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  Head-related transfer function (HRTF) individualization using principle component analysis (PCA) modelling rely on the empirical data to
reduce HRTF dimensionality for an optimal representation and to achieve HRTF personalization by tuning the model weights with the subject
anthropometric parameters. However, for these representations, the basis is discrete and data dependent which can limit its usefulness in
universal HRTF representation. This paper studies the optimal functional representation of magnitude HRTF of 45 subjects for sound sources
in the horizontal plane. We firstly use circular harmonics to extract the subject-independent HRTF angular dependence. The remaining spectral
components of 45 subjects are then modelled by PCA and two standard functions, i.e., Fourier series and Fourier Bessel series. The metric to
evaluate the model efficiency is the expansion weights cumulative variance. We identify that individual magnitude HRTFs over 20 kHz range
could be modelled adequately well by a linear combination of only 19 Fourier Bessel series; this is a near optimal representation in comparison
with the statistical PCA model. Further analysis of the model weights with subjective anthropometric measurements will provide a promising
method for HRTF individualization, especially considering the nature of data independent continuous basis functions employed in the proposed
functional representation.
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INTRODUCTION

HRTFs are usually obtained from measurements on people (or a manikin) and so there is a
rich variety of HRTFs corresponding to the different human subjects being measured.
Statistical methods by means of principle component analysis (PCA) have been used for HRTF
magnitude spectra decomposition to result in a small set of basis functions and position
dependent weights [1, 2]. Studies [3, 4] show that only 10−20 principle components seem to be
able to give satisfactory good results in terms of HRTF data modelling and its usage for binaural
localization.

These optimal discrete methods rely on the empirical data and provide an optimal
description for any given lower dimensional model. However, their dependence on the empirical
data is a weakness as well as a strength. The clear strength is that the representation deals
directly with the set of measurements and reality rather than an abstraction through a model
which may be inaccurate. The weakness is that optimal discrete models only represent the given
empirical data set and any changes to that data set change the model. That is, the principle
components, which are basis vectors, will vary with any change to the data set (additions or
omissions). Of course, if a data set is sufficiently large and rich, in the sense of capturing the
true variance across the population, the basis functions may be fixed without much loss of
optimality [5]. Further, because the data is discrete and taken from a measurement grid, the
representation is not universal in the sense that HRTF measurements taken with differing
measurement grids cannot be merged directly whereas the underlying continuous HRTFs
should be consistent and is independent of how it is measured.

A method for HRTF continuous representation in the spatial domain is to express HRTFs as
a weighted sum of Fourier series [6, 7] (for HRTF azimuth variation only) or spherical
harmonics [8, 9] (for HRTF azimuth and elevation variations). The models have been verified for
its accurate representation of the original measurements and interpolation results. The spectral
components embedded in the expansion coefficients carry the information regarding the
individuality. Orthogonal series based on bessel functions have been proposed for HRTF
spectral representation with a satisfactory level of performance in terms of average
mean-square-error (MSE) of each individual data set modelling [7, 9]. However, whether these
orthogonal basis possesses the fastest convergence property to represent HRTF spectral
variations has not been investigated.

In this work, we investigate optimal functional modelling of horizontal plane magnitude
HRTFs based on the CIPIC database of 45 subjects [10]. As the minimum phase approximation
of the HRTF works extremely well in practical spatial audio, implementation of modelling
magnitude HRTFs have great utility and practical value. The purpose here is to seek continuous
basis functions which can determine the HRTF spectra of different listening subjects with
fewest parameters so that the most efficient HRTF data reduction can be achieved. The metric
to evaluate the model efficiency is the cumulative variance of the expansion coefficients. We
identify that individual magnitude HRTF spectral components over 20 kHz range could be
represented by a linear combination of only 19 Fourier Bessel series; this is a near optimal
representation in comparison with the statistical PCA model.

MAGNITUDE HRTF AZIMUTH MODELLING

Using a Fourier series expansion, magnitude HRTFs Hmag( f ,φ) as a periodic function of the
azimuth angle φ can be expanded in the following form

Hmag( f ,φ)=
∞∑

m=−∞
Am( f )eimφ, (1)
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where i =�−1 and the mth order Fourier series weight is given by

Am( f )= 1
2π

∫2π

0
Hmag( f ,φ)e−imφ dφ. (2)

The work of [6] shows that the horizontal plane HRTFs have a low pass character with
limited spatial bandwidth. Most of energy in Am( f ) is restricted in a region which is limited by
|m| ≤ 2π f a/c, where c denotes the sound propagation velocity and a is the radius of the head
(i.e., c = 340 m/s and a = 0.09 m). Thus, the infinite series (1) can be truncated to |m| ≤ M to
represent a band-limited magnitude HRTF function through

HM
mag( f ,φ)≈

M∑
m=−M

Am( f )eimφ. (3)

As a guide, based on [6], a suitable M can be determined through

M = ⌈
2πafmax/c

⌉
, (4)

where �·� is the integer ceiling function, and fmax is the maximum frequency. For example, for
the audible frequency range of 20 kHz, M = 34.

Given HRTF measurements of V0 azimuthal angles, (3) can be represented in a matrix form,
H = AE. Then, the coefficient matrix A can be estimated as a least square solution to this
matrix equation, i.e., A = HE†, where (·)† represents the pseudo inverse operation. As the basis
functions are continuous in the spatial azimuth domain, the model provides a natural method to
obtain interpolation results for angles where no measurements are made.

MAGNITUDE HRTF SPECTRAL MODELLING

The goal is to find which closed form standard orthogonal functions match the
experimentally measured HRTFs distribution most efficiently where efficiency is typically
measured in terms of variance. We initially formulate a general orthogonal representation of the
magnitude HRTF spectral components Am( f ) for each m defined over the finite interval
(0, fmax). Unlike the expansion for the azimuthal variable there is no obviously compelling
choice for the preferred orthogonal representation so this is a crucial issue in formulating our
representation. We write

Am( f )=
∞∑
�=1

Cm;�ϕ�( f ), (5)

where, ϕ�( f ) is a suitable complete set of orthonormal functions defined on the finite interval
(0, fmax) and indexed by �. Theoretically any square-integrable function can be represented by
(5) [11], and arbitrarily well approximated by truncating to a finite number of terms L, i.e.,

Am( f )�
L∑

�=1
Cm;�ϕ�( f ). (6)

The order L is usually chosen as a tradeoff between accuracy and economy of representation,
noting that the approximation can be made arbitrarily close by choosing L sufficiently large.

The expansion coefficients Cm;� in (5) can be obtained from

Cm;� =
∫ fmax

0
Am( f )ϕ�( f )W( f )d f , (7)

where W( f ) is the prescribed (non-negative) weighting function to make {ψ�( f )=√
W( f )ϕ�( f )}

become orthonormal set in the specified region (0, fmax).
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TABLE 1: Candidate closed form orthogonal functions for magnitude HRTF spectral modelling.

Orthogonal Functions Interval Modified Basis Weight
(general form) ϕ�( f ) W( f )

Fourier Series x ∈ [0,1] 1�
fmax

ei2π� f / fmax 1

ei2π�x

Fourier Bessel series x ∈ (0,1)
�

2�
fmax J1(Z(0)

�
)
J0(Z(0)

�
f / fmax) f

fmax

of zero-th order

J0(Z(0)
�

x)1

∗ Z(0)
�

–�-th zero of Bessel function of order 0.
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(a) m = 0
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(b) m = 10
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(c) m = 20
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(d) m = 30

FIGURE 1: The cumulative variance of the expansion coefficients.

Table 1 gives an example of two standard orthogonal bases with W�( f ) defined for the HRTF
spectral modelling purpose. Both Fourier series (FS) and Fourier Bessel series (FBS) have been
proven sufficient in modelling complex HRTF spectra based on the average mean-square-error
(MSE) performance in individual HRTF data set representation. However, which orthogonal
basis possesses the fastest convergence property to represent the HRTF spectral variations has
not been investigated. In this work, we treat each individual HRTF as a realization of a random
process and use the cumulative variance of the expansion coefficients as the evaluation
metric [12],

Δ(m)
L;ϕ = E{

∑L
�=1 |Cm;�|2}

E{
∑L0

�=1 |Cm;�|2}
.
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E{·} represents the expectation operator performed on different persons HRTFs and L0 denotes
the maximum expansion order (the number of HRTF frequency samples). Notice that here we
evaluate the efficiency for each expansion order m.

Figure 1 compares the efficiency of the candidate basis functions with the results from the
PCA analysis performed on CIPIC database of 45 subjects (43 listeners and 2 manikin data). It
can be seen that the cumulative variance of the decomposed coefficients from the Fourier Bessel
series expansion becomes closer to that from the statistical PCA analysis results as the
expansion order m gets larger. Even though our previous study shows that both Fourier series
and Fourier Bessel series have comparable average MSE performance in modelling individual
HRTF data set. The methodology adopted here proves the Fourier Bessel series are
near-optimal continuous basis functions in terms of modelling horizontal plane HRTF
magnitude spectra of different listeners. In the following, we will show that only 19 Fourier
Bessel series (including more than 90% cumulative variance) can represent magnitude HRTF
spectra within a bandwidth of 20 kHz.

MODAL VALIDATION

The relative mean square error (MSE) over audible frequency range of [0.2,20] kHz is used
as the error metric

ε(φ)=
∑N

j=1 |Hmag( f j,φ)− H̃mag( f j,φ)|2∑N
j=1 |Hmag( f j,φ)|2 , (8)

where Hmag( f j,φ) and H̃mag( f j,φ) are the original and reconstructed magnitude HRTFs,
respectively.
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FIGURE 2: Examples of measured HRTFs reconstructions using continuous orthogonal functions as bases. Original:
+ and reconstruction: line.

Figure 2 plots the original and reconstructed HRTF magnitude for CIPIC subject 003
(φ= 280◦). The reconstructions are obtained from 19 Fourier Bessel series or Fourier series
(L =−9, . . . ,9) to represent the whole magnitude HRTF spectra of range between [0.2,20] kHz.
Both reconstructed results are smoothed form of HRTF magnitude spectra with capability to
capture all the major peaks and troughs. Obviously, the model using Fourier Bessel series as
bases performs better for representing contralateral sound (HRTFs at the head-shadowed side)
at frequencies above 15 kHz.

The errors in fitting the HRTF measurements are further analyzed at each of the measured
positions. The distribution of errors across all positions are presented in Fig. 3. Note that in

Zhang et al.

Proceedings of Meetings on Acoustics, Vol. 19, 050012 (2013)                                                                                                                                    Page 5

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  150.203.210.112 On: Wed, 28 May 2014 06:59:27



0 50 100 150 200 250 300 350
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

Azimuth

Right Ear

0 50 100 150 200 250 300 350
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

Azimuth

Left Ear

FIGURE 3: The reconstruction error distribution as a function of the source position (azimuthal angle φ). PCA: dotted
line, FS: dashed line and FBS: solid line.

current data sets, a source located at 90◦ azimuth is directly across from the left ear (the right
ear is the shadowed ear) and a source located at 270◦ is directly across from the right ear (the
left ear is the shadowed ear). The calculated error in the model fitting leads to two observations.
First, as expected, the statistical PCA model provides the best match to measurements while
the continuous Fourier Bessel series model has slightly larger reconstruction errors. Models
using Fourier series as basis functions performs the worst. With mean error less than 0.02, we
expect the synthesis using the proposed continuous FBS model can provide satisfactory good
results. Second, in all three models, the synthesis of HRTFs is better at the source-facing side of
the head compared to the head’s shadowed side. This is due to the fact of the comparative poorer
signal-to-noise ratio (SNR) at the head shadowed side. The signal level at the head shadowed
side is lower than that at the source facing side, resulting in the signal to noise ratio in the
measurement is relatively poorer at the head shadowed locations. In addition, because of the
diffraction around the head, the contralateral sounds have more variations. This results in the
spectral shapes that are more complicated and more difficult to model.

CONCLUSION

This paper studies the optimal functional representation of magnitude HRTF of different
listening subjects for sound sources in the horizontal plane. Fourier series were used to model
the spatial azimuth dependence of the HRTF. The remaining spectral components are then
modelled by two standard functions, i.e., Fourier series and Fourier Bessel series. The metric to
evaluate the model efficiency is the expansion weights cumulative variance. By using PCA
analysis results as the baseline, we identify the near optimal representation is to use a linear
combination of 19 Fourier Bessel series to model magnitude HRTF spectral components over
audible frequency range of 20 kHz. Further work will be analysis of the model weights with
subjective anthropometric measurements to achieve HRTF individualization.
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