
Bringing Blurry Images Alive:
High-Quality Image Restoration

and Video Reconstruction

Liyuan Pan

A thesis submitted for the degree of
Doctor of Philosophy

The Australian National University

September 2021



© Liyuan Pan 2021



Except where otherwise indicated, this thesis is my own original work.

Liyuan Pan
19 September 2021





To my family, to Junhua Pan.





Acknowledgments

Throughout the writing of this dissertation, I have received a great deal of support
and assistance from my supervisors, colleagues, friends, and family.

My sincere thanks go to the members of my supervisory panel. Thanks to Richard
Hartley for his support throughout the whole journey. His talented ideas are al-
ways invaluable in formulating problems and methodology. His insightful feedback
pushed me to sharpen my thinking and brought my work to a higher level. He al-
ways has great patience to help me whenever I came across difficulties. I appreciate
his willingness to spend many hours explaining and guiding me throughout my PhD
journey. Thanks to Miaomiao Liu, she always had more faith in me than I did. She
provided me with excellent support, guidance, and advice. Thanks to Yuchao Dai
for his insightful comments and valuable suggestions. Thanks to Hongdong Li for
his guidance in both academics and life.

I would like to acknowledge Fatih Porikli for his support and much-needed en-
couragement when I was a junior PhD student. Thanks also go to Robert Mahony
and Davide Scaramuzza to welcome me into their group and provide insightful dis-
cussion.

I would like to acknowledge the support provided to me through an ANU PhD
Scholarship and an ANU HDR Fee Remission Merit Scholarship, as well as an Aus-
tralian Centre of Robotic Vision (ARCV) Top-Up Scholarship. I would like to ac-
knowledge the facilities and technical assistance from the ANU node staff and Carol
Taylor.

I would especially like to thank my friends, Jiexiu Chen and Hanxiao Jiang, for
their encouragement and friendship. I would also like to thanks my colleagues at
ANU, especially Cedric Scheerlinck, Xin Yu, Yiran Zhong, Hongguang Zhang, Jing
Zhang, Ziwei Wang, Yonhon Ng, Zheyu Zhuang, Zhiwei Xu, and Shah Chowdhury
for the collaborations.

Throughout my education journey, I am fortunate to have some inspirational
teachers who encouraged me to challenge the gender stereotype and to choose a
career path where girls are much underrepresented. I am proud of myself despite
the various difficulties I have encountered because of my gender. In addition, I am
lucky and grateful for the love and support of my family, Liu Liu. I might never have
a chance to pursue my dream, and start my PhD journey, let alone have achieved so
far to reach the place where I am.

vii





Abstract

Consumer-level cameras, (e.g., phone-camera and dash-camera, etc.) are affordable
for customers, and they are handy and easy to use. However, the images and videos
are likely to appear motion blur effect, especially under low-lighting conditions.
Moreover, it is rather difficult to take high frame-rate videos due to the hardware
limitations of conventional RGB-sensors. Therefore, my thesis focuses on restoring
high-quality (e.g., sharp and high frame-rate, etc.) images and videos from the low-
quality (e.g., blur and low frame-rate, etc.) ones for better practical applications.

Recovering latent sharp images from a single image or multiple images is a fun-
damental task in image processing and computer vision, and various methods have
been proposed. In this thesis, I first address the problem of how to restore a sharp
image from a single blurred image, a blurred RGB-D image, or a blurred stereo video
sequence. Then, using the faithful information about the motion provided by blurry
effects in the image, I reconstruct high frame-rate and sharp videos based on an event
camera, bringing blurry frames alive.

First, to tackle the challenging, minimal case of image deblurring, I focus on
single-image deblurring. The image motion blur process is modelled as the con-
volution of a blur kernel with a latent image generally. Therefore, estimating the
blur kernel is essentially important for blind image deblurring. Unlike existing ap-
proaches that focus on approaching the problem by enforcing various priors on the
blur kernel and the latent image, we obtain a high-quality blur kernel directly by
studying the problem in the frequency domain. It shows that the auto-correlation
of the absolute phase-only image1 can provide reliable information about the motion
(e.g., the motion direction and magnitude, namely motion pattern.) that caused the
blur, leading to a new and efficient blur kernel estimation approach. The blur kernel
is then refined, and the sharp image is estimated by solving an optimisation prob-
lem by enforcing a regularisation on the blur kernel and the latent image. Then, the
approach is extended to handle non-uniform blur, which involves spatially varying
blur kernels.

Then, I focus on blur caused by camera shake. Camera shake during the exposure
time is a major problem in hand-held photography. While several approaches restore
a blurred image based on assumptions regarding the scene structure or the camera
motion, few existing methods can handle the real 6 DoF camera motion. Therefore,
we jointly estimate the 6 DoF camera motion and remove the non-uniform blur by
exploiting their underlying geometric relationships, with a single blurry image and
its depth map (either direct depth measurements or a learned depth map). I for-

1Phase-only image means the image is reconstructed only from the phase information of the blurry
image.
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mulate the joint problem as an energy minimisation problem, which is solved in an
alternative manner. By recovering the 6 DoF camera motion and the latent image,
I could also achieve the goal of generating a sharp sequence from a single blurry
image.

To date, we have shown that 1) the blur kernel could be directly recovered from
the phase information of a single blurred image and be used to deblur the image;
2) the geometry of the scene and the camera motion can be recovered from a single
blurred image caused by camera shake.

In addition to the single image-based deblurring techniques, I recognise that
the availability of the stereo system on smartphone devices have made significant
progress recently. It helps to solve the image restoration task with stereo images.
Stereo camera systems can provide motion information incorporated to remove com-
plex spatially-varying motion blur in dynamic scenes. Given consecutive blurred
stereo video frames, I aim to recover the latent images, estimate the 3D scene flow,
and segment the moving objects simultaneously. These three tasks have been pre-
viously addressed by researchers separately, but they failed to exploit the internal
connections among these tasks, which can potentially lead to a better solution than
handling them separately. In a coupled manner, the above three tasks are naturally
connected and expressed as the parameter estimation of 3D scene structure and cam-
era motion for the dynamic scenes.

Video reconstruction is another trend in image deblurring, which reverses the
blurring process by extracting a video from a single blurred image. Therefore, we
introduce the event camera to this research field. Event cameras (Dynamic and
Active-pixel Vision Sensor, DAVIS) are gaining attention as they can measure in-
tensity changes in log space (called ‘events’) with microsecond accuracy, even under
high-speed motion and challenging lighting conditions. A blurred image can be re-
garded as the integral of a sequence of latent frames, while events indicate changes
between latent frames. Therefore, the blur-generation process can be modelled by as-
sociating event data to a latent image. I propose a simple and effective approach, the
Event-based Double Integral (EDI) model, to reconstruct a high frame-rate, sharp
video (>1000 fps) from a single blurry frame and its event data. The video genera-
tion is based on solving a simple non-convex optimisation problem in a single scalar
variable. Then, I improve the EDI model to the multiple Event-based Double Inte-
gral (mEDI) model by using multiple images and their events to handle the flickering
effects and noise in the generated video. Besides, a more efficient solver is provided
to minimise the proposed energy model.

Last, the blurred image and events also can contribute to optical flow estima-
tion. High-speed optical flow can serve as the backbone for moving object detection,
human pose estimation, and action recognition. Thus, a single image (potentially
blurred) and events based optical flow estimation approach is proposed to unlock
the potential applications. First, we encode the relation between flow and events
effectively by presenting an event-based photometric consistency formulation. Then,
we consider the special case of motion blur caused by high dynamics in the visual
environments and show that including the blur formation in the model further con-



xi

strains flow estimation. In sharp contrast to existing works that ignore blurred im-
ages, our formulation can naturally handle either blurred or sharp images to achieve
accurate flow estimation. Finally, I reduce flow estimation and image deblurring to
an alternative optimisation problem of an objective function using the primal-dual
algorithm.

In summary, this thesis addresses the problem of sharp image restoration (with
a single image, RGBD image, stereo video), as well as high frame-rate video re-
construction from both intensity images and events. Extensive experimental results
demonstrate our proposed methods outperform the state-of-the-art.

Keywords: Motion Blur, Restoration, Event Camera, High Temporal Resolution
Reconstruction, Primal-Dual, Fibonacci Sequence.
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Chapter 1

Introduction

In this chapter, we first introduce the problem formation on image restoration as
well as video reconstruction. Then, we review related solutions to the challenging
problems in the above fields. Last, we outline the organization of this thesis and the
relationship between each chapter.

The format of this thesis is ‘thesis by compilation’ where each chapter is com-
posed of a published paper during my PhD period.

1.1 Introduction

(a) Defocus blur (b) Motion blur (c) Rolling shutter blur

Figure 1.1: Examples of different blurred images. (c) From Pichaikuppan et al. [2014]. (Best
viewed on screen).

Image blur is a widely encountered issue in real-world applications, and it can be
caused by various reasons, such as optical aberration, medium perturbation, rolling
shutter effect, and relative motion between camera and scene (seeing Fig 1.1 for more
details). The unexpected blur will decrease the image quality by losing essential
information, which will hamper further analysis and applications, such as optical
flow estimation Gong et al. [2017b]; Pan et al. [2017b], depth estimation Hu et al.
[2014]; Pan et al. [2021], matching Liu et al. [2020, 2021], and objects segmentation Pan
et al. [2016a]; Pan et al. [2020]. In this thesis, I focus on images with motion blur.

Motion blur is caused by the way a camera takes pictures and its aperture time.
The longer the aperture is open, which is the exposure time, or the faster the motion,

1
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the more possible the blurrier moving objects might appear. In other words, motion
blur is the result of the relative motion between the camera and the scene, together
with the exposure time. The relative motion is further divided into camera shake,
object motion, depth variations, or a combination of them. To reduce the degree
of blur, one can capture images using shorter exposure intervals. This, however,
increases the amount of noise in the image, especially under low-lighting conditions.
Another approach is to recover the unknown image from its blurred version, namely
image deblurring, restoration, or deconvolution.

The blurring process can be modeled as a convolution of a latent image with a
blur kernel (also known as point-spread-function, PSF), and is mathematically given
by

B = k⊗ L , (1.1)

where B ∈ Rh×w denotes the blurred image, and L ∈ Rh×w is the latent sharp image.
Here, ⊗ is the convolution operator, h and w are the image height and width, and
k is the 2D blur kernel. With a known or unknown blur kernel, traditional image
deblurring methods are broadly categorised into two cases: non-blind deblurring
methods and blind deblurring methods.

1.1.1 Non-blind deblurring

Non-blind deblurring methods attempt to restore the latent image with a given blur
kernel faithfully.

With a known blur kernel k, computations are performed in the frequency do-
main for ease, as the convolution theorem states that Fourier transform of a convolu-
tion is the element-wise multiplication. In the Fourier domain, Eq. ((1.1)) corresponds
to

F (B) = F (k)�F (L) , (1.2)

where � represents the component-wise multiplication, F () denotes the Fourier
transform. Then an estimate of F (L) can be directly obtained by an inverse filter,

F (L) = F (B)/F (k) . (1.3)

This process is called direct inverse filtering, and it works if F (k) is invertible. How-
ever, the sparse matrix F (k) usually has a large condition number, which is nearly an
ill-posed, singular matrix. It indicates the direct inverse filtering solution is sensitive
to perturbation and rounding errors.

Early non-blind deblurring methods using the simple Wiener deconvolution Wiener
[1950] to estimate the pseudo-inverse filter in the frequency domain, and is expressed
as

W(k) =
F ∗(k)

|F (k)|2 + 1/SNR
, (1.4)

where the superscript ∗ denotes complex conjugation, and SNR denotes signal-to-
noise ratio. Then, the corresponding latent image is estimated by taking inverse
Fourier transform F−1(F (B)W(k)). Albeit efficient and straightforward, in real
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(a) Blurred image (b) Direct inverse filtering

(c) Wiener deconvolution (d) With a regularization term

Figure 1.2: Example result of (non-uniform blurred) image deblurring. The blurred image
and its ground-truth blur kernel are from Levin et al. [2009]. Even if the kernel is known
precisely, ringing artefacts appear in (b) and (c). The ringing effect is due to amplified singu-
larities by the presence of an unknown noise. (a) Blurred image. (b) The image is deblurred
by using a direct inverse filter and therefore causes ringing artefacts. (c) Ringing artefacts
caused by the Wiener deconvolution. (d) A restored image with a penalty term by Pan et al.

[2019b]. (Best viewed on screen).

blurred images, an unknown noise n is added in the above model and makes the
direct inverse filtering solution and Wiener deconvolution failed (seeing Fig 1.2 for
more details).

In general, the non-blind deblurring problem may be formulated as finding

argminL ‖k⊗ L− B‖2
2 . (1.5)

However, in most cases, blurring acts as a form of a low-pass filter – losing high-
frequency information. The deblurring process is to restore the lost frequency com-
ponents of the image. Thinking of convolution with a known k as a linear op-
erator, the existing near-zero eigenvalues whose eigenvectors correspond to high-
frequency components of the signal (image). If high-frequency components are over-
emphasized in the deblurring process, the resulting latent image L will be noisy, or
edges will show ringing. Consequently, this problem is not well-conditioned. A stan-
dard solution to this is to add regularisation terms that discourage excessive high-



4 Introduction

frequency components. They are used to introduce prior knowledge and make the
approximation of ill-posed (pseudo-)inverses feasible. Therefore, led to the following
minimization problem.

min
L
‖k⊗ L− B‖2

2 + αφreg(L) ,

where α is a weighted parameter and φreg(·) is a regularization term (e.g., l0 reg-
ularization Xu et al. [2013] and low rank regularization Candès and Recht [2009],
etc.). Various regularization terms are used to discourage excessive noise and over-
emphasized edges and guide latent image estimation. Such as the total variation
regularization Rudin et al. [1992] and Tikhonov regularization (of the magnitude of
the image gradient ‖∇L‖2).

In most situations, however, the blurring kernel is unknown. Therefore, the de-
blurring task requires the estimation of the underlying blurring kernel, namely blind
deblurring.

1.1.2 Blind deblurring

Blind deblurring approaches aim at restoring the latent sharp image and the under-
lying kernel from blurred images simultaneously. In this thesis, we focus on blind
motion deblurring.

Blind deblurring is an ill-posed problem Levin et al. [2011], as there are infinitely
many pairs of blur kernels and images that could generate the same blurry image.
For example, one undesirable solution that perfectly satisfies Eq. (1.1) is the no-
deblur explanation: L = B and k is a delta (identity) function. Various kinds of
priors/constraints have been proposed either on the blur kernel or the latent image
to regularise the solution space.

As we mentioned in Eq. (1.1), a motion blur is characterised by its blur kernel
(PSF), whose parameters are closely related to the motion. Hence, assumptions for
camera motions and the number of moving objects have been made by researchers
and significantly contribute to the estimation of the exact kernel needed for decon-
volution. The blur kernel can be further categorised into two cases: the spatially-
invariant blur kernel and the spatially-variant blur kernel.

1.1.2.1 Spatially-invariant blur kernel

Several approaches assume that the captured image has a spatially-invariant kernel
(also known as the uniform blur kernel), which means the blur kernel is the same for
all pixels in an image. Under this condition, the blur is usually caused by a camera
shake (in-plane shifting, no rotation) with a static scene, and the scene must have
a constant depth Dai and Wu [2008]; Hirsch et al. [2011]; Pan et al. [2016b] (seeing
Fig 1.3 for more details).

Camera shake can be modelled as a blur kernel, describing the camera mo-
tion during exposure. In the basic formulation Eq. (1.1), the problem is under-
constrained: there are more unknowns (the latent image and the blur kernel) than
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(a) (b)

Figure 1.3: Examples of spatially-invariant blurred image and its blur kernel. (b) From
Köhler et al. [2012]. (Best viewed on screen).

measurements (the observed image). Hence, to resolve the ill-posed underlining opti-
misation problem, practical solutions must make strong prior assumptions about the
blur kernel, about the image to be recovered, or both. One straightforward approach
is to apply the maximum a posteriori (MAP) solution. Besides, the variational Bayes
approximation considers uncertainties in the unknowns, allowing us to find the blur
kernel implied by a distribution of probable images Fergus et al. [2006]. Numerous
methods estimate the blur kernel and the latent image in an alternating optimisa-
tion scheme. An alternative approach is to estimate the actual motion of the camera.
With the motion direction, magnitude, or other motion assumptions, the exact ker-
nel can be derived. Once knowing the blur kernel, the problem becomes a non-blind
deconvolution problem Gupta et al. [2010].

However, for a real-world image, when the scene contains several objects moving
independently, camera rotations, or forward out-of-plane translations, the assump-
tion of a single uniform motion blur kernel is not always held.

1.1.2.2 Spatially-variant blur kernel

Non-uniform deblurring has attracted much attention in recent years. This section of
the chapter discusses existing deblurring methods with different motion assumptions
(seeing Fig 1.4 for more details).

For a scenario contains camera rotations or forward out-of-plane translations, sev-
eral single image-based approaches can be extended to handle this non-uniform de-
blurring directly based on the geometric model of camera motion Whyte et al. [2012].
Another approach is to estimate motion blur kernels using the local patches Sun et al.
[2015]. As a result, the only unknown parameters for the blur kernel are its direction
and width within each local patch. However, the above approaches do not apply to
non-static scenes or scenes with varying depth.

For a static camera that recording scenes with multiple moving objects, the blur
cannot be described by a single uniform kernel or a single geometric motion model.
Researchers tend to describe the motion blur at the patch-level. In other words,
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(a) (b)

(c) (d)

Figure 1.4: (a) An example of a spatially-variant blurred image captured by a rotating cam-
era. (b) An example of a spatially-variant blurred image with multiple moving objects. (c)
An example of a spatially-variant blurred image with a varying depth. (d) An example of a
spatially-variant blurred image with both a moving camera and a moving object. From Sun

et al. [2015] and Shi et al. [2014]. (Best viewed on screen).

several researchers go one step further by assuming that the image consists of a small
(fixed) number of blurring layers/patches with the same blurring kernel within each
layer/patch. An example of a real-world image, with multiple moving objects and a
static background, is shown in Fig 1.4 (b). The baseball and baseball bat are blurred
with different blur kernel independently, and the image can be separated into two or
more layers/patches rely on the statistics-based Levin [2007], depth-based Hu et al.
[2014], or edge-based priors Pan et al. [2014].

For a scenario where camera motion, multiple moving objects, or depth varia-
tions exist, the blur kernel is, in principle, defined by each pixel in the blur region
(as shown in Fig 1.4 (c) and (d)). Single image-based methods, such as Cho and
Lee [2009]; Gupta et al. [2010]; Michaeli and Irani [2014]; Xu et al. [2013], cannot be
directly applied since they are restricted to a single or a fixed number of blur ker-
nels, making them inferior in tackling general motion blur problems. In this case,
several researchers assume that the depth or optical flow is known, and therefore
benefits the single-image-based non-blind motion deblurring problem by estimating
the spatially-variant kernel Pan et al. [2019a]; Gong et al. [2017b]. In addition, sev-
eral approaches attempt to leverage multiple images (e.g., a monocular video and
multi-view videos) to restoring the sharp frames.

For multi-image-based deblurring approaches, estimating scene flow via the video
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(b) A spatially-varying blur kernel(a) Sharp image (d) Blur image

(c) Blur kernel

Figure 1.5: A spatially-varying blurred image (from Nah et al. [2017]) and its blur kernel
K. Given a input sharp image (a) and a spatially-varying blur kernel (b), a non-uniform
blurred image (d) can be generated by Eq. (1.6). A vector along the third dimension of (b)
corresponding to a blur kernel (c) at pixel x, where most values in the vector are zero. For
better visualization, we resize the vector (kx) to a matrix. Each pixel in (a) associate with a

blur kernel. (Best viewed in colour on screen).

helps to restore latent images. Take optical flow as an example, the phenomenon
around flow and blur can be viewed as a chicken-egg problem. More effective mo-
tion blur removal requires more accurate motion estimation. Yet, the accuracy of
motion estimation highly depends on the quality of the images. Recognising that
these two problems are intertwined, I suggest developing a method to tackle both
issues at once. Several methods Kim and Lee [2015]; Gong et al. [2017b] leverage a
pixel-wise blur kernel based on the optical flow,

B(x) = vec(kx)
Tvec(L) , (1.6)

where vec(·) is the vectorize symbol, and B(x) is the intensity of pixel x. Let
kx ∈ IRh×w denotes the pixel-wise blur kernel at x, it can be approximated by us-
ing bidirectional optical flows Kim and Lee [2015]; Pan et al. [2017b]. The blur kernel
K ∈ IRh×w×(h×w) can be obtained by stacking kx (seeing Fig. 1.5). The assumptions
here are 1) the motion is in a consistent velocity; 2) the motion is in a single direction.

Recently, researchers have studied to handle the blind motion deblurring with the
powerful deep neural network. Most existing deep learning-based methods Tao et al.
[2018]; Nah et al. [2017] put the image in different net architectures and use ‖L− L̄‖
as their loss function. Here, L denotes the ground-truth latent image, and L̄ is the
deblurring result. This kind of solution achieves superior results. However, these
blindly learning-based approaches not only require large scale training datasets but
also lack interpretability. They implicitly extract the distribution of images directly
from their training data without taking the physical image formation process into
account. A few works Vasu et al. [2018]; Eboli et al. [2020] attempt to introduce blur
kernel estimation to a deep neural network. However, they generally assumed the
blur kernel to be spatially-invariant. This assumption reduces the generality of a
deep neural network significantly, as we can hardly meet the assumption when rel-
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ative motion between the camera and the objects occurred, especially in real-world
applications. To improve their generalization ability while without losing the in-
terpretability, several video-based methods introduced a self-supervised deblurring
strategy Chen et al. [2018] by reblurring the output (deblurred image) with the opti-
cal flow between subsequent frames to match the input blurred image. However, it is
still hard to embed the physical image formation process into a deep neural network.

With the above discussions, to tackle image restoration, in this thesis, we first
propose a single image-based deblurring method by studying the problem in the
frequency domain with the phase-only image. We further extend our approach to han-
dle non-uniform blur, which involves spatially varying blur kernels. Then, with an
RGBD image, we propose to jointly estimate the 6 DoF (degrees-of-freedom) camera
motion and remove the non-uniform blur caused by camera motion by exploiting
their underlying geometric relationships, with a single blurry image and its depth
map (either direct depth measurements or a learned depth map) as input. Moreover,
given consecutive blurred stereo video frames, we propose a method to recover latent
clean images, estimate the 3D scene flow, and segment the multiple moving objects
simultaneously.

1.1.3 Video reconstruction

(a)

(b)

Figure 1.6: An example of generating a blurred image. (a) Samples of sharp frames for
generating a blurred image. (b) The blurred image is generated based on the Middlebury

dataset Scharstein et al. [2014]. (Best viewed on screen).

Video reconstruction is another deblurring trend that reverses the blurring pro-
cess by extracting a video from a single blurred image. The reconstructed video is
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used to understand the dynamics of a scene better. Referring to the digital camera
operation, the blurred image is modelled by the integration of light intensity emitted
from the dynamic scene over the aperture time interval of the camera and is given
by

B =
1
T

∫ f+T/2

f−T/2
L(t) dt, (1.7)

where [ f − T/2, f + T/2] is the exposure interval, and f is the reference timestamp
(seeing Fig. 1.6 for details).

Learning-based approaches, such as Jin et al. [2018], use video to train multiple
neural networks to estimate the underlying frames. They adopt Eq. (1.7) in discrete
space, which is ‖B− 1

N ∑N
0 L̄n‖, as their loss function, where n ∈ [0, N] is the sample

index and N is the sample number. However, the reconstructed videos usually do
not obey the 3D geometry of the scene and camera motion.

Therefore, several researchers Pan et al. [2019c, 2020a] attempt to introduce the
event camera into the deblurring field and reconstruct a high frame-rate sharp video
using a single image that maintains temporal consistency.

Event cameras (such as the Dynamic Vision Sensor (DVS) Lichtsteiner et al. [2008]
and the Dynamic and Active-pixel Vision Sensor (DAVIS) Brandli et al. [2014a]) mea-
sure intensity changes (called ‘event’) asynchronously at each pixel with microsecond
temporal resolution. Unlike conventional cameras that produce the full image at a
fixed frame-rate, event cameras trigger events whenever the change in intensity at a
given pixel exceeds a preset threshold. Event cameras do not suffer from the limited
dynamic ranges typical of sensors with synchronous exposure time, and are able to
capture high-speed motion with microsecond accuracy (seeing Fig. 1.7 for details).

(a) DAVIS (b) Captured image (c) Recorded event

Figure 1.7: Event cameras are bio-inspired sensors that asynchronously report logarithmic
intensity changes. Each pixel in DAVIS contains circuitry that allows an active pixel sensor
(APS) intensity image readout and a dynamic vision sensor (DVS) event generation from the
same photoreceptor. The APS is a standard global shutter camera that operates independently
of the DVS. As shown in (b) and (c), when APS captured only a heavily blurred image,

> 4000 red/blur rendered events have been recorded by the DVS of a 20ms time slice.

Taking full advantage of the high temporal resolution event stream would con-
tribute to the high frame-rate video reconstruction. As we mentioned in Section
1.1.2.2, blur causes undesired image degradation while also encodes the relative mo-
tion between the camera and the observed scene. Besides, the event stream encodes
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the motion information by measuring the precise pixel-by-pixel intensity changes.
Therefore, blur and event streams are connected under the framework of represent-
ing the dynamic scenes. In other words, the dynamic scene can be modelled through
an event camera, while the blur uses convolution with a blur kernel to express the
dynamic scene.

With the above discussion, in this thesis, we first propose a simple and effective
approach the Event-based Double Integral (EDI) model, to reconstruct a high frame-
rate, sharp video (>1000 fps) from a single blurry frame and its event data. The video
generation is based on solving a simple non-convex optimization problem in a single
scalar variable. Then, we improved the EDI model to the multiple Event-based
Double Integral (mEDI) model by using multiple images and their events to handle
flickering effects and noise in the generated video. Furthermore, we provide a new
and more efficient solver to minimize the proposed energy model. Last, we propose
a method that estimates the flow and the sharp image jointly, based on a single blur
image and its events with an objective function that uses the primal-dual algorithm.

In summary, this thesis intends to explore the physical image formation process
and to restore the sharp image/video with different data sources. For image restora-
tion, we explore the physical image formation process and solve the problem with
a single image, RGBD image, and stereo videos. For video reconstruction, which is
reversing the blurring process, we use the event camera and proposed efficient yet
simple approaches.

1.2 Related Work

We first review works for motion restoration based on a single blurred image or
video. Then, we discuss works for video reconstruction with an event camera. We
further discuss methods for optical flow estimation that closely related to our set-
tings.

1.2.1 Single-image deblurring.

Existing blind single image-based deblurring methods tend to formulate the prob-
lem within the Maximum A Posteriori (MAP) framework, where the blur kernel and
the latent sharp image are optimized jointly. To resolve the ill-posed underlining
optimization problem, various assumptions, or regularizations, have been proposed
for the blur kernel and the desired latent image, such as the dark channel prior Pan
et al. [2016b], extreme channel prior Yan et al. [2017a], l0 regularized prior Pan et al.
[2014]; Xu et al. [2014], learned image prior using a CNN Li et al. [2018b], uniform
blur Levin et al. [2009]; Xu et al. [2013], non-uniform blur from multiple homogra-
phies Hu et al. [2014]; Pan et al. [2016a], constant depth Gupta et al. [2010]; Xu and
Jia [2012], in-plane rotation Sun et al. [2015], and forward motion Zheng et al. [2013].
The resultant optimisation problem is non-convex in general. The blur kernel and
the latent image are usually solved in an alternating fashion. Thus, a proper and ef-
fective initialisation is demanded to achieve a good local optimum solution and makes
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the algorithm converge quickly.
A few works have exploited the layer-wise scene structure to model the blur ker-

nel Whyte et al. [2012]; Gupta et al. [2010]; Hu et al. [2014]; Pan et al. [2016a]. Gupta
et al. [2010] represents the camera motion trajectory using a motion density function,
which requires a constant depth or fronto-parallel scene assumption. Hu et al. [2014]
jointly estimating the depth layering and remove the blur caused by an in-plane mo-
tion from a single blurred image. Pan et al. [2016a] estimate object segmentation
and camera motion jointly by incorporating soft segmentation. Noting that both
approaches require user input for initial depth layer segmentation, I recognise it is
still hard for traditional single-image-based methods to model spatially-varying blur
under high dynamic scenes.

Recently, learning-based methods have brought significant improvements in im-
age deblurring. Sun et al. [2015] proposed a convolutional neural network (CNN)
to estimate patch-level linear blur kernels and then restored the latent image by the
estimated blur prior. Gong et al. [2017b] learned optical flow from a single blurred
image through a fully-convolutional deep neural network. The blur kernel is then
obtained from the estimated optical flow to restore the sharp image. Nah et al. [2017]
proposed a multi-scale CNN that restores latent images in an end-to-end learning
manner without assuming any restricted blur kernel model. Tao et al. [2018] pro-
posed a scale-recurrent network that leverage the “coarse-to-fine” scheme to deblur
an image. Zhang et al. [2019] presented a deep hierarchical multi-patch network in-
spired by Spatial Pyramid Matching to deal with blurred images via a fine-to-coarse
hierarchical representation. Though the results are impressive, I suggest those ap-
proaches are not always faithful to the content of the latent image. Moreover, existing
deep neural network-based motion deblurring methods either exploit more frames
or exploit large scale datasets, which may hinder the generalisation ability.

1.2.2 Multi-image deblurring.

Multi-image provides flow or depth information which allows researchers to model
the pixel-wise blur kernel better. Cho et al. [2012] proposed a method relying on the
assumption that salient sharp frames frequently exist in videos, which only allows
for slowly moving objects in dynamic scenes. Wulff and Black [2014] proposed a lay-
ered model to estimate both foreground motion and background motion. However,
these motions are restricted to affine models, and it is difficult to extend them to
multi-layer scenes due to the difficulty in the depth order. Kim and Lee [2014] incor-
porated optical flow estimation to guide the blur kernel estimation, which can deal
with certain object motion blur. In Kim and Lee [2015], a new method is proposed to
simultaneously estimate optical flow and tackle general blur by minimising a single
non-convex energy function. Sellent et al. [2016] proposed a stereo video deblurring
technique, where 3D scene flow is estimated from the blurred images using a piece-
wise rigid scene representation. Pan et al. [2017b] proposed a single framework to
estimate the scene flow and deblur the images jointly.

Recently, video-based methods aim to use neural network architectures to exploit
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the temporal relationship between neighbouring frames. Chen et al. [2018] fine-tune
existing deblurring neural networks in a self-supervised fashion by enforcing that the
output, when blurred based on the optical flow between sub-sequent frames, matches
the input blurred image. Nah et al. [2019a] improve the accuracy of recurrent models
by iteratively updating the hidden states transferred from past frames to the frame
being processed so that the relations between video frames could be better used.
Zhou et al. [2019a] propose a STFAN Network for the alignment and deblurring in a
unified framework, where they take both blurred and restored images of the previous
frame as well as the blurred image of the current frame as input. However, they train
a block in the deep net to learn the warping and alignment ability that limits the
generalisation ability of the proposed method. Zhou et al. [2019c] propose DAVANet
to exploit the two-view nature of stereo images, where 3D scene cues from the depth
and varying information from two views are incorporated to help to remove complex
spatially-varying blur in dynamic scenes. Though these methods take into account
the physical image formation process, the image warping and the alignment are not
easily applied to the network architecture.

1.2.3 Event-based image reconstruction.

The event camera report log intensity changes and outputs a continuous, asyn-
chronous stream of events that encodes non-redundant information about local bright-
ness change. Estimating intensity images from events is important. The recon-
structed images grant computer vision researchers a readily available high temporal
resolution, high-dynamic-range imaging platform that can be used for tasks such
as face-detection Barua et al. [2016], moving object segmentation Stoffregen et al.
[2019], localization Liu et al. [2017b, 2019a]; Liu and Li [2019] and optical flow esti-
mation Zhu et al. [2018a]; Pan et al. [2020b]. Although several works try to explore
the advantages of the high temporal resolution provided by event cameras Zhu et al.
[2017]; Gehrig et al. [2018]; Kueng et al. [2016a]; Gallego et al. [2019]; Brandli et al.
[2014c], how to make the best use of the event camera has not yet been fully investi-
gated.

A typical way for image reconstruction is achieved by processing a spatio-temporal
window of events. Taking a spatio-temporal window of events imposes a latency cost
at minimum equal to the length of the time window, and choosing a time-interval
(or event batch size) that works robustly for all types of scenes is not trivial. Barua
et al. [2016] generate image gradients by dictionary learning and obtain a logarith-
mic intensity image via Poisson reconstruction. Bardow et al. [2016] simultaneously
optimise optical flow and intensity estimates within a fixed-length, sliding spatio-
temporal window using the primal-dual algorithm Posch et al. [2010]. Cook et al.
[2011] integrate events into interacting maps to recover intensity, gradient, and op-
tical flow while estimating global rotating camera motion. Kim et al. [2014] recon-
struct high-quality images from an event camera under a strong assumption that the
only movement is pure camera rotation, and later extend their work to handle 6-
degree-of-freedom motion and depth estimation Kim et al. [2016]. Reinbacher et al.
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[2016] integrate events over time while periodically regularising the estimate on a
manifold defined by the timestamps of the latest events at each pixel. Optimisation
based event-only methods (i.e., without the process of learning from training data)
will generate artefacts and lack of texture when event data is sparse because they
cannot integrate sufficient information from the available sparse events. Recently,
learning-based approaches have improved the image reconstruction quality signif-
icantly with powerful event data representations via deep learning Rebecq et al.
[2019, 2020]; Wang et al. [2019]; Scheerlinck et al. [2020]. Rebecq et al. [2019] pro-
pose E2VID, a fully convolutional, recurrent UNet architecture to encode events in a
spatio-temporal voxel grid. In Rebecq et al. [2020], they propose a recurrent network
to reconstruct videos from a stream of events, and they incorporate stacked Con-
vLSTM gates, which prevent vanishing gradients during backpropagation for long
sequences. Wang et al. [2019] form a 3D event volume by stacking event frame in
a time interval. A reconstructed intensity frame is generated by summing events at
each pixel in a smaller time interval.

To achieve more image details in the reconstructed images, several methods that
aim to combine events with intensities have been proposed. The DAVIS Brandli et al.
[2014a] uses a shared photo-sensor array to simultaneously output events (DVS) and
intensity images (APS). Brandli et al. [2014b] combine images and event streams from
the DAVIS camera to create inter-frame intensity estimates by dynamically estimating
the contrast threshold (temporal contrast) of each event. Each new image frame re-
sets the intensity estimate, preventing excessive growth of integration error. However,
it also discards important accumulated event information. Scheerlinck et al. [2018]
propose an asynchronous event-driven complementary filter to combine APS inten-
sity images with events, and obtain continuous-time image intensities. Shedligeri
and Mitra [2019] first exploit two intensity images to estimate depth. Second, they
only use events to reconstruct a pseudo-intensity sequence (using method Reinbacher
et al. [2016]) between the two intensity images. They, taking the pseudo-intensity se-
quence, they estimate the ego-motion using visual odometry. With the estimated
6-DOF pose and depth, they directly warp the intensity image to the intermediate
location. Liu et al. [2017a] assume a scene should have a static background. Thus,
their method needs an extra sharp static foreground image as input, and the event
data are used to align the foreground with the background.

1.2.4 Event camera-based flow estimation.

Benosman et al. [2012] propose an adaptation of the gradient-based Lucas-Kanade
algorithm based on DVS. In Benosman et al. [2013], they assume that the flow orien-
tation and amplitude can be estimated using a local differential approach on the sur-
face defined by coactive events. They work well for sharp edges and monochromatic
blocks but fail with dense textures, thin lines, and more complicated scenes. Bar-
ranco et al. [2015] propose a more expensive phase-based method for high-frequency
texture regions and reconstructing the intensity signals to avoid the problem with
textured edges. Bardow et al. [2016] jointly reconstruct intensity image and estimate
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flow based on events by minimising their objective function. However, accuracy re-
lies on the quality of the reconstructed image. Gallego et al. [2018] present a unifying
framework to estimate flow by finding the point trajectories on each image plane that
are best aligned with events. Note that its computational complexity increases lin-
early with the number of events. Zhu propose the EV-FlowNet Zhu et al. [2018a], an
event-based flow estimation approach using a self-supervised deep learning pipeline.
The event data are represented as 2D frames to feed the network. While images from
the sensor are used as a supervision signal, the blur effect is ignored which is shown
to be useful for flow estimation in our framework. In Zhu et al. [2019], they further
use another event format to train two networks to predict flow, camera ego-motion,
and depth for static scenery. Then, they use predictions to remove motion blur from
event streams which shows the potential of blurring to improve the flow estimate
accuracy. However, flow computed at those constant brightness regions is still less
reliable.

1.2.5 Image-based flow estimation.

Menze and Geiger [2015] proposed a novel model and dataset for 3D scene flow
estimation with an application to autonomous driving. Pan et al. [2017b] proposed
a single framework to estimate the scene flow and deblur the images jointly. Taniai
et al. [2017] presented a multi-frame method for efficiently computing scene flow
(dense depth and optical flow) and camera ego-motion for a dynamic scene observed
from a moving stereo camera rig.

One promising direction is to learn optical flow with CNNs. Yin and Shi [2018]
propose an unsupervised GeoNet for jointly estimating monocular depth, optical
flow, and camera motion from video. PWC-Net Sun et al. [2018] use the current op-
tical flow estimate to warp the CNN features of the second image. Then the warped
features and features of the first image are applied to construct a cost volume, which
is processed by a CNN to estimate the optical flow. The FlowNet by Dosovitskiy
et al. [2015] represented a paradigm shift in optical flow estimation. The work shows
the feasibility of directly estimating optical flow from raw images using a generic
U-Net CNN architecture. FlowNet 2.0 Ilg et al. [2017] develop a stacked architec-
ture that includes warping of the second image with the intermediate optical flow,
which decreases the estimation error by more than 50% than the original FlowNet.
SelFlow Liu et al. [2019b] is based on distilling reliable flow estimations from non-
occluded pixels and using these predictions to guide the optical flow learning for
hallucinated occlusions.

Several learning-based works attempt to use a single image to estimate flow Walker
et al. [2015]; Rosello [2016]; Endo et al. [2019]. Walker et al. [2015] use CNN to pre-
dict dense flow, while they assume the image is static. Gong et al. [2017a] directly
estimates the motion flow from a blurred image through a fully-convolutional deep
neural network (FCN) and recover the unblurred image from the estimated motion
flow. This is the first universal end-to-end mapping from the blurred image to the
dense motion flow.
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1.3 Thesis Outline

This thesis is formatted as a compilation of my publications during my PhD period
at the Australian National University.

In this thesis, we tackle the following key challenges:

• Single image restoration in the frequency domain

• Camera motion estimation and image restoration with RGBD images

• Scene flow estimation and restoration with stereo videos

• High frame-rate video reconstruction with a DAVIS sensor

• Image reconstruction and flow estimation with a DAVIS sensor

In Chapter 2, we propose a single-image-based deblurring method by studying
the problem in the frequency domain with the phase-only image and further extend our
approach to handle non-uniform blur, which involves spatially varying blur kernels.

In Chapter 3, with a RGBD image, we then propose to jointly estimate the 6
DoF camera motion and remove the non-uniform blur caused by camera shake by
exploiting their underlying geometric relationships, with a single blurry image and
its depth map (either direct depth measurements or a learned depth map) as input.

In Chapter 4, given consecutive blurred stereo video frames, we propose a method
to recover latent clean images, estimate the 3D scene flow, and segment the multiple
moving objects simultaneously. By exploiting the blur model constraint, the moving
objects and the 3D scene structure, we reach an energy minimization formulation for
joint deblurring, scene flow estimation and moving object segmentation.

In Chapter 5, we first propose a simple and effective approach, the Event-based
Double Integral (EDI) model, to reconstruct a high frame-rate, sharp video (>1000
fps) from a single blurry frame and its event data. The video generation is based on
solving a simple non-convex optimization problem in a single scalar variable.

In Chapter 6, we improve the EDI model to the multiple Event-based Double In-
tegral (mEDI) model by using multiple images and their events to handle flickering
effects and noise in the generated video. Furthermore, we provide a more efficient
solver to minimize the proposed energy model. We significantly reduce the compu-
tational complexity with the Fibonacci sequence.

In Chapter 7, we propose a method to estimate optical flow and the sharp image
jointly, from a single blur image and its events with an objective function using the
primal-dual algorithm. In doing so, we introduce an event-based brightness constancy
constraint on absolute intensity and use the blur formation model in our objective
function.

In Chapter 8, we conclude our thesis and provide some future research directions.
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Chapter 2

Phase-only Image Based Kernel
Estimation for Single Image Blind
Deblurring

Single image blind deblurring is an ill-posed problem as infinite pairs of blur
kernels and images could generate the same blurry image. This chapter aims
to estimate a high-quality blur kernel directly from the input image with mo-
tion blur by studying the problem in the frequency domain to handle the
difficulties and regularizing the solution space. We exploit the phase-only im-
age of the blurred input image, reconstructed from the Fourier transformed
image using the phase information only. The phase-only image provides infor-
mation about the blur kernel, thereby leading to a new approach to estimating
the blur kernel.

Liyuan Pan, Richard Hartley, Miaomiao Liu, Yuchao Dai. Phase-Only Image
Based Kernel Estimation for Single Image Blind Deblurring. Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

2.1 Abstract

The image motion blurring process is generally modelled as the convolution
of a blur kernel with a latent image. Therefore, the estimation of the blur
kernel is essentially important for blind image deblurring. Unlike existing
approaches which focus on approaching the problem by enforcing various
priors on the blur kernel and the latent image, we are aiming at obtaining a
high quality blur kernel directly by studying the problem in the frequency
domain. We show that the auto-correlation of the absolute phase-only image1

can provide faithful information about the motion (e.g., the motion direction
and magnitude, we call it the motion pattern in this chapter.) that caused the

1Phase-only image means the image is reconstructed only from the phase information of the blurry
image.
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(c) Auto-correlation

(a) Blurry Image (b) P(B) (d) Kernel (e) Nah et al. [2017]

(f) Tao et al. [2018] (g) Pan et al. [2016b] (h) Yan et al. [2017a] (i) Ours

Figure 2.1: Our deblurring result compared with the state-of-the-art methods. (a) Input
blurry image. (b) The phase-only image. (c) The auto-correlation for the phase-only im-
age. (d) The estimated blur kernel. (e) Deblurring result of Nah et al. [2017]. (f) Deblurring
result of Tao et al. [2018]. (g) Deblurring result of Pan et al. [2016b]. (h) Deblurring result

of Yan et al. [2017a]. (i) Our deblurring result. (Best viewed on screen).

blur, leading to a new and efficient blur kernel estimation approach. The
blur kernel is then refined and the sharp image is estimated by solving an
optimization problem by enforcing a regularization on the blur kernel and the
latent image. We further extend our approach to handle non-uniform blur,
which involves spatially varying blur kernels. Our approach is evaluated
extensively on synthetic and real data and shows good results compared to
the state-of-the-art deblurring approaches.

2.2 Introduction

Blind image deblurring aims at estimating the blur kernel and the latent im-
age from an input blurry image. This is an ill-posed problem as there are
infinitely many pairs of blur kernels and images that could generate the same
blurry image. Blind image deblurring has been extensively studied in com-
puter vision and is still a very active research area Kim and Lee [2015]; Sellent
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et al. [2016]; Gong et al. [2017b]; Pan et al. [2017b]; Nah et al. [2017]; Tao et al.
[2018], where blur kernel estimation is essentially important in obtaining a
high quality sharp image.

Existing blind image deblurring methods tend to formulate the problem
within the Maximum A Posteriori (MAP) framework, where the blur kernel
and the latent sharp image are optimized jointly. To resolve the ill-posed
underlining optimization problem, various assumptions, or regularizations,
have been proposed for the blur kernel and the desired latent image, such
as the dark channel prior Pan et al. [2016b], extreme channel prior Yan et al.
[2017a], l0 regularized prior Pan et al. [2014]; Xu et al. [2014], learned image
prior using a CNN Li et al. [2018b], uniform blur Levin et al. [2009]; Xu et al.
[2013], non-uniform blur from multiple homographies Hu et al. [2014]; Pan
et al. [2016a], constant depth Gupta et al. [2010]; Xu and Jia [2012], in-plane
rotation Sun et al. [2015], and forward motion Zheng et al. [2013]. The resul-
tant optimization problem is non-convex in general. The blur kernel and the
latent image are usually solved in an alternating fashion. Thus, a proper and
effective initialization is demanded to achieve a good local optimum solution
and makes the algorithm converge quickly.

In this chapter, we aim at estimating a high-quality blur kernel directly
from the input image with motion blur by studying the problem in the fre-
quency domain. We exploit the phase-only image of the input blurry image,
which is reconstructed from the Fourier transformed image using the phase
information only. The phase-only image contains edge and texture information
about the image structure Oppenheim and Lim [1981]; Papari and Petkov
[2011]. The motion (either camera or object motion) information is encoded
as repeated image edges in the phase-only image (see Fig. 2.1 for an example).
We show that the auto-correlation of the absolute phase-only image reveals the
motion information including the motion direction and motion magnitude,
which is referred to as the motion pattern in this chapter. It provides informa-
tion about the blur kernel, thereby leading to a new approach to estimating
the blur kernel.

We further improve the blur kernel and latent image estimation by enforc-
ing a spatial sparsity prior on the kernel as well as the latent image gradient
in a simple optimization framework. Furthermore, our blur kernel estimation
approach can be naturally extended to handle non-uniform blur in order to
deal with the spatially-variant blur kernels that arise in complex image de-
blurring problems. Extensive experiment on both synthetic and real images
demonstrate the superiority of our approach over the state-of-the-art meth-
ods.

Our main contributions are summarized as follows

1) We propose a new phase-only image-based approach to directly estimating
the blur kernel from the input blurry image. The approach for motion
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pattern estimation is easy and efficient, consisting of a few lines of code.

2) Our single-image blind deblurring model can be naturally extended to
handle non-uniform blur in an effective manner. Furthermore, the esti-
mated blur kernel can be easily refined by only enforcing spatial sparsity.

3) Evaluated on both synthetic and real images, our proposed approach shows
impressive results compared to other state-of-the-art blind deblurring ap-
proaches.

2.3 Related Work

Single-image blind deblurring. Single-image deblurring jointly estimates
the blur kernel and the latent sharp image from the blurry one, which is
highly under-constrained since the blurry image could be explained by many
pairs of blur kernel and sharp image Ji and Liu [2008]; Pan et al. [2019a]. In
general, image deblurring is formulated in a MAP framework with priors on
blur kernels or latent images. The Sparsity prior has proved effective in blur
kernel estimation. For instance, Krishnan et al. [2011] applied normalized
sparsity in their MAP framework to estimate the blur kernel. Xu et al. [2013]
proposed an approximation of the l0-norm as a sparsity prior in order to
jointly estimate sharp image and blur kernels. Edge-based methods for blur
kernel estimation have been exploited recently Xu and Jia [2010]; Joshi et al.
[2008]; Cho and Lee [2009]; Sun et al. [2013]. Xu and Jia [2010] proposed a two-
phase method for single-image deblurring. The blur kernel is first estimated
based on the selected image edges and refined by ISD optimization. The
latent sharp image is then restored by total-variation (TV)-l1 deconvolution.
In addition, a Gaussian prior is imposed to help the estimation of the blur
kernel Joshi et al. [2008]; Cho and Lee [2009], which leads to an efficient
solver. Moreover, the blur kernel has been modelled based on various motion
assumptions, such as in-plane camera rotation Sun et al. [2015] or camera
forward motion Zheng et al. [2013]. A few works have exploited the layer-
wise scene structure to model the blur kernel Gupta et al. [2010]; Hu et al.
[2014]; Pan et al. [2016a]. Gupta et al. [2010] represent the camera motion
trajectory using a motion density function, which requires a constant depth or
fronto-parallel scene assumption. Hu et al. [2014] proposed jointly estimating
the depth layering and remove the blur caused by in-plane motion from a
single blurry image. Pan et al. [2016a] proposed jointly estimating object
segmentation and camera motion by incorporating soft segmentation. Note
that both approaches require user input for initial depth layer segmentation.

Video image blind deblurring. In order to better model non-uniform blur,
monocular video and stereo based deblurring approaches are proposed to
handle blurring in realistic scenes Pan et al. [2018]; Xu and Jia [2012]. Cho
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et al. [2012] proposed a method relying on the assumption that salient sharp
frames frequently exist in videos, which only allows for slowly moving ob-
jects in dynamic scenes. Wulff and Black [2014] proposed a layered model
to estimate both foreground motion and background motion. However, these
motions are restricted to affine models, and it is difficult to extended them
to multi-layer scenes due to the difficulty in depth ordering. Kim and Lee
[2014] incorporated optical flow estimation to guide the blur kernel estima-
tion, which is able to deal with certain object motion blur. In Kim and Lee
[2015], a new method is proposed to simultaneously estimate optical flow
and tackle general blur by minimizing a single non-convex energy function.
Stereo images and videos can provide depth information which allows to bet-
ter model pixel-wise blur kernel. Sellent et al. [2016] proposed a stereo video
deblurring technique, where 3D scene flow is estimated from the blurry im-
ages using a piecewise rigid scene representation. Pan et al. [2017b] proposed
a single framework to jointly estimate the scene flow and deblur the images.

Deep learning based image deblurring. Recently, image deblurring has
greatly benefited from the great advances in deep learning Kupyn et al.
[2018a]; Sun et al. [2015]; Zhang et al. [2018]; Tao et al. [2018]. Sun et al.
[2015] proposed a convolutional neural network (CNN) to estimate locally
linear blur kernels. Gong et al. [2017b] learned optical flow field from a sin-
gle blurry image directly through a fully-convolutional deep neural network.
The blur kernel is then obtained from the estimated optical flow which is ap-
plied in an MAP framework to restore the sharp image. Su et al. [2017] trained
an end-to-end CNN to accumulate information across frames for video de-
blurring. Nah et al. [2017] proposed a multi-scale CNN that restores latent
images in an end-to-end learning manner without any assumption on the
blur kernel model. Li et al. [2018b] used a learned image prior to distin-
guish whether an image is sharp or not and embedded the learned prior
into the MAP framework. Tao et al. [2018] proposed a light and compact
network, SRN-DeblurNet, to deblur the image. While achieving reasonable
performance on various scenarios, the success of these deep learning based
methods depends on the consistency between the training datasets and the
testing datasets, which can hinder the generalization ability.

2.4 Method

2.4.1 Fourier Theory of Phase-only Images

This section contains the main theoretical insights of this paper. Our goal is
to find the latent sharp image from a single blurry image. The blurry image
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(a) Sharp Image (b) |P(L)|

(c) Blurry Image (d) |P(B)|

Figure 2.2: We use a circle image as an example. The image is blurred by a linear kernel,
where the kernel length is 20 pixels and the direction is 10 degree.

can be modelled as a convolution of the latent image with a blur kernel,

B = L⊗ k, (2.1)

where B is the known blurry image, L denotes the latent sharp image, k is the
blur kernel, ⊗ is the convolution operator. Note that this problem is highly
under-determined since multiple pairs of L and k can lead to the same blurry
image.

In the Fourier domain, Eq. (2.1) corresponds to F (B) = F (L) � F (k),
where � represents the component-wise multiplication.

The phase and amplitude of a complex number z = keiθ are eiθ and
k ≥ 0 respectively. Applying these component-by-component to a Fourier
transformed image F (L) gives the phase and amplitude components. We
denote taking the phase of a complex signal by P(·). Taking the inverse
Fourier transform of the phase-component gives the phase-only image, P(L) =
F−1(P(F (L))). It is well known that the phase-only image bears more sim-
ilarity to the original image than the analogously defined amplitude image.
Fig. 2.2 shows an example of the phase-only image derived from a clean and
blurry image. As may be observed, taking a phase-only image acts as a sort
of edge-extractor. This is related to the fact, noted in Kovesi [2003] that the
Fourier components of an edge tend to be in-phase with each other. For a real
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Figure 2.3: Given a top-hat function (a), its fourier transform is a sinc shown in (b). (The
central peak has twice the width of the others. Note that since the top-hat is symmetric, its
Fourier transform is real, hence its phase is either +1 or −1 shown in (c).) The phase-only
image of the top-hat shown in (d) is obtained by taking the inverse Fourier transform of the

function in (c).

image L, the phase-only image will also be real. Another simple property is
rotation-covariance: if R represents rotation then P(R(L)) = R(P(L)). It is also
shift-covariant.

We now make a basic observation regarding the phase-only image of a
convolution.

lemma 1. The phase-only image of a convolution P(L⊗ k), equals the convolution
of the phase-only image and the phase-only kernel.

P(L⊗ k) = F−1(P(F (L⊗ k))) = P(L)⊗ P(k) . (2.2)

This results from a simple calculation.

Linearly-blurred image. For a simple linear (straight-line) blur kernel, the
form of P(k) can be computed. By rotation and shift covariance, it may
be assumed without loss of generality, that k is axis-aligned, in which case
k(x, y) = δ(y)H(x), where δ(y) is a Dirac delta function and H(x) is a
top-hat. The Fourier transform is separable, so it follows that P(k)(x, y) =
δ(y)P(H)(x). Hence, we investigate what the 1D phase-only signal P(H) is.
The result is shown in Fig. 2.3.

According to Eq. (2.2), if B = L⊗ k, then P(B) is obtained by convolving



24 Phase-only Image Based Kernel Estimation for Single Image Blind Deblurring

P(L) in the orientation of the linear kernel with the phase-only kernel, shown
in Fig. 2.3(d). This results in the creation of multiple copies (“ghosts”), of the
phase-only image, P(L), separated by the width of the filter. (The copies due
to the principal peaks will be the most noticeable.)2 This is shown in Fig. 2.4.

(a) Blurry Image (b) |P(B)| (c) A(|P(B)|) (d) Deblurring Results

Figure 2.4: (a) Input blurry images, the top one is a synthetic image created by ourselves
and the bottom one is a real image from dataset Shi et al. [2014]. (b) The absolute phase-only
image of the blurry image, |P(B)|, results in two principal copies (others more faint) of P(L).
(c) The autocorrelation of the absolute phase-only image, A(|P(B)|), showing two distinct
peaks (separated by the length of the filter kernel). Distinguishing the two principal peaks of
the autocorrelation (apart from the origin) can be used to determine the orientation and width

of a linear (straight-line) blur kernel. (d) shows our deblurring results with sharp edges.

The key advantage of phase-only image. This analysis and the examples
show the advantage and purpose in considering the phase-only image as
a means of determining the blur kernel, and subsequently deblurring the
image. This is illustrated by the analysis of the linear kernel.

The effect of blurring is to smear the image in the blur direction, as shown
in Fig. 2.4 (top left). From this image, it is not easy to discern the shape of
the kernel, particularly the linear extent of the kernel. On the other hand, in
the phase-only image, the effect of blurring is to create two principal identical
copies of P(L) separated by the extent of the blur kernel. This is immediately
evident from Fig. 2.4(b), or Fig. 2.2(d). Thus, the continuous smear in the
blurred image is replaced by a simple sum of two (principle) copies in the
phase-only blurred image. This simplification of the effect of blurring makes
the further image-processing to compute the blur-kernel much simpler.

This discovery of the application of the phase-only image to deblurring is
the key original contribution of this paper.

2A more exact statement is that P(B) consists of multiple ghosts, separated by the filter width, of
the gradient of P(L) in the filter direction.
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2.4.2 Autocorrelation

Using phase-only to obtain P(B) from a blurry image results in multiple (two
principal) shifted copies of P(L). Note that P(L) is not known. However, this
suggests the use of autocorrelation of P(B).

Autocorrelation of a signal I (1 or 2-dimensional) is computed using Fourier
transform as:

A(I) = F−1(F (I)�F (I)).

Unfortunately, if I is itself a phase-only image, derived from J, then

F (I) = F (F−1P(F (J))) = P(F (J)).

So A(I)=F−1(P(F (J))�P(F (J)))=F−1(1)= δ

where δ is a Dirac delta function at the origin. In other words, a phase-only
image is completely un-selfcorrelated.

In other words, we cannot derive any information whatever from the auto-
correlation of a phase-only image. The solution is to use the absolute value of
the phase-only image instead. In other words, we compute A(|P(B)|), which
should show the desired behaviour.

Fig. 2.4 shows the absolute phase-only image |P(B)| and its autocorrelation
A(|P(B)|). It is noticed that multiple copies of |P(L)| are shown in |P(B)|.
The most noticeable repeated edges are due to the principal peak of P(k) (as
analyzed above) indicating the start and end point of the moving camera.

The autocorrelation of the absolute phase-only image shows several bright
points that indicate the motion of the camera, e.g., the motion direction and
magnitude, which is referred to as motion pattern. The autocorrelation image
will consist of a central peak plus two side-peaks separated by the extent (and
in the direction) of the blur-kernel.

Consequently, the motion of the camera will provide faithful information
for obtaining the blur kernel. Therefore, in the following section, we will
present our approach to image deblurring based on the analysis of the auto-
correlation of the absolute phase-only image.

2.5 Uniform Deblurring

Based on the analysis of the Fourier theory of phase-only images, we intro-
duce our approach to estimate the blur kernel and deblur the images.

2.5.1 Uniform Blur from Linear Motion

Consider the blur caused by a pure linear motion. By computing the autocor-
relation of the absolute phase-only image, the motion pattern, namely the motion
direction and the motion magnitude, is extracted by directly connecting the
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(a) Blurry Image (b) Nah et al. [2017]

(c) Coarse Kernel (d) Refined Kernel

Figure 2.5: (a) The blurry image from dataset Pan et al. [2016b]. (b) Deblurring results
of Nah et al. [2017]. (c) Our deblurring result with the coarse blur kernel built from the
autocorrelation of the absolute phase-only image. (d) Our deblurring result with the refined
kernel. The refined kernel can better improve the deblurring result by looking at the close-up
of the part of the sail with detailed sharp edges. Note that the blur kernel is zoomed in the

corner.

two end bright points in A(|P(B)|). The blur kernel is then formed based on
the extracted motion pattern. In particular, the motion magnitude determines
the kernel size. The non-zero kernel values are uniformly distributed along
the motion direction (see Fig. 2.4 the top row for an example). Given the built
blur kernel, the latent image can be easily obtained by solving the Eq. (2.3)
which will be introduced in the following section.

2.5.2 Uniform Blur from Non-linear Motion

The blurry image is formed by the integral of light intensity over the exposure
period. For more complex motion, the autocorrelation image A(|P(B)|) will
show more bright points representing high correlation values (see Fig. 2.1 (c)
and Fig. 2.4 (c) for examples).

In general, in the case of uniform (spatially-invariant) blur, one may write
B = k⊗ L, so, allowing for the possibility of noise, the deblurring problem
(with known kernel) may be formulated as finding argminL ‖k⊗ L− B‖2

2.
In most cases, however, blurring acts as a form of low-pass filter – high-
frequency information is lost. Consequently, this problem is not well-conditioned.
Thinking of convolution with known k as being a linear operator, there ex-
ist near-zero eigenvalues whose eigenvectors correspond to high-frequency
components of the signal (image). The deblurring process is to restore the
lost frequency components of the image. If high-frequency components are
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over-emphasized in the deblurring process, the resulting latent image L will
be noisy, or edges will show ringing. A common solution to this is to add
a regularization term that discourages excessive high-frequency components.
One is therefore led to the following minimization problem.

min
L
‖k⊗ L− B‖2

2 + µ2 h(∇L) , (2.3)

where h(·) is a penalty term used to discourage excessive gradients, which
are indicative of noise and over-emphasized edges.

In the case of non-linear motion, the kernel is not known exactly, but an
initial value of k may be estimated directly from the autocorrelation of the
absolute phase-only image as described previously. Our final goal is to further
refine the kernel k and estimate the latent sharp image L by solving

min
L,k
‖k⊗ L− B‖2

2 + µ1 ‖k‖2
2 + µ2 h(∇L) , (2.4)

where µ1 and µ2 are weight parameters. The first term encodes the fact that
the modelled blurry image should be similar to the observed image. The
second term is to regularize the solution of the blur kernel. The third term
prevents over-sharpening.

The optimization of our energy function defined in Eq. (2.4) involves two
sets of variables, the kernel and the latent image. We perform the minimiza-
tion iteratively starting with the initial estimate of k given by the phase-only
technique. (See Fig. 2.5 for an example).

2.5.2.1 Estimating the Latent Image

The goal is to minimize Eq. (2.4) by alternation. If k is known, the problem
comes down to minimizing Eq. (2.3).

Specifically, we use a truncated-quadratic gradient regularization term

h(∇L) = ∑
x,y

min(‖∇xyL/ε‖2, 1) (2.5)

where ε ∈ [0.1, 1] and ∇xyL represents the gradient of L at image coordinates
(x, y). This regularization term smooths out small noise, while allowing occa-
sional large gradients (intensity differences). This type of term, proposed by
Blake and Zisserman [1987] is widely used to regularize noise and gradients
in stereo Veksler [2001] and was also used in deblurring in Xu et al. [2013]).
Because the truncated quadratic is non-convex, the optimization problem is
non-convex. We use the method of half quadratic splitting, as in Xu et al.
[2011], to minimize this cost function, though other methods such as Iterative
Reweighted Least Squares could be used for such truncated-quadratic cost
Aftab and Hartley [2015].
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2.5.2.2 Refining the Kernel

Now, with L known, the motion blur kernel can be refined by solving

min
k
‖k⊗ L− B‖2

2 + µ1 ‖k‖2
2 .

This is a quadratic problem, and can be solved directly by taking gradients,
which results in a set of linear equations. More efficiently, we solve it in the
Fourier domain, in which case there is a closed-form solution

F (k) = F (L)�F (B)
/ (
F (L)�F (L) + µ1

)
,

where the division is carried out point-wise (as are the multiplications). Then
k is found by the inverse transform, and then normalized to sum to 1.

The algorithm alternates between recomputing L and k until convergence,
or for a fixed number of steps.

2.6 Extension to Non-uniform Deblurring

Our method can be easily extended to handle non-uniform blur (e.g., the
background and foreground undergo different blur) by deblurring the image
patch-by-patch or layer-by-layer. Each patch or layer of the image corresponds
to a different blur kernel. The new non-uniform blur model can be expressed
as

B =
N

∑
i=1

ki ⊗ li, (2.6)

where N denotes the number of segmented patches or layers, li = Mi � L
is to extract the i-th patch or layer of the latent image, Mi is a binary mask
with non-zeros values in the region corresponding to the i-th patch or layer
in L, and ki denotes the blur kernel corresponding to the i-th patch. Similary,
we define Bi = ki ⊗ li and B = ∑N

i=1 Bi. Each layer can be handled using
our proposed uniform deblurring approach in Section 2.5. The final latent
image L is ∑N

i=1 li. In Fig. 2.6, we give an example of the deblurring results for
uniform and non-uniform blur models. The image is a real blurry image from
dataset Gong et al. [2017b]. Clearly, our non-uniform deblurring achieves
better results than our uniform-deblurring model and the other existing non-
uniform deblurring methods which either use additional depth, camera pose
information Hu et al. [2014]; Gupta et al. [2010]; Whyte et al. [2012] or use
deep convolutional neural networks Gong et al. [2017b]; Nah et al. [2017].
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(a) Blurry Image (b) Ours (Uniform)

(c) Nah et al. [2017] (d) 0.257Gong et al. [2017b]

(e) Blur Kernel (f) Ours (Non-uniform)

Figure 2.6: Example of our non-uniform blur kernel where the real blurry image is from
Gong et al. [2017b]. (a) Input blurry image. (b) Our deblurring results by using uniform
blur model and its blur kernel. We can see clearly that the man in a plaid shirt seems not
deblurred because of the improper kernel. (c) Deblurring result of Nah et al. [2017]. (d)
Deblurring result of Gong et al. [2017b]. (e) Non-uniform blur kernel. (f) Our deblurring

result by using non-uniform blur model and kernel.
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Figure 2.7: Quantitative evaluations on dataset Levin et al. [2009]. We report the experi-
mental results with and without using the blur kernel estimated from the phase-only image
(‘Ours(no phase)’). The results further demonstrate the effectiveness of blur kernel estima-

tion from the phase-only image.
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Table 2.1: Quantitave comparison on the dataset Levin et al. [2009].
0.257Cho et al. [2011] Pan et al. [2016b] Yan et al. [2017a] Our (no phase) Our

PSNR(dB) 25.63 27.54 24.70 25.74 28.38
SSIM 0.7907 0.8626 0.8760 0.7842 0.9250
SSD 2.6688 1.2747 1.6802 3.2517 0.8776

(a) Blurry Image (b) Yan et al. [2017a] (c) Pan et al. [2016b] (d) Ours

Figure 2.8: Qualitative comparison on example images from dataset Köhler et al.
[2012](top), Levin et al. [2009](bottom) and image taken by ourselves (middle). (a) Input
blurry images. (b) Deblurring results of Yan et al. [2017a]. (c) Deblurring results of Pan

et al. [2016b]. (d) Our deblurring result. (Best viewed on screen).

2.7 Experiment

2.7.1 Experimental Setup

Dataset. We evaluate our approach on the datasets provided by Köhler et al.
[2012]; Pan et al. [2016b]; Sturm et al. [2012]; Gong et al. [2017b]; Levin et al.
[2009] and images captured by ourselves, which covers images from man-
made scene, natural scene and images containing text (see Fig. 2.5, 2.6, 2.8 for
examples).

Baselines and evaluation metric. Since our proposed approach can handle
both uniform and non-uniform blurs, we compare with state-of-the-art meth-
ods for both cases separately. For traditional methods (non-deep learning
methods), we compare with Yan et al. [2017a]; Pan et al. [2016b]; Cho and
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(a) Blurry Image (b) Tao et al. [2018]

(c) Pan et al. [2017a] (d) Nah et al. [2017]

(e) Yan et al. [2017a] (f) Ours

Figure 2.9: Example of deblurring result on Köhler et al. [2012] dataset with kernel estimated
by our method. (a) Input blurry images. (b) Deblurring results of Tao et al. [2018]. (c)
Deblurring results of Pan et al. [2017a]. (d) Deblurring results of Nah et al. [2017]. (e)
Deblurring results of Yan et al. [2017a]. (f) Our deblurring result. (Best viewed on screen).
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(a) Blurry Image (b) Tao et al. [2018]

(c) Pan et al. [2017a] (d) Nah et al. [2017]

(e) Yan et al. [2017a] (f) Ours

Figure 2.10: Example of deblurring result on Köhler et al. [2012] dataset with kernel esti-
mated by our method. (a) Input blurry images. (b) Deblurring results of Tao et al. [2018].
(c) Deblurring results of Pan et al. [2017a]. (d) Deblurring results of Nah et al. [2017]. (e)
Deblurring results of Yan et al. [2017a]. (f) Our deblurring result. (Best viewed on screen).
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(a) Blurry Image (b) Tao et al. [2018]

(c) Pan et al. [2017a] (d) Nah et al. [2017]

(e) Yan et al. [2017a] (f) Ours

Figure 2.11: Example of deblurring result on Köhler et al. [2012] dataset with kernel esti-
mated by our method. (a) Input blurry images. (b) Deblurring results of Tao et al. [2018].
(c) Deblurring results of Pan et al. [2017a]. (d) Deblurring results of Nah et al. [2017]. (e)
Deblurring results of Yan et al. [2017a]. (f) Our deblurring result. (Best viewed on screen).



34 Phase-only Image Based Kernel Estimation for Single Image Blind Deblurring

(a) Blurry Image (b) Tao et al. [2018]

(c) Pan et al. [2017a] (d) Nah et al. [2017]

(e) Yan et al. [2017a] (f) Ours

Figure 2.12: Example of deblurring result on Köhler et al. [2012] dataset with kernel esti-
mated by our method. (a) Input blurry images. (b) Deblurring results of Tao et al. [2018].
(c) Deblurring results of Pan et al. [2017a]. (d) Deblurring results of Nah et al. [2017]. (e)
Deblurring results of Yan et al. [2017a]. (f) Our deblurring result. (Best viewed on screen).
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Table 2.2: Quantitative comparisons on the dataset Köhler et al. [2012], where Nah et al.
[2017]; Kupyn et al. [2018a] are deep based methods.

Blurry Image Whyte et al. [2012] Xu et al. [2013] Pan et al. [2016b]
PSNR(dB) 24.93 27.03 27.47 29.95

SSIM 0.783 0.809 0.811 0.932
Yan et al. [2017a] Nah et al. [2017] Kupyn et al. [2018a] Ours

PSNR(dB) 28.42 26.48 26.10 30.18
SSIM 0.897 0.807 0.816 0.933

Lee [2009]; Whyte et al. [2012]; Xu et al. [2013]. For deep learning based
methods, we compare with Gong et al. [2017b]; Nah et al. [2017]; Kupyn
et al. [2018a] which can handle spatially-variant blur. We report the PSNR,
SSIM on datasets Levin et al. [2009]; Köhler et al. [2012] and error ratio3 on
dataset Levin et al. [2009] which provides the ground truth blur kernels for
evaluation.

Implementation details. We validate the parameters in our model on three
reserved images for each dataset and use coarse-to-fine strategy for deblur-
ring. We set µ1 = 2, µ2 = 0.005 for our experiment. Our framework is im-
plemented using MATLAB®. It takes around 40 second to process one image
(800× 800) on a single i7 core running at 3.6 GHz.

2.7.2 Experimental Results

The dataset introduced in Levin et al. [2009] is a widely used uniform blur
dataset, which contains 32 blurry images generated by 4 ground truth images
and 8 blur kernels. We perform the quantitative and qualitative evaluation on
this dataset. Results are shown in Fig. 2.7, 2.8 and Table 2.1, which demon-
strates that our proposed approach achieves competitive results.

The Natural dataset is generated by Köhler et al. [2012] with camera motion
measured and controlled by a Vicon tracking system. Specifically, the dataset
provides blurry image, its latent image, and ground truth blur kernel, which
allows the quantitative comparison of our approach with baselines. The cap-
tured images are of size 800× 800. In Table 2.2, we show the quantitative
comparison with the state-of-the-art Single-image deblurring approaches on
dataset Köhler et al. [2012]. More results are shown in Fig. 2.9, Fig. 2.10, Fig.
2.11, and Fig. 2.12. It demonstrates that our approach can achieve the best
performance on the PSNR and SSIM score.

We further show the corresponding qualitative comparison results on ex-
ample images in Köhler et al. [2012] in Fig. 2.8. It clearly shows that our
approach can recover more sharp details and with less ringing artifacts than

3 Error ratio is introduced in Levin et al. [2009] which measures the ratio between the SSD (Sum
of Squared Distance) of the deconvolution error computed with the estimated kernel and the ground
truth kernel.
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other approaches, which are highlighted in the presented results. We also re-
port our deblurring result in Fig. 2.1, 2.4, 2.5 and 2.6, respectively. Note that
our deblurring results can recover the color more faithfully than the baselines.

2.8 Conclusions

Our proposed phase-only image based kernel estimation approach is simple
(implemented in a few lines of code). The resulted image deblurring al-
gorithm achieves better quantitative results (using PSNR, SSIM, and SSD),
than the state-of-the-art methods by extensive evaluation on the benchmark
datasets. While our approach can handle the general blur cases, it still suffers
from low lighting condition like other deblurring methods. Our future work
will explore how to remove blurs less sensitive to lighting conditions.



Chapter 3

Single Image Deblurring and
Camera Motion Estimation with
Depth Map

Camera shake during exposure is a major problem in hand-held photogra-
phy. This chapter focuses on estimating and removing the spatially-varying
motion blur caused by camera shake during the exposure time. It proposes to
achieve blind image deblurring by explicitly exploiting the 6 DoF (degrees-of-
freedom) camera motion. In our formulation, the observed blurred image is
formed by a composition of both the 6 DoF camera motion and the 3D scene
structure, enabling us to capture the real blurred image generation process,
especially due to camera shake.

Liyuan Pan, Yuchao Dai, Miaomiao Liu, Fatih Porikli. Joint Deblurring and
Camera Motion Estimation from a Single Blurry Image. Winter Conference
on Applications of Computer Vision (WACV), 2019.

3.1 Abstract

Camera shake during exposure is a major problem in hand-held photography,
as it causes image blur that destroys details in the captured images. In the real
world, such blur is mainly caused by both the camera motion and the complex
scene structure. While considerable existing approaches have been proposed
based on various assumptions regarding the scene structure or the camera
motion, few existing methods could handle the real 6 DoF camera motion. In
this chapter, we propose to jointly estimate the 6 DoF camera motion and
remove the non-uniform blur caused by camera motion by exploiting their
underlying geometric relationships, with a single blurred image and its depth
map (either direct depth measurements, or a learned depth map) as input. We
formulate our joint deblurring and 6 DoF camera motion estimation as an
energy minimization problem which is solved in an alternative manner. Our

37
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(a) Blurred Image (b) Our Result (c) Blurred Image (d) Our Result

Figure 3.1: (a), (c) are the input blurred images from Köhler et al. [2012] dataset. (b), (d) are
our deblurring results. We first use the blurred image to learn a depth map by using Godard
et al. [2017]. Then, we jointly estimate camera motion and deblur the image with the learned
depth map. With the depth map and the 6 Dof camera pose, we can project the recovered
image to a sharp image sequence. We display one image of our deblurring sequence (during

the exposure time). (Best view in Adobe Reader)

model enables the recovery of the 6 DoF camera motion and the latent clean
image, which could also achieve the goal of generating a sharp sequence
from a single blurred image. Experiments on challenging real-world and
synthetic datasets demonstrate that image blur from camera shake can be
well addressed within our proposed framework.

3.2 Introduction

Image blurs are mainly caused by camera motions or motion of the objects in
the scene during the long exposure time, which is generally required under
the low-light condition. It is a common problem for hand-held photography
and becomes increasingly important due to the popularity of mobile devices
such as smartphones in recent years. Blind image deblurring targets at re-
covering the latent clean images from the blur ones. It has been an active
research field in computer vision and image processing community Kim and
Lee [2015]; Sellent et al. [2016]; Gong et al. [2017b]; Pan et al. [2017b]; Su et al.
[2017].

Blind image deblurring is a very challenging task since it is highly under-
constrained as multiple pairs of blur kernels and latent images can generate
the same blurred image. A single blur kernel cannot model the complex blurs
in real-world scenarios. Existing methods have exploited various constraints
to model the characteristics of blur and use different natural image priors to
regularize the solution space Lai et al. [2016]. However, these assumptions,
such as uniform blur Xu et al. [2013], non-uniform blur from multiple ho-
mography Hu et al. [2014]; Pan et al. [2016a], with moving objects Pan et al.
[2016a], constant depth Gupta et al. [2010]; Xu and Jia [2012], in-plane rota-
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tion Sun et al. [2015], forward motion Zheng et al. [2013] may not be satisfied
and applicable in practice.

In this chapter, we focus on estimating and removing the spatially-varying
motion blur caused by camera shake during the exposure time and propose
to achieve blind image deblurring by explicitly exploiting the 6 DoF (degrees-
of-freedom) camera motion (see Fig. 3.1 for an example). In our formulation,
the observed blurred image is formed by a composition of both the 6 DoF
camera motion and the 3D scene structure, which enables us to capture the
real blurred image generation process especially due to camera shake.

In order to handle the real world spatially-variant blur, we make the fol-
lowing assumptions regarding the scene structure and the camera motion:

1) Availability of depth map of the scene. As more and more consumer
cameras are now equipped with depth sensors such as iPhone X, the avail-
ability of depth map becomes a rather reasonable and realistic assumption.
Furthermore, the advent of deep learning also enables the estimation of a
dense depth map from a single color image (monocular depth estimation)
Ranftl et al. [2016]; Liwicki et al. [2016]; Li et al. [2018a].

2) Small camera motion. Due to the short exposure time and the high sam-
pling rate of modern video cameras, the camera shake process can be mod-
eled as the camera essentially undergoes a motion with small rotation an-
gle and linear translation. We thus adopt the small angle approximation of
rotation Yu and Gallup [2014].

The above assumptions naturally lead to a few legitimate queries:

1) Why the 6 DoF camera motion is needed? Recently, several deep learning
based approaches Jin et al. [2018]; Purohit et al. [2019] could restore a
video from a single blur image. However, the restored video sequence
is not guaranteed to respect the 3D geometry of the scene as well as the
camera motion. Instead, we target at recovering the 6 DoF camera motion
which allows the recovery of a sharp video sequence from a single blurred
image as well as the capacity of novel view synthesis for high frame rate
video sequences. In Fig. 3.1, we illustrate the recovered video sequence
from a single blurred image, which clearly demonstrates the benefit of our
camera motion model.

2) Why the small camera motion model is useful? For small rotation model,
the simplified rotation matrix is robust to noise as the second-order Tay-
lor expansion of the rotation matrix has been ignored. The small motion
model has been proven to be the key in estimating the camera poses and
the 3D structure in the context of 3D reconstruction from accidental mo-
tion Im et al. [2015]. More complex camera trajectories could be exploited
with the cost of increasing computational complexity.
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Building upon the above assumptions regarding the camera motion and
the scene structure, we formulate blind image deblurring as the task of joint
latent clean image recovery and 6 DoF camera motion estimation 1. Our
unified framework naturally relates camera motion estimation and image de-
blurring, where the solution of one sub-task benefits the solution of the other
sub-task. Specifically, we present an energy minimization based framework
which involves both a unary term in explaining the observed blurred image
and regularization terms on the camera motion and the desired latent clean
image. To speed up the implementation and provide effective optimization,
we apply a coarse-to-fine strategy to the energy minimization, where in each
level we perform camera motion estimation and image deblurring in an alter-
native manner.

Our main contributions can be summarized as:

• We propose to jointly estimate the 6 DoF camera motion and deblur the
image from a blurred image while giving its depth map (the depth infor-
mation is from depth measurements or learned from the color image);

• We propose to use the small motion camera model which not only sim-
plifies the motion estimation problem but also leads to an efficient solu-
tion;

• Extensive experiments on both synthetic and real images prove the ef-
fectiveness of our method especially its robustness against noisy depth
maps.

3.3 Related Work

Recently, significant progress has been made in blind image deblurring. As
there is a rich family of image deblurring methods, here we confine ourself to
the most related ones. Blind image deblurring methods could be roughly
categorized into two groups: monocular methods (image and video) and
multi-view methods. Besides, we will also briefly cover deep learning based
deblurring approaches.

Monocular image deblurring. Blind image deblurring is highly ill-posed,
therefore various constraints on the blur kernels or the latent images have
been proposed to regularize the solution space, which include the gradient
based regularizers such as total variation Pan et al. [2017b], Gaussian scale

1The most similar work to ours seems to be Park and Lee Park and Lee [2017a], which solves for
camera pose, scene depth, deblurring image and super-resolution under a unified framework from a
image sequence. Different from Park and Lee [2017a], our method takes a single blurred image and a
depth map as input to achieve camera motion estimation and image deblurring
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mixture Fergus et al. [2006], l1\l2 norm Krishnan et al. [2011], and the l0-
norm regularizer Xu et al. [2013]. Besides, non-gradient-based priors such as
the color line based prior Lai et al. [2015], and the extreme channel (dark-
/bright channel) prior Pan et al. [2016b, 2017a]; Yan et al. [2017a] have also
been explored. The fact that blur caused by camera shake in images are usu-
ally non-uniform motivates a series of work in modeling the spatially-variant
blur. Whyte et al. [2012] approximated the blur kernels by discretization in
the space of 3D camera rotations. Gupta et al. [2010] used a motion density
function to represent the camera motion trajectory for the non-uniform de-
blurring, which requires the constant depth or fronto-parallel scene assump-
tion. Hirsch et al. [2011] assumed that blur is locally invariant and proposed a
fast non-uniform framework based on efficient filter flow. Zheng et al. [2013]
considered only discretized 3D translations. Hu et al. [2014] proposed to
jointly estimate the depth layering and remove non-uniform blur caused by
in-plane motion from a single blurred image, which, however, requires user
input for depth layers partition and known depth values a prior. Pan et al.
[2016a] proposed to jointly estimate object segmentation and camera motion
by incorporating soft segmentation, but requires user input. In practical set-
tings, it is still challenging to remove strongly non-uniform motion blur in
complex scenes.

Video deblurring. Single image based deblurring has been extended to video
sequence to better remove blurs in dynamic scenesCho et al. [2012]; Kim
and Lee [2014, 2015]; Pan et al. [2017b]. Wulff and Black Wulff and Black
[2014] proposed a layered model to estimate both foreground motion and
background motion. However, these motions are restricted to affine models,
and it is difficult to be extended to multi-layer scenes due to the requirement
of depth ordering of the layers. Kim and Lee [2015] proposed to simultane-
ously estimate optical flow and tackle the case of general blur by minimizing
a single non-convex energy function. As depth can significantly simplify the
deblurring problem, multi-view deblurring methods have been proposed to
leverage the depth information. Xu and Jia [2012] inferred depth from two
blurred images captured by a stereo camera and proposed a hierarchical es-
timation framework to remove motion blur caused by in-plane translation.
Sellent et al. [2016] proposed a stereo video deblurring technique, where 3D
scene flow is estimated from the blur images using a piecewise rigid scene
representation. Pan et al. [2017b] proposed a single framework to jointly es-
timate the scene flow and deblur the images. Lee et al. [2018] proposed to
estimate all blur model variables jointly, including latent sub-aperture image,
camera motion, and scene depth from the blurred 4D light field.

Deep learning based image deblurring. Recently, the success of deep learn-
ing in high-level vision tasks have also been extended to low-level vision tasks
such as image deblurring Vasu and Rajagopalan [2017]; Kim et al. [2017]; Su
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et al. [2017]; Nah et al. [2017]; Tao et al. [2018]. Sun et al. [2015] proposed a
convolutional neural network (CNN) to estimate locally linear blur kernels.
Gong et al. [2017b] learned optical flow field from a single blurred image di-
rectly through a fully-convolutional deep neural network and recovered the
clean image from the learned optical flow. Jin et al. [2018] extracted a video
sequence from a single motion-blurred image by introducing loss functions
invariant to the temporal order. Li et al. [2018b] used a learned image prior
to distinguish whether an image is sharp or not and embedded the learned
prior into the MAP framework. Tao et al. [2018] proposed a light and compact
network, SRN-DeblurNet, to deblur the image. With the supervised learning
nature of these deep learning based deblurring methods, the success strongly
depends on the statistical consistency between the training datasets and the
testing datasets, which could hinder the generalization ability for real world
applications.
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Figure 3.2: Example of our blur model. We approximate the blurred image by averaging the
images sequence during the exposure time 2T, where the spatially-variant blur kernel induced

by the 6 DoF camera motion. (Best viewed on screen).

3.4 A Unified Spatially-varying Camera Shake Blur Model

In this section, we develop a unified spatially-varying camera shake blur
model, which explicitly relates the 6 DoF camera motion (including in/out-
of-plane rotation and translation), and the latent clean image. In particular,
we formulate our problem as a joint estimation of 6 DoF camera motion and
image deblurring for depth-varying scenery.

3.4.1 Blur Model

Given a single blurred image B and its corresponding depth map D (either
from depth sensors or learned through a deep neural network), our goal is
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to find a clean (latent) image L and its corresponding camera motion during
image capture. The blurred image can be modeled as a convolution of the
latent image with a spatially-varying blur kernel kx,

B(x) = (kx ⊗ L)(x) + z, (3.1)

where kx denotes the blur kernel at pixel location x ∈ R2, ⊗ is the convolu-
tion operator, z ∼ N (0, σ2) is defined as the Gaussian noise. Note that this
problem is highly under-determined since multiple pairs of L and kx could
lead to the same blurred image. We therefore make assumptions on the gen-
eration process of the blur image that, for complex dynamic settings such as
outdoor traffic scenes, the spatially-varying blur kernels are determined by
the 6 DoF camera motion and the scene structure.

The blurred image is generally modeled as the integration of the images
during the exposure time 2T. In our model, we will explicitly model the
blurred image generation process with respect to the 6 DoF camera motion.
Given the depth map D corresponding to the latent image L and the camera
motion pt, the image at time t is defined as w(pt, D, L). w(·) is referred as the
warping function which is defined by the back-projection of the latent image
to 3D points based on the depth D followed by a forward projection to image
frame at time t based on pt. The blurred image is therefore generated as

B = λT

∫ T

t=−T
w(pt, D, L)dt + z, (3.2)

where λT = 1
2T . In general, we handle the problem in discrete space with

B = λN

N

∑
n=−N

w(pt, D, L) + z = Ap(L) + z,

where sample frequency λN = 1
2N+1 , N is the sample number, and n is the

sample index.

3.4.2 Camera Motion Model

We further assume that the camera performs uniform out-of-plane rotation
and translation. Let p = (θx, θy, θz, vx, vy, vz)T represent the absolute motion
during the exposure time 2T. The camera motion at time t, is then defined as
pt = (t/2T) ∗ p. Let ` = (θx, θy, θz)T be the rotation parameters (Rodrigues’
rotation formula Belongie [1999]), and v = (vx, vy, vz)T be the translation
vector. Since the camera exposure time is usually very short (several millisec-
onds), we assume that the camera performs small rotation motion, thus the
rotation matrix can be approximated as

R = I + [`]× =

 1 −θz θy
θz 1 −θx
−θy θx 1

 ,
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where [·]× denotes the cross-product operator, and I is the identity matrix.
The small rotation motion assumption results in a first-order approximation
of the rotation matrix.

Based on the above blur model and small motion model, we define our en-
ergy functions for deblurring and camera motion estimation in the following
sections.

3.4.3 Energy Formulation

Our energy function is defined on the latent clean image and the 6 DoF cam-
era motion. We formulate our problem in a unified framework to jointly
estimate the camera motion and deblur the image. Our energy function is
defined as

E = Eblur(L, p) + Ereg(L, p), (3.3)

which consists of a data term for deblurring, a regularization term enforcing
the smoothness in camera motion, induced optical flow and the latent clean
image. The energy function terms are further discussed in the following sec-
tions.

3.4.3.1 Data Term for Deblurring.

Our data term for deblurring involves two terms, which is defined as

Eblur(L, p) =
∥∥Ap(L)− B

∥∥2
F +

∥∥∇Ap(L)−∇B
∥∥2

F . (3.4)

The first term encodes the fact that the estimated blur image from spatially-
varying blur kernel should be similar to the observed blurred image. The sec-
ond term encourages the intensity changes (gradient) in the estimated blurred
image should be close to that of the observed blurred image.

3.4.3.2 Regularization Terms.

Our regularization terms explore the small motion constraints on the camera
motion model, spatial smoothness constraints on the latent image and optical
flow induced by the camera motion. The first one is to avoid the trivial solu-
tion of p = 0. The second one is to enforce the optical flow generated from
the camera motion and the depth map to be smooth across the image and
respect the image and depth discontinuities. The third term is to suppress
the noise in the latent image and penalize the spatial fluctuations. To this
end, our potential function is defined as

Ereg(p, L) = µ1 ‖p‖2
2 + S(p) + µ4

∥∥∥∇L(i,j)

∥∥∥
1

, (3.5)
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where S(p) is defined as

S(p) = E(B, D)
∥∥∥∇F(p)(i,j)

∥∥∥2

2
,

E(B, D) = ∑
i,j∈Ω

µ2 e

− ∥∥∥∇B(i,j)

∥∥∥2
2

σ2
B


+ µ3 e

− ∥∥∥∇D(i,j)

∥∥∥2
2

σ2
D


.

Ω denotes the image region. µ{1,2,3,4} are weight parameters with µ1 < 0.
σ{B,D} are parameters for balancing the influence of the image and depth
discontinuity on the spatial smoothness constraints. F(p) denotes the optical
flow field induced by camera motion p and depth map D, which is obtained
by forward projection of the 3D points corresponding to t = 0 to the camera
motion p.

3.5 Solution

The optimization of our energy function defined in Eq. (3.3), is to solve two
different sets of variables, which are the camera motion p and the latent image
L, respectively. In order to solve the variables more efficiently, we perform
the optimization alternatively through the following steps,

• Fix the latent image L, solve for the camera motion p by optimizing
Eq. (3.6) (See Section 3.5.1).

• Fix the motion parameters p, solve for the latent image L by optimizing
Eq. (3.7) (See Section 3.5.2).

In the following sections, we describe the details for each optimization step.

3.5.1 Camera motion estimation

We fix the latent image, namely L = L̃, then Eq. (3.3) reduces to

min
p

∥∥Ap(L̃)− B
∥∥2

F +
∥∥∇Ap(L̃)−∇B

∥∥2
F + µ1 ‖p‖2

2 + S(p). (3.6)

This is a non-linear and non-convex optimization problem. Fortunately, the
solution space (6 DoF camera motion) is very small. We solve the problem by
a nonlinear least-squares method Moré [1978] to find the solution.

3.5.2 Image deblurring

Given the 6 DoF camera motion parameters, namely p̃, the blur image is
derived based on Eq. (3.3). The objective function in Eq. (3.3) becomes convex
with respect to L and is expressed as

min
L

∥∥Ap̃(L)− B
∥∥2

F +
∥∥∇Ap̃(L)−∇B

∥∥2
F + µ4 ‖L‖TV . (3.7)
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Table 3.1: Comparison of flow error and deblurring results on different datasets (Middlebury,
KITTI and TUM).

Pan et al. [2017a] Yan et al. [2017a] Kim Our

PSNR (dB) Middleburry 25.44 24.98 - 26.16
KITTI 22.78 23.28 - 26.21

SSIM Middleburry 0.7962 0.7822 - 0.8357
KITTI 0.7615 0.7715 - 0.8289

Flow Error TUM - - 31.95 27.57

In order to obtain the latent clean image L, we adopt the conventional primal-
dual optimization method Chambolle and Pock [2011] and derive the updat-
ing scheme as follows

qr+1 =
qr + γ∇Lr

max(1, |(qr + γ∇Lr)|) ,

Lr+1 = arg min
L

∥∥Ap̃(L)− B
∥∥2

+
∥∥∇Ap̃(L)−∇B

∥∥2
+

∥∥Lr+1 − (Lr − η(µ4∇qr+1)
∥∥2

2η
,

(3.8)

where r is the iteration number, qr denotes the dual variable, η = 10 and
γ = 0.005 are update step parameters. More details are referred to Chambolle
and Pock [2011].

To further speed up the alternative optimization, we propose to apply a
coarse-to-fine strategy to the energy minimization. Specifically, we perform
camera motion estimation and image deblurring in an alternative manner in
each level. The results from the coarse levels can be used as initialization for
the following fine levels.

3.6 Experiments

3.6.1 Experimental Setup

Synthetic Datasets. To the best of our knowledge, there are no realistic bench-
mark datasets that provide blurred images, their corresponding ground-truth
depth maps, and the latent clean images. We thus make use of the KITTI Geiger
et al. [2013] and Middlebury dataset Scharstein et al. [2014] to create synthetic
datasets on realistic scenery. Since the camera shake always involves small
rotation and translation, we thus sample the rotation angle for each image
from a Gaussian distribution with the standard deviation σa = 0.05 rad and
translation vector from a Gaussian distribution with σt = 0.4m for KITTI and
σt = 0.05m for Middlebury. The difference in the standard deviation is to
match the different depth range in two datasets, which is 3m for Middlebury
and 40m for KITTI dataset, respectively.

The blurred image is generated by averaging the captured clean images at
N = 20 uniformly distributed camera motion and locations within the expo-
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(a) Input blurred Image (b) Pan et al. [2017a] (c) Yan et al. [2017a] (d) Ours

Figure 3.3: Example deblurring results on the Middlebury dataset. (a) Input blurred color
images. (b) Deblurring results of Pan et al. [2017a]. (c) Deblurring results of Yan et al.

[2017a]. (d) Our deblurring results. (Best viewed on screen).

sure time T = 0.23 (see Eq. (3.3) and Fig. 3.2 for details). In particular, the
clean images are rendered based on the camera motion in 3D space. Note that
the blurred image rendering process requires a dense depth map. Instead of
filling in holes for the sparse raw depth map in KITTI, we adopt the unsu-
pervised stereo matching approach Zhong et al. [2017], which ranks among
the methods of top performance on KITTI dataset with a pre-trained model
available, to estimate the dense disparity map referred to as oracle depth.
We create our testing set using 200 images chosen from different image se-
quences in KITTI. We similarly generate the testing set with 14 images from
Middlebury 2014 using the depth maps provided by the dataset.

Real Dataset. We further evaluate our method on the TUM RGB-D dataset Sturm
et al. [2012], which includes both depth maps and real blurred images. The
captured depth maps and color images are of size 640× 480. The measure-
ments from the depth sensors are imperfect, which are noisy and contam-
inated with large holes due to the reflective surfaces and distant objects in
the scene. We thus pre-process the depth maps by filling in those holes us-
ing a traditional depth completion method Yang et al. [2014]. We test our
algorithm on 300 images chosen from the ‘bear’ and ‘walkman’ sequences.
Since the TUM dataset does not include ground truth sharp images, we thus
only provide qualitative comparison with the state-of-the-art blind deblurring
approaches.

Implementation Details. We validate the parameters in our model on three
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reserved images for each dataset. We set µ1 = −20, µ2 = µ3 = 0.2, µ4 = 0.05,
σB = 0.01, σD = 0.02 for all of our experiments. In order to give a better ini-
tialization for our method, we first apply a conventional blind de-convolution
approach Krishnan et al. [2011] to estimate a uniform blur kernel of size
25× 25 to provide a prior on our 6 DoF pose p. Our experiments show that
such initialization is more robust than initializing the algorithm randomly.
We further implement our algorithm in the traditional coarse-to-fine manner
to achieve fast convergence. In particular, the image pyramid is built with 11
levels and the scale factor is set as 0.9. The motion parameters and the latent
image estimated from coarse resolution are propagated as initialization to the
next pyramid level. Our framework is implemented using MATLAB® with
C++ wrappers. It takes around 5 minutes to process one image on a single i7
core running at 3.6 GHz.

Baselines and Evaluation Metric. We compare our approach with the state-
of-the-art blind deblurring methods, such as Yan et al. [2017a], Pan et al.
[2017a] and Hu et al. [2014], which handle spatially variant blur from a single
image. We further compare with a video method Kim and Lee [2015] and
two learning based methods Gong et al. [2017b]; Nah et al. [2017]which can
handle non-uniform blur on the TUM dataset.

We report the PSNR and SSIM on our deblurred images. Instead of di-
rectly evaluating the rotation and translation estimation, we report the optical
flow errors which are introduced by the errors in the camera motion estima-
tion. In particular, the error metric is computed by counting the number of
pixels which have errors more than 3 pixels and 5% of its ground-truth.

3.6.2 Experimental Results

For the above datasets we used, the depth is from stereo matching, depth sen-
sor and learned by neural network. In Table 3.1, we compare our approach
with the state-of-the-art single image deblurring methods, Yan et al. [2017a]
and Pan et al. [2017a], for spatially-variant blurs on Middlebury, KITTI, and
TUM dataset, based on the PSNR, SSIM and Flow Error metric. Note that ex-
periments on Middlebury and TUM used depth with high accuracy (provided
by the dataset) as input for deblurring. In order to evaluate the robustness of
our approach w.r.t. the depth quality, we adopted the most recent unsuper-
vised monocular depth estimation method Godard et al. [2017] to learn the
depth maps for KITTI dataset as input to remove the blurs generated based
on oracle depth from stereo matching approach Zhong et al. [2017]. We fur-
ther provide an example for visual comparison in Fig. 3.5(e),(f) to show the
difference of the deblurring results from the oracle depth and the learned
depth, respectively. Note that our approach outperforms all the baseline ap-
proaches which do not reason about the camera motion, by a large margin.
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: Comparison with the state-of-the-art non-uniform deblurring methods using real
blurred image from the TUM dataset. The depth is from the Kinect sensor. (a) Blurred image.
(b) Video based deblurring result Kim and Lee [2015]. (c) Learning based result Gong et al.
[2017b]. (d) Single image based deblurring result Hu et al. [2014], which also considers depth
in their formulation. (e) Learning based result Nah et al. [2017]. (f) Our deblurring result.

This evidences the importance of our joint camera motion estimation and im-
age deblurring framework. We further compare our approach with the image
deblurring approach from monocular video sequence Sturm et al. [2012]. This
again shows the importance of including depth information and performing
6 DoF camera motion estimation for blind deblurring.

The qualitative comparisons on the three datasets are shown in Fig. 3.3, 3.5,
and 3.4, respectively. The qualitative results show that our approach can re-
cover more sharp details than other competing approaches, which are high-
lighted in the reported results. Note that our deblurring results can recover
the color images more faithfully than the baselines. It further evidences the
quantitative improvements as shown in Table 3.1. Last but not least, as we
have recovered the 6 DoF camera motion, we can generate a sharp video se-
quence correspondingly as illustrated in Fig. 3.1, where each novel frame is
generated by warping the latent clean image with the corresponding camera
motion estimation and estimated/measured depth maps.

3.7 Conclusions

In this chapter, we have presented a joint optimization framework to estimate
the 6 DoF camera motion and deblur the image from a single blurred image.
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(a) Input blurred Image (b) Pan et al. [2017a]

(c) Yan et al. [2017a] (d) Ours

(e)Input with oracle depth from
Zhong et al. [2017]

(f) Input with learned depth from
Godard et al. [2017]

Figure 3.5: Example deblurring results on the KITTI dataset. (a) Input blurred color images.
(b) Deblurring results of Pan et al. [2017a]. (c) Deblurring results of Yan et al. [2017a]. (d)
Our deblurring results with learned depth map as input. In order to compare the results with
respect to different input depth map, (e) and (f) show our deblurring results with oracle
depth map and learned depth map as inputs, respectively. Compared with the two
state-of-the-art deblurring methods, our method achieves the best performance (Best viewed

on screen).
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To alleviate the difficulties, we exploit the availability of depth maps (either
from noisy measurements or learned through a deep neural network) and
a small motion model for the camera. Under our formulation, the solution
of one sub-task benefits the solution of the other sub-task. Extensive experi-
ments on both synthetic and real image datasets demonstrate the superiority
of our framework over very recent state-of-the-art blind image deblurring
methods such as dark channel prior Pan et al. [2017a] and extreme channel
prior Yan et al. [2017a]). In the future, we plan to exploit more general para-
metric camera trajectories to further improve the performance in real world
challenging scenarios.
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Chapter 4

Joint Stereo Video Deblurring,
Scene Flow Estimation and Moving
Object Segmentation

In this chapter, to tackle non-uniform deblurring difficulty, we leverage the
stereo video frames to restore the latent sharp images. With the stereo video
frames, depth and the optical flow can be estimated, which are useful for the
spatially variant blur kernel estimation. We also use the motion boundary
information provided by semantic segmentation as prior.

Liyuan Pan, Yuchao Dai, Miaomiao Liu, Fatih Porikli, Quan Pan. Joint Stereo
Video Deblurring, Scene Flow Estimation and Moving Object Segmentation.
Transactions on Image Processing (TIP), 2019.

4.1 Abstract

Stereo videos for the dynamic scenes often show unpleasant blurred effects
due to the camera motion and the multiple moving objects with large depth
variations. Given consecutive blurred stereo video frames, we aim to recover
the latent clean images, estimate the 3D scene flow and segment the multiple
moving objects. These three tasks have been previously addressed separately,
which fail to exploit the internal connections among these tasks and cannot
achieve optimality. This chapter proposes to jointly solve these three tasks in
a unified framework by exploiting their intrinsic connections. To this end, we
represent the dynamic scenes with the piece-wise planar model, which ex-
ploits the local structure of the scene and expresses various dynamic scenes.
These three tasks are naturally connected under our model and expressed as
the parameter estimation of 3D scene structure and camera motion (structure
and motion for the dynamic scenes). By exploiting the blur model constraint,
the moving objects and the 3D scene structure, we reach an energy minimiza-
tion formulation for joint deblurring, scene flow and segmentation. We evalu-

53
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ate our approach extensively on both synthetic datasets and publicly available
real datasets with fast-moving objects, camera motion, uncontrolled lighting
conditions and shadows. Experimental results demonstrate that our method
can achieve significant improvement in stereo video deblurring, scene flow
estimation and moving object segmentation, over state-of-the-art methods.

4.2 Introduction

Image deblurring aims at recovering the latent clean image from single or
multiple blurred images, which is a classic and fundamental task in image
processing and computer vision. Image blur could be caused by various
reasons, for example, optical aberration, medium perturbation, defocus, and
motion Schuler et al. [2012]; Shi et al. [2015]; Gupta et al. [2010]; Jia [2014];
Sun et al. [2015]. In this work, we only focus on motion blur, which is widely
encountered in real-world applications such as autonomous driving Franke
and Joos [2000]; Geiger et al. [2012]; Liu et al. [2017c]. The effects become more
apparent when the exposure time increased due to low-light conditions.

Motion deblurring has been extensively studied, and various methods
have been proposed in the literature. It is common to model the blur effect
using kernels Jia [2014]; Seok Lee and Mu Lee [2013]. Early deblurring meth-
ods mainly focus on the blur caused by camera shake with constant depth or
static scenes with moving objects Hu et al. [2014]; Xu et al. [2013]. We focus
on a more generalized motion blur caused by both camera motion and mov-
ing objects in this work. Therefore, conventional blur removal methods, such
as Gupta et al. [2010]; Krishnan et al. [2011], cannot be directly applied since
they are restricted to a single or a fixed number of blur kernels, making them
inferior in tackling general motion blur problems.

For a scenario where both camera motion and multiple moving objects
exist, the blur kernel is, in principle, defined for each pixel individually. Re-
cently, several researchers have studied to handle the blurred images with
spatially-variant blur Kim and Lee [2015]; Sellent et al. [2016]; Pan et al. [2017b]
which uses accurate motion estimation to model the blur kernel. The phe-
nomenon around motion and blur can be viewed as a chicken-egg problem:
effective motion blur removal requires accurate motion estimation. Yet, the
accuracy of motion estimation highly depends on the quality of the images.

It is a problem for any of the algorithms exploiting motion information as
the condition is a major challenge to reliable flow computation.

In this chapter, we aim to tackle a ‘generalized stereo deblurring’ problem.
The moving stereo cameras observe a dynamic scene with varying depth,
and the moving objects’ boundaries are mixed with the background pixels.
Thus we propose to use the motion boundary information provided by se-
mantic segmentation Wu et al. [2019]. In our approach, we jointly estimate
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(a) Blurred image (b) Initial segmentation

(c) Kim and Lee [2015] (d) Our flow

(e) Kim and Lee [2015] (f) Sellent et al. [2016]

(g) Pan et al. [2017b] (h) Ground-truth

(i) Our segmentation (j) Our deblurred result

Figure 4.1: Stereo deblurring, scene flow estimation and moving object segmentation results
with (a) and (b) as input. (a) Blurred image. (b) Initial segmentation prior. (c) Flow estima-
tion by Kim and Lee [2015]. (d) Our flow estimation result. (e) Deblurring results by Kim
and Lee [2015]. (f) Stereo deblurring results by Sellent et al. [2016] which uses Vogel et al.
[2015] to estimate scene flow. (g) Deblurring results by Pan et al. [2017b]. (h) Ground-truth
latent image. (i) Our moving object segmentation result. (j) Our stereo deblurring result.

Best viewed in colour on the screen.
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scene flow, segment the moving objects and deblur the images under a uni-
fied framework. Using our formulation, we attain significant improvement in
numerous real challenging scenes, as illustrated in Fig. 4.1.

We would like to argue that, the scene flow estimation approaches that
make use of colour brightness constancy may be hindered by the blurred im-
ages. Existing optical flow methods make generic, spatially homogeneous,
assumptions about the spatial structure of the flow. Due to the inherent cor-
relation between semantic segmentation and moving object segmentation (for
example, the movement of pixels a vehicle tends to be the same and be differ-
ent from the background), semantic segmentation has been used to provide
motion segmentation prior. Thus, we investigate the benefits of semantic
grouping Wu et al. [2019] which are more beneficial for the scene flow esti-
mation task. Here, we only need a coarse and simple semantic segmentation
prior to distinguish foreground and background. The more of the bound-
ary information can be detected during the deconvolution process, the bet-
ter quality of the estimated results Zhou and Komodakis [2014]; Pan et al.
[2016a]. In Fig. 4.2, we compare the scene flow estimation results with the
state-of-the-art solutions on different blurred images. It could be observed
that the scene flow estimation performance deteriorates quickly w.r.t. the im-
age blur because of the inaccuracy at boundaries.

On the other hand, motion segmentation or moving object segmentation
alone is also very challenging as the objects could be rigid, non-rigid, and
deformable. How to unify these different scene models and achieve moving
object segmentation is an active research direction. This chapter focuses on
outdoor traffic scenes with multiple moving objects, such as vehicles, cyclists,
and pedestrians. Specifically, we exploit both the semantic cue and 3D ge-
ometry cue to better handle moving object segmentation together with scene
flow estimation and stereo deblurring.

Furthermore, existing works fail to exploit the connections between stereo
deblurring, scene flow estimation and moving object segmentation, which
actually are closely connected. Specifically, better scene flow estimation and
moving object segmentation will enable better stereo deblurring. Correspond-
ingly, stereo deblurring and moving object segmentation also help scene flow
estimation. However, building their intrinsic connections is not easy as the
dynamic scenes could be rather generic, from a static scene to a highly dy-
namic scene consisting of multiple moving objects (vehicles, pedestrians and
etc.). Having a unified formulation for the dynamic scenes is highly desired.
We propose to exploit the piecewise plane model for the dynamic scene struc-
ture, and under this formulation, the joint task of scene flow estimation, stereo
deblurring and moving object segmentation has been expressed as the param-
eter estimation for each planar, the camera motion and pixel labelling. There-
fore, we put these three tasks in a loop under a unified energy minimization
formulation in which the intra-relation has been effectively exploited.
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(a) Blurred image (b) GT Flow c) Kim and Lee [2015]

(d) Sellent et al. [2016] (e) Pan et al. [2017b] (f) Our flow estimation

Figure 4.2: Scene flow estimation results for an outdoor scene. (a) Blurred reference image
from BlurData-1. (b) Ground truth optical flow for the scene. (c) Estimated flow by Kim
and Lee [2015]. (d) Estimated flow by Sellent et al. [2016] which uses Vogel et al. [2015]
to estimate scene flow. This approach ranks as one of the top 3 approaches on KITTI scene
flow benchmark Geiger et al. [2013]. (e) Estimated flow by Pan et al. [2017b]. (f) Our flow
estimation result. Compared with these state-of-the-art methods, our method achieves the best

performance.

In our previous work Pan et al. [2017b], we only consider the relationship
between optical flow and deblurring without adding segmentation informa-
tion. We extend the previous work significantly in the following ways:

• We propose a novel joint optimization framework to estimate the scene
flow, segment moving objects and restore the latent images for generic
dynamic scenes. Our deblurring objective benefits from improved bound-
aries information and the estimated scene structure.

• We integrate high-level semantic cues for camera motion and scene struc-
ture estimation by exploiting the intrinsic connection between semantic
segmentation and moving object segmentation.

• We propose a method to exploit motion segmentation information in
aiding the challenging video deblurring task. Similarly, the scene flow
and objects boundary objective allow deriving more accurate pixel-wise
spatially varying blur kernels (see Section.4.4.2).

• Extensive experiments demonstrate that our method can successfully
handle complex real-world scenes depicting fast-moving objects, camera
motions, uncontrolled lighting conditions, and shadows.
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(a) Original Blurred image (b) Kim and Lee [2015]

(c) Sellent et al. [2016] (d) Ours

Figure 4.3: Blur kernel estimation for an outdoor scene. (a) Blurred reference image from
BlurData-1. (b) Blur kernel estimation by Kim and Lee [2015]. (c) Blur kernel estimation
by Sellent et al. [2016]. (d) Our blur kernel estimation. Compared with these monocular and

stereo deblurring methods, our method achieves more accurate blur kernel estimation.

4.3 Related Work

Image deblurring (even under stereo configuration) is generally an ill-posed
problem. Thus certain assumptions or additional constraints are required to
regularize the solution space. Numerous methods have been proposed to ad-
dress the problem Kim and Lee [2015]; Sellent et al. [2016]; Pan et al. [2017b];
Li et al. [2018c]; Hu et al. [2014]; Sun et al. [2015]; Pan et al. [2016a]; Ren et al.
[2017]; Gong et al. [2017a]. As per the system configuration, the methods
can be roughly categorized into two groups: monocular based approaches
and binocular or multi-view based approaches. We also briefly discuss re-
cent efforts in deep learning-based deblurring, moving object segmentation,
semantic segmentation, and scene flow estimation.

Single view deblur Monocular based deblurring approaches often assume
that the captured scene is static or has uniform blur kernel Gupta et al. [2010],
or need user interaction Pan et al. [2016a]. A series of widely-used priors and
regularizers are based on image gradient sparsity, such as the total variational
regularizer Perrone and Favaro [2014], the Gaussian scale mixture prior Fer-
gus et al. [2006], the l1\l2 norm based prior Krishnan et al. [2011], and the
l0-norm regularize Xu et al. [2013]; Pan et al. [2014]. Non-gradient-based pri-
ors have also been proposed, such as the edge-based patch prior Sun et al.
[2013], the colour line based prior Lai et al. [2015], and the dark/white chan-
nel prior Pan et al. [2016b]; Yan et al. [2017a]. Hu et al. [2014] proposed to
jointly estimate the depth layering and remove non-uniform blur caused by
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(a) Initial mask (b) Menze and Geiger [2015] (c) Kim and Lee [2015]

(d) Ours (no seg) (e) Ours (one layer) (f) Ours (two layer)

(g) Blurred image (h) Ground-truth (i) Kim and Lee [2015]

(j) Sellent et al. [2016] (k) Ours (one layer) (l) Ours (two layer)

Figure 4.4: Scene flow results for an outdoor scenario. (a) and (g) The initial segmentation
and blurred reference image from BlurData-1. (b) Estimated flow by Menze and Geiger
[2015]. (c) Estimated flow by Kim and Lee [2015]. (d)-(f) Our flow estimation result. (d)
Without semantic segmentation. (e) With semantic segmentation, one layer StereoSLIC. (f)
With semantic segmentation, two-layer StereoSLIC. (h) The ground-truth latent image. (i)
Deblurred result by Kim and Lee [2015]. (j) Deblurred result by Sellent et al. [2016]. (k) and
(l) Our deblurred result. (k) Without semantic segmentation. (l) With semantic segmentation.
The results show that our two-layer StereoSLIC could preserve edge information. Compared
with both these state-of-the-art methods, our method achieves competitive performance. Best

viewed in colour on the screen.
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the in-plane motion from a single blurred image. While this unified frame-
work is promising, user input for depth layers partition is required, and po-
tential depth values should be known in advance. Pan et al. [2016a] proposed
an algorithm to jointly estimate object segmentation and camera motion by
incorporating soft segmentation, but require user input. In practical settings,
it is still challenging to remove strongly non-uniform motion blur captured
in complex scenes.

Since blur parameters and a latent image are difficult to be estimated from
a single image, the monocular based approaches are extended to video to
remove blurs in dynamic scenes. In the work of Wulff and Black Wulff and
Black [2014], a layered model is proposed to estimate the different motions
of both foreground and background layers. Kim and Lee [2014] proposed a
method based on a local linear motion without segmentation. This method
incorporates optical flow estimation to guide the blur kernel estimation and
is able to deal with certain object motion blur. In Kim and Lee [2015], a
new method is proposed to simultaneously estimate optical flow and tackle
the case of general blur by minimization a single non-convex energy func-
tion. Park and Lee [2017b] estimate camera poses and scene structures from
severely blurred images and deblurring using the motion information.

Multi-view deblur As depth factor can significantly simplify the deblurring
problem, multi-view deblurring methods have been proposed to leverage
available depth information. Ezra and Nayar Nayar and Ben-Ezra [2004] pro-
posed a hybrid imaging system, where a high-resolution camera captures
the blurred frame and a low-resolution camera with faster shutter speed is
used to estimate the camera motion. Xu and Jia [2012] inferred depth from
two blurred images captured by a stereo camera and proposed a hierarchical
estimation framework to remove motion blur caused by the in-plane trans-
lation. Sellent et al. [2016] proposed a video deblurring technique based on
a stereo video, where 3D scene flow is estimated from the blurred images
using a piecewise rigid 3D scene representation. Along the same line, Ren
et al. [2017] proposed an algorithm where accurate semantic segmentation is
known. In their work, they also used the pixel-wise non-linear kernel model
to approximate motion trajectories in the video. While the performance of
their experiments shows limited effective for images which included multiple
types of moving objects. We Pan et al. [2017b] proposed a single framework
to jointly estimate the scene flow and deblur the images in CVPR 2017, where
the motion cues from scene flow estimation and blur information could rein-
force each other. These two methods represent the state-of-the-art in multi-
view video deblurring and will be used for comparisons in the experimental
section.

Deep learning-based deblurring methods Recently, deep learning-based meth-
ods have been used to restore clean latent images. Gong et al. [2017a] esti-
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mated flow from a single blurred image caused by camera motion through
a fully convolutional deep neural network and recovered a clean image from
the estimated flow. Su et al. [2017] introduced a deep learning solution to
video deblurring, where a CNN is trained end-to-end to learn how to accu-
mulate information across frames. However, they aimed to tackle motion blur
from camera shake. Nah et al. [2017] proposed a multi-scale convolutional
neural network that restores latent images in an end-to-end manner with-
out assuming any restricted blur kernel model. Kim et al. [2017]; Kim et al.
[2018] proposed a novel network layer that enforces temporal consistency be-
tween consecutive frames by dynamic temporal blending which compares
and adaptively shares features obtained at different time steps. Kupyn et al.
[2018b] presented an end-to-end learning approach for motion deblurring.
The model they used is Conditional Wasserstein GAN with gradient penalty
and perceptual loss based on VGG-19 activations. Tao et al. [2018] propose
a light and compact network, SRN-DeblurNet, to deblur the image. Jin et al.
[2018] proposed to restore a video with fixed length from a single blurred
image. However, deep deblurring methods generally need a large dataset to
train the model and usually require sharp images provided as supervision.
In practice, blurred images do not always have corresponding ground-truth
sharp images.

Moving object segmentation According to the level of supervision required,
video segmentation techniques can be broadly categorized as unsupervised,
semi-supervised and supervised methods. Unsupervised methods Papazoglou
and Ferrari [2013] use a rapid technique to produce a rough estimate of
which pixels are inside the object based on motion boundaries in pairs of
subsequent frames. It then automatically bootstraps an appearance model
based on the initial foreground estimate, and uses it to refine the spatial ac-
curacy of the segmentation and segment the object in frames where it does
not move. The works Faktor and Irani [2014]; Wang et al. [2015]; Wang et al.
[2018] extend the concept of salient objects detection Sundaram et al. [2010]
as prior knowledge to infer the objects. Semi-supervised video segmentation,
which also refers to label propagation, is usually achieved via propagating
human annotation specified on one or a few key-frames onto the entire video
sequence Hariharan et al. [2015]; Shankar Nagaraja et al. [2015]; Tsai et al.
[2016a]. The idea of combining the best from both the CNN model and MR-
F/CRF model is not new. A video object segmentation method by Jang and
Kim Jang and Kim [2017] performs MRF optimization to fuse the outputs of
a triple-branch CNN. However, the loosely-coupled combination cannot fully
exploit the strength of MRF/CRF models. Supervised methods require te-
dious user interaction and iterative human corrections. These methods can
attain high-quality boundaries while needing human supervision Wang et al.
[2014]; Fan et al. [2015]. Yan Yan et al. [2017b] proposed a multi-task ranking
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model for the higher-level weakly-supervised actor-action segmentation task.

Semantic segmentation Another crucial factor in computing latent clean im-
age is detecting moving objects boundaries. The general problem is that the
object boundaries with mixed foreground and background pixels can lead
to severe ringing artefacts. Semantic segmentation can help to provide ob-
jects information as initialization. He et al. [2016] proposed the ResNets to
combat the vanishing gradient problem in training very deep convolutional
networks. Wu et al. [2019] obtain the semantic segmentation masks with the
ResNet-38 network. Lin et al. [2017] present RefineNet with multi-resolution
fusion (MRF) to combine features at different levels, chained residual pool-
ing (CRP) to capture background context, and residual convolutional units
(RCUs) to improve end-to-end learning. Tsai et al. [2016b] first generated the
object-like tracklets and then adopted a sub-modular function to integrate
object appearances, shapes and motions to co-select tracklets that belong to
the common objects. Taking one step further, the Deep Parsing Network
(DPN) Liu et al. [2018] is designed to approximate the mean-field inference
for MRFs in one pass.

Optical flow estimation Menze and Geiger [2015] proposed a novel model
and dataset for 3D scene flow estimation with an application to autonomous
driving. Pan et al. [2017b] proposed a single framework to jointly estimate
the scene flow and deblur the images. Taniai et al. [2017] presented a multi-
frame method for efficiently computing scene flow (dense depth and optical
flow) and camera ego-motion for a dynamic scene observed from a moving
stereo camera rig. Yin and Shi [2018] proposed an unsupervised learning
framework GeoNet for jointly estimating monocular depth, optical flow and
camera motion from video. Gong et al. [2017a] directly estimate the motion
flow from the blurred image through a fully-convolutional deep neural net-
work (FCN) and recover the unblurred image from the estimated motion flow.
PWC-Net Sun et al. [2018] uses the current optical flow estimate to warp the
CNN features of the second image. It then uses the warped features and
features of the first image to construct a cost volume processed by a CNN
to estimate the optical flow. The FlowNet by Dosovitskiy et al. [2015] rep-
resented a paradigm shift in optical flow estimation. The work shows the
feasibility of directly estimating optical flow from raw images using a generic
U-Net CNN architecture. FlowNet 2.0 Ilg et al. [2017] develop a stacked ar-
chitecture that includes warping of the second image with the intermediate
optical flow, which decreases the estimation error by more than 50% than the
original FlowNet.
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4.4 Problem Formulation

In this chapter, we propose to solve the challenging and practical problem
of stereo deblurring by using consecutive stereo image pairs of a calibrated
camera in complex dynamic environments, where the blur is caused by the
camera motion and the objects’ motion. Under the problem setup, stereo de-
blurring and the scene flow estimation is already deeply coupled, i.e., , stereo
deblurring depends on the solution of the scene flow estimation while the
scene flow estimation also needs the solution of stereo deblurring. Besides,
with the multiple moving objects representation of the observed scene, mov-
ing object segmentation also closely relates to both scene flow estimation and
stereo deblurring, i.e., , improper moving object segmentation could result
in dramatical changes in scene flow estimation and stereo deblurring espe-
cially along the object boundaries Sevilla-Lara et al. [2016]. Therefore, we
could conclude that the scene flow estimation, Moving object segmentation
and video deblurring are deeply coupled under our problem setup.

To better exploit the deeply coupling nature of the problem, we propose
to formulate our problem as a joint estimation of scene flow, Moving object
segmentation and stereo image deblurring for complex dynamic scenes. In
particular, we rely on the assumptions that the scene can be well approxi-
mated by a collection of 3D planes Yamaguchi et al. [2013] belonging to a
finite number of objects 1 performing rigid motions individually Menze and
Geiger [2015]. Therefore, the problem of scene flow estimation can be refor-
mulated as the task of geometric and motion estimation for each 3D plane.
The rigid motion is defined for each moving object, which naturally encodes
the Moving object segmentation information. The blurred stereo images are
generated due to the camera motion, multiple moving objects motion and the
3D scene structure, which are all characterized by the scene flow estimation
and the Moving object segmentation. Specifically, our structured blur kernels
are expressed with the geometry and motion of each 3D plane.

4.4.1 Blurred Image Formation based on the Structured Pixel-wise Blur
Kernel

Blurred images are formed by the integration of light intensity emitted from
the dynamic scene over the aperture time interval of the camera. We assume
that the blurred image B can be generated by the integral of the latent high
frame-rate image sequence {Ln} during the exposure time. This model fol-
lows by Kim and Lee [2014]; Gupta et al. [2010]; Whyte et al. [2012]; Dai and
Wu [2008], which supposes the integration of light intensity happens in pixel

1The background is regarded as a single ‘object’ due to the camera motion only.
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Figure 4.5: The pipeline of generating blurred images. We approximate the motion blur
kernel as a piece-wise linear function based on bi-direction optical flows and generate blurred
images by averaging consecutive frames whose relative motions between two neighbouring

frames are known. Notably, ground truth sharp image is chosen to be the middle one.

colour space over the shutter time of the camera.2 This defines the blurred
image frame in the video sequence as

Bm =
1

2N + 1

N

∑
n=−N

Ln, (4.1)

where Bm is the mth blurred image in the video sequence, Ln, n ∈ [−N, N]
denotes latent frames that generate the blurred image. The middle frame Lm
among the latent frames is defined as the deblurred image, which associated
with Bm. This integration model has been widely used in the image/video
deblurring literature Seok Lee and Mu Lee [2013]; Kim and Lee [2014]; Gong
et al. [2017a], which has also been used in Nah et al. [2017]; Su et al. [2017];
Kim et al. [2017] to generate realistic blurred images from high frame-rate
videos. With optical flow, we can transform Ln with Lm. Thus, the blur can
be modelled by bi-directional optical flows. We approximate the kernel as
piece-wise linear using bidirectional optical flows, where the kernel Ax

m is
spatially varying for each pixel.

Bm(x) = vec(Ax
m)

Tvec(Lm), (4.2)

where x ∈ R2 denotes the pixel location in the image domain, vec denotes
the vectorization operator, Ax

m ∈ Rh×w is the blur kernel for each pixel x,
where h, w are the image size. In order to handle multiple types of blurs,
we assumed that the blur kernel Ax

m can be linearized in terms of a motion

2We notice that several methods model the integration in the raw sensor value and consider the
effects of CRFs (camera response function) on motion deblurring. These yield a slightly different
solution for deblurring Nah et al. [2017]; Tai et al. [2013].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.6: Scene flow and moving object segmentation results for an outdoor scenario from
BlurData-1. (a) Input blurred image. (b) Input semantic segmentation. (c) Estimated flow
by Menze and Geiger [2015]. (d) Estimated flow by Kim and Lee [2015]. (e) Our flow
estimation result. (f) Segmentation result by Menze and Geiger [2015]. (g) Segmentation
result by Papazoglou and Ferrari [2013]. (h) Segmentation result by Faktor and Irani [2014].
(i) Our segmentation result. Compared with both these state-of-the-art methods, our method

achieves competitive performance. Best viewed in colour on the screen.
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vector, which can be expressed as Kim and Lee [2014],

Ax
m(ũ, ṽ) =



δ(ũvm+1 − ṽum+1)

τ||um+1||
, if ũ ∈ [0, øum+1],

δ(ũvm−1 − ṽum−1)

τ||um−1||
, if ũ ∈ [0, øum−1],

0, otherwise,

(4.3)

where τ = 1
2 × exposure time × frame rate, δ denotes the Kronecker delta

function, um+1 and um−1 are the bidirectional optical flows at frame m. In
particular, ũ = (ũ, ṽ) which denotes the motion between exposure time, the
kernel model is shown in Fig. 4.5. We obtain the blur kernel matrix Am ∈
R(h×w)×(h×w) by stacking vec(Ax

m) over the whole image domain. This leads
to the blur model for the image as

vec(Bm) = Amvec(Lm). (4.4)

We omit the vectorize symbol in the following sections. We can cast the kernel
estimation problem as a motion estimation problem.

In our setup, the stereo video provides the depth information for each
frame. Based on our piece-wise planar assumptions on the scene structure,
optical flows for pixels lying on the same plane are constrained by a single
homography. In particular, we represent the scene in terms of superpixels
and a finite number of objects with rigid motions. We denote S and O as the
set of superpixels and moving objects, respectively. Each superpixel i ∈ S , is
associated with a region Si in the image, each region is denoted by a plane
variable ni,ki ∈ R3 in 3D (nT

i,ki
x = 1 for x ∈ R3), where ki ∈ {1, · · · , |O|}

denotes the ith superpixel associated with the kth object. Object inheriting its
corresponding motion parameters oki = (Rk, tk) ∈ SE(3), where Rk ∈ R3×3

is the rotation matrix and tk ∈ R3 is the translation vector. Note that (n, o)
encodes the scene flow information Menze and Geiger [2015], where n =
{ni,ki |i ∈ S} and o = {oki |ki ∈ O}. Given the motion parameters oki , we can
obtain the homography defined by superpixel i as

Hi = K(Rk − tknT
i,ki

)K−1, (4.5)

where K ∈ R3×3 is the camera calibration matrix. We note that, Hi relates
corresponding pixels across two frames.

The optical flow is then defined as

ui = x− π(Hix), (4.6)

where we denote x∗ = π(Hix). π(·) is the perspective division such that



§4.4 Problem Formulation 67

π([x, y, z]T) := [x/z, y/z]T. This shows that the optical flows for pixels in
a superpixel are constrained by the same homography. Thus, it leads to a
structured version of blur kernel defined in Eq. (4.3).

4.4.2 Moving object segmentation

Semantic segmentation breaks the image into semantically consistent regions
such as road, car, person, sky, etc.. Our algorithm computes each region inde-
pendently based on the semantic class label, resulting in more precise moving
object segmentation and flow estimation, particularly at object boundaries.
The provided additional information about object boundaries contributes to
avoiding ringing and boundary artefact.

A general problem in motion deblurring is that the moving object bound-
aries with mixed foreground and background pixels can lead to severe ring-
ing artefacts (see Fig. 4.1 for details). Most motion deblurring methods ad-
dress this problem by segmenting blurred images into regions or layers where
different kernels are estimated and applied for image restoration Tai et al.
[2010]; Wulff and Black [2014]; Pan et al. [2016a]. Segmentation on blurred
images is difficult due to ambiguous pixels between regions, but it plays an
important role in motion deblurring.

In our formulation, we use ResNet38 Wu et al. [2019] to predict the seman-
tic label map M ∈ Nw×h as initialization for our “generalized stereo deblur”
model. This approach ranks higher on Cityscapes Cordts et al. [2016] where
the image is captured on an urban street. A M determines the predicted
semantic instance label for each pixel in each frame, which provides strong
prior for boundary detection, motion estimation, and label classification for
superpixels.

We first set roads, sky and trees are static background layer, and assume
other things have a higher moving possibility to be the foreground layer.
Here, a convincing background layer will provide the inline feature points
on the background for ego-motion estimation. Then, we can estimate the dis-
parity map and the 6-DOF camera motion using stereo matching and visual
odometry with coarse background segmentation. We identify regions incon-
sistent with the estimated camera motion and estimate the motion at these
regions separately. Each motion parameter o is generated by moving clus-
ters from sparse features points. In particular, the motion hypothesis is then
generated using the 3-point RANSAC algorithm implemented in Geiger et al.
[2011]. These inconsistent regions can match with our prior M. This helps
to maintain the boundary information for moving objects and avoid ringing
artefacts (see Fig. 4.4 for details).

Each slanted plane in the image is labelled as moving or static according
to the ego-motion estimation. With the semantic segmentation masks, we can
give each superpixel an additional label, foreground or background. We then
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Figure 4.7: Illustration of our ‘generalized stereo deblurring’ method. We simultaneously
compute four scene flows (in two directions and in two views), moving object segmentation
and deblur six images. In case the input contains only two images, we use the reflection of

the flow forward as the flow backward in the deblurring part.

use the label map to initialize object label ki for each superpixel i. If most
pixels’ semantic label in ith superpixel are fore/background, the superpixel is
more likely to belongs to the fore/background.

ki(x) ∈
{
{1} , if M(x) = Background
{2, · · · , |O|} , if M(x) = Foreground.

(4.7)

Although we provide over segmentation initially as shown in Fig. 4.1(a),
our algorithm can precisely segment the moving objects after optimization
(Fig. 4.1(b)) and provide more accurate motion boundaries information for
optical flow estimation (Fig. 4.1(d)), and thereby facilitates stereo video de-
blurring (Fig. 4.1(h)).

With the semantic segmentation prior, we label each superpixel and objects
more accurately, and our approach obtains superior results in moving object
segmentation and scene flow estimation (see Fig. 4.6 for details).

In the optimization part, instead of giving sample ki for every superpixel
randomly, we use the semantic segmentation prior M to give a more reliable
sample for each superpixel (see Section 4.5.1 for detail).

4.4.3 Energy Minimization

We formulate the problem in a single framework as a discrete-continuous
optimization problem to jointly estimate the scene flow, moving object seg-
mentation and deblur the stereo images. Specifically, our model is defined
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as

E(n, o, L) = ∑
i∈S

φi(ni, o, L)︸ ︷︷ ︸
data term

+ ∑
i,j∈S

φi,j(ni, nj, o)︸ ︷︷ ︸
scene flow

smoothness term

+ ∑
m

ψm(L)︸ ︷︷ ︸
latent image

regularisation

,

(4.8)

where i, j denotes the set of adjacent superpixels in S . The function consists
of a data term, a smoothness term for scene flow, and a spatial regularization
term for latent images. Our model is initially defined on three consecutive
pairs of stereo video sequences. It can also allow the input with two pairs of
frames. Details are provided in Section 4.6. The energy terms are discussed
in Section 4.4.4, Section 4.4.5, and Section 4.4.6, respectively.

In Section 4.5, we perform the optimization in an alternative manner to
handle mixed discrete and continuous variables, thus allowing us to jointly
estimate scene flow, moving object segmentation and deblur the images.

4.4.4 Data Term

Our data term involves mixed discrete and continuous variables, and are of
three different kinds. The first kind encodes the fact that the corresponding
pixels across the six latent images should have a similar appearance, i.e., ,
brightness constancy. This lets us write the term as

φ1
i (ni, o, L) = θ1 ∑

x∈Si

|L(x)− L∗(x∗)|1, (4.9)

where L denotes the reference image, L∗ denotes the target image, the su-
perscript ∗ ∈

{
stereo, flow f ,b, cross f ,b

}
denote the warping direction to other

images and (·) f ,b denotes the forward and backward direction, respectively
(see Figure 4.7). The terms is defined by summing the matching costs of all
pixels inside superpixel i. We adopt the robust `1 norm to enforce its robust-
ness against noise and occlusions.

Our second potential, similar to one term used in Menze and Geiger
[2015], is defined as

φ2
i (ni, o) =

{
θ2∑x∈Si

ρα1(||x− x∗||2) , if x ∈ Πx,
0 , otherwise,

(4.10)

where ρα(·) = min(| · |, α) denotes the truncated l1 penalty function. More
specifically, it encodes the information that the warping of feature points x ∈
Πx based on H∗ should match its extracted correspondences x∗ in the target
view. In particular, Πx is obtained in a similar manner as Menze and Geiger
[2015].
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The third data term, making use of the observed blurred images, is defined
as

Œ3
i (ni, o, L) = θ3 ∑

m
∑
∂

‖∂Am(ni, o)Lm − ∂Bm‖2
2 , (4.11)

where ∂ denotes the Toeplitz matrices corresponding to the horizontal and
vertical derivative filters. This term encourages the intensity changes in the
estimated blurred image to be close to that of the observed blurred image.

4.4.5 Smoothness Term for Scene Flow

Our energy model exploits a smoothness potential that involves discrete and
continuous variables. It is similar to the ones used in Menze and Geiger
[2015]. In particular, our smoothness term includes three different types.

The first one is to encode the compatibility of two superpixels that share
a common boundary by respecting the depth discontinuities. We define our
potential function as

φ1
i,j(ni, nj) = θ4 ∑

x∈Bi,j

ρα2(ωi,j(ni, nj, x)), (4.12)

where d(ni, x) is the disparity of pixel x in superpixel i in the reference dis-
parity map, ωi,j(ni, nj, x) = d(ni, x) − d(nj, x) are the dissimilarity value of
disparity for pixel x ∈ Bi,j on the boundary.

The second potential is to encourage the neighbouring superpixels to ori-
ent in similar directions. It is expressed as

φ2
i,j(ni, nj) = θ5ρα3

(
1−

|nT
i nj|

‖ni‖
∥∥nj
∥∥
)

. (4.13)

The shadows of moving objects have motion boundaries but no disparity
discontinuities. However, the motion boundaries are co-aligned with dispar-
ity discontinuities in general. Thus, we use the third and fourth potential
encodes these discontinuities. This potential can be expressed as

φ3
i,j(ni,ki , nj,kj) =

exp

− λ

|Bi,j| ∑
x∈Bi,j

ωi,j(ni, nj, x)2

× |nT
i nj|

‖ni‖
∥∥nj
∥∥ × [ki 6= k j],

(4.14)

where |Bi,j| denotes the number of pixels shared along boundary between
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superpixels i and j.

φ4
i,j(ni,ki , nj,kj , oki , okj) =

exp

− λ

|Bi,j| ∑
x∈Bi,j

G(oki , okj)

× |nT
i,ki

nj,kj |∥∥ni,ki

∥∥ ∥∥∥nj,kj

∥∥∥ × [ki 6= k j],
(4.15)

G(oki , okj) = θr(trace(RT
ki

Rkj)− 1)/2 + θt(exp(−
∥∥∥tki − tkj

∥∥∥)),
where [·] denotes the Iverson bracket. This encodes our belief that motion

boundaries are more likely to occur at 3D folds or discontinuities than within
smooth surfaces.

4.4.6 Regularization Term for Latent Images

Several works Krishnan and Fergus [2009]; Krishnan et al. [2011] have studied
the importance of spatial regularization in image deblurring. In our model,
we use a total variation term to suppress the noise in the latent image while
preserving edges, and penalize spatial fluctuations. Therefore, our potential
takes the form

ψm = ∑
x
|∇Lm|. (4.16)

Note that the total variation is applied to each colour channel separately.

4.5 Solution

The optimization of our energy function defined in Eq.(4.8), involving dis-
crete and continuous variables, is very challenging to solve. Recall that our
model involves two set of variables, namely scene flow variables and latent
clean images. Fortunately, given one set of variables, we can solve the other
efficiently. Therefore, we perform the optimization iteratively by the follow-
ing steps,

• Fix latent clean image L, solve scene flow by optimizing Eq.(4.17) (See
Section 4.5.1).

• Fix scene flow parameters, n and o, solve latent clean images by opti-
mizing Eq.(4.18) (See Section 4.5.2).

In the following sections, we describe the details for each optimization
step.
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4.5.1 Scene flow estimation

We fix latent images, namely L = L̃. Eq.(4.8) reduces to

min
n,o ∑

i∈S

3

∑
m=1

Œm
i (ni, o, L̃) + ∑

i,j∈S

4

∑
m=1

Œm
i,j(ni, nj, o), (4.17)

which becomes a discrete-continuous CRF optimization problem.

We use the sequential tree-reweighted message passing (TRW-S) method
in Menze and Geiger [2015] to find an approximate solution. Since the label
k of ni of each superpixel is drawing randomly, we use the semantic segmen-
tation prior M to give a more reliable sample of each superpixel. We modify
their sampling strategy as shown in Algorithm 1.

Algorithm 1: TRW-S Optimization

Input : L̃, M, B.
1 Initialize n and o as described in ‘Initialization’.
2 Iteration times = 3
3 For all i ∈ S
4 Draw sample for ni (Gaussian)
5 Draw sample for ki(M)
6 For all k ∈ O
7 Draw sample for ok (MCMC)
8 Run TRW-S Kolmogorov [2006] on discretized problem

Output: ni,ki , oki

4.5.2 Deblurring

Given the scene flow parameters, namely n = ñ, and o = õ, the blur kernel
matrix, Am is derived based on Eq.(4.3), and Eq.(4.6). The objective function
in Eq. (4.8) becomes convex with respect to L and is expressed as

min
L

∑
Si∈S

Œ1
i (ñi, õ, L) + Œ3

i (ñi, õ, L) + ψm(L). (4.18)

In order to obtain sharp image L, we adopt the conventional convex op-
timization method Chambolle and Pock [2011] and derive the primal-dual
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updating scheme as follows

pr+1 =
pr + γ∇Lr

m
max(1, abs(pr + γ∇Lr

m))

qr+1 =
qr + γθ1(Lr

m − Lr
∗)

max(1, abs(qr + γθ1(Lr
m − Lr

∗))

Lr+1
m = arg min

Lm
∑

i
θ3 ∑

∂

‖∂AmLm − ∂Bm‖2
2 +∥∥[Lm − η((∇pr+1

m )T + θ1(qr+1 − qr+1
∗ )T)]− Lr

m
∥∥2

2η
,

(4.19)

where pm, qm,∗ are the dual variables, γ and η are the step variants which
can be modified at each iteration, and r is the iteration number.

Algorithm 2: Proposed deblurring system
Input : Stereo Blurred Image Sequences B, Semantic Segmentation of

Reference Image Pair.
1 Initialize n and o as described in ‘Initialization’.
2 Run Algorithm 1 minimize Eq. (4.17). Estimate scene flow and moving

object segmentation map.
3 Run Primal-Dual Chambolle and Pock [2011] minimize Eq. (4.18).

Restoration clean image.
4 Repeat steps 2,3 until reaches a preset iteration number (3 in our experiment).

Output: Latent Images L, Moving object Segmentation Map, Scene Flow

4.6 Experiments

To demonstrate the effectiveness of our method, we evaluate it based on two
datasets: the synthetic chair sequence Sellent et al. [2016] and the KITTI
dataset Geiger et al. [2013]. We report our results on both datasets in the
following sections.

4.6.1 Experimental Setup

Initialization. Our model in Section 4.4 is formulated on three consecutive
stereo pairs. In particular, we treat the middle frame in the left view as the ref-
erence frame. We adopt StereoSLIC Yamaguchi et al. [2013] to generate super-
pixels. Given the stereo images, we apply the approach in Geiger et al. [2011]
to obtain sparse feature correspondences. The traditional SGM Hirschmuller
[2008] method is applied to obtain the disparity map. We further leverage
the semantic segmentation results to provide priors for motion segmenta-
tion. In particular, we applied the pre-trained model from the high-accuracy
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Table 4.1: Quantitative comparisons on disparity, optical flow and deblurring results on the
KITTI dataset (BlurData-1).

KITTI Dataset Disparity Flow PSNR
m m+1 Left Right Left Right

Vogel et al. [2015] 8.20 8.50 13.62 14.59 / /
Kim and Lee [2015] / / 38.89 39.45 28.25 29.00
Sellent et al. [2016] 8.20 8.50 13.62 14.59 27.75 28.52

Kupyn et al. [2018b] / / / / 28.34 28.73
Tao et al. [2018] / / / / 29.55 29.95

Pan et al. [2017b] 6.82 8.36 10.01 11.45 29.80 30.30
Ours 6.18 7.49 9.83 11.14 29.85 30.50

Baseline
Vogel et al. [2015] and Kim and Lee [2015] / / 22.42 / 28.11 /

method Wu et al. [2019] on our blurred image. Based on the obtained se-
mantics, we generate a binary map M which indicates the foreground as 1
and background as 0 by grouping the estimated semantics (see Section 4.4.2
for details.) The motion hypotheses are first generated using RANSAC algo-
rithm implemented in Geiger et al. [2011]. Regarding the model parameters,
we perform grid search on 30 reserved images. In our experiments, we fix the
model parameters as θ1 = 0.7, θ2 = 5.5, θ3 = 0.7, γ = 250, θ4 = 0.37, θ5 = 17,
λ = 0.13, α1 = 3.39, α2 = 2.5, α3 = 0.25, θr = 0.05, θt = 0.1.

Evaluation metrics. Since our method estimates the scene flow, segments
moving objects and deblurs images, we thus evaluate multiple tasks sepa-
rately. As for the scene flow estimation results, we evaluate both the optical
flow and disparity map by the same error metric, which is by counting the
number of pixels having errors more than 3 pixels and 5% of its ground-truth.
We adopt the PSNR to evaluate the deblurred image sequences for left and
right view separately. We report precision (P), recall (R) and F-measure (F) for
our motion segmentation results. Those metrics are defined as:

P =
tp

tp + fp
, R =

tp

tp + fn
, F =

2R ∗ P
R + P

, (4.20)

where the true positive tp represents the number of pixels that have been
correctly detected as moving objects; false positive fp are defined as pixels
that have been mis-detected as moving pixels; false negative fn are denoted as
moving pixels that have not been detected correctly. Thus, we report disparity
errors for three stereo image pairs for each sequence, flow errors in forward
and backward directions, and PSNR values for six images, and precision,
recall, and F-measure for the moving object segmentation results.

Baselines. We first compare our scene flow results with piece-wise rigid
scene flow method (PRSF) Vogel et al. [2015], whose performance ranks as
one of the top 3 approaches on KITTI optical flow benchmark Geiger et al.
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Figure 4.8: Left: The flow estimation errors for 199 scenes in the KITTI dataset. Our method
clearly outperforms the monocular and stereo video deblurring methods. Right: The distri-
bution of the PSNR scores for 199 scenes in the KITTI dataset(BlurData-1). The probability
distribution function for each PSNR was estimated using kernel density estimation with a
normal kernel function. The heavy tail of our method means larger PSNR can be achieved

using our method.

[2013]. We then compare our results with the state-of-the-art stereo deblur-
ring approach Sellent et al. [2016], monocular deblurring approach Kim and
Lee [2014] and deep-learning-based deblurring approaches Tao et al. [2018];
Kupyn et al. [2018b]. We compare our moving object segmentation results
with the state-of-the-art approach using sharp stereo video sequences Zhou
et al. [2017]. Besides, we further choose NLC Faktor and Irani [2014] and
FST Papazoglou and Ferrari [2013] as baselines since they are more robust
to occlusions, motion blur and illumination changes according to the com-
prehensive evaluations in Perazzi et al. [2016]. We make the quantitative
comparison of our model w/o explicitly imposing semantics priors for our
flow and deblurring results in Fig 4.8. In addition, we compare with our
previous method (Pan et al. [2017b]) that has no semantics priors. The com-
parison clearly shows that the performance is improved significantly with the
introduction of semantics as priors.

Runtime: In all experiments, we simultaneously compute two directions,
namely forward and backward, scene flows, restore six blurred images and
segment all moving objects. Our MATLAB® implementation with C++ wrap-
pers requires a total running time of 35 minutes for processing one scene (6
images, 3 iterations) on a single i7 core running at 3.6 GHz.

4.6.2 Results on KITTI

Currently, there are no realistic benchmark datasets that provide blurred im-
ages and corresponding ground-truth deblurring and scene flow to the best of
our knowledge. We take advantage of the KITTI dataset Geiger et al. [2013]
to create a synthetic blurry image dataset on realistic scenery, which con-
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Figure 4.9: The deblurring performance of our approach with respect to the number of itera-
tions. (left) Our method on our dataset with the gap of 0.3 dB between the first and the last

iteration. (right) Several baselines on ‘Chair’.
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Figure 4.10: The moving object segmentation result with respect to the number of iterations

tains 199 challenging outdoor sequences. Each sequence includes 6 images
(375× 1242). Our blur image dataset is generated in two different ways. First,
we follow the general practice in image deblurring and generate the blur im-
age dataset, referred to as BlurData-1, using the piecewise linear 2D kernel
in Eq. (4.3) which is defined on the dense scene flow. We use method Menze
and Geiger [2015] to generate dense ground-truth flows. In addition, τ = 0.23
and the number of frame is N = 20 (see Fig. 4.5 for details).

Second, we follow the way of generating blurry image in Kim et al. [2018],
by averaging the reference image together with its neighbouring frames. In
particular, we average 7 frames in total (3 on either side of the reference
frame). Note that the image sequence in KITTI, in general, has large relative

Table 4.2: Moving object segmentation evaluation on the KITTI dataset BlurData-1.
Methods Recall(R) Precision (P) F-measure (F)
Menze and Geiger [2015] 0.7995 0.5841 0.6045
Zhou et al. [2017] 0.7641 0.6959 0.7284
Papazoglou and Ferrari [2013] 0.5945 0.3199 0.2938
Faktor and Irani [2014] 0.4761 0.3148 0.3339
Baseline 0.7633 0.6113 0.6789
Our 0.8520 0.7281 0.7426
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 4.11: Qualitative comparison of our approach with baselines for deblurring, moving
object segmentation, and flow estimations. Our method use (a) blurred image and (g) Initial
semantic prior from BlurData-1 as input. (b) Ground-truth latent image. (c) Deblurring
results by Kim and Lee [2015]. (d) Stereo deblurring results by Sellent et al. [2016]. (e) and
(f) show our deblurring results w/o imposing semantic priors, respectively; (h) Segmentation
result by Papazoglou and Ferrari [2013]. (i) Segmentation result by Faktor and Irani [2014].
(j) Our segmentation result. (k) and (l) show the optical flow estimation results w/o imposing

semantic priors. Best viewed in colour on the screen.
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(a) Blurred Images (b) Kim and Lee [2015] (c) Sellent et al. [2016] (d) Our results

Figure 4.12: Sample deblur results on the real image dataset from Sellent et al. [2016] in
1st and 2nd row, and average model dataset in 3rd row. It shows that our ‘generalized stereo
deblur’ model can tackle different kinds of motion blur model and get better results. Best

viewed in colour on the screen.

(a) Blurred Images (b) Kim and Lee [2015] (c) Sellent et al. [2016]

(d) Pan et al. [2017b] (e) Tao et al. [2018] (f) Our results

Figure 4.13: Deblurring results on our Blur dataset. (a) The blurred image. (b) Deblurring
results by Kim and Lee [2015]. (c) Stereo deblurring results by Sellent et al. [2016]. (d)
Deblurring results by Pan et al. [2017b]. (e) Deblurring results by Tao et al. [2018]. (f)
Our result. It shows that our ‘generalized stereo deblur’ model can get competitive result
compared with the state-of-the-art deblurring methods results. Best viewed in colour on the

screen.
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motion. We therefore only choose 10 sequences to generate blurry images
based on averaging, which is denoted as BlurData-2. In the following, we
report results on our generated two synthetic datasets, respectively.

Deblurring and Scene Flow Results. We evaluated our approach by averag-
ing errors and PSNR scores over m and m + 1 stereo image pairs. Table 4.1
shows the PSNR values, disparity errors, and flow errors averaged over 199
test sequences on BlurData-1. Note that our method consistently outper-
forms all baselines. We achieve the minimum error scores of 9.83% for optical
flow and 6.18% for the disparity in the reference view. Figure 4.8 and Fig-
ure 4.8 show the estimated flows and deblurring results of the KITTI stereo
flow benchmark, which includes 199 scenes. Figure 4.9 (left) shows the per-
formance of our deblurring stage with respect to the number of iterations.
While we use 5 iterations for all our experiments, our experiments indicate
that only 3 iterations are sufficient in most cases to reach an optimal perfor-
mance under our model. In Figure 4.11, we show qualitative results.

Moving Object Segmentation Results. We report the quantitative compari-
son of our results with the baselines in Table 4.2. It shows that our approach
significantly outperforms the baselines by a large margin. Fig. 4.11(g-k) show
the qualitative comparison of our approach with baselines. The results show
that our final segmentation follows the boundary of the moving objects very
well. It further demonstrates that our approach can segment the moving ob-
jects more accurately than other approaches. Therefore, we can achieve a
conclusion that joint scene flow estimation, deblurring, and moving object
segmentation benefit each task.

4.6.3 Results on Other Dataset

In order to evaluate the generalization ability of our approach on different im-
ages, we use the datasets based on the 3D kernel model and average kernel
model which is different from our Blurred image dataset. In order to com-
pare our performance on images blurred by the 3D kernel model, we also
use the data courtesy of Sellent Sellent et al. [2016]. Those sequences contain
four real and four synthetic scenes and each of them have six blurred images
with its sharp images. The synthetic sequences are blurred by the 3D kernel
model and have ground-truth for those sequences. Figure 4.9 (right) shows
the performance of several baselines on synthetic dataset. This plot affirms
our assumption that jointly and simultaneously solving scene flow and video
deblur that contribute to each other. It also shows that a simple combination
of two stages cannot achieve the targeted results. Real scenes use real images
captured with a stereo camera that moves forward very slowly and attached
to a motorized rail. By averaging the frames, they obtain motion blurred im-
ages where all objects in the scene are static and the camera moves toward
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the scene. For these reasons, we give the semantic segmentation map as all
background (see Figure 4.12 1st and 2nd rows show the performance of the
result of the real scene).

In Fig. 4.12( the 3rd and 4th rows.), we show qualitative results of our
method and other methods on sample sequences from this two datasets,
where our method again achieves the best performance.

4.6.4 Limitations

Our method is based on calibrated stereo cameras which sometimes seem not
convenient for routine application. The framework may fail in the texture-less
case, the scene with strong reflection or under low lighting conditions. Be-
sides, the occlusion will also reduce the accuracy of the segmentation bound-
aries. Our model cannot handle images with defocus blur and scenery with
transparency or translucency. Following the recent deblurring works such
as Kim and Lee [2014]; Gupta et al. [2010]; Dai and Wu [2008]; Whyte et al.
[2012], we make the similar assumption that the intensity integral happens in
colour space during the exposure time, while we are aware of several meth-
ods model the integration in the raw sensor value and consider the effects of
CRFs on motion deblurring Nah et al. [2017]; Tai et al. [2013]. We leave these
limitations as future works.

4.7 Conclusion

This chapter presents a joint optimization framework to tackle the challenging
task of stereo video deblurring where scene flow estimation, moving object
segmentation, and video deblurring are solved in a coupled manner. Un-
der our formulation, the motion cues from scene flow estimation and blur
information could reinforce each other, and produce superior results than
conventional scene flow estimation or stereo deblurring methods. We have
demonstrated the benefits of our framework on extensive synthetic and real
stereo sequences. In future, we plan to extend our method to deal with mul-
tiple frames to achieve better stereo deblurring.



Chapter 5

Bringing a Blurry Frame Alive at
High Frame-Rate with an Event
Camera

Video reconstruction is another deblurring trend that reverses the blurring
process by extracting a video from a single blurred image. This chapter in-
troduces the event camera (Dynamic and Active-pixel Vision Sensor, DAVIS)
to this research field. Event cameras are gaining attention, for they can mea-
sure intensity changes (called ‘events’) with microsecond accuracy under high-
speed motion and challenging lighting conditions. A blurred image can be
regarded as the integral of a sequence of latent images, while the events in-
dicate the changes between the latent images. Therefore, we can model the
blur-generation process by associating event data to a latent image.

Liyuan Pan, Cedric Scheerlinck, Xin Yu, Richard Hartley, Miaomiao Liu, and
Yuchao Dai. Bringing a Blurry Frame Alive at High Frame-Rate with an Event
Camera. Conference on Computer Vision and Pattern Recognition (CVPR),
2019.

5.1 Abstract

Event-based cameras can measure intensity changes (called ‘events’) with mi-
crosecond accuracy under high-speed motion and challenging lighting condi-
tions. With the active pixel sensor (APS), the event camera allows simultane-
ous output of the intensity frames. However, the output images are captured
at a relatively low frame-rate and often suffer from motion blur. A blurry
image can be regarded as the integral of a sequence of latent images, while
the events indicate the changes between the latent images. Therefore, we are
able to model the blur-generation process by associating event data to a la-
tent image. In this chapter, we propose a simple and effective approach, the
Event-based Double Integral (EDI) model, to reconstruct a high frame-rate,

81
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sharp video from a single blurry frame and its event data. The video gen-
eration is based on solving a simple non-convex optimization problem in a
single scalar variable. Experimental results on both synthetic and real images
demonstrate the superiority of our EDI model and optimization method in
comparison to the state-of-the-art.

5.2 Introduction
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Figure 5.1: Deblurring and reconstruction results of our method compared with the state-
of-the-art methods on our real blurry event dataset. (a) The input blurry image. (b) The
corresponding event data. (c) Deblurring result of Tao et al. [2018]. (d) Deblurring result of
Pan et al. [2017a]. (e) Deblurring result of Jin et al. [2018]. Jin uses video as training data to
train a supervised model to perform deblur, where the video can also be considered as similar
information as the event data. (f)-(g) Reconstruction results of Scheerlinck et al. [2018], (f)
from only events, (g) from combining events and frames. (h) Our reconstruction result. (Best

viewed on screen).

Event cameras (such as the Dynamic Vision Sensor (DVS) Lichtsteiner et al.
[2008] and the Dynamic and Active-pixel Vision Sensor (DAVIS) Brandli et al.
[2014a]) are sensors that asynchronously measure the intensity changes at
each pixel independently with microsecond temporal resolution1. The event
stream encodes the motion information by measuring the precise pixel-by-
pixel intensity changes. Event cameras are more robust to low lighting and
highly dynamic scenes than traditional cameras since they are not affected by
under/over exposure or motion blur associated with a synchronous shutter.

Due to the inherent differences between event cameras and standard cam-
eras, existing computer vision algorithms designed for standard cameras can-

1If nothing moves in the scene, no events are triggered.
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not be applied to event cameras directly. Although the DAVIS Brandli et al.
[2014a] can provide the simultaneous output of the intensity frames and the
event stream, there still exist major limitations with current event cameras:

• Low frame-rate intensity images: In contrast to the high temporal res-
olution of event data (≥ 3µs frame rate), the current event cameras only
output low frame-rate intensity images (≥ 5ms time resolution).

• Inherent blurry effects: When recording highly dynamic scenes, motion
blur is a common issue due to the relative motion between the camera
and the scene. The output of the intensity image from the APS tends to
be blurry.

To address these above challenges, various methods have been proposed
by reconstructing high frame-rate videos. The existing methods can be in
general categorized as 1) Event data only solutions Bardow et al. [2016]; Rein-
bacher et al. [2016]; Barua et al. [2016], where the results tend to lack the
texture and consistency of natural videos, as they fail to use the comple-
mentary information contained in the low frame-rate intensity image; 2) Low
frame-rate intensity-image-only solutions Jin et al. [2018], where an end-to-
end learning framework has been proposed to learn regression between a sin-
gle blurry image and a video sequence, whereas the rich event data are not
used; and 3) Jointly exploiting event data and intensity images Scheerlinck
et al. [2018]; Brandli et al. [2014b], building upon the interaction between
both sources of information. However, these methods fail to address the blur
issue associated with the captured image frame. Therefore, the reconstructed
high frame-rate videos can be degraded by blur.

Although blurry frames cause undesired image degradation, they also en-
code the relative motion between the camera and the observed scene. Taking
full advantage of the encoded motion information would benefit the recon-
struction of high frame-rate videos.

To this end, we propose an Event-based Double Integral (EDI) model to
resolve the above problems by reconstructing a high frame-rate video from a
single image (even blur) and its event sequence, where the blur effects have
been reduced in each reconstructed frame. Our EDI model naturally relates
the desired high frame-rate sharp video, the captured intensity frame and
event data. Based on the EDI model, high frame-rate video generation is
as simple as solving a non-convex optimization problem in a single scalar
variable.

Our main contributions are summarized as follows.

1) We propose a simple and effective model, named the Event-based Double
Integral (EDI) model, to restore a high frame-rate sharp video from a single
image (even blur) and its corresponding event data.
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2) Using our formulation of EDI, we propose a stable and general method
to generate a sharp video under various types of blur by solving a single
variable non-convex optimization problem, especially in low lighting and
complex dynamic conditions.

3) The frame rate of our reconstructed video can theoretically be as high
as the event rate (200 times greater than the original frame rate in our
experiments).

5.3 Related Work

Event cameras such as the DAVIS and DVS Brandli et al. [2014a]; Lichtsteiner
et al. [2008] report log intensity changes, inspired by human vision. Although
several works try to explore the advantages of the high temporal resolu-
tion provided by event cameras Kim et al. [2016]; Rebecq et al. [2017]; Zhu
et al. [2017, 2018a]; Gehrig et al. [2018]; Kueng et al. [2016a]; Scheerlinck et al.
[2019a], how to make the best use of the event camera has not yet been fully
investigated.

Event-based image reconstruction. Kim et al. [2014] reconstruct high-quality
images from an event camera under a strong assumption that the only move-
ment is pure camera rotation, and later extend their work to handle 6-degree-
of-freedom motion and depth estimation Kim et al. [2016]. Bardow et al.
[2016] aim to simultaneously recover optical flow and intensity images. Rein-
bacher et al. [2016] restore intensity images via manifold regularization. Barua
et al. [2016] generate image gradients by dictionary learning and obtain a log-
arithmic intensity image via Poisson reconstruction. However, the intensity
images reconstructed by the previous approaches suffer from obvious arti-
facts as well as lack of texture due to the spatial sparsity of event data.

To achieve more image detail in the reconstructed images, several meth-
ods trying to combine events with intensity images have been proposed. The
DAVIS Brandli et al. [2014a] uses a shared photo-sensor array to simulta-
neously output events (DVS) and intensity images (APS). Scheerlinck et al.
[2018] propose an asynchronous event-driven complementary filter to com-
bine APS intensity images with events, and obtain continuous-time image
intensities. Brandli et al. [2014b] directly integrate events from a starting APS
image frame, and each new frame resets the integration. Shedligeri and Mi-
tra [2019] first exploit two intensity images to estimate depth. Then, they use
the event data only to reconstruct a pseudo-intensity sequence (using Rein-
bacher et al. [2016]) between the two intensity images and use the pseudo-
intensity sequence to estimate ego-motion using visual odometry. Using the
estimated 6-DOF pose and depth, they directly warp the intensity image to
the intermediate location. Liu et al. [2017a] assume a scene should have static
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background. Thus, their method needs an extra sharp static foreground im-
age as input and the event data are used to align the foreground with the
background.

Image deblurring. Traditional deblurring methods usually make assump-
tions on the scenes (such as a static scene) or exploit multiple images (such
as stereo, or video) to solve the deblurring problem. Significant progress has
been made in the field of single image deblurring. Methods using gradient
based regularizers, such as Gaussian scale mixture Fergus et al. [2006], l1\l2
norm Krishnan et al. [2011], edge-based patch priors Sun et al. [2013]; Yu
et al. [2014] and l0-norm regularizer Xu et al. [2013], have been proposed.
Non-gradient-based priors such as the color line based prior Lai et al. [2015],
and the extreme channel (dark/bright channel) prior Pan et al. [2017a]; Yan
et al. [2017a] have also been explored. Another family of image deblurring
methods tends to use multiple images Cho et al. [2012]; Kim and Lee [2015];
Sellent et al. [2016]; Pan et al. [2017b, 2018].

Driven by the success of deep neural networks, Sun et al. [2015] propose
a convolutional neural network (CNN) to estimate locally linear blur kernels.
Gong et al. [2017b] learn optical flow from a single blurry image through a
fully-convolutional deep neural network. The blur kernel is then obtained
from the estimated optical flow to restore the sharp image. Nah et al. [2017]
propose a multi-scale CNN that restores latent images in an end-to-end learn-
ing manner without assuming any restricted blur kernel model. Tao et al.
[2018] propose a light and compact network, SRN-DeblurNet, to deblur the
image. However, deep deblurring methods generally need a large dataset to
train the model and usually require sharp images provided as supervision.
In practice, blurry images do not always have corresponding ground-truth
sharp images.

Blurry image to sharp video. Recently, two deep learning based methods
Jin et al. [2018]; Purohit et al. [2019] propose to restore a video from a sin-
gle blurry image with a fixed sequence length. However, their reconstructed
videos do not obey the 3D geometry of the scene and camera motion. Al-
though deep-learning based methods achieve impressive performance in var-
ious scenarios, their success heavily depend on the consistency between the
training datasets and the testing datasets, thus hinder the generalization abil-
ity for real-world applications.

5.4 Formulation

In this section, we develop an EDI model of the relationships between the
events, the latent image and the blurry image. Our goal is to reconstruct
a high frame-rate, sharp video from a single image and its corresponding



86 Bringing a Blurry Frame Alive at High Frame-Rate with an Event Camera

events. This model can tackle various blur types and work stably in highly
dynamic contexts and low lighting conditions.

5.4.1 Event Camera Model

Event cameras are bio-inspired sensors that asynchronously report logarith-
mic intensity changes Brandli et al. [2014a]; Lichtsteiner et al. [2008]. Unlike
conventional cameras that produce the full image at a fixed frame-rate, event
cameras trigger events whenever the change in intensity at a given pixel ex-
ceeds a preset threshold. Event cameras do not suffer from the limited dy-
namic ranges typical of sensors with synchronous exposure time, and are able
to capture high-speed motion with microsecond accuracy.

Inherent in the theory of event cameras is the concept of the latent image
Lxy(t), denoting the instantaneous intensity at pixel (x, y) at time t, related
to the rate of photon arrival at that pixel. The latent image Lxy(t) is not
directly output by the camera. Instead, the camera outputs a sequence of
events, denoted by (x, y, t, σ), which record changes in the intensity of the
latent image. Here, (x, y) are image coordinates, t is the time the event takes
place, and polarity σ = ±1 denotes the direction (increase or decrease) of the
intensity change at that pixel and time. Polarity is given by,

σ = T
(

log
( Lxy(t)

Lxy(tref)

)
, c
)

, (5.1)

where T (·, ·) is a truncation function,

T (d, c) =


+1, d ≥ c,
0, d ∈ (−c, c),
−1, d ≤ −c.

Here, c is a threshold parameter determining whether an event should be
recorded or not, tref denotes the timestamp of the previous event. When an
event is triggered, Lxy(tref) at that pixel is updated to a new intensity level.

5.4.2 Intensity Image Formation

In addition to the event sequence, event cameras can provide a full-frame
grey-scale intensity image, at a much slower rate than the event sequence.
The grey-scale images may suffer from motion blur due to their long exposure
time. A general model of image formation is given by,

B =
1
T

∫ f+T/2

f−T/2
L(t) dt, (5.2)

where B is a blurry image, equal to the average value of latent images during
the exposure time [ f − T/2, f + T/2].
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Figure 5.2: The event data and our reconstructed result, where (a) and (b) are the input
of our method. (a) The intensity image from the event camera. (b) Events from the event
camera plotted in 3D space-time (x, y, t) (blue: positive event; red: negative event). (c) The
first integral of several events during a small time interval. (d) The second integral of events

during the exposure time. (e) Samples from our reconstructed video from L(0) to L(200).

5.4.3 Event-based Double Integral Model

We aim to recover a sequence of latent intensity images by exploiting both the
blur model and the event model. We define exy(t) as a function of continuous
time t such that

exy(t) = σ δt0(t),

whenever there is an event (x, y, t0, σ). Here, δt0(t) is an impulse function,
with unit integral, at time t0, and the sequence of events is turned into a
continuous time signal, consisting of a sequence of impulses. There is such
a function exy(t) for every point (x, y) in the image. Since each pixel can be
treated separately, we omit the subscripts x, y.

During an exposure period [ f − T/2, f + T/2], we define E(t) as the sum
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of events between time f and t at a given pixel,

E(t) =
∫ t

f
e(s)ds,

which represents the proportional change in intensity between time f and t.
Except under extreme conditions, such as glare and no-light conditions, the
latent image sequence L(t) is expressed as,

L(t) = L( f ) exp(c E(t)) = L( f ) exp(c)E(t) . (5.3)

We put a tilde on top of things to denote logarithm, e.g., L̃(t) = log(L(t)).

L̃(t) = L̃( f ) + c E(t). (5.4)

Given a sharp frame, we can reconstruct a high frame-rate video from the
sharp starting point L( f ) by using Eq. (5.4). When the input image is blurry,
a trivial solution would be to first deblur the image with an existing deblur-
ring method and then to reconstruct the video using Eq. (5.4) (see Fig.5.6 for
details). However, in this way, the event data between intensity images is not
fully exploited, thus resulting in inferior performance. Instead, we propose
to reconstruct the video by exploiting the inherent connection between event
and blur, and present the following model.

As for the blurred image,

B =
1
T

∫ f+T/2

f−T/2
L(t)dt =

L( f )
T

∫ f+T/2

f−T/2
exp

(
c
∫ t

f
e(s)ds

)
dt . (5.5)

In this manner, we construct the relation between the captured blurry im-
age B and the latent image L( f ) through the double integral of the event. We
name Eq. (5.5) the Event-based Double Integral (EDI) model. Taking the
logarithm on both sides of Eq. (5.5) and rearranging, yields

L̃( f ) = B̃− log
(

1
T

∫ f+T/2

f−T/2
exp(c E(t))dt

)
, (5.6)

which shows a linear relation between the blurry image, the latent image
and the integral of the events in the log space.

5.4.4 High Frame-Rate Video Generation

The right-hand side of Eq. (5.6) is known, apart from perhaps the value of
the contrast threshold c, the first term from the grey-scale image, the second
term from the event sequence, it is possible to compute L̃( f ), and hence L( f )
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(a) The blurry image (b) Tao et al. [2018]

(c) By human observation (d) By energy minimization

Figure 5.3: An example of our reconstruction result using different methods to estimate c,
from the real dataset Mueggler et al. [2017]. (a) The blurry image. (b) Deblurring result of
Tao et al. [2018] (c) Our result where c is chosen by manual inspection. (d) Our result where

c is computed automatically by our proposed energy minimization (5.9).

by exponentiation. Subsequently, from Eq. (5.4) the latent image L(t) at any
time may be computed.

To avoid accumulated errors of constructing a video from many frames
of a blurred video, it is more suitable to construct each frame L(t) using the
closest blurred frame.

Theoretically, we could generate a video with frame-rate as high as the
DVS’s eps (events per second). However, as each event carries little infor-
mation and is subject to noise, several events must be processed together to
yield a reasonable image. We generate a reconstructed frame every 50-100
events, so for our experiments, the frame-rate of the reconstructed video is
usually 200 times greater than the input low frame-rate video. Furthermore,
as indicated by Eq. (5.6), the challenging blind motion deblurring problem
has been reduced to a single variable optimization problem of how to find
the best value of the contrast threshold c. In the following section, we use
L(c, t) to present the latent sharp image L(t) with different c.

5.5 Optimization

The unknown contrast threshold c represents the minimum change in log in-
tensity required to trigger an event. By choosing an appropriate c in Eq. (5.5),
we can generate a sequence of sharper images. To this end, we first need to
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Figure 5.4: The figure plot deblurring performance against the value of c. The image is
clearer with higher PSNR value.

evaluate the sharpness of the reconstructed images. Here, we propose two
different methods to estimate the unknown variable c: manually chosen and
automatically optimized.

Figure 5.5: At left, the edge image M( f ) and below, its Sobel edge map. To the right are
3 reconstructed latent images using different values of c, low 0.03, middle 0.11 and high
0.55. Above, the reconstructed images, below, their Sobel edge maps. The optimal value of the
threshold c is found by computing the cross-correlation of such images with the edge map at

the left. (Best viewed on screen).

5.5.1 Manually Chosen c

According to our EDI model in Eq. (5.5), given a value for c, we can obtain
a sharp image. Therefore, we develop a method for deblurring by manually
inspecting the visual effect of the deblurred image. In this way, we incorpo-
rate human perception into the reconstruction loop and the deblurred images
should satisfy human observation. In Fig. 5.3, we give an example for man-
ually chosen and automatically optimized results on dataset from Mueggler
et al. [2017].
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(a) The Blur Image (b) Jin et al. [2018] (c) Baseline 1 (d) Baseline 2

(e) S(L(c, t)) · S(M(t)) (f) Samples of Our Reconstructed Video

Figure 5.6: Deblurring and reconstruction results on our real blurry event dataset. (a) Input
blurry images. (b) Deblurring result of Jin et al. [2018]. (c) Baseline 1 for our method.
We first use the state-of-the-art video-based deblurring method Jin et al. [2018] to recover a
sharp image. Then use the sharp image as input to a state-of-the-art reconstruction method
Scheerlinck et al. [2018] to get the intensity image. (d) Baseline 2 for our method. We first
use method Scheerlinck et al. [2018] to reconstruct an intensity image. Then use a deblurring
method Jin et al. [2018] to recover a sharp image. (e) The cross-correlation between S(L(c, t))
and S(M(t)). (f) Samples from our reconstructed video from L(0) to L(150). (Best viewed

on screen).

5.5.2 Automatically Chosen c

To automatically find the best c, we need to build an evaluation metric (energy
function) that can evaluate the quality of the deblurred image L(c, t). Specif-
ically, we propose to exploit different prior knowledge for sharp images and
the event data.

5.5.2.1 Edge Constraint for Event Data

As mentioned before, when a proper c is given, our reconstructed image
L(c, t) will contain much sharper edges compared with the original input
intensity image. Furthermore, event cameras inherently yield responses at
moving intensity boundaries, so edges in the latent image may be located
where (and when) events occur. This allows us to find latent image edges.
An edge at time t corresponds to an event (at the pixel in question) during
some time interval around t so we convolve the event sequence with an ex-
ponentially decaying window, to obtain a denoised edge boundary,

M(t) =
∫ T/2

−T/2
exp(−(α|t− s|)) e(s) ds,
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where α is a weight parameter for time attenuation, and is set to 1.0. Then, we
use the Sobel filter S to get a sharper binary edge map, which is also applied
to L(c, t). (See Fig. 5.5 and 5.6 for details).

Here, we use cross-correlation between S(L(c, t)) and S(M(t)) to evaluate
the sharpness of L(c, t).

φedge(c) = ∑
x,y
S(L(c, t))(x, y) · S(M(t))(x, y) . (5.7)

5.5.2.2 Regularizing the Intensity Image

In our model, total variation is used to suppress noise in the latent image
while preserving edges, and penalize the spatial fluctuations Rudin et al.
[1992].

φTV(c) = |∇L(c, t)|1, (5.8)

where ∇ represents the gradient operators.

5.5.2.3 Energy Minimization

The optimal c can be estimate by solving Eq. (5.9),

min
c

φTV(c) + λφedge(c), (5.9)

where λ is a trade-off parameter. The response of cross-correlation reflect the
matching rate of L(c, t) and M(t) which makes λ < 0. This single-variable
minimization problem can be solved by the nonlinear least-squares method
Moré [1978], Scatter-search Ugray et al. [2007] or Fibonacci search Dunlap
[1997].

In Fig. 5.4, we illustrate the clearness of the reconstructed image against
the value of c. Meanwhile, we also provide the PSNR of the corresponding
reconstructed image. As demonstrated in the figure, our proposed recon-
struction metric could locate/identify the best deblurred image with peak
PSNR properly.

5.6 Experiment

5.6.1 Experimental Setup

Synthetic dataset. In order to provide a quantitative comparison, we build
a synthetic dataset based on the GoPro blurry dataset Nah et al. [2017]. It
supplies ground truth videos which are used to generate the blurry images.
Similarly, we employ the ground-truth images to generate event data based
on the methodology of event camera model.



§5.6 Experiment 93

Table 5.1: Quantitative comparisons with Pan et al. [2017a]; Sun et al. [2015]; Gong et al.
[2017b]; Jin et al. [2018]; Tao et al. [2018]; Zhang et al. [2018]; Nah et al. [2017]; Scheerlinck
et al. [2018] on the Synthetic dataset Nah et al. [2017]. This dataset provides videos can be
used to generate not only blurry images but also event data. All methods are tested under the
same blurry condition, where methods Nah et al. [2017]; Jin et al. [2018]; Tao et al. [2018];
Zhang et al. [2018] use GoPro dataset Nah et al. [2017] to train their models. Jin et al. [2018]
achieves their best performance when the image is down-sampled to 45% mentioned in their

paper.
Average result of the deblurred images on dataset Nah et al. [2017]

Pan Sun Gong Jin Tao Zhang Nah Ours
PSNR(dB) 23.50 25.30 26.05 26.98 30.26 29.18 29.08 29.06

SSIM 0.8336 0.8511 0.8632 0.8922 0.9342 0.9306 0.9135 0.9430
Average result of the reconstructed videos on dataset Nah et al. [2017]

Baseline 1 Baseline 2 Scheerlinck Jin Ours
PSNR(dB) 25.52 26.34 25.84 25.62 28.49

SSIM 0.7685 0.8090 0.7904 0.8556 0.9199

Real dataset. We evaluate our method on a public Event-Camera dataset
Mueggler et al. [2017], which provides a collection of sequences captured by
the event camera for high-speed robotics. Furthermore, we present our real
blurry event dataset 2, where each real sequence is captured with the DAVIS
Brandli et al. [2014a] under different conditions, such as indoor, outdoor
scenery, low lighting conditions, and different motion patterns (e.g., cam-
era shake, objects motion) that naturally introduce motion blur into the APS
intensity images.

Implementation details. For all our real experiments, we use the DAVIS that
shares photosensor array to simultaneously output events (DVS) and intensity
images (APS). The framework is implemented by using MATLAB®. It takes
around 1.5 second to process one image on a single i7 core running at 3.6
GHz.

5.6.2 Experimental Results

We compare our proposed approach with state-of-the-art blind deblurring
methods, including conventional deblurring methods Pan et al. [2017a]; Yan
et al. [2017a], deep based dynamic scene deblurring methods Nah et al. [2017];
Jin et al. [2018]; Tao et al. [2018]; Zhang et al. [2018]; Sun et al. [2015], and
event-based image reconstruction methods Reinbacher et al. [2016]; Scheer-
linck et al. [2018]. Moreover, Jin et al. [2018] can restore a video from a single
blurry image based on a deep network, where the middle frame in the re-
stored odd-numbered sequence is the best.

2To be released with codes
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(a) The Blurry Image (b) Jin et al. [2018] (c) Ours

(d) The Reconstructed Video of Jin et al. [2018]

(e) The Reconstructed Video of Our Method

(f) Reinbacher et al. [2016] (g) Scheerlinck et al. [2018]

Figure 5.7: An example of the reconstructed result on our synthetic event dataset based on
the GoPro dataset Nah et al. [2017]. Nah et al. [2017] provides videos to generate the blurry
images and event data. (a) The blurry image. The red close-up frame is for (b)-(e), the yellow
close-up frame is for (f)-(g). (b) The deblurring result of Jin et al. [2018]. (c) Our deblurring
result. (d) The crop of their reconstructed images and the frame number is fixed at 7. Jin
et al. [2018] uses the GoPro dataset added with 20 scenes as training data and their model is
supervised by 7 consecutive sharp frames. (e) The crop of our reconstructed images. (f) The
crop of Reinbacher Reinbacher et al. [2016] reconstructed images from only events. (g) The
crop of Scheerlinck Scheerlinck et al. [2018] reconstructed image, they use both events and
the intensity image. For (e)-(g), the shown frames are the chosen examples, where the length

of the reconstructed video is based on the number of events.

In order to prove the effectiveness of our EDI model, we show some base-
line comparisons in Fig. 5.6 and Table 5.1. For baseline 1, we first apply
a state-of-the-art deblurring method Tao et al. [2018] to recover a sharp im-
age, and then the recovered image as an input is then fed to a reconstruction
method Scheerlinck et al. [2018]. For baseline 2, we first use the video recon-
struction method to construct a sequence of intensity images, and then apply
the deblurring method to each frame. As seen in Table 5.1, our approach ob-
tains higher PSNR and SSIM in comparison to both baseline 1 and baseline 2.
This also implies that our approach better exploits the event data to not only
recover sharp images but also reconstruct high frame-rate videos.
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Figure 5.8: Examples of reconstruction result on our real blurry event dataset in low lighting
and complex dynamic conditions (a) Input blurry images. (b) The event information. (c)
Deblurring results of Pan et al. [2017a]. (d) Deblurring results of Tao et al. [2018]. (e)
Deblurring results of Nah et al. [2017]. (f) Deblurring results of Jin et al. [2018] and they
use video as training data. (g) Reconstruction result of Reinbacher et al. [2016] from only
events. (h)-(i) Reconstruction results of Scheerlinck et al. [2018], (h) from only events, (i)
from combining events and frames. (j) Our reconstruction result. Results in (c)-(f) show that
real high dynamic settings and low light condition is still challenging in the deblurring area.
Results in (g)-(h) show that while intensity information of a scene is still retained with an

event camera recording, color, and delicate texture information cannot be recovered.

In Table 5.1 and Fig. 5.7, we show the quantitative and qualitative compar-
isons with the state-of-the-art image deblurring approaches Sun et al. [2015];
Pan et al. [2017a]; Gong et al. [2017b]; Jin et al. [2018]; Tao et al. [2018]; Zhang
et al. [2018]; Nah et al. [2017], and the video reconstruction method Scheer-
linck et al. [2018] on our synthetic dataset, respectively. As indicated in Ta-
ble 5.1, our approach achieves the best performance on SSIM and competitive
result on PSNR compared to the state-of-the-art methods, and attains signifi-
cant performance improvements on high-frame video reconstruction.

We report our reconstruction results on the real dataset, including text
images and low-lighting images, in Fig. 5.1, Fig. 5.2, Fig. 5.3 and Fig. 5.8. In
comparison to existing event-based image reconstructed methods Reinbacher
et al. [2016]; Scheerlinck et al. [2018], our reconstructed images are not only
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more realistic but also contain richer details. More deblurring results are
shown in Fig. 5.9

5.7 Conclusion

In this chapter, we propose an Event-based Double Integral (EDI) model
to naturally connect intensity images and event data captured by the event
camera, which also takes the blur generation process into account. In this
way, our model can be used to not only recover latent sharp images but also
reconstruct intermediate frames at high frame-rate. We also propose a simple
yet effective method to solve our EDI model. Due to the simplicity of our
optimization process, our method is efficient as well. Extensive experiments
show that our method can generate high-quality high frame-rate videos effi-
ciently under different conditions, such as low lighting and complex dynamic
scenes.
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(a) Sharp images (b) Blurry images (c) Jin et al. [2018] (d) Pan et al. [2017a]

(e) Yan et al. [2017a] (f) Tao et al. [2018] (g) Nah et al. [2017] (h) Ours

Figure 5.9: Examples of deblurring results on our synthetic event dataset. (a) Sharp
images. (b) Generated blurry images. (c) Deblurring results of Jin et al. [2018]. (d)
Deblurring results of Pan et al. [2017a]. (e) Deblurring results of Yan et al. [2017a].
(f) Deblurring results of Tao et al. [2018]. (g) Deblurring results of Nah et al. [2017].

(h) Our deblurring results. (Best view in color on screen).
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Chapter 6

High Frame Rate Video
Reconstruction based on an Event
Camera

In this chapter, we improved the EDI model (in chapter 5) to the multiple
Event-based Double Integral model by using multiple images and their events
to handle flickering effects and noise in the generated video. Also, we provide
a more efficient solver to minimize the proposed energy model.

Liyuan Pan, Richard Hartley, Cedric Scheerlinck, Miaomiao Liu, Xin Yu,
and Yuchao Dai. High Frame Rate Video Reconstruction based on an Event
Camera. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 2020.

6.1 Abstract

Event-based cameras measure intensity changes (called ‘events’) with microsec-
ond accuracy under high-speed motion and challenging lighting conditions.
With the ‘active pixel sensor’ (APS), the ‘Dynamic and Active-pixel Vision
Sensor’ (DAVIS) allows the simultaneous output of intensity frames and events.
However, the output images are captured at a relatively low frame rate and
often suffer from motion blur. A blurred image can be regarded as the in-
tegral of a sequence of latent images, while events indicate changes between
the latent images. Thus, we are able to model the blur-generation process
by associating event data to a latent sharp image. Based on the abundant
event data alongside a low frame rate, easily blurred images, we propose a
simple yet effective approach to reconstruct high-quality and high frame rate
sharp videos. Starting with a single blurred frame and its event data from
DAVIS, we propose the Event-based Double Integral (EDI) model and solve
it by adding regularization terms. Then, we extend it to multiple Event-
based Double Integral (mEDI) model to get more smooth results based on

99
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multiple images and their events. Furthermore, we provide a new and more
efficient solver to minimize the proposed energy model. By optimizing the
energy function, we achieve significant improvements in removing blur and
the reconstruction of a high temporal resolution video. The video genera-
tion is based on solving a simple non-convex optimization problem in a sin-
gle scalar variable. Experimental results on both synthetic and real datasets
demonstrate the superiority of our mEDI model and optimization method
compared to the state-of-the-art.

6.2 Introduction

Event cameras (such as the Dynamic Vision Sensor (DVS) Lichtsteiner et al.
[2008], and the DAVIS Brandli et al. [2014a]) are sensors that asynchronously
measure intensity changes at each pixel independently with microsecond
temporal resolution (if nothing moves in the scene, no events are triggered).
The event stream encodes the motion information by measuring the precise
pixel-by-pixel intensity changes. Event cameras are more robust to low light-
ing and highly dynamic scenes than traditional cameras since they are not
affected by under/overexposure associated with a synchronous shutter.

Due to the inherent differences between event cameras and standard cam-
eras, existing computer vision algorithms designed for standard cameras can-
not be applied to event cameras directly. Although the DAVIS Brandli et al.
[2014a] can provide simultaneous output of intensity frames and events, there
still exist major limitations with current DAVIS cameras:

• Low frame rate intensity images: In contrast to the high temporal reso-
lution of event data (≥ 3µs frame rate), the current DAVIS only output
low frame rate intensity images (≥ 20ms temporal resolution).

• Inherent blur effects: When recording highly dynamic scenes, motion
blur is a common issue due to the relative motion between the camera
and the scene. The output of the intensity image from the APS tends to
be blurry.

To address these challenges, various methods have been proposed by re-
constructing high frame rate videos. Existing methods can be, in general,
categorized as:

1) Event-only solutions, Bardow et al. [2016]; Rebecq et al. [2019]; Wang et al.
[2019]; Scheerlinck et al. [2019a], where the results tend to lack the tex-
ture and consistency of natural videos (especially for scenes with a static
background or a slowly moving background/foreground ), as they fail to
use the complementary information contained in low frame rate intensity
images;
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(a) The Blurred Image (b) The Events (c) Another View of the Sweater (d) Tao et al. [2018]

(e) Jin et al. [2018] (f) Scheerlinck et al. [2018]
(events only) (g) E2VID (×10) (h) E2VID (×100)

(i) Our EDI (×100) (j) Scheerlinck et al. [2018] (k) Our mEDI (×10) (l) Our mEDI (×100)

Figure 6.1: Deblurring and reconstruction results of our method compared with the state-
of-the-art methods on our real blur event dataset. (a) The input blurred image. (b) The
corresponding event data. (c) A sharp image for the sweater captured as a reference for colour
and shape (a real blurred image can hardly have its ground truth sharp image). (d) Deblurring
result of Tao et al. [2018]. (e) Deblurring result of Jin et al. [2018]. Jin uses video as training
data to train a supervised model to perform deblur, where the video can also be considered as
similar information as the event data. (f) Reconstruction results of Scheerlinck et al. [2018]
from only events. (g) Reconstruction results of Rebecq et al. [2019] from only events. Based
on their default settings, the time resolution of the reconstructed video is around ×10 times
higher than the time resolution of the original video. (h) Reconstruction results of Rebecq et al.
[2019] from only events. The time resolution here is around ×100. (i) Reconstruction result
of Pan et al. [2019c] from combining events and a single blurred frame. (j)Reconstruction
results of Scheerlinck et al. [2018] from events and images. (k)-(l) Our reconstruction result
from combining events and multiple blurred frames at different time resolution. Our result
preserves more abundant and faithful texture and the consistency of the natural image. (Best

viewed on screen).

2) Events and intensity images combined solutions, Scheerlinck et al. [2018];
Brandli et al. [2014b], which build upon the interaction between both
sources of information. However, these methods fail to address the blur
issue associated with the captured image frame. Therefore, the recon-
structed high frame rate videos can be degraded by blur.

Contrary to existing ‘image + event’ based methods that ignore the blur
effect in the image, or discard it entirely, we give an alternative insight into
the problem. While blurred frames cause undesired image degradation, they
inherently encode the relative motion between the camera and the observed
scene, and the integration of multiple images during the exposure time. Tak-
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ing full advantage of the encoded information in the blurred image would
benefit the reconstruction of high frame rate videos.

To tackle above problems, in our previous work Pan et al. [2019c], we
propose an Event-based Double Integral (EDI) model to fuse an image (even
with blur) with its event sequence to reconstruct a high frame rate, blur-
free video. Our EDI model naturally relates the desired high frame rate
sharp video, the captured intensity frame and event data. Based on the EDI
model, high frame rate video generation is as simple as solving a non-convex
optimization problem in a single scalar variable.

As the EDI model is based on a single image, noise from the event data
can easily degrade the quality of reconstructed videos, especially at transi-
tions between images. To mitigate accumulated noise from events, we limit
the integration to a small time interval around the centre of the exposure time,
allowing us to reconstruct a small video segment associated with one image.
The final video is obtained by stitching all the video segments together. How-
ever, this still results in flickering, especially when the camera and objects
have larger relative motion. In addition, the regularization terms (with ex-
tra weight parameters) are included in the energy function when solving the
contrast threshold for our EDI model. Thus, we extended our EDI model to
a multiple Event-based Double Integral (mEDI) one to handle discontinu-
ities at the boundaries of reconstructed video segments and develop a simple
yet effective optimization solution. Later in our experiments, it shows the
significant improvement in the smoothness and quality of the reconstructed
videos.

In this chapter, we first introduce our previous approach (the EDI model)
in Sec. 6.4. Then, we build an extension framework based on multiple images
and describe the approach in Sec. 6.5. Jointly optimizing multi-frames for gen-
erating long video sequences significantly alleviates the flickering problem for
the generated videos, whereas EDI treats each image individually and may
suffer flicking artefacts.

The extensions are as follows:

1) We propose a multiple Event-based Double Integral (mEDI) model to re-
store better high frame rate sharp videos. The model is based on multiple
images (even blurred) and their corresponding events.

2) Our mEDI is able to generate a sharp video under various types of blur
by solving a single variable non-convex optimization problem, especially
in low lighting condition and complex dynamic scene.

3) We develop a simple yet effective optimization solution. In doing so, we
significantly reduce the computational complexity with the Fibonacci se-
quence.
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4) The frame rate of our reconstructed video can theoretically be as high as
the event rate (200 times greater than the original frame rate in our ex-
periment). With multiple images, the reconstructed videos preserve more
abundant texture and the consistency of natural images.

6.3 Related Work

Event cameras such as the DAVIS and DVS Brandli et al. [2014a]; Lichtsteiner
et al. [2008] report log intensity changes, inspired by human vision. The result
is a continuous, asynchronous stream of events that encodes non-redundant
information about local brightness change. Estimating intensity images from
events is important. The reconstructed images grant computer vision re-
searchers a readily available high temporal resolution, high-dynamic-range
imaging platform that can be used for tasks such as face-detection Barua et al.
[2016], moving object segmentation Stoffregen et al. [2019], SLAM Cook et al.
[2011]; Kim et al. [2014, 2016]; Rebecq et al. [2017]; Vidal et al. [2018], local-
ization Liu et al. [2017b, 2019a] and optical flow estimation Zhu et al. [2018a];
Gehrig et al. [2019a]; Stoffregen et al. [2020]; Pan et al. [2020b]. Although
several works try to explore the advantages of the high temporal resolution
provided by event cameras Zhu et al. [2017]; Gehrig et al. [2018]; Kueng et al.
[2016a]; Gallego et al. [2019]; Brandli et al. [2014c], how to make the best use
of the event camera has not yet been fully investigated. In this section, we re-
view image reconstruction from event-based methods, and images and event
combined methods. We further discuss works on image deblurring.

Event-based image reconstruction. A typical way is done by processing
a spatio-temporal window of events. Taking a spatio-temporal window of
events imposes a latency cost at minimum equal to the length of the time win-
dow, and choosing a time-interval (or event batch size) that works robustly for
all types of scenes is not trivial. Barua et al. [2016] generate image gradients
by dictionary learning and obtain a logarithmic intensity image via Poisson
reconstruction. Bardow et al. [2016] simultaneously optimise optical flow and
intensity estimates within a fixed-length, sliding spatio-temporal window us-
ing the primal-dual algorithm Posch et al. [2010]. Cook et al. [2011] integrate
events into interacting maps to recover intensity, gradient, and optical flow
while estimating global rotating camera motion. Kim et al. [2014] reconstruct
high-quality images from an event camera under a strong assumption that
the only movement is pure camera rotation, and later extend their work to
handle 6-degree-of-freedom motion and depth estimation Kim et al. [2016].
Reinbacher et al. [2016] integrate events over time while periodically regular-
ising the estimate on a manifold defined by the timestamps of the latest events
at each pixel. Optimisation based event-only methods (i.e., without the pro-
cess of learning from training data) will generate artefacts and lack of texture
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when event data is sparse, because they cannot integrate sufficient informa-
tion from the available sparse events. Recently, learning-based approaches
have improved the image reconstruction quality significantly with powerful
event data representations via deep learning Rebecq et al. [2019, 2020]; Wang
et al. [2019]; Scheerlinck et al. [2020]. Rebecq et al. [2019] propose E2VID, a
fully convolutional, recurrent UNet architecture to encode events in a spatio-
temporal voxel grid. In Rebecq et al. [2020], they propose a recurrent network
to reconstruct videos from a stream of events and incorporate stacked Con-
vLSTM gates, which prevent vanishing gradients during backpropagation for
long sequences. Wang et al. [2019] form a 3D event volume by stacking event
frame in a time interval. A reconstructed intensity frame is generated by
summing events at each pixel in a smaller time interval.

Several methods trying to combine events with intensities have been pro-
posed to achieve more image details in the reconstructed images. The DAVIS
Brandli et al. [2014a] uses a shared photo-sensor array to simultaneously out-
put events (DVS) and intensity images (APS). Brandli et al. [2014b] combine
images and event streams from the DAVIS camera to create inter-frame in-
tensity estimates by dynamically estimating the contrast threshold (temporal
contrast) of each event. Each new image frame resets the intensity estimate,
preventing excessive growth of integration error. However, it also discards
important accumulated event information. Scheerlinck et al. [2018] propose
an asynchronous event-driven complementary filter to combine APS intensity
images with events, and obtain continuous-time image intensities. Shedligeri
and Mitra [2019] first exploit two intensity images to estimate depth. Sec-
ond, they only use events to reconstruct a pseudo-intensity sequence (using
method Reinbacher et al. [2016]) between the two intensity images. They, tak-
ing the pseudo-intensity sequence, they estimate the ego-motion using visual
odometry. With the estimated 6-DOF pose and depth, they directly warp the
intensity image to the intermediate location. Liu et al. [2017a] assume a scene
should have a static background. Thus, their method needs an extra sharp
static foreground image as input, and the event data are used to align the
foreground with the background.

Image deblurring. Recently, significant progress has been made in blind
image deblurring. Traditional deblurring methods usually make assumptions
on the scenes (such as a static scene) or exploit multiple images (such as
stereo, or video) to solve the deblurring problem. Significant progress has
been made in the field of single image deblurring. Methods using gradient
based regularizers, such as Gaussian scale mixture Fergus et al. [2006], l1\l2
norm Krishnan et al. [2011], edge-based patch priors Sun et al. [2013]; Yu et al.
[2014] and l0-norm regularizer Xu et al. [2013]; Pan et al. [2019b], have been
proposed. Non-gradient-based priors such as the color line based prior Lai
et al. [2015], and the extreme channel (dark/bright channel) prior Pan et al.
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[2017a]; Yan et al. [2017a] have also been explored. Since blur parameters and
the latent image are difficult to be estimated from a single image, the single-
image-based approaches are extended to use multiple images Kim and Lee
[2015]; Sellent et al. [2016]; Pan et al. [2017b, 2018]; Pan et al. [2020].

Driven by the success of deep neural networks, Sun et al. [2015] propose
a convolutional neural network (CNN) to estimate locally linear blur kernels.
Gong et al. [2017b] learn optical flow from a single blurred image through
a fully-convolutional deep neural network. The blur kernel is then obtained
from the estimated optical flow to restore the sharp image. Nah et al. [2017]
propose a multi-scale CNN that restores latent images in an end-to-end learn-
ing manner without assuming any restricted blur kernel model. Tao et al.
[2018] propose a light and compact network, SRN-DeblurNet, to deblur the
image. However, deep deblurring methods generally need a large dataset to
train the model and usually require sharp images provided as supervision.
In practice, blurred images do not always have corresponding ground-truth
sharp images.

Blurred image to sharp video. Recently, two deep learning-based methods
Jin et al. [2018]; Purohit et al. [2019] propose to restore a video from a single
blurred image with a fixed sequence length. However, their reconstructed
videos do not obey the 3D geometry of the scene and camera motion, lim-
iting the further application of the reconstructed video, such as optical flow
estimation. Although deep learning-based methods achieve impressive per-
formance in various scenarios, their success heavily depends on the consis-
tency between the training datasets and the testing datasets, thus hinder the
generalisation ability for real-world applications.

6.4 Formulation

Our goal is to reconstruct a high frame rate, sharp video from a single or
multiple (blurred) images and their corresponding events. In this section,
we first introduce our EDI model. Then, we extend it to the mEDI model
that includes multiple blurred images. Our models, both EDI and mEDI, can
tackle various blur types and work stably in highly dynamic scenarios and
low lighting conditions.

6.4.1 Event Camera Model

Event cameras are bio-inspired sensors that asynchronously report logarith-
mic intensity changes Brandli et al. [2014a]; Lichtsteiner et al. [2008]. Unlike
conventional cameras that produce full images at a fixed frame rate, event
cameras trigger events whenever the change in intensity at a given pixel ex-
ceeds a preset threshold. Event cameras do not suffer from limited dynamic
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Figure 6.2: The event data and our reconstructed result, where (a) and (b) are the input
of our method. (a) The intensity image from the DAVIS. (b) Events from the event camera
plotted in 3D space-time (x, y, t) (blue: positive event; red: negative event). (c) The first
integral of several events during a small time interval. (d) The second integral of events
during the exposure time. (e)-(h) Samples of reconstructed image with different c. The value
is from low (0.10), to proper (around 0.23) and high (0.60). Note, c = 0.23 in (g) is the chosen

automatically by our optimization process.

ranges typical of sensors with the synchronous exposure time, and capture
the high-speed motion with microsecond accuracy.

Inherent in the theory of event cameras is the concept of the latent image
Lxy(t), denoting the instantaneous intensity at pixel (x, y) at time t, related
to the rate of photon arrival at that pixel. The latent image Lxy(t) is not
directly output by the camera. Instead, the camera outputs a sequence of
events, denoted by (x, y, t, σ). Here, (x, y) denote image coordinates, t denotes
the time the event takes place, and polarity σ = ±1 denotes the direction
(increase or decrease) of the intensity change at that pixel and time. Polarity
is given by,

σ = T
(

log
( Lxy(t)

Lxy(tref)

)
, c
)

, (6.1)

where T (·, ·) is a truncation function,

T (d, c) =

{
+1, d ≥ c,
−1, d ≤ −c.

Here, c is a threshold parameter determining whether an event should be
recorded or not, Lxy(t) and Lxy(tref) denote the intensity of the pixel (x, y) at
time instances t and tref, respectively. When an event is triggered, Lxy(tref) at
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that pixel is updated to a new intensity level. As described by Lichtsteiner
et al. [2008], the DVS only uses a global threshold c. However, the contrast
threshold of an event camera is not constant, but normally distributed. Sev-
eral methods Delbruck et al. [2020]; Gallego et al. [2017] assume that the
positive and negative contrast thresholds (i.e., , c+ and c−) exhibit different
distribution noise. We observed using a global threshold c, (i.e., , c+ = c−
) also yields satisfying video deblurring and high-frame rate reconstruction
results while significantly simplifying the optimization procedure. Thus, we
adopt a global c in the following section.

6.4.2 Intensity Image Formation

In addition to event streams, event cameras can provide full-frame grey-scale
intensity images, at a much lower rate than the event sequence. Grey-scale
images may suffer from motion blur due to their long exposure time. A
general model of the blurred image formation is given by,

B =
1
T

∫ f+T/2

f−T/2
L(t) dt, (6.2)

where B is the blurred image, equal to the average of latent images during
the exposure time [ f − T/2, f + T/2]. Let L( f ) be the snapshot of the image
intensity at time f , the latent sharp image at the centre of the exposure period.

6.4.3 Event-based Double Integral Model

We aim to recover the latent sharp intensity video by exploiting both the blur
model and the event model. We define exy(t) as a function of continuous time
t such that,

exy(t) = σ δt0(t),

whenever there is an event (x, y, t0, σ). Here, δt0(t) is an impulse function,
with unit integral, at time t0, and the sequence of events is turned into a
continuous time signal, consisting of a sequence of impulses. There is such
a function exy(t) for every point (x, y) in the image. Since each pixel can be
treated separately, we omit the subscripts x, y.

Given a reference timestamp f , we define E(t) as the sum of events be-
tween time f and t,

E(t) =
∫ t

f
e(s)ds,

which represents the proportional change in intensity between time f and t.
Except under extreme conditions, such as glare and no-light conditions, the
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(a) The blurred Images B0, B1 and B2 (from left to right) (c) Reconstructed L1 by E2VID

(b) Our Reconstructed Images L0, L1 and L2 (×100) (from left to right) (d) Reconstructed L2 by E2VID

Figure 6.3: The examples of our reconstructed results are based on our real event dataset.
The threshold c is estimated automatically from three blurred images and their events based
on our mEDI model. (a), (b) Blur image and our reconstructed Images L0, L1 and L2 (c),
(d) Reconstruction results of L1 and L2 by Rebecq et al. [2019] from only events. The time
resolution here is around ×6 based on their default settings. The time resolution of the
reconstructed video by E2VID Rebecq et al. [2019] is around ×8 to 15 times higher than the

time resolution of the original video. (Best viewed on screen).

latent image sequence L(t) is expressed as,

L(t) = L( f ) exp(c E(t)) .

In particular, an event (x, y, t, σ) is triggered when the intensity of a pixel
(x, y) increases or decreases by an amount c at time t. With a high enough
temporal resolution, the intensity changes of each pixel can be segmented to
consecutive event streams with different amounts of events. We put a tilde
on top of things to denote logarithm, e.g., L̃(t) = log(L(t)). Thus, we have,

L̃(t) = L̃( f ) + c E(t). (6.3)

Given a sharp frame, we can reconstruct a high frame rate video from
the sharp starting point L( f ) by using Eq. (6.3). When an input image is
blurred, a trivial solution would be to first deblur the image with an existing
deblurring method and then to reconstruct a video using Eq. (6.3) (see Fig. 6.4
for details). However, in this way, the event data between intensity images are
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(a) The Blurred Image (b) Jin et al. [2018] (c) Baseline 1 (d) Baseline 2

(f) Samples of Our Reconstructed Video

Figure 6.4: Deblurring and reconstruction results on our real blur event dataset. (a) Input
blurred images. (b) Deblurring result of Jin et al. [2018]. (c) Baseline 1 for our method.
We first use the state-of-the-art video-based deblurring method Jin et al. [2018] to recover a
sharp image. Then use the sharp image as input to a state-of-the-art reconstruction method
Scheerlinck et al. [2018] to get the intensity image. (d) Baseline 2 for our method. We first
use method Scheerlinck et al. [2018] to reconstruct an intensity image. Then use a deblurring
method Jin et al. [2018] to recover a sharp image. (e) Samples from our reconstructed video

from L(0) to L(150).

not fully exploited, thus resulting in inferior performance. Moreover, none of
existing deblurring methods can be guaranteed to work stably in a complex
dynamic scenery. Instead, we propose to reconstruct the video by exploiting
the inherent connection between events and blur, and present the following
model.

As for the blurred image,

B =
1
T

∫ f+T/2

f−T/2
L( f ) exp

(
c E(t)

)
dt

=
L( f )

T

∫ f+T/2

f−T/2
exp

(
c
∫ t

f
e(s)ds

)
dt .

(6.4)

In this manner, we build the relation between the captured blurred image
B and the latent image L( f ) through the double integral of the event. We
name Eq. (6.4) the Event-based Double Integral (EDI) model.

We denote

J(c) =
1
T

∫ f+T/2

f−T/2
exp(c E(t))dt.
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(a) The Blurred Image (b) E2VID (×8) (c) Our EDI (×100) (d) Our mEDI (×100)

Figure 6.5: Examples of reconstruction results on real event dataset. (a) The intensity image
from the event camera. (b) Reconstruction result of our E2VID et al.Rebecq et al. [2019] from
only events. The temporal resolution is around ×8 based on their default settings, while ours
are ×100 times higher than the original videos’. (c) Reconstruction result of our EDI model
et al.Pan et al. [2019c] from combining events and a single blurred frame. (d) Reconstruction
result of our mEDI model from combining events and multiple blurred frames. Our method
based on multiple images gets better results than our previous one based only on one single
image, especially on large motion scenery and extreme light conditions. (Best viewed on

screen).

Taking the logarithm on both sides of Eq. (6.4) and rearranging it yields

L̃( f ) = B̃− J̃(c), (6.5)

which shows a linear relationship between the blurred image, the latent image
and integrated events in the log space.

6.4.4 High Frame Rate Video Generation

The right-hand side of Eq. (6.5) is known, apart from perhaps the value of
the contrast threshold c, the first term from the grey-scale image, the second
term from the event sequence, so it is possible to compute L̃, and hence L by
exponentiation. Subsequently, from Eq. (6.3) the latent image L(t) at any time
may be computed.

To avoid accumulated errors of constructing a video from many frames
of a blurred video, it is more suitable to construct each frame L(t) using the
closest blurred frame.

Theoretically, we could generate a video with a frame rate as high as the
DVS’s event rate. However, since each event carries little information and
is subject to noise, several events must be processed together to yield a rea-
sonable image. We generate a reconstructed frame every 50− 100 events, so



§6.4 Formulation 111

for our experiment, the frame rate of the reconstructed video is usually 200
times greater than the input low frame rate video. Furthermore, as indicated
by Eq. (6.5), the challenging blind motion deblurring problem has been re-
duced to a single variable optimization problem of finding the best value of
the contrast threshold c.

6.4.5 Finding c with Regularization Terms

As indicated by Eq. (6.5), the blind motion deblurring problem has been re-
duced to a single variable optimization problem of how to find the best value
of the threshold c. To this end, we need to build an evaluation metric (energy
function) that can evaluate the quality of the deblurred image L(t). Specifi-
cally, we propose to exploit different prior knowledge for sharp images and
the event data.

Edge constraint for event data. As mentioned before, when a proper c is
given, our reconstructed image L(c, t) will contain much sharper edges com-
pared with the original input intensity image. Furthermore, event cameras
inherently yield responses at moving intensity boundaries, so edges in the
latent image may be located where (and when) events occur. We convolve the
event sequence with an exponentially decaying window, to obtain a denoised
yet wide edge boundary,

M(t) =
∫ T/2

−T/2
exp(−(|t− s|)) e(s) ds,

Then, we use the Sobel filter S to get a sharper binary edge map, which is
also applied to L(c, t). Here, we use L(c, t) to present the latent sharp image
L(t) with different c.

Here, we use cross-correlation between S(L(c, t)) and S(M(t)) to evaluate
the sharpness of L(c, t).

φedge(c) = ∑
x,y
S(L(c, t))(x, y) · S(M(t))(x, y) . (6.6)

Intensity Image Constraint. Total variation is used to suppress noise in
the latent image while preserving edges, and to penalize spatial fluctuations
Rudin et al. [1992].

φTV(c) = |∇L(c, t)|1, (6.7)

where ∇ represents the gradient operators.

Energy Minimization. The optimal c can be estimate by solving Eq. (6.8),

min
c

φTV(c) + λφedge(c), (6.8)
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where λ is a trade-off parameter. The response of cross-correlation reflects the
matching rate of L(c, t) and M(t) which makes λ < 0. This single-variable
minimization problem can be solved by Golden Section Search.

6.5 Using More Than One Frame

Though our EDI can reconstruct high frame rate videos efficiently, noise from
events can easily degrade the quality of reconstructed videos with low tem-
poral consistency. In addition, regularization terms in the energy function
introduce unexpected weight parameters. Therefore, we propose a multiple
images based approach to tackle the above problems with a simple yet effec-
tive optimization solution.

6.5.1 Multiple Event-based Double Integral Model

Suppose an event camera captures a continuing sequence of events, and also
blurred images, Bi for i = 0, · · · , n. Assume that the exposure time is T
and the reference frame Bi is at time fi. Each Bi is associated with a latent
image Li( fi) and is generated as an integral of Li(t) over the exposure interval
[ fi − T/2, fi + T/2]. In addition, we rewrite E(t), L(t) and J(c) for the ith

frame as

Ei(t) =
∫ t

fi

e(s)ds

Li(t) = Li( fi) exp(c Ei(t))

Ji(c) =
1
T

∫ fi+T/2

fi−T/2
exp(c Ei(t))dt.

The EDI model in Eq. (6.5) in section 6.4 gives

B̃i = L̃i( fi) + J̃i(c), (6.9)

for each blurred image in the sequence. We use Li to represent Li( fi) in the
following section. Then, Eq. (6.9) is written as

B̃i = L̃i + J̃i(c) = L̃i + ai . (6.10)

The latent image Li+1 is formed from latent image Li by integrating events
over the period [ fi, fi+1], which gives

L̃i+1 = L̃i + c
∫ fi+1

fi

e(s)ds = L̃i + bi. (6.11)
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This describes the mEDI model based on multiple images and their events.

L̃i = B̃i − ai

L̃i+1−L̃i = bi.
(6.12)

The known values are B̃i, whereas the unknowns are L̃i, ai and bi. These
quantities are associated with a single pixel and we solve for each pixel inde-
pendently. We therefore obtain a set of linear equations based on Eq. (6.12) as

1 −1
1 −1

. . . . . .
1 −1

1
1

1
. . .

1




L̃1
L̃2
...

L̃n

 =



−b1
...

−bn−1
B̃1 − a1

...
B̃n − an


, (6.13)

where ai and bi depend on c, but particularly ai depends on c in a non-linear
way. Writing Eq. (6.13) as Ax = w, the least-squares solution is given by
solving ATAx = ATw.

6.5.2 LU Decomposition

Because of their particular form, these equations can be solved very efficiently
as will now be shown. Expanding the equations

ATAx = ATw

gives



2 −1
−1 3 −1

−1 3 −1
. . .
−1 3 −1

−1 2




L̃1
L̃2
...

L̃n

 =


B̃1 − a1 − b1

B̃2 − a2 − b2 + b1
...

B̃n−1 − an−1 − bn−1 + bn−2
B̃n − an + bn−1

 .

(6.14)
This is a particularly easy set of equations to solve. Since it has to be
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solved for each pixel, it is important to do it efficiently. The best way to solve
Eq. (6.14) is to take the LU decomposition of the left-hand-side matrix, which
has a particularly simple form.

Let ATw = r, we writing Eq. (6.14) as ATAx = r. The LU decomposition
of ATA (with appropriate reordering of rows) is given by

LU =


−2 −5 −13 · · · 1
1 0

1 0
. . .

...
1 0




−1 3 −1

. . . . . . . . .
−1 3 −1

−1 2
φ2n−1

 .

More precisely, if the Fibonacci sequence is 1, 2, 3, 5, 8, · · · and φk denotes
the k−th entry of this sequence (thus φ(0) = 1, φ(2) = 2), then the top line of
the left-hand matrix is [

φ2 φ4 · · · φ2(n−1) 1
]

,

consisting of the even numbered entries of the Fibonacci sequence. The entry
at the bottom right of the right-hand matrix is φ2n−1, the next odd-numbered
Fibonacci number, which is also the determinant of the original matrix. Solv-
ing equations by LU decomposition and back-substitution is particularly sim-
ple in this case. The procedure in solving equations LUx = r is done by
solving

Ly = r
Ux = y.

The solution of Ly = r = (r1, r2, · · · , rn)T is simply

y = (r2, r3, · · · , rn,
n−1

∑
i=1

riφ2i)
T.

The solution of Ux = y is given by back-substitution from the bottom:

xn = yn/φ2n−1 =
n−1

∑
i=1

riφ2i/φ2n−1

xn−1 = 2xn − rn

xn−2 = 3xn−1 − xn − rn−1

xn−3 = 3xn−2 − xn−1 − rn−2

· · ·
x1 = 3x2 − x3 − r2

(6.15)
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The values xi is the pixel value for latent image Li. If c is known, then
the values on the right of are dependent on c, and the sequence of Ln can be
computed.

Ln =
n−1

∑
i=1

riφ2i/φ2n−1

Ln−1 = 2Ln − B̃n − an + bn−1

Ln−2 = 3Ln−1 − Ln − B̃n−1 − an−1 − bn−1 + bn−2

Ln−3 = 3Ln−2 − Ln−1 − B̃n−2 − an−2 − bn−2 + bn−3

· · ·
L1 = 3L2 − L3 − B̃2 − a2 − b2 + b1

(6.16)

Furthermore, the problem has been reduced to a single variable optimization
problem of how to find the best value of the contrast threshold c.

6.6 Optimization

The unknown contrast threshold c represents the minimum change in log
intensity required to trigger an event. With an appropriate c in Eq. (6.12), we
can generate a sequence of sharper images. Here, we propose two different
methods to estimate the unknown variable c, which are manually chosen and
automatically optimized by our approach.

6.6.1 Manually Chosen c

According to our mEDI model in Eq. (6.12), given a value for c, we obtain
sharp images. Therefore, we develop a method for deblurring by manually
inspecting the visual effect of the deblurred image. In this way, we incorpo-
rate human perception into the reconstruction loop and the deblurred images
should satisfy human observation. In Fig. 6.2 and 6.6, we give examples for
manually chosen results on our dataset, and the Event-Camera Dataset Mueg-
gler et al. [2017].

6.6.2 Automatically Chosen c

To automatically find the best c, we need to build an evaluation metric (energy
function) that can evaluate the quality of the deblurred image Li(t). Different
from our EDI that including regularization terms (with extra weight param-
eters) in the energy function, we develop a simple yet effective optimization
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(a) The Blurred image (b) Tao et al. [2018]

(c) By Human Observation (d) By Energy Minimization

(e) E2VID (f) mEDI

Figure 6.6: An example of our reconstruction result using different methods to estimate
c, on a real sequence from the Event-Camera Dataset Mueggler et al. [2017]. (a) The
blurred image. (b) Deblurring result of Tao et al. [2018]. (c) Our result where c is chosen
by manual inspection. (d) Our result where c is computed automatically by our proposed
energy minimization Eq. (6.19). (e) Reconstruction results of Rebecq et al. [2019] from only
events. The temporal resolution of the reconstructed video is around ×8 times higher than
the original videos’ based on their default settings. (f) Our mEDI result where the temporal

resolution is the same as (e).

solution. More specifically, we adopt the Fibonacci sequence search to solve
the optimization which significantly reduces the computational complexity.

6.6.2.1 Energy function

The values on the right-hand side of Eq. (6.12) depend on an unknown pa-
rameter c. In particular, we write

bi = c
∫ t

fi

e(s)ds

ai = log
(

1
T

∫ fi+T/2

fi−T/2
exp(c E(t))dt

)
.

(6.17)

Given c, xi can be solved by LU decomposition in Sec. 6.5.2. Subsequently,
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Table 6.1: Quantitative comparisons on the Synthetic dataset Nah et al. [2017]. The provided
videos are able to generate not only blurred images but also event data. All methods Pan et al.
[2017b]; Sun et al. [2015]; Gong et al. [2017b]; Scheerlinck et al. [2018] are tested under
the same blur condition, where methods Nah et al. [2017]; Jin et al. [2018]; Tao et al. [2018];
Zhang et al. [2018] use GoPro dataset Nah et al. [2017] to train their models. Note, Baseline 1
is based on Tao et al. [2018] + Scheerlinck et al. [2018], and Baseline 2 is based on Scheerlinck
et al. [2018] + Tao et al. [2018]. Jin Jin et al. [2018] achieves their best performance when the
image is down-sampled to 45% mentioned in their paper. In this dataset, blurry images are
generated by averaging every 11 frames, and they treat the clean middle one (the 6th frame)
as the ground truth. The top part in this figure aims to compare with deblurring methods,
and only the blurry image (the 6th frame) is evaluated. The bottom part shows the measures

of whole reconstructed videos.

Average result of the deblurred images on dataset Nah et al. [2017]
Pan Sun Gong Jin Tao Zhang Nah EDI mEDI

PSNR(dB) 23.50 25.30 26.05 26.98 30.26 29.18 29.08 29.06 30.29
SSIM 0.8336 0.8511 0.8632 0.8922 0.9342 0.9306 0.9135 0.9430 0.9194

Average result of the reconstructed videos on dataset Nah et al. [2017]
Baseline 1 Baseline 2 Scheerlinck Jin EDI mEDI

PSNR(dB) 25.52 26.34 25.84 25.62 28.49 28.83
SSIM 0.7685 0.8090 0.7904 0.8556 0.9199 0.9098

from Eq. (6.12) the blur image Bi can be computed.

B̃i(c) = xi + ai (6.18)

Here, we use Bi(c) to present the blurred image Bi with different c. In this
case, the optimal c can be estimated by solving Eq. (6.19),

min
c
||Bi(c)− B||22. (6.19)

Examples show that as a function of c, the residual error in solving the equa-
tions is not convex. However, in most cases (empirically) it seems to be con-
vex, or at least it has a single minimum (See Fig. 6.8 for an example).

6.6.2.2 Fibonacci search

Finding the minimum of a function along a single line is easy if that function
has a single minimum. In the case of least-squares minimisation problems,
various strategies for determining the line-search direction are currently used,
such as conjugate gradient methods, gradient descent, and the Levenberg-
Marquardt method. When the function has only one stationary point, the
maximum/minimum, and when it depends on a single variable in a finite in-
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(a) The blurred Image (b) Jin et al. [2018] (c) Ours

(d) The Reconstructed Video of Jin et al. [2018]

(e) The Reconstructed Video of mEDI

(f) Reinbacher et al. [2016] (g) Scheerlinck et al. [2018]

Figure 6.7: An example of the reconstructed result on our synthetic event dataset based on
the GoPro dataset Nah et al. [2017]. Nah et al. [2017] provides videos to generate blurred
images and event data. (a) The blurred image. The red close-up frame is for (b)-(e), the yellow
close-up frame is for (f)-(g). (b) The deblurring result of Jin et al. [2018]. (c) Our deblurring
result. (d) The crop of their reconstructed images and the frame number is fixed at 7. Jin
et al. [2018] uses the GoPro dataset added with 20 scenes as training data and their model
is supervised by 7 consecutive sharp frames. (e) The crop of our reconstructed images. (f)
The crop of Reinbacher et al. [2016] reconstructed images from only events. (g) The crop of
Scheerlinck et al. [2018] reconstructed image, they use both events and the intensity image.
For (e)-(g), the shown frames are the chosen examples, where the length of the reconstructed

video is based on the number of events. (Best viewed on screen).

terval, the most efficient way to find the maximum is based on the Fibonacci
numbers. The procedure, now known widely as ‘Fibonacci search’, was dis-
covered and shown optimal in a minimax sense by Kiefer Kiefer [1953]; Press
et al. [1988].

In this work, we use Fibonacci search for the value of c that gives the least
error. In Fig. 6.8, we illustrate the clearness of the reconstructed image (in
PSNR value) as a function of the value of c. As demonstrated in the figure,
our proposed reconstruction metric could properly locate/identify the best-
deblurred image with peak PSNR.

In our proposed method, we assume that c+ = c− and use a global c based
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Figure 6.8: Deblurring performance plotted against the value of c. The image is clearer with
higher PSNR value.

on the following reasons:

1) As illustrated in Fig. 6.8 our deblurring performance has a relatively flat
crest against different values of c. Experimental results demonstrated that
the quality of our reconstructed videos is robust to the estimation of c
within a certain range.

2) We have conducted the experiments with c+ 6= c−, namely, optimising two
variables in our formulation. We observed that the improvement on PSNR
is less than 0.1dB in comparison to the results of optimising a global c.
However, the computational complexity increases from O(n) to O(n2).

Therefore, we believe it is worthy of trading off between computational sim-
plicity and performance accuracy.

6.7 Experiment

In our experiments, unless otherwise specified, the parameter c for recon-
structing images is chosen automatically by our optimization process.

6.7.1 Experimental Setup

Synthetic dataset. To provide a quantitative comparison, we build a syn-
thetic dataset based on the GoPro blur dataset Nah et al. [2017]. It supplies
ground truth videos which are used to generate the blurred images. Simi-
larly, we employ the ground-truth images to generate event data based on
the methodology of event camera model. In this GoPro dataset, we did not
notice obvious rolling shutter artefacts because images in this dataset were
requested to be captured with low speed of camera motions for providing
ground-truth latent sharp images.

Real dataset. We evaluate our method on a public Event-Camera dataset
Mueggler et al. [2017], which provides a collection of sequences captured by
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Figure 6.9: Examples of reconstruction result on our real blur event dataset in low lighting
and complex dynamic conditions (a) Input blurred images. (b) The event information. (c)
Deblurring results of Pan et al. [2017a]. (d) Deblurring results of Yan et al. [2017a]. (e)
Deblurring results of Tao et al. [2018]. (f) Deblurring results of Nah et al. [2017]. (g) De-
blurring results of Jin et al. [2018] and they use video as training data. (h) Reconstruction
result of Pan et al. [2019c] from combining events and frames. (i) Reconstruction result of
Reinbacher et al. [2016] from only events. (j)-(k) Reconstruction results of Scheerlinck et al.
[2018], (j) from only events, (k) from combining events and frames. (l) Our reconstruction
result. Results in (c)-(g) show that real high dynamic settings and low light conditions are
still challenging in the deblurring area. Results in (i)-(j) show that while intensity informa-
tion of a scene is still retained with an event camera recording, color, and delicate texture

information cannot be recovered. (Best viewed on screen).
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the event camera for high-speed robotics. Furthermore, we present our real
blur event dataset, where each real sequence is captured with the DAVIS240 Bran-
dli et al. [2014a] under different conditions, such as indoor, outdoor scenery,
low lighting conditions, and different motion patterns (e.g., camera shake,
objects motion) that naturally introduce motion blur into the APS intensity
images. We also evaluate our method on a newly published Color Event
Camera Dataset (CED) Scheerlinck et al. [2019b] built with DAVIS346 Red
Color sensor. They present an extension of the event simulator ESIM Rebecq
et al. [2018] that enables simulation of colour events. In contrast to GoPro
cameras, event cameras, such as DAVIS, employ global shutters, where an en-
tire scene is captured at the same instant. Therefore, global shutter cameras,
e.g., our event camera, do not have rolling shutter effects.

Implementation details. For all our real experiments, we use the DAVIS Bran-
dli et al. [2014a] that shares photosensor array to simultaneously output
events (DVS) and intensity images (APS). The framework is implemented us-
ing MATLAB®. It takes around 1.5 seconds to process one image on a single
i7 core running at 3.6 GHz.

6.7.2 Experimental Results

We compare our proposed approach with state-of-the-art blind deblurring
methods, including conventional deblurring methods Pan et al. [2017a]; Yan
et al. [2017a], deep based dynamic scene deblurring methods Nah et al. [2017];
Jin et al. [2018]; Tao et al. [2018]; Zhang et al. [2018]; Sun et al. [2015], and
event-based image reconstruction methods Rebecq et al. [2019]; Reinbacher
et al. [2016]; Scheerlinck et al. [2018]. Moreover, Jin et al. [2018] can restore
a video from a single blurred image based on a deep network, where the
middle frame in the restored odd-numbered sequence is the best.

To prove the effectiveness of our model, we show some baseline compar-
isons in Fig. 6.4 and Table 6.1. For baseline 1, we first apply a state-of-the-art
deblurring method Tao et al. [2018] to recover a sharp image, and then feed
the recovered image as input to a reconstruction method Scheerlinck et al.
[2018]. For baseline 2, we first use the video reconstruction method Scheer-
linck et al. [2018] to reconstruct a sequence of intensity images, then apply
the deblurring method Tao et al. [2018] to each frame. As seen in Table 6.1,
our approach obtains higher PSNR and SSIM compared to baseline 1 and
baseline 2. This also implies that our approach better exploits the event data
to recover sharp images and reconstruct high frame rate videos.

In Table 6.1 and Fig. 6.7, we show quantitative and qualitative comparison
on our synthetic dataset, respectively. As indicated in Table 6.1, our approach
achieves the best performance on PSNR, and competitive results on SSIM
compared to state-of-the-art methods and attains significant performance im-
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(a) DAVIS frame (b) E2VID (c) Ours

Figure 6.10: An example of our reconstruction result on the color event camera dataset
CED Scheerlinck et al. [2019b]. (a) The input image. (b) Reconstruction results of Rebecq
et al. [2019] from only events. The temporal resolution of the reconstructed video is around
×12 times higher than the original videos’ based on their default settings. (c) Our mEDI
result where the temporal resolution is the same as (b). From top to bottom, a scene with a low
lighting condition, an outdoor scene, a scene with slow-moving objects (static background),
and an HDR scene. Our mEDI model performs well in the top two rows, while E2VID
is able to provide vivid colour textures in the HDR scene. Note that our method focuses
on reconstructing high-frame rate videos rather than changing the dynamic range of input
videos. In order to illustrate our detailed textures in the HDR scene, we employ an HDR

enhancement method Eilertsen et al. [2017].

provements on high-frame video reconstruction.
In Fig. 6.3, Fig. 6.5 and Fig. 6.10, we qualitatively compare our generated

videos with state-of-the-art event-based image reconstruction methods Re-
becq et al. [2019]; Scheerlinck et al. [2018]; Pan et al. [2019c]. Experimental
results indicate that event-only methods work well on scenes of fast camera
motions since the distribution of events has a wide coverage of scene content.
Also, E2VID Rebecq et al. [2019] is enabled to provide more vivid colour tex-
tures in the HDR scene. However, for scenes with a static background or a
slowly moving background/foreground, the reconstructed images by event-
only methods will lose texture details in the areas without events. On the
contrary, our ‘image and event’ combined method achieves superior perfor-
mance on scenes with high dynamic motions and works robustly even with
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static backgrounds and sparse events.
We also report our reconstruction (and deblurring) results on real datasets,

including text images and low-lighting images, in Fig. 6.1, Fig. 6.6, and Fig. 6.9.
Compared with state-of-the-art deblurring methods, our method achieves

superior results. In comparison to existing event-based image reconstruction
methods Reinbacher et al. [2016]; Scheerlinck et al. [2018]; Pan et al. [2019c];
Rebecq et al. [2019], our reconstructed images are not only more realistic but
also contain richer details. For more deblurring results and high-temporal
resolution videos, please visit our home page.

6.8 Limitation

Though event cameras record continuous, asynchronous streams of events
that encode non-redundant information for our mEDI model, there are still
some limitations when doing reconstruction.

1) Extreme lighting changes, such as suddenly turning on/off the light, mov-
ing from dark indoor scenes to outdoor scenes. The relatively low dynamic
range of the intensity image might degrade the performance of our method
in high dynamic scenes;

2) Event error accumulation, such as noisy event data, small object motions
with fewer events. Though we integrate over short time intervals from the
centre of the exposure time to mitigate this error, accumulated noise can
reduce the quality of reconstructed images.

6.9 Conclusion

In this chapter, we have proposed a multiple Event-based Double Integral
(mEDI) model to naturally connect intensity images and events recorded by
an event camera (DAVIS), which also takes the blur generation process into
account. In this way, our model can be used to recover the latent sharp images
and reconstruct intermediate frames at a high frame rate. We also propose a
simple yet effective method to solve our mEDI model. Due to the simplicity
of our optimization process, our method is efficient as well. Extensive ex-
periments show that our method can generate high-quality, high frame-rate
videos efficiently under different conditions, such as low lighting and com-
plex dynamic scenes.

https://github.com/panpanfei/Bringing-a-Blurry-Frame-Alive-at-High-Frame-Rate-with-an-Event-Camera
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Chapter 7

Single Image Optical Flow
Estimation with an Event Camera

This chapter proposes a single image (potentially blurred) and event-based
optical flow estimation approach to unlock their potential applications. In
doing so, we introduce an event-based brightness constancy constraint on abso-
lute intensity to encode the relation between optical flow and the event data.
Also, we use the blur formation model in our objective function to handle
optical flow estimation on the blurred image.

Liyuan Pan, Miaomiao Liu, and Richard Hartley. Single Image Optical Flow
Estimation with an Event Camera. Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2020.

7.1 Abstract

Event cameras are bio-inspired sensors that asynchronously report intensity
changes in microsecond resolution. DAVIS can capture high dynamics of a
scene and simultaneously output high temporal resolution events and low
frame-rate intensity images. In this chapter, we propose a single image (po-
tentially blurred) and event-based optical flow estimation approach. First, we
demonstrate how events can be used to improve flow estimates. To this end,
we encode the relation between flow and events effectively by presenting an
event-based photometric consistency formulation. Then, we consider the spe-
cial case of image blur caused by high dynamics in the visual environments
and show that including the blur formation in our model further constrains
flow estimation. This is in sharp contrast to existing works that ignore the
blurred images while our formulation can naturally handle either blurred or
sharp images to achieve accurate flow estimation. Finally, we reduce flow esti-
mation, as well as image deblurring, to an alternative optimization problem of
an objective function using the primal-dual algorithm. Experimental results
on both synthetic and real data (with blurred and non-blurred images) show
the superiority of our model in comparison to state-of-the-art approaches.

125
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(a) Input image (b) Input events

(c) Gong et al. [2017b] (d) EV-FlowNet

(e) Our deblurred image (f) Our optical flow

Figure 7.1: Optical flow estimation. (a) and (b) are the input to our method, where
(a) shows the intensity image from DAVIS, and (b) visualises the integrated events over a
temporal window (blue: positive event; red: negative event). (c) Flow result of Gong et al.
[2017b] by using a single blurred image. (d) Flow result of Zhu et al. [2018a], by using
events. (e) and (f) are our results. Our methods is able to handle large motion scenery. (Best

viewed on screen).

7.2 Introduction

Event cameras (such as DVS Lichtsteiner et al. [2008] and DAVIS Brandli
et al. [2014a]) measure intensity changes at each pixel independently with
microsecond accuracy. Unlike conventional cameras recording images at a
fixed frame rate, event cameras trigger the event whenever the change in in-
tensity at a given pixel exceeds a preset threshold. Event cameras are gaining
attention for their high temporal resolution, robustness to low lighting and
highly dynamic scenes which can be used for tasks such as tracking Rebecq
et al. [2016]; Gehrig et al. [2018], deblurring Pan et al. [2019c], and SLAM Kim
et al. [2016]; Kueng et al. [2016b]; Vidal et al. [2018]. However, standard vision
algorithms cannot be applied to event cameras directly. Hence, new methods
are required to be tailored to event cameras and unlock their potential. In this
chapter, we aim to show how events can improve flow estimates, even with a
blurred image.

Optical flow estimation is an active topic in the computer vision commu-
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nity and serves as the backbone for event-based moving object segmenta-
tion Stoffregen et al. [2019], human pose estimation Calabrese et al. [2019],
and action recognition Amir et al. [2017]. Traditional flow estimation ap-
proaches Horn and Schunck [1981]; Jason et al. [2016]; Yin and Shi [2018] are
proposed based on the brightness consistency assumption for corresponding
pixels across the image pair, and cannot handle the asynchronous event data
Gallego et al. [2019]. A common trend Bardow et al. [2016]; Gallego et al.
[2018]; Zhu et al. [2019]; Gehrig et al. [2019b] to estimate flow is from events
only. However, events are sparse spatially, flow computed at regions with no
events are less reliable than those computed at regions with events (i.e., ,at
edges) Liu and Delbruck [2018]. Hence, several methods tends to fuse the
intensity information and events Bardow et al. [2016]; Barranco et al. [2014]
to estimate flow.

To this end, we aim to use the output of DAVIS, which is events and
intensity images, to improve optical flow estimates. A straightforward idea
is to reconstruct images from events Pan et al. [2019c]; Rebecq et al. [2019],
and then compute flow directly from the reconstructed image. While the
generated flow is noisy inherently, it shows the potential to estimate flow by
using the image and its event streams (seeing Fig. 7.3). Unfortunately, this
approach neglects the inherent connection between flow and events. Thus,
we introduce an event-based photometric consistency in our model to encode
the relation between flow and event data. Different from Zhu et al. [2018a]
that exploit images as the supervision signal for a self-supervised learning
framework only, we fully explore the relation between events and flow to
formulate our model.

On the other hand, while intensity images are effective for flow estima-
tion, output images of event cameras tend to contain blur artefacts due to dy-
namic visual environment. It makes flow estimation even more challenging
as brightness constancy may not hold for blurred images (seeing Fig. 7.1). Un-
like existing methods, we explore the relationship between flow and blurred
image formation which provides more constraints to flow estimation. In a
nutshell, our model shows the potential of event cameras for single image
flow estimation, and can also work under blurred condition by joint sharp
image and optical flow estimation.

In summary, our main contributions are

1) We propose a method for optical flow estimation from a single image
(blurred potentially) and its event data for the event camera (DAVIS).

2) We introduce an event-based brightness constancy constraint on absolute in-
tensity to encode the relation between optical flow and the event data. Be-
sides, we use the blur formation model in our objective function to handle
optical flow estimation on the blurred image.
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3) Experimental results in both real and synthetic datasets show our method
can successfully handle complex real-world flow estimation, depicting fast-
moving objects, camera motions, and uncontrolled lighting conditions.

7.3 Related Work

In this section, we review works for flow estimation from event cameras,
images, and event-based image reconstruction which could be used for flow
estimation. We further discuss a few works for image deblurring related to
flow.

Event camera based flow estimation. Benosman et al. [2012] propose an
adaptation of the gradient-based Lucas-Kanade algorithm based on DVS.
In Benosman et al. [2013], they assume that the flow orientation and am-
plitude can be estimated using a local differential approach on the surface
defined by coactive events. They work well for sharp edges and monochro-
matic blocks but fail with dense textures, thin lines, and more complicated
scenes. Barranco et al. [2015] propose a more expensive phase-based method
for high-frequency texture regions and trying to reconstruct the intensity sig-
nals to avoid the problem with textured edges. Bardow et al. [2016] jointly
reconstruct intensity image and estimate flow based on events by minimiz-
ing their objective function. However, accuracy relies on the quality of the
reconstructed image. Gallego et al. [2018] present a unifying framework to
estimate flow by finding the point trajectories on each image plane that are
best aligned with events. Zhu propose EV-FlowNet Zhu et al. [2018a], an
event-based flow estimation approach using a self-supervised deep learning
pipeline. The event data are represented as 2D frames to feed the network.
While images from the sensor are used as a supervision signal, the blur effect
is ignored which is shown to be useful for flow estimation in our framework.
In Zhu et al. [2019], they further use another event format to train two net-
works to predict flow, camera ego-motion, and depth for static scenery. Then,
they use predictions to remove motion blur from event streams which shows
the potential of blurring to improve the flow estimate accuracy. However,
flow computed at those constant brightness regions is still less reliable.

Image-based flow estimation. One promising direction is to learn optical
flow with CNNs Dosovitskiy et al. [2015]; Jason et al. [2016]; Yin and Shi
[2018] by video. FlowNet 2.0 Ilg et al. [2017] develops a stacked architecture
that includes warping of the second image with the intermediate flow. PWC-
Net Sun et al. [2018] uses the current flow estimate to warp the CNN features
of the second image. It then uses the warped features and features of the first
image to construct a cost volume to estimate flow. SelFlow Liu et al. [2019b]
is based on distilling reliable flow estimations from non-occluded pixels, and
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using these predictions to guide optical flow learning for hallucinated occlu-
sions. Several deep learning-driven works attempt to use a single image to
estimate flow Walker et al. [2015]; Rosello [2016]; Endo et al. [2019]. Walker
et al. [2015] use CNN to predict dense flow, while they assume the image is
static.

Event-based image reconstruction. Image reconstruction Rebecq et al. [2019];
Wang et al. [2019]; Pan et al. [2020a] from events can be treated as the data
preparation step for traditional image-based flow estimation methods. How-
ever, this ignores that the event can contribute to flow estimation. To re-
construct the image with more details, several methods attempt to combine
events with intensity images Brandli et al. [2014b]; Scheerlinck et al. [2018];
Pan et al. [2019c]. Pan et al. [2019c] propose an Event-based Double Integral
(EDI) model to fuse an image with its events to reconstruct a high frame rate
video. In our paper, we combine the EDI model and state-of-the-art optical
flow estimation methods to serve as baselines of our approach.

Image deblurring. As the flow accuracy highly depends on the quality of
the image, a better-restored image also relies on the quality of the estimated
flow. Researchers attempt to use flow to estimate the spatial-varying blur
kernel and then restore images Xu et al. [2015]; Kim and Lee [2014, 2015];
Sellent et al. [2016]; Pan et al. [2017b]; Pan et al. [2020]; Pan et al. [2019a].
Recently, learning-based methods have brought significant improvements in
image deblurring Gong et al. [2017b]; Nah et al. [2019b]; Zhou et al. [2019b].
Gong et al. [2017b] directly estimate flow from a blurred image by a fully-
convolutional neural network (FCN) and recover the sharp image from the
estimated flow. It is still a challenging problem for dynamic scene deblurring.
Our estimated flow from a single image and events are more robust and the
model generalizes well to handle blurred images from complex scenery.

7.4 Variational Approach

We start with reviewing variational approaches for optical flow estimation
from a pair of images. Define as u = (u, v) to be an optical flow field, and
u(x) = (ux, vx)T its value at a given pixel x. From a reference time f to t, the
brightness constancy can be written as

L(x, f ) = L(x + u(x), t) , (7.1)

where u ∈ IRH×W×2, and L ∈ IRH×W is the latent image. Here, H, W are
the image size. Let the intensity of pixel x = (x, y)T at time f be denoted
by L(x, f ). As equation (7.1) is under-determined, regularization terms are
introduced to solve optical flow. Horn and Schunck Horn and Schunck [1981]
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studied a variational formulation of the problem,

min
u

∫
Ω
‖∇u(x)‖2 dx +

∫
Ω
(L(x, f )− L(x + u(x), t))2 dx , (7.2)

where ‖ · ‖ is the standard l2 norm, Ω denotes the image domain, and ∇u ∈
IRH×W×4. The first term penalizes high variations in u to obtain smooth opti-
cal flow fields. The second term enforces the brightness constancy constraint
(BCC). Here, we denote ∇u(x) as

∇u(x) =
(

∂u(x)
∂x

,
∂u(x)

∂y
,

∂v(x)
∂x

,
∂v(x)

∂y

)T

,

where we denote ∇u(x) = (u(x)
x , u(y)

x , v(x)
x , v(y)x )T for short. Note that (here

and elsewhere) superscripts in brackets represent differentiation with respect
to x or y.

7.5 Event-based approach

We aim to estimate flow from a set of events (from time f to t) and a single
corresponding gray-scale image (blurred potentially) taken by DAVIS. It is
noteworthy that flow is defined as a continuously varying motion field at a
flexible time slice of event data, which is different from the traditional flow
defined based on the image frame rate.

To compute flow from events, a potential solution is to estimate flow from
the reconstructed images based on event cameras Pan et al. [2019c]. How-
ever, it ignores that events can contribute to flow estimation. In contrast, we
observe that events provide correspondences of pixels across time, which im-
plicitly defines flows for pixels with events. It suggests that we should model
events directly in our flow estimation framework. Meanwhile, the intensity
image is another output of DAVIS. However, it is likely blurred due to high
dynamics in the scene. As shown in Gong et al. [2017b], the blur artifacts in
the image provides useful information for flow estimation.

We therefore propose to jointly estimate flow u and the latent image L by
enforcing the brightness constancy by events and the blurred image formation
model. In particular, our energy minimization model is formulated as:

min
L,u

µ1φeve(L, u) + µ2φblur(L, u) + φflow(∇u) + φim(∇L) , (7.3)

where µ1 and µ2 are weight parameters, φeve enforces the BCC by event,
φblur enforces the blurred image formation process, φflow and φim enforces the
smoothness of the estimated flow and latent image. In following sections, we
include details for the objective function in Eq. (7.3).
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(a) Blurred image (b) Deblurred image Zhang et al. [2019]

(c) Deblurred image Pan et al. [2019c] (d) Ours

Figure 7.2: An example of our deblurring result on the real dataset Mueggler et al. [2017].
(a) The blurred image. (b) Deblurred by Zhang et al. [2019]. (c) Deblurred by EDI Pan et al.

[2019c]. (d) Ours. (Best viewed on screen).

7.5.1 Brightness Constancy by Event Data φeve

In case of the output data from DAVIS, we represent Eq. (7.1) in a different
way. Besides images, each event is denoted by (x, t, σ). Polarity σ = ±1
denotes the direction of the intensity change. An event is fired when a change
in the log intensity exceeds a threshold c.∣∣log(L(x, t))− log(L(x, tre f )

∣∣ ≥ c . (7.4)

Here, t is the current timestamp and tre f is the timestamp of the previous
event. When an event is triggered, tre f and L(x, tre f ) at that pixel is updated
to a new timestamp and a new intensity level. Following the EDI model Pan
et al. [2019c], we represent the neighbouring image as

L(x, t) = L(x, f ) exp(c E(x, t)) , (7.5)

where E(x, t) is the integration of events between time f and t at a given pixel
x, and we dub E(t) as the event frame.

Assume the motion between 4t = t− f is small. We adopt a first-order
Taylor expansion to the right-hand side of Eq. (7.1) and obtain its approxima-
tion

L(x + u(x), f +4t)

≈ L(x, f ) + uxL(x, f )(x) + vxL(x, f )(y) +4t L(x, f )(t)

= uxL(x, f )(x) + vxL(x, f )(y) + L(x, t) .

(7.6)
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Back to the left-hand side of Eq. (7.1), we have

L(x, f ) ≈ uxL(x, f )(x) + vxL(x, f )(y) + L(x, t) . (7.7)

With the event model in Eq. (7.5), we can form the latent image as,

L(x, f ) ≈ uxL(x, f )(x) + vxL(x, f )(y)

+ L(x, f ) exp (c E(x, t)) .

Let ∇L(x, f ) = (L(x, f )(x), L(x, f )(y))T, we therefore write the event-based photo-
metric constancy constraint as

φeve(L, u) = ∑
x∈Ω
‖L(x, f )(exp(c E(x, t))− 1)

+ [ux, vx]
T∇L(x, f )‖1 .

(7.8)

Different with Bardow et al. [2016]; Gehrig et al. [2019b]; Bryner et al. [2019]
defining the brightness constancy constraint in the log space, we encode the
relation between optical flow and events by our event-based brightness con-
stancy constraint in terms of the original absolute intensity space.

7.5.2 Blur Image Formation Constraint φblur

In addition to event streams, DAVIS can provide intensity images at a much
lower temporal rate than events. Images may suffer from motion blur due to
the relative motion between the camera and objects. A general model of blur
image formation is given by

B = k⊗ L( f ) , (7.9)

where B ∈ IRH×W is the blurred image, ⊗ is the convolution operator, and
k denotes the blur kernel. For a dynamic scenario, the spatially variant blur
kernel is, in principle, defined for each pixel. Then

B(x) = k(x)⊗ L(x) . (7.10)

We omit f in the following sections. The convolution of the two matrices is
defined as,

B(x) = ∑
y∈Ω

k(y)L(x− y)

= ∑
y∈Ω

ku′(x)(y)L(x− y) ,
(7.11)
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where x, y ∈ Ω, and ku′(x) ∈ IRH×W is the kernel map for each pixel. We
use the subscript u′(x) to denote the index of k for pixel x, and ku′(x)(y) is
expressed as

ku′(x)(y) =


1

|u′(x)| , if y = αu′(x), |α| ≤ 1
2

0, otherwise ,
(7.12)

where u′(x) = λu(x) denotes flow during the exposure time T, and λ = T/4t. It
follows our assumption that flow during a small time interval has a constant
velocity. Furthermore, each element of the kernel is non-negative and the sum
of it is equal to one. Note that the kernel defined in Eq. (7.12) allows us to
handle blurred images with a long exposure time T, as well as sharp images
with short exposure time. When T is small, θ is small enough to result in a
Dirac delta function as a blur kernel (e.g., convolving a signal with the delta
function leaves the signal unchanged). The blur image formation constraint
is denoted as

φblur(L, u) = ∑
x,y∈Ω

‖ku′(x)(y)L(x− y)− B(x)‖2 , (7.13)

which can handle the blurred and sharp image in a unified framework.

7.5.3 Smoothness Term φflow, and φim

In general, conventional flow estimation models assume that flow vectors
vary smoothly and have sparse discontinuities at edges of the image Kim
et al. [2013]. Smoothness terms aim to regularize flow and the image by min-
imizing the difference between neighbouring pixels. For any pixel x, vector
w(x) = (wx

x , wy
x) ∈ IR2, and ∇u(x) ∈ IR4, define

w(x)∇u(x) =
(

wx
xu(x)

x , wy
xu(y)

x , wx
xv(x)

x , wy
xv(y)x

)T
.

Putting all the pixels together, we define w∇u, where w ∈ IRH×W×2 and ∇u ∈
IRH×W×4.

Our flow cost is defined as

φflow(∇u) = ‖w∇u‖1,2 = ∑
x∈Ω
‖w(x)∇u(x)‖ , (7.14)

which is a mixed 1-2 norm (sum of 2-norms). We choose weight w where

wx = µ3 exp(−(L̂(x)/µ4)
2) , (7.15)
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and similarly wy, constants µ3 and µ4 are weight parameters, and L̂ is the
input image of our optimization framework. In addition, we define an image
smoothness term as

φim(∇L) = ∑
x∈Ω
‖∇L(x)‖1 . (7.16)

7.6 Optimization

Clearly, Eq. (7.3) is non-convex with respect to u, and L. Therefore, we per-
form the optimization over one variable at a time and optimize all parameters
in an alternating manner.

• Fix latent image L, and compute optical flow by optimizing Eq. (7.17)
(See Section 7.6.1).

• Fix optical flow u, and compute the latent image by optimizing Eq. (7.24)
(See Section 7.6.2).

Here, we use the primal-dual algorithm Pock et al. [2009b,a]; Chambolle
and Pock [2011] for its optimal convergence. In the following section, we
describe details for each optimization step.

7.6.1 Optical Flow Estimation

We fix the image, namely L = L̂, and Eq. (7.3) reduces to

min
u

µ1φeve(u) + µ2φblur(u)︸ ︷︷ ︸
G(u)

+ φflow(∇u)︸ ︷︷ ︸
F(Ku)

, (7.17)

where φeve(u) and φflow(∇u) are convex, while φblur(u) is non-convex. As
shown, we separate Eq. (7.17) into G and F, where Ku = w∇u is a linear
function and F(Ku) = ‖Ku‖1,2 = φflow(∇u). Let u ∈ X = IR2N, and ∇u ∈
Y = IR4N, so G : X → IR, and F : Y → IR, where N = HW is the number
of pixels. In follows, we treat u, ∇u as vectors. The basis of the primal-dual
formulation is to replace F in Eq. (7.17) by its double Fenchel dual F∗∗, so it
becomes minu∈X(G(u) + F∗∗(Ku)), which is

min
u∈X

(
G(u) + max

p∈Y
〈Ku , p〉X − F∗(p)

)
. (7.18)

Recall that the Fenchel dual (convex conjugate) F∗ of function F is defined as

F∗(q) = sup
p∈Y

(〈p, q〉 − F(p)) , (7.19)
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and that F = F∗∗ if F is a convex function (a norm is convex). The primal-dual
algorithm of Chambolle and Pock [2011] consists of iterations starting from
initial estimates u0, p0 and ū0 = u0:

pn+1 = PF∗(pn + σKūn)

un+1 = PG(un − τK∗pn+1)

ūn+1 = un+1 + θ(un+1 − un) .

(7.20)

Here σ and τ are weight parameters, and P(·) is the proximal operator

Pg(x) = arg min
y

(2g(y) + ‖y− x‖2) .

The hyperparameter θ is a number that controls the degree of ‘extrapolation’.
We use θ = 1. We now discuss each step of this algorithm in the present case.

Updating p. It is well known that the Fenchel dual of a norm is the indicator
function of the unit ball in the dual norm. In this case, F∗(·) is a mixed norm
‖ · ‖1,2, and its dual is a norm ‖ · ‖∞,2. The indicator function is therefore a
product BN of N Euclidean 2-balls (each in IR4). More precisely

F∗(p) =

{
0, if ‖px‖ ≤ 1 for all x
+∞, otherwise .

(7.21)

The proximal operator PF∗ is therefore given by

F∗(p̄) = arg min
p∈Y

(
2F∗(p) + ‖p̄− p‖2

)
= arg min

p∈BN
‖p̄− p‖2 .

(7.22)

In other words, each p̄x is projected to the nearest point in the unit ball, given
by p̄x/(max(1, ‖p̄x‖)).

Updating u. The update equation from Eq. (7.20) is

ū = un − τK∗pn+1

un+1 = PτG(ū) = arg min
u

(
2τG(u) + ‖u− ū‖2

)
.

(Note we use PτG instead of PG). Minimizing by taking derivatives gives
u = ū − τ∇G(u). We make the simplifying assumption that G is locally ap-
proximated to first order, and so ∇G(u) = ∇G(un), which leads to the update
step

un+1 = un − τ
(
∇G(un) + K∗pn+1) , (7.23)
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which is simply gradient descent of Eq. (7.18), fixing p = pn+1. We obtain
Algorithm 3.

Algorithm 3: Primal-Dual Minimization - Flow
Initialization: Choose τ, σ > 0, n = 0, and set ū0 = u0.
Iterations : Update un, pn, ūn as follows

1 while n < 20 do
2 Dual ascent in p
3 p̄ = pn + σKūn, pn+1

x = p̄x/max(1, ‖p̄x‖) ∀x
4 Primal descent in u
5 un+1 = un − τ

(
G(un) + K∗pn+1)

6 Extrapolation step
7 ūn+1 = un+1 + (un+1 − un)
8 n = n + 1
9 end

7.6.2 Deblurring

We fix optical flow, namely u = û, and Eq. (7.3) reduces to

min
L

φim(∇L)︸ ︷︷ ︸
F1(∇L)

+ µ1φeve(L)︸ ︷︷ ︸
F2(KL)

+ µ2φblur(L)︸ ︷︷ ︸
G(L)

. (7.24)

The convex conjugate F∗ is defined as,

F∗(p, q) = F∗1 (p) + F∗2 (q) , (7.25)

where p ∈ IR2N, and q ∈ IRN. Here, ∇L ∈ IR2N. The primal-dual update
process is expressed as follows,

pn+1 =
pn + γ∇L̄n

max(1, J(pn + γ∇L̄n))
,

qn+1 =
qn + γ(θ2L̄n + [u, v]T∇L̄n)

max(1, J(qn + γ(θ2L̄n + [u, v]T∇L̄n)))
,

(7.26)

where η, γ are weight factors, and θ2 = exp(cE(t))− 1.

Ln+1 = PηG(L̄) = arg min
L

(
2ηG(L) + ‖L− L̄‖2

)
, (7.27)

where L̄ = Ln − η(∇∗pn+1 + K∗qn+1). We obtain Algorithm 4 for the mini-
mization of the proposed energy function (7.24).
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Algorithm 4: Primal-Dual Minimization - Deblurring
Initialization: Choose γ, η > 0, n = 0, and set L̄0 = L0.
Iterations : Update Ln, pn, qn as follows

1 while n < 5 do
2 Dual ascent in p, q
3 p̄ = pn + γ∇L̄n, q̄ = qn + γ(θ2L̄n + [u, v]T∇L̄n)

4 pn+1
x = p̄x/max(1, J(p̄x)) ∀x

5 qn+1
x = q̄x/max(1, J(q̄x)) ∀x

6 Primal descent in L
7 L̄ = Ln − η(∇∗pn+1 + K∗qn+1), Ln+1 = PηG(L̄)

8 Extrapolation step
9 L̄n+1 = Ln+1 + (Ln+1 − Ln)

10 n = n + 1
11 end

7.7 Experiments

7.7.1 Experimental Setup

Real dataset. We evaluate our method on three public real event datasets,
namely, Multi-vehicle Stereo Event Camera dataset (MVSEC) Zhu et al. [2018b],
Event-Camera dataset (ECD) Mueggler et al. [2017], and Blurred Event Dataset
(BED) Scheerlinck et al. [2018]; Pan et al. [2019c]. MVSEC provides a collec-
tion of sequences captured by DAVIS for high-speed vehicles with ground
truth optical flow.

Synthetic dataset. For quantitative comparisons on optical flow, we build a
synthetic dataset based on Sintel Butler et al. [2012] with images of size 1024×
436, which uses the event simulator ESIM Rebecq et al. [2018] to generate
event streams. While Sintel provides a blurred dataset, it mainly focuses on
out of focus blur instead of motion blur. Therefore, it is not suitable for the
evaluation of deblurring. To provide a quantitative deblurring comparison,
we generate another synthetic dataset with events and motion blur, based
on the real GoPro video dataset Nah et al. [2017], where the image size is
1280× 720. It has ground-truth latent images and associated motion blurred
images. We additionally use PWC-Net to estimate flow from sharp images as
the ground-truth for flow evaluation.

Evaluations. For the evaluation of flow estimation results, we use error met-
rics, such as Mean Square Error (MSE), Average Endpoint Error (AEE), and
Flow Error metric (FE).

AEE =
∑Ω ‖uest − ugt‖1

2HW
, MSE =

∑Ω ‖uest − ugt‖2

2HW
.
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Table 7.1: Results on the MVSEC Zhu et al. [2018a] and Sintel dataset Butler et al. [2012].
We evaluate optical flow by Mean Square Error (MSE), Average Endpoint Error (AEE) and
Flow Error metric (FE). The first column ‘GT images’ means we use two ground-truth images
to estimate flow. ‘EDI image’ means we use two reconstruct images to estimate flow by EDI
model. EV-FlowNet Zhu et al. [2018a] provides a pre-trained model with cropped images
(256× 256) and events. Thus, we only show their results that comparing with the cropped
ground-truth flow. Our model achieves competitive results compared with state-of-the-art

methods. Our ‘AEE’ and ‘FE’ metric dropped two times as much as others.
MVSEC dataset Zhu et al. [2018a]

Input GT images EDI images and events Events
SelFlow PWC-Net SelFlow PWC-Net EV-FlowNet Zhu Ours

AEE 0.5365 0.4392 1.4232 1.3677 1.3112 0.6975 0.9296
MSE 0.3708 0.1989 1.7882 1.6135 1.3501 - 0.8700

FE (%) 0.5163 0.0938 2.5079 2.4927 1.1038 1.7500 0.4768
Sintel dataset Butler et al. [2012]

AEE 0.1191 0.1713 1.3895 1.5138 2.9714 - 1.0735
MSE 0.3645 0.5979 6.2693 7.6105 21.4982 - 3.2342

FE (%) 0.8155 1.1922 22.6290 21.9625 49.0136 - 14.9061

Table 7.2: Ablation Study based on Sintel Dataset Butler et al. [2012].
without φeve without φblur

AEE 2.3941 2.2594
MSE 5.3506 9.5267

FE (%) 18.0525 45.4516

FE metric is computed by counting the number of pixels having errors more
than 3 pixels and 5% of its ground-truth over pixels with valid ground truth
flow. We adopt the PSNR to evaluate deblurred images. The error map shows
the distribution of the endpoint error of measurements compared with the
ground-truth flow and the success rate is defined as the percentage of results
with errors below a threshold.

Baseline methods. For optical flow, we compare with state-of-the-art event
only based methods EV-FlowNet Zhu et al. [2018a], and Zhu Zhu et al. [2019].
Then, we compare with the state-of-the-art video (with the label ‘GT images’.)
only based method SelFlow Liu et al. [2019b], and PWC-Net Sun et al. [2018].
In addition, we build a two-step ( event + image) framework as a baseline
approach, which is ‘EDI + SelFlow’ and ‘EDI + PWC-Net’. The two-step
framework first use the image reconstruction method EDI Pan et al. [2019c]
to restore intensity images, then applying flow estimation methods Sun et al.
[2018]; Liu et al. [2019b] to the restored images to estimate flow. We com-
pare our deblurring results with the state-of-the-art event-based deblurring
approach Pan et al. [2019c] and blind deblurring methods Zhang et al. [2019];
Tao et al. [2018]; Gong et al. [2017b].

Implementation details. For all our real experiments, the image and events
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Figure 7.3: Results of our method compared with state-of-the-art methods on real dataset
Zhu et al. [2018a]. (a) Input image. (b) Input events. (c) Ground-truth optical flow and
the colour coded optical flow on the left corner. (d) Error Map shows the distribution of the
Endpoint Error of estimates compared with the ground-truth flow. (e) Baseline: Flow result
by Sun et al. [2018] based on two reconstructed images. The reconstructed image is estimated
by EDI model Pan et al. [2019c] from a single image and its events. (f) Baseline: Flow result
by Liu et al. [2019b] based on two reconstructed images. (g) Flow result by Zhu et al. [2018a]
based on images and events. (h) Ours, by using an image and events as input. (Best viewed

on screen).

are from DAVIS. The framework is implemented by using MATLAB® with
C++ wrappers. It takes around 20 seconds to process a real image (size 346×
260) from DAVIS on a single i7 core running at 3.6 GHz.

7.7.2 Experimental Results

We compare our results with baselines on optical flow estimation and image
deblurring on 5 (including real and synthetic) datasets. Our goal is to demon-
strate that given a single blurred image and event stream, jointly optimising
the image and optical flow would achieve better results than “event only”,
“single (blurred) image only”, and stage-wise methods. We report quantita-
tive comparisons in Table 7.1, 7.3 and qualitative comparisons in Fig. 7.1, 7.2,
7.3, 7.4 to show the effectiveness and generalization of our method. Abla-
tion study in Table 7.2 shows the effectiveness of each term in our objective
function (7.3).

As shown in Table 7.1 and Fig. 7.3, we achieve competitive results on flow
estimation compared with event only based methods Zhu et al. [2018a, 2019]
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Table 7.3: Quantitative analysis on the GoPro dataset Nah et al. [2017]. This dataset provides
ground-truth latent images and the associated motion blurred images. The ground-truth
optical flow is estimated by PWC-Net from the sharp video. To demonstrate the efficiency of
our optimization method, we use the output of ‘EDI + PWC-Net’ as the input to our method.

Our optimization method can still show improvements.
Input EDI images and events Events Image and events

SelFlow PWC-Net EV-FlowNet EDI + PWC-Net
+ Our optimization

Our
initialization Our results

AEE 2.0557 1.5806 2.0337 0.9796 3.7868 0.8641
MSE 5.7199 4.8951 10.5480 2.5952 8.3929 2.1536

FE(%) 0.1722 0.1049 0.2839 0.0895 0.1218 0.0632
PSNR - - - 31.5595 29.3789 31.9234
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Figure 7.4: An example of our method on dataset Butler et al. [2012]. (a) Input blurred
image. (b) Input events. (c) Ground-truth optical flow. (d) Flow result by Sun et al. [2018]
based on images estimated by EDI model Pan et al. [2019c]. (e) Flow result by Liu et al.
[2019b] based on images estimated by EDI model. (f) Ours baseline result without term φeve.
(g) Ours baseline result without term φblur. (h) Error Map. (i) Our deblurring result. (j)

Our optical flow.

on MVSEC dataset. Note that models in Zhu et al. [2018a, 2019] are trained on
MVSEC while our model can still achieve competitive results without train-
ing. As BED and ECD do not provide ground-truth flow or sharp image for
evaluation, we thus show qualitative comparisons in Fig. 7.1 and 7.2, which
demonstrate the stability of our model under both blurred and non-blurred
conditions.

We show flow comparisons in Table 7.1 and Fig. 7.4 on the Sintel dataset.
While Sintel provides a blurred dataset mainly focusing on out-of-focus blur
(including slightly motion blur), our method can achieve competitive results
on flow estimation. Also, we gained a 1 dB increase on the PSNR metric for
image deblurring. In Table 7.3 and Fig. 7.5, we provide deblurring compar-
isons on GoPro dataset Nah et al. [2017]. Our approach outperform all the
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7.5: An example of our method on dataset Nah et al. [2017]. (a) The blurred image.
(b) The ground-truth flow. (c) Flow result by Zhu et al. [2018a], using the events as input.
(d) Flow result by Sun et al. [2018] based on images estimated by the EDI model Pan et al.
[2019c]. (e) Flow result by Liu et al. [2019b] based on images estimated by the EDI model.
(f) The ground-truth latent images at time t. (g)Deblurred result by Pan et al. [2019c]. (h)
Deblurred result by Zhang et al. [2019]. (i) Our deblurred image. (j) Our estimated optical

flow.

baseline methods on flow estimation and image deblurring, which further
indicated that 1) including a single image helps achieve better flow estimate
than event only based approaches especially in regions with no events, 2)
two-stages approaches suffer from image artifacts (even images from EDI)
which motivate us to jointly perform image refinement and flow estimate.

Ablation Study. To provide a deep understanding of our model, we evaluate
the influence of φeve and φblur in Table 7.2. The significantly decreased per-
formance indicates the contribution of each term in our model. In Table 7.3,
we add a comparison to demonstrate the efficiency of our optimization strat-
egy. With a better flow input from ‘EDI + PWC-Net’, we can still achieve
significant improvement. Note, the threshold c is estimated based on Pan
et al. [2019c] and our initial flow is simply computed using Eq. (7.2) on event
frames.

7.8 Conclusion

In this chapter, we jointly estimate optical flow and the sharp intensity image
based on a single image (potentially blurred) and events from DAVIS. Un-
der our formulation, events are high-efficiency data that can reinforce flow
estimation. Extensive experiments on different datasets produce competitive
results that show the generalization ability, effectiveness and accuracy of our
model. While our approach can handle high dynamic cases, we still have
difficulties in tackling low texture scenarios, and unstably with noise event
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data like other methods. Our future work will explore events representation
to build a learning-based end-to-end flow estimation Neural Network with
the image.



Chapter 8

Summary and Future Work

This thesis addresses the problem of blur image restoration and high-temporal
resolution video reconstruction with an event camera. We first solve the sin-
gle image restoration problem in the frequency domain. Then, we proposed
algorithms with RGBD images and stereo videos to tackle the challenging
problem. Furthermore, we explored new sensors (event cameras) to recon-
struct a high frame rate, blur-free video by fusing a blurred image with its
event sequence.

In Chapter 2, our proposed phase-only image based kernel estimation ap-
proach is simple (implemented in a few lines of code). The resulting image
deblurring algorithm achieves better quantitative results (using PSNR, SSIM,
and SSD) than the state-of-the-art methods by extensive evaluation on the
benchmark datasets. While our approach can handle the general blur cases,
it still suffers from low lighting conditions like other deblurring methods.
Our future work will explore how to remove blurs less sensitive to lighting
conditions.

Chapter 3 presented a joint optimization framework to estimate the 6 DoF
camera motion and deblur the image from a single blurry image. To alleviate
the difficulties, we exploit the availability of depth maps (either from noisy
measurements or learned through a deep neural network) and a small motion
model for the camera. Under our formulation, the solution of one sub-task
contribute to the solution of the other sub-tasks. Extensive experiments on
both synthetic and real image datasets have demonstrated the superiority
of our framework over very recent state-of-the-art blind image deblurring
methods. In the future, we plan to exploit more general parametric camera
trajectories to improve the performance in challenging real-world scenarios
further.

Chapter 4 presented a joint optimization framework to tackle the chal-
lenging task of stereo video deblurring where scene flow estimation, Moving
object segmentation, and video deblurring is solved in a coupled manner.
Under our formulation, the motion cues from scene flow estimation and blur
information could reinforce each other, and produce superior results than

143



144 Summary and Future Work

conventional scene flow estimation or stereo deblurring methods. We have
demonstrated the benefits of our framework on extensive synthetic and real
stereo sequences. We plan to extend our approach to deal with multiple
frames to achieve better stereo deblurring in the future.

Chapter 5 proposed an Event-based Double Integral (EDI) model to nat-
urally connect intensity images and event data captured by the event camera,
which also takes the blur generation process into account. In this way, our
model can be used to recover latent sharp images and reconstruct intermedi-
ate frames at high frame-rate. We also proposed a simple yet effective method
to solve our EDI model. Due to the simplicity of our optimization process,
our method is efficient as well. Extensive experiments show that our method
can generate high-quality, high frame-rate videos efficiently under different
conditions, such as low lighting and complex dynamic scenes. In the future,
to handle discontinuities at the flicker of reconstructed video, we plan to ex-
plore a practical denoising approach for event data.

Chapter 6 proposed a multiple Event-based Double Integral (mEDI) model
to naturally connect intensity images and events recorded by an event camera
(DAVIS), which also takes the blur generation process into account. In this
way, our model can be used to recover the latent sharp images and recon-
struct intermediate frames at a high frame rate. We also propose a simple
yet effective method to solve our mEDI model. Due to the simplicity of
our optimization process, our approach is efficient as well. Extensive experi-
ments have shown that our method can generate high-quality, high frame-rate
videos efficiently under different conditions, such as low lighting and com-
plex dynamic scenes. Our future work will explore how to fuse the image
and event data source more efficiently.

Chapter 7 estimated optical flow and the sharp intensity image jointly
based on a single image (potentially blurred) and events from DAVIS. Un-
der our formulation, events are high-efficiency data that can reinforce flow
estimation. Extensive experiments on different datasets produce competitive
results that have shown the generalization ability, effectiveness, and accuracy
of our model. While our approach can handle high dynamic cases, we still
have difficulties tackling low texture scenarios and unstably with noise event
data. Our future work will explore events representation to build a learning-
based end-to-end flow estimation Neural Network with the image.
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