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Abstract

Approaches and developments in demographic and population forecasting since 1980 are reviewed. Three approaches to

forecasting demographic processes are extrapolation, expectation (individual-level birth expectations or population-level

opinions of experts), and theory-based structural modelling involving exogenous variables. Models include 0–3 factors (age,

period and cohort). Decomposition and disaggregation are also used in multistate models, including macrosimulation and

microsimulation. Forecasting demographic change is difficult; accuracy depends on the particular situation or trends, but it is

not clear when a method will perform best. Estimates of uncertainty (model-based ex ante error, expert-opinion-based ex ante

error, and ex post error) differ; uncertainty estimation is highly uncertain. Probabilistic population forecasts are based on

stochastic population renewal or random scenarios. The approaches to population forecasting, demographic process forecasting

and error estimation are closely linked. Complementary methods that combine approaches are increasingly employed. The

paper summarises developments, assesses progress and considers the future.
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1. Introduction

The last twenty-five years has been an exciting

period in the history of demographic forecasting. It

has witnessed the emergence from a period of relative

inactivity, the realisation of previously unappreciated

truths about traditional methods of population projec-

tion and the development of new probabilistic

approaches to the problem. This heightened activity

does not seem to be a result of more demanding users;

rather it appears that demographers are adopting the

methods of other disciplines and applying them to

their trade. Perhaps, in a world of increasing statistical

sophistication, the discipline could no longer afford to

have population forecasting regarded as ban old-

fashioned art form, somewhat embarrassing to the

profession, like a disreputable relativeQ (Ryder,

1990:433). Population forecasting is, after all, the

public face of the profession.

Demographic forecasting is an important topic:

population, household and related forecasts form the

basis of social and economic planning and are

fundamental to many other forecasting exercises.

The many uses of population forecasts give rise to

choices on several dimensions. The time horizon may

be as short as a year, more commonly a generation,

increasingly a life span, or occasionally longer still.
The population in question may be local, national,

regional or global. To provide the necessary detail, the

population must be disaggregated by age and sex, and

often by geographical region; yet further disaggrega-

tion may be desired. To achieve this, the three

components of population change (mortality, fertility

and migration) must be separately forecast and

appropriately combined; each component may be

decomposed and its parts independently forecast.

Population forecasting is thus a highly complex and

difficult undertaking (Keyfitz, 1985).

Population forecasting is also highly uncertain: as

Keyfitz (1996:xii) remarked, bThe best demographers

do it, but none would stake their reputation on the

agreement of their forecasts with the subsequent

realization.Q Uncertainty in demographic forecasting

has been a major focus, contributing to the rapidly

increasing volume of published research on the

overall topic. It is impossible to include all this

material in a single review. Several useful collections

and studies have previously appeared (notably Ahl-

burg & Land, 1992a; Bongaarts & Bulatao, 2000;

Lutz & Goldstein, 2004a; Lutz, Vaupel, & Ahlburg,

1999; North American Actuarial Journal, 1999;

Rogers, 1995a).

During the twentieth century, fertility was the most

important component in determining population size.
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However, forecasting fertility proved to be difficult in

the post-World War II era: neither the bbaby boomsQ
of the 1950s nor the bbaby bustsQ of the 1970s were

foreseen. Neither was the post-war rapid decline in

mortality foreseen. Both mortality and migration

forecasting were naı̈ve: for decades, official popula-

tion forecasts widely assumed that mortality would

not improve, at least beyond the immediate future, and

migration was treated as an uninteresting constant.

The historical booms and busts in childbearing

have to a large degree provided the impetus for the

more recent renewal of interest in demographic

forecasting. The uneven and transitionary age struc-

ture created by past fertility fluctuations is the

dominant feature of present day demography in the

developed world. Populations are ageing: not only is

the large cohort of baby boomers moving into the

post-retirement ages, but the baby-bust and younger

cohorts are relatively small, creating fiscal problems

for social security and health care provision for the

elderly. In this context, forecasting mortality has

gained prominence, fuelled by the fact that larger

proportions will survive to older ages as life expec-

tancy continues to rise. Further, replacement migra-

tion, seen as a solution to population ageing (United

Nations, 2001), has increased the quantum of migra-

tion. In some countries, population growth due to

migration now rivals natural increase, a clear indica-

tion that forecasting methods are needed for migra-

tion, notwithstanding the difficulties involved.

This paper reviews methodological developments

in demographic forecasting during the last twenty-five

years. It concentrates on forecasting the three compo-

nents of population change and their combination in

population forecasting, where applications are most

common. The focus is on national forecasts, princi-

pally for industrialised countries where data availabil-

ity permits greater statistical sophistication and where

most research has been undertaken.

The paper is organised as follows. Section 2 briefly

describes the state of the art of demographic forecast-

ing that existed in 1980. Section 3 discusses

approaches used in forecasting the demographic

components. With this framework established, devel-

opments in modelling and forecasting mortality,

fertility and migration are presented in Section 4.

The combination of the components in probabilistic

population forecasting is discussed in Section 5. The
direct forecasting of populations is addressed in

Section 6. Finally, Section 7 assesses progress and

considers possible future developments.
2. The state-of-the-art in 1980

Demographic forecasting has a long history (De

Gans, 1999). By 1980 there was a well-established

tradition of using the cohort-component method of

population projection. This is a system of demograph-

ic accounting in which the population is advanced

forward in time through the application of time-

specific survivorship ratios by age and sex and the

derivation of births from time-specific fertility rates of

women by age; migration by age and sex can also be

incorporated (Preston, Heuveline, & Guillot, 2001:

119–129). The problem of population projection is

thus decomposed into the separate forecasting of these

three components of population change.

Traditional population projections typically com-

prise three deterministic scenarios, based on combi-

nations of assumptions about mortality, fertility and

migration. If mortality, fertility and migration each

have three alternative assumptions or variants, there

are nine possible combinations from which three are

chosen as the high, medium and low scenarios

according to population size. Often the components

are restricted to one or two variants; indeed, the

difference between scenarios may be entirely due to

one component (usually fertility). However derived,

the high–low interval is generally portrayed as

containing likely future population values.

A limitation of this scenario-based approach is that

it is impossible to specify the probability for the high–

low interval, even if probabilities could be specified

for the range in component variants. Further, the

assumptions embody an element of rigidity: compo-

nent variants are typically high, medium or low for the

duration of the forecast rather than varying within the

range over time. Perfect correlations are also intro-

duced across age by the use of fixed age patterns, and

between components by the particular component

combination for each scenario. These correlations

result in the probabilistic inconsistency of population

projections: the high–low interval for population size

will be inconsistent with high–low intervals for other

characteristics of the projected population, notably
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ratios of age groups (Alho & Spencer, 1985; Lee &

Tuljapurkar, 1994).

Both the patent inability of demographers to

foresee demographic change and the rigidity of the

scenario-based approach contributed to the assertion

that traditional population projections are merely

dwhat-ifT illustrations. Increasingly, however, demog-

raphers (e.g., Ahlburg & Lutz, 1999; Ahlburg &

Vaupel, 1990; Stoto, 1983) regard any so-called

projection intended to be a best guess of the future

as a forecast, and this is the view taken here. Certainly

users adopt this view: as Keyfitz (1972:353) remarked,

ba demographer makes a projection, and his reader

uses it as a forecastQ.
In 1980, this traditional deterministic scenario-

based approach was used by international bodies, such

as the United Nations (UN) and World Bank, and

national statistical offices almost without exception.

Today, changes are occurring: statistical forecasting is

gaining prominence. The developments that have led

to these changes are reviewed in the following

sections. The ongoing use of the traditional approach

is not discussed.
3. Approaches to forecasting the demographic

components

In forecasting demographic processes such as

mortality, fertility and migration, three approaches or

classes of methods are often identified: extrapolation,

expectation and explanation. Extrapolative methods

focus on the regularity of patterns and trends and

extend these into the future without recourse to other

knowledge in the form of exogenous variables.

Methods based on expectation may use individual

data (such as surveys of women’s future birth

expectations) or the opinions of experts about future

demographic developments. Methods seeking to

explain demographic processes use structural models

based on theories relating demographic quantities to

other variables.

In practice, the distinction between methods is not

always clear-cut. Subjective expert opinion may be

incorporated into extrapolative methods, exogenous

variables are sometimes used to enhance extrapolative

models, and structural models may involve extrapo-

lation. A method may also be used in conjunction
with decomposition and disaggregation. Disaggrega-

tion of the population serves to account for variation

in the demographic process, while decomposition of

the process simplifies this task and increases under-

standing. This dexplanatoryT approach may be viewed

as an alternative to causal structural modelling.

To some extent, the forecasting approach is linked

to the measure used: events or rates (or probabilities),

aggregate or age-specific, period or cohort. A major

problem for age-specific forecasting is high dimen-

sionality, especially when single years of age are used.

Parametric models are widely used to address this

problem.

The models used in forecasting can be classified

according to the number of factors modelled: zero,

one, two or three (following Tabeau, 2001). A factor

may be viewed as a classificatory variable intrinsic

to the data. Zero-factor models are simply the time

series of aggregate measures or age-specific rates

(each treated independently). One-factor models

express demographic rates as a function of age (or

duration), making use of their characteristic and

stable age patterns. Two-factor models most com-

monly take age (duration) and period (time) into

account; they may model age and cohort but cohort

models demand lengthy series of annual data. Three-

factor or age-period-cohort (APC) models aim to

distinguish between age, period and cohort effects,

but suffer from the identification problem arising

from the linear dependence of any one factor on the

remaining two (see Tabeau, 2001). If three-way

classification (also known as doubly-classified data

or non-overlapping cohorts) is used in data collec-

tion, this dependence is lost (Willekens & Baydar,

1986). The APC model is useful in describing the

past but has not generally been successful in

forecasting. The more complex models are used

predominantly in extrapolation.

3.1. Extrapolative methods

Extrapolation is the most common approach in

demographic forecasting. Extrapolative methods are

essentially atheoretical; the only assumption is that the

future will be (in some sense) a continuation of the

past. This is their strength, but it is also their

fundamental weakness: historical patterns may not

be the best guide to the future, notably because
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changes in the trend, or structural changes, may be

missed. Extrapolative methods make no use of

exogenous variables: they do not incorporate current

knowledge about actual and prospective develop-

ments in relevant areas such as medicine and new

diseases, lifestyles and the economy.

The most commonly-used method of extrapolation

is univariate ARIMA modelling (Box & Jenkins,

1976). In the case of zero-factor models, such as a

time series of total births, the series is directly

modelled and forecast. When one-factor models are

employed, the time series are the fitted parameters of

the deterministic model (a parameterisation function

or relational model). Erratic parameter time series and

interdependencies among parameters present difficul-

ties for forecasting. Forecast age patterns may be

implausible, and if interdependencies are not taken

into account (e.g., by a vector autoregression),

forecast prediction intervals will be inaccurate.

Principal component models are multiplicative

two-factor models used with time series extrapolation

in forecasting. The estimated age parameters (or

functions) are assumed to be fixed and time series

methods are used to extrapolate the time-varying

parameters. The most prominent example is the Lee–

Carter model (Lee & Carter, 1992). Tabeau (2001)

noted that the Lee–Carter model can be viewed as a

statistical association model for a two-way cross-

classification table, and as such belongs to the class of

generalised linear modelling (GLM) and can be

estimated by maximum likelihood estimation for

Poisson-distributed errors. This link was first used

by Wilmoth (1993) and has been developed by others.

An alternative approach to time series methods is

to directly model demographic rates within the GLM

framework with time as an explicit covariate. The

zero-factor model is a constant and the one-factor

model is a simple regression on time. Additive

bivariate regression models constitute the two-factor

case. An extension is the dynamic parameterisation

model (Tabeau, Ekamper, Huisman, & Bosch, 2001)

in which the parameters of an initial static base

parameterisation function are linear or non-linear

functions of time. Since time is a covariate, forecast-

ing is achieved by using appropriate time values.

However, two- or higher-degree polynomials in time

are often required to attain a satisfactory fit, leading to

implausible forecasts. A partial solution is to use
linear splines for subperiods, but this is restricted to

short-term forecasting because turning points cannot

be identified (De Beer, 1989).

3.2. Methods based on expectation

Methods based on expectation include the use of

data on the expectations of individuals about their

own behaviour, the use of data on the expectations of

a group of experts about population-level behaviour

based on historical data and research, and the less

structured use of the expectations or informed

judgment of experts in the forecasting process.

Demographic forecasting based on reported indi-

vidual expectations is most common for fertility,

where survey data on birth expectations are used

(usually in a qualitative or ad hoc manner) to inform

the forecast; however, the lead time is clearly

limited. A problem with individual expectations data

is that they tend to lag prevailing trends. Recent

innovations in the collection of individual expect-

ations data include direct questions about subjective

probabilities of future events. For example, personal

estimates of the chance of survival to a certain age

produced similar survival probabilities to life table

estimates (Hauser & Willis, 2005). The approach

may provide useful information for probabilistic

forecasting, particularly where historical data are

lacking.

Individual expectations can be viewed as the

outcome of unspecified complex psycho-social mod-

els that determine individual decision-making (Hen-

dershot & Placek, 1981:307–310). In this sense, they

are a substitute for the explicit theoretical models of

structural modelling. Similarly, forecasts based on the

expectations of a group of experts implicitly take

theory into account (Lutz, 1996). The Delphi-based

method developed by Lutz and colleagues (Lutz,

Sanderson, Scherbov, & Goujon, 1996) combines the

qualitative and quantitative opinions of a group of

experts into quantitative forecasts for each demo-

graphic component. The forecast is defined by three

points in the future, thus allowing for limited changes

in trend; linearity is assumed between points (see also

Section 5.5).

The proponents of this expert-based approach

argue that it is preferable to the time series approach

because expert opinion takes into account the possi-
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bility of future structural change and unexpected

events (Lutz, Goldstein, & Prinz, 1996:38). However,

the conservativeness of expert opinion with respect to

mortality decline is widespread; Alho and Spencer

(1990a) found that US experts systematically forecast

smaller declines than actually occurred. Expert opin-

ion about future fertility has not been any more

accurate (Lee, 1999). Similar to the lag in individual

expectation, expert opinion is subject to assumption

drag (Ahlburg & Vaupel, 1990). Further, the expert-

based approach tends to be limited to aggregate

measures, reflecting the difficulty in specifying such

details as age-specific rates or parity-specific fertility,

thereby precluding information that might be expected

to be pertinent to identifying structural change. The

approach is advantageous in developing countries

because of its lesser demands for historical data.

Less formally, subjective judgment often influen-

ces the forecasts (Alders & De Beer, 2005). Informed

judgment may be directly involved in constraining or

adjusting an extrapolative forecast through targeting,

where the expert specifies a value of the relevant

measure, the year by which it will be reached and by

which path (Olshansky, 1988). Targets may be based

on the experience of a more advanced population or

subpopulation (Pollard, 1987), a model such as the

UN dultimate life tableT (United Nations, 2000), or

notions of eventual stability as in replacement fertility

(Lee, 1990). Linear interpolation, or a more complex

curve fitting procedure such as assuming logistic

growth, is then used between current and target rates.

Targets tend to be limited to aggregate measures,

while model life or fertility tables (e.g., United

Nations, 2000) provide the target age pattern; inter-

mediate values are derived through interpolation with

respect to level. In the case of developing countries,

the method is informed by demographic and epide-

miological transition theories, or in the case of targets

drawn from subpopulations, by heterogeneity theory

(Olshansky, 1988).

Informed judgment has formed the basis of many

assumptions in traditional population projections,

either in combination with extrapolation or as the sole

input. However, such methods have tended to be

unsystematic and in many cases inadequately docu-

mented, even in developed countries (Cruijsen &

Eding, 2001; Lutz, Vaupel, & Ahlburg, 1999; Olshan-

sky, 1988).
3.3. Structural modelling

Structural models explain demographic rates in

terms of the underlying socio-economic and proxi-

mate determinants. An advantage of structural feed-

back is that feedback mechanisms and limiting factors

can be taken into account (Cohen, 1999; Lee, 1990).

Unfortunately, the danger of model misspecification is

high because of a less than secure theoretical basis:

most if not all economic–demographic relationships

are merely hypotheses (Ahlburg & Land, 1992b).

Further, high autocorrelations in the dependent and

independent variable series produce high correlations

between series, even when there is no causal link. In

this situation, a model may have high descriptive

power, but little predictive power. Nevertheless,

assuming the underlying hypotheses hold, an impor-

tant use of structural models is the simulation of the

effect of policy changes affecting the independent

variables.

Models based exclusively on lagged variables

constitute a means of forecasting, but lag time limits

the forecast horizon. In order to extend the forecast

horizon, structural modelling is combined with ex-

trapolation (e.g., using transfer function models). The

focus of the forecasting problem is shifted from the

demographic variable to its determinants. However, as

Keyfitz (1982a) noted, it may be no less difficult to

forecast the determinants than to directly forecast the

variable. Brass (1974) set stringent conditions for

which structural models can be useful for forecasting:

the association between variables must persist over

time, the exogenous variables must be predictable (or

lagged), and the association must be strong. Land

(1986:898) pointed to bwhat is essentially an impos-

sibility theoremQ for forecasting with structural mod-

els, namely Ashley’s (1983) theorem that if the mean

squared error of the forecast of the exogenous variable

exceeds its variance, then including the forecasted

exogenous variable will produce a worse forecast than

omitting it. Unfortunately, the chances of the theorem

applying increases with forecast length.

While forecasting with structural modelling is

often regarded as the ideal, it has not on the whole

produced more accurate forecasts. Keyfitz (1982a)

concluded that knowledge has not improved the

accuracy of forecasts. While Sanderson (1999) (and

others, e.g., Heckman & Walker, 1989) found
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evidence to the contrary, his conclusion was based on

a comparison of several global and developing-

country structural models with scenario-based UN

population projections. For developed countries,

comparisons with other statistical forecasting methods

are required. Nevertheless, the ideal of improved

accuracy through structural modelling remains: Ahl-

burg, Lutz and Vaupel (1999:191) call for the greater

use of models that include other demographic events

(such as marriage and morbidity), that involve greater

disaggregation (by education, for example) and that

take into account economic, social and environmental

dynamics. For reviews of aggregate economic–demo-

graphic models, see Land (1986) and Ahlburg

(1987a). Sanderson (1999) reviews structural models

used in global and developing country forecasts.

The theoretical advantage of structural modelling,

the ability to capture turning points or structural

change, has not often been realised. For fertility in

particular, identifying changes in direction ahead of

time has been a major difficulty. The demographers’

inability to foresee the peaks and troughs of the post-

war baby boom and bust is legendary. Ahlburg (1982)

showed that the US Census Bureau failed to foresee

all 20 turning points in 11 forecasts of total births (of

5�15 year durations from base years of 1948 to

1975). Structural models, notably models based on

Easterlin’s (1968) hypothesis of baby booms and

busts, should in theory be better able to forecast

structural change, but consistent success is elusive

(Tuljapurkar & Boe, 1999; Wachter, 1991).

3.4. Decomposition and disaggregation

Decomposition, such as the breakdown of mortal-

ity by cause of death or fertility by parity, is addressed

by multiple-decrement life-table methods. The differ-

ent parts may be best forecast by different methods.

Disaggregation is the division of the base population

beyond age and sex, for example, by education,

ethnicity or region of residence. It is addressed by

multistate modelling (Rogers, 1975, 1986, 1995b;

Rogers & Woodward, 1991), which is the dynamic

multidimensional extension of the cohort-component

model; transitions between states are modelled and

demographic rates are specific to each state. Lutz,

Goujon, and Doblhammer-Reiter (1999) discuss the

criteria for useful disaggregation; the ideal is to find
homogeneous subgroups (states) for which demo-

graphic rates are stable or changing in predictable

ways so that extrapolation is appropriate. However,

selection effects and unrecognised heterogeneity may

limit the use of extrapolation (Vaupel & Yashin,

1985).

Multistate modelling with many dimensions of

disaggregation is macrosimulation. Individual-level

disaggregation is microsimulation; at this finely-

detailed level of disaggregation, accounting for

variation is maximised and the probability of an event

occurring is often assumed to be time-invariant.

Microsimulation produces forecasts of both the

numbers of persons in different states and the length

of time spent in those states. Two important advan-

tages of multistate modelling (particularly micro-

simulation) and its focus on transitions between

states are the incorporation of behavioural feedbacks

and the simulation of hypotheses for assessing the

effect of behavioural change. The use of micro-

simulation models in probabilistic forecasting is

reviewed by Van Imhoff and Post (1998), including

a comparison with macrosimulation models.

3.5. Choice of approach

The choice of approach depends on various

factors including data availability and purpose;

judgment also plays an important role (Pollard,

1987). Land (1986) confounded approach and

purpose in defining three classes of methods for

forecasting national populations: demographic ac-

counting or cohort-component methods for long-term

population forecasting, statistical time series methods

for short-term forecasts of demographic rates, and

structural modelling methods for the simulation and

forecasting of policy changes. For long-term fore-

casts, Land questioned the use of statistical time

series methods and thus advocated the use of

informed judgment and scenarios. More recently,

time series methods have increasingly been used for

long-term demographic forecasting with some appar-

ent success, admittedly in stable circumstances.

Willekens (1990:17) contends that the distinction

between short- and long-term forecasting is a false

issue: the real issue is when a method can be

expected to be accurate — when the demographic

system is stable or when it is changing.
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Whatever method is used for whatever period, it is

important to draw the distinction between model fit

and forecast accuracy. Ahlburg and Land (1992b) note

that in-sample errors are not necessarily a good guide

to forecast errors, and that for long-term forecasting

the choice between models cannot reliably be based

on historical goodness of fit. However, it is not clear

which criteria should be used instead. Clearly there is

a need for extensive analysis of out-of-sample or ex

post forecast errors (see Section 5.6), but lengthy

forecast horizons also limit the feasibility and

usefulness of this approach. The measurement of

forecast accuracy and the relevant loss function are

related concerns (Ahlburg, 1995; Tayman & Swanson,

1999; Tayman, Swanson, & Barr, 1999).

Willekens (1990) noted the developmental path of

forecasting in any discipline from the identification

and extrapolation of stable patterns to an understand-

ing of these patterns in terms of the causal mecha-

nisms and processes involved: the search for

regularity is transitionary. Rather than concentrate

on improved methods of extrapolation, Willekens

(1990:11) advocated research aimed at understanding

the causal factors and processes involved as the

precondition for effective forecasting. However, given

the long-term nature of such a quest, he agreed with

Keyfitz (1982a:747) that bwe cannot afford to be

ashamed of extrapolating the observed regularities of

the pastQ. This is as true today as it was then.
4. Component forecasting in practice

The framework established in Section 3 forms the

organisational basis of the following discussion of

developments during the last twenty-five years in

modelling and forecasting mortality, fertility and

migration. The direct forecasting of population is

discussed in Section 6.

4.1. Mortality

Mortality forecasting has received a great deal of

attention. Previous reviews include Keyfitz, (1982b),

Pollard (1987), Murphy (1990), Tuljapurkar and Boe

(1998) and Wong-Fupuy and Haberman (2004). See

also Bengtsson and Keilman (2003) and Keilman

(2005a).
The simplest method of forecasting mortality is to

extrapolate life expectancy (a zero factor model), or

some other life-table measure, and to use empirically-

based model life tables to obtain the age pattern; this

has been facilitated by the expansion of life tables to

include older ages (Coale, Demeny, & Vaughan,

1983) and lower mortality (Coale & Guo, 1989).

The independent extrapolation of age-specific rates

commonly involves mortality reduction factors or

some fraction of the reduction factor (Goss, Wade,

Bell, & Dussault, 1998; Pollard, 1987).

Parameterisation (one-factor) functions of mortal-

ity have a long history (Forfar, McCutcheon, &

Wilkie, 1988; Gavrilov & Gavrilova, 1991; Keyfitz,

1982b; Tabeau, Willekens, & van Poppel, 2002).

Among the best-fitting are the three-term functions

capturing the age pattern of mortality in childhood,

young adulthood (the accident hump) and senescence.

Mode and Busby (1982) proposed an eight-parameter

version, in which the three terms are estimated

independently. The Heligman–Pollard model (Helig-

man & Pollard, 1980) also has eight parameters; each

term takes positive values only at relevant ages, the

whole function being estimated in one step. The

parameters have meaningful interpretations; however,

high correlations between parameters, particularly for

male mortality (see Hartmann, 1987), compromise

this interpretability. Though the model fits well

(Hartmann, 1987; Kostaki, 1988; Mode & Busby,

1982; Rogers & Gard, 1991), only Forfar and Smith

(1987) found it useful for forecasting. Others encoun-

tered difficulties, particularly in determining the best

base period for projecting the parameters (Keyfitz,

1991; Pollard, 1987). McNown and Rogers (1989)

modelled the eight parameters as univariate ARIMA

processes.

The Heligman–Pollard model represents senescent

mortality using the Gompertz function; three variants

were also proposed. Congdon (1993) demonstrated

over-parameterisation in one nine-parameter variant; a

reduced model also exhibited instability. Modifica-

tions at other ages have been made. Brooks, Sams,

and Williams (1980) and Chauhan (1997) simplified

the childhood term. Kostaki (1992) introduced a ninth

parameter to improve the fit at young adult ages.

Carrière (1992) proposed a three-term model with

eight interpretable parameters which gave a better fit

to US data than the Heligman–Pollard model; a four-
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term version with eleven parameters gave significant

improvements. Carrière’s use of a mixture of survival

functions is equivalent to a multiple-decrement life

table; the generalised framework can accommodate

extra terms and other functions. The flexibility of this

model has potential advantages in forecasting.

Rogers and Planck (1983) modelled mortality with

the four-term nine-parameter version of the multi-

exponential function, comprising a constant, expo-

nentially declining child mortality, a double expo-

nential accident hump (the Coale and McNeil (1972)

function) and Gompertzian senescent mortality.

Rogers and Little (1994) found slightly poorer fits

than the Heligman–Pollard model. In forecasting,

McNown, Rogers and Little (1995) found interde-

pendencies among parameters; five were fixed, and

four were modelled by three univariate ARIMA

processes and a bivariate autoregression. McNown

and Rogers (1992) forecast total mortality and five

cause-specific mortalities by fixing six parameters

and modelling only the level parameters by univar-

iate ARIMA models.

Siler (1983) proposed a five-parameter model that

was found to fit better than either the Heligman–

Pollard or Mode–Busby models (Gage & Mode,

1993); only the ten-parameter Mode-Jacobson

(1984) model provided a better fit. Hannerz (1999,

2001a) also proposed a five-parameter model that

fitted recent Swedish female mortality better than

models which include a term for the accident hump.

For males, however, the persistence of the accident

hump necessitated an additional three-parameter term

(Hannerz, 2001b). It appears that these have not been

used in forecasting.

The relational model of mortality (Brass, 1971)

linearly relates the logit transformations of observed

and standard mortality. Forecasts based on this model

include those by Golulapati, De Ravin, and Trickett

(1984) for Australian male cohorts (see also Pollard,

1987), and Keyfitz (1991) for Canadian data. Zaba

(1979) and Ewbank, Gómez de León, and Stoto

(1983) developed four-parameter models to increase

flexibility. Congdon (1993) adopted the Zaba model

and forecast the relatively stable parameters by

univariate ARIMA models. Hannerz (2001c) com-

bined the features of relational models with parame-

terisation functions and model life tables in a

regression model.
The most well-known method of mortality fore-

casting is the Lee–Carter method (Lee & Carter, 1992)

for long-term forecasting; see also Gómez de León

(1990). The underlying two-factor model describes a

one-parameter system with fixed age effects and has a

homoscedastic additive Gaussian error structure. A

unique least squares solution is found by singular

value decomposition (SVD). Lee and Carter incorpo-

rated an adjustment of the level parameter so that

fitted deaths match observed total deaths in any year;

this avoids discrepancies arising from modelling on

the logarithmic scale (Lee, 1992). The adjusted level

parameter is modelled by time series methods; in

almost all applications, a random walk with drift has

been found to be applicable. Girosi and King

(2006:40–49) review the method in detail.

Wilmoth (1993) developed a weighted SVD

solution to the Lee–Carter model, providing a good

fit without the need to adjust the level parameter, and

a maximum likelihood solution; these methods gave

almost identical results to the unweighted SVD in the

case of Japan (Wilmoth, 1996). Carter and Lee (1992)

addressed divergence by sex by estimating a joint

level parameter while retaining sex-specific age

effects. Lee and Nault (1993) jointly forecast provin-

cial mortality. Lee (2000a) discusses these and other

extensions of the method; data reconstruction for

years where only total deaths are available is also

possible (Lee & Rofman, 1994). Tuljapurkar, Li, and

Boe (2000) applied the method (without adjustment of

the level parameter) to the G7 countries, finding a

common pattern of linear decline in the level

parameter. Lundstrom and Qvist (2004) used the

method to examine changing trends in the Swedish

mortality decline during the twentieth century.

The stability of the Lee–Carter method to structural

change and initial conditions was examined by Carter

(1996, 2000) and Carter and Prskawetz (2001).

Tuljapurkar (2005) further demonstrates the robust-

ness of the method. Li and Chan (2005) propose an

outlier-adjusted method. Lee and Miller (2001) noted

the influence of the adjustment procedure on forecast

bias. Three modifications were introduced: the fitting

period was restricted to post-1950 to reduce structural

shifts, adjustment of the level parameter was by

matching life expectancy, and observed rates were

used as jump-off rates. Booth, Maindonald, and Smith

(2002) also modified the method after finding
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historical departures from linearity in the Australian

mortality decline: they proposed a method for

determining the optimum fitting period for use in

shorter-term forecasting when the relatively recent

trend is linear, and adjusted the level parameter by

fitting to the age distribution of deaths (a conditional

maximum likelihood procedure). In a twenty-popula-

tion comparison of the original method and these two

variants, Booth, Tickle, and Smith (2005) found the

Lee–Miller and Booth–Maindonald–Smith variants to

perform roughly equally well overall over a 15-year

forecast period, but their ranking varied by sex; in

other words, performance depends on situation. The

Lee–Miller variant has been widely adopted as the

standard Lee–Carter method.

Recent developments extend the applicability of

the Lee–Carter method. Li, Lee, and Tuljapurkar

(2004) demonstrate how, by assuming a linear trend in

the level parameter, the method can be applied to

populations with limited data at unequal time inter-

vals. Li and Lee (2005) develop an augmented

common factor method for overcoming the diver-

gence problem, using a common factor to model

group mortality and an additive population-specific

factor. Such approaches make use of demographic

convergence of mean levels; Edwards and Tuljapurkar

(2005) note that substantial differences in variances

should also be taken into account.

The Lee–Carter method has close similarities to the

principal components approach used by Bell and

Monsell (1991), and Bell (1997) discusses the

similarities and differences in detail, demonstrating

the importance of bias adjustment and the superiority

in short-term forecasts of Lee–Carter over both

Heligman–Pollard and principal components using

all components. Whereas the Lee–Carter method uses

only the first component, the principal components

approach typically uses several, thereby allowing for

greater flexibility in forecasting change. Higher order

terms in the Lee–Carter method were modelled by

Booth, Maindonald, and Smith (2001, 2002) and

modelled and forecast using univariate ARIMA

processes by Renshaw and Haberman (2003a).

Hyndman and Ullah (2004) extend the principal

components approach by adopting a functional data

paradigm combined with nonparametric smoothing

(penalised regression splines) and robust statistics,

and fit univariate time series models to each compo-
nent coefficient (or level parameter); the Lee–Carter

method is shown to be a special case of this

generalized approach.

Wolf (2004) proposed a Lee–Carter variant based

on a first difference specification that integrates

estimation of the Lee–Carter and time series models.

De Jong and Tickle (2006) generalise and extend the

Lee–Carter method by introducing a state space

framework that also integrates model estimation and

forecasting; they use B-splines to build in the

expected smooth behaviour of mortality over age,

and outline further possible extensions.

Integrated estimation and forecasting is a feature of

modelling within the GLM framework. Renshaw,

Haberman, and Hatzoupoulos (1996) proposed a

two-factor model with two multiplicative terms: a

Gompertz–Makeham graduation term and an age-

specific trend adjustment term (see also Renshaw,

1991). This model was used to forecast UK mortality

at ages 65+ with qualified success: the optimum fitted

model parameters did not necessarily generate plau-

sible forecasts, for which lower-order polynomials are

often required (Sithole, Haberman, & Verrall, 2000).

This study included a comparison with the standard

actuarial practice of fitting the Gompertz–Makeham

class of functions (see Forfar et al., 1988). Currie,

Durban, and Eilers (2004) employed bivariate penal-

ized B-splines to smooth over both age and time

within a penalized GLM framework with extrapola-

tion of the fitted surface over time; comparison with

Lee–Carter revealed a much slower mortality decline.

In modelling mortality reduction factors using

GLM, Renshaw and Haberman (2000) identified the

conditions under which the underlying structures of the

GLM and Lee–Carter models are identical; they later

demonstrated the use of the Lee–Carter methodology

for forecasting the reduction factors (Renshaw &

Haberman, 2003b). Renshaw and Haberman (2003c)

developed a GLM-based approach that parallels the

Lee–Carter method, including matching observed and

expected total deaths. The important difference be-

tween the two approaches is in the treatment of time: in

the Lee–Carter method time is a factor estimated by

SVD, while under the GLM approach time is a known

covariate. The GLM approach is based on a hetero-

scedastic Poisson (non-additive) error structure.

Brouhns, Denuit, and Vermunt (2002) proposed a

similar bilinear approach in which the Lee–Carter
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model forms the systematic component (predictor) in

the Poisson error setting (cf Wilmoth, 1993). Renshaw

and Haberman (2003a) compare the Lee–Carter, linear,

and bilinear approaches with and without age-specific

enhancement: in the Lee–Carter case such enhance-

ment is achieved by including the second term, in the

GLM case it involves a break point or hinge to allow

for greater emphasis on recent trends, and in the

bilinear case the two-term Lee–Carter model is

implemented as a double bilinear predictor.

Forecasts based on cohort models are relatively

few because of heavy data demands; where data are

available the model may depend on the (inappropri-

ate) experience of cohorts born in the nineteenth

century if the entire age range is considered (e.g.,

Tabeau et al., 2001). This problem is reduced when

only adult mortality is of interest. The cohort

approach is free of tempo distortions (caused by

changes in timing). Bongaarts and Feeney (2002,

2003, 2005) propose an adjustment for tempo

distortions in period life expectancy, with implications

for forecasting. Other aggregate measures of mortality

(Bongaarts & Feeney, 2003; Guillot, 2003; Sanderson

& Scherbov, 2005) may be considered.

In developing countries, restricted time series of

observations limit the application of most forecasting

methods. Lutz, Sanderson, Scherbov, and Goujon

(1996) overcome this problem by deriving target life

expectancy as the average expectation of experts.

Girosi and King (2006) address the problem in the

context of cause-of-death forecasting by incorporating

prior information as covariates in a linear age–period

regression model. The covariates, which may differ by

age, may be lagged observed exogenous variables or

forecasts of reliable longer time series; the model may

thus be regarded as structural. Smoothness over both

age and time can be incorporated as priors, based on

empirical evidence or informed judgment. The meth-

od improves on existing Bayesian approaches by

borrowing strength (or partial pooling) based on

expected values rather than on coefficients, and

maximises the use of prior information, hence max-

imising automation.

Regression models are easily extended to three

factors, but (as noted above) age–period–cohort

(APC) models must accommodate the identification

problem (see also Van Hoorn & De Beer, 2001). To

address this, Wilmoth (1990) developed a modified
model involving additive age and period effects and

several multiplicative interaction terms; see also

Wilmoth (2001). Tabeau (2001) concluded that

mortality forecasting based on APC models is not

feasible because of the difficulty in assuming future

period effects (although age and cohort effects can be

assumed to be fixed); only in forecasts of specific

diseases would sufficient epidemiological knowledge

be available. Caselli (1996, 2002) used the APC

model to forecast mortality from leading causes.

Forecasting by cause of death has been advocated

from a theoretical perspective as a means of gaining

accuracy (e.g., Crimmins, 1981), but experience has

largely proved otherwise. Little is gained from

decomposition because of similar age patterns in the

main causes; cause-of-death reporting is unreliable at

older ages where most deaths occur; and cause-

reduction may have minimal effect on total mortality

(Murphy, 1995). Further, model misspecification and

the presence of leading indicators (where changes in

one cause systematically precede changes in another)

can result in reduced accuracy from decomposition

(Alho, 1991). The short time series of cause-of-death

data also limits extrapolation. Using the multi-

exponential model, McNown and Rogers (1992)

found no consistent discernible gain in accuracy from

cause-of-death decomposition. Wilmoth (1995a) dem-

onstrated that, for proportional rates of change

models, mortality forecasts based on the sum of

cause-specific forecasts will always be higher than

those based on aggregate data because causes of death

that are slow to decline come to dominate as other

causes are more rapidly diminished. Using APC

models for ages 60+, Caselli (1996) found this to be

true for females but reversed for males. Tabeau et al.

(2001) also found this difference between the sexes

for France, Italy and the Netherlands, but not for

Norway. Stoto and Durch (1993), Tuljapurkar (1998)

and Wilmoth (2005) further discuss these issues.

Mortality forecasting based on (partial) cause-

elimination and cause-delay models make use of

targeting and informed judgment (Manton, Patrick,

& Stallard, 1980; Olshansky, 1987, 1988); Kunst,

Mackenbach, Lautenbach, Oei, and Bijlsma (2002)

incorporated competing causes of death. These

methods have often led to conservative forecasts of

mortality reduction. Le Bras (2005) elaborates a

cause-delay model of mortality change.
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Gutterman and Vanderhoof (1998) argue the case

for structural models of cause-specific mortality

change that take medical and other factors into

account, despite the difficulties involved. Structural

models of mortality at older ages relate lifestyle and

other risk factors to functional status and mortality

using vector autoregression, achieving some improve-

ment over traditional time series and informed

judgment methods (Manton, Stallard, & Tolley,

1991; Manton, Stallard, & Singer, 1992). However,

their forecasting potential is limited by the short time

series of risk factors, the large number of parameters

and the non-linear interactions generating the mortal-

ity forecast. Epidemiological, structural and multistate

approaches to cause-of-death forecasting are reviewed

by Van Den Berg Jeths, Hoogenveen, De Hollander,

and Tabeau (2001); (see also Van Genugten, Hoo-

genveen, & De Hollander, 2001).

The forecasting of AIDS mortality is particularly

difficult due to data limitations and inaccuracies, but

methods have evolved rapidly. An early method

involves the extrapolation of AIDS cases, while

another uses a model of the progression from HIV

infection to the onset of AIDS to back-calculate HIV

infections, which are then forecast. The limitations of

these methods are discussed by Bloom and Glied

(1992) and Bos and Bulatao (1992). A third method

incorporates a model of HIV transmission, and a

fourth adds a behavioural model (Auvert, 1991;

Bongaarts, 1989; Bos & Bulatao, 1992; Bulatao,

1991). Oliveira and Mexia (2004) propose a method

which uses data on infection and AIDS mortality

without recourse to transmission and behavioural

models.

For some purposes, forecasts of senescent mortal-

ity suffice. Using a two-factor regression-based

approach, Heathcote and Higgins (2001a,b) modelled

the log-odds of lexis-parallelogram mortality at ages

40+ by an expression involving time, a quadratic in

age and an age–time interaction with up to 24

additional predictors; in forecasting, naı̈ve extrapola-

tion gave implausible divergence by sex and subjec-

tively-adjusted coefficients were used. The approach

by Bongaarts (2005) adopts a shifting logistic model

of the pattern of change over time in age-specific

senescent mortality at ages 25+. This one-factor

parameterisation function makes use of the (nearly)

constant slope parameter, or the equivalence of
mortality decline and a shift of the senescent force

of mortality schedule to older ages. In forecasting, the

age pattern of change is fixed (constant proportionate

decline) and the remaining two parameters are

independently extrapolated: these are the levels of

senescent and age-invariant background mortality. A

shifting logistic is combined with the Lee–Carter

method in long-term UN forecasts (Buettner &

Zlotnik, 2005; United Nations, 2004). A relatively

constant age pattern of change at 25+ was recently

recommended for US mortality (Lee, 2000b).

A difficulty in senescent mortality forecasting is

the adequacy of both the data and the models at the

oldest ages, at which most deaths occur (Kannisto,

1994; Kannisto, Lauritsen, Thatcher, & Vaupel, 1994;

Tuljapurkar & Boe, 1998). The Gompertz function

has been widely employed (Olshansky & Carnes,

1997; Pollard & Valkovics, 1992). However, the

Gompertz and other models were developed on

truncated data and are not recommended for use

much beyond the age of truncation: this is 85+ in the

Heligman–Pollard case (Heligman & Pollard, 1980).

At older ages, the Gompertz is inadequate (Boleslaw-

ski & Tabeau, 2001). Willekens (2001) discusses the

Gompertz function in the contexts of survival analysis

and event-history analysis, with implications for

modelling and forecasting. Models incorporating

theoretical concepts of ageing are reviewed by Yashin

(2001) and Yashin, Iachine, and Begun (2000).

Where data are truncated, extension to the oldest

ages is necessary. Wilmoth (1995b) found the Coale

and Kisker (1990) targeting method to fit well at the

oldest ages, while Thatcher (1999) demonstrated good

fits for the logistic model. Modelling by Renshaw and

Haberman (2003c) supports the Coale and Guo (1989)

method which also uses a target. A relational model

was developed by Himes, Preston, and Condran

(1994); no assumption is made about the upper limit.

Buettner (2002) examined various methods including

an adaptation of the Lee–Carter model. Boleslawski

and Tabeau (2001) reviewed the efficacy of eleven

functions in representing mortality at ages 80–110,

concluding that the Coale and Kisker (1990) method

is superior when reliable data are available to at least

age 90 (see also Alho & Nyblom, 1997), but if data

are reliable only for age 85, the use of polynomials to

extrapolating the age pattern is recommended. Buett-

ner and Zlotnik (2005) found the Coale–Kisker
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method to be too restrictive in very long-term

forecasts; they preferred the logistic model because

it does not require specification of an upper limit.

4.2. Fertility

It is generally agreed that fertility and births are

non-stationary series (Alho, 1992a; Ermisch, 1992).

The difficulty in fertility forecasting stems from

structural change, seen in the trajectory of total

fertility (quantum), changing age patterns (tempo)

and the complex association between the two.

Forecasting success has been limited.

Zero-factor models are relatively common in

fertility forecasting. Early forecasts focussed on

events. McDonald (1979, 1981) used time series

methods to forecast total births and first nuptial

confinements, easily outperforming economic–demo-

graphic structural models in the very short term.

Improvements were achieved by incorporating trans-

fer functions linking total births to females of

childbearing age and first nuptial confinements to

marriages (thus, in effect, forecasting rates).

Forecasting fertility rates rather than births has

several advantages including, in deriving births,

making use of the fact that the number of women is

known with near certainty for the first 15 years. Miller

(1986) forecast total fertility and the mean age at

childbearing by a transfer function model linking past

quantum to current tempo. Age-specific fertility rates

have been forecast by Congdon (1980, 1989) using

regressions and ARIMA models incorporating peri-

odic time and relative cohort size (in line with the

Easterlin hypothesis), and by McDonald (1983) using

simple time series models, with greater success than

structural models.

Ortega and Poncela (2005) address the difficulty

arising from structural change by jointly modelling

total fertility trends for a (subjectively-defined)

homogeneous group of countries. They use dynamic

factor models to estimate one or two common factors

capturing the non-stationary average total fertility

trajectory and a stationary deviation from the

average; they forecast these factors using time series

methods. Compared with univariate models and a

vector autoregression, the approach yielded substan-

tial gains in forecast accuracy, particularly over

longer horizons.
The approach of Lutz, Sanderson, Scherbov, and

Goujon (1996) implicitly deals with the problem of

past and potential future structural change by deriving

target total fertility as the average expectation of a

group of experts. This approach has also been used

with disaggregation by education by Lutz and

Scherbov (2004).

Various theories underpin the structural modelling

of fertility; brief reviews are found in Keyfitz (1982a)

and Ermisch (1992). Ahlburg (1982) achieved greater

short-term accuracy for total births than US official

forecasts; his model included marriage, divorce and

female labour force participation. Ahlburg also

forecast US births using a simple Easterlin relative

cohort size model, identifying cycles of alternate

generations (Ahlburg, 1983), and forecast Canadian

births using a similar model based on births both one

and two generations ago (Ahlburg, 1986).

Structural modelling of age-specific fertility rates

generally involves separate modelling by age but

estimation as dseemingly unrelated regressions.T
Ermisch (1983) modelled three age groups in this

way as functions of women’s and men’s earnings,

relative cohort size and female lifetime employment

rates, and forecast them. Poorer results for women aged

30–34 than 20–24 were attributed to heterogeneity in

fertility responses to economic change by parity with,

the changing parity distribution of women producing

unstable responses (Ermisch, 1992). Frameworks that

build in the sequential nature of childbearing are thus

preferred (De Cooman, Ermisch, & Joshi, 1987;

Ermisch, 1988). Ermisch (1992) adopted such a model

of fertility rates by birth order; short-term forecasts

based on this model were not sensitive to assumptions

about the explanatory variables, but neither were they a

substantial improvement on time series models, and in

the longer term, the main advantage was not in

forecasting but in exploring different scenarios for

policy purposes (Ermisch, 1992:220).

Several parameterisations have been applied in the

modelling of age-specific fertility rates, including the

beta, gamma and Hadwiger functions. Hoem et al.

(1981) compared several functions, finding the

gamma density and the Coale–Trussell (Coale &

Trussell, 1974) function to be equally superior except

for highly parameterised splines; they noted the

Coale–Trussell advantage of parameter interpretability

for forecasting. Rogers (1986) considered the Coale–
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Trussell model to be overly complex and suggested

the direct use of the double exponential function; in

other words, the third term of the multi-exponential

function (Rogers & Little, 1994). The double expo-

nential was found to fit better to fertility patterns that

were relatively symmetrical, and less well to the flatter

curves of the 1980s (Knudsen, McNown, & Rogers,

1993), whereas the Coale–Trussell model was supe-

rior in cases of higher fertility in the 1960s (Rogers,

1986:51). The four parameters of the double expo-

nential are not readily interpretable; in the absence of

time series data, Rogers (1986) regressed each on the

gross reproduction rate (GRR) and assumed future

GRR in forecasting. Knudsen et al. (1993) partially

reparameterised the model, the new parameters being

the mode and modal value, and related total fertility to

the remaining two parameters (via the gamma

density), considerably improving forecastability; uni-

variate ARIMA models performed well in out-of-

sample forecasts of US fertility, despite strong

interactions among parameters.

The more tractable relationship between the three

pattern parameters of the gamma density and the mean

and variance of childbearing was made use of by

Thompson, Bell, Long, and Miller (1989) for short-

term forecasting of age-specific fertility; they directly

forecast the level, mean and standard deviation of

childbearing using a vector autoregression. The

gamma density was also used by Keilman and Pham

(2000) in long-term interval forecasts of Norwegian

fertility involving a vector autoregression of three of

the four parameters (governing level and age pattern,

the parameter representing the minimum age of

childbearing being constant).

Congdon (1990) used the Hadwiger function,

forecasting the four parameters using univariate

ARIMA models; with hindsight, this compared

favourably with a structural time series model

incorporating cyclical and trend factors, relative

cohort size and female job opportunities. Congdon

(1993) made a similar comparison using the reduced-

form Hadwiger function for both period and cohort

fertility. He noted that all four-parameter functions are

over-parameterised; of the reduced-forms, the beta

gave a better fit but the Hadwiger has the advantage of

parameter interpretability. Chandola, Coleman, and

Hiorns (1999, 2000) used the reduced Hadwiger

function to model European fertility: while it provided
a good fit for several countries, for others it was

unable to capture the slight hump at young ages that

has recently developed. For these countries, a mixture

model was used to combine Hadwiger functions for

non-marital and marital fertility, making use of

disaggregation. The general approach has potential

for forecasting.

Brass (1974, 1981) developed the relational Gom-

pertz model which linearly relates observed fertility to

a suitable standard. The model is used with incom-

plete cohort data, or to produce series of the level and

two pattern parameters for forecasting. Parameter

interpretation was improved by Zeng, Zhenglian,

Zhongdong, and Chunjun (2000) in relating the

pattern parameters to the median age and interquartile

range. Murphy (1982) investigated the use of rela-

tional Gompertz models in forecasting. In general,

structural change limits the use of parameterisation

functions and relational models for forecasting,

especially where (as is desirable) vector autoregres-

sions are employed.

The Coale and McNeil (1972) double exponential

has been widely shown to fit first births well (Bloom

& Trussell, 1984). Bloom (1982) used this model to

forecast first births for incomplete cohorts, with

limited success for younger cohorts. Trussell and

Bloom (1983) allowed the parameters to depend on

covariates; Bloom and Trussell (1984) then forecast

childlessness for incomplete cohorts. The Coale–

McNeil function was elaborated by Kaneko (2003)

as the generalized log gamma distribution and used to

forecast first marriage and parity-specific fertility for

incomplete cohorts.

Evans (1986) used linear regression to predict first

birth fertility after age 25 from the proportion

attaining parenthood by age 25 (quantum) and the

ratio of fertility at 15–19 and 20–24 (tempo); overall

fertility was similarly forecast. Martinelle (1993)

forecast first birth rates and childlessness using a

regression model of incomplete cohort fertility that

took education into account. Chen and Morgan

(1991) and Morgan and Chen (1992) showed that

the Bloom approach was sensitive to censoring

below age 30, while the Evans approach was in fact

based on period effects, and concluded that it was

preferable to base forecasts on the period life table

model which assumes that current rates will persist

into the future.
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Ryder (1990) also advocated a period approach,

incorporating continued patterns of change. The

dominant effect on fertility change in the short- to

medium-term is period rather than cohort; the

relationship between the two and their relative

advantages in forecasting have been extensively

discussed (e.g., Nı́ Bhrolcháin, 1992; Ryder, 1983).

Bongaarts and Feeney (1998, 2005) proposed an

adjustment of period total fertility to take tempo

effects into account when data by parity are available.

Kohler and Philipov (2001) extended this adjustment

to include variance effects. While unadjusted fertility

remains the basis of population forecasting, adjusted

measures aid understanding and inform future trends.

Any potential gains in forecast accuracy are important

because long-term population forecasts depend heavi-

ly on long-term total fertility forecasts.

Kohler and Ortega (2002) proposed a tempo-

adjusted period parity progression measure that can

be used to forecast the fertility of incomplete cohorts

conditional on a level of fertility and a postponement

pattern derived from past period trends. Sobotka

(2005) used this method to derive tempo-adjusted

first birth probabilities, which he used as the low

assumption contrasted with the high assumption based

on unadjusted probabilities, separating tempo and

quantum effects.

Lee (2005) charts his 30-year journey in fertility

forecasting, describing how the very idea of model-

ling (post-transition) fertility as a random process was

widely rejected by demographers for the first 20

years! Forecasters were more receptive: in an elabo-

ration of earlier ideas, Lee (1992, 1993) modelled age-

specific fertility rates over time using a single time-

varying fertility index (the method parallels the Lee–

Carter method for forecasting mortality). To address

the problems arising from structural change, lower

and upper bounds and an ultimate (average) level

were imposed (Lee, 1993; see also Lee, 1999). Lee

and Tuljapurkar (1994) used this model with a

different ultimate level and no bounds. Tuljapurkar

and Boe (1999) further evaluated the performance of

the approach. Carter and Lee (1986) used the

approach in a joint model of nuptiality (age and

period) and marital fertility (duration and period).

The Lee method is a principal components method.

Principal components methods were used by Bozik

and Bell (1987) to forecast age-specific fertility, using
the first four components and the level in a vector

autoregression. A principal components approach was

also used by Sivamurthy (1987). Hyndman and Ullah

(2004) also adopted this general approach for fore-

casting Australian fertility using functional data

methods; the logarithms of fertility rates were, after

smoothing, modelled by three basis functions, and the

coefficients of these orthogonal functions were

forecast using univariate time series models. Bell

(1992) discusses the use of principal components and

various other models in time series forecasting of age-

specific rates; see also Bell (1997).

Cohort forecasting of fertility makes lesser

demands on data than mortality, but may be compro-

mised by structural change. Li and Wu (2003)

modelled fertility for completed cohorts by age and

cohort using the Lee (1993) model, and combined the

estimated fixed age effect and incomplete cohort

observations to forecast the cohort effect, thereby

completing that cohort’s fertility. The method is

restricted to completing cohort fertility when certain

assumptions are met.

De Beer (1985) developed the CARIMA (cohort-

ARIMA) model for short-term forecasting which was

successful in identifying turning points 6 or 7 years

ahead in first and second order births. The model

forecasts age- or duration-specific fertility rates for

cohorts using time series methods, taking into account

error covariances and additive period effects, both of

which are modelled as ARIMA processes. The

unobserved fertility of incomplete cohorts is forecast

on the basis of observations at younger ages and for

older cohorts. As with ARIMA models in general, a

disadvantage of the CARIMA model is the difficulty

in interpreting its parameters.

Using post-1950 data for four European countries,

De Beer (1989) compared four models: the CAR-

IMA model, a multiplicative APC-ARIMA model

(Willekens & Baydar, 1986), cubic spline models of

age-specific fertility rates and an ARIMA forecast of

total fertility. An advantage of the APC-ARIMA

model was its greater parameter interpretability, but

its usefulness is strictly limited to short-term fore-

casts. The short-term CARIMA and APC-ARIMA

forecasts performed slightly better than the ARIMA

forecast of total fertility, while the CARIMA fore-

casts were more accurate than those from the APC-

ARIMA model when parity-specific rates were used
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(except anomalously for second births). The relative

accuracy of the spline and CARIMA models was

highly dependent on the position of turning points in

the fitting period: either model could produce large

forecast errors.

Birth expectations might be regarded as a potential-

ly useful exogenous variable in cohort fertility fore-

casting, particularly in forewarning of changing trends

(Willekens, 1990), but this is often not the case: not

only are the expectations data relatively unstable over

time, but they also tend to lag rather than lead actual

fertility (Ahlburg, 1982; Bongaarts & Bulatao,

2000:93; Lee, 1980; Ryder, 1990; Westoff, 1981).

Poor correspondence between stated expectations and

later births has been found using record linkage (Noack

& Østby, 1985) and longitudinal surveys (Calhoun &

De Beer, 1991; Quesnel-Vallée & Morgan, 2003).

Though correspondence is greater at the aggregate

level because of compensating discrepancies, expect-

ations data are generally regarded as unreliable

(Morgan, 2001; Van Hoorn & Keilman, 1997). Non-

response contributes to the problem (Morgan, 1981,

1982; Van de Giessen, 1992; Van Hoorn & Keilman,

1997). Further, Lee (1980) demonstrated that minor

fluctuations in desired completed family size will

generate major fluctuations in period fertility, which

determines annual births and consequent age structures

(with effects on births a generation later).

Birth expectations data are often used qualitatively;

this was the case for many years in US official

forecasts (Long, 1981, 1984). Short-term forecasts of

total US births were found to be less accurate than

those derived by structural modelling (Ahlburg,

1982). Based on extensive US evidence, Hendershot

and Placek (1981:312) concluded that whether birth

expectations data were useful or not depended on the

period considered and on informed judgment.

Given the discrepancies between expectations and

realisations, the direct use of expectations data is ill-

advised. Models (e.g., De Beer, 1991; Lee, 1980, 1981)

are used to dcorrectT the data for forecasting, but none is
considered ideal and their use is limited (Van Hoorn &

Keilman, 1997). Calhoun and De Beer (1991) devel-

oped a bivariate econometric model of children ever

born and additional expected births allowing for the

structural relationship between the two. Morgan and

Chen (1992) dismissed birth expectations data as a

basis for first birth forecasting.
4.3. Migration

International migration has been largely neglected

in demographic modelling and forecasting. Wilson and

Rees (2005) note the difficulties involved. A review of

the practice in 30 industrialised countries (George &

Perreault, 1992) found that most used simple assump-

tions (at best considered a naı̈ve forecast) of net

migration of zero or continuing at the current level

with a fixed age pattern. Howe and Jackson (2005)

found that little had changed, though there were some

exceptions: the UK and Japan now use extrapolation

with informed judgment, while the Netherlands

combines time series and informed judgment in

deriving assumptions for 12 migrant groups. Theories

of international migration have not often been quan-

tified in forecasting (Howe and Jackson, 2005);

informed judgment has played a central role.

Increasing sophistication in the use of informed

judgment reflects the growing importance of migra-

tion in determining population change. De Beer and

Van Wissen (1999) grouped European countries

according to five demographic patterns, and adopted

two assumed net migration rate targets in 2050

characterised by duniformityT under a strong economy

and ddiversityT under a flagging economy. Bijak,

Kupiszewski, and Kicinger (2004) also grouped

European countries and used target net migration

rates for intra- and extra-European migration with

exponential interpolation of migrant numbers. A

detailed study of European migration and its corre-

lates recommended that immigration and emigration

are best forecast separately using one generic frame-

work, taking into account reasons for immigration and

qualitative and quantitative information in country-

specific approaches (Hilderink et al., 2002). The use

of qualitative and quantitative information can be

formalised by the expert-based approach of Lutz and

colleagues (Lutz, 1996).

The reason for migration is taken into account by

decomposition; levels and age–sex patterns are

forecast for the different types of migrants, such as

labour, dependents and asylum seekers (note that

these are not population characteristics). Disaggrega-

tion of immigrants by citizenship is also important

(Hilderink et al., 2002). Decomposition and disaggre-

gation are increasingly employed as data become

more readily available. This approach permits in-
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formed judgment to focus on the circumstances of

specific groups. In general, however, the unpredict-

able nature of economic and political developments,

including migration policies, present considerable

uncertainties for forecasting.

De Beer (1997) used time series methods to model

aggregate immigration and emigration, both as first-

order autoregressive processes. Additionally, net

migration was modelled by a first-order moving

average. The three models gave consistent results,

but informed judgment considered the net forecast

(which was only two-thirds of the average observed

over the last decade) to be too low. Informed

judgment was incorporated as the target in a five-

parameter bextrapolation-targetQ model; three param-

eters govern the extent to which the forecast depends

on past observations, the fourth is the target and the

fifth is the speed at which the forecast approaches the

target. The parameters are all interpretable and in

principle can be derived from fitting the model to

observations. Keilman and Pham (2004) also forecast

immigration and emigration by time series methods;

the ARIMA models were (1,0,1) for immigration and

(0,1,0) for emigration. The forecast series were

randomly broken down by sex; the age patterns were

based on six-parameter multi-exponential models (see

below).

Miller (2002) used time series methods in fore-

casting total net migration to California: for domestic

migration, the net rate was modelled by an AR(1), and

for international migration, the proportion of legal

migrants intending to reside in California was also an

AR(1); adjustments were made for illegal migration

and the age distributions were assumed to be fixed.

Miller and Lee (2004) used a similar approach.

Wilson and Bell (2004) also applied time series

methods in forecasting numbers of immigrants and

emigrants for Australia.

The multi-exponential function originated in mod-

elling the age pattern of migration (Rogers & Castro,

1981; Rogers, Raquillet, & Castro, 1978; Rogers &

Watkins, 1987). The four-term model comprises a

constant, exponential child migration, double-expo-

nential labour migration, and retirement migration

(zero, exponential or double exponential), giving 7–11

parameters in total. With the addition of a post-

retirement term (Rogers, 1988), the full model has 13

parameters (Rogers & Little, 1994). Congdon (1993)
suggested a three-parameter bell-shaped curve for

retirement migration. The model does not easily lend

itself to forecasting (Congdon, 1993; Rogers, Castro,

& Lea, 2005), but see also George (1994): fitting

requires non-linear regression methods with good

guesses for the initial values of parameters which are

highly correlated and potentially highly variable over

time. Rogers et al. (2005) present three alternative

linear estimation procedures for bsimplifiedQ and

bcompleteQ models which produce greater temporal

stability and some improvements in interpretability;

these may present possibilities for forecasting.

Zaba (1985, 1987) extended relational modelling

to migration by developing three-parameter models of

immigration and emigration based on a simple

linearizing transformation. Congdon (1993) applied

this method to out-migration data; the fit was further

improved by adding quadratic and cubic terms in the

standard. Though some fluctuation occurred in the

parameters, trends were apparent, and the potential for

forecasting was noted.
5. Probabilistic population forecasting

Many of the forecasting methods discussed above

have been used to obtain only deterministic point

forecasts, particularly in the earlier period. More

recently, the variability of forecasts has become of

central concern (Lee, 1999; Lee & Tuljapurkar, 2000).

The importance of taking component uncertainty into

account through probabilistic population forecasting

has increasingly been recognised. Exactly how to do

this has been the subject of much recent debate, not

least because estimating the uncertainty is itself

uncertain (Keilman, 2001a; Lutz, Sanderson, &

Scherbov, 1999). Several approaches have been

proposed, the methodological details of which are

still evolving. Previous reviews of this work include

De Beer (2000), Lee (1999, 2000b) and Keilman

(2005b); see also Lutz & Goldstein (2004a).

5.1. Stochastic population renewal

From a statistical viewpoint, the ideal approach to

population forecasting is the fully probabilistic ap-

proach; its advantages overcome the limitations of

traditional deterministic projections (Section 2).
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Importantly, probabilistically consistent prediction

intervals are produced: uncertainty is expressed as

a probabilistic prediction interval for any desired

function of the forecast age distribution, and any

probability can be chosen. The use of probability in

the definition of intervals provides a means of

ensuring consistency among component intervals,

and separates specification of the population predic-

tion interval from component intervals. Further, the

use of probability increases the utility of population

forecasts in risk assessment (Tuljapurkar, 1992); the

forecast may be accessed as a database (Alho &

Spencer, 1991). A prediction interval is, however,

conditional on the forecaster’s particular choice of

method and the assumptions or judgment used.

The fully probabilistic population forecast is

generated through stochastic population renewal in

one of two ways; both employ the cohort-component

method. The analytical approach involves the speci-

fication of a stochastic Leslie matrix (with relevant

covariances); this approach was pioneered by Sykes

(1969) and further developed by others (Alho, 1990;

Alho & Spencer, 1985, 1991, 1997; Cohen, 1986; Lee

& Tuljapurkar, 1994). This approach permits the

assessment of the relative contribution of errors in

mortality, fertility and migration to population error

(Alho, 1992a). Using stochastic renewal theory,

Tuljapurkar (1992) showed that population renewal

is not a closed recursion in the presence of auto-

correlation and that the forecast population size (or

part thereof) is (asymptotically) lognormal. A prob-

lem with the analytical approach is its complexity and

the need for approximations and simplifying assump-

tions. The second approach avoids these problems by

using Monte Carlo simulation in which each step of

the forecast is generated by randomly drawn param-

eters for the distributions of mortality, fertility and

migration. The population distribution is derived from

the percentiles of the set of forecasts. This method is

commonly used.

The cohort-component model does not itself give

rise to forecast uncertainty as it is an accounting

system. However, errors are propagated by the process

of population renewal, producing complex combina-

tions of errors in forecast population size and structure

(Alho & Spencer, 1985). These errors may cancel

each other out depending on the degree to which they

are correlated. Thus in (fully) probabilistic population
forecasts, correlations among errors in component

forecasts affect the degree of uncertainty of the

population forecast.

5.2. Correlations among forecast errors

Four types of correlation among forecast errors

may occur: temporal or serial (auto)correlation,

correlation across age, correlation between demo-

graphic components, and correlation among popula-

tions by sex or within a coherent region.

First-order autocorrelation of errors is relatively

high for annual demographic rates. However, it is the

long-run mean (of fertility in particular) rather than

annual values that determine population growth, and

over the long term (a century or so), temporal

correlation is weak (Lee, 1993). Such correlations

must be taken into account.

Correlations in forecast errors across age are

generally positive because forecasting methods often

take advantage of the regularity of age patterns or

assume a fixed age pattern. Further, the conditions

resulting in high or low annual demographic rates

often apply over the whole age range. Correlations

across age in mortality contribute directly to larger

errors in forecast populations. For fertility the effect is

less important because it is the number of births that

matters rather than the age of the mother. Alho (1998)

found correlations of at least 0.89 between neighbour-

ing ages for mortality and fertility rates. Lee and

Tuljapurkar (2000) and others have concluded that

perfect correlation can be assumed.

Correlations between demographic components

(and the jump-off population) are only likely to be

important for developing countries where develop-

ment factors may underlie changes in all three

components (e.g., Lutz, Sanderson, & Scherbov,

1996). For industrialised countries such correlations

are negligible (Alho, 1992a; Keilman, 1997; Lee &

Tuljapurkar, 1994). Correlations among populations

within regions cannot be ignored: for example,

correlations related to common patterns of change in

mortality or fertility must be taken into account in

sub-Saharan and European forecasts (Lee & Tulja-

purkar, 2000; Lutz, Sanderson, et al., 1996). Positive

correlations between the sexes in mortality and

migration also arise; the common assumption of

perfect correlation results in some overestimation of
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population forecast uncertainty (Keilman, Pham, &

Hetland, 2002).

5.3. Sources of error

In forecasting demographic rates, Alho (1990)

classified error into four different, but conceptually

dependent, sources: model misspecification, errors in

parameter estimation, random variation and errors in

informed judgment (see also Keilman, 1990). Model

misspecification may occur with respect to the

assumed underlying model (e.g., a parameterisation

function) or the time series model or both. Informed

judgment in statistical modelling refers to dpriorT
beliefs about model parameters and the weight given

to them in forecasting; these weights can be estimated

by mixed estimation (Alho, 1992b). In addition, the

basic data are subject to random and non-random

measurement error (Stoto, 1988); see also Lee (1999).

Alho (2005) provides a useful discussion of the roles

of probabilities and judgment. For population fore-

casts, an additional source is measurement error in the

jump-off population, though this is usually negligible

for industrialised countries.

5.4. Model-based ex ante error estimation

Stochastic population renewal makes considerable

demands in terms of variance–covariance error struc-

tures. One way to estimate this uncertainty is to use ex

ante estimates produced by extrapolative methods.

However, estimating uncertainty in this way is highly

uncertain because the estimate depends on the

particular forecasting method used (Cohen, 1986;

Lee, 1974; Sanderson, 1995). Standard methods may

lead to implausibly wide intervals, and judgment is

required in limiting the series or imposing constraints

(Keilman, 2002; Keilman & Pham, 2000; Lee, 1993;

Tuljapurkar & Boe, 1999). Time series methods do not

take into account this and several other sources of

uncertainty (Lee, 1999), nor were they developed for

long-term forecasting, for which both point forecasts

and prediction intervals may be unrealistic (Sander-

son, 1995). They can, however, provide a standard

against which other estimates are compared (De Beer,

1988).

An alternative is to model forecast errors per se

(Alho & Spencer, 1985, 1990a,b, 2005; Cohen, 1986).
Alho and Spencer (1985) constructed prediction

intervals for short-term horizons from a parametric

model of the main sources of error: model misspeci-

fication, parameter estimation and informed judgment.

Estimates of uncertainty based on naı̈ve forecasts

provide a conservative baseline for the assessment of

forecast errors. Alho (1998, 2003) related errors

produced by historical naı̈ve forecasts for Finland to

forecast length, and used this to inform prediction

intervals for new Finnish forecasts. Alho (1997)

borrowed information on the variance and autocorre-

lation of errors from one country for forecasting

fertility for another, and also modelled inter-country

correlations. Alho and Spencer (1997) describe how

to implement this approach in population forecasting

using the analytical approach.

5.5. Expert-based ex ante error estimation

In many countries, data availability limits the

estimation of variance–covariance structures for fully

probabilistic population forecasting. The expert-based

approach circumvents this problem. Component target

forecasts (see Section 3.2) are supplemented by expert

specifications of high and low values, which on

average are assumed to correspond to 90% prediction

intervals of a normal distribution (Lutz, Sanderson, et

al., 1996; Lutz, Sanderson, & Scherbov, 1997; Lutz &

Scherbov, 1998). The method is robust to changes in

the probability and the distributional form (Lutz,

Sanderson, & Scherbov, 1999; Lutz & Scherbov,

1998), but is not suited to short-term forecasting

where variation may be greater than can be captured

by the combined assumptions of linearity and

normality (Lutz, Sanderson, et al., 1996); Alders and

De Beer (cited in De Beer & Alders, 1999:4) show

that this problem is not negligible in the long term.

In population forecasts, the path of each compo-

nent is a random line (or piecewise linear path)

determined by a single random draw from the above-

defined normal distribution. Thus, for example, total

fertility is positioned at the same percentile over the

entire period, which may imply confined changes in

trend but does not allow, for example, the meander-

ings of a random walk. These random lines are

randomly combined into scenarios: each random

scenario is the result of the three random numbers

determining the trajectories of mortality, fertility and
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migration. The distributions of population size,

structure and other output variables are obtained from

the set of repeated scenarios.

The differences between this random scenario

approach and the fully stochastic approach are

discussed in detail by Tuljapurkar, Lee, and Li

(2004); see also Tuljapurkar (1997). The criticism

that the perfect autocorrelations in the random lines do

not permit a truly random sample path (e.g., Lee,

1999) contributed to the relaxation of the assumption

of perfect autocorrelation by the addition of a random

term (Lutz, Sanderson, & Scherbov, 1999, 2001).

Further, in response to criticism that expert expecta-

tion is overconfident and produces overly narrow

prediction intervals, which occurs particularly when

the recent trend is unchanging (Keilman, 1990), the

methodology was adapted to place greater emphasis

on expert argument rather than opinion (Lutz, Goujon

et al., 1999; Lutz, Sanderson, & Scherbov, 2004).

Doubt is also cast on the ability of experts to specify

values representing probability bounds, and on

whether they consider the bounds of annual point

forecasts or temporal averages (Lee, 1999). Alho

(2005) also raises the problem of dexpert flockingT
resulting from the common information base and a

desire to conform. As already noted, Lutz, Goldstein

et al. (1996) argue that the expert-based approach is

the only meaningful way to capture future uncertainty

because structural change and unexpected events are

likely to occur. Others argue that such occurrences are

reflected in the error variances of time series models

(Lee, 1999).

Alders and De Beer (2005) discuss the use of

expert knowledge in the specification of uncertainty in

forecasting Dutch mortality. As different estimation

methods produced substantially different prediction

intervals, judgment was used based on four consid-

erations: smoking trends by sex, possibilities for

mortality decline at young ages, ongoing rectangular-

isation of the survival curve, and the role of medical

advances. These and other considerations are built

into the deterministic forecasting model (Van Hoorn

& De Beer, 2001, cited in Alders & De Beer,

2005:50). The approach is described as dargument-

based forecastingT (Alders & De Beer, 2005:57).

Expert opinions have also been used in Finland to

derive prediction intervals for migration (Alho, 1998,

2005).
5.6. Ex post error estimation

Errors in past forecasts can be used to estimate the

variability in future forecasts, on the assumption that

the future will not differ from the past and that errors

can be modelled. Uncertainty over the forecast period

is derived from the overall estimate of the variance

according to the estimated (or assumed) degree of

autocorrelation. A form of targeting may be used,

where the variance is specified for the last year of the

forecast and interpolation is used for earlier years, for

example by specifying the 95% prediction interval

and assuming that variance increases with time as in a

random walk. Different patterns of evolution may be

required for different components, and for cohort and

period fertility (De Beer & Alders, 1999). Extrapola-

tive forecasts of ex post errors may be made (e.g., De

Beer, 1997).

Prediction intervals based on ex post errors are

attached to a separately-derived (deterministic) fore-

cast, with which they should be consistent (Van Hoorn

& De Beer, 2001). The method provides uncertainty

estimates for fully probabilistic population forecasting

(assuming perfect correlation across age and zero

correlation between components). It is advantageous

in situations where a judgemental point forecast is

preferred, for example when recent structural change

limits extrapolative methods. However, ex post errors

for periods of structural change may not be relevant

for future forecasts (De Beer & Alders, 1999).

Ex post errors were first applied to official

population forecasts (rather than component fore-

casts), where they are essentially a measure of the

accuracy of the traditional cohort-component medium

scenario. Keyfitz (1981) and Stoto (1983) used

variability in ex post errors in the population growth

rates of UN projections to derive probability distribu-

tions for population size. Issues about the correlation

of errors do not arise, and uncertainty in the age–sex

structure is not addressed, though the method could be

applied independently to any measure. These and

other studies of errors in UN population projections

(Bongaarts & Bulatao, 2000; Keilman, 1999, 2001b;

Pflaumer, 1988) found evidence that errors in forecast

growth rates were greater for high growth regions and

earlier base (jump-off) years, and some evidence that

accuracy improved over time; improved data accuracy

and more stable demographic conditions contributed
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to these findings. Errors in the estimated base

population were not insignificant. Further, forecast

accuracy was generally found to decline with increas-

ing forecast horizon and to be better for large

populations and worse at young and old ages. Based

on such findings and cross-country correlations, the

study reported by Bongaarts and Bulatao (2000)

developed a statistical model for the uncertainty in

national and global population forecasts.

Detailed studies of national population forecasts

for developed countries (De Beer, 1997; Keilman,

1990, 1997) examined errors in mortality, fertility and

migration rates and events, and used multivariate

methods (an APC model) to separate out the effects of

the length of forecast horizon, the difficulty of the

particular period and the base year. Other relevant

considerations include the interaction between diffi-

culty and forecast method; the role of luck and the

reasoning behind the choice of method; the causes of

forecast error (for example, model misspecification or

an actual change in trend); and bias towards older

forecasts because recent forecasts can only be

analysed in the short term (De Beer, 2000). Keilman

(1990, 1997) found no clear evidence of improvement

over time in forecasting birth and death rates.

5.7. Complementarity of approaches

The three approaches to the estimation of forecast

uncertainty were at first regarded as more or less

mutually exclusive, but many applications have made

use of and demonstrated their complementarity (e.g.,

Alders & De Beer, 2004, 2005; Alho, 1997; De Beer

& Alders, 1999; Keilman et al., 2002; Lee, 1993;

Lutz, Sanderson, & Scherbov, 2001; Van Hoorn & De

Beer, 2001). Keilman and Pham (2000) derived

prediction intervals for age-specific fertility in the

short to medium term which take into account

uncertainty arising from sampling variability, param-

eter estimation in both the gamma functional repre-

sentation of the age pattern and the time series

forecasting model, and residual variance in the time

series model. Keilman and Pham (2004) used ARCH

time series models (assuming the variability of the

past 100 years) to derive prediction intervals for total

fertility in Nordic countries and compared them with

intervals based on ex post errors and the naı̈ve

(constant) forecast: the three estimates were similar,
indicating that time series estimates are not exces-

sively wide by this measure.

In comparing estimates from different approaches,

it is important to bear in mind the distinction between

time series intervals for annual point forecasts and

intervals for temporal means. Assumptions about

future demographic rates refer more to temporal

means than to annual meanderings, so that ex post

errors and expert-based errors are comparable with ex

ante errors for temporal means (Lee, 1993; Lee &

Tuljapurkar, 2000).
6. Direct population forecasting

Rather than forecast population size by the cohort-

component method, simple or direct methods maybe

used. Ahlburg (1987b) used an autoregressive model.

Leach (1981) re-examined the use of the logistic

function, concluding that it provides an acceptable

model of long-term change that can be more accurate

than the cohort-component method; he attributed this

to an ability to model the dmechanism for self-

correctionT (p.102). Further, Leach argued that com-

ponent forecasts (based on long-term trends) should

be constrained to match population change forecasts

by the logistic model. Similar views were expressed

by Pflaumer (1992) who also advocated the use of

time series methods to provide a baseline against

which more complex methods could be gauged.

McNown et al. (1995) applied this test to point and

interval cohort-component forecasts based on compo-

nents forecast using the multi-exponential model.

Many studies have examined the relative perfor-

mance of simple and cohort-component models of

population forecasting. Most have found constant

growth models or standard time series models of

population size or growth to be at least as accurate

(e.g., Cohen, 1986; Long, 1995; Murphy, 1984;

Pflaumer, 1992; Smith, 1997; Smith & Sincich,

1992; Stoto, 1983). Keyfitz (1981) found complexity

to be an advantage. Bongaarts and Bulatao (1999)

found that most of the variation in World Bank

traditional cohort-component population projections

can be accounted for by simple models. Lee, Carter,

and Tuljapurkar (1995) discuss the relative merits of

cohort-component and direct forecasting, including

the possibility of disaggregating by age and sex after
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forecasting the total. Rogers (1995c) reviewed the

evidence over a broader range of models and provided

a typology of model complexity: a main conclusion,

already noted, is that much depends on the particular

trends in the historical period that forms the basis of

the forecast.

Smith (1987) compared three direct forecasting

methods for population size, finding the base period to

be influential and larger forecast errors for longer

forecast horizons, high base period growth rates and

smaller populations. The relationship between fore-

cast accuracy and forecast horizon was approximately

linear, but no consistent relationship was found for

bias (Smith & Sincich, 1991). The length of the base

period has also been found to have an (inverse) effect

on forecast errors (Smith & Sincich, 1990). A non-

linear inverse relationship between population size

and forecast accuracy was also found among small

populations (Tayman, Schafer, & Carter, 1998).

For very long-term deterministic forecasting, ergo-

dicity allows the initial age–sex structure to be

ignored, except for its effect on population momentum

(see Tuljapurkar and Lee (1997) for the stochastic

case). Goldstein and Stecklov (2002) proposed an

analytical model that adopts a formula for population

momentum under changing fertility (Li & Tuljapur-

kar, 1999, 2000) with extensions to allow for non-

replacement ultimate total fertility and changing

mortality. The method requires only aggregate meas-

ures: birth and growth rates and life expectancy.
7. Progress and progression

It has been seen that a considerable volume of

research has been undertaken in demographic fore-

casting over the last twenty-five years. New models

and methods have been developed and probabilistic

forecasting has been introduced. Much of this research

is recent: methods are still in development and many

have yet to be fully evaluated. Further developments

can be expected in the coming years.

7.1. Overview of methodological developments

Several broad conclusions about methodological

developments in demographic forecasting can be

drawn from this review. First, zero-factor models of
aggregate measures are inadequate, not least because

the assumption of a fixed age distribution is unreal-

istic. The independent forecasting of age-specific rates

may produce irregular and implausible age patterns.

Second, one-factor models have not generally been

successful in forecasting because of parameter unin-

terpretability and over-parameterisation; forecasts

based on these methods may produce implausible

trends and age patterns, especially where parameter

time series models are univariate. The shifting logistic

model of senescent mortality (Bongaarts, 2005) has

the advantage of independent parameters; this method

has yet to be evaluated.

Third, two-factor GLM methods, where time is a

covariate, often produce implausible forecast trends.

Fourth, the Lee–Carter method involving a single

time-varying parameter appears to produce plausible

trends and permits a changing age pattern, though the

fixed pattern of change may produce implausible age

patterns in the longer term (Girosi & King, 2006:45).

Fifth, individual expectations are not a good basis for

demographic forecasting; the validity of expert

expectations is also open to question and has yet to

be fully evaluated. Last, structural models have not

proved useful for forecasting except perhaps for

epidemiological models used in short-term forecasting

of mortality from certain causes.

It would appear then that little progress has been

made along the developmental path of forecasting

referred to by Willekens (1990). Many of the models

and methods developed in recent times focus on the

extrapolation of stable patterns and the associated

estimation of uncertainty in the transitionary first

stages. Others focus on the use of expert opinion,

qualitatively but not quantitatively taking demograph-

ic knowledge into account. Forecasting with explan-

atory structural models has not been significantly

advanced. Neither have decomposition and disaggre-

gation been used to advantage. While multistate

forecasting has been employed for spatial disaggre-

gation, it has not been widely adopted for other

dimensions. Microsimulation is limited (computation-

ally) to manageable sample populations so as to

accommodate more detailed disaggregation. Further,

many microsimulation models are based on constant

transition probabilities (or rates), so that the forecast is

determined only by the initial distribution of the

sample population.
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However, other progress has been made: forecast-

ing knowledge has been substantially increased

through the high level of research activity and the

ensuing debates. In addition, improved access to

high-quality data through the development of data-

bases (e.g., the Human Mortality Database,bhttp://

www.mortality.org/N), increased computer power, the

wider (though still not sufficient) availability of spe-

cialised software (e.g.,bhttp://www.robhyndman.info/

Rlibrary/demography/N), and the (partial), adoption

of R as the common programming language are major

contributions to the development of the research

environment. If little progress has so far been made

along the developmental path, demographers have at

least acquired many of the skills and equipment for

their future progression.

7.2. Progress in forecasting performance

The performance of demographic forecasts is often

assessed against a range of criteria taking both

quantifiable and qualitative factors into account

(Ahlburg, 1995; Long, 1993, 1995; McNown, Rogers,

& Little, 1995; Rogers, 1995c; Swanson & Tayman,

1995).

For any forecast worthy of the name, accuracy is a

main goal. However, as Keyfitz (1981:580) observed,

accuracy was of little ex post concern to population

forecasters. In fact, little is known about what makes

one demographic forecasting method more accurate

than another, or indeed which can reliably be so

distinguished. The fact that there is no evidence that

overall accuracy in mortality and fertility forecasting

has improved over time (e.g., Keilman, 1997)

suggests that methods per se have not become more

accurate. Indeed, an oft-found conclusion is that

forecast accuracy is situation-specific. Little progress

has been made in advancing knowledge about which

methods can be relied upon when conditions are

unstable.

A difficulty for the assessment of accuracy in

demographic forecasting is the length of the time

horizon: long-term methods, such as the Lee–Carter

method and the expert-based approach cannot be

readily evaluated. This is particularly the case for the

expert-based approach, because out-of-sample evalu-

ation based on historical data cannot be used (except

perhaps in well-controlled blind experiments). Nev-
ertheless, evaluations are required based on both

historical data and the (short) time periods that have

elapsed. More comparative research focussed on

methods would assist in this endeavour (e.g., Booth

et al., 2005); the multivariate analysis of ex post errors

(Keilman, 1997) is a useful approach.

A second criterion is accuracy in the estimation of

uncertainty. Advances have been made in identifying

and estimating the different sources of error in

forecasts of demographic processes. However, the

estimation of uncertainty remains uncertain: different

methods produce different estimates, only partly

because they take into account different subsets of

error sources. In population forecasting, the replace-

ment of the high–low scenarios of traditional popu-

lation projections by a probabilistic prediction interval

is a major advance; understanding and quantification

of the propagation of error in population forecasts is

an important contribution. The official agencies of

some of the most statistically advanced countries are

now introducing probabilistic forecasting; the Nether-

lands is a pioneer in this respect, and the US has

recently chosen to employ formal time series model-

ling of the demographic components with stochastic

population renewal (Long & Hollmann, 2004).

Similar developments can be expected elsewhere.

A third criterion is consistency. Multistate methods

produce consistency between national and subnational

population forecasts. A major advantage of fully

probabilistic population forecasts is the consistency

of prediction intervals for different indices. On this

criterion, significant progress has been made. Other

criteria for the evaluation of forecasting performance

broaden the concept considerably; parsimony, face-

validity and legitimacy are largely specific to the

particular method and data used. Utility has been

increased by virtue of the probabilistic prediction

interval and the consistency that this affords. Trans-

parency, which is essential if new methods are to be

adopted and valid comparisons are to be made, has

been increased in that methods and their assumptions

are now documented and extensively discussed.

A final criterion is user acceptability. Probabilistic

population forecasts are often viewed as too complex

to be understood by users who are accustomed to

using the medium scenario of traditional population

projections and appear to have no use for the high and

low scenarios (Lutz & Goldstein, 2004b). This view

http://www.mortality.org/
http://www.robhyndman.info/Rlibrary/demography/
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neglects the possibility that users realize the limi-

tations of traditional population projections and

simply make the best use of a poor product. Well-

explained forecasts with probabilistic prediction inter-

vals might indeed be welcomed by users: at last they

would have a user-defined probability range of

population futures that are consistent, rational and

valid. User acceptability requires independent evalu-

ation, distinguishing it from the breluctance of

forecasters to make the leap from using scenarios to

fully stochastic forecastsQ (Goldstein, 2004:94).
By most criteria, therefore, forecasting perfor-

mance has been improved over the period under

review. Only accuracy remains essentially unchanged,

or in the longer-term unproven. Thus, the improve-

ment of forecast accuracy and the concomitant

reduction of uncertainty remains an important focus

for research. Greater certainty in the estimation of

uncertainty is also an ongoing aim.

7.3. Competition, combination and complementarity

Improving the accuracy of demographic forecasting

is a major challenge. Two ideas borrowed from

forecasting in other disciplines are competition and

combining. Competition in demographic forecasting has

been both advocated and criticised. Land (1986),

Ahlburg and Vaupel (1990), Ahlburg (1995) and Rogers

(1995c) advocated livelier competition or formal tourna-

ments to compare forecasting accuracy. The idea was

short-lived, however, perhaps because of the focus on

uncertainty and the lack of both a passionate advocate

and an appropriate institutional backing. Ahlburg and

Lutz (1999:5) found the emergence of informal compe-

tition characterised by ba struggle for the survival of the
fittest model, where fitness is judged primarily by

forecast accuracy. . .or by the strength of the institution

behind the forecast to be counterproductive.Q Ahlburg et
al. (1999:192) regard any exercise aiming bto find the

best methodQ as bfutile.Q
Combining has not fared any better. The combining

of forecasts from different models involves averaging

or some other procedure as a simple and pragmatic way

to possibly produce better forecasts (Granger, 1989,

2001), and has been repeatedly advocated as a means of

increasing the accuracy of demographic forecasts

(Ahlburg, 1995; Ahlburg & Land, 1992b; Ahlburg &

Lutz, 1999; Willekens, 1992). However, the idea has
not been embraced. In rare exceptions, De Beer (1988)

found combining to be advantageous only in the very

short term, while Sanderson (1999) found it beneficial

for forecasting the rate of natural increase. It is noted

that probabilistic consistency would be forfeited if

cohort-component-based population forecasts were

combined.

While combining per se has not found favour,

complementarity is increasingly recognised (e.g.,

Tuljapurkar et al., 2004:198). In forecasting demo-

graphic processes, the complementary combination of

useful aspects of approaches would appear to be more

fruitful than trying to find a single best method or

combining forecasts from competing approaches. As

has already been noted (Section 5.7), recent research

has emphasised the complementarity of approaches at

least as far as the estimation of uncertainty is

concerned (e.g., Alders & De Beer, 2004). This

pragmatic complementary approach avoids the com-

plications involved in combining the prediction

intervals of competing forecasts (Granger, 2001); it

also facilitates the more complete estimation of

uncertainty than a single approach might permit.

Complementarity has also been adopted in popula-

tion forecasting; several methods combine probabilistic

forecasts with the scenario approach. In the modified

scenario approach (Goldstein, 2004), traditional pop-

ulation projections are calibrated to stochastic forecasts

by adopting the prediction limits of life expectancy and

average fertility forecasts as high and low assumptions,

achieving similarity of population uncertainty esti-

mates (adjustment is needed in the case of ratios).

Conditional probabilistic population forecasting takes

various forms. One such method involves classifying

simulated population trajectories according to their

randomly-generated fertility and mortality levels,

permitting what-if questions to be examined (Sander-

son, Scherbov, O’Neill, & Lutz, 2004); applications

include Lutz and Scherbov (2002) and O’Neill (2004).

Another method involves classifying forecasts accord-

ing to the level of the forecast after an initial period,

thus addressing policy questions about whether to

delay action (Sanderson et al., 2004).

7.4. Forecasting demographic change

In order to improve forecast accuracy, methods are

needed that have the capacity to capture structural
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change. Both the period-specificity of forecast accu-

racy and the lack of improvement stem from the

inadequacy of existing methods to forecast change.

Extrapolative time series methods, such as the Lee–

Carter method, do not purport to forecast structural

change but produce wide prediction intervals that

encompass variability from past change.

Neither does the expert-based approach claim to

forecast structural change; Lutz, Goldstein, et al.

(1996) merely state a belief that structural change is

likely to happen (p. 38) and that in determining the

predictive probability distribution, experts can

dconsider possible alternative stories that might happen

in the futureT (p. 37). In practice, in this approach

change is expressed only as an aggregate target in a

specific year; the timing of change is not predicted, nor

is the age pattern permitted to change. If this approach

is to better predict change, it must be further developed

to incorporate the timing of changes in trends and to

formalise the decision-making processes involved in

making use of demographic knowledge, perhaps

through some form of model incorporating expert-

based quantified effects. The wide availability of

standardised survey data (e.g., Demographic and

Health Surveys) facilitates such modelling.

There is no doubt that our capacity to forecast

demographic change will gain from a greater under-

standing of the causal factors and processes that

determine the level, sequence and timing of demo-

graphic events, as Willekens (1990) affirmed. Signif-

icant progress has in fact been made over the last

twenty-five years in increasing such understanding.

However, this has not resulted in theory-informed

forecasting; current demographic theory is too general

to be of such use. Rather, it would appear that

demographic behaviour, like most human behaviour,

is too complex to be easily modelled and forecast;

indeed, it may be inherently unpredictable. Only

mortality, which is largely biological, lends itself at

all to an explanatory structural approach.

The complexity of demographic behaviour would

suggest that disaggregation and decomposition is an

appropriate and potentially useful approach, at least in

the short- to medium-term. The increased understand-

ing of demographic life-course processes and their

determinants, combined with increased computer

power, facilitates added dimensions of disaggregation

and decomposition and the development of both
increasingly detailed multistate (macrosimulation)

models and individual-level microsimulation.

The new European MicMac project combines the

macrosimulation and microsimulation approaches to

produce forecasts of both the population in multidi-

mensional states (defined by age, sex and various other

statuses such as participation in the labour force) and

the length of time spent in those states (Van der Gaag,

De Beer, & Willekens, 2005; Willekens, 2005;

Willekens, De Beer, & Van der Gaag, 2005). The

macrosimulation involves the construction of cohort

biographies at the population level, while the micro-

simulation produces synthetic individual biographies

which are aggregated to determine population charac-

teristics. The bridge between the cohort and individual

biographies is the common use of transition rates

estimated conditionally on covariates (occurrence–

exposure rates); thus the dynamics at the macro- and

micro-levels are internally consistent. Informed by an

increased understanding of demographic processes,

transition rates are modelled and forecast either by

regressions (structural models) or by recourse to

(further) disaggregation. Thus, structural modelling is

being incorporated into demographic forecasting. The

MicMac approach is complementary and pragmatic: it

makes use of causality where possible, and otherwise

of statistical association. Further complementarity is

likely to be found in the estimation of uncertainty and

in the methodological details.

It remains to be seen to what extent MicMac will

improve forecast accuracy by capturing structural

change. This depends in part on the validity of the

causal models. How can the theory embedded in

these models be tested and further theory developed?

One approach is to make use of agent-based or

behavioural modelling; this differs from empirically-

based microsimulation in that the computational

model is based on pre-defined behavioural rules.

Agent-based computational models simulate feed-

backs and behavioural hypotheses, as can micro-

simulation, but the purpose is to verify whether the

rules of individual behaviour can produce macro-

level regularities and variability (e.g. Murphy, 2003);

thus theory is tested and developed. Though agent-

based computational methods have only recently

been explored in demography (Billari & Prskawetz,

2003), they have the potential to assist in the

development of demographic behavioural theory
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and thus to contribute to progress along the path

towards forecasting demographic change.
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