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Abstract

The proliferation of cloud computing has revolutionized the hosting and delivery
of Internet-based application services. However, with the constant increase of new
cloud services almost every month by both large corporations (e.g., Amazon Web Ser-
vice and Microsoft Azure) and small companies (e.g. Rackspace and FlexiScale), the
selection scenarios become more and more complex. This is aggregated by confusing
and ambiguous terminology, and non-standardized interfaces. This is challenging
for decision-makers such as application developers and chief information officers as
they are overwhelmed by various choices available.

In this thesis, I will address the above challenges by developing several tech-
niques. Firstly, I define the Cloud Computing Ontology (CoCoOn). CoCoOn defines
concepts, features, attributes and relations of Cloud infrastructure services. Sec-
ondly, I propose a service selection method that adopts an analytic hierarchy process
(AHP)-based multi-criteria decision-making technique. It allows users to define mul-
tiple design-time constraints like renting costs, data centre locations, service features
and real-time constraints, such as end-to-end message latency and throughput. These
constraints are then matched against our model to compute the possible best-fit com-
binations of cloud Infrastructure, offered as a Service (IaaS). Pairwise comparisons
are used to help users determine a relative preference among a pool of nonnumer-
ical attributes. Criteria that are taken into consideration during comparison can be
grouped into two categories: the benefit and the cost. Based on this, I define a
cost–benefit-ratio-based evaluation function to calculate the ranking for Cloud ser-
vice options. Thirdly, I suggest a theory-based queuing approach for estimating IaaS
usage. Queuing theory is a widely studied method in QoS modelling and optimiza-
tion. From the infrastructure system administrator perspective, I explore serveral
ways to apply the queuing theory model to estimate the best-fit resource allocation
for achieving the desired SLA. Finally, the thesis shows how an integrated system,
CloudRecommender, can be built from our proposed approaches.

Keywords: Cloud computing, Semantic Technology, Semantic Web, Recom-
mender System, Operations Research
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Chapter 1

Introduction

According to the National Institute of Standards and Technology’s (NIST) definition
[133], “Cloud computing is a model for enabling ubiquitous, convenient and on-
demand network access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be rapidly provisioned
and released with minimal management efforts or service provider interaction.”

Figure 1.1: Cloud Computing Architecture [89]

The essential characteristics of Cloud computing include self service portal, multi-
tenant and network access, on-demand rapid elastic scalability, process automation
and orchestration with web based API and pay per user billing. The three Cloud

1
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service models are Software as a Service (SaaS), Platform as a Service (PaaS), and
Infrastructure as a Service (IaaS). Figure 1.1 illustrates the architecture and general
components of the Cloud.

Within the IaaS layer, hypervisor software [20] enables flexible provisioning of
virtual machines, storage and network services. Virtual machines sometimes are
referred to as servers or compute services. Some Cloud providers include the load-
balancing service or the load-balancer as a separate component.

Built on the IaaS layer, additional middle-wares, tools or integration services can
be provided as PaaS. Apps can also be hosted on IaaS and PaaS. Those software
applications available to the customer with the pay-as-you-go model are SaaS. The
SaaS layer focuses on application services by making use of services provided by
the other layers. PaaS/SaaS services can be developed and provided by third-party
service providers different from the IaaS providers. Some examples of SaaS providers
are Salesforce.com, Microsoft Office 365, Oracle CRM On Demand and Google Apps.
Some examples of PaaS providers are Google App Engine, Force.com and Heroku.
Some examples of IaaS providers are Amazon Web Service [10], Google Compute
Engine [73], Microsoft Azure, Rackspace [165], Alibaba Cloud [7], IBM Softlayer [95],
FlexiScale [157] and DataCentred [50].

In the Cloud computing model, users have access to services according to their re-
quirements without the need to know where the services are hosted or how they are
delivered. Cloud computing embraces an elastic paradigm where applications estab-
lish on-demand interactions with services to satisfy the required Quality of Service
(QoS) including response time and throughput. As Cloud continues to revolutionise
applications in academia, industry, government, and many other fields, the transition
to this efficient and flexible platform presents serious challenges at both theoretical
and practical levels [208]. As large ISPs (Internet Service Providers) use multiple
network providers, failures by a single network provider will not take them off the
air. The solution to extreme high availability is multiple Cloud computing providers
[15]. To have no single point of failure, applications need to be provisioned in differ-
ent geographic locations, aka cloud regions. However, no cloud can guarantee 100%
availability. When availability is critical, distribute servers/services across multiple
providers is needed. An international enterprise may also be forced to used multiple
Cloud providers due to political, regulatory, strategically reasons, e.g. new accusa-
tion of a business with dependency on a different cloud and new market in a country
that forbids data to be stored in foreign cloud company. However, selecting and com-
posing the right services that meet up with requirements is a challenging problem.
Consider an example of a medium-scale enterprise that would like to move its en-
terprise applications to the Cloud. Multiple providers offer infrastructure services
with various configurations, e.g. Amazon, Microsoft Azure, Google, Alibaba, among
many others. With varied options, enterprises are facing a complicated task when
trying to decide the right service for their needs. In this thesis, we are concerned
with how to simplify the selection and comparison of a set of infrastructure service
offerings for hosting enterprise applications and corresponding datasets, meanwhile
meeting multiple criteria, such as specific configurations and costs, emanating from
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the enterprise’s QoS needs. This is a complicated problem for the enterprise and
needs to be addressed.

1.1 Challenges in Cloud Selection and Comparison

The Cloud computing paradigm is shifting computing from in-house managed hard-
ware and software resources to virtualized Cloud-hosted services. Cloud computing
assembles large networks of virtualized services: infrastructure services (e.g., com-
pute, storage, network) and software services (e.g., databases, message queuing sys-
tems, monitoring systems, load-balancers)

Cloud providers give users the option to deploy their applications over a pool of
virtually infinite services with practically no capital investment and with modest op-
erating costs proportional to the actual uses. Elasticity, cost benefits and abundance
of resources motivate many organisations to migrate their enterprise applications to
the Cloud. Although the Cloud offers the opportunity to focus on revenue growth
and innovation, decision-makers (e.g., CIOs, scientists, developers, engineers) are
confronted with the complexity of choosing the appropriate service, delivery model
and infrastructure.

Numerous information technology vendors claim to offer applications, storage,
and computation resources as cloud hosting services. As a result, an exceeding num-
ber of competing services are available to users. In such a context, the migration
of applications (e.g., multi-layered enterprise applications, scientific experiments,
video-on-demand streaming applications) to the Cloud demands selecting the best
mix of services from an abundance of possibilities. Any such Cloud service selection
decision has to cater to many conflicting criteria while ensuring the fulfilment of QoS
requirements, e.g. minimize cost and network latency while maximizing through-
put, storage space, CPU power (for analytical programs to process more jobs or do
it faster) and RAM (bigger buffer size). QoS requirements for different applications
also are varied. For example, scientific experiments need to meet deadlines, thereby
time/duration being constrained. On the other hand, video-on-demand streaming
applications need to satisfy streaming latency and resolution requirements.

Naturally, it is challenging for users to select the right services that meet their QoS
requirements in the service cycle from selection and deployment to orchestration.
This thesis will focus on the following problems.

1.1.1 Confusing and Ambiguous Terminology

Cloud providers use non-standardized naming terminologies for self-branding their
uniqueness. For example, Compute services are called Elastic Compute Cloud (EC2)
Unit by Amazon Web Service (AWS), Compute Engine by Google, Elastic Compute
Service (ECS) by Alibaba, or just Virtual Machines (VMs), Instances, Servers or Units
by others. The NIST definition describes Compute services as the provision of pro-
cessing computing resources.
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Ambiguous terminologies are often used to describe similar configurations. For
instance, different units of measurements are used for measuring CPU clock speed
by different Cloud computing providers. Amazon refers to it as “ECUs” [9]: “One
EC2 Compute Unit provides the equivalent COMPUTE capacity of a 1.0-1.2 GHz 2007
Opteron or 2007 Xeon processor. This is also the equivalent to an early-2006 1.7 GHz Xeon
processor referenced in our original documentation”. In 2007, AMD and Intel released
both dual-core and quad-core models of the Opteron and Xeon chips, respectively.
So it is not clear what an Amazon EC2 Compute Unit is compared to. To eliminate
this ambiguity, we obtained the compute service clock speed by trying out the ac-
tual instance under Linux OS and run “more /proc/cpuinfo” on it. We performed
unit conversions during the instantiation of concepts to simplify the discovery pro-
cess. For example, an Amazon EC2 Micro Instance has 613 MB of memory, which is
converted to approximately 0.599 GB, so values are in the same units when queried
later.

Furthermore, Cloud providers typically publish their service description, pricing
policies and Service-Level-Agreement (SLA) rules on their websites in various lay-
outs. The relevant information may be updated without prior notice to the users. The
structure of web pages can be changed significantly, leading to confusion. Hence, it
is not an easy task to obtain reliable service descriptions from Cloud providers’ web-
sites and documentation, which often is the only sources of information. This leads to
the following challenges: How to automatically fetch service descriptions published
by Cloud providers and present them to decision-makers in a human-readable way?
One way to tackle this problem is to build a generic "superclass" as a standard model
so that everyone can talk the same language. Since most of the information is pub-
lished on the web, we leverage existing semantic web technology to build such a
model - the web ontology language (OWL). This model is also called ontology, and
in Section 1.3.1 we will discuss in more detail how can we develop a unified and
generic Cloud ontology to describe the services of any Cloud provider.

1.1.2 Heterogeneous Service Offers

The multi-layered Cloud Services (e.g., SaaS, PaaS, and IaaS), along with their hetero-
geneous types (e.g. compute, storage, network, web server, databases) and features
(e.g. virtualization technology, SLA model, billing model, location) make the task of
service selection become a complex problem.

There are also various pricing models [214]. Apart from the most well-known
pay-as-you-go and the free model, there are other models like spot instance, two-
part tariff, declining block rate, and so on. Within the pay-as-you-go model, typically
users are charged per unit usage per period. However, there are many variations
of unit and period measure, such as per ram hour, Input/output Operations Per
Second (IOPs) per hour, GB per month etc. Spot instance or spot market pricing
refers to services that have very volatile prices that are proportional to the demand
and inversely proportional to availability. Thus, when the demand decreases, more
instances become available, and the spot price goes down. Similarly, when the de-
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mand increases, fewer instances are available, and the spot price goes up. A two-part
tariff (TPT) is a form of price discrimination wherein the price of a product or ser-
vice is composed of two parts - a lump-sum fee as well as a per-unit charge. AWS
reserved instances belong to this category. Declining block rate is a price structure
where the per-unit price of services decreases as the consumption increases, which is
often used in cost models for Cloud storage and network traffic. Figure 1.2 illustrates
some different billing models with the comparison. Pay-as-you-go price is referred
to as “Retail Pricing”, which is often more expensive than the “Long-Term Contract”
(i.e. two-part tariff), with “Spot Market Pricing” being the cheapest option. While
a Long-Term Contract offers you a better price, the elasticity and the agility of your
resource decrease as you can not merely deprovision since you already purchased
the resource for the long term.

Figure 1.2: Different Billing Models [54]

The diversity of offerings in the Cloud landscape leads to practical research ques-
tions: how is the service of a Cloud provider compared to similar offers from other
providers? How could we optimize the process of composite Cloud service selection
and bundling? For example, how does a decision-maker compare the cost/perfor-
mance features of infrastructure services offered by different providers such as AWS,
Microsoft Azure, FelxiScale? Though branded calculators are available from indi-
vidual Cloud providers to calculate service leasing costs. It is not easy for decision-
makers to generalize their requirements to fit different service offers with various
quotas and limitations while comparing costs.

1.1.3 Complex Selection Scenarios

It is a cumbersome task for decision-makers to manually read Cloud providers’ docu-
mentation for finding out which services are suitable for building their Cloud-based
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application architecture (e.g., a biologist intends to host his genomics experiment
in the Cloud). This problem is further aggravated due to the rapid emergence of
services in the Cloud landscape.

Burstorm’s [29] survey in 2013 showed that there were over 426 various compute
and storage service providers with deployments in over 11 072 locations. Even within
a particular provider, there are different variations of services. For example, AWS has
674 different offerings differentiated by price, QoS features and locations. In addition
to these, every quarter, they add about four new services, changing business models
(prices and terms), and sometimes adding more locations.

Varied service configurations and application provisioning QoS constraints fur-
ther complicate the problem. Application owners must simultaneously consider and
optimize complex dependence and various sets of criteria (price, features, location,
QoS) to select the best mix of service offerings from an abundance of possibilities.
Often it is not enough to consider one single type of service. For example, a content
distribution solution not only requires storage but also involves satisfying the com-
puting capabilities. Therefore, the desired architecture should be able to both store
and process data as fast as possible while minimizing the cost.

The process of matching offers to decision makers’ requirements involves
bundling of multiple related Cloud services, computing combined cost under dif-
ferent billing models and discount offers and considering all possible or only valu-
able alternatives. The selection criteria can further include constraints on: location,
memory, storage capacity, CPU speed, operating system and so on.

Moreover, the network QoS (e.g. the data transfer speed and latency) varies across
the Internet. This variation is dependent on the location of the data centre and the
location of the input data stream. Hence the research question: how to optimally
choose the services in terms of price, availability, processing speed and QoS (e.g., the
network throughput and response delivery latency).

1.1.4 User Requirements Realization

Price calculator services assume that users know their requirements exactly. For
example, it assumes that users know the expected usage of each service in the Cloud,
or users have a very rigid budget or QoS expectation. However, in practice, this is not
the case. Instead, decision-makers often only have a vague idea of what they want to
achieve. Users’ requirements may not be in terms of usage or price. They may only
know how many things like: customer requests arrive at the peak hour, or server
average workload, or some bench-marking metrics. In this case, how can we make it
easier for users to translate this into appropriate requirements? In other situations,
Cloud users may have an existing in-house cluster where some monitoring statistics
exist. Then, how can we incorporate this information when estimating resource usage
in the Cloud? There is a lack of support for Cloud migration planning, either from an
in-house environment to the Cloud or between Cloud services. For example, in 2018,
GitLab migrated from Microsoft Azure Cloud to Google Cloud [1, 210]. Migration
planning relies solely on the experience of engineers.
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1.1.5 Non-standardized User-Unfriendly Interfaces

Different systems have different user interfaces, which often require high IT exper-
tise, as the consequence of accessibility to those solutions is limited to decision-
makers with expert knowledge., which is inadequate given the proliferation of the
Cloud. Hence a set of research questions are raised: How to develop interfaces that
can transform low, system-level programming to easy-to-use drag and drop opera-
tions? How do we improve and simplify the process of Cloud service selection and
comparison?

1.2 Research Objectives

The research objectives of this thesis is to tackle the following problems:

1. Cloud Ontology: How to automatically fetch service descriptions published
by Cloud providers and present them to decision-makers in a human-readable
way? Can we develop a unified and generic Cloud ontology to describe the
services of any Cloud provider?

2. Service Comparison: How does a decision-maker compare the cost/perfor-
mance features of infrastructure services offered by different providers?

3. Service Selection: How to optimally choose the services in terms of price, avail-
ability, processing speed and QoS?

4. User Requirements: How to translate user expectations that are not in terms of
usage, price or QoS?

5. User Interface and Tools: How to develop interfaces that can transform low,
system-level programming to easy-to-use drag and drop operations? How do
we improve and simplify the process of Cloud service selection and comparison
with a visual aid?

1.3 Contributions

In addressing the research objectives mentioned in Section 1.2, this thesis has made
the following contributions.

1.3.1 Cloud Computing Ontology

To address the problems of ambiguous terminology and heterogeneous service offers
discussed in Sections 1.1.1 and 1.1.2, we designed the Cloud Computing Ontology
(CoCoOn). CoCoOn defines concepts, features, attributes and relations of Cloud
infrastructure services.

In 2012, we proposed the first version of CoCoOn, later retrospectively named
v0.1.0, which models Cloud resources, including IaaS, SaaS and PaaS; location and
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region; and some other attributes. Later on, we revised and extended this model to
become CoCoOn v1.0.1. The significant additions of CoCoOn v1.0.1 in terms of the
ontology features are the Cloud service pricing and QoS modelling. When CoCoOn
was first developed, there were a few existing domain ontologies to reuse (e.g. Co-
CoOn predated PROV-O [160], schema.org, QUDT [163], SSN [45, 82], wikidata [220]
etc.). The new CoCoOn makes use of those now popular existing ontologies. Also,
to improve the re-usability, we added more “rdfs:comments”, metadata, documen-
tation, and use cases. We released all the research outputs in a GitHub repository
under MIT license, so anyone can reuse and contribute to the ontology, datasets, code
and tools developed throughout this research.

CoCoOn facilitates the description of Cloud infrastructure services; moreover,
through mappings from provider descriptions, facilitates the discovery of infrastruc-
ture services based on their properties and features. More details are in Chapter 3.

1.3.2 Multicriteria Decision Support

Some of the “Cloud discovery” research just focused on the SaaS and PaaS domain,
which I consider mostly can be categorized into web service discovery research.
Other research projects may have included IaaS, but have over-simplified the billing
model or offering types. We have explained that the complexity of IaaS offers selec-
tion in Section 1.1.3, and existing methods are impractical for most of the scenarios.
Overall, existing projects included in Section 2.2 mostly has no reference to the code
base of the implemented systems, so it is impossible to reproduce results, and not
many of them provide an evaluation of real-world data.

To this end, we developed a service selection method that adopts an analytic hi-
erarchy process (AHP)-based decision-making technique. Hence, optimal selection
can be made regardless of whether the requirements are conflicting or not. It also
enables the handling of multiple quantitative (i.e., numeric) and qualitative (a de-
scriptive and non-numeric, such as location, CPU architecture, i.e., a 32- or 64-bit
operating system) criteria. Note that pairwise comparisons [153] are used to help
users determine a relative preference among a pool of nonnumerical attributes. For
each pair of criteria, the user is required to provide a subjective the opinion of their
relative importance to them. Then, the overall composite weight for each criterion
can be calculated. Criteria that are taken into consideration during comparison can
be grouped into two categories: the benefit and the cost. “Benefit” groups the “good”
criteria that are meant to be maximized. Similarly, “Cost” groups the “bad” criteria
to be minimized. Based on this, we defined a cost–benefit-ratio-based evaluation
function to calculate the ranking for Cloud service options.

1.3.3 Usage and Cost Estimation

This thesis further investigates the problem of planning Cloud deployments dis-
cussed in Section 1.1.4. We suggested a theory-based queuing approach for estimat-
ing IaaS usage. Queuing theory is a widely studied method in QoS modelling and
optimization. From the infrastructure system administrator perspective, we explored

schema.org
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ways to apply the queuing theory model to estimate the best-fit resource allocation
for achieving the desired SLA. Many studies [115, 31, 225] have applied queuing
theory in their Cloud provisioning mechanism. Since we do not focus on real-time
provisioning or load balancing, we only use a queuing theory based method to esti-
mate the required number of VMs, when other parameters are constrained (i.e. tight
budget, performance target on waiting time or throughput).

To calculate Cloud resources’ renting costs, the user needs to suggest their
planned usage. Our approach has taken into account different workload patterns
during renting cost calculations. For instance, we defined many patterns for users to
quickly choose from (i.e. flat/capped usage, regular periodic bursts, liner incremen-
tal).

Alternatively, users may already have some historical usage statistics, in situations
like they want to move in-house systems to the Cloud or from one Cloud/server
renting service to another. Queuing theory modelling was investigated for the usage
estimation based on historical customer workload and benchmarking.

1.3.4 CloudRecommender

Finally, the thesis shows how an integrated system, CloudRecommender, can be built
from our proposed approaches, to address the problem of the non-standardized user-
unfriendly interface, discussed in Section 1.1.5. It allows users to compare and select
a Cloud service based on criteria, such as the total cost, the maximum size limit for
the storage, and the memory size for the compute instance. Alternatively, users can
combine multiple selection criteria by telling the system their preferences over inter-
ested parameters. By providing both a web Graphical User Interface (GUI) and an
Application Program Interface (API), we exploited the power of a visual program-
ming language to further enable intuitive Cloud service selection.

QoS Profiler is part of the data collection components. It collects network QoS
statistics from different endpoints on the Internet to the Cloud data centres. Based
on CloudHarmony’s network test service [40], we set up multiple agents at geo-
graphically dispersed locations to collect end to end network QoS to various Cloud.
We profiled the network performance continuously and later used the average for
comparisons.

1.4 Outline of the Thesis

This thesis provides an in-depth study of the work we have undertaken to address
the problems as mentioned above in Section 1.2.

Chapter 1 briefly describes the research problems and presents an overview of
the solutions and the structure of the thesis.

Chapter 2 provides the background information and reviews the related works.
Chapter 3 presents the Cloud Computing Ontology we developed for automati-

cally identifying Cloud services.
Chapter 4 introduces our decision support algorithm for ranking Cloud services.
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Chapter 5 investigates techniques for resource and performance estimation.
Chapter 6 presents the tools we developed, including scripts and websites for

CoCoOn, QoS profiler and CloudRecommender. This chapter details the architecture
of the tools above and experiments conducted.

At last, Chapter 7 summarizes our research findings and recaps the core contri-
butions.



Chapter 2

Background and Related Work

With the proliferation of a range of Cloud services over the last decade, efficient
and accurate service discovery and selection based on user-specific requirements has
become a significant challenge for decision makers [66], for example, determining
an optimal web service when making service selection, identifying suitable virtual
machine servers for deploying web service instances, etc. Effective service recom-
mendation techniques are becoming important to help users (including developers)
in their decision-making processes for critical application developments and deploy-
ments.

In this chapter, we give an overview of state of the art in our research area. We first
provide background on the semantic web technologies in Section 2.1. Those semantic
techniques are what we employes for standardizing Cloud computing concepts. At
the end of this section, we review ontological researches that are related to Cloud
and QoS modelling. Then we review related work on web services in Section 2.2
and summarize their limitations under the Cloud context. Next, in Section 2.3, we
discuss related work on Cloud IaaS service selection, which can be classified into
two categories: multi-criteria decision-making techniques and optimization-based
approaches. In Section 2.4 we provide background on queueing theory, which we
use for Cloud performance modelling.

2.1 Semantic Techniques

According to the W3C, "The Semantic Web provides a common framework that al-
lows data to be shared and reused across application, enterprise, and community
boundaries". The term was coined by Tim Berners-Lee for a web of data that can
be processed by machines (i.e. machine-readable). While its critics have questioned
its feasibility, proponents argued that applications in industry, biology and human
sciences have already proven the validity of the original concept [182].

The term "Semantic Web" is often used more specifically to refer to the formats
and technologies that enable it. The collection, structuring and recovery of linked
data are enabled by technologies that provide a formal description of concepts, terms,
and relationships within a given knowledge domain. These technologies are speci-
fied as W3C standards, and some examples are:

11
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1. Resource Description Framework (RDF), a general method for describing infor-
mation.

2. SPARQL, an RDF query language.

3. Web Ontology Language (OWL), a family of knowledge representation lan-
guages. They are used for adding meaning to web content by annotating it
with terms defined in ontologies. They are supported by tools (e.g. Protégé)
and APIs (e.g. OWL API). OWL is developed based on description logic [91].

2.1.1 Ontology

Many industries (i.e. smart factories, business analytics, etc.) are becoming increas-
ingly dependent on complex automatic software systems for tasks like resource allo-
cation, business decision making, etc. For example, to make decentralized decisions,
those systems need to cooperate as well as with humans. However, those systems
typically access data from different models, which have been independently devel-
oped in different (often incompatible) formats using different types of proprietary
software. Furthermore, these models may not come with well-defined semantics, and
their specifications can be ambiguous. As a result, model development, maintenance,
and integration, as well as data exchange and sharing, pose significant challenges in
practice [108].

Nowadays, adoption of semantic technologies has been welcomed in many large
companies such as in Google, Facebook, IBM [71] and Siemens [108]. For example,
OWL2 ontologies are often used to capture conceptual information models. OWL2 is
a vibrant and flexible modelling language. It not only comes with an unambiguous
and standardized semantics but also with a wide range of tools that can be used to
develop, validate, integrate, and reason with such models. Data can be stored in RDF
triplestores and effectively queried in conjunction with the available ontologies. RDF
is a standard model for data interchange on the Web. RDF has features that facilitate
data merging even if the underlying schemas differ, so it specifically supports the
evolution of schemas over time without requiring all data consumers to be changed
[166].

Like the software design patterns, many Ontology Design patterns(ODP) [44]
also, have been proposed to suggest standardized solutions for common problems.
Similarly, there are ontology engineering methodologies [205] (like software develop-
ment methodologies), which people can follow during the design and development
process of ontologies.

2.1.2 Linked Data

In computing, linked data (often capitalized as Linked Data) is a method of publish-
ing structured data so that it can be interlinked and become more useful through
semantic queries. It builds upon standard Web technologies such as HTTP, RDF and
URIs, rather than using them to serve web pages for human readers, it extends them
to share information in a way that can be read automatically by computers.
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Tim Berners-Lee, director of the World Wide Web Consortium (W3C), coined the
term in a 2006 design note about the Semantic Web project [119]. Linked data may
also be open data, in which case it is usually described as linked open data (LOD).
The standard serialization format for linked data is JSON-LD [103].

2.1.3 Schema.org

Schema.org [180] is an initiative launched on 2 June 2011 by Bing, Google and Yahoo
to "create and support a common set of schemas for structured data markup on web
pages." In November 2011 Yandex (whose search engine was the largest one in Russia
at the time) joined the initiative.

Knowledge Graph is a knowledge base used by Google to enhance its search
engine’s results with information gathered from a variety of sources. Such informa-
tion is presented to users in a box to the right of search results. Knowledge Graph
boxes were added to Google’s search engine in May 2012. The information cov-
ered by Knowledge Graph grew significantly after launch, tripling its original size
within seven months, and being able to answer "roughly one-third" of the 100 bil-
lion monthly searches Google processed in May 2016 [111]. In October 2016, Google
announced that Knowledge Graph held over 70 billion facts. The information is of-
ten used as a spoken answer in Google Assistant and Google Home Searches. The
Knowledge Graph Search API uses standard schema.org types and is compliant with
the JSON-LD specification.

However, Knowledge Graph and Google have been criticized for providing an-
swers without source attribution. According to The Register [76], the implementation
of direct answers in Google search results has caused significant readership declines
for the online encyclopedia Wikipedia, from which the Knowledge Graph obtains
some of its information. Dario Taraborelli, head of research at the Wikimedia Foun-
dation, told The Washington Post that Google’s omission of sources in its knowledge
boxes “undermines people’s ability to verify the information and, ultimately, to de-
velop well-informed opinions”.

2.1.4 RDF

The purpose of RDF is to provide a structure (aka framework) for describing iden-
tified things (aka resources) [168]. The RDF data model is based on statements to
describe and feature resources, especially web resources, in the form of subject-
predicate-object (resource–property–value) expressions, which is also called RDF
triples [170].

RDF datasets can be expressed in a variety of syntax notations or data serializa-
tion formats, for example: RDF/XML, Resource Description Framework in Attributes
(RDFa), JSON-LD, N-Triples [140], Terse RDF Triple Language (Turtle) [204], Nota-
tion3 (N3), etc. Figure 2.1 shows the serialization formats in RDF 1.0 and 1.1.

N-Triples is a format for storing and transmitting data. It is a line-based, plain
text serialisation format for RDF graphs and a subset of the Turtle format. N-Triples
should not be confused with Notation3, which is a superset of Turtle.
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Figure 2.1: RDF 1.0 and 1.1 Serialization Formats [218]

Figure 2.2: Comparison of Notation3, Turtle, and N-Triples [148]
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Figure 2.3: RDF Example vs. RDFS Example [169]

Turtle is a syntax and file format for expressing data in the RDF data model. It
provides a syntax to describe RDF graphs in a compact textual form, which is easy
to develop. Turtle is a subset of N3 and a superset of N-Triples. Turtle is popular
among Semantic Web developers and considered as an easy-to-read alternative to
RDF/XML. The typical file extension of Turtle files is .ttl. The character encoding
of Turtle files should be UTF-8. The MIME type of Turtle is text/turtle. Turtle
is supported by many software frameworks that can be used for querying and an-
alyzing RDF data, such as Jena and Sesame. Turtle files consist of a sequence of
directives, statements representing triples, and blank lines.

N3 is a shorthand non-XML serialization of RDF models, designed with human-
readability in mind: N3 is much more compact and readable than XML RDF notation.
N3 has several features that go beyond a serialization for RDF models, such as sup-
port for RDF-based rules. Turtle is a simplified, RDF-only subset of N3. Figure 2.2
shows a comparison of N3, Turtle, and N-Triples.

As explained above, RDF allows you to link resources/concepts together so you
could say that “Cat1 is a cat”. However, you cannot classify objects so you cannot
say, for example, that cat is a subclass of the animal. See Figure 2.3 for an illustration.

On the other hand, RDFS (RDF Schema) gives you more expressive vocabulary.



16 Background and Related Work

This means you can start making statements about classes of things and types of
relationships. It also allows you to describe in human readable text the meaning of
a relationship or a class. It allows you to classify resources by using the class and
subclass (i.e. rdfs:class, rdfs:subclass) notions. It also allows you to set restriction
on the properties/relationships using rdfs:Domain and rdfs:range. It tells you legal
uses of various classes and relationships. It is also used to indicate that a class or
property is a sub-type of a more general type. For example "HumanParent" is a
subclass of "Person". "Loves" is a sub-class of "Knows" [183].

Figure 2.4: Existing Ontologies [120]

2.1.5 OWL

The purpose of OWL is to develop ontologies that are compatible with the World
Wide Web [168]. OWL is closely related to RDF. However, OWL is not an extension
to RDF, and in the same sense that DTDs and XML Schema are not extensions to
XML [216]. OWL is a way of adding meaning / semantic richness to RDF. Among
other things, this allows automated reasoning. OWL is a way to define types for
RDF data, though OWL "typing" differs from conventional type systems in that it
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has an open world assumption. OWL is represented using RDF triples and typically
expressed using RDF/XML syntax. OWL allows you to add more restrictions. It
categorises properties into object properties and data properties and allows you to
add restrictions on them.

Figure 2.5: Ontology: ccpricing [51]

2.1.6 Ontologies Related to Cloud

Different from all the other models, our focus is on modelling concepts, features,
attributes and relations of Cloud infrastructure services. We do not consider models
for orchestration [136, 102] nor brokerage processes [27] in this work. Nonetheless,
our ontology could be extended using the models proposed in those works. There are
existing ontologies and models that focus on Web Services [174, 132] and their archi-
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tectures [83] in general. Unlike these works, our model focuses on Cloud computing
Infrastructure as a Service (IaaS), i.e. its features and price models. Furthermore, we
have also developed tools for automatically adding semantics to information from
providers’ APIs.

We have used existing ontologies whenever fits, such as the Unit of Measure
Ontology (QUDT) [163] for defining priced with currency values. Figure 2.4 shows
some of the existing ontologies, the larger the size, the more it is referenced/used
by other ontologies. In the following paragraphs, we review related works on Cloud
ontology.

Previously, Parra-Royon and Benítez [51] have developed a few small Cloud on-
tologies, including ccsla, ccpricing, ccinstances, ccregions,dmcc-schema and ccdm.
They modelled features including SLA, Price, VM instance feature and Region, Ven-
dor and data mining experiments parameters. Their schemas are online. Each
schema has one or two examples of modelling Services from Amazon. One excep-
tion is ccdm which has 6 examples of different ML experiments. The set of concepts
and features they cover are limited and, as a result, their examples are limited to
some simple cases. For instance, the examples presented in Section 3.3.3.5.1 cannot
be modelled with their ontologies.

Figure 2.5 shows the structure of ccpricing, it can not handle the complexity of
most common price options. For example, the cost of OS to be installed on the
VM, network data transfer cost differed by destination and usage, snapshot storage
costs, etc. In addition to these, ccinstances does not allow the unit to be specified
in data. Furthermore, another reason why we did not use their “ccpricing”, “ccin-
stances”, and “ccregions” ontologies is because they used global scope constraints
(i.e. rdfs:domain and rdfs:range) on most (if not all) of the classes and object proper-
ties, which we believe are too restrictive and can cause unintended inferences.

Boukadi et al. [27] have developed a Cloud Service Description Ontology (CSO),
for modelling of Cloud service brokerage, which is shown in Figure 2.6. CSO in-
cludes features such as Cloud price, VM instance features, Region, Vendor, and so
on. Their price model is rather simple and cannot model real-world scenarios. Their
model and data are also not available online anymore to be evaluated further or to
be reused in other contexts. Only figures for top-level topology are shown in their
paper; a complete definition of the proposed ontology is not available. Furthermore,
their service definition is too simple, and experiments can not model real situations.
For example, in their experiment "Network" is assigned with a number between 0
and 100 without unit. How could this represent data transfer size and latency all
together? It could be daily or yearly usage. Without knowing the destination, trans-
lating this to cost is impossible.

https://www.infowebml.ws/rdf-owl/domain.htm
https://www.infowebml.ws/rdf-owl/range.htm
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Figure 2.6: CSO [27]

Figure 2.7: mOSAIC ontology [136]
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Figure 2.8: Ontology for the Lifecycle of IT Services in the Cloud [102]
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Figure 2.9: CSCE ontology [147]
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Moscato et al. [136] developed an ontology for the mOSAIC project. This OWL
ontology can be used for Cloud services negotiation (i.e. between customers and
providers) and composition (i.e. by an administrator). The mOSAIC ontology has
modelled actor (e.g. consumer and vendor), language (e.g. Java, Python), essential
characteristics (e.g. resource pooling, maintenance, on-demand self-service, rapid
elasticity), non-functional properties (e.g. scalability; autonomy; availability; QoS;
performance; consistency; security; reliability), functional properties (e.g. replication,
encryption, backup and recovery, accounting, monitoring, VM description, identifi-
cation policies, management policies), layer (e.g. business layer consumer layer) and
component (e.g. runtime component, environment).

Figure 2.10: Cloudle ontology [104]

Figure 2.7 shows part of the mOSAIC ontology. The mOSAIC ontology has a
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very different scope compared to ours, i.e. it does not cover IaaS resources in details
nor the price of them. Also, only important concepts are modelled. For example,
there is a QoS class, but QoS is a comprehensive concept. We have explained it in
details in Chapter 3. One problem with this work is that the actual OWL file is
not provided in their paper, and there is no usage example. There is one picture
showing “InfrastructureSoftware” and “Computational” class, but it did not show
their subclasses. Without the OWL file or example, we could not tell the difference
between these two classes.

Figure 2.11: SaaS ontology [4]

Joshi, Yesha, and Finin [102] developed an OWL Ontology for the Lifecycle of IT
Services in the Cloud, which is shown in Figure 2.8. These ontology models the steps
involved in the phases of discovery, negotiation, composition, and consumption of
Cloud services. The modelling of Cloud service features is minimal, and their link to
an example of a storage service [109] is no longer accessible. This ontology modelled
features such as Cloud provider, consumer, auditor, broker, SLA, latency, throughput,
response time, request for service, contract, consumer negotiation security policy, and
so on. The ontology models the steps involved in the phases of discovery, negotiation,
composition, and consumption of Cloud services. However, their Cloud services are
only defined at the very top level, like IaaS, PaaS and SaaS. Although there is one
example of storage service (itso.owl), the schema file (storage_ontology.owl) is not
accessible anymore.

Noor et al. [147] proposed a crawler engine (CSCE) for Cloud services discovery,
and the ontology they developed for CSCE models IaaS, PaaS, SaaS, OS, VM, Net-
workLatency, Storage, etc. This work mainly addressed the entry point problem for
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fully automatic discovery. Since they automatically crawled terms to add to the on-
tology, a lot of irrelevant terms are included such as “Climate”, “Weather”, “Article”,
which are shown in Figure 2.9. Also, the actual ontology is not available, and only an
image of CSCE ontology was shown in their paper. Besides, the data collected from
each service is limited, and there is no mentioning of addressing the more complex
problems of comparing or filtering services on certain attributes (price, VM types
and RAM or performance).

Figure 2.12: Auto Gathered Cloud Ontology [206]

Kang and Sim [104] and Kwang Mong Sim [114] developed Cloudle, which uses
agents, ontology and k-means clustering algorithm to discover services over the In-
ternet. Figure 2.10 shows the ontology they developed, which models IaaS, PaaS,
SaaS, Communication as a Service, Data as a Service, CPU, Programming Language
and Software. Cloudle ontology did not cover any details under the IaaS category.
Their work only showed an image instead of providing the ontology file. Since only
a minimal number of attributes are used in the similarity calculation, the comparison
based on this metric is questionable. Furthermore, their experiment was evaluated
using virtual (provider) websites, which did not consider many issues possibly oc-
curring in practical scenarios. Cloudle also requires Cloud providers to register their
services in a central database, which makes it inconvenient as well.

Afify et al. [4] proposed a semantic-based SaaS discovery and selection system.
This system works as follows. Firstly, Cloud service providers register their services,
the data provided by Cloud providers are processed by consulting the WordNet
[223] ontology to expand the service description using the token synonyms before
stored as an ontology. TFIDF algorithm is used to calculate a weight vector for
different services, then the cosine similarity between those vectors are calculated.
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Finally, the agglomerative clustering algorithm is applied to categorize services based
on similarity. This system offers text/term based search. However, despite all the
information retrieval techniques applied, it still requires service providers to register
themselves manually. Figure 2.11 shows the ontology they developed, which focused
on SaaS, and is different in scope to ours. Neither of the designed ontology or data
is made available.

Figure 2.13: PaaS Ontology [33]

Vasudevan [206] proposed methods for semantic discovery of Cloud service pub-
lished over RDF. Figure 2.12 shows their ontology, which models SaaS, PaaS, SaaS
etc. They performed merging on ontologies based on similarities. Concept similar-
ity is calculated by finding the Least Common Hypernym (LCH) in WordNet [223],
and string similarities are calculated by Levenshtein (edit) distance. This system
was implemented with the Jena inference rules engine [13]. However, ontologies are
only partially presented in their paper, and no experimental data is made available,
making it hard to evaluate and reproduce the work.

Chang et al. [33] proposed a method for services discovery on cloud environment
by integrating intelligent agent and ontology. This work focused on PaaS scope, as
shown in Figure 2.13, which has a very different character to IaaS, and the ontology
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file is not available. They are searching for cloud services using inference rules exe-
cuted by Jena engine [13]. Despite the different methods for retrieving information,
the evaluation did not demonstrate much superiority compared to other researches.
It achieved no more than 40 per cent recall, meaning that it can only retrieve 40 per
cent of what should be discovered (with human review).

Figure 2.14: OWL-S based Cloud Service Ontology [144]

Ngan and Kanagasabai [144] proposed an OWL-S Based Semantic Cloud Service
Broker, which uses SWRL [193] rule for matching criteria. The ontology they devel-
oped models provider, requester, cost, region and functionality, etc. The actual OWL
file is not available. Instead, ontology is shown as Figure 2.14. In this figure, only top
tow levels are shown, IaaS functionalities modeled are limited, and QoS parameters
are not considered. Also, their online resource in the paper is no longer accessible.

Rodríguez-García et al. [173] proposed the ICT ontology, which models software.
They annotate cloud service natural language descriptions using semantic techniques
such as TFIDF and ontology (OWL2). The validation of the system was performed
on a small set of services without statistical analysis on large data sets. Attributes
covered are limited to software, but features specific to Cloud are not covered. Since
the OWL file is not provided, we can only look at the figure showing part of the
ontology, as shown in Figure 2.15. They have also used the namespace “soft”, but
prefix.cc shows that it is already claimed by some other ontology.

prefix.cc
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Figure 2.15: ICT ontology [173]

Mittal et al. [135] proposed methods for automatic extraction of metrics from
SLAs of Cloud services. They developed an ontology modelling SLA, penalty, re-
bate, terms and conditions, availability, cost, provider, consumer, location, and so on.
A prototype system was developed to extract the terminologies in SLA text docu-
ments automatically. The extracted terminologies are then saved as an RDF graph to
represent the knowledge base. This work focused on SLA only. It did not provide a
comparison of SLA among different providers. Since the OWL file is not available,
we have to look at the provided Figure 2.16 to study ontology. It is hard to reuse this
ontology, with no file, nor defined prefix.

Tahamtan et al. [195] proposed a Cloud repository and discovery framework, in
which they introduced a unified business and Cloud service ontology. This ontol-
ogy models business functions, deployment models, PaaS, Cloud management tools,
SLA, IaaS, server location, data storage, etc. This work has broad coverage and has
defined many classes, for example, the class “BusinessFunctions_and_Processes” in-
cludes 162 subclasses and the class “Cloud_Taxonomy” has 157 subclasses. However,
the OWL file is not provided, and they did not define a prefix. They only partially
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presented their classes in figures, for example, Figure 2.17 shows the “IaaS_concept”.
Despite the large vocabulary, there is no evidence of reusing existing ontology and
object properties are not shown in figures.

Figure 2.16: SLA ontology [135]

In the area of Quality of Service (QoS) modelling, some papers have proposed
QoS ontologies (i.e. QoSOnt [55] and OWL-QoS [237]). However, they did not pub-
lish the actual specifications, and only figures/graphs were given. In this thesis,
we provide formal modelling of QoS parameters and make it readily available for
general use (see Section 3.3.3.6).

Zhang et al. [237] proposed an QoS measurements extension to “OWL-S”, called
“OWL-QoS”. It models latency, accuracy, reliability, condition, parameter, delay and
error tolerance (see Figure 2.18). However, the OWL file has not been made available
for use, and there is no usage example either.

Dobson, Lock, and Sommerville [55] proposed an QoS focused ontology
(QoSOnt) in 2005. QoSOnt models availability, time to complete, throughput, reli-
ability, confidentiality, quantity and conversion rate (see Figure 2.19). Some of the
topology graphs are blurry (refer to the classes from the attribute layer in Figure 3 of
their paper). QoSOnt is now outdated, and the ontology file is not available.

Khanfir et al. [107] proposed a Web service selection framework based on the
user’s context and QoS. They developed an ontology for quality of service (see Fig-
ure 2.20). However, it is very simple and has no unit components nor a proper OWL
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file definition.

Figure 2.17: IaaS ontology [195]

Figure 2.18: The structure of OWL-QoS [237]
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Figure 2.19: QoSOnt [55]
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Figure 2.20: An Ontology for Quality of Service [107]

2.2 Web Service Discovery Techniques

In this section, we surveyed the state of the art in service selection and comparison
techniques. We highlight their limitations, their relationship and dependency on
some of the prior concepts from other fields in computing.

Traditional Web service discovery techniques includes Web Services Description
Language (WSDL) and Universal Description, Discovery, and Integration (UDDI).
UDDI has not been as widely adopted as its designers had hoped. On the other
hand, Semantic Web technologies become popular, for which we will discuss in
Section 2.1.

2.2.1 Fully Automatic Service Discovery Techniques

In general, all fully automatic techniques face the challenge of natural language pro-
cessing, thus features captured automatically often are limited, and most research
can only offer keyword-based search or does not consider service performance.

Hamza et al. [84] proposed a Cloud computing approach based on mobile agents
for Web services discovery. They crawl information using mobile agents. Keyword-
based search is used to compare between user requests and cloud service descrip-
tions. However, it does not cover numeric attributes such as cost and performance.

Alkalbani et al. [8] designed a Hadoop-Based [12] crawler for SaaS Service Dis-
covery. Their implementation used the search platform Apache Solr [14]. However,
they did not distinguish between IaaS, PaaS or SaaS.

Nabeeh, El-Ghareeb, and Riad [141] proposed a Service Oriented Architecture
[184] based Cloud services discovery framework. They used a multi-agent system for
Cloud service discovery and ranking. They illustrated their design with architecture
design and process flow diagrams, but they did not include design or method on how
to implement a system following the proposed architecture. It is critical because the
tasks mentioned in the paper can be very complex, without concrete demonstrations
it is hard to know how they can be fully realised. The tasks include generating
taxonomy tree, similarity reasoning, measuring compliance and evaluating client
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source code.
Wheal and Yang [219] proposed a search engine system called CSRecommender,

which was optimised, especially for cloud services. It identified some sites of in-
terest to crawl their web pages, and a score was assigned to each page based on
fundamental word frequencies using TFIDF (term frequency-inverse document fre-
quency algorithm). It also collected users’ ratings on search results to improve the
recommendation relevance. It was applied to a few cloud services. Accuracy is low,
and it does not cover all types of Cloud services.

2.2.2 Semi-automatic Service Discovery with More Complex Filtering

Parhi, Pattanayak, and Patra [154] proposed a multi-agent-based QoS-driven Web
service discovery and composition framework, which is a prototype system for de-
scribing and discovering Cloud services using agents. Although their title says “Us-
ing Ontology”, they did not implement it in their paper, only saying in the future
work that they would include semantic-based searching techniques using web ontol-
ogy language along with keyword-based searching techniques. Their design required
service providers to implement agent systems to interact with the proposed service
registry, which imposes high adoption cost. There is no evaluation with real data.

Goscinski and Brock [77] proposed a Resources Via Web Services (RVWS) frame-
work for dynamic and attribute based publication, discovery and selection for cloud
computing. This framework used WSDL documents to publish the states and charac-
teristics of resources. It also includes a broker service layer to handle service discov-
ery and selection. Twelve characteristic attributes and nine state attributes are sum-
marised. Those attributes cover minimal features in Cloud, cost and performance
were not considered in their work. For example, they were more interested in the
state of the resource, as the amount of free disk space or memory, the number of pro-
cesses running or the percentage of CPU used. The underlying technologies (WSDL,
SOAP, UDDI) are a bit outdated compared to more popular recent technologies.

Chen, Bai, and Liu [34] proposed a service discovery method for Cloud Comput-
ing. They stored Cloud service in WSDL files for publishing in a UDDI directory.
However, UDDI is an old (outdated) technology and abandoned by market and com-
munity.

2.3 Cloud Infrastructure Service Selection Techniques

The approaches to Cloud service selection can be categorised into: Multiple Crite-
ria Decision Making (MCDM) methods, optimization methods and others [191]. In
this thesis, we employed the Analytic Hierarchy Process (AHP) [177] method in the
MCDM category.

Consider IaaS pricing calculation, although branded calculators are available
from individual cloud providers [17, 158, 74, 39, 187] for calculating the service
leasing cost, it is not easy for users to generalize their requirements to fit differ-
ent Cloud service offers (with various quota and limitations). It is hard to conduct
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a decent comparison between Cloud service offers from different providers, due to
the very different natures of what things are part of billing and how they are part
of billing. For some Cloud provider, a year consists of 365 days, whereas for other
Cloud vendors a year consists of 30 days * 12 months = 360 days. While it is excellent
that Cloud vendors provide an API for pricing estimation and calculation, the very
different natures of the offerings themselves make it very hard to compare them [41].

2.3.1 Multiple Criteria Decision Analysis

Multiple criteria decision analysis (MCDA) or MCDM is a sub-discipline of opera-
tions research that explicitly evaluates multiple conflicting criteria in decision making
(both in daily life and in settings such as business, government and medicine). Con-
flicting criteria typically occur in evaluating options: cost or price is usually one of
the main criteria, and some measure of quality is typically another criterion, which
may conflict with the cost [138].

MCDM problems have two categories: Multiple Objective Decision Making
(MODM) and Multiple Attribute Decision Making (MADM). Methods for MODM
have decision variables which are determined in a continuous or integer domain,
with a large number of choices. Methods for MADM are generally discrete, with
a limited number of pre-specified alternatives. Each decision has four main parts,
namely: (a) alternatives, (b) criteria, (c) weights for criteria and (d) performance
measures of alternatives for the criteria [67]. There are many methods for MADM
and the commonly used ones are: Weighted Sum Model (WSM) , Weighted Product
Method (WPM) , AHP, Techniques for Order Preference by Similarity to Ideal So-
lution (TOPSIS) and compromise ranking method (VIKOR) and Preference Ranking
Organization METHod for Enrichment of Evaluations (PROMETHEE) .

Triantaphyllou and Mann [203] demonstrated that it is impossible to determine
precisely the best decision-making method to do so; one needs to use the best
decision-making method. This problem of finding the best decision-making method
always reaches a Decision Making Paradox. However, the results of this study rec-
ommend that for most of the cases the revised AHP appears to be the best decision-
making method of the four examined, while the original AHP, appears to be the most
inaccurate one.

The decision-making paradox arises from the quest for determining reliable
decision-making methods. To find the best decision-making method, a decision
problem needs to be formulated, for which different decision-making methods are
the alternatives. Since in the beginning, it was assumed that the best method is not
known, the problem of selecting the best method was solved by successively using
different methods.
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2.3.1.1 WSM

Table 2.1: Example alternatives

C1 C2 C3 C4

A1 25 20 15 30

A2 10 30 20 30

A3 30 10 30 10

Weight 0.20 0.15 0.40 0.25

Han and Sim [94], Saripalli and Pingali [179], Zhao [238] applied WSM in their work.
If there are M alternatives and N criteria, the WSM score can be calculated as follows:

AWSM
i =

n

∑
j=1

aijwj f or i = 1, 2, 3, ..., m (2.1)

where n is the number of criteria, aij is the actual value of the ith alternative in terms
of the jth criterion, and wj is the weight of importance of the jth criterion.

Suppose we have a decision problem with three alternatives A1, A2, A3 where
each described in terms of four criteria C1, C2, C3 and C4, as shown in Table 2.1. By
Equation (2.1), the WSM scores for the three alternatives are:

AWSM
1 = 25× 0.20 + 20× 0.15 + 15× 0.40 + 30× 0.25 = 21.50 (2.2)

AWSM
2 = 22.00 (2.3)

AWSM
3 = 22.00 (2.4)

Thus, these numerical results imply the following ranking of these three alternatives
(in the maximization case): A2 = A3 > A1.

The advantage of this method is that it is a proportional linear transformation of
the raw data. This means that the relative order of magnitude of the standardized
scores remains equal [5].

2.3.1.2 WPM

This method is similar to WSM. However, instead of doing addition, multiplication
is used to calculate aggregated values [212]. Suppose that a given MCDA problem
is defined on malternatives and n decision criteria. Furthermore, let us assume that
all the criteria are benefited criteria, that is, the higher the values are, the better it is.
Next suppose that wj denotes the relative weight of importance of the criterion Cj
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and aij is the performance value of alternative Ai in terms of criterion Cj. Then, to
compare two alternatives AK and AL, the following product is calculated:

P(
Ai

Ak
) =

n

∏
j=1

(
aij

Akj
)wj f or 1 ≤ k 6= i ≤ m. (2.5)

If the ratio P( Ai
Ak
) is greater than or equal to 1, then alternative Ai is more desirable

than alternative Ak (in the maximization case). Then the best alternative is the one
that is better than or at least equal to all other alternatives.

I have taken the same example in Table 2.1. WPM compares the alternatives by
computing P values:

P(A1/A2) = (
25
10

)0.20 ∗ (20
30

)0.15 ∗ (15
20

)0.40 ∗ (30
30

)0.25 = 1.007 > 1 (2.6)

Similarly, we also get:

P(A1/A3) = 1.067 > 1 (2.7)

P(A2/A3) = 1.059 > 1 (2.8)

Therefore, the best alternative is A1, and we have the ranking: A1 > A2 > A3.

It is worth noting that a useful way of choosing between an additive score func-
tion (i.e. WSM) and a multiplicative one (i.e. WPM) is to consider whether one is
willing to trade off one criterion in exchange for some other criterion, even to the
point where one has zero of the first criterion. If this is not acceptable to the decision
maker, then the additive score the function is not appropriate. Likewise, if one does
not believe the trade-off rate between alternatives should stay fixed, then again, an
additive score function is not suitable [200]. For example, the UNDP (United Nations
Development Programme) publishes an annual ranking of nations known as the Hu-
man Development Index, which is very influential and is used by the first world
nations to guide their aid allocations. It is also used by pharmaceutical companies to
decide which countries should receive discounted prices. This index is an aggregate
of three criteria: life expectancy, education, and gross national income per capita.
For many years the aggregation was carried out using additive weighting. This was
criticised because this assumed that the criteria were perfectly substitutable. Conse-
quently, the UNDP chose to change its methodology and the index is now calculated
using a multiplicative scheme.

http://hdr.undp.org
http://hdr.undp.org
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Figure 2.21: AHP Hierarchy for Solving a Decision Problem [215]

2.3.1.3 AHP

One of the most popular analytical techniques for complex decision-making prob-
lems is AHP [67]. There are a number of literatures [66, 72, 105, 145, 146] applied
AHP or its variation Analytical Network Process (ANP) [134].

AHP [176, 178, 191] decomposes a decision-making problem into a system of hi-
erarchies of objectives, criteria and alternatives. An AHP hierarchy can have as many
levels as needed to characterize a particular decision situation fully. Many functional
characteristics make AHP a useful methodology. These include the ability to handle
decision situations involving subjective judgments, multiple decision makers and the
ability to provide measures of consistency of preference. AHP is designed to reflect
the way people think. It can efficiently deal with tangible as well as non-tangible
criteria, mainly where the subjective judgments of different individuals constitute an
essential part of the decision process. AHP computes ranking scores in a way similar
to WSM. However, a key difference is that WSM assumes the weights for criteria
are known, while this is not true in most cases. AHP applies pairwise compari-
son methods to determine a weight for each criterion in the comparative judgment
phase. AHP derives ratio scales from pairwise comparisons of criteria and allows
for some small inconsistencies in judgments. Inputs can be actual measurements,
but also subjective opinions. As a result, ratio scales (weightings) and a consistency
index will be calculated. For decision making with multiple inputs from different
stakeholders, the geometric mean of individual inputs is used. Mathematically the
method is based on the solution of an eigenvalue problem. The results of pairwise
comparisons are arranged in a matrix. The first normalized eigenvector of the matrix
gives the ratio scale (weighting). The largest eigenvalue determines the consistency
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ratio.

Figure 2.22: AHP Preference Scale for Pairwise Comparison [11]

In general, the steps of AHP [11] are:

1. Define objectives;

2. Structure elements in criteria, sub-criteria, alternatives, etc.;

3. Make a pairwise comparison of elements in each group;

4. Calculate local weights and consistency ratios;

5. Evaluate alternatives according to the final score.

Figure 2.21 shows a simple example of how to apply AHP to make a buying decision
on MP3. The commonly used preference scale is shown in Figure 2.22. The matrix
constructed from pairwise comparisons is called Pairwise Comparison Matrix (PCM)
[112]. PCM of n criteria can be mathematically expressed as a square matrix M =
{mij}n

i,j=1 whose element mij represents the relative preference (or importance) of
criterion Ci over criterion Cj.

The normalization method in the originally proposed AHP is criticized by Belton
and Gear [23], who proposed a revised version of the AHP model. They demon-
strated that rank reversal could occur because of relative values for each
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Table 2.2: AHP Example

C1 C2 C3 C4

Weight 0.2000 0.1500 0.4000 0.2500 wj

A1 25 20 15 30 aij

A2 10 30 20 30

A3 30 10 30 10

Sum 65 60 65 70 Sj

Original AHP Normalization: Value Divided by Sum

A1 0.3846 0.3333 0.2308 0.4286 aij
Sj

A2 0.1538 0.5000 0.3077 0.4286

A3 0.4615 0.1667 0.4615 0.1429

Value multiplied by Weight (wj
aij
Sj

) Weighted Sum Rank

A1 0.0769 0.0500 0.0923 0.1071 0.3264 3rd

A2 0.0308 0.0750 0.1231 0.1071 0.3360 2nd

A3 0.0923 0.0250 0.1846 0.0357 0.3376 1st

Revised AHP Normalization: Value Divided by Max

Revised Weight 0.5000 0.3750 1.0000 0.6250 wR
j =

wj
max(W)

where W = {w1...w4}

A1 0.8333 0.6667 0.5000 1.0000 aR
ij =

aij
max(a1j,a2j,a3j)

A2 0.3333 1.0000 0.6667 1.0000

A3 1.0000 0.3333 1.0000 0.3333

Value Multiplied by Weight (wR
j aR

ij ) Weighted Sum Rank

A1 0.4167 0.2500 0.5000 0.6250 1.7917 2nd

A2 0.1667 0.3750 0.6667 0.6250 1.8333 1st

A3 0.5000 0.1250 1.0000 0.2083 1.8333 1st
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criterion sum up to one. Rank reversal [18] means that the rankings of two alterna-
tives are sometimes reversed when another alternative is added to or deleted from
the set of alternatives. Instead of having the relative values of the alternatives which
sum up to one, they propose to divide each relative value by the maximum value of
the relative values. For cost criteria, we need to divide each value with the minimal
value of the relative values. As shown in Table 2.2, values are first normalized using
the original AHP method. That is to divide each value by the sum of all values in
that column. In comparison, the revised AHP normalizes the values by dividing each
value with the max value in the column. From the final weighted sum, we can see
that these two methods result in different ranks.

AHP can be applied in many fields, e.g. Evaluation of product features, cost-
benefit analysis, strategy development, selection of Key Performance Indicators
(KPI), deriving weights for a combined performance index, and deriving a consoli-
dated scale of importance from different inputs.

Figure 2.23: Basic concept of TOPSIS method [19]

2.3.1.4 TOPSIS

This method is based on the concepts that a chosen alternative should have the short-
est Euclidean distance to the ideal solution and the farthest Euclidean distance from
the negative ideal solution [67]. The ideal solution is a hypothetical solution for
which all attribute values correspond to the maximum attribute values comprising
the satisfying solutions. The negative ideal solution is a hypothetical solution for
which all attribute values correspond to the minimum attribute values. TOPSIS thus
gives a solution that is not only closest to the hypothetically best but also the farthest
from the hypothetically worst. As illustrated in Figure 2.23, A+ is the ideal positive
point, and A− is the ideal negative point. Compared with A1, A2 has a shorter dis-
tance to A+ and it is further away from A−, so it is a better alternative compared to
A1.
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TOPSIS can suffer from ranking abnormality [143]. Ranking abnormality means
that the ranking of candidate networks changes when the low ranking alternative is
removed from the candidate list.

2.3.1.5 VIKOR

The VIKOR method determines a compromise solution which provides a maximum
"group utility" for the majority and a minimum of an "individual regret" for the "op-
ponent" [236]. Figure 2.24 provides a visual illustration, the noninferior set contains
the Pareto optimal solutions, and the feasible set contains the feasible alternatives.
The compromise solution Fc is a feasible solution that is the closest to the ideal F*,
and compromise means an agreement established by mutual concessions.

Figure 2.24: VIKOR: Ideal and Compromise Solution [241]

The VIKOR method was developed for multi-criteria optimization of complex
systems. It determines the compromise ranking-list, the compromise solution, and
the weight stability intervals for preference stability of the compromise solution ob-
tained with initially given weights. This method focuses on ranking and selecting
from a set of alternatives in the presence of conflicting criteria. It introduces the
multicriteria ranking index based on the particular measure of closeness to the ideal
solution [241].

2.3.1.6 PROMETHEE and Gaia Method

The prescriptive approach, named Promethee, provides the decision maker with
both complete and partial rankings of the actions [159]. It is often used with the
complement geometrical analysis approach, named Gaia [156]. Gaia is a descrip-
tive approach that allows the decision maker to visualize the main features of a
decision problem. The decision maker can quickly identify conflicts or synergies
between criteria, to identify clusters of actions and to highlight remarkable perfor-
mances. Promethee and Gaia together are often referred to as the PROMETHEE-
GAIA method. While it can be used by individuals, it is most useful where groups of
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people are working on complex problems, especially when involving a lot of human
perceptions and judgments, multiple criteria and decisions with long-term impacts.
It has unique advantages when essential elements of a decision are difficult to quan-
tify or compare, or where collaboration among departments or team members are
constrained by their different specializations or perspectives.

2.3.2 Optimization Based Methods

Optimization-based methods can be developed based on dynamic programming,
greedy algorithm, integer programming, etc.

Chang, Liu, and Wu [32] proposed a Cloud storage provider selection algorithm,
for maximising the probability of high availability, subject to a fixed budget. They
transformed the selection problem to a 0–1 knapsack problem, then applied a dy-
namic programming-based approach. They looked at two situations: (i) minimum
failure probability with a given budget, where the failure probability refers to the
availability probability provided by vendors, i.e. 99.99%; (ii) maximum data surviv-
ability with a given budget, which is achieved by replicate data across different data
centres.

Ye, Bouguettaya, and Zhou [227] proposed a QoS-ware Cloud service composi-
tion method. They adopted Bayesian networks to build a Cloud economic model.
Influence diagram (ID) was employed to model the cloud service composition prob-
lem. Dynamic programming algorithm was used to solve such a problem.

Sundareswaran, Squicciarini, and Lin [192] applied a greedy algorithm to find
the best combination of service providers that meets the user’s service requirements.
They proposed a method called CSP-index for indexing Cloud service providers,
which used the B+ tree to encode services and user requirements. They also mod-
elled the relative importance of properties, as ordered by users. After indexes are
generated for Cloud services, they do a k-means clustering on the indexes to keep
services with similar properties close to each other. An example for the index would
be “00010100”, where hamming distance was used for comparing indexes during
clustering. However, they only experimented on simulated data, as shown in Fig-
ure 2.25.

Figure 2.25: CSP-index Simulation Example [192]

Zheng et al. [240] proposed CloudRank, a QoS ranking prediction framework,
Figure 2.26 shows its architecture. This framework uses past service usage experi-
ences of other consumers to do prediction, and to save the cost and time of real time
monitoring. A user is called an active user if he/she is requesting ranking prediction
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Figure 2.26: System Architecture of CloudRank Framework [240]

from the CloudRank framework. A user can obtain service ranking prediction of all
available cloud services from the CloudRank by providing observed QoS values of
some cloud services. They calculated the similarity between rankings from differ-
ent users for the same service using Kendall Rank Correlation Coefficient (KRCC) ,
defined as:

τ =
(number of concordant pairs)− (number of discordant pairs)

n(n−1)
2

(2.9)

The denominator is the total number of pair combinations, i.e. (n
2) =

n!
2!(n−2)! =

n(n−1)
2 ,

so the coefficient must be in the range −1 ≤ τ ≤ 1. Any pair of observations (xi, yi)
and (xj, yj) where i < j, are said to be concordant if the sort order (rank) by x and
by y agree: that is, if both xi > xj and yi > yj or if both xi < xj and yi < yj. They
are said to be discordant, if xi > xj and yi < yj; or if xi < xj and yi > yj. If the
agreement between the two rankings is perfect (i.e., the two rankings are the same),
the coefficient τ has value 1. If the disagreement between the two rankings is perfect
(i.e., one ranking is the reverse of the other), the coefficient τ has value -1. If X and
Y are independent, then we would expect the coefficient of τ to be approximately
zero. Given two rankings on the same set of services, KRCC evaluates the degree of
similarity by considering the number of inversions of service pairs which would be
needed to transform one rank order into the other.

Within the CloudRank framework, the authors proposed two ranking algorithms:
CloudRank1 and CloudRank2. CloudRank1 method calculates user preferences on
a pair of services using the difference between the QoS parameter values observed
by the end user. The basic idea is that the more often the similar users observe ser-
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vice i as higher quality than service j, the stronger the evidence is for the current
user to prefer i over j. Based on the preference of each service pair, all the ser-
vices are sorted via a greedy method. In CloudRank2 method, confidence values
are considered when computing the overall preference of a user for the service rank-
ing. Explicit preference has the highest rank, and higher similarity means higher
confidence and vice versa. The authors also compared the performance of their al-
gorithms with several collaborative filtering approaches, where they employed the
Normalized Discounted Cumulative Gain (NDCG) [100] metric for evaluating rank-
ing results. Experiments show better prediction accuracy of the proposed methods
compared with other approaches.

Figure 2.27: Queueing Theory Example
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2.4 Queueing Theory

Queueing is quite common in life, for example, in telephone exchange, visa applica-
tion queues, in computer systems, etc. Queueing theory problems were first raised
by early telephone exchange centres at the beginning of the 20th century. Erlang [6]
was the one who treated those network congestion problems. His works inspired
engineers and mathematicians to deal with queueing problems using probabilistic
methods. Queueing theory [78, 194] has become a field of applied probability, and
many of its results have been used in operations research, computer science, telecom-
munication, traffic engineering and reliability theory.

There are many studies [115, 31, 225] which have applied the queuing theory in
their Cloud provisioning mechanisms. Since we do not focus on real-time provision-
ing or load balancing, we only use a queuing theory based method to estimate the
required number of VMs for achieving performance goals.

2.4.1 Components of a Queuing System

As illustrated in Figure 2.27, a queuing system consists of one or more servers that
provide services of some sort for arriving customers. When all servers are busy,
customers generally join one or more queues (lines) in front of the servers.

A queuing system is characterised by three components [164]: arrival process,
service mechanism, queue discipline. Arrivals may originate from one or several
sources being referred to as the calling population. The calling population can be
limited or unlimited. An example of a limited calling population may be that of a
fixed number of machines that fail randomly.

The arrival process describes how customers arrive at the system. If TA
i is the

inter-arrival time between the arrivals of the (i-1)-th and i-th customers. We shall
denote the mean (or expected) inter-arrival time by E(TA). Moreover, the arrival
frequency would be:

λ =
1

E(TA)
(2.10)

The service mechanism of a queuing system is specified by the number of servers
and the probability distribution of customer’s service time. Each server may have its
queue or share a common queue. Let TS

i be the service time of the i-th customer. We
shall denote the mean service time of a customer by E(TS). Moreover, the service
rate of a server would be:

µ =
1

E(TS)
(2.11)

The discipline of a queuing system means the rule that a server uses to choose
the next customer from the queue (if any) when the server completes the service of
the current customer. Commonly used queue disciplines are:

- First In First Out (FIFO): Customers who come earlier leaves earlier.

- Last Come First Out (LIFO): Customers who come later leaves earlier.
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- Priority: Customers are served in order of their importance based on their
service requirements.

- Random Service (RS): Customers are selected randomly.

2.4.2 Kendall’s Notation

In queuing theory, Kendall’s notation denotes a system by:

Xa/Xs/m/K/n/D

where

Xa: distribution function of the inter-arrival times

Xs: distribution function of the service times

m: number of servers

K: the capacity of the system, i.e. the maximum number of customers in the
system including the one being serviced

n: population size, i.e. number of sources of customers

D: service discipline

Exponentially distributed random variables are notated by M, meaning Marko-
vian or memoryless. General distribution is noted by G, meaning any arbitrary
distribution. Furthermore, if the population size and the capacity are infinite, the
service discipline is FIFO, then they are omitted.

For example M/M/r/K/n stands for a system where the customers arrive from
a finite-source with n elements, and they stay for an exponentially distributed time,
the service times are exponentially distributed, the service is carried out according
to the requests’ arrival by r severs, and the system capacity is K.

2.4.3 Different Types of Queues

There are many different kinds of queueing models. In this thesis, we are more
interested in the infinite-source models. We assume that requests for services are
generated from an infinite population so that the arrival of a request to the system
does not influence future arrivals.

Symbols used for describing the queueing models are list in table 2.3.

Table 2.3: Queuing Model Symbols and Formulas
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n Number of servers.

duration Duration of test.

job_count Number of job send during the test. There are different types
of jobs; in web, it could be GET or POST HTTP requests; in
analytical application, it would be a specific task, like word
count (map reduce); in a SQL or NoSQL database, it would be
a query (i.e. SELECT * FROM some_table).

λ Arrival Rate (Rate of arrival of jobs), calculated by: λ =
job_count
duration

Ts Service Time, which is the average time taken to service a job.

µ Service Rate. Job processed per unit time. For example, to get
the number of jobs processed per second µ = 1 second

Ts

ρ Server utilization.

σ Standard deviation. In this section, σ is specifically refer to the
standard deviation of service time distribution.

Tr Total response/delay/waiting time. In a queuing system, a
customer’s time is spent either waiting for service or getting
service: Tr = Tw + Ts

2.4.3.1 M/M/1 Queue

We first look at the simplest non-trivial queue, which is the M/M/1 queue. Its
requests arrival is according to a Poisson process with a rate of λ. It means the
interarrival times are independent, exponentially distributed random variables with
parameter λ. The service times are also assumed to be independent and exponen-
tially distributed with parameter µ. Furthermore, all the involved random variables
are supposed to be independent of each other. Average waiting time for the M/M/1
queue can be calculated as:

E[WM/M/1] =
ρ

µ(1− ρ)
(2.12)

where ρ is the server utilization, sometimes also called traffic intensity or agent oc-
cupancy. The utilization of the system is the ratio between the rate of arrivals and
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the rate of service:
ρ =

λ

nµ
(2.13)

where n is the number of servers. In Queuing Theory, ρ is used to describe how busy
the system is, or how far away is the system is to its theoretical limit.

2.4.3.2 M/M/n Queue

The M/M/n queue is a variation of the classical queue assuming that the service is
provided by n servers operating independently of each other. This modification is
natural since if the mean the arrival rate is higher than the service rate. The system
will not be stable. This is why the number of servers should be increased. Average
delay/waiting time in M/M/n queue can be calculated as:

E[WM/M/n] =
C(n, λ

µ )

nµ− λ
+

1
µ

(2.14)

Erlang’s C formula C(n, λ
µ ) describe the probability that an arriving customer is

forced to join the queue (i.e. all servers are occupied):

C(n,
λ

µ
) =

1

1 + (1− ρ) n!
(nρ)n ∑n−1

k=0
(nρ)n

n!

(2.15)

where ρ is the server utilization, n is the number of servers.

2.4.3.3 M/G/1 Queue

So far, we have looked at systems with exponentially distributed serviced times.
However, in many practical problems, these times are not exponentially distributed.
It means that the investigation of queueing systems with generally distributed ser-
vice times is natural, hence the M/G/1 queue . G means “general” service time
distribution, which means any distribution can occur.

Little’s theorem ( or Little’s law, Little’s formula) [121] is a theorem by John Little
which states that the long-term average number of customers (L̄) in a stationary
system is equal to the long-term average effective arrival rate (λ̄) multiplied by the
average time (W̄) that a customer spends in the system. Algebraically the law is:

L̄ = λ̄W̄ (2.16)

It states a relation between the mean number of customers, mean arrival rate and
the mean response time. A similar version can be stated for the mean queue length,
mean arrival rate and mean waiting time. Although it looks intuitively easy, it is
quite a remarkable result, as the relationship is "not influenced by the arrival process
distribution, the service distribution, the service order, or practically anything else."
The result can be applied to any system, and mainly, it can be applied to systems
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within systems. Imagine an application that had no easy way to measure response
time. If the mean number of jobs in the system and the throughput are known, the
average response time can be found using Little’s Law:

mean response time =
mean number in system

mean throughput
(2.17)

The average waiting time in M/G/1 queue is calculated as:

E[WM/G/1] =
ρ2 + λ2var[S]

2λ(1− ρ)
(2.18)

where var[S] is the variance of the service time. The variance of a data set is calcu-
lated by taking the arithmetic mean of the squared differences between each value
and the mean value, which is also standard deviation squared, i.e. σ2.

2.4.3.4 M/G/n Queue

Average delay/waiting time in M/G/n or M/G/k queue is

E[WM/G/n] =
CV2 + 1

2
E[WM/M/n] (2.19)

where CV is the coefficient of variation of the service time distribution:

CV =
σ

mean
=

σ

Ts
(2.20)

2.4.3.5 Heavy Traffic Approximation

In a system with high occupancy rates (near 1) a heavy traffic approximation can
be used to approximate the queueing length process by a reflected Brownian motion
[85].

In situations when the system is considered busy or under heavy traffic, different
formulas needed to be used for approximation. The ρ value will be between 0 and 1.
If it is not less than 1, then the agents are overloaded, and the Erlang’s C calculations
are not meaningful and may give negative waiting times.

Heavy traffic approximation for wait time:

E[WM/G/1
H ] =

λ( 1
λ2 + var[S])
2(1− ρ)

(2.21)

The relative error of the heavy traffic approximation:

eroH =
1− ρ2

ρ2 + λ2var[S]
(2.22)



Chapter 3

Cloud Service Ontology

Typically, IaaS providers, including Amazon Web Services (AWS), Microsoft Azure,
Google, Alibaba and others, give users the option to deploy their applications over
a pool of virtually infinite services with practically no capital investment. Modest
operating costs are charged proportionally to the actual use. Elasticity, cost benefits
and abundance of resources motivate many organizations to migrate their enterprise
applications (e.g. content management system, customer relationship management
system and enterprise resource planning system) to the Cloud. Although Cloud
offers the opportunity to focus on revenue growth and innovation, decision makers
(e.g., CIOs, scientists, developers, engineers, etc.) are faced with the complexity of
choosing among private, public, and hybrid Cloud options and selecting the right
service delivery and deployment model.

To address the IaaS service discovery problem, we present an OWL-based ontol-
ogy, namely the Cloud Computing Ontology (CoCoOn), that defines functional and
non-functional concepts, attributes and relations of infrastructure services.

From a service discovery point of view, the selection process on the IaaS layer is
based on a finite set of functional (e.g. CPU type, memory size and location) and non-
functional (e.g. costs, QoS and security) configuration properties that can be satisfied
by multiple providers. Similarly, there is a service discovery problem associated with
the SaaS and PaaS offerings. However, we are not considering these issues in this
thesis. In cloud computing, SaaS services are often developed and provided by third-
party service providers who are different from the IaaS providers. We focus on IaaS
that is the underpinning layer on which the PaaS services are hosted for creating SaaS
applications. There are fewer studies in IaaS selection compared to SaaS selection,
for which many service composition techniques are directly applicable.

Although popular search engines (e.g., Google, Bing, etc.) can point users to IaaS
providers’ web sites, blogs and wikis, they are not designed to compare and reason
about the relations among different types of Cloud services and their configurations.
Service description models and discovery mechanisms for determining the similarity
among Cloud infrastructure services are needed to aid the user in the discovery
and selection of the most cost-effective infrastructure services that meet the user’s
functional and non-functional requirements.

In this chapter, We identify and formalize the domain knowledge of multiple con-
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figurations of infrastructure services. The core idea is to formally capture the domain
knowledge of services using semantic Web languages like the Resource Description
Framework (RDF) and the Web Ontology Language (OWL). The contributions are as
follows: i) Identification of the essential concepts and relations of functional and non-
functional configuration parameters of infrastructure services and their definitions in
an ontology; ii) Modelling of service descriptions published by Cloud providers ac-
cording to the developed ontology.

3.1 Common Approaches

In relation to the challenges in Cloud selection and comparison, described in Sec-
tion 1.1, there are 3 common approaches for web services identification:

1. Manually maintains directories by categorizing manually-submitted or col-
lected information. For example, the Yahoo subject directory applied this ap-
proach.

2. Use web crawling techniques to create listings automatically, i.e. Google Search
index.

3. Combine both automatic crawling and manual maintenance, e.g. using
manually-submitted URIs as seeds to generate indexes.

The first approach is the only feasible solution at the moment, as automatic crawling
often cannot distinguish between useful and irrelevant links. But extensive research
and standardization efforts [174, 132, 83, 48, 136, 152] have been put into develop-
ing information representation models, with Resource Description Framework (RDF)
[166] and Web Ontology Language (OWL) [150].

3.2 CoCoOn v0.1.0

The initial version of our Cloud service ontology, named CoCoOn v0.1.0, defines the
domain model of the IaaS layer. This ontology facilitates the description and dis-
covery of Cloud infrastructure services. This ontology is defined in OWL [150]. Es-
tablished domain classifications have been used to describe specific aspects of Cloud
services, as a guiding reference [229]. For the layering of the ontology on top of Web
service models, it draws inspirations and ideas from standard semantic Web service
ontologies, i.e., OWL-S [131] and WSMO [224]. Consequently, modellers can use the
grounding model and process model of OWL-S in combination with the presented
Cloud service ontology to succinctly express common infrastructure Cloud services.
We mapped the most prominent set of infrastructure services (i.e. Amazon, Azure,
GoGrid, Rackspace, etc.) to CoCoOn. All common metadata fields in the ontology
are referenced through standard Web ontologies (i.e. FOAF [62] and Dublin Core
[52]), such as The organization, Author, First Name, etc.
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Figure 3.1: CoCoOn v0.1.0 Top Concepts in the IaaS layer

The first version of CoCoOn consists of two parts: functional Cloud service con-
figuration parameters and non-functional service configuration parameters. In the
following sections, we detail these two parts. We also present parts of this ontology
in a visual form produced by the Cmap Ontology Editor tool [43, 42].

3.2.1 Functional Parameters

The main concept to describe functional Cloud service configurations in Co-
CoOn v0.1.0 is CloudResource, which can be of one of the three types of ser-
vices: Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) or Software-as-
a-Service (SaaS).

Cloud services in the IaaS layer can be categorised into three classes: Compute,
Network, and Storage, as shown in Figure 3.1. Compute class models the main
concept in infrastructure services. Due to space limitation, a large graph consists of
all classes cannot be shown here, but we have made it available online.1

The Compute class has the following object properties, hasVirtualization,
hasCPU, hasMemoryAddressSize and hasNetworkStorage, which is shown in Fig-
ure 3.2. The hasCPU property links a Compute resource to one or many processors
which can be of type CPU or ClusteredCPU. A Compute object can be linked to a
Storage object by using the top-level object property hasStorage.

There are two different Storage types: i) LocalStorage, which is attached to a
Compute resource with the hasLocalStorage property; ii) NetworkStorage, which is
attached to a Compute resource with the hasNetworkStorage property. For example,
S3 (Simple Storage Service) and EBS (Elastic Block Store) are two file storage services
provided by Amazon. The main difference between them is with what they can be
used with. EBS is meant explicitly for EC2 instances and is not accessible unless
mounted to one. On the other hand, S3 is not limited to EC2. The files within an S3
bucket can be retrieved using HTTP protocols and even with BitTorrent. Many sites
use S3 to hold most of their files because of its accessibility to HTTP clients [175].

1https://cmapscloud.ihmc.us/viewer/cmap/1SB4SYXQ2-1NW70FR-1MMSKJ

https://cmapscloud.ihmc.us/viewer/cmap/1SB4SYXQ2-1NW70FR-1MMSKJ
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Figure 3.2: CoCoOn v0.1.0 SubClasses and properties for the Compute, Storage and
Network classes

The hasNetworkStorage is an inverse (aka owl:inverseOf) property of the isAttached
property, which can be used to define that a Storage resource is attached to a Com-
pute resource. There is also an important distinction to be made between Storage
resources that are attached to a Compute resource and Storage resources that can be
attached. The latter is modeled with the isAttachable object property and its inverse
property hasAttachable. These relations are important for the discovery of infrastruc-
ture services based on a user’s requirement. For example, in the case of Amazon, we
can model that a BlockStorage with a StorageSizeMin of 1GB and a StorageSizeMax of
1TB can be attached to any EC2 instance i.e., Standard, Micro, High-Memory, High-
CPUCluster, ComputeCluster and GPUHigh-I/O. Consequently, if a user searches
for a specific EC2 instance with, for example, 5GB persistent storage, the target Com-
pute resource, and a relevant BlockStorage will be returned. That is because the
isAttached relation in the user request can be matched with the definition of the
Amazon EC2 instance with a BlockStorage defined to be isAttachable.

A Network resource can be described with the hasBandwidth and hasProtocol
properties. Similar to how Storage resources are attached to Compute resources, we
distinguish between the hasSupportedNetwork and hasNetwork property to either
express that the specific network types can be used with a Compute resource or that
they are in fact, used.

3.2.2 Non-Functional Parameters

For non-functional Cloud service configuration parameters, we distinguish between
non-functional properties and QoS attributes. The first are properties of Cloud re-
sources, which are known at design time. For example, PriceStorage, Provider, De-
ploymentModel. Whereas QoS attributes can only be recorded after at least one
execution cycle of a Cloud service, for example, DiskReadOperations, Networkln,
NetworkOut, etc. For QoS attributes, we distinguish MeasurableAttributes like the

http://www.w3.org/2002/07/owl#inverseOf
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ones above and UnmeasurableAttributes like Durability or Performance.
ConfigurationParameter and Metric are used in combination to define non-

functional properties, e.g. Performance, Cost, etc. For example, ConfigurationParam-
eter can be PriceStorage, PriceCompute, PriceDataTransferIn, PriceDataTransferOut,
etc. A Metric can be ProbabilityOfFailureOnDemand or TransactionalThroughput.
The resulting ontology is a directed graph where, for example, the property hasMet-
ric (and its inverse property isMetricOf) is the basic link between ConfigurationPa-
rameters and Metric objects. For the QoS metrics, we used existing QoS ontologies
[55]. For the ConfigurationParameter concepts, this ontology defines its independent
taxonomy but refers to external ontologies for existing definitions of configuration
parameters, such as QUDT [163]. Each configuration parameter has a Name and a
Metric (qualitative or quantitative). The Metric itself has UnitOfMeasurement and
Value. The type of configuration determines the nature of service using setting a
minimum, maximum, or capacity limit or meeting a certain value. For example, the
hasMemory configuration parameter of a Compute service can be set to have a value
of 2 and a UnitOfMeasurement of GB.

3.3 CoCoOn v1.0.1

As the Web brings people into an age of information overload, presenting only the
most relevant personalized and reliable information to customers is crucial to busi-
ness success. Consumers of Cloud services also need better recommendations to
make informed decisions. To fulfil the goal of a smart Cloud service recommenda-
tion, a unified model is needed as the foundation for data collection, reasoning and
analytics. Due to the Cloud’s relatively new emergence compared to traditional Com-
puter Science fields, there is a lack of a well recognized standard ontology model.
Semantic technologies are commonly employed to build such a model.

To this end, this section presents our work on cloud service ontology, which
consolidates Cloud computing concepts. Built upon the previous work, we present
the Cloud Computing Ontology (CoCoOn) v1.0.1: https://w3id.org/cocoon/v1.0.1.
The relevant code, data and ontology are made available online as a Github project.
Figure 3.3 depicts the IaaS related parts of CoCoOn v1.0.1. The major additions of
CoCoOn v1.0.1 compared to its previous version [234, 232] are the Cloud service
pricing and QoS modelling features. When CoCoOn was first developed, there were
little existing domain ontologies to reuse, e.g. CoCoOn predated the development of
PROV-O [160], schema.org, Unit of Measure Ontology (QUDT) [163], SSN [82] and
Wikidata [220]. The new CoCoOn makes use of those popular existing ontologies.
To improve the reusability, we added more rdfs:comments, metadata, documentation,
and use cases. Because our old site on purl.org is hard to maintain and update, we
moved the ontology and the documentation to GitHub. Also, we are using w3id.org
as the permanent URL service instead, which should lead to better sustainability.
More specifically, our model aims to facilitate the publication, discovery and com-
parison of IaaS, by: i) Providing a schema for constructing and executing complex
queries; ii) Defining frequently referenced data as named individuals; iii) Providing

https://w3id.org/cocoon/v1.0.1
https://github.com/miranda-zhang/cloud-computing-schema
https://www.infowebml.ws/rdf-owl/comments.htm
purl.org
w3id.org
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Figure 3.3: CoCoOn v1.0.1: IaaS related parts

a unified machine-readable specification, as opposed to provider-specific APIs and
documentation. In addition to these, we demonstrate the capabilities of our model by
providing real-life usage datasets. Those datasets include services from the Google
Cloud and the Microsoft Azure Cloud, which is detailed in Section 6.1.1.

3.3.1 Major Changes

We have proposed a simple model describing concepts of Cloud infrastructure ser-
vices (IaaS) in our previous work [235, 234], which is explained in Section 3.2. This
work was mostly a taxonomy of IaaS. In this section, we propose an extension fo-
cusing on the core parameters for comparing and recommending IaaS services. We
revised our CoCoOn ontology, i.e. changes have been made to namespaces, classes,
properties, relationships and axioms.

We also introduced versioning from this release, for both ontology and data col-
lected (expressed with the ontology), following the semantic versioning specification.
Although this ontology is not in the sense of "in production", this version is a sta-
ble release that we intend to keep long term support and availability. We label the
collection date of data with schema:dateModified. Thus historical price data can be
recorded.

The new model is outlined in Section 3.3.3, with an explanation of its syntax and
semantics, design, and formalization.

It has been a long time since we proposed the initial model of CoCoOn, which
we retrospectively versioned v0.1.0. The major model changes in CoCoOn v1.0.1 are
summarized below:

1. Additional external vocabularies.

https://semver.org/
http://schema.org/dateModified
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2. Additional annotations, including version number, modification dates, meta-
data like author, web page, etc.

3. Removed classes and properties which are not important, and covered by some
other ontologies, e.g. Input, Output, Interface, and User.

4. New class and properties focusing on IaaS and price specifications, i.e.
cocoon:CloudOSPriceSpecification, cocoon:LoadBalancing, cocoon:TrafficDirection,
etc.

In addition to the changes as mentioned above, we have also developed a full
mapping service between CoCoOn v1.0.1 and Cloud vendor APIs for the Google
Cloud and the Microsoft Azure Cloud. These mapping services demonstrate the
usability and strength of the ontology we have developed. More details can be found
in Section 6.1.

We have used existing ontologies whenever fits, such as QUDT for defining price
with currency values. For the full list of ontologies we have referenced, see the online
documentation.2. In this section, we have significantly extended the capabilities of
our initial model, i.e. changes have been made to classes, properties, relationships
and axioms, with a strong focus on flexibility and extensibility.

3.3.2 Reusing Existing Vocabularies

A set of well-known vocabularies has evolved in the Semantic Web community. The
set of established vocabularies we reused is listed in Table 3.1.

Names Details Namespaces URIs

OWL2 Web Ontology Language
Schema 2.

owl http://www.w3.
org/2002/07/owl#

RDF Resource Description Frame-
work Concepts Vocabulary.

rdf http://www.w3.
org/1999/02/22-rdf-
syntax-ns#

RDF Schema vocabulary. rdfs http://www.w3.
org/2000/01/rdf-
schema#

XML
Schema
Definition

Data types for elements and
attributes.

xsd http://www.
w3.org/2001/
XMLSchema#

2https://github.com/miranda-zhang/cloud-computing-schema/blob/master/vocabularies.md

https://w3id.org/cocoon/v1.0.1#CloudOSPriceSpecification
https://w3id.org/cocoon/v1.0.1#LoadBalancing
https://w3id.org/cocoon/v1.0.1#TrafficDirection
http://www.w3.org/2002/07/owl#
http://www.w3.org/2002/07/owl#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2001/XMLSchema#
http://www.w3.org/2001/XMLSchema#
http://www.w3.org/2001/XMLSchema#
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/vocabularies.md
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DCMI Meta-
data Terms

Defines general metadata at-
tributes.

dcterms http://purl.org/dc/
terms/

VANN Vocabulary for annotating
descriptions of vocabularies
with examples and usage
notes.

vann http://purl.org/
vocab/vann/

Friend of a
Friend

People and relationship. foaf http://xmlns.com/
foaf/0.1/

Creative
Commons

License terms. cc http://
creativecommons.
org/ns#

Geo Names Geographic places. gn http://www.
geonames.org/
ontology#

Schema.org Vocabulary for common
concepts, i.e. TypeAndQuan-
tityNode, GeoCoordinates,
e.t.c.

schema https://schema.org/

Good Rela-
tions

Product, price and company
data.

gr http://purl.org/
goodrelations/v1#

QUDT Units and measurements
schema.

qudt http://qudt.org/
schema/qudt#

Unit vocabulary. unit http://qudt.org/
vocab/unit#

Semantic
Sensor
Network

SSN is an ontology for de-
scribing sensors and their ob-
servations, the studied fea-
tures of interest, the samples
used to do so, and the ob-
served properties.

ssn http://www.w3.
org/ns/ssn/

http://purl.org/dc/terms/
http://purl.org/dc/terms/
http://purl.org/vocab/vann/
http://purl.org/vocab/vann/
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/
http://creativecommons.org/ns#
http://creativecommons.org/ns#
http://creativecommons.org/ns#
http://www.geonames.org/ontology#
http://www.geonames.org/ontology#
http://www.geonames.org/ontology#
https://schema.org/
http://purl.org/goodrelations/v1#
http://purl.org/goodrelations/v1#
http://qudt.org/schema/qudt#
http://qudt.org/schema/qudt#
http://qudt.org/vocab/unit#
http://qudt.org/vocab/unit#
http://www.w3.org/ns/ssn/
http://www.w3.org/ns/ssn/
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System capabilities terms of
SSN ontology.

ssn-system http://www.
w3.org/ns/ssn/
systems/

Sample Observation and Ac-
tuator.

sosa http://www.w3.
org/ns/sosa/

Table 3.1: Vocabularies

Apart from vocabularies in Table 3.1 which we have used, we have considered
the following vocabularies, but decided that they are not suitable for our work for
the following reasons:

1. OWL-S [151]: It is useful when defining the input, output and interactions
between web services, but CoCoOn is not modelling those.

2. Unified Code for Units of Measure (UCUM) [198] and Custom Datatypes [47]:
These ontologies do not include the units needed for our use cases, which are
presented in Section 3.3.3.8.1. Note that we have used another similar vocabu-
lary QUDT.

3.3.3 Concepts and Design

In this section, we describe we describe the main components of CoCoOn v1.0.1 and
explain its syntax, semantics, design and formalization, and the rationale behind
CoCoOn’s design, and some usages.

The classes and properties are arranged according to subsumption hierarchies,
which represent the skeleton of the model and establish the basic relationships be-
tween the components. Following the principle of minimal commitment [79], we
use guarded restrictions (i.e. owl:someValuesFrom) instead of domain range restric-
tions (rdfs:domain, rdfs:range). As such, the domain and ranges are more permissive,
keeping the model more flexible and extensible. We also use qualified cardinality re-
strictions (e.g., exactly, owl:qualifiedCardinality; max, owl:maxQualifiedCardinality) when
there is a known cardinality restriction.

Most building blocks of IaaS services naturally correspond to OWL2 classes (e.g.,
cocoon:CloudService, cocoon:ComputeService, and cocoon:StorageService), object proper-
ties (e.g., cocoon:hasMemory, cocoon:hasStorage, and cocoon:inRegion) and data proper-
ties (e.g., cocoon:numberOfCores). The more challenging part is to capture constraints
posed by the possible combination of services in IaaS in the models using ontologi-
cal axioms. We next describe how this can be accomplished using a combination of
OWL 2 axioms and integrity constraints.

We use Turtle syntax [167] throughout our examples, and use Manchester OWL
Syntax [128] when explaining the ontology specifications. We will show the prefix
definitions once, then omit the duplicated definitions in the following examples.

http://www.w3.org/ns/ssn/systems/
http://www.w3.org/ns/ssn/systems/
http://www.w3.org/ns/ssn/systems/
http://www.w3.org/ns/sosa/
http://www.w3.org/ns/sosa/
http://www.w3.org/2002/07/owl#someValuesFrom
https://www.infowebml.ws/rdf-owl/domain.htm
https://www.infowebml.ws/rdf-owl/range.htm
http://www.w3.org/2002/07/owl#qualifiedCardinality
http://www.w3.org/2002/07/owl#maxQualifiedCardinality
https://w3id.org/cocoon/v1.0.1#CloudService
https://w3id.org/cocoon/v1.0.1#ComputeService
https://w3id.org/cocoon/v1.0.1#StorageService
https://w3id.org/cocoon/v1.0.1#hasMemory
https://w3id.org/cocoon/v1.0.1#hasStorage
https://w3id.org/cocoon/v1.0.1#inRegion
https://w3id.org/cocoon/v1.0.1#numberOfCores
http://protegeproject.github.io/protege/class-expression-syntax/
http://protegeproject.github.io/protege/class-expression-syntax/
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3.3.3.1 Cloud Service

The class cocoon:CloudService is the main class hosting our Cloud feature vocabular-
ies. We define a top level class cocoon:Service to be its parent, and make it the union
of schema:Service and sosa:FeatureOfInterest. So our Cloud service definitions are com-
patible with the schema.org vocabulary [80] and the SOSA ontology [99] from which
we reuse terms.

Cloud services are usually classified into three categories: cocoon:IaaS, co-
coon:PaaS and cocoon:SaaS. Some examples of cocoon:SaaS are database as a service,
machine learning as a service, Google Cloud Composer, etc. Some examples of co-
coon:PaaS are the Google App Engine, Heroku, etc.

The following properties are defined for the class cocoon:CloudService:

gr:hasPriceSpecification some gr:UnitPriceSpecification

cocoon:hasProvider exactly 1 gr:BusinessEntity

cocoon:inRegion exactly 1 cocoon:Region

cocoon:inZone max 1 xsd:string

We use gr:UnitPriceSpecification and its associated object property
gr:hasPriceSpecification to model price (see Section 3.3.3.5.1 for more details
about price specification). Existential quantifiers (i.e., some, owl:someValuesFrom) are
used on gr:hasPriceSpecification.

Note that, although some is the same as min 1, it is not the same as database
integrity constraints. We can still define valid Cloud services without a price specifi-
cation. Under the open world assumption, missing information is just not known but
may exist, whereas, in databases (closed world assumption), absence of information
often assumes that information does not exist. This open world assumption serves
us well because we cannot guarantee that every service will have a price specifica-
tion. There are services available upon requests, but the price is negotiated later. For
example, we may want to specify that secure data centres for governmental use are
available, but detailed price information is probably not disclosed publicly.

We assume each service can belong to exactly one provider. A qualified cardinal-
ity restriction exactly (owl:qualifiedCardinality) is used to define this type of assump-
tion. We reuse gr:BusinessEntity to define a provider (see Section 3.3.3.8 for more
details).

Infrastructure as a Service can be classified into 3 categories: co-
coon:ComputeService (see Section 3.3.3.2), cocoon:StorageService (see Section 3.3.3.3),
and cocoon:NetworkService (see Section 3.3.3.4).

3.3.3.2 Compute Service

We define the following properties for class cocoon:ComputeService:

gr:hasPriceSpecification max 1 cocoon:CloudStorageTransactionsPriceSpecification

https://w3id.org/cocoon/v1.0.1#CloudService
https://w3id.org/cocoon/v1.0.1#Service
http://schema.org/Service
http://www.w3.org/ns/sosa/FeatureOfInterest
https://w3id.org/cocoon/v1.0.1#IaaS
https://w3id.org/cocoon/v1.0.1#PaaS
https://w3id.org/cocoon/v1.0.1#PaaS
https://w3id.org/cocoon/v1.0.1#SaaS
https://w3id.org/cocoon/v1.0.1#SaaS
https://w3id.org/cocoon/v1.0.1#PaaS
https://w3id.org/cocoon/v1.0.1#PaaS
https://w3id.org/cocoon/v1.0.1#CloudService
http://purl.org/goodrelations/v1#hasPriceSpecification
http://purl.org/goodrelations/v1#UnitPriceSpecification
https://w3id.org/cocoon/v1.0.1#hasProvider
http://purl.org/goodrelations/v1#BusinessEntity
https://w3id.org/cocoon/v1.0.1#inRegion
https://w3id.org/cocoon/v1.0.1#Region
https://w3id.org/cocoon/v1.0.1#inZone
http://www.datypic.com/sc/xsd/t-xsd_string.html
http://purl.org/goodrelations/v1#UnitPriceSpecification
http://purl.org/goodrelations/v1#hasPriceSpecification
http://www.w3.org/2002/07/owl#someValuesFrom
http://purl.org/goodrelations/v1#hasPriceSpecification
http://www.w3.org/2002/07/owl#qualifiedCardinality
http://purl.org/goodrelations/v1#BusinessEntity
https://w3id.org/cocoon/v1.0.1#ComputeService
https://w3id.org/cocoon/v1.0.1#ComputeService
https://w3id.org/cocoon/v1.0.1#StorageService
https://w3id.org/cocoon/v1.0.1#NetworkService
https://w3id.org/cocoon/v1.0.1#ComputeService
http://purl.org/goodrelations/v1#hasPriceSpecification
https://w3id.org/cocoon/v1.0.1#CloudStorageTransactionsPriceSpecification
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cocoon:hasCPUcapacity max 1 schema:TypeAndQuantityNode

cocoon:hasMaxNumberOfDisks max 1 schema:TypeAndQuantityNode

cocoon:hasMaxStorageSize max 1 schema:TypeAndQuantityNode

cocoon:hasMemory exactly 1 schema:TypeAndQuantityNode

cocoon:hasStorage some schema:TypeAndQuantityNode

cocoon:numberOfCores max 1 xsd:decimal

The data property cocoon:numberOfCores defines the number of cores available
on a virtual machine (VM). Because it can have a non-integer value, we define its
datatype as xsd:decimal. For Google Cloud, cores and vCPU refer to the same thing.
The performance power of the CPU can be described by cocoon:hasCPUcapacity. The
memory size of a VM is specified by cocoon:hasMemory.

The cocoon:LocalStorage available on a VM can be specified with co-
coon:hasStorage. We use an existential quantification (i.e. some) on this property,
so that it is possible to define more cocoon:NetworkStorage later. Google has a limit
for the maximum number of disks that can be attached to a VM, which we model
with the object property cocoon:hasMaxNumberOfDisks. Additionally, Google also has
a limit for the maximum total disk size that can be attached to a VM, which is mod-
elled with cocoon:hasMaxStorageSize.

We use schema:TypeAndQuantityNode to describe the quantity of things. So value,
unit, and type of an object can all be captured (see Section 3.3.3.8 for more details).

Note that cocoon:ComputeService also inherits properties from its super classes,
e.g. the following property is inherited from cocoon:CloudService:

gr:hasPriceSpecification some gr:UnitPriceSpecification

There are data access fees on local disks of the Azure VM [49]. To model this we use
gr:hasPriceSpecification max 1 cocoon:StorageTransactionsPriceSpecification. For a short
example of cocoon:ComputeService, see Listing 3.1.

Listing 3.1: Virtual Machine
@prefix schema: <https://schema.org/> .
@prefix unit: <http://qudt.org/vocab/unit#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix gr: <http://purl.org/goodrelations/v1#> .
@prefix cocoon: <https://w3id.org/cocoon/v1.0.1#> .
@base <https://w3id.org/cocoon/data/v1.0.1/> .
<2019-02-12/ComputeService/Gcloud/CP-COMPUTEENGINE-VMIMAGE-N1-HIGHCPU-96-PREEMPTIBLE>

a cocoon:ComputeService ;
rdfs:label "CP-COMPUTEENGINE-VMIMAGE-N1-HIGHCPU-96-PREEMPTIBLE" ;
gr:hasPriceSpecification [ a cocoon:CloudServicePriceSpecification ;

gr:hasCurrency "USD" ;
gr:hasCurrencyValue 0.72 ;
gr:hasUnitOfMeasurement unit:Hour ;
cocoon:inRegion <Region/Gcloud/us-east1>

] ;

https://w3id.org/cocoon/v1.0.1#hasCPUcapacity
http://schema.org/TypeAndQuantityNode
https://w3id.org/cocoon/v1.0.1#hasMaxNumberOfDisks
http://schema.org/TypeAndQuantityNode
https://w3id.org/cocoon/v1.0.1#hasMaxStorageSize
http://schema.org/TypeAndQuantityNode
https://w3id.org/cocoon/v1.0.1#hasMemory
http://schema.org/TypeAndQuantityNode
https://w3id.org/cocoon/v1.0.1#hasStorage
http://schema.org/TypeAndQuantityNode
https://w3id.org/cocoon/v1.0.1#numberOfCores
http://www.datypic.com/sc/xsd/t-xsd_decimal.html
https://w3id.org/cocoon/v1.0.1#numberOfCores
http://www.datypic.com/sc/xsd/t-xsd_decimal.html
https://w3id.org/cocoon/v1.0.1#hasCPUcapacity
https://w3id.org/cocoon/v1.0.1#hasMemory
https://w3id.org/cocoon/v1.0.1#LocalStorage
https://w3id.org/cocoon/v1.0.1#hasStorage
https://w3id.org/cocoon/v1.0.1#hasStorage
https://w3id.org/cocoon/v1.0.1#NetworkStorage
https://w3id.org/cocoon/v1.0.1#hasMaxNumberOfDisks
https://w3id.org/cocoon/v1.0.1#hasMaxStorageSize
http://schema.org/TypeAndQuantityNode
https://w3id.org/cocoon/v1.0.1#ComputeService
https://w3id.org/cocoon/v1.0.1#CloudService
http://purl.org/goodrelations/v1#hasPriceSpecification
http://purl.org/goodrelations/v1#UnitPriceSpecification
http://purl.org/goodrelations/v1#hasPriceSpecification
https://w3id.org/cocoon/v1.0.1#StorageTransactionsPriceSpecification
https://w3id.org/cocoon/v1.0.1#ComputeService
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cocoon:hasMemory [ a schema:TypeAndQuantityNode ;
schema:amountOfThisGood 86.4 ;
schema:unitCode cocoon:GB

] ;
cocoon:hasProvider cocoon:Gcloud ;
cocoon:numberOfCores "96"^^xsd:decimal ;
schema:dateModified "2019-02-12"^^xsd:date .

3.3.3.3 Storage Service

We define the following properties for the class cocoon:StorageService:

cocoon:canHaveSnapshot some cocoon:StorageService

cocoon:hasStorageIOMax max 1 schema:TypeAndQuantityNode

cocoon:hasStorageSize max 1 schema:TypeAndQuantityNode

cocoon:hasStorageThroughputMax max 1 schema:TypeAndQuantityNode

Two subclasses for cocoon:StorageService have been defined: cocoon:LocalStorage and
cocoon:NetworkStorage.

On the Azure Cloud, snapshot options are available for storage, which is mod-
elled with the object property cocoon:canHaveSnapshot. This information is man-
ually interpreted from the documentation.3 There are also caps on input/out-
put operations per sec (IOPS) and throughput, which are modeled with co-
coon:hasStorageIOMax and cocoon:hasStorageThroughputMax. We have also defined
corresponding units, which is explained in Section 3.3.3.8.

In Listing 3.2, we show a cocoon:NetworkStorage service from cocoon:Azure, which
is a Cloud provider we have pre-defined as a named instance. More details on its
corresponding storage transaction prices can be found in Section 3.3.3.5.3.

Next, an example of the Azure provisional Ultra SSD storage service is presented.
It has configurable IOPS and throughput. Prices are based on provisioned storage
size, IOPS and throughput. There is also a reservation charge imposed if you enable
Ultra SSD capability on the VM without connecting an Ultra SSD disk, whose rate is
provisioned at per vcpu/hour.

Listing 3.2: Storage
@base <https://w3id.org/cocoon/data/v1.0.1/> .
<2019-03-07/NetworkStorage/Azure/premiumssd-p30>

a cocoon:NetworkStorage ;
rdfs:label "premiumssd-p30" ;
gr:hasPriceSpecification <CloudStorageTransactionsPriceSpecification/Azure/managed_disk/

↪→ transactions-ssd> ;
gr:hasPriceSpecification [ a gr:CloudServicePriceSpecification ;

gr:hasCurrency "USD" ;
gr:hasCurrencyValue 0.13200195133686066 ;
gr:hasUnitOfMeasurement cocoon:GBPerMonth ;
cocoon:inRegion <Region/Azure/australia-east>

3https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/azure/
storage.md#disk-snapshots

https://w3id.org/cocoon/v1.0.1#StorageService
https://w3id.org/cocoon/v1.0.1#canHaveSnapshot
https://w3id.org/cocoon/v1.0.1#StorageService
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http://schema.org/TypeAndQuantityNode
https://w3id.org/cocoon/v1.0.1#hasStorageThroughputMax
http://schema.org/TypeAndQuantityNode
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] ;
cocoon:canHaveSnapshot <NetworkStorage/Azure/standardssd-snapshot> , <NetworkStorage/

↪→ Azure/standardhdd-snapshot-zrs> , <NetworkStorage/Azure/premiumssd-snapshot> , </
↪→ NetworkStorage/Azure/standardhdd-snapshot-lrs> ;

cocoon:hasProvider cocoon:Azure ;
cocoon:hasStorageIOMax [ a schema:TypeAndQuantityNode ;

schema:amountOfThisGood "5000"^^xsd:nonNegativeInteger ;
schema:unitCode cocoon:IOPs
] ;

cocoon:hasStorageSize [ a schema:TypeAndQuantityNode ;
schema:amountOfThisGood "1024"^^xsd:nonNegativeInteger ;
schema:unitCode cocoon:GB
] ;

cocoon:hasStorageThroughputMax [ a schema:TypeAndQuantityNode ;
schema:amountOfThisGood "200"^^xsd:nonNegativeInteger ;
schema:unitCode unit:MegabitsPerSecond
].

<2019-03-07/NetworkStorage/Azure/ultrassd>
a cocoon:NetworkStorage ;
rdfs:label "ultrassd" ;
gr:hasPriceSpecification [ a gr:CloudServicePriceSpecification ;

rdfs:label "vcpu" ;
gr:hasCurrency "USD" ;
gr:hasCurrencyValue 0.003 ;
gr:hasUnitOfMeasurement cocoon:VcpuPerHour ;
cocoon:inRegion <Region/Azure/us-east-2>

] ;
gr:hasPriceSpecification [ a gr:CloudServicePriceSpecification ;

rdfs:label "throughput" ;
gr:hasCurrency "USD" ;
gr:hasCurrencyValue 0.000685 ;
gr:hasUnitOfMeasurement cocoon:MegabitsPerSecondPerHour ;
cocoon:inRegion <Region/Azure/us-east-2>

] ;
gr:hasPriceSpecification [ a gr:CloudServicePriceSpecification ;

rdfs:label "stored" ;
gr:hasCurrency "USD" ;
gr:hasCurrencyValue 0.000082 ;
gr:hasUnitOfMeasurement cocoon:GBPerHour ;
cocoon:inRegion <Region/Azure/us-east-2>

] ;
gr:hasPriceSpecification [ a gr:CloudServicePriceSpecification ;

rdfs:label "iops" ;
gr:hasCurrency "USD" ;
gr:hasCurrencyValue 0.000034 ;
gr:hasUnitOfMeasurement cocoon:IOPsPerHour ;
cocoon:inRegion <Region/Azure/us-east-2>

] .

3.3.3.4 Network Service

We classify network services into the following categories: cocoon:InternetService, co-
coon:LoadBalancing, cocoon:StaticIPService and cocoon:DNSService.

3.3.3.4.1 Internet Service

We define the following properties for the class cocoon:InternetService:

https://w3id.org/cocoon/v1.0.1#InternetService
https://w3id.org/cocoon/v1.0.1#LoadBalancing
https://w3id.org/cocoon/v1.0.1#LoadBalancing
https://w3id.org/cocoon/v1.0.1#StaticIPService
https://w3id.org/cocoon/v1.0.1#DNSService
https://w3id.org/cocoon/v1.0.1#InternetService
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cocoon:excludesDestination some cocoon:Location

cocoon:hasDestination some cocoon:Location

cocoon:hasDirection exactly 1 cocoon:TrafficDirection

There is generally no charge to ingress cocoon:InternetService, unless there is a load
balancer used. We use the cocoon:hasDirection object property to indicate the direction
of traffic. A class cocoon:TrafficDirection is also defined with two disjoint subclasses,
cocoon:Egress and cocoon:Ingress. Those can be used to indicate the direction of traffic.

Internet egress rates are based on usage and destination. For example, Google
Cloud has three destination categories4: Australia, China (excluding Hong Kong) and
Worldwide (excluding China and Australia, but including Hong Kong). In this case,
the object properties cocoon:hasDestination and cocoon:excludesDestination can be used
to specify destination ranges. Because Cloud service regions do not constrain traffic
destinations, cocoon:Location is used, which has more explanations in Section 3.3.3.7.

The internet egress traffic rates can be modelled by co-
coon:CloudNetworkPriceSpecification. For more details, see Section 3.3.3.5.4.5

3.3.3.4.2 Load Balancing

Both hardware and software-based load balancing solutions exist. Here we consider
load balancing as a hardware feature unless it is known otherwise. We create a class
cocoon:LoadBalancing to represent such a service. It is further broken down into two
subclasses: cocoon:LoadBalancingData and cocoon:ForwardingRule.

Ingress data processed by a load balancer is charged (per GB) based on its region.
Listing 3.3 models such cases with cocoon:LoadBalancingData.

Listing 3.3: Load Balancing Data Price Specification
@base <https://w3id.org/cocoon/data/v1.0.1/2019-02-12/> .
<LoadBalancingData/Gcloud>

a cocoon:LoadBalancingData ;
gr:hasPriceSpecification [ a gr:CloudServicePriceSpecification ;

gr:hasCurrency "USD" ;
gr:hasCurrencyValue 0.008 ;
gr:hasUnitOfMeasurement cocoon:GB ;
cocoon:inRegion <Region/Gcloud/us>

] ;
cocoon:hasDirection cocoon:Ingress ;
cocoon:hasProvider cocoon:Gcloud ;
schema:dateModified "2019-02-12"^^xsd:date .

Forwarding rules that are created for load balancing are also charged on an
hourly base, regardless of how many forwards. This can be modelled by co-

4Effective until end of June 2019, when this paper has been submitted, after that new pricing takes
effect based on not only the destination but also the sources.

5Example for Google Cloud internet services prices: https://github.com/miranda-zhang/cloud-
computing-schema/blob/master/example/quickstart.md#internet-service
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coon:ForwardingRule and cocoon:CloudNetworkPriceSpecification.6 For example, from
Google Cloud documentation, the pricing for rules is:

Up to 5 forwarding rules are charged at 0.025 USD/hour. That means,
if you create one forwarding rule, you will be charged 0.025/hour. If
you have three forwarding rules, you will still be charged 0.025/hour.
However, if you have ten forwarding rules, you will be charged:

5 forwarding rules = 0.025/hour

Each additional forwarding rule = 0.01/hour

0.025/hour for 5 rules + (5 additional rules * 0.01/hour) = 0.075/hour

3.3.3.4.3 Static IP Address

The IP address of a VM instance usually is not guaranteed to stay the same between
reboots/resets. So you may want to reserve a static external IP address for your
customers or users to have reliable access. An example from Google:

No charge for an IP address in use, i.e. used it with a Compute Engine
resource or a forwarding rule. However, Google will charge 0.010 US-
D/Hour if you reserve a static external IP address but do not use it.

This can be modelled with cocoon:StaticIPService and co-
coon:CloudServicePriceSpecification.

3.3.3.5 Cloud Service Price

For price modelling, we extend the GoodRelations vocabulary [87]. GoodRelations is
a Web Ontology Language-compliant ontology for Semantic Web online data, dealing
with business-related goods and services. In November 2012, it was integrated into
the Schema.org ontology.

3.3.3.5.1 Cloud Service Price Specification

We define cocoon:CloudServicePriceSpecification as a subclass of
gr:UnitPriceSpecification. As one service can be offered in multiple regions, we
extend our specialized class with: cocoon:inRegion some cocoon:Region. For more
details on region, see Section 3.3.3.7.

In GoodRelations, there is a gr:hasCurrencyValue property taking a xsd:float as
range. However, floats can introduce cumulative rounding errors. So we ex-
tend the existing class to allow xsd:decimal, which can represent exact monetary

6Forwarding rules example: https://github.com/miranda-zhang/cloud-computing-schema/blob/
master/example/quickstart.md#forwarding-rule
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values: cocoon:hasCurrencyValue exactly 1 xsd:decimal.7 For more usages, see Sec-
tion 3.3.3.2. We also define specialized subclasses to handle the following scenar-
ios: price of a VM image (cocoon:CloudOSPriceSpecification), price of storage trans-
actions (cocoon:CloudStorageTransactionsPriceSpecification), and price of network ser-
vices (cocoon:CloudNetworkPriceSpecification). These sub-classes are owl:disjointWith
each other. Because each case has very different requirements, it is clearer to model
them with different subclasses rather than define all properties in the base class co-
coon:CloudServicePriceSpecification.

3.3.3.5.2 Price of Virtual Machine Images

cocoon:CloudOSPriceSpecification is defined with the following properties:

cocoon:chargedPerCore exactly 1 xsd:boolean

cocoon:forCoresLessEqual max 1 xsd:decimal

cocoon:forCoresMoreThan max 1 xsd:decimal

For example, from the Google Cloud documentation, the following charges apply
for images:

The price for a premium image is different depending on which machine
type you use. For example, a standard SUSE image costs $0.02 per hour
to run on an f1-micro instance, but the same image costs $0.11 per hour
to run on an n1-standard-8 instance. The prices for premium images are
the same worldwide and do not differ based on zones or regions. All
prices for premium images are in addition to charges for using a machine
type. For example, the total price to use an n1-standard-8 instance with
a SUSE image would be the sum of the machine type cost and the image
cost: n1-standard-8 cost + SUSE image cost = $0.3800 + $0.11 = $0.49 per
hour

Under the class cocoon:CloudOSPriceSpecification, the data property co-
coon:chargedPerCore specifies if the price is charged per core. For instance, Windows
Server images on some machine types from Google Cloud are charged based on the
number of CPUs available [75], i.e., n1-standard-4, n1-highcpu-4, and n1-highmem-4
are machine-types with four vCPUs, and are charged at $0.16 USD/hour (4 × $0.04
USD/hour).

The data property cocoon:forCoresMoreThan is used to describe a price for
machines with more than the specified number of cores. Similarly, co-
coon:forCoresLessEqual is used to describe a price for machines with less than or equal
to the specified number of cores. They can be used together to quantify a range. List-
ing 3.4 presents an example for OS Price Specification.

7Example modelling of the price of Azure Compute service: https://github.com/miranda-zhang/
cloud-computing-schema/blob/master/example/quickstart.md#cloud-service-price-specification
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Listing 3.4: OS Price Specification
@base <https://w3id.org/cocoon/data/v1.0.1/2019-02-12/> .
<SystemImage/Gcloud/suse-sap>

a cocoon:SystemImage ;
rdfs:label "suse-sap" ;
gr:hasPriceSpecification [ a cocoon:CloudOSPriceSpecification ;

gr:hasCurrency "USD" ;
gr:hasCurrencyValue 0.41 ;
cocoon:chargedPerCore false ;
cocoon:forCoresMoreThan "4"^^xsd:decimal

] ;
gr:hasPriceSpecification [ a cocoon:CloudOSPriceSpecification ;

gr:hasCurrency "USD" ;
gr:hasCurrencyValue 0.34 ;
cocoon:chargedPerCore false ;
cocoon:forCoresLessEqual "4"^^xsd:decimal ;
cocoon:forCoresMoreThan "2"^^xsd:decimal

] ;
gr:hasPriceSpecification [ a cocoon:CloudOSPriceSpecification ;

gr:hasCurrency "USD" ;
gr:hasCurrencyValue 0.17 ;
cocoon:chargedPerCore false ;
cocoon:forCoresLessEqual "2"^^xsd:decimal

] .

3.3.3.5.3 Price of Storage Transactions

For storage transactions, we use the class co-
coon:CloudStorageTransactionsPriceSpecification to define the price. There are different
prices in different regions, but there is a common transaction price specification for
a group of cloud storage offers.8

An example from Microsoft Azure [49] on data access fees for local disks: “Every
single block access incurs a transaction. The default block size is 4 Megabytes, mean-
ing uploading a 32Mb file will incur 8 Storage Transactions. Deleting and updating
the file will also each incur eight transactions, the same goes for any other time the
file is touched. The transactions are charged at the cost of around $0.00036 AUD per
10,000 transactions. As such, a 32Mb file will cost $0.000000368 AUD. The only ex-
ception to Storage Transactions is when Premium Storage (persistent SSD storage) is
used. That is when you provision a P10, P20 or a P30 disk for your virtual machine.
Those disks are exempt from Storage Transactions.”

3.3.3.5.4 Price of Network Services

cocoon:CloudNetworkPriceSpecification is defined with the following properties:

cocoon:forUsageLessEqual exactly 1 schema:TypeAndQuantityNode

cocoon:forUsageMoreThan exactly 1 schema:TypeAndQuantityNode

cocoon:specialRateType exactly 1 xsd:string

8https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/
quickstart.md#cloud-storage-transactions-price-specification
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cocoon:CloudNetworkPriceSpecification can be used to model network services prices,
including internet egress traffic and load balancing forwarding rules.

For instance, there are three (monthly) usage tiers for Google Internet egress
traffic price: 0-1 TB, 1-10 TB and 10+ TB. Properties cocoon:forUsageLessEqual and
cocoon:forUsageMoreThan can be used to specify the upper/lower usage limits. We
combine this with schema:TypeAndQuantityNode to define the values with their units.

There are also some special rates, e.g., for Google Cloud Internet Traffic:

1. Egress between zones in the same region (per GB) is 0.01.

2. Egress between regions within the US (per GB) is 0.01.

3. Egress to Google products (such as YouTube, Maps amd Drive), whether from
a VM in GCP with an external IP address or an internal IP address is no charge.

The property cocoon:specialRateType can be used to model those situations. See an
online example for price of Google internet egress between zones in the same region.9

3.3.3.6 Cloud Service Performance

In the area of QoS modelling, some papers have proposed QoS ontologies (i.e.
QoSOnt [55] and OWL-QoS [237]). However, they did not publish the actual spec-
ifications, and only figures/graphs were given. In this section, we provide formal
modelling of QoS parameters and make it readily available for general use. Our
classes to model QoS parameters are grouped under cocoon:QualityOfService. We
also use terms from many ontologies when modelling QoS, such as SSN [82] and
SOSA [99]. The Semantic Sensor Network (SSN) ontology is an ontology for describ-
ing sensors and their observations, involved procedures, studied features of interest,
samples, and observed properties, as well as actuators. SSN includes a lightweight
but self-contained core ontology called SOSA (Sensor, Observation, Sample, and Ac-
tuator) for its elementary classes and properties. “SSN System” contains the terms
defined for system capabilities, operating ranges, and survival ranges.

3.3.3.6.1 Quality Of Service Property

QoS parameters are grouped under cocoon:QualityOfService. We define co-
coon:QualityOfService to be an equivalent class of ssn-system:SystemProperty. Then
we extend it with the subclass cocoon:DataTransferSpeed.

3.3.3.6.1.1 Data Transfer Speed cocoon:DataTransferSpeed is measured multiple
times with different file sizes, for both the uplink and downlink, which are rep-
resented by subclasses cocoon:DownlinkSpeed and cocoon:UplinkSpeed. The common
properties for cocoon:DataTransferSpeed are defined as follows:

9https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/
quickstart.md#cloud-network-price-specification

https://w3id.org/cocoon/v1.0.1#CloudNetworkPriceSpecification
https://w3id.org/cocoon/v1.0.1#forUsageLessEqual
https://w3id.org/cocoon/v1.0.1#forUsageMoreThan
http://schema.org/TypeAndQuantityNode
https://w3id.org/cocoon/v1.0.1#specialRateType
https://w3id.org/cocoon/v1.0.1#QualityOfService
https://w3id.org/cocoon/v1.0.1#QualityOfService
https://w3id.org/cocoon/v1.0.1#QualityOfService
https://w3id.org/cocoon/v1.0.1#QualityOfService
http://www.w3.org/ns/ssn/systems/SystemProperty
https://w3id.org/cocoon/v1.0.1#DataTransferSpeed
https://w3id.org/cocoon/v1.0.1#DataTransferSpeed
https://w3id.org/cocoon/v1.0.1#DownlinkSpeed
https://w3id.org/cocoon/v1.0.1#UplinkSpeed
https://w3id.org/cocoon/v1.0.1#DataTransferSpeed
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/quickstart.md#cloud-network-price-specification
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/quickstart.md#cloud-network-price-specification
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cocoon:transferedFileSizeMax exactly 1 schema:TypeAndQuantityNode

cocoon:transferedFileSizeMin exactly 1 schema:TypeAndQuantityNode

See an example online.10

Listing 3.5 shows some examples. For instance, the downlink speed when trans-
ferring a file with a size between 1 KB and 128 KB, the uplink speed when transfer-
ring a file with size between 256 KB and 10240 KB, etc. Note that, this only describes
the properties which are being measured. The actual values are modeled with co-
coon:Measurement, which is explained in Section 3.3.3.6.2.

Listing 3.5: QoS Properties
@base <https://w3id.org/cocoon/data/v1.0.1/> .
<1-KB> a schema:TypeAndQuantityNode;

schema:amountOfThisGood "1"^^xsd:interger;
schema:unitText "KB";
schema:unitCode "2P".

<128-KB> a schema:TypeAndQuantityNode;
schema:amountOfThisGood "128"^^xsd:interger;
schema:unitText "KB";
schema:unitCode "2P".

<256-KB> a schema:TypeAndQuantityNode;
schema:amountOfThisGood "256"^^xsd:interger;
schema:unitText "KB";
schema:unitCode "2P".

<10240-KB> a schema:TypeAndQuantityNode;
schema:amountOfThisGood "10240"^^xsd:interger;
schema:unitText "KB";
schema:unitCode "2P".

<QualityOfService/DownlinkSpeed-1-128-KB> a cocoon:DownlinkSpeed;
cocoon:transferedFileSizeMin <1-KB>;
cocoon:transferedFileSizeMax <128-KB>.

<QualityOfService/DownlinkSpeed-256-10240-KB> a cocoon:DownlinkSpeed;
cocoon:transferedFileSizeMin <256-KB>;
cocoon:transferedFileSizeMax <10240-KB>.

<QualityOfService/UplinkSpeed-1-128-KB> a cocoon:UplinkSpeed;
cocoon:transferedFileSizeMin <1-KB>;
cocoon:transferedFileSizeMax <128-KB>.

<QualityOfService/UplinkSpeed-256-10240-KB> a cocoon:UplinkSpeed;
cocoon:transferedFileSizeMin <256-KB>;
cocoon:transferedFileSizeMax <10240-KB>.

3.3.3.6.1.2 Latency There is an existing ssn-system:Latency class, which we can use.
We extend this class with a specialized subclass cocoon:DNSQueryLatency, which is
the latency for completing the DNS query. The term latency is most commonly
referred to as the round-trip delay time, which is the one-way latency for the request

10https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/
quickstart.md#downlink-speed

https://w3id.org/cocoon/v1.0.1#transferedFileSizeMax
http://schema.org/TypeAndQuantityNode
https://w3id.org/cocoon/v1.0.1#transferedFileSizeMin
http://schema.org/TypeAndQuantityNode
https://w3id.org/cocoon/v1.0.1#Measurement
https://w3id.org/cocoon/v1.0.1#Measurement
http://www.w3.org/ns/ssn/systems/Latency
https://w3id.org/cocoon/v1.0.1#DNSQueryLatency
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/quickstart.md#downlink-speed
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/quickstart.md#downlink-speed
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to travel from a source to a destination plus the one-way latency for the response to
travel back.

3.3.3.6.2 Measurement

QoS measurements are modeled with cocoon:Measurement, which is an equivalent
class to sosa:Observation. The cocoon:Measurement can use sosa:hasFeatureOfInterest
to specify which feature it measures. Since cocoon:Service is equivalent to
sosa:FeatureOfInterest, all its subclasses can be used to describe features, and we have
some examples can be viewed online.11

3.3.3.6.3 Device

We extend sosa:Sensor with a subclass cocoon:Device to describe computers used to
measure QoS. The additional properties we define are:

cocoon:inPhysicalLocation max 1 cocoon:Location

cocoon:ipv4 some xsd:string

Listing 3.6 shows an example for the device.

Listing 3.6: Device
@base <https://w3id.org/cocoon/data/v1.0.1/> .
<Device/150.203.213.249/lat=-35.271475/long=149.121434>

a cocoon:Device ;
rdfs:comment "The computer used to conduct the tests, belongs to Australian National

↪→ University College of Engineering & Computer Science."@en ;
rdfs:label "CECS-030929"@en ;
cocoon:inPhysicalLocation [ a schema:Place ;

schema:geo [ a schema:GeoCoordinates ;
schema:address "Hanna Neumann Building #145,

↪→ Science Road, Canberra ACT 2601" ;
schema:latitude -35.271475 ;
schema:longitude 149.121434
]

] ;
cocoon:ipv4 "150.203.213.249" .

3.3.3.7 Location and Region

cocoon:Location is a permissible class that can be used to represent any location, i.e.
Worldwide, Australia and Hong Kong. In comparison, cocoon:Region, the subclass
of cocoon:Location, is more specialized to represent known/predefined cloud service
regions.

We link regions from each Cloud provider to GeoNames data [68], and at the
same time make it compatible with Schema.org. So we define it as the union of
gn:Feature and schema:Place.

cocoon:Region is defined with the following properties:

11https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/
quickstart.md#measurement

https://w3id.org/cocoon/v1.0.1#Measurement
http://www.w3.org/ns/sosa/Observation
https://w3id.org/cocoon/v1.0.1#Measurement
http://www.w3.org/ns/sosa/hasFeatureOfInterest
https://w3id.org/cocoon/v1.0.1#Service
http://www.w3.org/ns/sosa/FeatureOfInterest
http://www.w3.org/ns/sosa/Sensor
https://w3id.org/cocoon/v1.0.1#Device
https://w3id.org/cocoon/v1.0.1#inPhysicalLocation
https://w3id.org/cocoon/v1.0.1#Location
https://w3id.org/cocoon/v1.0.1#ipv4
http://www.datypic.com/sc/xsd/t-xsd_string.html
https://w3id.org/cocoon/v1.0.1#Location
https://w3id.org/cocoon/v1.0.1#Region
https://w3id.org/cocoon/v1.0.1#Location
Schema.org
http://www.geonames.org/ontology#Feature
http://schema.org/Place
https://w3id.org/cocoon/v1.0.1#Region
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/quickstart.md#measurement
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/quickstart.md#measurement
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cocoon:city max 1 xsd:string

cocoon:continent max 1 xsd:string

cocoon:hasProvider exactly 1 gr:businessEntity

cocoon:inJurisdiction some cocoon:Location

cocoon:inPhysicalLocation max 1 cocoon:Location

cocoon:state max 1 xsd:string

If a specific location or address is known, a physical location can be set
with cocoon:inPhysicalLocation. Otherwise, we only describe the approximate loca-
tion with cocoon:inJurisdiction. Some regions can be in multiple jurisdictions, i.e.
nam-eur-asia1 belongs to North America, Europe, and Asia. Typically, a region
cannot be in more than one physical location. An example for region is shown in
Listing 3.7.

Listing 3.7: Regions
@base <https://w3id.org/cocoon/data/v1.0.1/> .
<Region/Gcloud/asia-southeast1>

a cocoon:Region ;
rdfs:label "asia-southeast1" ;
cocoon:city "Singapore" ;
cocoon:hasProvider cocoon:Gcloud ;
schema:dateModified "2019-02-12"^^xsd:date ;
schema:geo [ a schema:GeoCoordinates ;

schema:addressCountry "SG" ;
schema:latitude 1.3521 ;
schema:longitude 103.8198

] .

Each region can also specify which cocoon:continent it is in, which provider it
belongs to (with cocoon:hasProvider), and a human readable name with rdfs:label.
Currently, there is a simple script written for matching a region to a gn:Feature, but
it can be further optimized in future work.

We have also obtained some geographic coordinates from the QoS measurements,
and modelled such information with schema:geo and schema:GeoCoordinates. More
examples are available online.12

3.3.3.8 Named Individuals

We define a number of useful named individuals to be included in this ontology.

3.3.3.8.1 Unit

We define cocoon:UnitOfMeasure as an owl:equivalentClass of qudt:Unit, and
then use the instances from the unit vocabulary, i.e. unit:Hour and

12https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/
quickstart.md#location-and-region

https://w3id.org/cocoon/v1.0.1#city
http://www.datypic.com/sc/xsd/t-xsd_string.html
https://w3id.org/cocoon/v1.0.1#continent
http://www.datypic.com/sc/xsd/t-xsd_string.html
https://w3id.org/cocoon/v1.0.1#hasProvider
http://purl.org/goodrelations/v1#businessEntity
https://w3id.org/cocoon/v1.0.1#inJurisdiction
https://w3id.org/cocoon/v1.0.1#Location
https://w3id.org/cocoon/v1.0.1#inPhysicalLocation
https://w3id.org/cocoon/v1.0.1#Location
https://w3id.org/cocoon/v1.0.1#state
http://www.datypic.com/sc/xsd/t-xsd_string.html
https://w3id.org/cocoon/v1.0.1#inPhysicalLocation
https://w3id.org/cocoon/v1.0.1#inJurisdiction
https://w3id.org/cocoon/v1.0.1#continent
https://w3id.org/cocoon/v1.0.1#hasProvider
https://www.infowebml.ws/rdf-owl/label.htm
https://github.com/miranda-zhang/cloud-computing-schema/tree/master/example/geonames_rdf/azure
http://www.geonames.org/ontology#Feature
http://schema.org/geo
http://schema.org/GeoCoordinates
https://w3id.org/cocoon/v1.0.1#UnitOfMeasure
http://www.w3.org/2002/07/owl#equivalentClass
http://qudt.org/schema/qudt#Unit
http://qudt.org/1.1/vocab/OVG_units-qudt-(v1.1).ttl
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/unit/QUDT.md#Hour
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/quickstart.md#location-and-region
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/quickstart.md#location-and-region
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unit:MegabitsPerSecond. We also define a number of custom units with reference to
qudt:InformationEntropyUnit and qudt:DataRateUnit, i.e., cocoon:GB, cocoon:GBPerHour,
cocoon:GBPerMonth, cocoon:GCEU (which is the Google Compute Engine Unit), co-
coon:IOPs, cocoon:IOPsPerHour, cocoon:MegabitsPerSecondPerHour, cocoon:TB, and co-
coon:VcpuPerHour. See examples in Listing 3.8.

Listing 3.8: Units
### https://w3id.org/cocoon/v1.0.1#GB
cocoon:GB rdf:type owl:NamedIndividual ,

qudt:InformationEntropyUnit ,
cocoon:UnitOfMeasure ;

rdfs:comment "Gigabyte (GB): There are 1024MB in one gigabyte."@en ;
rdfs:label "Gigabyte"@en .

### https://w3id.org/cocoon/v1.0.1#GBPerHour
cocoon:GBPerHour rdf:type owl:NamedIndividual ,

qudt:DataRateUnit ,
cocoon:UnitOfMeasure ;

rdfs:comment "Often describe 1 GB per Hour usage."@en ;
rdfs:label "Gigabyte per Hour"@en .

### https://w3id.org/cocoon/v1.0.1#GBPerMonth
cocoon:GBPerMonth rdf:type owl:NamedIndividual ,

qudt:DataRateUnit ,
cocoon:UnitOfMeasure ;

rdfs:comment "Often describe 1 GB per Month usage."@en ;
rdfs:label "Gigabyte per Month"@en .

### https://w3id.org/cocoon/v1.0.1#GCEU
cocoon:GCEU rdf:type owl:NamedIndividual ,

cocoon:UnitOfMeasure ;
rdfs:comment "GCEU (Google Compute Engine Unit), or GQ for short, is a unit of CPU

↪→ capacity that we use to describe the compute power of our instance types. We
↪→ chose 2.75 GQ’s to represent the minimum power of one logical core (a hardware
↪→ hyper-thread) on our Sandy Bridge platform."@en ;

rdfs:label "Google Compute Engine Unit"@en .

### https://w3id.org/cocoon/v1.0.1#Gcloud
cocoon:Gcloud rdf:type owl:NamedIndividual ,

gr:BusinessEntity ;
gr:name "Google Cloud" ;
rdfs:label "Gcloud"@en ;
foaf:page <https://cloud.google.com/> .

### https://w3id.org/cocoon/v1.0.1#IOPs
cocoon:IOPs rdf:type owl:NamedIndividual ,

qudt:DataRateUnit ,
cocoon:UnitOfMeasure ;

rdfs:comment "Azure Managed Disks provide different input/output operations per sec (
↪→ IOPs)"@en ;

rdfs:label "Input/output operations per sec"@en .

### https://w3id.org/cocoon/v1.0.1#IOPsPerHour
cocoon:IOPsPerHour rdf:type owl:NamedIndividual ,

https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/unit/QUDT.md#MegabitsPerSecond
http://qudt.org/schema/qudt#InformationEntropyUnit
http://qudt.org/schema/qudt#DataRateUnit
https://w3id.org/cocoon/v1.0.1#GB
https://w3id.org/cocoon/v1.0.1#GBPerHour
https://w3id.org/cocoon/v1.0.1#GBPerMonth
https://w3id.org/cocoon/v1.0.1#GCEU
https://w3id.org/cocoon/v1.0.1#IOPs
https://w3id.org/cocoon/v1.0.1#IOPs
https://w3id.org/cocoon/v1.0.1#IOPsPerHour
https://w3id.org/cocoon/v1.0.1#MegabitsPerSecondPerHour
https://w3id.org/cocoon/v1.0.1#TB
https://w3id.org/cocoon/v1.0.1#VcpuPerHour
https://w3id.org/cocoon/v1.0.1#VcpuPerHour
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qudt:DataRateUnit ,
cocoon:UnitOfMeasure ;

rdfs:comment "Azure Ultra SSD Managed Disks come in different sizes that
↪→ provide a configurable range of input/output operations per sec (IOPS),
↪→ and are billed on an hourly rate."@en ;

rdfs:label "IOPS/hour"@en .

### https://w3id.org/cocoon/v1.0.1#MegabitsPerSecondPerHour
cocoon:MegabitsPerSecondPerHour rdf:type owl:NamedIndividual ,

qudt:DataRateUnit ,
cocoon:UnitOfMeasure ;

rdfs:comment "Often describe the throughput usage measured at MB/s
↪→ within an hour."@en ;

rdfs:label "MB/s/hour"@en ..

### https://w3id.org/cocoon/v1.0.1#TB
cocoon:TB rdf:type owl:NamedIndividual ,

qudt:InformationEntropyUnit ,
cocoon:UnitOfMeasure ;

rdfs:comment "Terabyte is more precisely defined as 1,024 gigabytes (GB)"@en ;
rdfs:label "Terabyte"@en .

### https://w3id.org/cocoon/v1.0.1#VcpuPerHour
cocoon:VcpuPerHour rdf:type owl:NamedIndividual ,

cocoon:UnitOfMeasure ;
rdfs:comment "Azure Ultra SSD storage is in preview in East US 2 and is billed

↪→ on vcpu/hour provisioned as reservation charge. This reservation charge
↪→ is only imposed if you enable Ultra SSD capability on the VM without
↪→ connecting an Ultra SSD disk."@en ;

rdfs:label "vcpu/hour"@en .

3.3.3.8.2 Provider

We define providers as a gr:BusinessEntity, such as cocoon:Gcloud and cocoon:Azure,
which are shown in Listing 3.9.

Listing 3.9: Provider
cocoon:Azure rdf:type owl:NamedIndividual ,

gr:BusinessEntity ;
gr:name "Microsoft Azure Cloud" ;
rdfs:label "Azure"@en ;
foaf:page <https://azure.microsoft.com/> .

cocoon:Gcloud rdf:type owl:NamedIndividual ,
gr:BusinessEntity ;

gr:name "Google Cloud" ;
rdfs:label "Gcloud"@en ;
foaf:page <https://cloud.google.com/> .

3.3.3.8.3 Quantity and Type

We define some frequently used quantities as named individuals, using
schema:TypeAndQuantityNode, i.e. cocoon:1TB. This will save us from redefining each
value whenever we use it. Since schema:unitCode can take schema:URL, it means we
can pass in any external defined units, i.e. cocoon:UnitOfMeasure.

http://purl.org/goodrelations/v1#BusinessEntity
https://w3id.org/cocoon/v1.0.1#Gcloud
https://w3id.org/cocoon/v1.0.1#Azure
http://schema.org/TypeAndQuantityNode
https://w3id.org/cocoon/v1.0.1#1TB
http://schema.org/unitCode
http://schema.org/URL
https://w3id.org/cocoon/v1.0.1#UnitOfMeasure
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3.4 Summary

Since the semantic web is a relatively new technology, existing ontologies only
broadly define a service and does not cover the IaaS specifics. To fill in the gap,
we proposed CoCoOn that formalizes the domain knowledge of cloud infrastruc-
ture services based on RDF. There are four main modules in CoCoOn: IaaS, QoS,
Pricing and Region. IaaS module models Compute, Storage and Network Cloud ser-
vices. Pricing module models price and unit information. Region module models
datacenter location. QoS module models the quality of service information.

Since existing cloud providers can incorporate RDF annotation into their web
pages to make them indexable by search engines. We converted unstructured text
data on commonly available infrastructure services (e.g. Amazon, Microsoft Azure,
and GoGrid) to structured RDF data, which is queryable with SPARQL. In doing
so, CoCoOn provides cloud service ontology to simplify the presentation, sharing,
searching and comparison of cloud services and their QoS and Pricing features.



Chapter 4

Ranking and Recommendation

In Chapter 3, we have developed a unified domain model capable of adequately
describing infrastructure services in Cloud computing. In this chapter, we build
upon this previous work to further investigate how to achieve high automation on
service discovery.

4.1 Motivation

While the elastic nature of Cloud services makes it suitable for provisioning all
kinds of applications, the heterogeneity of Cloud service configurations and their
distributed nature raise some serious technical challenges. The Cloud computing
landscape is evolving with multiple and diverse options for compute (also known
as virtual machines) and storage services. Hence, application owners are facing a
daunting task when trying to select Cloud services that can meet their constraints.
As we mentioned in the introduction, Amazon Web Service (AWS) had 674 differ-
ent offerings differentiated by price, features and location (in Burstorm’s 2013 study
[29]). Our evaluation in May 2019 found 17871 Azure offerings in 38 regions and 1467
Google Cloud offers in 26 regions. Application owners must simultaneously consider
and optimize complex dependencies and different sets of criteria (price, features, lo-
cation, QoS) when selecting the best mix of service offerings from an abundance of
possibilities. For instance, it is not enough to just consider the suitability of storage
services, but also essential to guarantee that the corresponding computing capabili-
ties are enough to process data as fast as possible while minimizing cost.

There are methods proposed for network-aware service composition[231, 24, 239]
considering generic web services, i.e., at the SaaS and PaaS levels. However, the com-
patibility constraints at the IaaS level are different from web services. For example,
generic web services are distinguished by their features, QoS, and prices. It does
not make sense to include two same services in one composition as one job does not
need to be done twice, but using multiple quantities of an IaaS offering is perfectly
valid.
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4.1.1 The Problem of Varied Pricing Model

Varied pricing models of different Cloud providers is one of the problems. Another
example of disparity is the model of “on-demand instances”. Although GoGrid’s
plan has a similar concept to Amazon’s on-demand and reserved instance, it gives
very little importance to what type or how many of compute services a user is de-
ploying. GoGrid charges users based on what they call RAM hours – 1 GB RAM
compute service deployed for 1 hour consumes 1 RAM Hour. This means a 2 GB
RAM compute service deployed for 1 hour consumes 2 RAM Hour. It is worthwhile
mentioning that only Azure clearly states that one month is considered to have 31
days. This is important as the key advantage of the fine-grained pay-as-you-go price
model which, for example, should charge a user the same when they use 2GB for
half a month or 1 GB for a whole month. Other vendors merely give a GB-month
price without clarifying how short term usage is handled. It is neither reflected in
their usage calculator.

Regarding storage services, providers charge for every operation that an appli-
cation program or a user undertakes. These operations can also be generated via
RESTful APIs or Simple Object Access Protocol (SOAP) API. Furthermore, Cloud
providers refer to the same set of operations with different names; for example,
Azure refers to storage service operations as transactions. Nevertheless, the opera-
tions are categorized into upload and download categories as shown in Table 4.1. Red
means an access fee is charged; Green means the service is free, and yellow means
access fees are not specified, and can usually be treated as green/free of charge. To
facilitate our calculation of similar and equivalent requests across multiple providers,
we analyzed and pre-processed the price data. We recorded it in our domain model
and used a homogenized value in the CloudRecommender. For example, Windows
Azure Storage charges a flat price per transaction. It is considered as transaction
whenever there is a “touch” operation, i.e. Create, Read, Update, Delete (CRUD)
operation over the RESTful service interface, on any component (Blobs, Tables or
Queues) of Windows Azure Storage.

We collected service configuration information from many public Cloud
providers: Windows Azure, Amazon, GoGrid, RackSpace, Nirvanix, Ninefold, Soft-
Layer, AT and T Synaptic, Cloud Central, etc. It is show in Table 4.2. This table
depicts the different pricing schemes and varied terminologies of providers.

4.1.2 The Need to Incorporate Quality of Service Constraints

Cloud computing embraces an elastic paradigm where applications establish on-
demand interactions with services to satisfy QoS requirements such as response time,
throughput, availability and reliability. QoS targets are encoded in the Legal Service
Level Agreement (SLA) documents, which state the nature and scope of the QoS
parameters. However, selecting and composing the right services to meet application
requirements are challenging problems.

For different application deployment scenarios (e.g., multimedia, eResearch, and
enterprise applications), the question is: How to satisfy QoS requirements across
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Table 4.1: Heterogeneities in Request Types Across Storage Services

Requests
Provider Storage

Upload Download Other

Windows Azure Azure Storage storage transactions storage transactions

Amazon S3 PUT, COPY, POST, or LIST Reque GET and all other Requests Delete

GoGrid Cloud Storage Transfer protocols such as SCP, SAMBA/CIFS, and RSYNC

RackSpace Cloud Files PUT, POST, LIST Requests HEAD, GET, DELETE Requests

Nirvanix CSN Search

Ninefold Cloud Storage GET, PUT, POST, COPY, LIST and all other transactions

SoftLayer Object Storage Not Specified/Unknow

AT and T Synaptic Storage as a Service Not Specified/Unknow

Cloudcentral Object Storage GET, PUT

Red means an access fee is charged.
green means the service is free.

yellow means access fees are not specified, and can usually be treated as free of charge.

the layers? Notably, QoS aware service selection problem [98] is a multi-criteria
optimization problem. In order to solve it, we can employ a multi-criteria decision-
making technique, which will be explained in Section 4.3.1.

4.1.3 Applications Use Case Examples

We next provide a few examples to demonstrate different types of applications with
the needs to cater for real-time QoS requirements during their deployment lifecycle.

Interactive Online Games: In the gaming industry, World of Warcraft counts over
six million unique players daily. The operating infrastructure of this Massively Mul-
tiplayer Online Role-Playing Game (MMORPG) comprises more than 10,000 comput-
ers [142]. Depending on the game, typical response times to ensure fluent play must
remain below 100 milliseconds for online First Person Shooter (FPS) action games
[22] and below 1-2 seconds for Role-Playing Games (RPGs). The excellent game
experience is critical for keeping the players engaged, and has an immediate conse-
quence on the earnings and the popularity of the game operators. Failing to deliver
timely simulation updates leads to degraded game experience and triggers player
departure and account closures [185]. Startup gaming company with no existing in-
frastructure could launch a new game platform using a public Cloud infrastructure.
Cloud services offer the flexibility to scale on demand with no upfront investment.
Using Cloud services, the game application services can be dynamically allocated
or de-allocated according to demand fluctuations. Game companies can also better
serve diverse international users with the global presence of data centres owned by
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Table 4.2: Pricing and Terminology Heterogeneities in Compute and Storage Services
Across Providers

Compute Pay As
You Go Storage Pay As

You Go Trail
Provider

Terminology Unit

Other
Plans*

Terminology Unit

Other
Plans* Period

or Value

Windows
Azure

Virtual
Server /hr 1 Azure

Storage
/GB
month 1 90 day

Amazon EC2
Instance /hr 2 S3 /GB

month 2 1 year

GoGrid Cloud
Servers /RAM hr 1 Cloud

Storage
/GB
month

RackSpace Cloud
Servers /RAM hr Cloud

Files
/GB
month

Nirvanix CSN /GB
month

Ninefold Virtual
Server /hr Cloud

Storage
/GB
month 1 50 AUD

SoftLayer Cloud
Servers /hr 1 Object

Storage /GB

AT and T
Synaptic

Compute
as a
Service

vCPU per hour
+/RAM hr

Storage
as a
Service

/GB
month

Cloudcentral Cloud
Servers /hr

* Other Plans includes Monthly/Quarterly/Yearly Plan, Reserve and Bidding Price Option.
Red blank cells in the table mean that a configuration parameter is not supported. Some providers
offer their services under a different pricing scheme than pay-as-you-go, and we refer to these
schemes as other plans (e.g. Amazon Reduced redundancy, reserved price plans, GoGrid Pre-Paid
plans).

Cloud providers.
Real-time Mobile applications: There is an explosion of (primarily mobile based)

communication apps. For example, WhatsApp, acquired by Facebook, has 450 mil-
lion users [196]; Viber, acquired by Rakuten, has 200 million users [207]; and WeChat,
a Chinese rival, has 270 million users [217]. For these apps, low latency is significant
for real-time collaboration experience. For example, video conferencing has a limit
of about 200 to 250 milliseconds delay for a conversation to appear natural [213].
These apps have similar requirements as game apps. They require a large number
of servers to support millions of users and need optimization on latency, speed and
throughput. It is worth mentioning that even for a generic web application, there
are experiments with delaying a page in increments of 100 milliseconds, and the re-
sults show that even minimal delays would result in substantial and costly drops in
revenue [213].

Big Data, IoT (Internet of Things) and eScience: IDC estimates that the amount
of digital data generated annually will grow from 33 ZB in 2018 to 175 ZB by 2025 [2].
These data are resulting from an internet search, social media, business transactions,
and content distribution. Similarly, scientific disciplines increasingly produce, pro-
cess, and visualize data sets gathered from sensors [209]. If the prediction holds, then
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the Square Kilometer Array (SKA) radio telescopes will transmit 400,000 petabytes
(∼400 exabytes) per month or a whopping 155.7 terabytes per second [186]. Further-
more, European Space Agency (ESA) will launch several satellites in the next few
years [60], which will collect data about the environment, such as air temperatures
and soil conditions, and stream that data back in real time for analysis. Similarly, in
the finance industry, the New York Stock Exchange creates one terabyte of market
and reference data per day covering the use and exchange of financial instruments.
On the other hand, Twitter feeds generate eight terabytes of data per day of social
interactions [26]. Such “Data Explosions” has led to research issues such as: how
to effectively and optimally manage and analyze a large amount of data. The issue
is also known as the “Big Data” problem [88]. "Big data" is a field that treats ways
to analyze, systematically extract information from, or otherwise deal with data sets
that are too large or complex to be dealt with by traditional data-processing applica-
tion software [25]. As both storing and analyzing the data requires a massive amount
of storage capacity and processing power, companies and institutions may want to
offload the complexity of managing hardware infrastructure to Cloud providers who
are specialized in that, while eliminating the need to wait for facilities to be built.

Other: Apart from the scenarios as mentioned above, there are many more cases
where our proposed solution would be useful. System administrators and developers
may need a lot of simulated clients from all around the world for a website load test-
ing before its official release. An automatic selection system would facilitate optimal
auto deployments. Similarly, a bitcoin [21] (or some other similar cryptocurrencies
[46]) miner may decide to invest in some additional resources in mining when the
price of the currency is high, and stop the mining when the profit does not justify
the expense anymore. In such a situation, a Cloud service selection system, which is
price sensitive, would be beneficial as well.

4.2 Limitations of Existing Approaches

The network QoS (data transfer latency) varies mainly due to distance and traffic
conditions. This variation should show some consistency, which depends on the
location of the data centre and the location of input data. This raises a research
question: how to optimize the process of choosing the best compute and storage
services, which are not only optimized in terms of price, availability, processing
speed but also offers good QoS (e.g. network throughput and response delivery
latency)?

For research problems described in Section 1.1, many research [118] and commer-
cial projects provide simple cost calculation or benchmarking and status monitoring,
but none is capable of consolidating all aspects and providing a comprehensive rank-
ing of infrastructure services. For instance, CloudHarmony [40] provides up-to-date
benchmark results without considering cost, and Cloudorado [41] calculates the price
of IaaS-level compute services based on static features (e.g., processor type, proces-
sor speed, I/O capacity, etc.) while ignoring dynamic QoS features (e.g., latency,
throughput, load, utilization). Yuruware once had features for comparing Cloud ser-
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vices, but it is no longer available. Swinburne University has a research project called
Smart Cloud Broker Service [36]. From the screen-cast they released, we can tell that
their benchmarking is done in real time, which means that users have to wait for
the results to come back. We have considered this kind of situation but decided to
collect the benchmarking result beforehand. This is because this way, no matter how
many cloud providers users want to compare against, they can still get the result
with a minimum (or no) waiting time. Another reason we choose to do it this way
is that, at any particular point in time, the network benchmark result is not conclu-
sive as performance fluctuates as time passes. Thus, we use an aggregated average,
which is a more reliable overall indication. Table 4.3 shows a brief comparison of
the CloudRecommender with other existing products we mentioned previously. We
need to clarify that cloud management is not in the scope of this work.

To further distinguish ourselves from others, we offer the following two inno-
vative features when ranking, selecting, and comparing various cloud services: 1)
allow users to choose to include the QoS requirements during comparison; 2) when
users want to take into account mixed qualitative (e.g. hosting region, operating
system type) and quantitative criteria, we apply the Analytic Hierarchy Process to
aggregate numerical measurements and non-numerical evaluation. Results are per-
sonalized according to each user’s preferences because AHP takes users’ perceived
relative importance of criteria (pair-wise comparisons) as input.

Table 4.3: A Brief Comparison of The Cloud Recommender With Other Existing
Solutions

Product

Feature
QoS
Bench-
mark

Single Criteria
Comparison

Aggregate
Ranking
Comparison

Cloud
Manage-
ment

Broker@Cloud No evidence on progress of project

Yuruware No No No Yes

CloudHarmony Adjustable No No No

Cloudorado No Yes No No

CloudBroker Adjustable Yes No No

CloudRecommender Fixed Yes Yes No
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4.3 Proposed Approaches

The selection of Cloud services involves weighing the pros and cons of of multiple
criteria, which is fundamentally a multi-criteria decision-making problem. We sur-
veyed some well-known MCDM methods in Section 2.3.1. We chose AHP because it
handles multiple criteria, i.e. capable of optimizing mixed qualitative and quantita-
tive criteria. Moreover, AHP does not involve advanced mathematics and is intuitive
to use. In comparison, SAW is stronger in single dimensional problems, but does not
perform well on multidimensional problems; WPM has a problem of dealing with
the equal weights of decision matrices; PROMETHEE requires generalized criteria to
be defined, and such input is ambiguous for an inexperienced user to provide; the
mechanism of VIKOR does not fit our problem. Furthermore, one problem encoun-
tered in most MCDM methods (e.g. TOPSIS) is the computation of the weight of
criteria. This problem can be tackled in various ways like AHP, cross-entropy, fuzzy
preference programming, etc. [53]. This also makes AHP stand out as a stand-alone
solution.

4.3.1 Ranking with Analytic Hierarchy Process

We now present how we build a decision-making framework based on Analytic Hier-
archy Process (AHP). It not only allows users to compare and select a Cloud service
based on a single criterion (e.g. total cost, the max size limit for storage, and memory
size for compute instance), but also supports a utility function that combines multi-
ple selection criteria about storage, compute, and network services. In the rest of this
section, we focus on the following topics:

1. Problem Formulation. We first provide formulations of the research problem
by identifying the most important Cloud service selection criteria relevant to
specific real-time QoS-driven applications, selection objectives, and Cloud ser-
vice alternatives.

2. Multi-criteria Optimization. Then we discuss how AHP based decision (ser-
vice selection) making techniques are designed. Examples are provided on
how to handle multiple quantitative (i.e. numeric) as well as qualitative (de-
scriptive, non-numeric, like location, CPU architecture: 32 or 64 bit, operating
system) criteria. How pair-wise comparisons can be conducted to determine
the relative importance of criteria is also described.

We also developed a decision-supporting tool with the proposed techniques. It can
automate and map users’ specified application requirements to specific Cloud service
configurations. The details and evaluations (conducted in a real-world context) are
presented in Chapter 6.

4.3.1.1 Cost Benefit Ratio

Generally, criteria can be divided into tow categories: benefit and cost. Benefit crite-
ria are the good criteria which are meant to be maximized. Conversely, cost criteria
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Figure 4.1: Criteria for Comparison
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are the bad criteria to be minimized. The actual values to be collected and stored
are at the leaf (i.e. Node/criterion with no children) of the tree. For example, as
shown in Figure 4.1, under benefit criteria, numeric values are collected for “Down-
load speed” “Upload Speed”, “CPU Speed” and “Core number”. “Speed” is the
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parent of “Download speed” “Upload Speed”, and there is no value stored for this
node. Benefit criteria are criteria to be maximized, and cost criteria are criteria to
be minimized. Table 4.5 explains the symbols used. Note that location preference is
an example of qualitative criteria. Such preference can be converted into numerical
scale by pairwise comparison explained in Section 4.3.1.3.

Each Cloud service has a number of criteria C = {C1, ..., Ck, ..., Cn} where CB =
{C1, ..., Ck} and CC = {Ck+1, ..., Cn} are the set of benefit criteria and the set of cost
criteria in C. Let aij indicate the value of criteria Cj w.r.t. to Cloud service Ai. Suppose
we have m Cloud services. Then we can normalize the criterion values aij as:

ãij =
aij

m
∑

z=1
azj

(4.1)

Criteria normalization is carried out by dividing each value with the sum of all values
for that criteria from different Cloud service providers. For each Ai, we calculate the
cost/benefit ratio as shown in Equation (4.2), which is the sum of weighted cost
criteria divided by the sum of weighted benefit criteria.

n
∑

j=k+1
(wj ãij)

k
∑

j=1
(wjaij

:)

(4.2)

where wj represents the weight for each criterion Cj, which measures users’ perceived
importance on the criterion. We will seek a smaller ratio as a better option. Note that
the previous definition let there be k benefit criteria and n-k cost criteria.

Symbol Meaning

r Resource, e.g. GoGrid XX - Large Instance, S3 Storage Serive, EC2
instance.

c Cloud Provider, e.g. Amazon,Rackspace, GoGrid.

l A datacenter location, e.g. Sydney, Tokyo.

P Unit price for a resource.

T Period of time the resource is used.

u Usage of a resource behave like a decision variable.

Table 4.4: Usage Expense Estimation Symbols
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Note that denominator for Equations (4.1) and (4.2) can not be zero under normal
circumstances. Since all criteria are non negative, cost is the only criteria can possibly
be zero, but it is in the nominator. All benefit criteria are positive, e.g. it doesn’t not
make sense to purchase zero resource.

4.3.1.2 Usage Expense Estimation

The corresponding expense for resource usage is one of those important cost criteria.
Due to the high complexity of calculating the expenses related to different resource
types, providers and locations, we dedicate this section to explain how to estimate
usage expenses.

Let “u” be the intended usage of a resource from a data center location of a Cloud
provider. More specifically, ur,c,l ∈ {0, 1, . . . , n} means the usage of the compute
resource r from provider c at location l. For example, when the user have a rough
estimate of how much resources they might need, we can use ustorage,any,any = 50GB to
represent the user’s need to store 50 GB of data in the Cloud, regardless of providers
and locations.

To calculate the expense of ur,c,l , we multiply its usage with the corresponding
unit price (Pr,c,l) as:

ur,c,l Pr,c,l (4.3)

Then we can calculate the total price per unit time for desired resource(s) (assume
constant resource usage pattern throughout the time) as in Equation (4.4). We assume
users will choose the duration/time period (Tr,c,l) they want to estimate price for, e.g.
1 hour, 30 days.

ur,c,l Pr,c,lTr,c,l (4.4)

Symbol Meaning Type of Criteria

Cdownlink Downlink speed. Benefit

Clatency Downlink latency. Cost

Cmemory Memory size. Benefit

Cstorage Storage size. Benefit

Cuplink Uplink speed. Benefit

Cexpense Usage expense. Cost

CCPU CPU speed. Benefit

Table 4.5: Symbols for Common Criteria
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The symbols used for usage expense estimation are summarized in Table 4.4.
Expense calculation is not new, but existing calculators most only include service
from a single provider. Here we build upon the generic CoCoOn model and collected
data from multiple providers. So calculation can be applied across providers.

Suppose we have seven criteria {Cexpense, Clatency, Cuplink, Cdownlink, Cmemory,Cstorage,
CCPU} as shown in Table 4.5, five of them are benefit criteria and two are cost criteria.
After substitute the aij with our actual criteria, assuming we have calculated the
preference weights, the cost-benefit ratio formula can be expanded to:

wexpense ãexpense + wlatency ãlatency

wuplink ãuplink + wdownlink ˜adownlink + wmemory ãmemory + wstorage ãstorage + wCPU ãCPU
(4.5)

where aexpense is calculated as discussed previously:

aexpense = ∑ Uc,l,rPc,l,rTc,l,r (4.6)

When calculating the expense we need to sum over all resources. If user only select
one type of resource, all resources is just one type. alatency is the average of all latency
QoS stats collected over time on the resource r from provider c and location l, auplink
is the average uplink speed, adownlink is the average downlink speed, amemory is the
total memory size, i.e. if an alternative option consists of 2 VM of 8GB each, the total
memory should be 16 GB, astorage is the total storage size, and aCPU is the CPU speed.

Table 4.6: Absolute Value and Corresponding Descriptive Scale Representing Relative
Importance

Scale Value Reciprocals∗

equal 1 1

moderate 3 1/3

strong 5 1/5

very strong 7 1/7

extreme 9 1/9

∗If activity i has one of the above nonzero numbers assigned to it when compared with activity
j, then j has the reciprocal value when compared with i.

In our decision-making framework, we consider the following QoS statistics:
download latency, download speed and upload speed. Those characteristics are im-
portant for end-users’ experience and satisfaction. It is possible to have options that
have small price differences, or when having a high-quality service is more important
than saving money. Note that the network QoS statistics of Compute and Storage ser-
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vices are both collected then separately stored, since a user may be only interested in
one of the services. For example, transferring files from (and to) a compute instance
storage is different from downloading or uploading files from/to dedicated network
storage service (like AWS S3 [16]). If a user selects both, we use the average of data
downlink speed from virtual machines and storage services as the average download
speed.

4.3.1.3 Weight Computed by Pairwise Comparison

The weights of criteria are calculated based on AHP’s pairwise comparison method.
We choose the commonly used scale [69, 81] shown in Table 4.6. If a user does not
specify any preference, by default all weights are equal.

To illustrate, if we have n (=4) criteria, we can build the PWC matrix as:

M


C1 C2 C3 C4

C1 1 a12 a13 a14

C2 a−1
12 1 a23 a24

C3 a−1
13 a−1

23 1 a34

C4 a−1
14 a−1

24 a−1
34 1


column sum ↓[

Sc1 Sc2 Sc3 Sc4

]
(4.7)

In Equation (4.7), aij is the preference of criterion Ci compared to Cj for 1 ≤ i, j ≤
n. When i = j, we always get 1 as it is compared to itself. And ∀i, j aji = a−1

ij .
A numeric example is shown in Table 4.7. Then we normalize M and calculate

Table 4.7: Example User Preference

Uplink Speed Downlink Speed Ram Storage

Uplink Speed 1 1/3 1/5 1/5

Downlink Speed 1 3 5

Ram 1 3

Storage 1
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normalized principal eigenvector x1.

M̃ x1

1
Sc1

a12
Sc2

a13
Sc3

a14
Sc4

a−1
12

Sc1

1
Sc2

a23
Sc3

a24
Sc4

a−1
13

Sc1

a−1
23

Sc2

1
Sc3

a34
Sc4

a−1
14

Sc1

a−1
24

Sc2

a−1
34

Sc3

1
Sc4


∑ row

n−−→



1
Sc1

+
a12
Sc2

+
a13

Sc3+
a14
Sc4

n
a−1
12

Sc1
+ 1

Sc2
+

a23
Sc3

+
a24
Sc4

n
a−1
13

Sc1
+

a−1
23

Sc2
+ 1

Sc3
+

a34
Sc4

n
a−1
14

Sc1
+

a−1
24

Sc2
+

a−1
34

Sc3
+ 1

Sc4
n



(4.8)

If we use the same example from Table 4.7. It will produce the preference matrix M1:

M1

1 1/3 1/5 1/5

3 1 3 5

5 1/3 1 3

5 1/5 1/3 1


column sum ↓[

14 1 13
15 4 8

15 9 1
5

]

(4.9)

Then we can find M̃1, which is the normalized M1, by dividing each value in
M1 with the sum of its column. Then we calculate normalized principal eigenvector,
round result to 4 decimal places to get v1:

M̃1 v1

1
14

5
28

3
68

1
46

3
14

15
28

45
68

25
46

5
14

5
28

15
68

15
46

5
14

3
28

5
68

5
46


row sum

4−−−→



247
782 ∗

1
4

1529
782 ∗

1
4

5925
5474 ∗

1
4

3539
5474 ∗

1
4


≈



0.0790

0.4888

0.2706

0.1616


(4.10)
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Finally, we square normalized matrix M̃ and calculate the next iteration of eigenvec-
tor, e.g. x2 is calculated from M̃2, until the difference xk+1 − xk is neglectable. This
process is supposed to be repeated until no big enough difference can be observed.
In our case, we noticed that the improvement is small after the first squaring, so we
relaxed the rule only to do one matrix squaring. If high precision is needed, one can
define the threshold of xk+1 − xk. e.g. 0.001 means stop when difference is less than
0.001.

Continued with the previous example, v1 is calculate from M̃1 before matrix
squaring. If we square the matrix we get:

M̃1 × M̃1 =



0.06688762 0.11862571 0.13265383 0.11535162

0.56054596 0.50165718 0.54990973 0.57067402

0.25901665 0.23376742 0.20656472 0.21218885

0.11354977 0.14594968 0.11087171 0.10178552


(4.11)

If we keep doing this matrix squaring, the results are shown in Table 4.8. E(M)

Table 4.8: Eigenvector Calculation: Matrix Squaring

Criteria E(M̃1) E(M̃2
1) E(M̃4

1) E(M̃8
1)

Uplink Speed 0.07896419 0.1083797 0.11582867 0.11542847

Downlink Speed 0.48881074 0.54569672 0.52718223 0.52830939

Ram 0.27059737 0.22788441 0.22775774 0.22771419

Storage 0.16162769 0.11803917 0.12923137 0.12854795

Change 0.0294155 0.00744897 -4.00196647e-04

0.05688598 -0.0185145 1.12716376e-03

-0.04271296 -0.00012667 -4.35480523e-05

-0.04358852 0.0111922 -6.83419065e-04

denotes the eigenvector of matrix M, so the eigenvector calculated from (4.11) is
E(M̃2

1), and so on. This example only shows the benefit criteria, as cost criteria need
to be calculated separately. Once all the weights are computed, we can calculate the
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cost-benefit ratio with Equation (4.5).

Remark. We published the work of applying AHP on Cloud service recommendation back
in 2015. Later, we learnt that many researchers criticised its normalisation method, which
leads to rank reversal. Rank reversal is the irregularity that may appear in a ranking when
there are two alternatives with similar values, or when adding an alternative inferior to non-
optimal alternatives in the ranking. Previous studies [97, 112, 18, 56, 201] suggested to use
Multiplicative Additive Weightings (MAW) instead of Simple Additive Weightings (SAW).

4.3.2 Algorithm

Our approach is described in Algorithm 1. Symbols are explained in Table 4.9. which
mostly are the relational algebra and set operations symbols, please pay attention to
operation G as it has multiple inputs represented by superscript and subscripts.

Algorithm 1 only depicts one everyday use case, while other scenarios exist, they
can be solved with this algorithm with a small modification. We will explain these
situations in the following paragraphs.

As shown in Algorithm 1, a user can provide us with the following parameters
as input:

1. ` is the set of locations that a user wants to consider, and by default, we consider
all locations.

2. ρ is the set of Cloud service providers that a user wants to consider, and by
default, we consider all providers.

3. Mmin is the minimal memory requirements for the VMs, and by default 0 de-
notes no memory requirements.

4. pricemax is the maximum budget a user is willing to spend, where 0 indicates
they are only interested in free services, and -1 represents infinity which means
there is no budget constraint.

5. U is a tuple representing the estimated usages provided by user, which contains
the following: (ustorage, udataout , uVM). ustorage represents the amount of storage
(GB) that will be used. udataout is the amount of outward data transfer in GB from
Cloud provider to end devices/users. Since normally data ingress data transfer
to the Cloud is free, we are more concerned with the egress data transfer usage.
uVM is the number of instances needed. All the previously mentioned usage
estimations are monthly based by default, but other lengths can be used, such
as daily or hourly. As long as all resource is calculated based on the same
standard, there should be no effect on the final comparison and ordering.

6. W is a tuple representing the preference/weight given to each component
by the user, which consists of the following: (wcpu, wmemory, wstorage, wnetwork,
wdownload, wupload, wlatency, wexpense), details are explained in Sections 4.3.1.1
and 4.3.1.3.
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Table 4.9: Symbols Used In Algorithm: Relational Algebra and Set Operations.

Symbol Meaning

G Aggregation operation over a schema, like a group by
clause in SQL. It follows the format: Gag agg_op(attri)(r)
where ag is the grouping attribute. agg_op(attri) is the
aggregation operation over attribute (attri). There are five
aggregate functions that are included with most relational
database systems. These operations are Sum, Count, Av-
erage, Maximum and Minimum. r is an arbitrary relation.
See relationa algebra wiki page [181] for more details.

σ Selection, see wiki page [181].

./ Natural join: depends on the condition can be either θ-join
or equijoin. For example, ./ (Provider, Location) means
equijoin where the condition is join only under the same
provider and location

∪ Set union operation.

7→ Ordered pair, here we use it to denote a new record
being formed. The reason we used it is because
storageCostByQuota maps storage options to a set of costs,
i.e. for the same kind of storage option it maps to
multiple storage tiers, with different unit prices; thus
storageCostByQuota : Φstorage → P(R) where P(R) means
the power set of real numbers, for example for a value x,
we can have storageCostByQuota(x) = {1, 2}, and the total
cost for x is 1+2=3.

First, we filter on the static characteristics on Line 1, such as provider, location,
memory, and CPU speed. <compute is the table containing all data collected on Cloud
Compute resources. Similarly, <storage is the table containing data for storage services
and <network is the table for network services. Line 2 shows the filtering step on the
storage options, and Line 3 filters on the network options.

Firstly we identified the options satisfying user requirements, then calculate the
total price according to different models. For example, various pricing models in-
clude free, flat-rate, two-part tariffs (like the AWS reserved instance), block-declining
(S3 storage), and bidding (AWS spot instance). Our model can handle all of them
except for the bidding price model. One provider often has multiple offers within
the same type of services, for example, different kinds of instances for a compute
service and different storage options. We combine them to get a combinatorial num-



§4.3 Proposed Approaches 89

Algorithm 1: Rank Cloud services based on requirements
input : Requirements such as locations (`), providers (ρ), minimal memory

(Mmin), maximum budget (pricemax), Estimated resources usages (U),
weights (w))

output: Cloud service offerings recommendation, sorted by rank from low
(better) to high.

1 Φcompute ← σprovider∈ρ∧location∈`∧memory≥Mmin

(
<compute

)
;

2 Φstorage ← σprovider∈ρ∧location∈`∧quotalow<ustorage

(
<storage

)
;

3 Φnetwork ← σprovider∈ρ ∧ location∈` ∧ quotalow<udataout
(<network);

4 storageCostByQuota← ∅;
5 foreach xs ∈ Φstorage do
6 if ustorage > quotamax(xs) then
7 storageCostByQuota ∪

{xs 7→ (quotamax(xs)− quotamin(xs)) · unitPrice(xs)};
8 else
9 if ustorage > quotamin(xs) then

10 storageCostByQuota ∪{
xs 7→ (ustorage − quotamin(xs)) · unitPrice(xs)

}
;

11 end
12 end
13 end
14 storageCost← Gservice_name & provider sum(storage_cost)(storageCostByQuota) ;
15 ϕcompute ← Φcompute./provider,location,serviceName AvgQoS;
16 ϕstorage := storageCost./provider,location,serviceName AvgQoS ;
17 ϕ← ϕcompute./provider, location ϕstorage./provider, locationΦnetwork ;
18 totalCost← ∅;
19 foreach x ∈ ϕ do
20 totalCost(x)← ∑ (urPr)

21 end
22 rank← ∅;
23 foreach x ∈ ϕ do
24 rank(x) = Equation (4.5);
25 end
26 return sortOnRankDescending(rank)

ber of choices. We do that for all providers, and then calculate the summed cost and
the cost-benefit ratio for each combined option. Not all users need all three types
of resources. If they do not need a service, its usage will be zero. However, a net-
work service is always needed, thus cannot be zero. If a user wants to avoid costly
data transfer, he may want to keep data within a single region, as inter region data
transfer is often free. Others may need to use multiple providers to achieve disaster
resilience.

In the for loop starting from Line 5, we go through each price option of storage
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Figure 4.2: QoS Monitoring Service Network Topology

services. Storage services are charged with block declined model. For example, AWS
S3 price in US East (N. Virginia) for the first 50 TB per month is 0.023 USD per GB.
Next, 450 TB per Month is 0.022 USD per GB. So for the usage of 51 TB, the total cost
is calculated as: 50 ∗ 1024 ∗ 0.023 + 1 ∗ 1024 ∗ 0.022 ≈ 1200.13 We first calculate the
storage price for each tier. Assume units are normalized. Line 14 sums up costs in
different tiers for each storage service.

Next on Line 15, we link the results Φcompute with QoS statistics. “AvgQoS” is the
table containing the QoS data collected. Similarly, on Line 16, we link storage data
with QoS.

Then, we match appropriate Compute, Storage and Network options on Line 17.
After this, in the for loop on Line 19 we calculate the total cost by aggregating cost
for all resources.

Before calculating the final rank, we first find the unit values for normalization.
Then from Line 23 we calculate the rank of each option according to Equation (4.5).
The average download speed is calculated as: 1

2

(
Dcompute + Dstorage

)
where Dcompute is

the average download speed from the compute instances, and Dstorage is the average
download speed from storage service in the same combined option.

At last, Line 26 sorts the results in accenting order of rank before they are re-
turned.
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4.3.3 QoS Profiling

Figure 4.3: Average download speed from Amazon data centers to Melbourne

We implemented a QoS Profiler that helps in collecting network QoS values from
different points on the Internet (modelling big data source locations) to the Cloud
data centres. We collected the statistics using the “speedtest” service provided by
CloudHarmony.

Klein et al. [110] proposed a highly theoretical model based on Euclidean distance
for estimating latency, which we believe their theoretical perfect distance assumption
cannot be practically accurate. However, we can use this model to estimate latency
when QoS data is not available for a new client location.

Our QoS profiling system consists of multiple agents at geographically dispersed
locations to collect and process data, shown in Fig 4.2. Initially, QoS data was col-
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Figure 4.4: Download Speed Against Distance

lected on slave nodes every 2 hours by running the “speedtest” service of CloudHar-
mony. A single run takes more than an hour to finish, and hence we collect it once
every two hours. We have used two Clouds, namely: Nectar Research Cloud and
Amazon Web Service. Since Nectar Cloud is free for researchers, we decided to put
the master node in Nectar. There is a limit of quota in Nectar and Amazon have more
excellent geographical coverage in terms of data-centre locations, so we used an ad-
ditional spot instance from Amazon as slave data crawlers. A QoS monitoring node
records download speed, latency and upload speed from different locations to each
data-centre in various Clouds. If we look at individual slave nodes, we can see every
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node records the QoS statistics to various Clouds from each location. Bashed scripts
are written to export data from each node. Master node pulls data from its chil-
dren nodes, and access keys are required for this operation. Then the CSV formatted
data is imported to the master database, where appropriated merge operation is per-
formed. Data was collected over a period of two weeks. For more implementation
details, please refer to Chapter 6.

Later by analyzing the data, we conclude that such high frequency is not neces-
sary, because the average QoS from a particular location to a particular data centre
mostly has very fluctuations. That means the average would be pretty stable. Note
that differences between data-centres and various locations are still vast as expected,
which is shown in Figure 4.3. In the future, we may allow a combination of real-time
and off-line values to be used if necessary.

Figure 4.3 shows that geographically close data-centres have (as high as 25 times)
better network performance. Hence, this validates the fact that location is one of
the important criteria which should be considered during the selection process. Our
measurements also indicate that distance is not the only factor that affects network
performance, as shown in Figure 4.4. Data-centres are ordered from closest to fur-
thest, and from left to right, Tokyo and Brazil perform worse than expected. Hence,
we consider the need for active probing and profiling of network QoS from a user’s
endpoint to the Cloud data-centres. By doing so, we get a clear picture of the data
centre’s network QoS from the users’ device that may be deployed across topologi-
cally distributed network locations. Note that we have left out Sydney on purpose.

Figure 4.3 shows the exponential increase in speed between Sydney and Mel-
bourne compare to overseas locations, while Figure 4.4 shows the linear relationship
between downloading speed and distance among overseas locations. We are aware
that while it is generally true that the geographical distance between any pair of
servers (or users) on the Internet affects the route trip time (RTT), the bandwidth
between them is not necessarily determined by the distance, many other aspects
can affect the user end QoS, like the last-mile home-connecting technology, and lo-
cal Internet traffic condition. Our measurements only provide a suggestive base for
further optimisation; user’s experience may vary due to unforeseen conditions of
Internet traffic.

4.4 Experiments

4.4.1 Setup

We run our system and proposed algorithmic techniques across a range of hardware
systems, see Table 4.10.

To summarise, Environment 1 is the local machine used during the development
of the program, which is capable of running the database and other system modules.
Environment 2 is the server from the National eResearch Collaboration Tools and Re-
sources (NeCTAR) Cloud [90] where our system can be deployed as a service which
is easily accessible over the Internet. It is a virtualised environment, so the CPU
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Table 4.10: Experiment Environments

En
vi

ro
nm

en
t

Description Processor
Speed

Memory Processor
Name

Role

1 MacBook Air
Physical machine

1.4 GHz 2 GB Intel Core 2
Duo

Master

2 Ubuntu 12.04.3
LTS instance
ina virtualized
environment

2.4 GHz
(1vCPU)

4 GB AMD Opteron
(TM) Proces-
sor 6234

Master /
Profiler

3 Standard Small
(m1.small)Linux
/ UNIX EC2 Spot
Instance

1.79 GHz
( 1ECU /
vCPU)

1.7 GB Intel(R)
Xeon(R)CPU
E5-2650

Profiler

4 Compute Opti-
mized(c3.8xlarge)
Linux/UNIX
EC2Spot Instance

2.8 GHz (32
vCPU 1081
ECU)

60 GB Intel(R)
Xeon(R)CPU
E5-2680v2

Perfor-
mance
Testing

speed labelled may not accurately reflect the actual allocation. NeCTAR’s infrastruc-
tures are located at eight different organisations (node sites) around Australia. It
operates as one Cloud system under the OpenStack framework. It has different UIs
and APIs compared to AWS. Being a collaborative research Cloud, it is only open to
affiliated members (i.e. Australian researchers, and students from participating uni-
versity). Although the access is free, there is a limitation of 2 instances per member
and a cap on the total resource usage. Environment 3 is the spot instance type (from
Amazon) we used to collect QoS statistics from additional locations. Environment 4
is the compute optimised spot instance type we used to test program performance
under a powerful CPU or vertical scalability in short.

4.4.2 Case Study

4.4.2.1 Input Parameters

Table 4.11 shows the primary configurable parameters of our algorithm. Everyone’s
requirements regarding the compulsory parameters usually vary. So we choose a
range of values to mimic different selection scenarios. In future work, we may con-
duct a user survey to understand the most concerned factors for different types of
users, for example, we can expose all possible constrainable parameters via the API,
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Table 4.11: Input Parameters

Compulsory Example Value

Storage(GB/30 Days) 20

Outbound Data Transfer(GB/30 Days) 50

Min RAM(GB) 4

Optional Default Value

Provider Brand Consider All

Display Currency AUD

Number of Hours to run (per Month) 720

Number of Instance needed (per Month) 1

Inbound Data Transfer(GB/30 Days) 1

Weight of Compute Cost(percentile) 35%

Weight of Storage Cost(percentile) 25%

Weight of Network Cost(percentile) 35%

Weight of Latency(percentile) 5%

Weight of Download Speed(percentile) 70%

Weight of Upload Speed(percentile) 30%

Max RAM(GB) 20

but it may not be necessary. It can overwhelm the users who only use the visual in-
terface, especially for users with a less technical background. Default value column
shows what we use when users do not specify it.

4.4.2.2 Results

Figure 4.5 shows the top 5% of the result we get from the inputs in Table 4.11. It is
in ascending order of ratio (cost over benefit) as indicated by the dotted (blue) line
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because lower cost over higher benefit gives us a smaller ratio, which represents a
better choice. If we look at ranking by considering only the cost, as illustrated by the
solid (red) line, the Go-Grid offers to dominate over Windows offerings. If ordering
results in ascending price order (means network QoS constraints are not considered),
shown in Figure 4.6, Azure disappears from the top 10% of choices. Similarly, we
can see that although the price change is small in solutions, their overall rankings are
significantly different (dotted blue line). What this means to users is that while we
can save money by ignoring network QoS but then they should be ready for degraded
network performance. Note that, although we tried out best in using real-world data,
sometimes Cloud providers vary their prices as frequent as weekly. However, in
future work, we intend to implement a price crawler service that will automatically
parse the provider’s web pages and update our system’s database.
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Figure 4.5: Results in ascending order by (cost / benefit) ratio
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Figure 4.6: Results in ascending order by cost
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Table 4.12: Average Runtime.

Test
Num-
ber

Storage
(GB/30
Days)

Outbound
Data Trans-
fer (GB/30
Days)

Min
RAM
(GB)

Row(s)

En
vi

ro
m

en
t

1

En
vi

ro
m

en
t

2

En
vi

ro
m

en
t

4

1 20 10 0 3808 12.04 11.07 10.96

2 40 15 0 3808 11.913 11.59 7.81

3 10 2 0 3808 11.169 10.76 7.05

4 20 2 0 3808 11.744 11.15 7.57

5 200 200 0 3808 11.894 11.72 7.49

6 200 200 0 3808 11.912 10.85 6.76

7 200 200 16 552 9.15 7.7 4.97

8 200 200 8 1524 9.644 9.69 5.53

9 200 200 4 2095 10.25 8.72 5.58

10 20 20 0 3808 12.06 11.51 7.03

Average 11.1776 10.476 7.075

4.4.2.3 Performance

The average run time for a query is about 11 seconds, as shown in Table 4.12. With
cache being turned on in MySQL, we get up to 9% improvement on the same query.
As the constraints become stricter than previous, the solution space increasingly re-
duces as a result of the processing time decreases (to as low as 4.97 seconds).

We observe that the performance increases when we move from Environment 1
to Environment 2. Environment 4 has the shortest processing time as a result of
increased hardware capacity, hence the idea of “scale up”. There is a limit to the
amount of processing power one core can have, but our solution is single threaded at
the moment. There is still room for improvement by utilizing all cores. In the future,
we will explore the option of configuring MySQL/InnoDB to use multithreading
(Default is 4, and the maximum is 64 since MySQL 5.1.38). Then we will decide
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whether we need to “scale out”.

4.4.3 Computational Complexity

We define the upper bound computational complexity of our optimization approach
as shown in (4.12).

O
(
|R| × |C| × |L|+

((
k
2

)
+

(
n− k

2

)))
(4.12)

In cost estimation, we have to calculate prices for |R| resources, |C| providers, and
|L| geographical locations. The computational complexity may increase with a more
complex utilization function. For example, if the estimated usage has periodic bursts,
more during the day (10 servers) and less at night (2 servers). The utilization function
can follow a sine curve.

Since we have n criteria, and from 1 to k is the benefit criteria, and from k+1 to n
is the cost criteria. We need to do (k

2) + (n−k
2 ) pair-wise comparisons to compute the

preference weight. In our current model, we have k = 5 and n = 7, hence (k
2)+ (n−k

2 ) =

(5
2) + (2

2) =
5!

2!(5−2)! + 1 = 11.

4.5 Summary

In this chapter, we proposed an AHP based QoS-aware technique for Cloud infras-
tructure services selection. Our approach takes into account real-time, variable net-
work QoS constraints, as it is necessary to guarantee the performance of applications.
It not only allows users to compare and select a Cloud service based on a single cri-
terion (e.g. total cost, the max size limit for storage, and memory size for computing
instance) but also supports a utility function that combines multiple selection criteria
about storage, compute, and network services.

AHP is selected because it allows both actual measurements and subjective opin-
ions to be inputs. If there is a preference on the brand, technology or location of a
service, it can be turned into weights by pairwise comparison.



Chapter 5

Resource Usage Estimation

In the previous chapters, we have proposed techniques for selecting Infrastructure as
a Service (IaaS) Cloud offers, which allow users to define multiple design-time and
run-time requirements. These requirements are then matched against our knowledge
base to compute possible best fit combinations of Cloud services at the IaaS layer. We
have also investigated QoS-aware Cloud service selection techniques, which com-
pares the network speed and latency. In this chapter, we will investigate some high
level (i.e. application level) metrics e.g. benchmarks for web servers. Application
level metrics can give a more precise measurement of how good an overall system
completes assigned tasks. Our approach applies queueing theory [78] model to esti-
mate the best fit resource allocation for achieving target QoS.

5.1 Problem Description

Decisions to migrate existing systems to public IaaS clouds can be complicated as
evaluating the benefits, risks and costs of using Cloud computing is far from straight-
forward. Furthermore, given the large number of Cloud instance types even for a
single data-center (such as AWS), it is not easy to select the type of server instance.
Choosing different instance types has different impacts on cost and performance, but
such decision making information is not readily available in a succinct and organized
manner.

For example, when application developers/companies are considering renting
Cloud Infrastructure, it would be beneficial for them to estimate how many servers
they need to achieve certain performance, and associated total costs of such setting.
There are different kinds of servers/VMs that are available from different Cloud
providers with various costs. There are also different locations for data-centers that
one can choose from each provider. Each kind of server will have different RAM
capacity and CPU speed, which would result in different speeds for processing the
same job.

We would like to estimate the system performance, give benchmarking results
(servicing time) for certain tasks, and simulate system behaviors under different con-
straints, e.g. total cost and maximum wait time. For example, a company may be
operating 10 servers with a configuration of 4 GB memory and 1.8 GHz CPU, but

101
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they need to expand their business in a new country and support the double num-
ber of customers they currently support. They want to evaluate the option to move
the in-house infrastructure to Cloud. First, they could run a benchmark software on
their servers to get the service time for their business operations, e.g., run Apache
JMeter to get the number of web requests they can handle per second for the whole
cluster, i.e. 40 requests per 10 servers per second. Then they could run the same
benchmark software on one of the Cloud servers (maybe with 16 GB RAM 3.6 GHz
CPU). Suppose that they receive a 8 request per second result on a single VM. The
simplest way to estimate the number of Cloud servers needed could be to divide the
target throughput with the rate of processing, i.e. get 40/8=5 of this kind of Cloud
servers to achieve the same requests per second (average/peak time) performance.
However real world situations are often more complex and full of uncertainties, and
thus queueing theory can serve as a robust mathematical model for probabilistic
simulation.

In this work, we model systems to be migrated to a public Cloud as queueing
systems. In an commercial web application scenario, customers would send requests
(i.e. jobs) to the server. When the workload is heavy, such jobs would be queued (in
a buffer). Assuming that the job arrival is according to a Poisson process with rate
λ, i.e. the probability of the next job arrival only depends on the last one, but not
anything before the last. This is also called memorylessness. Then we can model this
process with the M/M/n queue. If the job arrivals are not following any pattern, thus
any kind of distribution is possible and we can apply the M/G/n queueing model.
In situations when the system is considered busy or under heavy traffic, heavy traffic
approximation models can be applied.

5.2 Queueing theory based models

Let n be the number of Cloud servers, and job_count be the number of jobs during
a test. There are different types of jobs. For web workload, a job can be a GET
or POST HTTP request. Here, job_count refers to the number of requests received
per second. For analytical applications, a job can be a specific task, like word count
with map-reduce. For SQL or NoSQL databases, a job can be a query (e.g. SELECT,
INSERT). The average arrival rate (λ), i.e. rate of arrival of jobs, is calculated by:

λ =
job_count
duration

(5.1)

where duration refers to the duration of a test. For example, 10000 calls came in
over the course of one day and you want to calculate the arrival rate per minute. By
Equation (5.1), we have 10000

24×60 ≈ 6.94444, and the arrival rate is just about 7 calls per
minute.

Let Ts be the service time, which is the average time taken to service a job. Then
the service rate (µ), which is the number of jobs processed per unit time, can be
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calculated as:
µ =

1 unit time
Ts

(5.2)

where unit time can be one second, one minute, one hour, etc. Server utilization (ρ)
is the ratio defined as:

ρ =
λ

nµ
(5.3)

where λ can be calculated by Equation (5.1), and µ can be calculated by Equa-
tion (5.2). ρ sometimes is also referred to as the traffic intensity or the agent oc-
cupancy, as it represents the average proportion of time which each of the servers is
occupied, assuming that jobs choose their servers randomly.

In a queueing system, a customer’s time is spent on either waiting for services
or getting services. The average response time (Tr) is the total amount of time a job
spends both in the queue waiting for services and getting services:

Tr = Tw + Ts (5.4)

where Tw is the average time spent on waiting to be served, and Ts is the average
time spent on getting a service.

We assume that jobs are generated from an infinite population. So we will only
look at those infinite-source queueing models.

5.2.1 Waiting time calculation

5.2.1.1 M/M/1 queue

For a system where its job arrival follows a Poisson distribution, and service times
follows an exponential distribution, the simplest queue we can have is the M/M/1
queue with only one server, and its job arrival is according to a Poisson process with
rate λ. The average waiting time can be computed as:

E(TM/M/1
w ) =

ρ

µ(1− ρ)
(5.5)

where E(TM/M/1
w ) can be read as the expected value of Tw for the M/M/1 queue.

5.2.1.2 M/M/n queue

Similar to the M/M/1 queue, when we have n servers, it becomes the M/M/n queue
[126]. Its average job arrival rate can be calculated according to Equation (5.1). For
example, if there are 360 jobs per minute, λ = 360/60 = 6 jobs per second.

In a system with n servers, if there are less than n jobs, some of the servers
will be idle. If there are more than n jobs, the jobs will be queued in a buffer.
Server utilization is calculated with Equation (5.3). For a queue to be stable ρ < 1 is
required. The probability that an arriving job is forced to join the queue (all servers
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are occupied) is denoted as:

C(n,
λ

µ
) (5.6)

which is best known as the Erlang’s C formula [6, 59]:

C(n,
λ

µ
) =

1

1 + (1− ρ) n!
(nρ)n ∑n−1

k=0
(nρ)n

n!

(5.7)

where ρ is the server utilization and can be calculated by Equation (5.3). The average
waiting time in the M/M/n queue can be calculated as:

E(TM/M/n
w ) =

C(n, λ
µ )

nµ− λ
+

1
µ

(5.8)

Then, we can calculate the percentage of waiting times that are within a certain value
(z):

B(Tw <= z) = (
λ

µ
)n(n!)−1[

n−1

∑
k=1

(
λ

µ
)k(k!)−1 + (

λ

µ
)n(n!)−1(1− λ

nµ
)−1]−1

nµ(n− 1− λ

µ
)−1e−µz(1− e−µ(n−1− λ

µ )z) (5.9)

where e is the mathematical constant approximately equal to 2.71828, and z is the up-
per bound of waiting times we want to investigate. For example, if B(Tw < 1 sec) =
0.95, it means 95 percent of the waiting times are within 1 second. We also call this
the error bound estimation (B) of the waiting time [194].

5.2.1.3 M/G/1 queue

So far, we intestigated how waiting times can be calculate for systems with expo-
nentially distributed service times. In many practical problems service times are not
exponentially distributed, so we need to investigate queueing systems with generally
distributed service times [124]. “Generally distributed” means that service times can
follow any arbitrary distribution. The M/G/1 queue models a 1 server system with
generally distributed service times. Its average waiting time is calculated with:

E(TM/G/1
w ) =

ρ2 + λ2var(Ts)

2λ(1− ρ)
(5.10)

where var(Ts) is the variance of the service times. The variance of the service times
is calculated by taking the arithmetic mean of the squared differences between each
value and the mean value, which is also standard deviation squared, i.e. σ2.
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5.2.1.4 M/G/n queue

Generally distributed service time with n servers can be modeled by the M/G/n
queue [125], and its average waiting time can be calculated by:

E(TM/G/n
w ) =

1 + CV2

2
E[TM/M/n

w ] (5.11)

where CV2 is the squared coefficient of variation of the service time distribution,
which can be computed as:

CV =
σ

x̄
(5.12)

where σ is the standard deviation and x̄ is the mean. The mean of the service time
distribution is the average of service time, which is Ts.

The error bound estimation of a M/G/n queue waiting time can be calculated by
applying the Markov’s inequality [130]:

B(Tw ≥ z) ≤ E(Tw)

z
(5.13)

where E(Tw) is the average waiting time. For example, the upper bound percentage

of waiting times which are greater than 2 seconds would be E(TM/G/n
w )

2 .

5.2.1.5 Heavy Traffic Approximation

In a system with high occupancy rates (ρ approaching 1), a heavy traffic approxima-
tion [86, 85] can be used to approximate waiting time, e.g. for the M/G/1 queue:

E(TM/G/1,H
w ) =

λ( 1
λ2 + var[Ts])

2(1− ρ)
(5.14)

The relative error of the heavy traffic approximation is defined as:

E(TM/G/1
w )− E(TM/G/1,H

w )

E(TM/G/1
w )

(5.15)

which measures the relative difference of the heavy traffic approximation compared
to the normal estimation of average waiting time in a queue, and can be calculated
by:

1− ρ2

ρ2 + λ2var(Ts)
(5.16)

5.2.2 Number of servers needed

If we have a target response time to achieve, assuming all relevant information is
known, we can estimate the number of servers needed.

Let Rmax be the response time maximum limit specified by a user. If we use the
M/M/n queueing model, we can let E(TM/M/n

w ) = Rmax to calculate the number of
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minimum servers required. C(n, λ
µ ) is the probability that an arriving job is forced to

join the queue. To simplify the calculation, we assume this value to be 1. Thus, we
have:

Rmax =
1

nµ− λ
+

1
µ

(5.17)

Rearrange this equation leads to:

n =
1

µRmax − 1
+

λ

µ
(5.18)

Similarly, for cases when the M/G/n queue is the model, we have the following by
applying Equation (5.11):

n = [ (
2Rmax

1 + CV2 −
1
µ
) −1 + λ]

1
µ

(5.19)

5.2.3 Throughput

According to Little’s law, as shown in Equations (2.16) and (2.17), λ is also the mean
throughput of the system. So when the response time constraint Rmax is satisfied,
the system achieves a throughput λ′ which is equal to the arrival rate. Thus, we can
deduce its calculation by rearranging Equation (5.18) as follows:

λ′ = nµ− µ

µRmax − 1
(5.20)

Similarly, we have a M/G/n queue, Equation (5.19) should be used:

λ′ = nµ− (
2Rmax

1 + CV2 −
1
µ
) −1 (5.21)

5.2.4 Constraint satisfaction

If a customer has requirements on estimating the VM usage in the Cloud. It can be
formulated as a constraint satisfaction problem and solved by linear optimization.

Firstly, among all available options, we filter out the ones that satisfy users’ static
requirements, such as location, provider, VM types, CPU speed, number of cores,
memory size, etc. Then we calculate the total cost among those selected options. The
cost of each resource (r) can be calculated by multiplying the resource usage (nr)
with its corresponding price (Cor) and how long it is estimated to be required (Tr).
Then we sum up the costs for VMs, storage and networks:

TotalCo = ∑
r∈R

(nrCorTr) (5.22)

where R is the set of all resource types. More details on cost calculation can be found
in Chapter 4, and this section only represents it very abstractly.
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When QoS constraints are given, such as minimum throughput (Thmin) and max-
imum response time (Rmax). The objective is to minimize the cost. For a M/M/n
queue, after substituting in Equations (5.8) and (5.20), our problem becomes:

min TotalCo
s.t. 1

nµ−λ + 1
µ <= Rmax

nµ− µ
µRmax−1 >= Thmin

Alternatively, when the objective is to minimize waiting time, when satisfying user’s
budget (Bmax) limitation, and not breaking performance promise on throughput at
the same time, we get the following:

min 1
nµ−λ + 1

µ

s.t. TotalCo <= Bmax

nµ− µ
µRmax−1 >= Thmin

Similarly, for a M/G/n queue, after substituting in Equations (5.11) and (5.21), we
get the following respectively:

min TotalCo
s.t. ( 1

nµ−λ + 1
µ )(1 + CV2) 1

2 <= Rmax

nµ− ( 2Rmax
1+CV2 − 1

µ )
−1 >= Thmin

min ( 1
nµ−λ + 1

µ )(1 + CV2) 1
2

s.t. TotalCo <= Bmax

nµ− ( 2Rmax
1+CV2 − 1

µ )
−1 >= Thmin

The form of QoS calculating functions (5.8), (5.11), (5.20) and (5.21) has a deciding
influence on the nature of the optimization problem we are ending up with. With
the assumption of the linearity of these functions as given above, our optimization
problems fall in the class of mixed integer programming (MIP) [149]. The reason why
they fall in the MIP class and not the linear programming class is that our variables
can take only integer values, e.g. we cannot allocate 0.4 VMs of some type. Though
MIP is not in the polynomial class of problems, there are industry implementations
of efficient algorithms (up to an extent) to solve them. But in our work we are
approximating the MIP to the linear program, allowing the relaxation that variables
can take non integer values. After the solution is computed, we approximate the
variables to the nearest integers (by taking the ceiling value).
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5.3 Case Study

In this section, we give case studies on web applications and databases, about how
workload can be modeled and measured in each situation.

5.3.1 Web application

Figure 5.1 shows the workload of the cluster which supports Wikimedia [221]. This
figure includes one week’s data, monitored by Ganglia [64]. Job arrival rate in this
workload varies depending on the day of the week and the hour of the day, which is
labeled as “Loads/Proces” on the y-axis. In this dataset, there is a 12-hour difference
between the peak (at noon) and the trough (at midnight) in number of arriving jobs.

Figure 5.1: Wikimedia cluster’s load between 18th to 24th August 2014 [65].

Overall, the workload follows a sine wave pattern. Similar patterns are also
shown in the ClarkNet-HTTP trace dataset [38]. ClarkNet-HTTP contains two weeks
of HTTP logs from the ClarkNet WWW server in July 1995. Figure 5.2 shows the
number of GET requests received daily. The source and data for generating this
histogram can be viewed online via plot.ly.1

When simulating such web workload, we can generate random requests accord-

1https://plot.ly/~miranda.zhang.q/28

https://plot.ly/~miranda.zhang.q/28
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Figure 5.2: Number of GET requests received daily, plotted from ClarkNet-HTTP
trace dataset.
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ing to:

r = γmin + 0.5(γmax − γmin) + 0.5(γmax − γmin)sin(
πt

86400
) (5.23)

where 86400 is the number of seconds in a day (24 hours), γmax is the maximum
number of requests per second on that day, γmin is the minimum number of requests
occurs on that day, and t is time (i.e. timestamp).

A range of tools can be used to benchmark websites or monitor web traffic and
server workloads. For example, Jmeter can generate web workloads, and monitor the
performance of the tested websites. In the end, Jmeter produces a report on a range
of attributes, such as latency and throughput. The “latency” or “elapsed” column in
a Jmeter results table is the response time measurements. Throughput is the number
of requests sent to a server per unit of time (i.e. per second, per minute, etc.):

throughput =
number of requests

Tend − Tstart
(5.24)

Another tool is Apache Benchmark [3]. It can carry out tests similar to Jmeter.
There are also web services for general network probing, such as RIPE Atlas [172],
and cloud network monitoring service such as CloudHarmony.

5.3.2 Database

An example for the database benchmarking software is mysql-bench [139]. Despite
having “mysql” in its name, it supports other databases as well, including Access,
Adabas, AdabasD, Empress, Oracle, Informix, DB2, mSQL, MS-SQL, MySQL, Pg,
Solid, Sybase, SAPdb, and SQLite. Mysql-bench benchmark suite is designed to test
how a given SQL implementation performs. This benchmark is single-threaded, and
measures the minimum time for the operations performed. It also measures the av-
erage time (in wall clock seconds) it takes for all of the mysql-bench benchmarks,
i.e. alter-table, ATIS, big-tables, connect, create, insert, select, transactions and Wis-
consin. For example, we could focus on two of the most important query types –
SELECT (READ) and INSERT (WRITE). The mysql-insert benchmark issues 300,000
INSERT queries (if configured to run under default conditions) and calculates the
total wall clock seconds to execute all queries. Thus, if the wall clock seconds is t, on
a particular system, we can deduce that the service rate of that server to process in-
sert queries is µw = 300000

tw
queries/second. Similarly, we can deduce the service rate

for SELECT queries as µr =
1,194,631

tr
where the SELECT queries include the WHERE

clause and thus SELECT queries with range parameters have been taken into ac-
count. This implies that, if the fraction of READ/WRITE requests is given as wr and
ww, we can determine the average service rate as:

µ = wrµr + wwµw (5.25)

Thus, using benchmark results and the READ/WRITE ratio, the service rate of dif-
ferent servers for performing MySQL queries can be computed.



§5.4 Experiment 111

There are also other benchmarking softwares, such as pgbench [155] for Post-
greSQL database and tpcc-mysql [202] for MySQL database.

5.4 Experiment

Our experiments are carried out with Apache JMeter and later imported to BlazeMe-
ter [101]. BlazeMeter is a commercial, self-service load testing platform as a service
that is compatible with JMeter. I have set up a simple web application on a machine
with 16 GB RAM and 3.2 GHz CPU.

In the first test, we sent 581 identical GET requests to the web server. During
the test, the server has an average of around 30% CPU utilization and 45% memory
usage (16 GB * 0.45 ≈ 7.2 GB). Without tuning the default web server settings, the
application is not exhausting the full potential of the hardware. The average process-
ing time is 164 ms with a standard deviation of 0.028 seconds. We use those as the
base values for the service time distribution, i.e. Ts = 0.164 and σ = 0.028.

Next we simulated a Poisson arrival workload. We used a timer called "Pois-
son Random Timer" to give a random pause to requests before they are sent to a
server. Between consecutive requests, there is a random pause between 0 and 300
milliseconds. We sent 194 requests over 2 minutes (120 seconds).2 So the arrival
rate can be calculated using Equation (5.1), i.e. λ ≈ 1.6167 requests per second.
According to Equation (5.2), we have µ ≈ 6.0976 requests per second. Then by ap-
plying Equation (5.3), we have ρ ≈ 0.26513. After applying Equation (5.10), we get
E(TM/G/1

w ) ≈ 0.030447. The estimated response time, according to Equation (5.4) is
Tr = Tw + Ts ≈ 0.19445 seconds. This is close to the measured average response time
of 217 ms.

The Octave script for the above calculations is available online.3

5.5 Summary

This chapter proposed a technique to estimate the impact of underlying cloud re-
sources on the performance of user applications/services. An informed user (i.e.
infrastructure architects, CIOs, and system admins) may have benchmarking results
in local environments and want to estimate application-level performances in the
Cloud. The model introduced in this chapter simulates the application in the Cloud
as a queueing system. So given the information on how fast one unit of resource can
process one job, queuing formulas in the proposed technique can estimate the time
taken for the whole system (made up of many resources) to process some workload
(made up of many jobs) in the Cloud.

2https://github.com/miranda-zhang/Cloud-Infrastructure-Services-Selection-and-Evaluation/
blob/master/blazemeter.com/sense-report-663269.pdf

3https://octave-online.net/bucket~NkdpWMdmmrFJq2VJ4AZYj3

https://github.com/miranda-zhang/Cloud-Infrastructure-Services-Selection-and-Evaluation/blob/master/blazemeter.com/sense-report-663162.pdf
https://github.com/miranda-zhang/Cloud-Infrastructure-Services-Selection-and-Evaluation/blob/master/blazemeter.com/sense-report-663269.pdf
https://github.com/miranda-zhang/Cloud-Infrastructure-Services-Selection-and-Evaluation/blob/master/blazemeter.com/sense-report-663269.pdf
https://octave-online.net/bucket~NkdpWMdmmrFJq2VJ4AZYj3
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Chapter 6

System Implementation and
Evaluation

6.1 CoCoOn Websites and Services

This data model has evolved with the Cloud Service landscape. We started the model
with taxonomy definitions of Cloud terminologies, which is described in Section 3.2.
Then we extended part of the ontology and developed it into the current version,
which is explained in Section 3.3. This section will explain how to use the ontology,
including: i) How are the ontologies, documentation, datasets hosted? ii) How can
data be collected and transformed with this ontology? iii) How to query the results
with SPARQL? We also provide some other usage cases.

6.1.1 Ontology Usage Cases

The general workflow of CoCoOn is illustrated in Figure 6.1. A possible visualization
of Azure’s Compute service offers and regions is shown in Figure 6.2, with offers in
green and regions in purple. Regions with more offers are big.

6.1.2 Mapping Data to Ontology

For converting data from various sources to semantic data, many methods were
explored. Initially, we tried to transform the JSON file from the Provider APIs into a
JSON-LD file by adding a @context to it. After experimenting with JSON-LD Macros,
we realized there are many limitations. It only works well for simple cases, but it
is not sufficient to cover more complex scenarios. So we moved to use SPARQL-
Generate [117, 189] for defining the mappings.

6.1.2.1 Data Clean Up

Various data can be obtained from APIs of providers, in JSON or JS format. We then
clean up/transform such data with jq. Next, we map the cleaned data to ontologies,
and get results in the RDF turtle format.

113

https://github.com/antoniogarrote/json-ld-macros
https://stedolan.github.io/jq/
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CoCoOn

Google Cloud Amazon

Cloud IaaS Features Price Performance

Query via SPARQL Visualisation Other / e.t.c

Service

Ontology

Application

Azure e.t.c

Figure 6.1: CoCoOn Data Integration Workflow

Listing 6.1 illustrates an example jq script transforms json data from Google API.
The complete process with input and output for each step is documented online with
more details.1

Listing 6.1: jq script transforms data from Google API
.gcp_price_list | . |=with_entries(select(.key| contains("VMIMAGE") )) |
[ to_entries[] |

{
"name": .key,
"cores":(

if (.key|contains("F1-MICRO")) then
0.2

elif (.key|contains("G1-SMALL")) then
0.5

else .value.cores end
),
"memory": .value.memory,
"gceu": (

if .value.gceu == "Shared CPU, not guaranteed" then
null

else .value.gceu end
),
"maxNumberOfPd": .value.maxNumberOfPd,
"maxPdSize": .value.maxPdSize,
"price":
[

.value | del(
.cores, .memory, .gceu,
.fixed, .maxNumberOfPd, .maxPdSize, .ssd)

| to_entries[] | { "region": .key, "price": .value }
]

1https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/gcloud/
compute.md

https://cloudpricingcalculator.appspot.com/static/data/pricelist.json
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/gcloud/compute.md
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/gcloud/compute.md
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Figure 6.2: Azure Services Regions

}
]

6.1.2.2 Annotating Plain Data with CoCoOn

For converting data from various sources to semantic data, we used SPARQL-
Generate [117, 189] for defining the mappings. We developed many SPARQL-
Generate scripts for this process. An example SPARQL-Generate script that maps
json data from Azure API about managed disks to CoCoOn v1.0.1 is illustrated in
Listing 6.2. The complete process with input and output for each step is documented

https://github.com/miranda-zhang/cloud-computing-schema/tree/master/example/sparql-generate
https://github.com/miranda-zhang/cloud-computing-schema/tree/master/example/sparql-generate
https://azure.microsoft.com/api/v2/pricing/managed-disks/calculator/?culture=en-au&discount=mosp
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online with more details.2

Listing 6.2: SPARQL-Generate script maps json data to ontologies
BASE <https://w3id.org/cocoon/data/v1.0.1/>
PREFIX iter: <http://w3id.org/sparql-generate/iter/>
PREFIX fun: <http://w3id.org/sparql-generate/fn/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX gr: <http://purl.org/goodrelations/v1#>
PREFIX cocoon: <http://w3id.org/cocoon/v1.0.1#>
PREFIX schema: <https://schema.org/>
PREFIX unit: <http://qudt.org/1.1/vocab/unit#>

GENERATE {
?iri a cocoon:NetworkStorage;
rdfs:label ?name;
schema:dateModified ?date;
cocoon:hasProvider ?provider;

GENERATE {
?iri gr:hasPriceSpecification [

a gr:CloudServicePriceSpecification ;
gr:hasCurrency "USD"^^xsd:string;
cocoon:hasCurrencyValue ?value_normalized;
gr:hasUnitOfMeasurement cocoon:GBPerMonth ;
cocoon:inRegion <Region/{?provider_slug}/{?region}>;

]
}
ITERATOR iter:JSONListKeys(?prices) AS ?region

WHERE {
FILTER( !CONTAINS(?managed_disk,"ultrassd") )
BIND ( xsd:float( fun:JSONPath(?prices,"$.[’{?region}’].value") ) AS ?value )
BIND ( xsd:nonNegativeInteger( fun:JSONPath(?managed_disk_json,"$.size") ) AS ?size)
BIND ( xsd:decimal( IF( BOUND(?size) , ?value/?size , ?value ) ) AS ?value_normalized )

} .

GENERATE {
?iri
cocoon:hasStorageIOMax [

a schema:TypeAndQuantityNode;
schema:amountOfThisGood ?iops;
schema:unitCode cocoon:IOPs;

];
cocoon:hasStorageSize [

a schema:TypeAndQuantityNode;
schema:amountOfThisGood ?size;
schema:unitCode cocoon:GB;

];
cocoon:hasStorageThroughputMax [

a schema:TypeAndQuantityNode;
schema:amountOfThisGood ?speed;
schema:unitCode unit:MegabitsPerSecond ;

];
} WHERE {

BIND (xsd:nonNegativeInteger( fun:JSONPath(?managed_disk_json,"$.iops") ) AS ?iops )
BIND (xsd:nonNegativeInteger( fun:JSONPath(?managed_disk_json,"$.size") ) AS ?size)
BIND (xsd:nonNegativeInteger( fun:JSONPath(?managed_disk_json,"$.speed") ) AS ?speed)
FILTER( BOUND(?iops) )
# either ?iops ?size ?speed are all bound or non is bound

2https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/azure/
storage.md

https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/azure/storage.md
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/azure/storage.md
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} .

GENERATE {
?iri

gr:hasPriceSpecification <{?updated}/CloudStorageTransactionsPriceSpecification/{?
↪→ provider_slug}/managed_disk/transactions-{?type}>;

} WHERE {
FILTER( ! CONTAINS(?managed_disk,"snapshot") && ! CONTAINS(?managed_disk,"ultrassd"))
FILTER( CONTAINS(?managed_disk,"hdd") || CONTAINS(?managed_disk,"ssd") )
BIND ( IF( CONTAINS(?managed_disk,"hdd") , "hdd" ,"ssd" ) AS ?type )

} .

GENERATE {
?iri

cocoon:canHaveSnapshot <{?updated}/NetworkStorage/{?provider_slug}/standardssd-
↪→ snapshot>;

cocoon:canHaveSnapshot <{?updated}/NetworkStorage/{?provider_slug}/standardhdd-
↪→ snapshot-lrs>;

cocoon:canHaveSnapshot <{?updated}/NetworkStorage/{?provider_slug}/standardhdd-
↪→ snapshot-zrs>;

cocoon:canHaveSnapshot <{?updated}/NetworkStorage/{?provider_slug}/{?
↪→ premiumssd_snapshot}>;

} WHERE {
FILTER( !CONTAINS(?managed_disk,"snapshot") )
FILTER( CONTAINS(?managed_disk,"premiumssd") || CONTAINS(?managed_disk,"standardssd"))
BIND ( IF( CONTAINS(?managed_disk, "premiumssd") , "premiumssd-snapshot" , ?undefined )

↪→ AS ?premiumssd_snapshot )
} .

GENERATE {
?iri gr:hasPriceSpecification [

a gr:CloudServicePriceSpecification ;
gr:hasCurrency "USD"^^xsd:string;
cocoon:hasCurrencyValue ?value;
gr:hasUnitOfMeasurement ?unit ;
cocoon:inRegion <Region/{?provider_slug}/{?region}>;
rdfs:label ?label;

].
}
ITERATOR iter:JSONListKeys(?prices) AS ?region

WHERE {
FILTER( CONTAINS(?managed_disk,"ultrassd") )
BIND (xsd:decimal( fun:JSONPath(?prices,"$.[’{?region}’].value") ) AS ?value )
BIND (

COALESCE(
IF(CONTAINS(?managed_disk,"iops"), cocoon:IOPsPerHour, 1/0),
IF(CONTAINS(?managed_disk,"stored"), cocoon:GBPerHour, 1/0),
IF(CONTAINS(?managed_disk,"throughput"), cocoon:MegabitsPerSecondPerHour, 1/0),
cocoon:VcpuPerHour # assume "vcpu"

) AS ?unit
)
BIND ( STRAFTER(?managed_disk,"-") AS ?label)

} .
}
SOURCE <https://raw.githubusercontent.com/miranda-zhang/cloud-computing-schema/master/example/jq

↪→ /azure/2019-03-07/managed-disks.json> AS ?source
ITERATOR iter:JSONListKeys(?source) AS ?managed_disk
WHERE {

BIND (fun:JSONPath(?source,"$.[’{?managed_disk}’]") AS ?managed_disk_json)
BIND (fun:JSONPath(?managed_disk_json,"$.prices") AS ?prices)
# having single point of change for the following
BIND ( "Azure" as ?provider_slug )
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BIND ( cocoon:Azure as ?provider )
BIND ( "2019-03-07" as ?updated) # yr-month-day
BIND ( xsd:date(?updated) as ?date )
BIND ( IF (CONTAINS(?managed_disk,"ultrassd"), "ultrassd", ?managed_disk) AS ?name )
BIND ( <{?updated}/NetworkStorage/{?provider_slug}/{?name}> AS ?iri )

}

6.1.2.3 Dataset

We have also made the complete datasets (132,282 triples) available at github. It is
recommended to download the data and investigate with a triplestore. For example,
you can run a query as shown in Listing 6.3, and the results are shown in Table 6.1.

Table 6.1: Instance counts of the classes

Class Count

cocoon:NetworkStorage 45

cocoon:ComputeService 1021

cocoon:Region 55

cocoon:StorageService 161

cocoon:Location 5

cocoon:InternetService 6

cocoon:SystemImage 10

Listing 6.3: A SPARQL query
PREFIX cocoon: <https://w3id.org/cocoon/

↪→ v1.0.1#>
PREFIX gr: <http://purl.org/goodrelations

↪→ /v1#>
SELECT ?cls (COUNT(?s) AS ?count)
{

VALUES ?cls {cocoon:ComputeService
↪→ cocoon:SystemImage cocoon:
↪→ StorageService cocoon:
↪→ NetworkStorage cocoon:
↪→ NetworkService cocoon:
↪→ InternetService cocoon:Region
↪→ cocoon:Location gr:
↪→ BusinessEntity

} ?s a ?cls
} GROUP BY ?cls

Data can also be hosted with a Linked Data Fragments Server. Example project
setup is also documented in the github directory.

6.2 QoS Profiler

In this section, we describe the implementation of the QoS profiler proposed in Sec-
tion 4.1.2.

6.2.1 QoS Data Collection Scripts

Initially we used the HtmlUnit library [92], to collect QoS data from CloudHarmony.
Later, as CloudHarmony evolved, we also upgraded our script, as shown in a live
demos for measuring downlink speed and latency for Google Cloud services.3 Up-

3https://miranda-zhang.github.io/cloud-computing-schema/cloudharmony/google/test.html

https://github.com/miranda-zhang/cloud-computing-schema/blob/ldf-server/v1.0.1/v1_0_1.ttl
https://w3id.org/cocoon/v1.0.1#NetworkStorage
https://w3id.org/cocoon/v1.0.1#ComputeService
https://w3id.org/cocoon/v1.0.1#Region
https://w3id.org/cocoon/v1.0.1#StorageService
https://w3id.org/cocoon/v1.0.1#Location
https://w3id.org/cocoon/v1.0.1#InternetService
https://w3id.org/cocoon/v1.0.1#SystemImage
http://linkeddatafragments.org/
https://cloudharmony.com
https://miranda-zhang.github.io/cloud-computing-schema/cloudharmony/google/test.html
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link tests script4 is written in Python as selenium5 is required. Additional details on
using cloudharmony for measuring QoS are documented online.6

6.2.2 Distributed Architecture

Figure 6.3 shows the top level dataflow of our QoS profiler. It is better to look into this
figure together with Figure 4.2. We have used several (slave) servers to collect data
from different locations. Then we transferred them to a central server for processing
and backup. Data on this server was also archived and cleared manually every time
after we imported the newly collected data into the local offline system for post-
processing and cleaning up. We only used the (summarised) average QoS data for
real-time querying via API and web GUI, as this allows us to respond faster.

Figure 6.3: System Dataflow.
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6.3 CloudRecommender

Despite the popularity of Cloud Computing, existing Cloud Service manipulations
(e.g. select, start, stop, configure, delete, scale and de-scale) techniques require hu-
man familiarity with different Cloud service types and typically rely on procedural
programming or scripting languages. The interaction with services is performed

4https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/
cloudharmony/selenium/cloudharmony.py

5https://github.com/miranda-zhang/cloud-computing-schema/tree/master/example/
cloudharmony/selenium

6https://github.com/miranda-zhang/cloud-computing-schema/tree/master/example/
cloudharmony

https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/cloudharmony/selenium/cloudharmony.py
https://github.com/miranda-zhang/cloud-computing-schema/blob/master/example/cloudharmony/selenium/cloudharmony.py
https://github.com/miranda-zhang/cloud-computing-schema/tree/master/example/cloudharmony/selenium
https://github.com/miranda-zhang/cloud-computing-schema/tree/master/example/cloudharmony/selenium
https://github.com/miranda-zhang/cloud-computing-schema/tree/master/example/cloudharmony
https://github.com/miranda-zhang/cloud-computing-schema/tree/master/example/cloudharmony
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through low-level application programming interfaces (APIs) and command line in-
terfaces. As a result, accessibility to Cloud Computing is limited to decision makers
with high IT expertise. This is inadequate, given the proliferation of new providers
offering services at different layers (e.g. SaaS, PaaS, and IaaS). This raises a set of
research questions: How to develop interfaces that can transform low, system-level
programming to easy-to-use drag and drop operations? Will such interfaces improve
and simplify the process of Cloud Service Selection and Comparison?

Therefore, we present CloudRecommender, a decision support system, using
transactional SQL semantics, procedures and views. The benefits to users of
CloudRecommender include, for example, the ability to estimate costs, compute cost
savings across multiple providers with possible trade-offs, and provide a visual aid
in the selection of Cloud services.

Before CloudRecommender, there have been a variety of systems that use declar-
ative logic-based techniques for managing resources in distributed computing sys-
tems. The focus of the authors in the work [122] is to provide a distributed platform
that enables Cloud providers to automate the process of service orchestration via the
use of declarative policy languages. The authors in [28] present an SQL-based deci-
sion query language for providing a high-level abstraction for intuitively expressing
decision guidance problems so that database programmers can use mathematical
programming techniques without prior experience. We also draw inspiration from
the work in [129], which proposes a data-centric (declarative) framework to improve
SLA fulfilment ability of Cloud service providers by dynamically relocating infras-
tructure services. COOLDAID [35] presents a declarative approach to managing con-
figurations of network devices and adopts a relational data model and Datalog-style
query language. NetDB [30] uses a relational database to manage the configurations
of network devices. However, NetDB is a data warehouse, not designed for Cloud
service selection or comparison.

In contrast to the approaches as mentioned above, CloudRecommender is de-
signed for solving the new challenges of handling heterogeneous service configura-
tion and naming conventions in Cloud computing. It is designed with a different
application domain – one that aims to apply declarative and widget programming
techniques for solving the Cloud service selection problem.

6.3.1 System Architecture

The CloudRecomender works together with the QoS profiler, and they can be con-
nected through a master-slave architecture. For example, Figure 6.4 shows our pro-
totype design for the master node. We used Dropbox as the backup service for this
implementation to demonstrate the feasibility. As long as data is properly backed up
in a separate location, other mechanisms can be used, i.e. git repository.

The price data is collected from providers’ websites. The problem with automatic
data collection can be solved if providers release more structured data with sufficient
metadata descriptions, using the ontology we have proposed in Chapter 3. The
CloudRecommender system architecture consists of three layers: the configuration
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Figure 6.4: CloudRecommender System Architecture.
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In the reasoning module, main functions and operations are broken down into different blocks.
Some other tasks cannot be strictly categorized into existing modules and are put into the other
tasks section. While it is possible to back up the whole server, it is not necessary. Data stored in
the MySQL database can be backed much easier and cheaper by creating SQL dump. A dump file
is created daily and stored in a Dropbox folder which is free to use and keeps a history of the file
stored in it for 30 days. The presentation layer (UI and API implementation) and the monitoring
module are omitted to keep the diagram simple.

management layer, the application logic layer and the User interface (widget) layer,
as shown in Figure 6.5.

Part (b) of Figure 6.5 shows the deployment structure of the CloudRecommender
system. For persistence, we have chosen MySQL for its agility and popularity, but
any other relational database can be plugged in. Furthermore, many APIs provided
by cloud providers (such as Amazon) and open source cloud management frame-
works (e.g. jclouds) are written in Java. Thus, Java is chosen as the preferred lan-
guage to implement the application logic layer to ease the integration with external
libraries.

The configuration layer maintains the basic cloud domain model related to com-
pute, storage, and network services. Initially, we stored recommender system data
into a relational database, and its implementation is detailed in Section 6.3.1.1. How-
ever, as we go more in-depth with the understanding of the Cloud domain, we find
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Figure 6.5: System architecture and deployment structure

this database model hard to update, thus hard to keep up to date with rapidly chang-
ing Cloud services. Furthermore, this database model is also not very readable to
users who do not know our recommender system, as the database schema is de-
signed to be optimal for recommendation services with normalized tables. So later,
we developed the Cloud Computing Ontology (CoCoOn) model with OWL, which is
discussed in Chapter 3. CoCoOn is flexible and extensible enough to accommodate
new services with minimal changes.

6.3.1.1 Configuration Management Layer

Infrastructure services from different providers have different configurations and
pricing models, which we described in Section 4.1. We collected service configu-
ration information from many public cloud providers (e.g., Windows Azure, Ama-
zon, GoGrid, RackSpace, Nirvanix, Ninefold, SoftLayer, AT and T Synaptic, Cloud
Central, etc.) to demonstrate the generic nature of the domain model for capturing
heterogeneous configuration information of infrastructure services.

We formally capture the domain knowledge (e.g., IaaS configurations) using a
declarative logic-based language. Based on the domain knowledge, we have drawn
the relationships in the conceptual IaaS configuration model and represented in Fig-
ure 6.6. Relationships are carefully considered and normalized to avoid update
anomalies. Services from various providers often have different configurations and
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Figure 6.6: UML data model representing infrastructure service entities and their
relationships

pricing models. Distinct and ambiguous terminologies are often used to describe
similar configurations. Regardless of how providers name their services, we catego-
rize infrastructure services based on their basic functionality. Unit conversions were
performed during instantiation of concepts.

The choice of a relational model and SQL as a query language was made because
of the convenience SQL procedures offer us, in regards to defining templates for
a given widget type. We use stored procedures to create temporary tables and to
concatenate parameters to generate queries based on a user’s input dynamically.

For providers that offer different regional prices, we store the location information
in the price table. If multiple regions have the same price, we choose to combine
them. In the database version implementation, any changes to existing configurations
(such as updating memory size, storage provision, etc.) of services can be done by
executing customized SQL queries.

We have applied declarative service selection techniques by utilizing SQL and
regular expressions to minimize side effects and reinforce constraints. This leads to
an improved Cloud service representation and selection.

The service selection logic developed by our research is transactional and ap-
plies well-defined SQL semantics for querying, inserting, and updating IaaS config-
urations. Also, the proposed declarative approach allows us to take advantage of
optimized query operations (e.g. select and join).

The problem we aim to solve involves computing the Cartesian product O(N *
M) of multiple sets of options. A widely used solution of such operation is the JOIN
operation in the database. Note that much work in database-systems has aimed at
efficient implementation of joins. Modern databases often use HASH JOIN O(N +
M) and MERGE JOIN O(N*Log(N) + M*Log(M)). They are much faster than O(N *
M).

6.3.1.2 Application Logic Layer

The request for service selection in CloudRecommender is expressed as SQL queries.
The selection process supports an application logic that builds upon the following
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Figure 6.7: Example query in procedure.

declarative constructs: criterion, views and stored procedures. The CloudRecom-
mender builds upon SQL queries which are executed on top of the relational data
model.

Criterion: Criterion is a quantitative or qualitative bound (minimum, maximum,
equal) on the configuration parameters provided by a service. Cloud services’ con-
figuration parameters and their range/values listed in Table 6.2 form the basis for
expressing selection goal and criteria (e.g., select a cheapest (goal) compute service
where (criterion) 0<Ram<=20, 0<=local storage<=2040, number of hours to be used
per month = 244). An example query is shown below in Figure 6.7:

Procedures: We have implemented many customized procedures that automate
the service selection process. Many routines are prepared to process a user service
selection request. A list of inputs is stored in a temporary table to be passed into the
procedures. As such, the size of the input list can be very long. Final results are also
stored in temporary tables, which are automatically cleared after the expiration of
the user session.

Controller: The controller supports enforcement of criteria and dynamically gen-
erates SQL queries which fulfil a given selection preference stated by the user. Due to
space considerations, we are not able to depict the complete algorithm, but Figure 6.8
shows the selection logic in a simplified diagram. Next, we explain the basic steps
which are executed for resolving a service selection request:

1. Basic validation is performed on user inputs at the controller, and appropriate
errors are returned accordingly.

2. Depending on a user’s requirements, the steps 3.2 and 3.3 may not happen.
This is why they are shown in dotted lines, i.e. a user can query storage or
compute only IaaS services. However, data transfer parameters have to be set.
A user will transfer data in and out of the compute or storage services.

3. Multiple temporary tables are created during the process, so intermediate re-
sults (i.e. selection details of the final recommendation) can be fetched later as
needed.

4. It is possible for a user to choose multiple compute services, each with differ-
ent criteria. For example, they may have ten sets of requirements and choose
five instances for each. So at step 5, queries with different numbers of join
operations are dynamically constructed.
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Service Configurations Parameters Range/possible values

Compute

Core >=1

CPUClockSpeed >0

hasMemory >0

hasCapacity >=0

Location North America, South America,
Africa, Europe, Asia, Australia

CostPerPeriod >= 0

PeriodLength >0

CostOverLimit >= 0

PlanType Pay-as-you-go, Prepaid

Storage

StorageSizeMin >= 0

StorageSizeMax > 0

CostPerPeriod (e.g. Period =
Month) (e.g. UnitOfMeasure-
ment = GB)

>= 0

Location North America, South America,
Africa, Europe, Asia, Australia

RequestType put, copy, post, list, get, delete,
search

CostPerRequest >= 0

PlanType Pay-as-you-go, Prepaid, Re-
duced Redundancy

Network
CostDataTransferIn >=0

CostDataTransferOut >=0

Table 6.2: Infrastructure service types and their configurations
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Figure 6.8: Service Selection logic.

5. Currency conversions are performed before costs are compared.

Computational Complexity of Service Selection Logic: For a provider p, sup-
pose it has r regions, v different kinds of VMs, s storage options, and n network
services. There will be r × v different prices for VM, similarly for prices of storage
(r × s) and network (r × n). Theoretically, a total number of r3 × v× s× n possible
combinations. We can generally reduce the number of options significantly in the
early stage if a user has strict requirements. In the worst case scenario, the logic
needs to compute a full cross join (Cartesian product).

Another factor affecting the price calculation is the different price tiers for some
services. For example, AWS S3 charges 0.125 USD per GB for the first 1 TB / the
month of usage, 0.093 for the next 49 TB, etc. Depending on the estimated usage, the
more significant the usage, the more price tiers will be involved.

Let us assume that each provider offers approximately the same service in each
region to simplify the derivation of the computational complexity.

Let csp be the number of compute services of provider p. All regions are included,
i.e. csp = r× v. Let ssp be the number of storage services, and stp be the number of
storage service tiers, ntp be the number of network service tiers, nsp be the number of
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Figure 6.9: Screenshot of the widget combined tab.

network services. As such, the total number of offers can be represented as follows:

P

∑
p=1

csp × (ssp × stp)× (nsp × ntp)

where P is the number of cloud providers.
The queries of the selection logic work as follows. After filtering out criteria-

violating services, resulting services are combined via JOIN operation(s) with final
costs calculated. In the worst case scenario where a few or no criteria are defined, the
combination of the services is a full CROSS JOIN over all existing services. Therefore,
the selection queries, to our best knowledge, have the upper bound computational
complexity of

Oquery(
P

∑
p=1
|cspcv(sspstpcs)(nspntpcn)|)

where c means criteria, and cv, cs, cn are criteria for compute, storage and network
respectively. sspstp and nspntp can be pre-computed, and stored as views.

6.3.2 Interface: GUI and API

The widget layer is implemented using many JavaScript frameworks, including
jQuery, ExtJS and YUI. CloudRecommender also exposes RESTful (REpresentational
State Transfer) APIs (application programming interface) that help external appli-
cations to programmatically compose infrastructure cloud services based on the
CloudRecommender selection process.

This layer features a rich set of user-interfaces, as shown in Figures 6.9 and 6.10.
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Figure 6.10: Compute, Storage, Network and the combined service selection widgets
screenshots.
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Those interfaces further simplify the selection of configuration parameters related to
cloud services. This layer encapsulates the user interface components in the form
of four principle widgets, including Compute, Storage, Network, and Recommen-
dation. The selection of basic configuration parameters related to compute services,
including their RAM capacity, cores, and location can be facilitated through the Com-
pute widget. It also allows users to sort compute services by a specific column, and
search by using regular expressions. Using the Compute widget, users can choose
which columns to display and rearrange their order as well. The Storage widget al-
lows users to define configuration parameters such as storage size and request types
(e.g., get, put, post, copy, etc.). Service configuration parameters, such as the size
of incoming data transfer and outgoing data transfer, can be issued via the Network
widget. Users have the option to select single service types as well as bundled (com-
bined search) services driven by use cases. The selection results are displayed and
can be browsed via the recommendation widget, which is illustrated in Section 6.3.4.

CloudRecommender also exposes REpresentational State Transfer (RESTful) APIs
that help external applications to programmatically obtain results, i.e. recommended
infrastructure Cloud services configurations, as shown in Figure 6.11.

Figure 6.11: REST call via HTTP GET request

6.3.3 Experiment

In this section, we present the experiments and evaluation that we undertook.
Experiment Setup: We hosted our CloudRecommender system instance on Ama-

zon EC2 using a standard small instance in the US-west location. By default, the
small instance has the following hardware configuration: 1.7 GB of main mem-
ory, 1 EC2 Compute Unit, 160 GB of local instance storage, and a 32-bit platform
with an Ubuntu 10.04 operating system. We populated CloudRecommender with
infrastructure service configuration information related to Amazon, Azure, GoGrid,
RackSpace, Nirvanix, Ninefold, SoftLayer, AT and T Synaptic, and Cloud Central (an
Australian provider).

Service Selection Test: Suppose an enterprise wants to migrate its data to the
cloud with the aim of storing and sharing it with other branches through public cloud
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Figure 6.12: Service selection criteria set by business analyst.

storage (note that security issues are dealt within the enterprise applications). At this
stage, we assume the business analyst of the enterprise has a reasonable estimation
of the data storage and transfer (network in/network out) requirements. By using
CloudRecommender, the analyst would like to find out which of the public cloud
providers would be the most cost-effective in regards to data storage and transfer
costs. For this selection scenario, suppose the analyst has the following anticipated
usage for the storage and network services: (i) Data size of 50 GB, 1000 copy requests
and 5000 get requests and (ii) data transfer in size of 10 GB and data transfer out the
size of 50 GB. As shown in Figure 6.12, the analyst specifies service selection criteria
via the storage and network widgets. The above request can also be submitted via the
RESTful service interface of the CloudRecommender, as shown below in Figure 6.13.

Figure 6.13: An Example REST call.

Once this selection request is submitted, the controller validates and parameter-
izes the criteria (user inputs). Though not shown in the above figures, the business
analyst also has the option to express whether the selection criteria should be evalu-
ated against all the available cloud providers or only the selected ones (e.g., Amazon,
Azure, and GoGrid only). As mentioned earlier, the application logic layer imple-
ments specialized views and procedures for evaluating different service selection sce-
narios. CloudRecommender captures and inserts multiple storage and network ser-
vice selection criteria into specialized views called "storage_selection_criteria"
and "network_selection_criteria". The aforementioned views are then joined
against the “storage_service_price” and “network_service_price” views for esti-
mating the cost of using the combined cloud services.

Figure 6.14 shows the result of the selection scenario depicted in Figure 6.12.
Results are sorted into increasing total cost order (i.e. "storage_dataTransfer_cost"
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Figure 6.14: Storage and network services recommendations for the business analyst
selection use case.

column). "Any" means the provider offers the same price for all of its locations. In the
case of SoftLayer, it charges the same price in all locations. In the case of AWS, since
it offers different prices for different locations, the enterprise may be able to consume
the same service with a lower price in a different location. The base currency is USD,
but since in the call the analyst has specified "currency=AUD", the result shown is in
AUD accurate to one decimal place.

Figure 6.15 shows another example which selects compute, storage, and network
using the RESTful API. The selection criteria include 1 compute service instance
(shown as "n=1"): 0<Ram<=69, 0<=local storage<=2040, number of hours to be used
per month 744. The selection results are displayed at the end of the figure.

Due to high inter-cloud data transfer cost overhead and communication delay,
our recommender logic does not consider the combination of services from multi-
ple providers. For example, the CloudRecommender will not select and combine
compute services from Amazon with storage services from Azure. Similarly, some
provider charge for data transfer across their services that are hosted at different
locations. For example, data transferred between Amazon services in different lo-
cations are charged as “Internet Data Transfer” on both sides of the transfer. We
currently choose to put all services at the same location. In future (if necessary) we
may extend our recommendation logic to allow users to choose between different
locations for each service type. Additionally, providers often offer a discounted price
for higher usage, and keeping all data together means higher usage, which can con-
sume a cheaper price tier. Network services are always bundled with either compute
or storage services as it is impossible to consume other services without incurring
network costs.

6.3.4 Case Studies

Gaia is a global space astrometry mission to make the largest, most precise three-
dimensional map of our Galaxy by surveying more than one billion stars. For the
number of images produced by the satellite (1 billion stars × 80 observations × 10
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Figure 6.15: Result of selection process for Compute, Storage and network services

readouts), if it took one millisecond to process one image, it would take 30 years of
data processing time on a single processor. Luckily the data does not need to be
processed continuously. Every six months, they need to process all the observations
within two weeks of [197]. Hypothetically speaking, if they choose to use 120 high
CPU and memory VMs. The example search via CloudRecommender is shown in
Figure 6.16. With each VM running 12 threads, 1440 processes were working in
parallel. This will reduce the processing time to less than 200 hours (about a week).

In this case, since data can be moved into/out of the cloud in bulk periodically,
FedEx hard drive may be preferred over transferring data over the internet. Promo-
tional offers may not matter much in this case compared to the considerable time
and capital investment savings, but it makes a big difference for small businesses or
startups.

Another example usage is sites with sizeable continuous data input and process-
ing need like Yelp. Everyday Yelp generates and stores around 100GB of logs and
photos, and runs approximately 200 MapReduce jobs and processing 3TB of data
[228]. Yelp.com has more than 71 million monthly unique visitors [61]. The average
page size of a typical website is about 784 kB [211]. So the estimated data download
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Figure 6.16: Example input parameter values.

Figure 6.17: Example parameters for REST API.

traffic is about 51TB per month if every unique user only views one page once a
month. Figure 6.17 shows a sample search for the scenario, as mentioned above.

6.4 Summary

This chapter discussed the implementation details and evaluation of the techniques
we developed in Chapters 3 and 4. Specifically, for CoCoOn proposed in Chapter 3,
we illustrated how to use CoCoOn to represent the semantic information. We col-
lected data from the websites and APIs of various Cloud service providers, including
Google Cloud and Microsoft Azure. We mapped the data to CoCoOn, to create an
RDF dataset which consists of 132,282 triples. We have made the dataset available on
Github 7. To evaluate the AHP based QoS-aware technique proposed in Chapter 4,
we developed two tools in this chapter: one is the QoS profiler which collects the end
to end QoS statistics of Cloud services and the other is CloudRecommender which
ranks Cloud service according to user preferences. We discussed the system archi-
tecture, user interface and API of these tools - QoS profiler and CloudRecommender,
and illustrated how the AHP based QoS-aware technique can be applied to select

7https://github.com/miranda-zhang/cloud-computing-schema/blob/ldf-server/v1.0.1/v1_0_1.ttl

https://github.com/miranda-zhang/cloud-computing-schema/blob/ldf-server/v1.0.1/v1_0_1.ttl
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Cloud services in these tools.



Chapter 7

Conclusions and Future Directions

In this chapter, we conclude the contributions of this thesis and discuss future direc-
tions in this area. This thesis has mainly addressed the problem of automatic Cloud
IaaS service discovery and comparison. It has also explored ways to forecast cloud
usage in order to estimate cost, thus providing optimal Cloud deployment options,
and answer questions like which provider to choose? What is the total cost? What
kind of servers to use? How many servers are needed? What expected average
network performance would there be?

Although elasticity, cost benefits and abundance of resources motivate many or-
ganizations to migrate their enterprise applications to the Cloud, end-users (e.g.,
CIOs, scientists, developers, engineers, etc.) are faced with the complexity of choos-
ing the right set of Cloud services for deploying their applications. Manually reading
Cloud providers’ documentation to find out which services are suitable for building
their Cloud-based applications is a cumbersome task for decision makers. The multi-
layered organizations (e.g., SaaS, PaaS, and IaaS) of Cloud services, along with their
various types and features, make the task of service identification a hard problem.
For example, “EC2 instances”, “virtual cloud servers”, “compute cloud servers” and
“DigitalOcean droplets” refer to the same thing by different providers. Similarly,
“S3”, “Cloud files” and “object store” all refer to storage. In addition to the actual
price differences for similar services among various providers, there is a range of
pricing models for how services are charged with each provider, for example, pay-
as-you-go, spot instance or bidding, two-part tariff, block-declining, free for a period
and discount with bulk buy. So, to deal with the complexity of choosing from a large
number of different cloud services from diverse providers, end-users need access to
a specialized intermediary which can act as a “one-stop-shop” for procuring and
comparing Cloud services.

We have addressed the problem as mentioned above by introducing many tech-
niques with their implementation to form a Cloud recommendation tool-set, which
simplifies the Cloud service selection. It allows multi-criteria searches on infrastruc-
ture cloud offers across different cloud providers. It is a semi-automated approach
which supports the network-QoS-aware selection of Cloud services, along with a
unified domain model that is capable of fully describing infrastructure services in
Cloud computing. This approach takes account of real-time and variable network
QoS constraints, and applies a utility function that combines multiple selection crite-
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ria (e.g., total cost, the maximum size limit for storage, and memory size for servers)
about storage, compute, and network services.

The Cloud recommendation tool-set is expected to be beneficial to end-users, who
are:

1. considering migrating their applications to Cloud services for cost savings.

2. hard-pressed to understand the cost and benefits of moving to the Cloud, es-
pecially when the market evolves so rapidly.

7.1 Contributions

The Cloud has great potential for a large variety of users with diverse needs, but the
selection of a right provider is crucial to this end. Aiming to eliminate potential bot-
tlenecks that limit the ability of general users to take advantage of Cloud computing,
we present a comprehensive solution set, which allows users to make multi-criteria
selection and comparison on IaaS offer considering QoS requirements.

We have proposed an ontology, named CoCoOn, for classifying and representing
the configuration information related to Cloud-based IaaS services including com-
pute, storage, and network. The proposed ontology is comprehensive as it captures
both static configurations and dynamic QoS configurations at the IaaS layer. We
also implemented relevant tools for CoCoOn, which enables automatic linking of
data from different providers as well as external domains, e.g. Geo Locations, Units,
Business Service (i.e. GoodRelations). Thus, unify the process of selection and com-
parison Cloud IaaS Services. This work will also help readers in understanding the
core concepts and inter-relationship between different IaaS-level Cloud computing
service types. This, in turn, may lead to a harmonization of research efforts and
more inter-operable Cloud technologies and services at the IaaS layer.

Additionally, we have developed an AHP-based decision making and service se-
lection technique that handles multiple quantitative (i.e., numeric) and qualitative
criteria. Qualitative criteria are descriptive and non-numeric criteria, such as loca-
tion, CPU architecture (i.e. a 32-bit or 64-bit operating system). The AHP method
determines the relative importance of criteria to each user by conducting pairwise
comparisons.

We have also developed a model for Cloud resource usage estimation, based on
benchmarking and performance modelling. We have applied the queueing theory to
model the performance of a system. We have formulated the questions of minimizing
cost and maximizing performance as constraint satisfaction problems, which can be
solved by MIP methods.

Furthermore, we have proposed a system, named CloudRecommender, that
transforms the cloud service configuration selection from an ad-hoc process that in-
volves manually reading the provider documentation to a process that is structured,
and to a large extent, automated. This implementation also includes a generic ser-
vice that helps in collecting network QoS values from different points on the Internet
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(modelling a big data source location) to the Cloud data centres. Although we be-
lieve that CloudRecommender leaves room for further enhancements, yet provides a
practical approach. We have implemented a prototype of CloudRecommender and
evaluated it with some example selection scenarios. The prototype demonstrates the
feasibility of the CloudRecommender design and its practical aspects.

7.2 Reflection and Future Work

Many possible extensions can be made to CoCoOn. More providers should be in-
cluded to verify the completeness of our model further; Units can be improved
with Custom Datatypes (cdt:ucum [116]), so composite units do not need to be de-
fined specifically, i.e. instead of cocoon:MegabitsPerSecondPerHour, something like
"MB/s/h" could be used. Various discount offers can also be better supported, such
as reserved instance, unlimited mode [57] and on-demand capacity reservation [58]
pricing models. To clarify, spot instances can be modelled in the same way as on-
demand price instances. The free tier can be modelled with gr:hasEligibleQuantity
to set the limit one can use for free. Reserved instance offers can make use of
gr:eligibleDuration to model reservation period, e.g. 1-year terms, but additional prop-
erties and classes need to be defined to model upfront costs, CPU credits, etc. More-
over, we have mainly focused on the IaaS layer, which is fundamental to the other
higher-level layers. A possible future work would be to cover the PaaS and the SaaS
layers. In terms of system implementation, we could migrate the infrastructure ser-
vices definitions to an RDF database and use SPIN templates [190] to encode our
procedures in SPARQL [188].

It would also be helpful to capture the dependencies of services across different
layers. For example, before mapping a MySQL database appliance to an Amazon EC2
compute service at the IaaS layer, one needs to consider whether they are compatible.
Furthermore, SLA and legal compliance [137] information can also be investigated
for inclusion into the decision making the process.

Another avenue that would be good to explore is the spot instance bidding/auc-
tion market. How to take advantage of the service brokerage [162, 161] market can
be investigated further.

At a higher level, there are two parts to the Cloud service selection problem:
knowledge extraction [63] and decision making. Under knowledge extraction, the
subfield of ontology learning [106, 222] covers research on the automatic or semi-
automatic creation of ontologies. Advances in machine learning techniques may
promote better ways to solve this problem.

Other decision making techniques has been explored in recent works include col-
laborative filtering recommendation techniques [127], TOPSIS [230, 199, 127], fuzzy
methods [93, 96, 226], neural network [70], ELECTRE [123] and best-worst method
(BWM) [171, 113, 230]. This work did not consider collaborative filtering techniques
because of the impracticality of acquiring user input for experimentation. This work
did not consider TOPSIS, becasue it can suffer from ranking abnormality, see sec-
tion 2.3.1.4. Future research should compare AHP methods with fuzzy, neural net-

https://w3id.org/cocoon/v1.0.1#MegabitsPerSecondPerHour
http://purl.org/goodrelations/v1#hasEligibleQuantity
http://purl.org/goodrelations/v1#eligibleDuration
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work, ELECTRE and BWM based methods.
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