
Mining Malware To Detect Variants

Ahmad Azab a, Robert Layton a, Mamoun Alazab b, Jonathan Oliver c

aInternet Commerce Security Laboratory, Federation University Australia, VIC 3350, Australia
a.azab@icsl.com.au; r.layton@icsl.com.au

bCollege of Engineering and Technology, American University of the Middle East

Mamoun.Alazab@aum.edu.kw

cTrend Micro Australia
jon_oliver@trendmicro.com

Abstract—Cybercrimecontinues to be agrowing challenge and
malware is one of the most serious security threats on the
Internet todaywhich have been in existence from the very early
days.Cyber criminals continue to develop and advance their
malicious attacks. Unfortunately, existing techniques for
detecting malware and analysing code samples are insufficient
and have significant limitations. For example, most of malware
detection studies focused only on detection and neglected the
variants of the code. Investigating malwarevariants allows
antivirus products and governments to more easily detect these
new attacks, attribution, predict such or similar attacks in the
future, and further analysis. The focus of this paper is
performing similarity measures between different malware
binaries for the same variant utilizing data mining concepts in
conjunction with hashing algorithms. In this paper, we
investigate and evaluate using the Trend Locality Sensitive
Hashing (TLSH) algorithm to group binaries that belong to the
same variant together, utilizing the k-NN algorithm. Two Zeus
variants were tested, TSPY_ZBOT and MAL_ZBOT to address
the effectiveness of the proposed approach.We compare TLSH to
related hashing methods (SSDEEP, SDHASH and
NILSIMSA)that are currently used for this purpose.
Experimental evaluation demonstrates that our method can
effectively detect variants of malware and resilient to common
obfuscations used by cyber criminals.Our results show that
TLSH and SDHASH provide the highest accuracy results in
scoring an F-measure of 0.989 and 0.999 respectively.

Keywords—Cybercrime, Cyber Security, Malware, Profiling,
similarity, Hacking.

I. INTRODUCTION

Cybercrime causes significant damage each year, and has
turned into a mature crime category [1-3]. The sophistication
of targeted and organised crime has increased dramatically,
using advanced techniques to perpetuate cybercrimes[4, 5].
The growth of the Internet has resulted in the increasing
opportunities for computer attacks and intrusions [6]. Recent
trends in binaries (code) designed for financial fraud purposes

indicate their increasing complexity of software capability and
they are also evolving rapidly as the Internet provides more
opportunities for automated financial activities. As a result, the
financial damage caused has dramatically increased in recent
years [12][13][41].

The majority of the malicious software is recycled and
hasn’t been written from the beginning. In 2014 Symantec,
stated in its reports [7] that the number of absolutely new
malware families created reduced,as malware coders worked to
perfect existing malware. In 2010 Symantec detected more
than 286 million new malware variants [8]closely 90,000
unique variants of Zeus toolkit. More recently, over 20 million
variants found in 2013 alone [9]. The similarity in many botnet
families like in Hlux, Waledac, Nuwar,Kelihos and Storm is an
evidence that all bots advanced by the same botnet crew,
details in [10]. More recently, this year Fox-IT InTELLin their
technical report [11] verified that the malware family
Tilonlinked with Zeus and SpyEye malware family. Alazab in
his recent article [39] argued that malware has distinct features
from each other’s which can be used for attribution and further
analysis, also stated that lack of a comprehensive analysis of
malware, not only for the purpose of detectingmalware, makes
it harder to identify novel or existence attacks, characterize the
basis of attacks, and predict such or similar attacks in the
future.

Literature surveys on malware detection have shown that
there is no single technique that could detect all types of
malware, as most rely on syntactic properties and ignore the
semantics of malicious code [12]. However, generally there are
two techniques commonly used for malware detection,
signature-based detection and anomaly-based detection [13-15]
[42]. Anti-Virus engines use malware signatures to detect
known malware. Amalware signature is a byte sequence that
uniquely identifies a specific malware. Typically, a malware
detector uses the malware signature to identify the malware
like a fingerprint. Most AV engines are supplied with a
database containing information of existing malware to identify
maliciousness, by looking for code signatures such as byte

2014 Fifth Cybercrime and Trustworthy Computing Conference

978-1-4799-8825-9/15 $31.00 © 2015 IEEE

DOI 10.1109/CTC.2014.11

44

sequences while scanning the system. A malware detector
scans the system for characteristic byte sequences or signatures
that match with the one in the database and declares the
existence of malware blocking its access to the system. The
signature matching process is called signature-based detection
and most traditional AV engines use this method. It is a very
efficient and effective method to detect known malware [16].
But, the major drawback is the inability to detect new or
unknown malicious code. The signature generation involves
manual processing and requires strict code analysis. To
overcome signature based methods, polymorphic malware
have an in-built polymorphic engine that can generate new
variants each time it is executed and a new signature is
generated. Therefore, signature based approaches fail to detect
such malware. On the other hand, anomaly-based detection
uses the knowledge of normal behaviour patterns to decide the
maliciousness of a program code. This approach has the ability
to detect some zero day attacks. However, it is very difficult to
accurately specify the system or program’s behaviour and thus
these approaches usually are resulting in more false positives
than signature based methods.

Malware coders are taking advantage of our increased
reliance on digital systems, available digital resources, and
increased connectivity and activity through Internet.Hence,
identifying malware is one of the major concerns in
information security. The focus of this paper is performing
similarity measures between different malware binaries for the
same variant utilizing data mining concepts in conjunction with
hashing algorithms, specifically TLSH algorithm proposed by
Trend Micro. These measurescan then be used to recognize
future attacks, improve malware detection tools, develop better
user education about the dangers of malicious software and
ultimately to detect different new binaries of malware with low
detection time (zero day detection). The latter reason is
motivated that new variants of a malware family are released at
an enormous rate compared to releasing new families, and also
that the reliance of new malware families on old families has
been proven.

This paper investigates using hashing algorithms for
detecting when a piece of a malware belongs to an existing,
known variant. This problem has been investigated in previous
literature; our contribution is to compare the recently proposed
TLSH algorithm with previously proposed approaches. In
doing this, we also outline the role crime toolkits play in
increasing the scale of malware by simply creating new
variants of the same code. We evaluate the algorithms using
the k-NN algorithm, comparing the F-measures scored on a
labelled dataset.We find that TLSH is efficient ingrouping
different binaries to the same variant.

The rest of the paper is organized as follows. Section II
gives a brief overview about botnet and Zeus. Section III
provides some related work for detecting malware. Section IV
describes the different hashing algorithms used in this paper.
Section V explains k-NN algorithm and F-measure equation.
Section VI shows our analysis procedure and the results from
our experiment for the provided datasets utilizing the different
hashing algorithms. Section VII discusses the attained results
for the aforementioned section and finally section VIII
concludes this work.

II. CRIME KITS: OLD WINE IN A NEW BOTTLE

Crime ware toolkitsasexploit kits and attack kitsare serious
threats where exploit kits are used bycybercriminals to
distribute the malwarebinaries created by the attack kits.There
is also a risk of escalation if the tools become more secure
from detection.Cybercrime is enabled by a number of factors,
including technical, policy and regulatory issues[17].

Today the goals of those releasing binaries have moved
from showing off skills in coding and fun, to financial
gain[18].Binaries attacks have become more organized and
purposefully directed. Botnets in particular is a clear example
of this trend. Botnets are literally vast numbers or armies of
remotelycontrolled computers, or ‘zombies’. These computers
are compromised and then infected with software robots, or
bots, that allow the zombie computers to be controlled
remotely through established command and control channels
(C&C). Collectively, under the control of C&C servers, botnets
can become powerful and effective slave computing assets that
can be rented for illegal activities. Such activities include
phishing attacks, installing backdoors or rootkits on host
systems to obtain private information, sending spam for
advertising, and launching large scale DistributedDenial-of-
Service(DDoS) attacks.

Since ZeuS first appearance in 2007, it has grown into one

of the most dominate families to steal banking and private
credentials. Many versions of ZeuS have been thoroughly
investigated by the security community because of it
prevalence. In May of 2011 the full source code of the
infamous crimeware toolkit, ZeuS, had been leaked onto
various Internet sites. This has led to the development of
several centralized trojans based on ZeuS, such as ICE IX,
KINS, and the more successful Citadel. Also, decentralized
P2P Trojans based on ZeuS appeared in September 2011 as
P2P ZeuS or GameOverZeuS. It is a significant improvement
from all other versions of ZeuSbecause it replaces the
centralized server with a P2P network[19].

The ZeuS Kit is a highly successful, easy to use suite of
toolsthat allows relatively unskilled criminals to create and
manage a botnet capable of stealing a wide variety of
information from victims' machines. The real power of ZeuS
comes from its use of zero day malware, ‘Man in the Browser’

techniques and its advanced web injection engine. All login
credentials entered through the browser can be stolen, and
through creative use of web injection the victim can be
coerced into giving away far more information than they
would ordinarily submit.

III. RELATED WORK

In recent years machine learning and data mining have been
the focus of many malware researchers and analysts to counter
the challenge of obfuscation techniques and malware
detection[20]. Data mining is also referred to as knowledge
discovery in databases. Frawley[21]define it as “The nontrivial
extraction of implicit, previously unknown, and potentially
useful information from data”. It is also defined as “The

45

science of extracting useful information from large data sets or
databases”[22]. To our knowledge, Schultz et al. [23] in 2001
were the first to apply datamining to the detection of different
malicious programs based on their respective binary codes
(program headers, strings and byte sequence) on several
classifiers. Few years later, in 2004, Kolter et al.[24] improved
the results byusing n-grams of byte codes as features, and
applied several learning methods.

In 2004, Sung et al.in [25]and[26]proposed a method for
computing the similarity between executablesof API calling
sequences made in an attempt to detect polymorphic and
metamorphic malwares. They defined signatures as an API
sequence of calls and started the reverse engineering process
from decompressed 16 binaries, which are then passed through
a PE file parser, then extracted and mapped the sequence of
Windows API calls, and lastly passed them through the
similarity measure module, where similarity measures such as,
Euclidian distance, Sequence alignment, Cosine measure,
extended Jaccard measure, and the Pearson correlation measure
were used.Although these similarity measures enable SAVE to
detect polymorphic and metamorphic malwares efficiently
against 8 malware scanners, the main drawbackis not
considering the frequency appearance of the calls, which would
add another detection layer to the overall system.In 2005,
David and Michael [27] added a temporal consistency element
to the system call frequency and calculated the frequency of
API system call.In 2006, Kolter[28]described the use of
machine learning and data mining to detect and classify
malicious executables. Kolter tested several classifiers
includingIBk, Naïve Bayes, support vector machines (SVMs),
decision trees, boosted NaïveBayes, boosted SVMs, and
boosted decision trees. Kolter found that SVMperformed
exceptionally well and fast as compared to the other classifiers.
However, this work did not focus on measuring the malware
similarity.

 In 2010, Shankarapani et. al[29] showed that the frequency
of Windows API can be used to classify and detect malware
with good accuracy. Authors have performed a static analysis
to measure the similarity for 1,593 executables, of malware and
benign. Two analysis methods have been used based on the
frequency of occurrence of each Windows API. First,
similarity analysis used to compute the mean value for 3
similarity measures (Cosine measure, extended Jaccard
measure) have been used on the dataset. Second, SVM kernel
RBF used to classify malware and benign dataset. However,
the result of the Receiver Operating Characteristic (ROC)
curve wasn’t high rate compare to earlier studies.

IV. TLSH, NILSIMSA, SDHASH AND SSDEEP

This section explains the different hashing algorithms that are
used to group malwarebinaries for the same variant together.

A. SSDEEP

SSDEEP[30]is described as a Context Triggered Piecewise
Hash. It splits files into segments using context (a rolling
hash) and identifies files as being similar if pieces and

sequences of these pieces match.Given a file, F, SSDEEP
generates the digest using a 3 step process:

1. Split the document into distinct segments using a
rolling hash.

2. Generate a 6 bit value for each segment using a
base65 encoding.

3. Generate the output digest by concatenating the
values from step (2).

The similarity between two digests is determined by

calculating the edit distance between the two digests using a
dynamic programming approach. The output score is
normalized to a range from 0 (no match) to 100 (identical, or a
very close match). Typically digests with similarity scores >= 1
are considered “similar”.

B. SDHASH

SDHASH[31, 32] adopts an approach closer to standard
machine learning – it extracts features of significant length
from files – and documents are identified as being similar if
they share features. Given a file, F, SDHASH generates the
digest using a 3 step process:

1. Identify 64 byte sequences which satisfy heuristic
rules for their entropy.

2. Insert the sequences identified in step (1) into a series
of Bloom filters.

3. Generate the output digest by encoding the series of
Bloom filters from step (2).

The similarity between two digests is determined by

calculating a normalized entropy measure between the two
digests. SDHASH also normalizes the score to a range from 0
(no match) to 100 (identical, or a very close match). Typically
digests with similarity scores >= 1 are considered “similar”.

C. NILSIMSA

NILSIMSA[33]is a locality sensitive hashing algorithm
focusing on using histograms to create the hash. It was
designed originally to address the problem of detecting spam
variants under small changes.

NILSIMSAcompares two inputs by computing histograms

of trigrams. A sliding window of 5 characters moves along the
input. Each time a new character is seen, each of the trigrams
in the five character window is computed, and passed to a
hashing algorithm h, such that h(i) is a value between 0 and
255. The number of times each value (between 0 and 255) is
encountered is the histogram for that input. Next, the average
of the buckets is computed and each bucket is assigned a 1 if it
is above the average, or 0 if below, producing a 32 byte code.

These codes are then bitwise compared to compute the

similarity score. The comparison score is the number of bits
similar in the two codes, minus 128 (as this is the number of

46

bits likely to be the same in randomly generated codes). This
gives a score between -128 and +127, with scores above 54
considered good matches in the original spam-based
application. However in this application we simply used the
inverse of this score as a distance metric.

D. TLSH

TLSH [34, 35] is a locality sensitive has closer in spirit to the
NILSIMSAhash than the SSDEEP and SDHASH digests.
Locality sensitive hashes extract a multitude of features from
documents, and documents are identified as being similar if a
critical mass of this multitude of features has similar profiles.
Given a file, F, TLSH generates the digest using a 5 step
process:

1. Use a sliding window to populate an array of bucket
counts.

2. Calculate the quartile points of the bucket counts.
3. The digest header is a function of (i) the length of the

file (ii) the quartile points calculated in step (2), and
(iii) a checksum.

4. The digest body is generated by processing the
bucket counts, turning each bucket count into a pair
of bits in the range 0 to 3, based on bucket’s value

compared to the quartile points.
5. Generate the output digest by concatenating the

digest header from step (3) and the digest body from
step (4).

The distance between two digests is determined by

summing the distance between the digest headers and the
digest bodies. Two digest bodies have a distance which is the
approximate Hamming distance between the two digest bodies.
The digest headers include overall document information such
as encoded approximate file length, and other global
parameters describing the histogram of hash counts. The
distance between two digest headers is determined as a
function of the difference between header values. The resulting
distance score between two digests ranges from 0 to 1000+.
The recommended usage is that digests with a distance <= 100
are “similar”, and that digests with a distance > 100 are “not
similar”. However, with TLSH there is a lot more flexibility
with the threshold score than with SSDEEP and SDHASH.

V. K-NN

One of the main goals of machine learning is the ability to
build computer systemsthat can adjust and learn from their
experience. K-NN is a simple supervised machine learning
algorithm that is used for classifying objects based on closest
training instances in the feature space. It has been employed in
many applications in data mining, statistical pattern
recognition and many others. The object is classified based on
a majority vote of its k nearest neighbors /low distance to the
object. There are some measuring techniques that could be
used to measure distance between the training object and the
test object such as Bray-Curtis, Euclidean, correlation,

Canberra, Manhattean, Chebyshev, Dice, Cosine, and
Hamming distances.

In our experiments, the K-nearest neighbours are compute
as follows with K:

1. Store all training samples in memory.
2. Determine the parameter K = number of nearest

neighbors beforehand. In our experiment, k is chosen
to be 5.

3. Measure the distance between the query-instance (x)
and all the training samples . (any distance
algorithm can be used to) such as:

(1)

4. Find the K-minimum distance between the query-

instance (x) and each K .
5. Get all categories of training data for the sorted value

under K.
6. Find the weighted distance of the query-instance (x)

from each of the k nearest points as follows:

(2)

As our performance measure, we perform a standard grid

search with 10-fold cross validation to determine the best
parameters for each classifier. We measure the performance of
the classifier using the performance metricF-measurealso
known as F-score, which is a measure of a test's accuracyfor
binary classification functions that is based on the harmonic
mean for the classifier's precisionand recall.The precision is the
probability of records classified as positive which are classified
correctly.

(3)

 The Recall is the probability of positive records that have
been correctly identified.

 (4)

 F-measure is a measure of a test's accuracy by combining
recall and precision scores into a single measure of
performance, usually it is between 0.0 and 1.0, closer to 1
being a good score and closer to 0.0 being a poor score.
Therefore it can be interpreted as a measure of overlapping
betweenthe true and estimated classes (other instances, i.e. TN,
are ignored), ranging from (no overlap at all to (complete
overlap).

(5)

47

F-measure is one of the most accurate metrics for

evaluation, especially for unbalanced datasets [36].

VI. EXPERIMENTALEVALUATION

This section provides first a description for the used dataset in
our experiment. Then, it shows the results in applying TLSH
hashing algorithm to group binaries for the same variant and
differentiate binaries for different variants using the defined
thresholds by Trend Micro. After that, the effectiveness in
using k-NN for grouping binaries for the same variant or
differentiating binaries for different variants is illustrated.

Finally, the efficiency in using the other hashing algorithm
as SSDEEP, SDHASH and NILSIMSA with k-NN for
classifying the binaries as being from the same or different
variants is demonstrated.

A. Dataset

Two Zeus datasets were provided by Trend Micro to evaluate
the use of TLSH and compare it with the other hashing
algorithms. The two datasets hold binaries for two different
variants, TSPY-ZBOT and MAL_ZBOT. The first dataset,
TSPY_ZBOT, contains 856 binaries where the second dataset,
MAL_ZBOT, contains 22 binaries.

Each binary has a unique SHA256 value, which indicates
that the binaries are not redundant.

B. TLSH Results

TLSH was tested, using all the possible parameters
combinations, in terms of grouping malware binaries for the
same variant together and differentiating binaries for different
variants. Two binaries belong to the same variant if the hash
difference value is less than a defined threshold; otherwise they
belong to two different variants. The threshold is given in the
TLSH walkthrough guide. The threshold is defined as 200 if
using 128 buckets for hashing or as 400 if using 256 buckets
for hashing.

1) Grouping Binaries for The Same Variant

For the first experiment, we used the defined thresholds in
order to group binaries for the same variant. Table I below
shows the results that were attained by applying 128
buckets_1Byte checksum hash, 128 buckets_3Bytes checksum
hash, 256 buckets_1Byte checksum hash and 256
buckets_3Bytes checksum hash using both “tlsh.diff” and
“tlsh.xdiff” functions. The differences were computed between
each binary with all other binaries within the same variant,
with the note that the difference with the file itself was not
included as well as the redundant differences between two
binaries.

The accuracy result is defined as the number of the
differences below the threshold over the total number of the
differences.For each hash parameter, the average distances
were computed by summing all the distances in each variant

and divide them over the total number of the differences for
that variant. Column “average distance” shows that the chosen
thresholds for the distances were not accurate which lead in
having low accuracy results.

The first notice that was inferred from the table, using
either 1 or 3 Bytes checksum did not affect the accuracy
results, but slightly affected the average distances. The second
notice, the use of 256 buckets provided better accuracy results
compared to the use of 128 buckets. This is explained as the
follow. The lowest average distance using 128 buckets was
211.53 for Mal variant and 212.82 for TSPY variant, which are
above the defined threshold. However, the lowest average
distance using 256 buckets was 398.88 for Mal variant and
366.21 for TSPY variant, which are below the defined
threshold.

Table I. TLSH Variant Grouping Distances and Accuracy

TLSH

Hash Parameters Variant Function Accuracy
Result

Average
Distance

128 Buckets, 1 Byte
Check Sum

TSPY Length 0.230 304.887

128 Buckets, 1 Byte
Check Sum

Mal Length 0.100 356.268

128 Buckets, 1 Byte
Check Sum

TSPY Xlength 0.323 212.817

128 Buckets, 1 Byte
Check Sum

Mal Xlength 0.463 211.528

128 Buckets, 3 Byte
Check Sum

TSPY Length 0.23 304.891

128 Buckets, 3 Byte
Check Sum

Mal Length 0.100 356.273

128 Buckets, 3 Byte
Check Sum

TSPY Xlength 0.323 212.821

128 Buckets, 3 Byte
Check Sum

Mal Xlength 0.463 211.532

256 Buckets, 1 Byte
Check Sum

TSPY Length 0.244 458.288

256 Buckets, 1 Byte
Check Sum

Mal Length 0.134 543.623

256 Buckets, 1 Byte
Check Sum

TSPY Xlength 0.380 366.218

256 Buckets, 1 Byte
Check Sum

Mal Xlength 0.489 398.883

256 Buckets, 3 Byte
Check Sum

TSPY Length 0.244 458.292

256 Buckets, 3 Byte
Check Sum

Mal Length 0.134 543.628

256 Buckets, 3 Byte
Check Sum

TSPY Xlength 0.380 366.222

256 Buckets, 3 Byte
Check Sum

Mal Xlength 0.489 398.887

The final notice, “xdiff” parameter provided higher
accuracy results compared to “diff” parameter,as “xdiff”
provided distances that are close to be below the threshold
more compared to the use of “diff” parameters. This is clear as
the lowest distances were provided by applying the “xdiff”
parameter either on 128 buckets or 256 buckets. The best
accuracy results were attained by applying both “xdiff” and
256 buckets parameters achieving 0.380 and 0.489 for TSPY
and Malvariants respectively.

48

2) Differentiating Binaries from Different Variants

The second experiment was conducted in order to check if the
defined thresholdsare feasible in differentiating binaries that
belong to different variants. Distance above or equal the
threshold means that the binaries belong to different variants.
Table IIbelow shows accuracy results in computing the
distances between binaries in variant “Mal” with binaries in
variant “TSPY”, then dividing the number of distances over or
equal the threshold over the total number of distances.

As the previous experiment, the use of 1 or 3 Bytes
checksum did not affect the accuracy results but slightly affects
the average distance.

Unlike the previous results, this table shows that using 128
buckets provided better accuracy results compared to using 256
buckets. Also, for each use of “xdiff” parameter, it provided
lower accuracy results compared to the “diff” parameter. The
reason of that that the “xdiff” parameter provided lower
average distance compared to “diff” parameter to be closer to
the threshold, thus identifying the samples as the same variant.

 The best accuracy results were attained by both using 128
buckets and using “diff” parameters, providing 0.980.

Table II. Differentiating Binaries from Different Variants using TLSH

TLSH

Hash Parameters Function Accuracy
Result

Average
Distance

128 Buckets, 1 Byte Check
Sum

Length 0.980 421.857

128 Buckets, 1 Byte Check
Sum

XLength 0.820 253.877

128 Buckets, 3 Byte Check
Sum

length 0.980 421.862

128 Buckets, 3 Byte Check
Sum

Xlength 0.820 253.881

256 Buckets, 1 Byte Check
Sum

Length 0.963 614.654

256 Buckets, 1 Byte Check
Sum

XLength 0.762 446.674

256 Buckets, 3 Byte Check
Sum

length 0.963 614.659

256 Buckets, 3 Byte Check
Sum

Xlength 0.762 446.678

3) Using k-NN with TLSH

For the third experiment, a classifier using k-NNmachine
learning algorithm was built in order to address its performance
in grouping binaries that belong to the same variant together.

First, a classifier was trained using binaries from the two
different variants. Then for classifying an untrained binary,
first the distance is calculated with all instances used in the
training phase. Then, the closest distances with 5 binaries are
investigated, where the classified binary belongs to a certain
variant if three out of the five binaries belong to that variant. In
order to evaluate this approach, we applied cross validation
using n=10 for the given dataset. Table IIIbelow illustrates the
results for this experiment.

Table III. Grouping Binaries Using k-NN and TLSH

TLSH

Hash Parameters Difference F-measure results

128 Buckets, 1 Byte Check Sum Length 0.989

128 Buckets, 1 Byte Check Sum XLength 0.987

128 Buckets, 3 Byte Check Sum length 0.989

128 Buckets, 3 Byte Check Sum Xlength 0.987

256 Buckets, 1 Byte Check Sum Length 0.989

256 Buckets, 1 Byte Check Sum XLength 0.989

256 Buckets, 3 Byte Check Sum length 0.989

256 Buckets, 3 Byte Check Sum Xlength 0.989

The table reflects that using k-NN classifier to group
binaries together for the same variants outperforms the usage
of a specific threshold, attaining 0.989. The main reason for
that is logic since as illustrated earlier, binaries for different
variants would have larger distances compared with binaries
within the same variant. F-measure metric was used to evaluate
the classifier since we have unbalanced classes instances.

It also can be inferred from the table that using either 1 or 3
Bytes checksum provided the same results. For 128 buckets,
the “diff” parameter provided higher results compared to the
use of “xdiff” parameters. However, both parameters provided
the same results using 256 buckets.

C. SSDEEP Results

The second used algorithm was SSDEEP. Since no threshold
was provided to group or differentiate binaries for the same or
different variants, k-NN experiment was just conducted. Before
that, Table IVbelow shows information about the average
distances for the same variant as well as for different variants,
by applying SSDEEP. It is to be noted that SSDEEP uses range
0-100 for the distances where 0 means non-similar hashes and
100 means similar hashes. For our experiment convenience, we
used the below formula to have 0 as similar hashes and 1 as
non-similar hashes.

(6)

49

Where Distance Result is the value attained by applying
SSDEEP for two different binaries and Maximum Distance is
100.

It can be noted that SSDEEP scores a higher average
distance results for different binaries variants (Mal-TSPY)
compared to the same binaries variant average distance. Also,
it is observed that the average distance for the same variant is
high and close to 1, which indicates that SSDEEP barely
matches binaries for the same version.

Table IV. SSDEEP Average Distances Results

SSDEEP

Hash Parameters Variant Average Distance

SSDEEP Mal 0.983

SSDEEP TSPY 0.882

SSDEEP Mal-TSPY 1.000

For the next experiment, SSDEEP was used in conjunction
with k-NN in order to group binaries for the same variant. As
before, the closest distances with 5 binaries are investigated in
where the classified binary belongs to a certain variant if three
out of the five binaries belong to that variant. Table Vbelow
shows the result of applying k-NN with SSDEEP.

Table V.k-NN Results for Grouping the Same Variant Binaries in

Conjunction with SSDEEP

SSDEEP

Hash Parameters F-measure results

SSDEEP 0.987

It is observed that SSDEEP scores high results in grouping
binaries for the same variant using k-NN, attaining 0.987.

D. SDHASH Results
The third used algorithm tested was SDHASH. Again, since no
threshold was provided to group or differentiate binaries for the
same or different variants, k-NN experiment was just
conducted. Before that, Table VIbelow shows information
about the average distances for the same variant as well as for
different variants. As SSDEEP, SDHASH uses range 0-100 for
the distances where 0 means non-similar hashes and 100 means
similar hashes. Equation (6) is used to have 0 as similar and 1
as non-similar.

Table VI. SDHASH Average Distances Results

SDHASH

Hash Parameters Variant Average Distance

SDHASH Mal 0.964

SDHASH TSPY 0.876

SDHASH Mal-TSPY 0.999

Almost the same as SSDEEP results, SDHASH
scoreshigher average distance results for different binaries
variants (Mal-TSPY) compared to the same binaries variant
average distance. Also, it is observed that the average distance
for the same variant is high and close to 1, which indicates that
SDHASH barely matches binaries for the same version.

For the next experiment, SDHASH was used in conjunction
with k-NN in order to group binaries for the same variant. As
before, the closest distances with 5 binaries are investigated in
where the classified binary belongs to a certain variant if three
out of the five binaries belong to that variant. Table VIIbelow
shows the result of applying k-NN with SDHASH.

Table VII. k-NN Results for Grouping the Same Variant Binaries in

Conjunction with SDHASH

SDHASH

Hash Parameters F-measure results

SDHASH 0.990

It is shown that SDHASH scores high results in grouping
binaries for the same variant using k-NN, attaining 0.990.

E. NILSIMSA Results

The final used algorithm was NILSIMSA. Since no threshold
was provided to group or differentiate binaries for the same or
different variants, k-NN experiment was just conducted. Before
that, Table VIIIbelow shows information about the average
distances for the same variant as well as for different variants.
As both SSDEEP and SDHASH, NILSIMSA uses range 0-100
for the distances where 0 means non-similar hashes and 100
means similar hashes. Equation (6) is used to have 0 as similar
and 1 as non-similar.

Table VIII. NILSIMSA Average Distances Results

NILSIMSA

Hash Parameters Variant Average Distance

NILSIMSA Mal 0.155

NILSIMSA TSPY 0.259

NILSIMSA Mal-TSPY 0.169

Unlike the aforementioned results, NILSIMSA scored close
to 0 results for binaries in the same variant. However, it is
noticed that the distance average for binaries in different
variants is close to 0 as well and is lower compared to TSPY
average distance.

For the next experiment, NILSIMSA was used in
conjunction with k-NN in order to group binaries for the same
variant. As before, the closest distances with 5 binaries are

50

investigated in where the classified binary belongs to a certain
variant if three out of the five binaries belong to that variant.
Table IXbelow shows the result of applying k-NN with
NILSIMSA.

Table IX. k-NN Results for Grouping the Same Variant Binaries in

Conjunction with NILSIMSA

NILSIMSA

Hash Parameters F-measure results

NILSIMSA 0.987

The evaluation shows that our approach is highly effective

in terms of response time and malware variant
detection.NILSIMSA scores high results in grouping binaries
for the same variant using k-NN, attaining 0.987.

VII. DISCUSSION

The use of different hashing algorithms to group binaries for
the same variant as well as differentiating binaries from
different variants is feasible. We noticed that the use of TLSH
different parameters provided good results in terms of having
lower average distances for binaries in the same variant
compared to binaries from different variants. The use of
manual defined threshold didn’t provide good accuracy results;
on the other hand the use of k-NN showed that it is feasible to
group binaries for the same version with high F-measure
results.

For both SSDEEP and SDHASH, the average distances for
the same variant were lower compared to the different variants.
On the other hand, both of them scored average distance close
to 1 (highly different) for binaries within the same variant.As
TLSH, k-NN with these algorithms provided high F-measure
results in grouping binaries within the same variant as well as
differentiating binaries from different variants with the notice
that SDHASH scored the highest.

NILSIMSA showed different behaviour compared to the
rest by having higher average distance for binaries within the
same variant (TSPY) compared to binaries from different
variants. The explanation that k-NN provided good accuracy
results in NILSIMSA is that when classifying any binary, if
three distances within the same variant are lower compared to
all distances from different variants, that binary will be
classified as that same variant. In our experiment, when
classifying a binary from TSPY variant, the distance between
this binary and all binaries in both TSPY and Mal variants are
computed. Three distances with TSPY binaries were lower
compared to all the distances with Mal binaries and were
enough to classify that binary as TSPY variant.

VIII. CONCLUSION

The malware (malicious software) landscape is persistently
growing and a major threat. Current malware engines use a
combination of signatures, and heuristics detection based
methods. There are millions of malware codes propagated

daily but there are only a low number of malware families. In
this paper we investigated the use of locality sensitive hashing
algorithms for malware variant classification. Our application
scenario is that of an antivirus product; we wish to determine
whether a previously unseen piece of malware is related to a
variant we do know about.This problem had been studied in
the literature previously. We compared the TLSH method with
others, including SSDEEP, SDHASH and NILSIMSA.We
used two real cases samples from Zeus variants, namely,
TSPY_ZBOT and MAL_ZBOT to address the effectiveness of
the proposed approach.

In order to have a deeper understanding of the behaviour
of the results, different statistics should be extracted as the
distribution of the distances. This helps to evaluate the
algorithms from different perspective. Also, to address the
robustness of this approach for different hashing algorithms,
different datasets should be provided and tested. Experimental
evaluation demonstrates that our method can effectively detect
variants of malware and resilient to common obfuscations used
by cyber criminals, our results shows that TLSH and SDHASH
provide the highest accuracy results in scoring an F-measure of
0.989 and 0.999 respectively.

 Our study onlyfocused on performing similarity measures
between different malware binaries on obfuscated malware.
Future plan is to perform some reverse engineering (de-
obfuscated) on malware first, then apply different hashing
algorithms on the de-obfuscated malware and compare results.
Another future work is to compare the performance in applying
cost sensitive algorithms to include different variants for the
same version, as conducted [37]in for Skype application.

REFERENCE

[1] R. Smith, P. Grabosky, and G. Urbas, Cyber
Criminals on Trial: Cambridge University Press,
2004.

[2] P. Grabosky and R. G. Smith, Crime in the Digital
Age: Controlling Telecommunications and
Cyberspace Illegalities: Transaction Publishers,
1998.

[3] P. A. Watters, S. McCombie, R. Layton, and J.
Pieprzyk, "Characterising and predicting cyber
attacks using the Cyber Attacker Model Profile
(CAMP)," Journal of Money Laundering Control,
vol. 15, pp. 430-441, 2012.

[4] R. Broadhurst, P. Grabosky, M. Alazab, and S. Chon,
"Organizations and Cyber crime: An Analysis of the
Nature of Groups engaged in Cyber Crime,"
International Journal of Cyber Criminology, vol. 8,
pp. 1 - 20, 2014.

[5] R. Mukhtar, A. Al-Nemrat, M. Alazab, S.
Venkatraman, and H. Jahankhani, "Analysis of
firewall log-based detection scenarios for evidence in

51

digital forensics," Int. J. Electron. Secur. Digit.
Forensic, vol. 4, pp. 261-279, 2012.

[6] M. Alazab, S. Venkatraman, P. Watters, and M.
Alazab, "Information Security Governance: The Art
of Detecting Hidden Malware," in IT Security
Governance Innovations: Theory and Research, ed:
IGI Global, 2013, pp. 293-315.

[7] Symantec Corporation, "Internet Security Threat
Report, Vol 19," April 2014.

[8] Symantec. (2011). Symantec Internet Security Threat
Report: Trends for 2010, Volume 16. Available:
https://www4.symantec.com/mktginfo/downloads/21
182883_GA_REPORT_ISTR_Main-Report_04-
11_HI-RES.pdf

[9] Dell. (2014). Dell Network Security Threat Report
2013. Available:
http://www.sonicwall.com/app/projects/file_downloa
der/document_lib.php?t=WP&id=129

[10] P. Bureau, "Same Botnet, Same Guys, New Code," in
Virus Bulletin International Conference, Barcelona,
Spain, 2011, pp. 10 - 13.

[11] Fox-IT InTELL. (2014). Tilon/SpyEye2 intelligence
report Available:
http://foxitsecurity.files.wordpress.com/2014/02/spye
ye2_tilon_20140225.pdf

[12] K. Alzarooni, "Malware Variant Detection," Doctor
of Philosophy, Department of Computer Science,
University College London, London, 2012.

[13] A. Dinaburg, P. Royal, M. Sharif, and W. Lee,
"Ether: malware analysis via hardware virtualization
extensions," in Proceedings of the 15th ACM
conference on Computer and communications
security, Alexandria, Virginia, USA, 2008, pp. 51-62.

[14] G. Lawton, "Virus Wars: Fewer Attacks, New
Threats," IEEE Computer Society, vol. 35, pp. 22 -
24, 2002.

[15] B. Birrer, R. Raines, R. Baldwin, M. Oxley, and S.
Rogers, "Using Qualia and Hierarchical Models in
Malware Detection," Special Issue on Intrusion and
Malware Detection: Journal of Information
Assurance and Security, vol. 4, 2009.

[16] S. Venkatraman, "Autonomic Context-Dependent
Architecture for Malware Detection," presented at the
e-Tech 2009, International Conference on e-
Technology, Singapore, 2009.

[17] P. A. Watters, A. Herps, R. Layton, and S.
McCombie, "ICANN or ICANT: Is WHOIS an
Enabler of Cybercrime?," in Cybercrime and
Trustworthy Computing Workshop (CTC), 2013
Fourth, 2013, pp. 44-49.

[18] R. Broadhurst and P. Grabosky, Cyber-Crime: The
Challenge in Asia: Hong Kong University Press,
2005.

[19] D. Andriesse, C. Rossow, B. Stone-Gross, D.
Plohmann, and H. Bos, "Highly resilient peer-to-peer
botnets are here: An analysis of Gameover Zeus," in
Malicious and Unwanted Software: "The Americas"

(MALWARE), 2013 8th International Conference on,
Fajardo, PR, 2013, pp. 116 - 123.

[20] R. Layton, P. Watters, and R. Dazeley,
"Unsupervised authorship analysis of phishing
webpages," in Communications and Information
Technologies (ISCIT), 2012 International Symposium
on, 2012, pp. 1104-1109.

[21] W. Frawley, G. Piatetsky-shapiro, and C. Matheus,
"Knowledge discovery in databases: An overview,"
Al Magazine, vol. 13, pp. 213–228, 1992.

[22] D. J. Hand, H. Mannila, and P. Smyth, Principles of
Data Mining: A Bradford Book, 2001.

[23] M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo,
"Data mining methods for detection of new malicious
executables," in IEEE Symposium on Security and
Privacy, Oakland, CA, 2001, pp. 38-49.

[24] J. Kolter and M. Maloof, "Learning to Detect
Malicious Executables in the Wild," in The Tenth
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, NY, USA,
2004, pp. 470 – 478.

[25] A. H. Sung, J. Xu, P. Chavez, and S. Mukkamala,
"Static analyzer of vicious executables (SAVE)," in
20th Annual Computer Security Applications
Conference, , Tucson, AZ, USA, 2004, pp. 326-334.

[26] J.-Y. Xu, A. H. Sung, P. Chavez, and S. Mukkamala,
"Polymorphic Malicious Executable Scanner by API
Sequence Analysis," presented at the Proceedings of
the Fourth International Conference on Hybrid
Intelligent Systems, 2004.

[27] D. J. Malan and M. D. Smith, "Host-based detection
of worms through peer-to-peer cooperation," in The
ACM workshop on Rapid malcode, Fairfax, VA,
USA, 2005, pp. 72-80.

[28] J. Z. Kolter and M. A. Maloof, "Learning to Detect
and Classify Malicious Executables in the Wild,"
Journal of Machine Learning Research, vol. 7, pp.
2721-2744, 2006.

[29] M. Shankarapani, K. Kancherla, S. Ramammoorthy,
R. Movva, and S. Mukkamala, "Kernel machines for
malware classification and similarity analysis," in
The 2010 International Joint Conference on Neural
Networks, Barcelona 2010, pp. 1-6.

[30] J. Kornblum, "Identifying almost identical files using
context triggered piecewise hashing," Digital
Investigation, vol. 3, Supplement, pp. 91-97, 9//
2006.

[31] V. Roussev, "An evaluation of forensic similarity
hashes," Digital Investigation, vol. 8, Supplement,
pp. S34-S41, 8// 2011.

[32] V. Roussev, "Data Fingerprinting with Similarity
Digests," in Advances in Digital Forensics VI. vol.
337, K.-P. Chow and S. Shenoi, Eds., ed: Springer
Berlin Heidelberg, 2010, pp. 207-226.

[33] E. Damiani, S. D. C. di Vimercati, S. Paraboschi, and
P. Samarati, "An Open Digest-based Technique for

52

Spam Detection," ISCA PDCS, vol. 2004, pp. 559-
564, 2004.

[34] J. Oliver, C. Chun, and C. Yanggui, "TLSH -- A
Locality Sensitive Hash," in Cybercrime and
Trustworthy Computing Workshop (CTC), 2013
Fourth, 2013, pp. 7-13.

[35] trendmicro. (2014, 8 September). TLSH source code
Available: https://github.com/trendmicro/tlsh

[36] P. Christen, "Evaluation of Matching Quality and
Complexity," in Data Matching, ed: Springer Berlin
Heidelberg, 2012, pp. 163-184.

[37] A. Azab, R. Layton, M. Alazab, and P. Watters,
"Skype Traffic Classification Using Cost Sensitive
Algorithms," in 2013 Fourth Cybercrime and
Trustworthy Computing Workshop (CTC), 2013, pp.
14-21.

53

