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Abstract—Cybercrimecontinues to be agrowing challenge and 
malware is one of the most serious security threats on the 
Internet todaywhich have been in existence from the very early 
days.Cyber criminals continue to develop and advance their 
malicious attacks. Unfortunately, existing techniques for 
detecting malware and analysing code samples are insufficient 
and have significant limitations. For example, most of malware 
detection studies focused only on detection and neglected the 
variants of the code. Investigating malwarevariants allows 
antivirus products and governments to more easily detect these 
new attacks, attribution, predict such or similar attacks in the 
future, and further analysis. The focus of this paper is 
performing similarity measures between different malware 
binaries for the same variant utilizing data mining concepts in 
conjunction with hashing algorithms. In this paper, we 
investigate and evaluate using the Trend Locality Sensitive 
Hashing (TLSH) algorithm to group binaries that belong to the 
same variant together, utilizing the k-NN algorithm. Two Zeus 
variants were tested, TSPY_ZBOT and MAL_ZBOT to address 
the effectiveness of the proposed approach.We compare TLSH to 
related hashing methods (SSDEEP, SDHASH and 
NILSIMSA)that are currently used for this purpose. 
Experimental evaluation demonstrates that our method can 
effectively detect variants of malware and resilient to common 
obfuscations used by cyber criminals.Our results show that 
TLSH and SDHASH provide the highest accuracy results in 
scoring an F-measure of 0.989 and 0.999 respectively. 

Keywords—Cybercrime, Cyber Security, Malware, Profiling, 
similarity, Hacking. 

I. INTRODUCTION  
 

Cybercrime causes significant damage each year, and has 
turned into a mature crime category [1-3]. The sophistication 
of targeted and organised crime has increased dramatically, 
using advanced techniques to perpetuate cybercrimes[4, 5]. 
The growth of the Internet has resulted in the increasing 
opportunities for computer attacks and intrusions [6]. Recent 
trends in binaries (code) designed for financial fraud purposes 

indicate their increasing complexity of software capability and 
they are also evolving rapidly as the Internet provides more 
opportunities for automated financial activities. As a result, the 
financial damage caused has dramatically increased in recent 
years [12][13][41].  

The majority of the malicious software is recycled and 
hasn’t been written from the beginning. In 2014 Symantec, 
stated in its reports [7] that the number of absolutely new 
malware families created reduced,as malware coders worked to 
perfect existing malware. In 2010 Symantec detected more 
than 286 million new malware variants [8]closely 90,000 
unique variants of Zeus toolkit. More recently, over 20 million 
variants found in 2013 alone [9]. The similarity in many botnet 
families like in Hlux, Waledac, Nuwar,Kelihos and Storm is an 
evidence that all bots advanced by the same botnet crew, 
details in [10]. More recently, this year Fox-IT InTELLin their 
technical report [11] verified that the malware family 
Tilonlinked with Zeus and SpyEye malware family. Alazab in 
his recent article [39] argued that malware has distinct features 
from each other’s which can be used for attribution and further 
analysis, also stated that lack of a comprehensive analysis of 
malware, not only for the purpose of detectingmalware, makes 
it harder to identify novel or existence attacks, characterize the 
basis of attacks, and predict such or similar attacks in the 
future.  

Literature surveys on malware detection have shown that 
there is no single technique that could detect all types of 
malware, as most rely on syntactic properties and ignore the 
semantics of malicious code [12]. However, generally there are 
two techniques commonly used for malware detection, 
signature-based detection and anomaly-based detection [13-15] 
[42]. Anti-Virus engines use malware signatures to detect 
known malware. Amalware signature is a byte sequence that 
uniquely identifies a specific malware. Typically, a malware 
detector uses the malware signature to identify the malware 
like a fingerprint. Most AV engines are supplied with a 
database containing information of existing malware to identify 
maliciousness, by looking for code signatures such as byte 
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sequences while scanning the system. A malware detector 
scans the system for characteristic byte sequences or signatures 
that match with the one in the database and declares the 
existence of malware blocking its access to the system. The 
signature matching process is called signature-based detection 
and most traditional AV engines use this method. It is a very 
efficient and effective method to detect known malware [16]. 
But, the major drawback is the inability to detect new or 
unknown malicious code. The signature generation involves 
manual processing and requires strict code analysis. To 
overcome signature based methods, polymorphic malware 
have an in-built polymorphic engine that can generate new 
variants each time it is executed and a new signature is 
generated. Therefore, signature based approaches fail to detect 
such malware. On the other hand, anomaly-based detection 
uses the knowledge of normal behaviour patterns to decide the 
maliciousness of a program code. This approach has the ability 
to detect some zero day attacks. However, it is very difficult to 
accurately specify the system or program’s behaviour and thus 
these approaches usually are resulting in more false positives 
than signature based methods. 

Malware coders are taking advantage of our increased 
reliance on digital systems, available digital resources, and 
increased connectivity and activity through Internet.Hence, 
identifying malware is one of the major concerns in 
information security. The focus of this paper is performing 
similarity measures between different malware binaries for the 
same variant utilizing data mining concepts in conjunction with 
hashing algorithms, specifically TLSH algorithm proposed by 
Trend Micro. These measurescan then be used to recognize 
future attacks, improve malware detection tools, develop better 
user education about the dangers of malicious software and 
ultimately to detect different new binaries of malware with low 
detection time (zero day detection). The latter reason is 
motivated that new variants of a malware family are released at 
an enormous rate compared to releasing new families, and also 
that the reliance of new malware families on old families has 
been proven. 

This paper investigates using hashing algorithms for 
detecting when a piece of a malware belongs to an existing, 
known variant. This problem has been investigated in previous 
literature; our contribution is to compare the recently proposed 
TLSH algorithm with previously proposed approaches. In 
doing this, we also outline the role crime toolkits play in 
increasing the scale of malware by simply creating new 
variants of the same code. We evaluate the algorithms using 
the k-NN algorithm, comparing the F-measures scored on a 
labelled dataset.We find that TLSH is efficient ingrouping 
different binaries to the same variant. 

The rest of the paper is organized as follows. Section II 
gives a brief overview about botnet and Zeus. Section III 
provides some related work for detecting malware. Section IV 
describes the different hashing algorithms used in this paper. 
Section V explains k-NN algorithm and F-measure equation. 
Section VI shows our analysis procedure and the results from 
our experiment for the provided datasets utilizing the different 
hashing algorithms. Section VII discusses the attained results 
for the aforementioned section and finally section VIII 
concludes this work. 

II. CRIME KITS: OLD WINE IN A NEW BOTTLE 
 

Crime ware toolkitsasexploit kits and attack kitsare serious 
threats where exploit kits are used bycybercriminals to 
distribute the malwarebinaries created by the attack kits.There 
is also a risk of escalation if the tools become more secure 
from detection.Cybercrime is enabled by a number of factors, 
including technical, policy and regulatory issues[17]. 

Today the goals of those releasing binaries have moved 
from showing off skills in coding and fun, to financial 
gain[18].Binaries attacks have become more organized and 
purposefully directed. Botnets in particular is a clear example 
of this trend. Botnets are literally vast numbers or armies of 
remotelycontrolled computers, or ‘zombies’. These computers 
are compromised and then infected with software robots, or 
bots, that allow the zombie computers to be controlled 
remotely through established command and control channels 
(C&C). Collectively, under the control of C&C servers, botnets 
can become powerful and effective slave computing assets that 
can be rented for illegal activities. Such activities include 
phishing attacks, installing backdoors or rootkits on host 
systems to obtain private information, sending spam for 
advertising, and launching large scale DistributedDenial-of-
Service(DDoS) attacks. 

Since ZeuS first appearance in 2007, it has grown into one 

of the most dominate families to steal banking and private 
credentials. Many versions of ZeuS have been thoroughly 
investigated by the security community because of it 
prevalence. In May of 2011 the full source code of the 
infamous crimeware toolkit, ZeuS, had been leaked onto 
various Internet sites. This has led to the development of 
several centralized trojans based on ZeuS, such as ICE IX, 
KINS, and the more successful Citadel. Also, decentralized 
P2P Trojans based on ZeuS appeared in September 2011 as 
P2P ZeuS or GameOverZeuS. It is a significant improvement 
from all other versions of ZeuSbecause it replaces the 
centralized server with a P2P network[19].  

The ZeuS Kit is a highly successful, easy to use suite of 
toolsthat allows relatively unskilled criminals to create and 
manage a botnet capable of stealing a wide variety of 
information from victims' machines. The real power of ZeuS 
comes from its use of zero day malware, ‘Man in the Browser’ 

techniques and its advanced web injection engine. All login 
credentials entered through the browser can be stolen, and 
through creative use of web injection the victim can be 
coerced into giving away far more information than they 
would ordinarily submit. 

III. RELATED WORK 
 

In recent years machine learning and data mining have been 
the focus of many malware researchers and analysts to counter 
the challenge of obfuscation techniques and malware 
detection[20]. Data mining is also referred to as knowledge 
discovery in databases. Frawley[21]define it as “The nontrivial 
extraction of implicit, previously unknown, and potentially 
useful information from data”. It is also defined as “The 
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science of extracting useful information from large data sets or 
databases”[22]. To our knowledge, Schultz et al. [23] in 2001 
were the first to apply datamining to the detection of different 
malicious programs based on their respective binary codes 
(program headers, strings and byte sequence) on several 
classifiers. Few years later, in 2004, Kolter et al.[24] improved 
the results byusing n-grams of byte codes as features, and 
applied several learning methods.  

In 2004, Sung et al.in [25]and[26]proposed a method for 
computing the similarity between executablesof API calling 
sequences made in an attempt to detect polymorphic and 
metamorphic malwares. They defined signatures as an API 
sequence of calls and started the reverse engineering process 
from decompressed 16 binaries, which are then passed through 
a PE file parser, then extracted and mapped the sequence of 
Windows API calls, and lastly passed them through the 
similarity measure module, where similarity measures such as, 
Euclidian distance, Sequence alignment, Cosine measure, 
extended Jaccard measure, and the Pearson correlation measure 
were used.Although these similarity measures enable SAVE to 
detect polymorphic and metamorphic malwares efficiently 
against 8 malware scanners, the main drawbackis not 
considering the frequency appearance of the calls, which would 
add another detection layer to the overall system.In 2005, 
David and Michael [27] added a temporal consistency element 
to the system call frequency and calculated the frequency of 
API system call.In 2006, Kolter[28]described the use of 
machine learning and data mining to detect and classify 
malicious executables. Kolter tested several classifiers 
includingIBk, Naïve Bayes, support vector machines (SVMs), 
decision trees, boosted NaïveBayes, boosted SVMs, and 
boosted decision trees. Kolter found that SVMperformed 
exceptionally well and fast as compared to the other classifiers. 
However, this work did not focus on measuring the malware 
similarity. 

 In 2010, Shankarapani et. al[29] showed that the frequency 
of Windows API can be used to classify and detect malware 
with good accuracy. Authors have performed a static analysis 
to measure the similarity for 1,593 executables, of malware and 
benign. Two analysis methods have been used based on the 
frequency of occurrence of each Windows API. First, 
similarity analysis used to compute the mean value for 3 
similarity measures (Cosine measure, extended Jaccard 
measure) have been used on the dataset. Second, SVM kernel 
RBF used to classify malware and benign dataset. However, 
the result of the Receiver Operating Characteristic (ROC) 
curve wasn’t high rate compare to earlier studies.  

IV. TLSH, NILSIMSA, SDHASH AND SSDEEP 
 

This section explains the different hashing algorithms that are 
used to group malwarebinaries for the same variant together. 

A. SSDEEP 
 

SSDEEP[30]is described as a Context Triggered Piecewise 
Hash. It splits files into segments using context (a rolling 
hash) and identifies files as being similar if pieces and 

sequences of these pieces match.Given a file, F, SSDEEP 
generates the digest using a 3 step process: 
 

1. Split the document into distinct segments using a 
rolling hash. 

2. Generate a 6 bit value for each segment using a 
base65 encoding. 

3. Generate the output digest by concatenating the 
values from step (2). 

 
The similarity between two digests is determined by 

calculating the edit distance between the two digests using a 
dynamic programming approach. The output score is 
normalized to a range from 0 (no match) to 100 (identical, or a 
very close match). Typically digests with similarity scores >= 1 
are considered “similar”. 

B. SDHASH 
 
SDHASH[31, 32] adopts an approach closer to standard 
machine learning – it extracts features of significant length 
from files – and documents are identified as being similar if 
they share features. Given a file, F, SDHASH generates the 
digest using a 3 step process: 
 

1. Identify 64 byte sequences which satisfy heuristic 
rules for their entropy. 

2. Insert the sequences identified in step (1) into a series 
of Bloom filters. 

3. Generate the output digest by encoding the series of 
Bloom filters from step (2). 

 
The similarity between two digests is determined by 

calculating a normalized entropy measure between the two 
digests. SDHASH also normalizes the score to a range from 0 
(no match) to 100 (identical, or a very close match). Typically 
digests with similarity scores >= 1 are considered “similar”. 

C. NILSIMSA 
 

NILSIMSA[33]is a locality sensitive hashing algorithm 
focusing on using histograms to create the hash. It was 
designed originally to address the problem of detecting spam 
variants under small changes. 

 
NILSIMSAcompares two inputs by computing histograms 

of trigrams. A sliding window of 5 characters moves along the 
input. Each time a new character is seen, each of the trigrams 
in the five character window is computed, and passed to a 
hashing algorithm h, such that h(i) is a value between 0 and 
255. The number of times each value (between 0 and 255) is 
encountered is the histogram for that input. Next, the average 
of the buckets is computed and each bucket is assigned a 1 if it 
is above the average, or 0 if below, producing a 32 byte code. 

 
These codes are then bitwise compared to compute the 

similarity score. The comparison score is the number of bits 
similar in the two codes, minus 128 (as this is the number of 
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bits likely to be the same in randomly generated codes). This 
gives a score between -128 and +127, with scores above 54 
considered good matches in the original spam-based 
application. However in this application we simply used the 
inverse of this score as a distance metric. 

D. TLSH 
 

TLSH [34, 35] is a locality sensitive has closer in spirit to the 
NILSIMSAhash than the SSDEEP and SDHASH digests. 
Locality sensitive hashes extract a multitude of features from 
documents, and documents are identified as being similar if a 
critical mass of this multitude of features has similar profiles. 
Given a file, F, TLSH generates the digest using a 5 step 
process: 
 

1. Use a sliding window to populate an array of bucket 
counts. 

2. Calculate the quartile points of the bucket counts. 
3. The digest header is a function of (i) the length of the 

file (ii) the quartile points calculated in step (2), and 
(iii) a checksum. 

4. The digest body is generated by processing the 
bucket counts, turning each bucket count into a pair 
of bits in the range 0 to 3, based on bucket’s value 

compared to the quartile points. 
5. Generate the output digest by concatenating the 

digest header from step (3) and the digest body from 
step (4). 

 
The distance between two digests is determined by 

summing the distance between the digest headers and the 
digest bodies. Two digest bodies have a distance which is the 
approximate Hamming distance between the two digest bodies. 
The digest headers include overall document information such 
as encoded approximate file length, and other global 
parameters describing the histogram of hash counts. The 
distance between two digest headers is determined as a 
function of the difference between header values. The resulting 
distance score between two digests ranges from 0 to 1000+. 
The recommended usage is that digests with a distance <= 100 
are “similar”, and that digests with a distance > 100 are “not 
similar”. However, with TLSH there is a lot more flexibility 
with the threshold score than with SSDEEP and SDHASH. 

V. K-NN 
 

One of the main goals of machine learning is the ability to 
build computer systemsthat can adjust and learn from their 
experience. K-NN is a simple supervised machine learning 
algorithm that is used for classifying objects based on closest 
training instances in the feature space. It has been employed in 
many applications in data mining, statistical pattern 
recognition and many others. The object is classified based on 
a majority vote of its k nearest neighbors /low distance to the 
object. There are some measuring techniques that could be 
used to measure distance between the training object and the 
test object such as Bray-Curtis, Euclidean, correlation, 

Canberra, Manhattean, Chebyshev, Dice, Cosine, and 
Hamming distances. 
 

In our experiments, the K-nearest neighbours are compute 
as follows with K: 

1. Store all training samples   in memory. 
2. Determine the parameter K = number of nearest 

neighbors beforehand. In our experiment, k is chosen 
to be 5. 

3. Measure the distance between the query-instance (x) 
and all the training samples . (any distance 
algorithm can be used to ) such as: 

 

 

 
 

(1) 

 
4. Find the K-minimum distance between the query-

instance (x) and each K  . 
5. Get all categories of training data for the sorted value 

under K.  
6. Find the weighted distance of the query-instance (x) 

from each of the k nearest points as follows: 
 

 
 

(2) 

 
As our performance measure, we perform a standard grid 

search with 10-fold cross validation to determine the best 
parameters for each classifier. We measure the performance of 
the classifier using the performance metricF-measurealso 
known as F-score, which is a measure of a test's accuracyfor 
binary classification functions that is based on the harmonic 
mean for the classifier's precisionand recall.The precision is the 
probability of records classified as positive which are classified 
correctly. 

 

 

(3) 

 The Recall is the probability of positive records that have 
been correctly identified. 

 (4) 

 F-measure is a measure of a test's accuracy by combining 
recall and precision scores into a single measure of 
performance, usually it is between 0.0 and 1.0, closer to 1 
being a good score and closer to 0.0 being a poor score. 
Therefore it can be interpreted as a measure of overlapping 
betweenthe true and estimated classes (other instances, i.e. TN, 
are ignored), ranging from (no overlap at all to (complete 
overlap). 

 
(5) 
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F-measure is one of the most accurate metrics for 

evaluation, especially for unbalanced datasets [36]. 

VI. EXPERIMENTALEVALUATION 
 

This section provides first a description for the used dataset in 
our experiment. Then, it shows the results in applying TLSH 
hashing algorithm to group binaries for the same variant and 
differentiate binaries for different variants using the defined 
thresholds by Trend Micro. After that, the effectiveness in 
using k-NN for grouping binaries for the same variant or 
differentiating binaries for different variants is illustrated. 

Finally, the efficiency in using the other hashing algorithm 
as SSDEEP, SDHASH and NILSIMSA with k-NN for 
classifying the binaries as being from the same or different 
variants is demonstrated. 

A. Dataset 
 

Two Zeus datasets were provided by Trend Micro to evaluate 
the use of TLSH and compare it with the other hashing 
algorithms. The two datasets hold binaries for two different 
variants, TSPY-ZBOT and MAL_ZBOT. The first dataset, 
TSPY_ZBOT, contains 856 binaries where the second dataset, 
MAL_ZBOT, contains 22 binaries.  

Each binary has a unique SHA256 value, which indicates 
that the binaries are not redundant.  

B. TLSH Results 
 

TLSH was tested, using all the possible parameters 
combinations, in terms of grouping malware binaries for the 
same variant together and differentiating binaries for different 
variants. Two binaries belong to the same variant if the hash 
difference value is less than a defined threshold; otherwise they 
belong to two different variants. The threshold is given in the 
TLSH walkthrough guide. The threshold is defined as 200 if 
using 128 buckets for hashing or as 400 if using 256 buckets 
for hashing.  

1) Grouping Binaries for The Same Variant 
 

For the first experiment, we used the defined thresholds in 
order to group binaries for the same variant. Table I below 
shows the results that were attained by applying 128 
buckets_1Byte checksum hash, 128 buckets_3Bytes checksum 
hash, 256 buckets_1Byte checksum hash and 256 
buckets_3Bytes checksum hash using both “tlsh.diff” and 
“tlsh.xdiff” functions. The differences were computed between 
each binary with all other binaries within the same variant, 
with the note that the difference with the file itself was not 
included as well as the redundant differences between two 
binaries. 

The accuracy result is defined as the number of the 
differences below the threshold over the total number of the 
differences.For each hash parameter, the average distances 
were computed by summing all the distances in each variant 

and divide them over the total number of the differences for 
that variant. Column “average distance” shows that the chosen 
thresholds for the distances were not accurate which lead in 
having low accuracy results. 

The first notice that was inferred from the table, using 
either 1 or 3 Bytes checksum did not affect the accuracy 
results, but slightly affected the average distances. The second 
notice, the use of 256 buckets provided better accuracy results 
compared to the use of 128 buckets. This is explained as the 
follow. The lowest average distance using 128 buckets was 
211.53 for Mal variant and 212.82 for TSPY variant, which are 
above the defined threshold. However, the lowest average 
distance using 256 buckets was 398.88 for Mal variant and 
366.21 for TSPY variant, which are below the defined 
threshold.  

 
Table I. TLSH Variant Grouping Distances and Accuracy 

 
TLSH  

Hash Parameters Variant Function Accuracy 
Result 

Average 
Distance 

128 Buckets, 1 Byte 
Check Sum 

TSPY Length 0.230 304.887 

128 Buckets, 1 Byte 
Check Sum 

Mal Length 0.100 356.268 

128 Buckets, 1 Byte 
Check Sum 

TSPY Xlength 0.323 212.817 

128 Buckets, 1 Byte 
Check Sum 

Mal Xlength 0.463 211.528 

128 Buckets, 3 Byte 
Check Sum 

TSPY Length 0.23 304.891 

128 Buckets, 3 Byte 
Check Sum 

Mal Length 0.100 356.273 

128 Buckets, 3 Byte 
Check Sum 

TSPY Xlength 0.323 212.821 

128 Buckets, 3 Byte 
Check Sum 

Mal Xlength 0.463 211.532 

256 Buckets, 1 Byte 
Check Sum 

TSPY Length 0.244 458.288 

256 Buckets, 1 Byte 
Check Sum 

Mal Length 0.134 543.623 

256 Buckets, 1 Byte 
Check Sum 

TSPY Xlength 0.380 366.218 

256 Buckets, 1 Byte 
Check Sum 

Mal Xlength 0.489 398.883 

256 Buckets, 3 Byte 
Check Sum 

TSPY Length 0.244 458.292 

256 Buckets, 3 Byte 
Check Sum 

Mal Length 0.134 543.628 

256 Buckets, 3 Byte 
Check Sum 

TSPY Xlength 0.380 366.222 

256 Buckets, 3 Byte 
Check Sum 

Mal Xlength 0.489 398.887 

 
 

The final notice, “xdiff” parameter provided higher 
accuracy results compared to “diff” parameter,as “xdiff” 
provided distances that are close to be below the threshold 
more compared to the use of “diff” parameters. This is clear as 
the lowest distances were provided by applying the “xdiff” 
parameter either on 128 buckets or 256 buckets. The best 
accuracy results were attained by applying both “xdiff” and 
256 buckets parameters achieving 0.380 and 0.489 for TSPY 
and Malvariants respectively. 
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2) Differentiating Binaries from Different Variants 
 

The second experiment was conducted in order to check if the 
defined thresholdsare feasible in differentiating binaries that 
belong to different variants. Distance above or equal the 
threshold means that the binaries belong to different variants. 
Table IIbelow shows accuracy results in computing the 
distances between binaries in variant “Mal” with binaries in 
variant “TSPY”, then dividing the number of distances over or 
equal the threshold over the total number of distances. 

As the previous experiment, the use of 1 or 3 Bytes 
checksum did not affect the accuracy results but slightly affects 
the average distance.  

Unlike the previous results, this table shows that using 128 
buckets provided better accuracy results compared to using 256 
buckets. Also, for each use of “xdiff” parameter, it provided 
lower accuracy results compared to the “diff” parameter. The 
reason of that that the “xdiff” parameter provided lower 
average distance compared to “diff” parameter to be closer to 
the threshold, thus identifying the samples as the same variant. 

 The best accuracy results were attained by both using 128 
buckets and using “diff” parameters, providing 0.980. 

 
Table II. Differentiating Binaries from Different Variants using TLSH 

 
TLSH 

Hash Parameters Function Accuracy 
Result 

Average 
Distance 

128 Buckets, 1 Byte Check 
Sum 

Length 0.980 421.857 

128 Buckets, 1 Byte Check 
Sum 

XLength 0.820 253.877 

128 Buckets, 3 Byte Check 
Sum 

length 0.980 421.862 

128 Buckets, 3 Byte Check 
Sum 

Xlength 0.820 253.881 

256 Buckets, 1 Byte Check 
Sum 

Length 0.963 614.654 

256 Buckets, 1 Byte Check 
Sum 

XLength 0.762 446.674 

256 Buckets, 3 Byte Check 
Sum 

length 0.963 614.659 

256 Buckets, 3 Byte Check 
Sum 

Xlength 0.762 446.678 

 

3) Using k-NN with TLSH 
 

For the third experiment, a classifier using k-NNmachine 
learning algorithm was built in order to address its performance 
in grouping binaries that belong to the same variant together. 

First, a classifier was trained using binaries from the two 
different variants. Then for classifying an untrained binary, 
first the distance is calculated with all instances used in the 
training phase. Then, the closest distances with 5 binaries are 
investigated, where the classified binary belongs to a certain 
variant if three out of the five binaries belong to that variant. In 
order to evaluate this approach, we applied cross validation 
using n=10 for the given dataset. Table IIIbelow illustrates the 
results for this experiment. 

 
Table III. Grouping Binaries Using k-NN and TLSH 

 
TLSH 

Hash Parameters Difference F-measure results 

128 Buckets, 1 Byte Check Sum Length 0.989 

128 Buckets, 1 Byte Check Sum XLength 0.987 

128 Buckets, 3 Byte Check Sum length 0.989 

128 Buckets, 3 Byte Check Sum Xlength 0.987 

256 Buckets, 1 Byte Check Sum Length 0.989 

256 Buckets, 1 Byte Check Sum XLength 0.989 

256 Buckets, 3 Byte Check Sum length 0.989 

256 Buckets, 3 Byte Check Sum Xlength 0.989 

 

The table reflects that using k-NN classifier to group 
binaries together for the same variants outperforms the usage 
of a specific threshold, attaining 0.989. The main reason for 
that is logic since as illustrated earlier, binaries for different 
variants would have larger distances compared with binaries 
within the same variant. F-measure metric was used to evaluate 
the classifier since we have unbalanced classes instances. 

It also can be inferred from the table that using either 1 or 3 
Bytes checksum provided the same results. For 128 buckets, 
the “diff” parameter provided higher results compared to the 
use of “xdiff” parameters. However, both parameters provided 
the same results using 256 buckets.  

C. SSDEEP Results 
 

The second used algorithm was SSDEEP. Since no threshold 
was provided to group or differentiate binaries for the same or 
different variants, k-NN experiment was just conducted. Before 
that, Table IVbelow shows information about the average 
distances for the same variant as well as for different variants, 
by applying SSDEEP. It is to be noted that SSDEEP uses range 
0-100 for the distances where 0 means non-similar hashes and 
100 means similar hashes. For our experiment convenience, we 
used the below formula to have 0 as similar hashes and 1 as 
non-similar hashes. 

 

 

 

(6) 
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Where Distance Result is the value attained by applying 
SSDEEP for two different binaries and Maximum Distance is 
100. 

It can be noted that SSDEEP scores a higher average 
distance results for different binaries variants (Mal-TSPY) 
compared to the same binaries variant average distance. Also, 
it is observed that the average distance for the same variant is 
high and close to 1, which indicates that SSDEEP barely 
matches binaries for the same version. 

 
Table IV. SSDEEP Average Distances Results 

 
SSDEEP 

Hash Parameters Variant Average Distance 

SSDEEP Mal 0.983 

SSDEEP TSPY 0.882 

SSDEEP Mal-TSPY 1.000 

 

For the next experiment, SSDEEP was used in conjunction 
with k-NN in order to group binaries for the same variant. As 
before, the closest distances with 5 binaries are investigated in 
where the classified binary belongs to a certain variant if three 
out of the five binaries belong to that variant. Table Vbelow 
shows the result of applying k-NN with SSDEEP. 

 
Table V.k-NN Results for Grouping the Same Variant Binaries in 

Conjunction with SSDEEP 
 

SSDEEP 

Hash Parameters F-measure results 

SSDEEP 0.987 

 

It is observed that SSDEEP scores high results in grouping 
binaries for the same variant using k-NN, attaining 0.987. 

D. SDHASH Results 
The third used algorithm tested was SDHASH. Again, since no 
threshold was provided to group or differentiate binaries for the 
same or different variants, k-NN experiment was just 
conducted. Before that, Table VIbelow shows information 
about the average distances for the same variant as well as for 
different variants. As SSDEEP, SDHASH uses range 0-100 for 
the distances where 0 means non-similar hashes and 100 means 
similar hashes. Equation (6) is used to have 0 as similar and 1 
as non-similar. 

 
Table VI. SDHASH Average Distances Results 

 
SDHASH 

Hash Parameters Variant Average Distance 

SDHASH Mal 0.964 

SDHASH TSPY 0.876 

SDHASH Mal-TSPY 0.999 

 

Almost the same as SSDEEP results, SDHASH 
scoreshigher average distance results for different binaries 
variants (Mal-TSPY) compared to the same binaries variant 
average distance. Also, it is observed that the average distance 
for the same variant is high and close to 1, which indicates that 
SDHASH barely matches binaries for the same version. 

For the next experiment, SDHASH was used in conjunction 
with k-NN in order to group binaries for the same variant. As 
before, the closest distances with 5 binaries are investigated in 
where the classified binary belongs to a certain variant if three 
out of the five binaries belong to that variant. Table VIIbelow 
shows the result of applying k-NN with SDHASH. 

 
Table VII. k-NN Results for Grouping the Same Variant Binaries in 

Conjunction with SDHASH 
 

SDHASH 

Hash Parameters F-measure results 

SDHASH 0.990 

 

It is shown that SDHASH scores high results in grouping 
binaries for the same variant using k-NN, attaining 0.990. 

E. NILSIMSA Results 
 
The final used algorithm was NILSIMSA. Since no threshold 
was provided to group or differentiate binaries for the same or 
different variants, k-NN experiment was just conducted. Before 
that, Table VIIIbelow shows information about the average 
distances for the same variant as well as for different variants. 
As both SSDEEP and SDHASH, NILSIMSA uses range 0-100 
for the distances where 0 means non-similar hashes and 100 
means similar hashes. Equation (6) is used to have 0 as similar 
and 1 as non-similar. 

 
Table VIII. NILSIMSA Average Distances Results 

 
NILSIMSA 

Hash Parameters Variant Average Distance 

NILSIMSA Mal 0.155 

NILSIMSA TSPY 0.259 

NILSIMSA Mal-TSPY 0.169 

 

Unlike the aforementioned results, NILSIMSA scored close 
to 0 results for binaries in the same variant. However, it is 
noticed that the distance average for binaries in different 
variants is close to 0 as well and is lower compared to TSPY 
average distance.  

For the next experiment, NILSIMSA was used in 
conjunction with k-NN in order to group binaries for the same 
variant. As before, the closest distances with 5 binaries are 
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investigated in where the classified binary belongs to a certain 
variant if three out of the five binaries belong to that variant. 
Table IXbelow shows the result of applying k-NN with 
NILSIMSA. 

 
Table IX. k-NN Results for Grouping the Same Variant Binaries in 

Conjunction with NILSIMSA 
 

NILSIMSA 

Hash Parameters F-measure results 

NILSIMSA 0.987 

 
The evaluation shows that our approach is highly effective 

in terms of response time and malware variant 
detection.NILSIMSA scores high results in grouping binaries 
for the same variant using k-NN, attaining 0.987. 

VII. DISCUSSION 
 
The use of different hashing algorithms to group binaries for 
the same variant as well as differentiating binaries from 
different variants is feasible. We noticed that the use of TLSH 
different parameters provided good results in terms of having 
lower average distances for binaries in the same variant 
compared to binaries from different variants. The use of 
manual defined threshold didn’t provide good accuracy results; 
on the other hand the use of k-NN showed that it is feasible to 
group binaries for the same version with high F-measure 
results.  

For both SSDEEP and SDHASH, the average distances for 
the same variant were lower compared to the different variants. 
On the other hand, both of them scored average distance close 
to 1 (highly different) for binaries within the same variant.As 
TLSH, k-NN with these algorithms provided high F-measure 
results in grouping binaries within the same variant as well as 
differentiating binaries from different variants with the notice 
that SDHASH scored the highest. 

NILSIMSA showed different behaviour compared to the 
rest by having higher average distance for binaries within the 
same variant (TSPY) compared to binaries from different 
variants. The explanation that k-NN provided good accuracy 
results in NILSIMSA is that when classifying any binary, if 
three distances within the same variant are lower compared to 
all distances from different variants, that binary will be 
classified as that same variant. In our experiment, when 
classifying a binary from TSPY variant, the distance between 
this binary and all binaries in both TSPY and Mal variants are 
computed. Three distances with TSPY binaries were lower 
compared to all the distances with Mal binaries and were 
enough to classify that binary as TSPY variant. 

VIII. CONCLUSION 
 

The malware (malicious software) landscape is persistently 
growing and a major threat. Current malware engines use a 
combination of signatures, and heuristics detection based 
methods. There are millions of malware codes propagated 

daily but there are only a low number of malware families. In 
this paper we investigated the use of locality sensitive hashing 
algorithms for malware variant classification. Our application 
scenario is that of an antivirus product; we wish to determine 
whether a previously unseen piece of malware is related to a 
variant we do know about.This problem had been studied in 
the literature previously. We compared the TLSH method with 
others, including SSDEEP, SDHASH and NILSIMSA.We 
used two real cases samples from Zeus variants, namely, 
TSPY_ZBOT and MAL_ZBOT to address the effectiveness of 
the proposed approach.   
 

In order to have a deeper understanding of the behaviour 
of the results, different statistics should be extracted as the 
distribution of the distances. This helps to evaluate the 
algorithms from different perspective. Also, to address the 
robustness of this approach for different hashing algorithms, 
different datasets should be provided and tested. Experimental 
evaluation demonstrates that our method can effectively detect 
variants of malware and resilient to common obfuscations used 
by cyber criminals, our results shows that TLSH and SDHASH 
provide the highest accuracy results in scoring an F-measure of 
0.989 and 0.999 respectively.  

 
 Our study onlyfocused on performing similarity measures 
between different malware binaries on obfuscated malware. 
Future plan is to perform some reverse engineering (de-
obfuscated) on malware first, then apply different hashing 
algorithms on the de-obfuscated malware and compare results.  
Another future work is to compare the performance in applying 
cost sensitive algorithms to include different variants for the 
same version, as conducted [37]in for Skype application.  
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