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Abstract

The weak variance-alpha-gamma process is a multivariate Lévy
process constructed by weakly subordinating Brownian motion, pos-
sibly with correlated components with an alpha-gamma subordina-
tor. It generalises the variance-alpha-gamma process of Semeraro
constructed by traditional subordination. We compare three calibra-
tion methods for the weak variance-alpha-gamma process, method
of moments, maximum likelihood estimation (MLE) and digital mo-
ment estimation (DME). We derive a condition for Fourier invertibility
needed to apply MLE and show in our simulations that MLE produces
a better fit when this condition holds, while DME produces a better
fit when it is violated. We also find that the weak variance-alpha-
gamma process exhibits a wider range of dependence and produces a
significantly better fit than the variance-alpha-gamma process on an
S&P500-FTSE100 data set, and that DME produces the best fit in
this situation.
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1 Introduction

The subordination of Brownian motion has important applications in math-
ematical finance, and acts as a time change that models the flow of infor-
mation, measuring time in volume of trade, as opposed to real time. This
idea was initiated by Madan and Seneta in [27] who introduced the variance-
gamma (V G) process for modelling stock prices, where the subordinate is
Brownian motion and the subordinator is a gamma process.

Subordination can be applied to model dependence in multivariate price
processes. The multivariate V G process in [27] uses n-dimensional Brownian
motion as its subordinate and a univariate gamma process as its subordi-
nator, which gives it a restrictive dependence structure, where components
cannot have idiosyncratic time changes and must have equal kurtosis when
there is no skewness. Models based on linear combinations of independent
Lévy processes [19, 23] also do not account for both common and idiosyn-
cratic time changes. These deficiencies are addressed by the use of an alpha-
gamma subordinator, resulting in the variance-alpha-gamma (V AG) process
which was introduced by Semeraro in [34] and also studied in [18, 22]. How-
ever, in this case, the Brownian motion subordinate must have independent
components, which also restricts the dependence structure.

To be precise, let B = (B1, . . . , Bn), where T = (T1, . . . , Tn) be inde-
pendent n-dimensional processes, where B is Brownian motion and T is a
subordinator. Subordination is the operation that produces the process B◦T
defined by (B ◦ T )(t) := (B1(T1(t)), . . . , Bn(Tn(t))), t ≥ 0. Subordination in
the case when T has indistinguishable components has been studied in [4, 33],
and when B has independent components in [3]. In these cases, which we
refer to as traditional subordination, B ◦ T is a Lévy process, otherwise it
may not be (see [10], their Proposition 3.9). We refer the reader to [9] for a
thorough discussion of traditional subordination and its applications.

In [10], we introduced the weak subordination of B and T , an operation
that extends traditional subordination and always produces a Lévy process
B � T . Then the weak variance-alpha-gamma (WVAG) process can be
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constructed using weak subordination instead of traditional subordination,
while allowing for the Brownian motion to have possibly correlated com-
ponents. The WVAG process exhibits a wider range of dependence while
remaining parsimoniously parametrised, each component has both common
and idiosyncratic time changes, it has V G marginals with independent levels
of kurtosis, and the jump measure has full support.

Weak subordination also has applied in quantitative finance. In [29], var-
ious marginal consistent dependence models have been constructed by weak
subordination. In [25], log return modelling based on the WVAG process was
applied in instantaneous portfolio theory. In [28], weak subordination using
subordinators with arbitrary marginal components and dependence specified
by a Lévy copula was studied in the context of financial information flows.

Maximum likelihood estimation (MLE) has been used to fit financial data
to a univariate V G process in [26, 16], to a bivariate V G process in [17], to a
WVAG process in [29], and to a factor-based subordinated Brownian motion
in [21, 29, 35], a generalisation of the WVAG process. Since the density
function of the V AG and WVAG distribution is not explicitly known but
its characteristic function is, the density function is computed using Fourier
inversion.

In this paper, we derive a sufficient condition in terms of the parameters
for Fourier invertibility, a problem that to our knowledge is not addressed
in the existing literature. Then we compare MLE with method of moments
(MOM) and digital moment estimation (DME) from [24]. Using simulations
we find that MLE produces a better fit when the Fourier invertibility con-
dition is satisfied but that DME is better when it is violated. In addition,
we fit both the WVAG and V AG model to an S&P500-FTSE100 data set
and show that the weak model has a significantly better fit, and that DME
is the better method in this situation. Finally, using a condition for the
self-decomposability of the WVAG process from [11], we find that the log
returns are self-decomposable.

This paper is structured as follows. In Section 2, we review the definition
and properties of the WVAG process, and other preliminaries. In Section 3,
we derive a condition for Fourier invertibility. In Section 4, we apply MOM,
MLE, DME to simulated and real data, and discuss our findings. In Section
5, we conclude the paper.
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2 Weak Variance-Alpha-Gamma Process

Let Rn be n-dimensional Euclidean space whose elements are row vectors
x = (x1, . . . , xn) with canonical basis {ek : 1 ≤ k ≤ n}. Let 〈x,y〉 = xy′

denote the Euclidean product, ‖x‖2 = xx′ denote the Euclidean norm, and

let ‖x‖2
Σ := xΣx′. For n-dimensional processes X and Y , X

D
= Y indicates

that X and Y are identical in law, that is their systems of finite dimensional
distributions are equal.

A overview of Lévy processes and weak subordination is given in the
appendix. Throughout, B = (B1, . . . , Bn) ∼ BMn(µ,Σ) refers to an n-
dimensional Brownian motion with linear drift E[B(t)] = µt and covari-
ance matrix Cov(B(t)) = tΣ, t ≥ 0. An n-dimensional subordinator T =
(T1, . . . , Tn) ∼ Sn(T ) is an n-dimensional Lévy process with nondecreasing
components, and its Lévy measure is denoted by T .

Gamma subordinator. For a, b > 0, a univariate subordinatorG ∼ ΓS(a, b)
is a gamma subordinator if its marginal G(t), t≥0, is gamma distributed with
shape parameter at and rate parameter b. If a=b, we refer to G as a standard
gamma subordinator, in short, G ∼ ΓS(b) := ΓS(b, b).

Alpha-gamma subordinator. Assume n ≥ 2. Let α = (α1, . . . , αn) ∈
(0,∞)n and G0, . . . , Gn be independent gamma subordinators such that G0∼
ΓS(a, 1), Gk∼ΓS(βk, 1/αk), where a>0, aαk<1, βk :=(1−aαk)/αk, 1≤k≤n.
A process T ∼ AGn

S(a,α) is an alpha-gamma (AGn
S) subordinator [34] with

parameters a,α if T
D
= G0α + (G1, . . . , Gn). An alpha-gamma subordinator

T has correlated components with marginals Tk ∼ ΓS(1/αk), 1 ≤ k ≤ n.

Variance-gamma process. Let b > 0, µ ∈ Rn and Σ ∈ Rn×n be a co-
variance matrix. A process V ∼ V Gn(b,µ,Σ) is a variance-gamma (V Gn)
process [27] with parameters b,µ,Σ if V ∼ BMn(µ,Σ) ◦ (ΓS(b)e), where
e := (1, . . . , 1) ∈ Rn.

The characteristic exponent of V is (see [9], their Formula (2.9))

ΨV (θ) = −b ln

{
1− i 〈µ,θ〉

b
+
‖θ‖2

Σ

2b

}
, θ ∈ Rn , (2.1)

where ln : C\(−∞, 0]→ C is the principal branch of the logarithm.

Strong variance-alpha-gamma process. Assume n≥ 2. Let µ∈Rn and
Σ ∈ [0,∞)n×n be a diagonal matrix. A process X ∼ V AGn(a,α,µ,Σ) is
a (strong) variance-alpha-gamma (V AGn) process [22, 34] with parameters
a,α,µ,Σ if X ∼ BMn(µ,Σ) ◦ AGn

S(a,α).
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In [10], the weak V AG process was formulate using weak subordination,
allowing B to have dependent components while remaining a Lévy process.

Weak variance-alpha-gamma process. Assume n≥ 2. Let µ ∈Rn and
Σ∈Rn×n be an arbitrary covariance matrix. The process X ∼ WVAGn(a,α,
µ,Σ) is a weak variance-alpha-gamma process [10] with parameters a,α,µ,Σ
if X ∼ BMn(µ,Σ) � AGn

S(a,α), where � denotes the weak subordination
operation (see the appendix).

Next, we gather various known results about the WVAG process that will
be useful later on. The notation � is defined in (A.1) and self-decomposability
is defined in the appendix.

Proposition 2.1. Let n ≥ 2 and X ∼ WVAGn(a,α,µ,Σ).

(i) X is an n-dimensional Lévy process with Lévy exponent

ΨX(θ) =− a ln

{
1− i 〈α � µ,θ〉+

1

2
‖θ‖2

α�Σ

}
−

n∑
k=1

βk ln

{
1− iαkµkθk +

1

2
αkθ

2
kΣkk

}
, θ ∈ Rn . (2.2)

(ii) Let V0 ∼ V Gn (a, aα � µ, aα � Σ), Vk ∼ V G1(βk, (1− aαk)µk, (1−aαk)

Σkk), 1≤k≤n be independent. Then X
D
= V0 +

∑n
k=1 Vkek.

(iii) For any c > 0, (X(ct))t≥0 ∼ WVAGn(ca,α/c, cµ, cΣ).

(iv) For 1≤k≤n, X has marginal distribution Xk ∼ V G1(1/αk, µk,Σkk).

(v) If Σ is diagonal, then X ∼ V AGn(a,α,µ,Σ).

(vi) For 1≤k 6= l≤n, Cov(Xk(1), Xl(1)) = a(αk∧αl)Σkl + aαkαlµkµl.

(vii) If Σ is invertible, then X is self-decomposable if and only if µ = 0.

Proof. See [10] for (i), (ii), (iv)-(vi), [29] for (iii), and [11] for (vii).

The WVAG process exhibits a wider range of dependence than the V AG
process. For example, it has an additional covariance term a(αk∧αl)Σkl from
Proposition 2.1 (vi).
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3 Fourier Invertibility

Let n ≥ 2 and X ∼ WVAGn(a,α,µ,Σ) and Y =Im+X, m ∈ Rn, where I :
[0,∞)→ [0,∞) is the identity function. The density function of Y (t), t > 0,
which is needed for MLE, exists because Y (t) has an absolutely continuous
distribution for. However, it is not explicitly known, so it is computed using
Fourier inversion as

fY (t)(y) = (2π)−n
∫
Rn

exp(−i 〈θ,y −m〉)ΦX(t)(θ) dθ, y ∈ Rn , (3.1)

where ΦX(t)(θ) = exp(tΨX(θ)), θ ∈ Rn, and ΨX(θ) from (2.2), provided
ΦX(t) ∈ L1. If ΦX(t) ∈ L1, we say that X(t) is Fourier invertible and we give
a condition for this in terms of an inequality relating the parameters.

Lemma 3.1. Let B ∼ BMn(µ,Σ), B∗ ∼ BMn(0,Σ), T ∼ Sn(0, T ), X
D
=

B � T , X∗
D
= B∗ � T , Y

D
= Im + X, m ∈ Rn. For all t ≥ 0 and p > 0, if

ΦX∗(t) ∈ Lp, then ΦY (t) ∈ Lp.

Proof. For all t ≥ 0, ΦY (t)(θ) = eit〈θ,m〉ΦX(t)(θ), θ ∈ Rn, so that |ΦY (t)(θ)|
= exp(t<ΨX(θ)). Using (A.2), we have

<ΨX(θ) =

∫
[0,∞)n∗

(<ΦB(t)(θ)− 1) T (dt)

≤
∫

[0,∞)n∗

(|ΦB(t)(θ)| − 1) T (dt)

=

∫
[0,∞)n∗

(
exp

(
−1

2
‖θ‖2

t�Σ

)
− 1

)
T (dt)

= <ΨX∗(θ).

Therefore, |ΦY (t)(θ)| ≤ |ΦX∗(t)(θ)|, from which the result follows.

Lemma 3.2. Let V ∼ V Gn(b,µ,Σ), and assume that Σ is invertible. Let
p > 0. If pb > n/2, then ΦV ∈ Lp.

Proof. Since variance-gamma processes are weakly subordinated processes
(see (A.3)), we can apply Lemma 3.1, which means that we can assume
µ = 0. For V ∼ V Gn(b, 0,Σ), by (2.1), V has characteristic function

ΦV (θ) =

(
1 +
‖θ‖2

Σ

2b

)−b
, θ ∈ Rn.
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Using the Cholesky decomposition, Σ = U ′U , where U is a lower triangular
matrix with positive elements on the diagonal. Let p > 0. Making the
transformation θ = (2b)1/2x(U ′)−1, noting that (U ′)−1 exists, and hence the
transformation is injective, we have∫

Rn

|ΦV (θ)|p dθ = |(2b)1/2U−1|
∫
Rn

(
1 + ‖x‖2)−pb dx. (3.2)

Using the polar decomposition (see Corollary B.7.7 in [32]) on the RHS of
(3.2), we have ΦV ∈ Lp if and only if∫ ∞

0

(1 + r2)−pbrn−1 dr <∞,

which is equivalent to pb > n/2.

Proposition 3.1. Let X ∼ WVAGn(a,α,µ,Σ) and Y
D
= Im+X, m ∈ Rn.

Assume that Σ is invertible. For t > 0, if(
a

n
+ min

1≤k≤n
βk

)
t >

1

2
, (3.3)

then ΦX(t),ΦY (t) ∈ L1.

Proof. By Proposition 2.1 (iii), it suffices to prove the result for t = 1,
and by Lemma 3.1, we can assume µ = 0 and m = 0, so that Y ∼
WVAGn(a,α,0,Σ).

Let V0 ∼ V Gn(a,0, aα � Σ), Vk ∼ V G1 (βk, 0, (1− aαk)Σkk), 1 ≤ k ≤
n, be independent, and let V ∗ := (V1, . . . , Vn). By Proposition 2.1 (ii),
Y has characteristic function ΦY (θ) = ΦV0(θ)ΦV ∗(θ), where ΦV ∗(θ) :=∏n

k=1 ΦVk
(θk). For p−1 + q−1 = 1, p, q > 1, Hölder’s inequality gives∫

Rn

|ΦY (θ)| dθ ≤
(∫

Rn

|ΦV0(θ)|p dθ

)1/p(∫
Rn

|ΦV ∗(θ)|q dθ

)1/q

=

(∫
Rn

|ΦV0(θ)|p dθ

)1/p n∏
k=1

(∫
R
|ΦVk

(θ)|q dθ

)1/q

.

By Lemma 3.2, this integral is finite when pa > n/2, qβk > 1/2 and p, q > 1
for all 1 ≤ k ≤ n. Thus,

1 =
1

p
+

1

q
< 2

(
a

n
∧ 1

2

)
+ 2

(
min

1≤k≤n
βk ∧

1

2

)
,

which is equivalent to (3.3).
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Remark 3.1. Note that this condition for a V G1(b, µ,Σ) distribution to be
Fourier invertible is identical to the condition for its density function having
no singularity in [20], which is b > 1/2.

Remark 3.2. We see that for sufficiently small t > 0, (3.3) will not be
satisfied. This means that using (3.1) to compute the density function may
not be valid when attempting parameter estimation for a WVAG process
based on observations from such a sufficiently small sampling interval.

4 Calibration

We now specialise to the case of n = 2. Let X ∼ WVAG2(a,α,µ,Σ),
Y := (Y1, Y2) = Im +X, m ∈ R2. Let (S1, S2) be a bivariate price process

Sk(t) = Sk(0) exp(Yk(t)), t ≥ 0, k = 1, 2. (4.1)

For N equally spaced discrete observations with sampling interval c > 0, the
log returns are

yj := (y1j, y2j) :=
(

ln
S1(jc)

S1((j − 1)c)
, ln

S2(jc)

S2((j − 1)c)

)
D
= Y (c), j = 1, . . . , N,

and are iid. We call this the WVAG model. If Σ12 = 0, we called it the
V AG model as X reduces to a V AG process by Proposition 2.1 (v).

4.1 Simulation method

The result in Proposition 2.1 (ii) can be used to simulate X ∼ WVAG2(a,α,
µ,Σ) in terms of V Gn and V G1 processes.

For the sampling intervals c = 1, 0.1 and sample size N = 1000, we make
100 simulations of Y , and estimate the parameters from the observations
(yj)

N
j=1 with true parameters a = 1, α = (0.8, 0.6), µ = (0.1,−0.3), Σ =

[1, 0.6; 0.6, 1.2], m = (−0.1, 0.3).

4.2 Calibration methods

We estimate the parameters (a,α,µ,Σ,m) from the observations (yj)
N
j=1

using method of moments (MOM), which is quick and easy to implement,
maximum likelihood estimation (MLE) from Michaelsen & Szimayer [29],
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which may be expected as being asymptotically optimal under the model,
and a modification of digital moment estimation (DME) from Madan [24],
which is more robust to model misspecification.
Method of moments. The initial values of µk, αk,Σkk,mk, k = 1, 2,
are obtained by least squares on the first four central moments E(Yk(c)),
E((Yk(c)− E(Yk(c)))p), p = 2, 3, 4, with the corresponding sample moments.
The initial values of the joint parameters a,Σ12 are obtained by least squares
on E((Y1(c)−E(Y1(c)))p(Y2(c)−E(Y2(c)))p), p = 1, 2, with the corresponding
sample moments, with p = 1 excluded when fitting the V AG model. Using
these initial values, least squares is solved over all parameters. Note that this
last step has no effect when these moments can be matched exactly.

Moment formulas can be found in [29].

Maximum likelihood estimation. The density function of Y (c) is not ex-
plicitly known so it is numerically computed using Fourier inversion by (3.1).
The numerical optimisation needed to implement MLE requires initial val-
ues. The first initial values can be obtained by MOM. Using the first initial
values, MLE is applied to each marginal observations to obtain the second
initial values of µk, αk,Σkk,mk, k = 1, 2, and to the bivariate observations
to obtain the second initial values of a,Σ12. Finally, using the second initial
values, MLE is applied on all parameters. For the V AG model, we apply the
above method with the constraint Σ12 = 0.

Digital moment estimation. Let k = 1, 2, let q be the vector of 10
equally spaced points from 0.05 to 0.95, and let Pk be the empirical quantiles
of the observations (ykj)

N
j=1 at the probabilities q. Let py(µk, αk,Σkk,mk) :=

P(Yk(c) ≤ y), where y ∈ Pk, Yk ∼ mkI+V G1(1/αk, µk,Σkk) (see Proposition
2.1 (iv)), and qy is the corresponding empirical probability. Marginal param-
eters µk, αk,Σkk,mk are estimated by minimizing the error

∑
y∈Pk

(py(µk, αk,

Σkk,mk)− qy)2.
With the estimated marginal parameters, let ρ := Σ12

/
(Σ11Σ22)1/2, py(a,

ρ) := P(Y1(c) ≤ y1, Y2(c) ≤ y2), where y := (y1, y2) ∈ P1×P2, Y ∼ Im +
WVAG2(a,α,µ,Σ), and qy is the corresponding empirical probability. Since
py(a, ρ) is computationally expensive to calculate directly, it is estimated
by the empirical probability over 10000 simulations. The joint parame-
ters a, ρ are estimated by minimizing the LOESS smooth [14] of the error∑

y∈P1×P2
(py(a, ρ)− qy)2. The predictor variables for the LOESS smooth are

100 equally spaced points on the feasible set of (a, ρ)∈ (0, (1/α1)∧(1/α2))×
(−1, 1). For the V AG model, we apply the above method with the constraint

9



ρ = 0.

4.3 Goodness of fit statistics

To assess the overall goodness of fit of each parameter estimation method,
as opposed to assessing individual parameters, we consider 3 goodness of fit
statistics, the negative log-likelihood (− logL), a chi-squared (χ2) statistic,
and a Kolmogorov-Smirnov (KS) statistic.

To compute χ2, we apply the Rosenblatt transform [31] of the fitted dis-
tribution to the observations, which has a uniform distribution on [0, 1]2 if
the fitted distribution coincides with the true distribution, and then we com-
pute the χ2 statistic for a test of uniformity over an equally spaced partition
of [0, 1]2 into 100 cells. Since computing − logL and χ2 requires Fourier in-
version, it may not be possible to compute these statistics accurately when
the Fourier invertibility condition does not hold, so they are not displayed in
Table 2.

Therefore, we also consider the 2-dimensional, two-sample Kolmogorov-
Smirnov statistic introduce by Peacock in [30], and computed using the
method of [36]. This is the statistic for testing equality of the fitted dis-
tribution and the true distribution based on a sample from the respective
distributions, and therefore does not require the density function fY (c)(y) or
Fourier inversion. When applied to real data in Subsection 4.6, we take the
average of the KS statistics computed from the observations and 100 sam-
ples from the fitted distribution. When applied to simulated data in Subsec-
tion 4.5, the KS statistic is computed from the observations and a sample
from the fitted distribution. All 3 goodness of fit statistics were averaged
over the 100 simulations.

4.4 Quantile choice for DME

Different choices of quantiles for DME are possible. Let q1 be the vector of
10 equally spaced points from 0.05 to 0.95, q2 be the vector of 10 equally
spaced points from 0.01 to 0.99, q3 be the vector of 10 equally spaced points
from 0.1 to 0.9, q4 be the vector of 20 equally spaced points from 0.05 to
0.95. For sampling interval c = 1, Table 1 shows the goodness of fit for 4
choices of quantiles. We find q = q1 as yielding the lowest RMSE for most
variables and the lowest goodness of fit statistics. However, given that the

10



Parameter True value q1 q2 q3 q4

a 1 0.171 0.171 0.182 0.175
α1 0.8 0.127 0.132 0.143 0.128
α2 0.6 0.126 0.145 0.149 0.129
µ1 0.1 0.062 0.066 0.066 0.062
µ2 −0.3 0.121 0.271 0.229 0.188
Σ11 1 0.084 0.083 0.093 0.084
Σ22 1.2 0.113 0.166 0.147 0.123
Σ12 0.6 0.154 0.182 0.172 0.150
m1 −0.1 0.051 0.054 0.053 0.050
m2 0.3 0.110 0.262 0.219 0.179
− lnL 2791.674 2795.826 2794.374 2792.303
χ2 93.848 97.292 96.728 95.078
KS 0.054 0.055 0.054 0.054

Table 1: RMSE using DME with quantiles q1, . . . ,q4 for the WVAG model
fitted to simulated data with c = 1.

results are so similar, these quantile choices make only a small difference to
the overall goodness of fit.

4.5 Simulated data results

For the sampling interval c = 1, the Fourier invertibility condition is satisfied
as the LHS of (3.3) is 0.75 > 1/2. The calibration results for the WVAG
model with c = 1 is shown in Table 2. Here, we find that MLE gives the
best fit with the lowest χ2 statistic. The KS statistic for MLE and DME are
approximately equal.

For the sampling interval c = 0.1, the Fourier invertibility condition is
violated as the LHS of (3.3) is 0.08 < 1/2. The corresponding results are
shown in Table 3. Here, we find that DME gives the best fit with the lowest
KS statistic, however MLE still produces a good fit and does not break
down. This suggests that the condition may not be necessary for the MLE
to produce accurate parameter estimates. In both cases, c = 1, 0.1, the
RMSE and goodness of fit statistics are highest for MOM.
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Parameter True value MOM MLE DME
a 1 0.920 (0.424) 0.983 (0.242) 0.902 (0.171)
α1 0.8 0.806 (0.342) 0.824 (0.111) 0.818 (0.127)
α2 0.6 0.589 (0.216) 0.594 (0.094) 0.589 (0.126)
µ1 0.1 0.103 (0.097) 0.103 (0.053) 0.096 (0.062)
µ2 −0.3 −0.310 (0.131) −0.301 (0.083) −0.313 (0.121)
Σ11 1 0.989 (0.078) 1.006 (0.071) 0.993 (0.084)
Σ22 1.2 1.177 (0.088) 1.202 (0.086) 1.179 (0.113)
Σ12 0.6 0.835 (0.335) 0.669 (0.192) 0.639 (0.154)
m1 −0.1 −0.103 (0.089) −0.105 (0.045) −0.097 (0.051)
m2 0.3 0.313 (0.120) 0.302 (0.070) 0.314 (0.110)
− lnL 2802.337 2787.513 2791.674
χ2 119.052 91.268 93.848
KS 0.068 0.054 0.054

Table 2: Expected value of estimates and RMSE (in parentheses) for the
WVAG model fitted to simulated data with c = 1.

Parameter True value MOM MLE DME
a 1 1.106 (0.507) 0.990 (0.062) 0.896 (0.121)
α1 0.8 0.636 (0.247) 0.782 (0.033) 0.796 (0.057)
α2 0.6 0.504 (0.198) 0.602 (0.026) 0.603 (0.031)
µ1 0.1 0.099 (0.167) 0.114 (0.099) 0.104 (0.170)
µ2 −0.3 −0.347 (0.219) −0.250 (0.123) −0.301 (0.146)
Σ11 1 0.992 (0.136) 1.005 (0.133) 1.013 (0.302)
Σ22 1.2 1.197 (0.166) 1.245 (0.161) 1.234 (0.221)
Σ12 0.6 0.842 (0.353) 0.262 (0.364) 0.564 (0.188)
m1 −0.1 −0.111 (0.128) −0.114 (0.015) −0.100 (0.000)
m2 0.3 0.351 (0.164) 0.288 (0.014) 0.300 (0.001)
KS 0.326 0.222 0.078

Table 3: Expected value of estimates and RMSE (in parentheses) for the
WVAG model fitted to simulated data with c = 0.1.
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4.6 Real data results

Next, we fit the WVAG and V AG models to the S&P500 and FTSE100
indices as the bivariate price process (4.1) for a 5 year period from 14 Febru-
ary 2011 to 12 February 2016 with daily closing price observations taking
c = 1. The estimated parameters, goodness of fit statistics and standard
errors computed using 100 bootstrap samples are listed in Table 4. Contour
plots of the fitted distributions and scatter plots of the bivariate log returns
are shown in Figure 1.

Note that the Fourier invertibility condition is satisfied for all fitted mod-
els. Based on the χ2, KS statistic and contour plots, the WVAG model
produces a better fit than the V AG model. In addition, for the WVAG
model, DME gives a fit with a lower χ2 and KS statistic than MLE and
MOM.

Assuming that the log returns satisfies the WVAG model, a likelihood
ratio test can be used to test the hypothesis H0 : Σ12 = 0 versus H1 : Σ12 6=
0. The test statistic D = 514.03 is asymptotically χ2 distributed with 1
degree of freedom. The p-value is < 10−4, so the V AG model is rejected.
Indeed, the V AG model is not suited for modelling strong correlation since
Cov((B ◦ T )1(1), (B ◦ T )2(1)) = aα1α2µ1µ2 by Proposition 2.1 (vi), which is
approximately 0 when µ1µ2 is.

It has been suggested that log-returns should be self-decomposable [6, 7,
13]. Note that µ = (−0.0004,−0.0008) is very close to 0, which suggests
that the log-returns process Y is indeed self-decomposable (see Proposition
2.1 (vii)). A likelihood ratio test can be used to test this hypothesis, H0 :
µ = 0 versus H1 : µ 6= 0. The test statistic D = 4.11 is asymptotically
χ2 distributed with 2 degrees of freedom. The p-value is 0.128, so at a 5%
significance level we cannot reject that Y is self-decomposable.

5 Conclusion

The WVAG process constructed by using weak subordination generalises the
V AG process, and we obtain a condition for Fourier invertibility in Theorem
3.1. We have shown that MOM, MLE and DME can be used to estimate the
parameters of a WVAG process, and find that in our simulations MLE pro-
duces a better fit when the Fourier invertibility condition holds, while DME
produces a better fit when it is violated. However, MLE may still produce
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Figure 1: Scatterplots of log returns of the S&P500-FTSE100 data set and
contour plots of the fitted distributions using the weak V AG model (left)
and V AG model (right) with MOM (top), MLE (middle), DME (bottom).
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good parameter estimates even when the Fourier invertibility condition is vi-
olated. In all cases, MOM produces the worst fit. We find that the WVAG
process exhibits a wider range of dependence and produces a significantly
better fit than the V AG process when used to model the S&P500-FTSE100
data set, and that DME produces the best fit in this situation.

A Appendix

Lévy process. The reader is referred to the monographs [1, 5, 33] for nec-
essary material on Lévy processes, to [2, 12, 15] for financial applications,
while our notation follows [9, 10]. For A ⊆ Rn, let A∗ := A\{0} and let
1A(ω) denote the indicator function. Let D := {x ∈ Rn : ‖x‖ ≤ 1} be the
Euclidean unit ball centred at the origin. The law of an n-dimensional Lévy
process X = (X1, . . . , Xn) = (X(t))t≥0 is determined by its characteristic
function ΦX := ΦX(1), with

ΦX(t)(θ) := E exp(i 〈θ, X(t)〉) = exp(tΨX(θ)) , t≥0,

and Lévy exponent ΨX := Ψ, where

Ψ(θ) := i 〈µ,θ〉− 1

2
‖θ‖2

Σ +

∫
Rn
∗

(
ei〈θ,x〉−1−i 〈θ,x〉1D(x)

)
X (dx) ,

θ ∈ Rn, µ ∈ Rn, Σ ∈ Rn×n is a covariance matrix, and X is a nonnegative
Borel measure on Rn

∗ such that
∫
Rn
∗
(‖x‖2 ∧ 1)X (dx) < ∞. We write X ∼

Ln(µ,Σ,X ) provided X is an n-dimensional Lévy process with canonical
triplet (µ,Σ,X ).

A subordinator T ∼ Sn(T ) = Ln(µ, 0, T ) is drift-less if its drift µ−∫
D∗

t T (dt) = 0. All subordinators considered in this paper are drift-less.
An n-dimensional random variable X is self-decomposable if for any 0<

b< 1, there exists a random variable Zb, independent of X, such that X
D
=

bX + Zb. A Lévy process X is self-decomposable if X(1) is.

Strongly subordinated Brownian motion. Let B = (B1, . . . , Bn) ∼
BMn(µ,Σ) be a Brownian motion and T = (T1, . . . , Tn)∼Sn(T ) be a drift-
less subordinator. A process B ◦ T is the traditional or strong subordination
of X and T if (B ◦ T )(t) := (B1(T1(t)), . . . , Bn(Tn(t))), t ≥ 0.

Weakly subordinated Brownian motion. Let t = (t1, . . . tn) ∈ [0,∞)n,
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µ=(µ1, . . . µn)∈Rn and Σ=(Σkl)∈Rn×n be a covariance matrix. Introduce
the outer products t � µ ∈ Rn and t � Σ∈Rn×n by

t�µ := (t1µ1, . . . , tnµn) and (t�Σ)kl := Σkl(tk∧tl), 1 ≤ k, l ≤n. (A.1)

Let B ∼BMn(µ,Σ) be an n-dimensional Brownian motion and T ∼ Sn(T )
be an n-dimensional drift-less subordinator. A Lévy process B � T is called
the weak subordination of B and T (see [10], their Proposition 3.1) if it has
Lévy exponent

ΨB�T (θ) =

∫
[0,∞)n∗

(
exp

(
i 〈θ, t � µ〉 − 1

2
‖θ‖2

t�Σ

)
− 1

)
T (dt) , (A.2)

θ ∈ Rn. Note that a more general definition of weak subordination and a
proof of existence is given in [10].

Assume that independent B and T . If T has indistinguishable compo-
nents or B has independent components, then

B ◦ T D
= B � T (A.3)

Otherwise B ◦T may not a Lévy process, but B�T always is (see [10], their
Proposition 3.3 and 3.9).
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