.

(1995) APE but is a good approximation for internal waves in the

present model.
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(the diffusivity is a constant). As might be antici-

pated, the viscous dissipation is large near the surface

(where the viscosity is amplified) and also in the viscous

sponge below 2500m. The dissipation peaks at 2800m

where the sponge viscosity first reaches its maximum

value of 100m2 s21 (see Fig. 1); as the waves dissipate

within the sponge, there is subsequently less wave energy

at greater depths and thus the dissipation decreases.

Now consider the mean-to-wave terms defined as per

Eq. (7). The mean-to-wave potential term (solid red) is

the largest-amplitude, mean-to-wave term and is posi-

tive everywhere except a narrow band around 100-m

depth. The mean-to-wave horizontal shear and strain

terms are both positive at all depths and have similar

vertical structure and amplitude, and therefore only

their sum is shown (dashed red). The mean-to-wave

vertical shear term (solid blue) is negative at all depths,

and away from the surface tends to partially counteract

the potential term.

The sum of the five interior source and sink terms is

shown in black and indicates four distinct source and

sink layers. The surface layer, above 50-m depth, is a net

source of wave energy, dominated by the mean-to-wave

potential term, with mean-to-wave strain and horizontal

shear also providing significant contributions. This region

is characterized by high Rossby number (unbalanced)

flows and is where spontaneous generation is expected

to take place. The second ‘‘thermocline’’ layer between

50- and 175-m depth is a net sink of wave energy, pri-

marily through viscous dissipation. The third layer be-

tween 175- and 2500-m depth corresponds to the ocean

interior. In the interior layer the energy balance is domi-

nated by the mean-to-wave potential term, which pro-

vides a net source of wave energy exceeding 10211Wkg21

down to 1000-m depth. We show below that this interior

input to the wave field is not spontaneous generation

(since the flow is essentially geostrophic) but instead

describes the energization of downward-propagating,

surface-generated waves. The fourth and final layer be-

low 2500-m depth corresponds to the viscous sponge and

is dominated by the viscous dissipation of wave energy.

The energetics of the wave field in the surface, ther-

mocline, and interior regions is considered in more de-

tail in the following sections.

a. Surface layer

Figures 5a–c displays snapshots of the surface flow.

The flow is highly unbalanced with the Rossby number

(Fig. 5a) exceeding 1, particularly along elongated fila-

ments (density fronts) and in some submesoscale eddies.

The flow is dominated by a main zonal current through

the center of the channel, indicated by the band of ele-

vated mean kinetic energy (Fig. 5b). The region to the

south of this zonal current (which has weaker stratifi-

cation than to the north) is characterized by a network of

sharp fronts and filaments (Fig. 5c) in between meso-

and submesoscale eddies. Spontaneous generation of

waves is anticipated at fronts undergoing rapid sharp-

ening or ‘‘frontogenesis’’ (e.g., Shakespeare and Taylor

2014). Frontogenesis can be quantified by the fronto-

genesis function (Miller 1948), defined as the rate of

increase in horizontal mean buoyancy gradient magni-

tude following the fluid motion due to adiabatic effects

only (i.e., not including diffusion):

Dj=
h
bj

Dt
52

(=
h
b � =

h
u) � =b

j=
h
bj|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

mean

2
(=

h
b � =

h
~u) � =b

j=
h
bj|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

wave

, (8)

split here into mean-forced and wave-forced compo-

nents. A positive value indicates sharpening of frontal

FIG. 4. Time- and space-averaged sources (red) and sinks (blue) of

wave energy as a function of depth, and the total gain (black) inwave

energy at each depth. The double-sided log scale only displays am-

plitudes exceeding 10213Wkg21. There is a net source of wave

energy above 50m and between 175- and 2500-m depth. There is

a net sink of wave energy between 50 and 175m (the thermocline)

and below 2500m (in the sponge region).
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gradients (frontogenesis), and a negative value indicates

weakening (frontolysis).

Figure 5d displays the mean frontogenesis function at

the surface, averaged over the 4-day analysis period

(wave frontogenesis is negligible here). The region

along and to the south of the main zonal current exhibits

intense surface frontogenesis. As anticipated, the largest

magnitude mean-to-wave fluxes (Fig. 5e) occur near re-

gions of intense frontogenesis. The mean-to-wave energy

flux shown in Fig. 5e is the net surface layer energy con-

version integrated over depths z . 250m and averaged

in time (over the 4-day analysis period). The energy fluxes

into the wave field are largely localized to sharp fronts

undergoing frontogenesis, consistent with the theory of

spontaneous generation. There are also regions of sig-

nificant energy loss from the wave field (negativemean to

wave), both adjacent to regions of energy gain, andwithin

eddies (labeled C and D). The maximum mean-to-wave

energy conversion is 87mWm22 associatedwith the front

labeled A, and there are a number of other fronts with

energy conversions around 10mWm22 (e.g., the front

labeled B). For comparison, the average energy flux

into waves (from all sources) over the entire ocean is

about 3mWm22 [based on the figure of 1.2-TW global

generation suggested by Wunsch and Ferrari (2004),

among others], so 10mWm22 is locally significant.

However, the localized nature of the energy fluxes means

that spatially averaged values are significantly less than

these figures. The maximum zonally averaged value

(Fig. 5f) is 0.15mWm22, and the zonally and meridio-

nally averaged value is just 0.02mWm22. The vast ma-

jority (.80%) of the energy transfer to the wave field

occurs through the potential mean-to-wave term, in-

dicating that the wave energy is drawn from the APE of

the mean density fronts.

b. Thermocline layer

Figure 6 displays an analogous plot to Fig. 5, but for

the thermocline layer with snapshots taken at 110-m

depth. In this region the flow is more balanced with the

vorticity Rossby number (Fig. 6a) generally less than

0.2 and weak mean frontogenesis (Fig. 6d). The ex-

ceptions are two locations (labeled A and B) along the

main zonal current where the Rossby number is large

(0.8) and there is significant frontogenesis, suggesting

spontaneous generation is occurring. The mean-to-wave

FIG. 5. Surface layer. Snapshot of (a) the vorticity Rossby number Ro5 (›xy2 ›yu)/f , the mean kinetic energy (u2 1 y2)/2 (m2 s22) and,

(c) the horizontal buoyancy gradient magnitude j=hbj (s22). (d) Time-averaged mean frontogenesis function [Eq. (8); s23]. (e) The depth-

integrated and time-averagedMTW conversion (mWm22). (f) The zonal average of (e) in black; average over only positive values in red;

average over only negative values in blue. Labels A through D refer to specific points of interest described in the text.
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energy conversion (Fig. 6e) near these two locations is the

dominant energy input into the wave field in the ther-

mocline layer, exceeding 0.1mWm22 over a significant

area.While there are largemean-to-wave fluxmagnitudes

along the remainder of the main zonal current, they are

mostly compensated with regions of large positive fluxes

adjoining regions of large negative fluxes, and thus there is

minimal net conversion. The sharp fronts and filaments,

submesoscale eddy field, and associated positive mean-to-

wave fluxes that existed in the surface layer to the south of

the current are not present in the thermocline layer. In-

stead this region is dominated by a loss of wave energy

back to the mean flow, most notably within the anticy-

clonic eddy labeledC. Similar behavior is observed for the

cyclonic eddy labeled D to the north of the main zonal

current. Both of these eddies also tended to remove wave

energy in the surface layer (e.g., Fig. 5e, labels C/D), but

their effect is more pronounced in the thermocline layer.

The combination of apparent spontaneous generation

near locations A/B, and energy loss near C/D, results in

negligible net mean-to-wave energy flux in the thermo-

cline region: hMTWi 5 26 3 1024mWm22.

c. Interior layer

Figure 7 displays a plot similar to Figs. 5 and 6 but for the

interior layer with snapshots at 1000-m depth. The flow in

this layer is essentially balanced with the Rossby number

less than 0.1 everywhere (Fig. 7a). Frontogenesis due to

the mean flow is entirely negligible and is not shown. The

small Rossby numbers and negligible frontogenesis imply

that there is no direct spontaneous generation in the in-

terior layer, but despite this, there is a significant transfer

of energy from the mean flow to the surface-generated

wave field over a broad area (Fig. 7e). The time-averaged,

depth-integrated, mean-to-wave energy flux is 0.1–

0.8mWm22 in the region within the main zonal current

(Fig. 7b). The energy flux is associated almost entirely

with the mean-to-wave potential term (e.g., see Fig. 4)

and therefore horizontal buoyancy gradients. The

mean flow buoyancy gradient (Fig. 7c) shows the ex-

istence of a network of interlaced buoyancy fronts and

filaments within the main current, with the strongest

gradients collocated with the largest mean-to-wave

conversions. The fronts have typical widths of 5km or

smaller, leading to a spatial correlation with similar scale

components of the internal wave field (and in particular the

horizontalwavebuoyancyflux ~uh
~b).Despite the smallwidth

of the fronts they are essentially geostrophic (Ro , 0.1),

since the cross-frontal buoyancy difference is small. The

positive mean-to-wave conversion implies that the wave

field is drawing energy from the available potential en-

ergy of the fronts/filaments and destroying the fronts in

FIG. 6. As in Fig. 5, but for the thermocline layer (z 5 2110m).
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the process. Indeed, the mean-to-wave conversion is the

largest sink of mean energy in the model interior, as dis-

cussed in the next section.

The effect of the wave field on the density fronts may

be observed via the wave component of the frontogen-

esis function [Eq. (8)], a snapshot of which is plotted in

Fig. 7d.3 The snapshot shows intense frontolysis coincident

with the sharp mean buoyancy gradients seen in Fig. 7c.

The zonally averaged frontogenesis profile is shown in

Fig. 7g and closely matches that of the zonally averaged

mean-to-wave energy flux shown in Fig. 7f. The wave-

forced frontolysis is dominated by the strain component

2[(›xb)
2
›x~u1 (›yb)

2
›y~y]/j=hbj, indicating that the wave

field is (on average) ‘‘stretching out’’ the sharp buoyancy

filaments as the waves pass through the interior layer.

d. Mean energy sinks

The sign-definite sinks of mean energy in the model in-

terior are the viscous dissipationofmeankinetic energy and

the irreversible mixing of mean density gradients and are

shown in Fig. 8a. The net mean-to-wave conversion and

the potential MTW component are also shown.4 Be-

tween 500- and 2400-m depth, the loss of mean avail-

able potential energy into waves exceeds viscous

dissipation and explicit irreversible mixing by an order

of magnitude. As discussed in the previous section, this

loss of mean energy is associated with the destruction of

interior fronts and filaments and thus the waves are acting

as an effective horizontal diffusion with respect to the

mean flow. The effective wave horizontal diffusivity kwave
h

can be estimated by treating theMTW available potential

energy sink as an ‘‘effective irreversible mixing’’ (e.g.,

Polzin 2010):

MTW
pot

[
kwave
h

N2
j=

h
bj2 0 kwave

h 5
N2hMTW

pot
i

hj=
h
bj2i .

(9)

The value of wave diffusivity computed via this

method is shown in Fig. 8b as a function of depth. The

wave diffusivity peaks at over 5m2 s21 between 1200- and

FIG. 7. As in Fig. 5, but for the interior layer (z 5 21000m). Additionally, (g) the zonal average of (d).

3 Only the wave-forced frontogenesis due to the horizontal ve-

locity is shown in Fig. 7d; the vertical part is locally large in the

snapshot but negligible in a time and space average. Themagnitude

of wave-forced frontogenesis significantly exceeds themean-forced

frontogenesis in the interior layer.

4 The negative of MTW is shown in Fig. 8 such that a negative

value represents a sink of mean energy, consistent with the mean

flow dissipation and mixing terms.
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1400-m depth and has a depth-averaged value in the

interior layer of 3.3m2 s21, an order of magnitude

larger than the explicit horizontal diffusivity in the

model (kh 5 0.1m2 s21).

e. Summary

Figure 9 displays the vertically integrated wave

energy budget for the numerical model as a bar chart.

Each row shows the net contribution of a given term

in the energy budget in milliwatts per square meter as

the length of the bar, with colors indicating the con-

tribution from each of the four source/sink layers

identified previously: surface (cyan), thermocline

(red), interior (green), and sponge (gray). The top

row shows the total source and sink in each layer, and

the overall flux residual is shown in black. This re-

sidual is negligible; that is, the energy budget is

effectively closed.

Over the whole domain there is a net mean-to-wave

conversion of 0.05mWm22, which is lost pre-

dominantly via irreversible mixing (near the surface)

and viscous dissipation (in the sponge layer). The total

mean-to-wave conversion—or spontaneous generation—

in the surface layer is 0.021mWm22, although 73% of

this is lost locally within the surface layer via irrevers-

ible mixing and dissipation. Of the remaining wave

energy flux at 50-m depth, a further 74% is lost in the

thermocline layer, mostly through viscous dissipation.

However, in the interior layer, below 175m, there is a

strong amplification of the wave energy flux, with a

total mean-to-wave conversion of 0.026mWm22. This

wave energy flux is lost in the sponge layer below

2500m, mostly through viscous dissipation, but with

nonnegligible contributions from bottom drag and

irreversible mixing.

4. Discussion

The most significant feature of the numerical sim-

ulations presented here is the broad-scale interior

energization of the surface-generated internal waves.

Between 175- and 2500-m depth, we observe an order

FIG. 8. Mean flow energetics. (a) Sinks of mean energy as a function of depth. The dominant sink in the interior is

the loss of energy to the wave field (MTW conversion). The double-sided log scale only displays amplitudes ex-

ceeding 10214Wkg21. (b) The effective wave diffusivity kwave
h as defined by Eq. (9). Regions outside the ‘‘interior

layer’’ are shaded. The depth-averaged wave diffusivity in the interior layer is 3.3m2 s21.
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of magnitude increase in the net downward wave

energy flux. The depth-integrated, mean-to-wave

conversion in this region averages 0.03mWm22 over

the entire domain, exceeding the initial surface

generation of 0.02mWm22, and is therefore the

dominant source of wave energy in our model. The

mean-to-wave conversion is associated with waves

drawing energy from narrow (but geostrophic) fronts

and filaments within the large-scale zonal current with

fluxes of O(0.1–1)mWm22 throughout this region

(e.g., Fig. 7e). For a steady state to be maintained, these

density filaments must be continually created in (or ad-

vected into) the model interior. This process is still under

investigation and will be described in a future work.

In addition to amplifying the wave field, the mean-

to-wave conversion is the dominant sink of mean en-

ergy in the interior of the model ocean, exceeding both

the explicit viscous dissipation and irreversible mix-

ing. The destruction of interior buoyancy gradients by

the waves can be treated as an effective irreversible

mixing in respect to the mean flow (e.g., Polzin 2010)

with an average ‘‘wave horizontal diffusivity’’ of

3.3m2 s21, an order of magnitude larger than the

explicit horizontal diffusivity used in the model

(0.1 m2 s21). These results suggest that the interior

amplification of waves seen in the present simulation

is unlikely to be significant in models withO(1)m2 s21 or

larger explicit horizontal diffusivity (e.g., Nagai et al.

2015), since the explicit diffusivity would tend to de-

stroy the frontal structures and thereby reduce the

potential energy source for the wave field. Thus, as

argued by Shakespeare and Hogg (2017), the use of

smaller turbulent diffusive parameters in modeling

allows a greater range of possible internal wave

dynamics.

The concept of significant mean-to-wave energy fluxes

in the ocean interior is not unprecedented. Analysis of

observations from moorings in the Gulf Stream recircu-

lation at 800-m depth yield mean-to-wave conversion es-

timates of 43 10210Wkg21 (Polzin 2010, and references

therein). Polzin (2010) concludes that this mean-to-wave

conversion is the dominant source of wave energy in

the Gulf Stream recirculation. If the observed energy

flux density (43 10210Wkg21) is constant over 2000m

of ocean depth, it equates to a net mean-to-wave flux of

approximately 0.8mWm22, comparable to the fluxes

observed within the main zonal current in the present

simulation (Fig. 7e).

The model used here has been carefully configured

such that internal wave generation can only occur

‘‘spontaneously’’ from unbalanced flow near the

ocean surface. This spontaneous generation is highly

localized in space, predominantly near strong fronts

and filaments in the upper 50m. The time-mean en-

ergy flux into waves is typically O(1–10)mWm22 at

fronts undergoing intense frontogenesis but can be as

high as 87mWm22 (Fig. 5e). The peak magnitudes of

these energy fluxes are comparable to those associated

with lee-wave generation at topography (Bell 1975;

Nikurashin et al. 2014), suggesting spontaneous gen-

eration may be locally significant in the ocean. The

O(10) mWm22 fluxes are also comparable to those

FIG. 9. The wave energy budget for the numerical model per unit area, averaged over the entire domain. The

terms in the budget are defined by Eqs. (4)–(7). The individual contribution from each of the four source and sink

layers identified in the text are indicated by the colors (see legend). The total source/sink in each layer is shown in

the top ‘‘sum’’ bar; these sources and sinks balance to give a negligible total residual (black bar).
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seen by Nagai et al. (2015) in their model of spon-

taneous generation in the Kuroshio.

However, the localized nature of the spontaneous

generation means that the spatially averaged energy

fluxes in the present simulation are significantly smaller

than the local values. The zonally (along channel) av-

eraged values peak at 0.15mWm22, and the net layer-

integrated flux down to 50-m depth is just 0.02mWm22.

Nagai et al. (2015) take the approach of averaging the

positive and negative mean-to-wave fluxes separately;

from this perspective, the net surface input to the wave

field is 0.074mWm22, with 0.053mWm22 (73%) lost back

to themeanflowwithin the surface layer, similar to the 85%

reported by Nagai et al. (2015). However, in our model the

majority of the mean-to-wave flux occurs through the po-

tential term [see Eq. (7)] rather than the strain term (as in

their model), suggesting that the mechanism of spontane-

ous generation may be different.

A number of caveats apply to our results. First, our

model exhibits significant near-surface wave energy

loss through the irreversible mixing and dissipation

of the spontaneously generated waves. Between the

surface and 175-m depth, over 90% of the net spon-

taneously generated wave energy is lost through

these processes. It is likely that a significant fraction

of this energy loss is a direct result of the artificially

large values of horizontal viscosity (3m2 s21 near the

surface) and diffusivity (0.1 m2 s21) required for

model stability and thus is essentially spurious

(Shakespeare and Hogg 2017). With smaller viscous

and diffusive parameters (e.g., at higher resolution), we

anticipate that the wave energy flux passing through

175-m depth could be significantly larger, potentially

resulting in an enhanced mean-to-wave conversion in

the model interior.

Second, the extent to which the magnitude of sponta-

neous generation could change in the presence of a more

energetic eddy field (e.g., because of the wind forcing,

which is not present in our simulations) or at higher res-

olution (i.e., permitting smaller turbulent parameters and

sharper fronts) remains uncertain. Theoretical models of

spontaneous generation (e.g., Shakespeare and Taylor

2014) predict exponentially larger wave generation for a

linear increase in the strength of the eddy field and as-

sociated strain. Theory also predicts that spontaneous

generation is further amplified at sharper fronts. Thus, it

is possible that some of the energy that is currently dis-

sipated from the mean flow (e.g., Fig. 8) as frontal scales

approach the model resolution could be redirected into

the wave field at higher resolution.

Third, we have used the highly idealized configuration

of a flat-bottomed ocean basin with no surface forcing and a

sponge in the deep ocean to absorb downward-propagating

waves. In this configuration, there is a single source of

waves at the ocean surface; these waves propagate

downward and are amplified by the mean flow before

finally dissipating in the bottom sponge. The net wave

energy flux is thus downward (on average) everywhere

in the domain, something that would not necessarily be

true in a more realistic model that permits reflections

off the bottom and/or bottom wave generation at to-

pography. Initial results from such model configura-

tions suggest that the strength and directionality of the

wave energy flux can be a crucial factor in controlling

the interior mean-to-wave conversion seen in the

present model. These effects will be studied in detail

in a future work.

5. Conclusions

There are two major implications of our modeling

study for the ocean’s energy budget. First, our model

indicates a potential role for spontaneous generation

as a notable energy source in strongly eddying regions of

the ocean. As noted above, further studies are required

to better constrain the magnitude of spontaneous gen-

eration in comparison to other wave sources. Second,

our results suggest that the ocean interior has the po-

tential to be a significant source of wave energy and a

sink of nonwave energy. Thus, the current paradigm of

surface- or bottom-generated internal waves trans-

porting energy into the ocean interiormay be inverted in

some circumstances to one where internal waves trans-

fer energy to the boundary where turbulence andmixing

is commonplace.
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APPENDIX

Wave Energy Budget

Here, we derive a generic wave energy budget for a

hydrostatic numerical model. Unlike previous wave

energy equations (Muller 1976) we make no assumption

as to the quasigeostrophy of the nonwave flow. To begin,

consider filtering a given field into two parts: a wave part
~u and a nonwave part u, where u5u1 ~u. At this point

we make no assumptions about the form of this filtering.

For a hydrostatic flow, the wave kinetic energy is

~k5
1

2
(~u2 1 ~y2) , (A1)
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and the wave APE is defined as

~a5
~b2

2N2
, (A2)

whereN2(z)5 ›zhbi is themean stratification at depth z.

To form the wave kinetic energy equation we take the

dot product of the horizontal momentum equations with

the horizontal wave velocity:

~u
h
�
�
›u

h
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�
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Expanding fields into their wave and nonwave parts and

rewriting Eq. (A3) in terms of the wave kinetic energy

(and applying hydrostatic balance) yields
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Note that a term involving the divergence of the wave

flow = � ~u has been retained in Eq. (A4), since for an

arbitrary filter there is no guarantee that the divergence

is zero. To form the APE equation, we multiply the

buoyancy equation by ~b/N2 or

~b

N 2

	
›b
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h
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›

›z
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›z
2
b2B

0
(x,y,z)

t
M(y)



.

(A5)

The term due to the buoyancy-restoring sponge near

the northern and southern boundaries has been included

in Eq. (A5): B0(x, y, z) represents the restoring profiles

(i.e., Fig. 1b);M(y) represents the longitudinal mask,

which varies smoothly from one at the boundaries to

zero in the interior; and t represents the relaxation time

scale (10 days). Expanding fields into their wave and

nonwave parts and rewriting Eq. (A5) in terms of the

wave APE yields
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No assumptions as to the definition of wave and non-

wave fields have been made to this point.

To proceed further we introduce the assumption that

there exists a temporal–spatial scale separation between

the wave and nonwave fields (to be justified from the

model in question) such that the temporal–spatial average

of the product of a wave field ~h and nonwave field u is

zero, h~hui5 0, with the angled brackets defined byEq. (1).

We further assume that h~huai5 0, where a is another

nonwave field. These assumptions are expected be

valid for any sensibly defined wave field, such as via a

Lagrangian filter.With these assumptions the wave kinetic

energy equation [Eq. (A4)], assuming a steady wave field,

flat bottom, and free-slip vertical sidewalls, becomes

›

›z
hw ~ki5 h ~w ~bi2 1

r
0

›

›z
h ~w~pi1 h2~u
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j2 1A
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����2
�
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›
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*
A

y

› ~k

›z

+
1 h~p= � ~ui . (A7)

The divergence term in Eq. (A7) may now be ne-

glected since the continuity equation implies

that = � ~u52= � u and thus h~p= � ~ui5 h2~p= � ui,

which is zero by assumption. The wave APE

equation [Eq. (A6)], with the same assumptions,

becomes
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We now sum the space–time-averaged kinetic energy [Eq. (A7)] and available potential energy [Eq. (A8)] equations

to obtain an equation for total wave energy ~e5 ~k1 ~a:
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where « is the viscous dissipation by waves [Eq. (4)],

fi is the irreversible mixing by waves [Eq. (5)], and
~fsponge 5 h(2~aM)/ti is the (sign definite) damping of

waves by the buoyancy-restoring sponge. If we define

the vertical stress as

~t
h
5A

y

›~u
h

›z
, (A10)

and assume there are no surface buoyancy fluxes or wind

stresses, the vertically integrated wave energy budget is
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The top line in Eq. (A11) is composed of the sign-

definite energy sinks; in order, these are bottom drag,

viscous dissipation, irreversible mixing, and damping

from the buoyancy-restoring sponge. The damping

term is negligible for the long restoring time scale

(10 days) and small spatial extent of the sponge used in

the present simulations. The second line is composed

of the dominant mean-to-wave conversion terms from

the kinetic (left-hand term) and potential (right hand)

energy equations. The kinetic mean-to-wave term is

expanded in the main text [Eq. (7)] into horizontal

shear and strain and vertical shear terms. As noted in

the main text, these mean-to-wave terms differ from

previous energy budgets (Muller 1976; Polzin 2010) in

that the time averaging (included in the definition of

the angled bracket) is done after the multiplication of

the mean and wave components. The bottom line in

Eq. (A11) is composed of the remaining mean-to-

wave terms, which all involve correlations of wave

fields with spatial variations of the stratification.

These terms are each individually negligible in the

present model.
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