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A problem besetting the analysis of velocity map images, particularly those of photoelectrons, is
the presence of distortions that cause the features in the image to deviate from circularity, leading
to a loss of resolution in the spectrum extracted. A method is presented to repair such distortions
based on fitting the angular behaviour of each of the ring structures to a trigonometric expansion.
The repair function allows the intensity at any value of radius and angle to be mapped to a new
position that removes the distortion and returns the features to circular. While the method relies on the
analysis of the structure in an image, it could also be applied to determine the “repair function” using
a calibration image (or series of images) for the experiment. Once the image has been circularised it
can be processed by any of the approaches that have been developed for that purpose. The analysis
also enables the image centre to be determined with high accuracy. The fitting method utilises an
inverse Abel transformation of the image in polar coordinates as a means to reshape the image into a
series of spectral features in order to determine the radial position of features at each angle. Although
the velocity distribution is not in general spherically symmetric and so this is not a mathematically
correct means to extract the velocity distribution, the feature positions are accurately reproduced in
the resulting spectrum while the intensity and anisotropy parameters can be remarkably close to those
obtained using the proper inverse Abel transformation of the image. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4981024]

I. INTRODUCTION

Since the introduction of the ion imaging technique by
Chandler and Houston 30 years ago,1 it has become a stan-
dard part of the experimental toolkit for molecular dynamics
studies. The introduction of velocity mapping, the so-called
velocity map imaging (VMI) technique, a decade later signif-
icantly improved the resolution attainable.2 Although initially
applied to imaging ions, the technique has also been used
to image electrons and has become a powerful technique in
photoelectron spectroscopy of neutrals and ions.3–8

During conventional VMI experiments, ionised photo-
reaction products or photoelectrons are produced in a small
volume by a short laser pulse and accelerated toward a detector
using electric fields that place the particle on the detector at a
position governed by its initial velocity. As the ions/electrons
travel toward the detector they expand spherically as deter-
mined by the velocity they gained during the photodissoci-
ation (ions) or ionisation (electrons) event, and it is the two
dimensional (2D) projections of these Newton spheres that
are measured when the charged particles hit the detector.
Assuming cylindrical symmetry about the laser polarization,
a slice of the original 3D particle distribution has traditionally
been obtained using an inverse Abel transformation, although

a)Author to whom correspondence should be addressed. Electronic mail:
warren.lawrance@flinders.edu.au.

alternative methods have been developed. An early comparison
of the various approaches taken was provided in Ref. 9. New
approaches continue to be developed,10,11 with a more recent
summary of the various techniques given in Ref. 11. Alterna-
tively, the 3D particle distribution can be measured directly
with the slice imaging experimental technique,12,13 although
this is not appropriate for electron detection due to the short
flight times involved.

Ideally, the particles’ spherical velocity distribution gives
rise to perfect circles in the experimental image; however, in
practice experimental images may deviate from circularity due
to, for example, stray magnetic fields or optical distortion of
the camera lens that images the particle detector. The difficulty
of completely eliminating stray magnetic fields coupled with
the low electron mass makes photoelectron images particularly
sensitive to distortion. The effect of distortion is to reduce the
radial (and hence velocity and kinetic energy) resolution, since
a particular energy peak will “walk” in radial position, depend-
ing on the angular position of the detector. This leads to a loss
of spectral resolution. To minimise the effect, the analysis is
often confined to a limited section of the image. For exam-
ple, in their original velocity map imaging paper, Eppink and
Parker2 addressed this problem by only integrating over a sin-
gle quadrant. Alternatively, imposing a circular distribution of
particles improves the kinetic energy resolution at the expense
of an uncertainty in the absolute kinetic-energy position of
the transition. Eppink, Wu, and Whitaker have considered the
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effects of simple distortions when comparing reconstruction
methods.9

To illustrate the issue, Fig. 1(a) shows a photodetachment
VMI image of O� obtained in The Australian National Univer-
sity (ANU) laboratory. While not immediately obvious to the
naked eye, the rings are not exactly circular. We have included
a circle on the image (dashed lines in red) to guide the eye
and make the presence of deformations more apparent. The
spectral information is extracted by taking an inverse Abel
transform of the image to produce a slice through the centre
of the expanding spheres and integrating over the spherical
angles to reduce the intensity to a function of r only.3,11 Since
the image is not perfectly circular, the peaks in the angular
integrated spectrum have a width larger than arises from the
width of the rings in the image, resulting in a loss of spec-
tral resolution. Fig. 1(b) shows the inverse Abel image14 of
Fig. 1(a) and Fig. 1(c) shows the spectrum extracted by inte-
gration of the complete image. In contrast, Fig. 1(d) shows
the spectrum obtained by integrating over a small (6◦) wedge.
This wedge angle is too small for deformations to affect the
resolution and thus shows the resolution achievable by the
instrument. The significant reduction in the resolution from the
features in Fig. 1(d) to Fig. 1(c) when using the full image is
apparent.

While narrowing the integration to small angular sections
can improve the resolution, it is not an altogether satisfac-
tory solution since this approach discards much of the data,
lowering the signal to noise ratio for a given number of laser
shots and does not provide the total cross section. Only when
an appropriate quarter image is used (i.e., one axis is parallel
to the laser polarisation direction) will the photoelectron dis-
tributions calculated from angular segments give the correct
intensities because of anisotropy in the angular distributions.
When integrating over large angular segments such as a quad-
rant, closely spaced rings in the image can become merged. A
better approach would be to “repair” such distortions, returning
the image to circular prior to the analysis. By using a complete
image there is a redundancy since the four quarters should be
identical, which provides a check for the internal consistency
of the results. The use of the entire image compared to a sin-
gle quadrant gives an improvement in the signal of a factor
of 4 and the signal to noise ratio, which is proportional to the
square root of the number of counts, a factor of 2, potentially
reducing collection times.

Various methods to overcome distortion have been
reported. Gascooke15 introduced a radial repair method,
whereby the image was broken up into wedges of equal angles,
akin to cutting a pie. One wedge was taken as the reference,
with the remaining wedges being stretched or compressed,
with appropriate intensity scaling such that the structure in
the wedges had the same radial dependence as the reference
wedge. Ryazanov has recently reported a similar scheme.16

The method reported by Gascooke has been incorporated as
a part of the data analysis for the high resolution photoelec-
tron spectrometer at the Australian National University8,17,18

and in various publications from the Flinders group.19–21

The approach has recently been improved to include a
trigonometric fitting of the angular distortion, as discussed
briefly in a recent publication.21 Basis function inverse Abel

FIG. 1. (a) A VMI image of the electrons generated by photodetachment
of O� at 812.51 nm.17 The dashed red circle on the image is provided to
guide the eye and make the presence of deformations more discernible. (b)
The inverse Abel transform of this image. (c) The “spectrum” (plotted versus
radius) extracted from the inverse Abel transformed image shown in (b). (d)
A plot of the intensity versus radius for a 6◦ wedge (θ = 202◦–208◦) of the
inverse Abel transformed image shown in (b). Comparing (c) and (d) shows
the loss of resolution due to non-circularity of the image.
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transform methods take a different approach and fit circularly
symmetric functions to the image, effectively averaging the
distortion.9,22,23

Recently, we have been developing an improved method
for repairing distorted images, building on the method reported
by Gascooke.15 The purpose of the present paper is to present
this method, which we refer to as “circularisation.” The method
also provides a means to determine the centre of the image
with quite high precision. Several authors have commented on
the need for accurate determination of the image centre22,23

and a variety of methods have been used.22–24 The circulari-
sation technique is demonstrated using photoelectron images
measured in the Flinders and ANU laboratories. Once circu-
larised, the image can be processed using any of the methods
available for that purpose.

II. REMOVING DISTORTION FROM IMAGES
A. Overview of the technique

Structured VMI images generally consist of a number of
concentric rings. In essence, the circularisation method iden-
tifies a functional form for the image distortions by fitting
the angular behaviour of each of the rings to a trigonometric
expansion. Doing this for a number of features of different radii
allows the angular variation at other radii to be determined by
interpolation. The result is a function that allows the intensity
at any value of radius and angle to be remapped to remove the
distortion and return the features to circular. The process does
not alter the intensity/counts within each ring.

As apparent in Fig. 1(a), it can be difficult to see the distor-
tions simply by viewing the image. We have found that they are
much more apparent after converting the VMI image to polar
coordinates (radius r and angle θ) and plotting it as a (r, θ)
plot with r along the horizontal axis and θ along the vertical
axis. We refer to these as polar coordinate (PC) images. A
PC image of the VMI image shown in Fig. 1(a) is shown in
Fig. 2(a). In this and subsequent images, θ is defined as the
anticlockwise trigonometric angle from the x (horizontal) axis.
(Experimentally, θ is often used to denote the angle from the
laser polarisation for the purpose of defining the anisotropy
parameter, β, and hence is measured from the horizontal or
vertical axis depending on the experimental configuration.) In
the absence of deformations and using the correct image cen-
tre (see below), the PC image would show a series of straight
lines parallel to the θ axis (i.e., vertical lines), one for each
of the rings seen in the image. The deformations in the VMI
image are apparent in the PC image, with “wiggly” features
being observed instead of straight lines. The circularisation
process determines the function describing these wiggles and
then uses it to repair the image.

It is important to note that if the value for the image centre
is incorrect, the PC image will yield a “wiggly” line rather
than a straight one even for a perfectly circular image. This
artifact provides a method for determining the position of the
centre, as discussed in Section II B, step 4, with further details
provided in the supplementary material. Figs. 1(b)–1(d) have
been generated using the correct centre as determined by the
circularisation procedure.

FIG. 2. (a) A polar coordinate (PC) image of the VMI image shown in
Fig. 1(a). The deformations in the VMI image are revealed by the “wiggly”
nature of the lines observed. (b) The PC image for the circularised VMI image
showing that the vertical lines have been straightened by the circularisation
process. This illustrates the excellent circularity of the repaired image.

B. The technique step by step

It is most instructive to describe the method by working
through an example. An example based on a synthetic image
has been chosen since the parameters used to generate the dis-
tortion are known: the distortion parameters determined during
the analysis can thus be compared with them and the repaired
image compared with the undistorted original, providing a test
of the method. The undistorted synthetic VMI image is shown
in Fig. 3(a) and the distorted version in Fig. 3(b). The synthetic
image is constructed as 5 Gaussian line shapes whose widths
were varied to mimic the behaviour of VMI experiments. The
radii of these features and their full width at half maximum
(FWHM) are, in units of pixels, 50 (4.71), 100 (2.71), 150
(1.57), 200 (1.18), and 250 (1.18). The features are centred
at pixel location (301, 301). The intensity variation with the
angle has been set using the usual β parameter form25

I(φ) = I0

(
1 +

1
2
β(3 cos2 φ − 1)

)
, (1)

with β = 0.67 used for the synthetic image. Here, φ is the angle
from the laser polarisation, which is assumed to be vertical,
i.e., φ = π/2 � θ. The synthesized distortion is represented by
a function of the form

rd(θ) = ru
*
,
1 +

N∑
n=1

(an sin nθ + bn cos nθ)+
-

, (2)

where rd is the distorted radius (i.e., the radius observed exper-
imentally), ru is the undistorted (true) radius, N is the number
of terms in the expansion used to describe the distortion, and
an and bn are constants that describe its magnitude. Table I
lists the values used for these parameters. This distortion
changes linearly with radius, which is the dominant effect
expected experimentally since the distortion arises from mis-
shapen expanding charged particle spheres whose radii are

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-020795
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FIG. 3. (a) The synthetic VMI image used in the worked example describing
the circularisation method. (b) The image after it has been distorted using a
trigonometric function as described in the text. The parameters used for the
function are shown in Table I. (c) The final repaired, circularised image. (d)
A difference image showing the original minus the circularised image. The
difference is constant in r which is only possible if the image is properly
circularised. There are some minor differences apparent and these are due to
the pixelated nature of the image leading to a slight broadening of the sharp
features.

TABLE I. The constants an and bn involved in generating the distorted VMI
image used in the worked example describing the circularisation method.

Input Fitted
a

n an bn an bn

1 2.00× 10�2 −4.00× 10�2 2.01× 10�2 −4.01× 10�2

2 1.80× 10�2 4.00× 10�3 1.80× 10�2 4.02× 10�3

3 −1.20× 10�2 1.80× 10�2 −1.20× 10�2 1.79× 10�2

4 6.00× 10�4 −2.00× 10�4 6.10× 10�4 −1.83× 10�4

aThe one standard deviation values from the least squares fit of the parameters are in the
range 4–6 × 10�6.

determined by the particles’ velocities. Where present, non-
linear radial effects can be accounted for once the image has
been circularised. In that case, the energies of the features must
be known so that the equation for the non-linear radial repair
can be determined (see Section III A for an example). No noise
term is included in the synthetic image.

The steps involved in the analysis are as follows:

1. Initial centre determination. The process utilises PC
images whose generation requires a value for the image
centre. The centre position is checked and adjusted during
the analysis (step 4), and a reasonable initial estimate suf-
fices. In this example, we have simply averaged the values
for the left-most and right-most positions of the smallest
ring (small rings are least affected by distortions) and the
top-most and bottom-most positions to give the x and y
values, respectively. This gives a centre pixel location of
(302.5, 300.0), which compares with the true value of
(301, 301).

2. Generate the PC image and its inverse Abel transform. A
PC image is generated by converting the intensity at (x, y),
I(x, y), into intensity at (r, θ), I(r, θ), based on the distance
r from the chosen centre, r =

√
(x − xc)2 + (y − yc)2, and

angle θ (defined above). The PC image generated from
Fig. 3(b) is shown in Fig. 4(a). The aim is to analyse
the features in the PC image to determine their angu-
lar behaviour. There are a number of ways this could be
done, for example, using edge finding routines or sim-
ply searching for the maximum value within a region.
We process the PC image using an inverse Abel trans-
form as a means to reshape the image into a series of
spectral features. Each horizontal line, i.e., a constant
θ value, is transformed by the inverse Abel transform.
We find that although the velocity distribution is not in
general spherically symmetric, i.e., β , 0 in general,
and thus this is not a mathematically correct means to
extract a velocity distribution, the resulting spectrum and
anisotropy parameters can be remarkably close to those
obtained using the proper inverse Abel transformation
of the image (see supplementary material). Importantly,
the positions of the features are accurately determined
in the inverse Abel transform of the PC image, which
consists of a series of Gaussian or Gaussian-like fea-
tures whose position in r varies with θ. As the arcs
being integrated over get longer with increasing r for
a given δθ, the intensity must be scaled by dividing by r
to normalise for this before performing the inverse Abel

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-020795
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FIG. 4. (a) The PC image generated from Fig. 3(b) using θ bins of 2◦ and r
bins of 0.5 in units of the pixel size in the original (x,y) image. (b) The inverse
Abel transformed PC image. The intensity in the PC image was divided by
r prior to applying the inverse Abel transformation (see text). (c) As for (a)
but for the circularised (repaired) VMI image. Note the straight lines for the
circularised image.

transformation. The inverse Abel transformed PC image
is shown in Fig. 4(b). The inverse Abel transformation
of the PC image leads to noise near r = 0 but, provided
that there is no structure at very low radii, this causes
less of a problem than in the case of the inverse Abel
transform of the VMI image. Taking the inverse Abel
transform of the original image introduces a noise strip
down the centre of the image, resulting in regions of the
PC image around θ = 90◦ and 270◦ that would need to be
masked out in the remaining analysis (see Fig. 1(b) as an
example).

3. Fit a trigonometric series to each “line” in the inverse
Abel PC images. A trigonometric series is used to account
for the angular behaviour of each of the features shown
in Fig. 4(b). Each feature is first extracted from the full
image as a separate image over the appropriate radial
segment, and then fitted independent of the other fea-
tures. The features are assumed to be Gaussian in r and
have an intensity variation in θ that is described by the
usual β parameter (Eq. (1)),25 although for experiments
where this is inappropriate other functions could be used
to describe the intensity variation with the angle. The
function used to fit the ith feature is

I(r, θ) = I(φ) exp *
,
−

(r − rg)2

2σ2
i

+
-

+ c, (3)

where rg(θ)= ri +
N∑

n=1
(A(i)

n sin nθ + B(i)
n cos nθ) is the posi-

tion of the Gaussian and I(φ)= I0(1+ 1
2 βi (3 cos2(φ)−1)),

with φ = π/2 � θ (see Eq. (1)), is its intensity. ri is the
unperturbed radius of the feature, while A(i)

n and B(i)
n are

the trigonometric coefficients describing its distortion. c
is a constant to account for any intensity offset should
the background be non-zero. σi is the standard devia-
tion of the Gaussian, which is related to its full width
at half maximum by FWHM= 2

√
2 ln2 σi. The number

of terms, N, required in the trigonometric series depends
on the deformation and could be assessed in a number
of ways. We determine N by comparing the size of the
term with its uncertainty since a large uncertainty indi-
cates that the term is ill-determined and not required.
The fit returns values of ri and βi and a set of A(i)

n and
B(i)

n values whose number depends on the value of N
required.

In principle, if the analysis has been performed using
the correct centre (see step 4 below) and involves every
spectral feature in the image, much of the information to
be extracted from the image is known at this point and
a reconstruction of the circularised image (steps 5 and
6) may not be necessary. The anisotropy parameter β
will not necessarily be properly determined because the
inverse Abel transform was performed on the PC image
rather than the VMI image, although the differences can
be small (see supplementary material). However, weak
features can be difficult to include in the circularisa-
tion analysis but emerge when the image is repaired and
processed to yield the spectrum.

4. Check for the correct image centre. An incorrect choice
of image centre is manifested in A1sinθ and B1cosθ terms
(see supplementary material) but such terms can also arise
from the deformation. At this point, it is necessary to
assess whether the image centre being used is correct
or requires a change. If the centre needs changing, steps
2 and 3 are repeated with the new centre value so that
the constants reflect only the deformation. To assess if
the centre is correct, the A1 and B1 values are plotted
as a function of r. Since at r = 0 the angular deforma-
tion vanishes, extrapolating these plots to r = 0 gives
the A1 and B1 values arising from the incorrect choice of
centre, and hence the correction required (see supplemen-
tary material). The function is linear if the deformation is
purely radial, which is expected, but non-linear functions
may be needed if this is not the case. In our experience,
a linear function has been adequate. In the example at
hand, the plot indicates that the chosen centre is incorrect
and that the corrected value is (301.03, 300.98) pixels,
which is reassuringly close to the exact value of (301.00,
301.00). With a maximum image radius of 250 pixels,
this represents an error in the centre of ∼0.01%. Steps 2
and 3 were repeated using the new centre position. The r
dependence of the new A1 and B1 terms showed that the
centre had been determined with sufficient accuracy, as
expected.

5. Determine the radial dependence of the angular defor-
mation terms, An and Bn. When using the correct centre,

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-020795
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-020795
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-020795
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-020795
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FIG. 5. A plot of the An(ri) and Bn(ri) values as a function of r and the straight
line fits. Based on the use of an angular distortion to generate the test image,
the plots should be linear and pass through zero. The slopes of the plots should
match the values used to deform the test image; the values are compared in
Table I.

step 3 produces a set of A(i)
n and B(i)

n for particular r values,
ri. The r dependence of these constants is determined by
plotting these points as functions of r and fitting the val-
ues to a function. A linear function was used to generate
the deformation in our synthetic image and so the plots
in this case should be linear and pass through zero, i.e.,
An(r) = anr and Bn(r) = bnr, where an and bn are the
slopes of the plots. This is the case shown in Fig. 5. The
parameters extracted should match those used to gener-
ate the deformation. A comparision between the two sets
(Table I) shows that the circularisation process has accu-
rately recovered the terms. In our experience, linear fits
have been adequate to describe the r dependence of the An

and Bn values. We have seen significant deviations from
this when N is too large, i.e., the fit is including unneces-
sary higher order terms, providing another indicator for
the number of terms required.

6. Remove deformation to circularise the image. The func-
tional forms for An(r) and Bn(r) (step 5) provide the
means to repair the deformation. A point (x, y) on the
image is shifted to a new value determined by its (r, θ)
position by calculating the shift in r determined by the
formula (see the expression for rg, Eq. (3))

∆r(r, θ) =
N∑

n=1

An(r) sin nθ + Bn(r) cos nθ, (4)

where in general we expect An(r) = anr and Bn(r) = bnr.
The intensity at (r, θ) is shifted to (r + ∆r, θ) and mapped
to the corresponding (x, y) position on the experimental
image. In cases where the position of each ion/electron is
retained, the repaired image can be constructed by shift-
ing each of the counts to a new position. The repaired,
circularised image is shown in Fig. 3(c). Its PC image is
shown in Fig. 4(c) for comparison with the same plot
for the original undistorted image in Fig. 4(a). Note
the straight lines at the correct positions in the repaired
image.

The test of the circularisation process is the extent to
which the repaired image matches the original, undistorted
image. This comparison is shown in Fig. 3(d), which shows
a difference image corresponding to the original, undistorted
image minus the circularised image. It can be seen that the
circularised image is an excellent match to the original image.
Importantly, it shows excellent circularity, with the features
at the correct radii. There are some minor differences appar-
ent in Fig. 3(d) and these arise from the pixelated nature of
the image leading to a slight broadening of the sharp features,
whose FWHM is only ca. 1-2 pixels.

III. EXAMPLES

In this section, we illustrate the use of the circularisation
procedure described above in two examples from the Flinders
and ANU laboratories. The first involves photodetachment of
O� (ANU) in which there are 6 atomic fine structure transi-
tions, all seen in the image at the high resolution involved.
This example provides an excellent test of the ability of the
circularisation process to retain the inherent experimental res-
olution when converting from a complete image to a spec-
trum. The second example involves photoionisation of benzene
(Flinders), a modest resolution experiment but one involv-
ing a larger deformation and a significant number of bands,
which makes it potentially more challenging to remove the
distortions.

Both examples introduce the “real world” issue that adja-
cent spectral features can overlap within the fluctuations in
the radius associated with the radial distortion. In such cases,
extracting an individual feature from the full image (step 3)
can be problematic. One approach is to extract multiple fea-
tures and fit to as many Gaussians as there are features. An
alternative approach is to carefully mask regions of the image
so that only a single feature is extracted. We have taken the
latter approach.

A. Photodetachment of O−

The photoelectron VMI spectrometer at ANU operates
at high resolution (µeV to meV), making it critical that pho-
toelectron spectra can be extracted utilising the full inherent
resolution of the instrument. Fig. 1 shows an image of the
electrons produced by photodetachment of O� at 812.51 nm,
O−(2P3/2, 1/2) + hν → O(3P2, 1, 0) + e−.8,17 This image illus-
trates the problem: although the deformations are compara-
tively small, non-circularity in the image leads to a radial plot
(intensity versus r), and hence spectrum, that is significantly
broader than the inherent resolution of the instrument, as seen
by comparing Figs. 1(c) and 1(d). The strongest transition in
the image (at r ∼ 1020 pixels) has a FWHM of 23.6 pixels
when the full image is considered, while in a 6◦ wedge (i.e.,
too small for deformations to affect the resolution) the same
feature is clearly resolved into two bands. The main peak has
a FWHM of 7.12 ± 0.14 pixels as determined by a fit to the
band using a Gaussian function. (The indicated uncertainty is
one standard deviation.) The test for the circularisation proce-
dure is how well this inherent resolution is retained using the
full image post-circularisation (assuming that the resolution is
maintained across the full image).
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Following the procedure outlined in steps 1-3, an initial
estimate for the image centre was used to construct a PC image
and the 5 strongest features fit to a trigonometric expansion.
From the sinθ and cosθ terms, the error in the centre posi-
tion was determined (step 4) and steps 2 and 3 were repeated.
A third iteration was not required. Terms up to N = 5 were
required in the trigonometric expansion to reproduce the defor-
mation. The corrections were applied to the image as discussed
in steps 5 and 6. The r dependence of An and Bn was well
described by a linear function. A PC image of the corrected
VMI image is compared with that for the original image in
Fig. 2. The straight vertical lines are a marked contrast to the
“wiggly” lines from the original image.

An important test for the procedure is the width of the
spectral features arising when using the full circularised image.
The radial plot shows a significant narrowing of the spectral
features, with the intense band at r ∼ 1020 pixels having a
FWHM of 7.19 ± 0.07 pixels as determined by a Gaussian fit.
Within the uncertainty of the fits, this is the same as the FWHM
of 7.12 ± 0.14 pixels determined for the 6◦ wedge from the
original image. Fig. 6 illustrates this. This comparison shows
that the circularisation procedure has retained the resolution
inherent in the image while allowing the complete image to
now be used.

The high resolution of the ANU instrument provides an
excellent basis for an analysis of the extent to which the r
dependence expected in the image is observed. The energies
of the atomic fine structure transitions8,17 and the laser wave-
length are known. The fine structure transitions are expected
to follow the relationship r2 ∝ hν � ETransition, where v is the
laser frequency and ETransition is the energy of the fine struc-
ture transitions. The electron kinetic energy is thus EKinetic

= hν � ETransition and a plot of r versus E1/2
Kinetic should be linear

with an intercept of zero. It is found that the expected rela-
tionship holds quite closely, but slightly better agreement is
given for a quadratic form r = aE1/2

Kinetic + bEKinetic. A plot of
the residuals (observed-fit) for the linear and quadratic fits is

FIG. 6. A plot of the 3P2 ←
2P3/2 transition seen in photodetachment of

O� near 1015 pixels showing how well the full circularised (red curve) image
line width matches that for the 6◦ wedge in the uncircularised image (blue
curve). This is the most intense feature in the image.

FIG. 7. The residuals from linear (red) and quadratic (blue) fits of a plot of
r versus E1/2

Kinetic, where E1/2
Kinetic = hν − ETransition, for the 6 transitions in

photodetachment of O� at 812.51 nm. The fits have been constrained to pass
through (0, 0). The error bars correspond to three standard deviations from
Gaussian fits to each transition.

shown in Fig. 7. This is an example of a very small r depen-
dent deformation remaining in the image post-circularisation.
Since the functional form for the radial dependence has been
determined, the image could be further processed to remove
the non-linearity. The complete “repair function” in this case
involves circularisation followed by linearisation.

B. 1+1 photoionisation of benzene via 61
0

VMI images of photoelectrons produced by 1 + 1 reso-
nance enhanced multiphoton ionisation (REMPI) of benzene
via vibrational states associated with the S1(1B2u)← S0(1A1g)
transition have been reported by a number of authors.26–28 The
vibrational level structure in the benzene cation leads to a rich
set of closely spaced features in the photoelectron images. The
effects of deformations in the image are acute in such cases
due to the potential merging of features in extracted spectra.

A VMI image of the photoelectrons produced following
REMPI via the 61

0 transition, measured in the Flinders labo-
ratory, is shown in Fig. 8(a). While not obvious to the eye,
the image is distorted into a slanted oval shape (for example,
for the outermost ring (electron energy 2659 cm�1) the short
radius is 2 pixels smaller than the large radius) and the upper
right hand quadrant is slightly compressed. The deformation
is clear in the PC image, Fig. 8(b). The deformation is larger
than that found for the O� image: based on the trigonometric
function required to repair this image, the distortion is a factor
of ∼4.5× larger than was seen in the O� image discussed in
Section III A. The benzene image also has fewer counts, and
the larger deformation coupled with the reduced signal makes
this a more challenging example of the circularisation proce-
dure. Since the issue of resolution in circularised images has
been addressed in detail in the high resolution example above,
the focus in this example is on the straightening of the lines in
the PC image.
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FIG. 8. (a) A VMI image of the photoelectrons produced following REMPI
of benzene via the 61

0 transition measured in the Flinders laboratory. (b) A polar
coordinate (PC) image of the VMI image shown in (a). Note how the features
merge and blur into each other in this image. (c) The inverse Abel transformed
image of (b), which allows the features to be readily identified. The intensity
in the PC image was divided by r prior to applying the inverse Abel transfor-
mation (see text). (d) The corresponding image (c) for the circularised VMI
image showing that the wiggly vertical lines have been straightened by the
circularisation process.

An initial estimate for the image centre was used to con-
struct a PC image and the 7 strongest features fit to a trigono-
metric expansion (steps 1-3). It can be seen from Fig. 8(b)
that finding the peak positions at each angle is not straight-
forward in this example because with many spheres being
compressed onto the detector there is a buildup of counts as r
decreases. The advantage afforded by taking the inverse Abel

transformation of this image to identify peak positions is appar-
ent by comparing Figs. 8(b) and 8(c). As expected, the initial
centre required correction (step 4), as determined from the sinθ
and cosθ terms, necessitating a second iteration of steps 2 and
3. As was found for the previous two cases, a third iteration was
not required as the shift indicated by the sinθ and cosθ terms
was zero within the uncertainty in the intercepts. The inverse
Abel PC image for the uncorrected VMI image is shown in
Fig. 8(c). It was found that terms up to N = 3 in the trigonomet-
ric expansion were sufficient to fit the deformation. Applying
the corrections to the image (steps 5 and 6) yielded the inverse
Abel PC image shown in Fig. 8(d). Again, a linear function was
sufficient to describe the r dependence of An and Bn. Compari-
son of Figs. 8(c) and 8(d) shows that the circularisation process
has straightened the features in the PC plot in this more difficult
example.

IV. REPAIR BY CALIBRATION

The process described in Section II and illustrated with
experimental examples in Section III involves repairing dis-
torted images using the image itself. The “distortion repair
function” determined enables the intensity at a position (x, y)
on the image to be reassigned to the position (x′, y′) based on
the (r, θ) coordinates for (x, y). In principle, this correction
function need not be determined using the distorted image to
be corrected but could be pre- or post-determined from a cali-
bration experiment that provides appropriate coverage across
the image. This is discussed in the Appendix.

V. CONCLUSIONS

A method to repair distortions in VMI images has been
presented based on fitting the angular behaviour of each of
the ring structures in the image to a trigonometric expan-
sion. The resulting function allows the intensity at any value
of radius and angle to be mapped to a new position that
removes the distortion and returns the features to circular.
The method has been successfully applied to repair distorted
images in two photoelectron spectra. It has been demon-
strated that the resolution achieved using the whole of the
repaired image matches that of a small wedge in the origi-
nal image, showing that the technique allows the complete
image to be processed at the resolution inherent to the instru-
ment. While the method relies on the analysis of the structure
in an image, it could also be applied to determine the “repair
function” using a calibration image (or series of images) prior
to or post the experiment. One outcome of the analysis is that
it enables the image centre to be determined with high accu-
racy. Once the image has been circularised it can be processed
by any of the approaches that have been developed for that
purpose.

The fitting method utilises an inverse Abel transforma-
tion of the image in polar coordinates as a means to reshape
the image into a series of spectral features in order to deter-
mine the radial position of features at each angle. Although
the velocity distribution is not in general spherically sym-
metric and so this is not a mathematically correct means to
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extract the velocity distribution, the feature positions are accu-
rately reproduced in the resulting spectrum while the intensity
and anisotropy parameters can be remarkably close to those
obtained using the proper inverse Abel transformation of the
image.

The computer code developed for the circularisation pro-
cess is available for use by the VMI community. This code
includes the ability to perform the inverse Abel analysis of
images. Reference 29 provides the URL and DOI for accessing
this material and the instructions for using it.

SUPPLEMENTARY MATERIAL

See supplementary material for a description of (i) the
basis for a trigonometric fit to polar coordinate plots to extract
the centre of VMI images and (ii) a comparison of the inverse
Abel transformation of velocity map images in Cartesian and
polar coordinates.
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APPENDIX: REPAIR BY PRE-CALIBRATION

The repair process described can use a calibration species
that provides appropriate coverage across the image to deter-
mine the “distortion repair function.” Since the distortions are
typically generated by stray fields, they depend on the mass of
the species detected and so it is preferable in the case of ions
to match the mass of the species used for the calibration to that
used in the experiments as closely as possible.

In a calibration experiment, the correction would be gen-
erated from multiple images of a particular feature, or fea-
tures, of known energy. By varying the translational energy
associated with the feature(s), which is straightforwardly
achieved by using different wavelengths in the dissocia-
tion/ionising/photodetaching laser, one generates a set of
images consisting of one or more (distorted) rings of known
translational energy, E. The radius r of the ring is proportional
to E1/2 in the absence of distortion and so to obtain calibra-
tion rings separated by an approximately constant change in
radius, ∆r, the calibration images should be taken using wave-
lengths that generate constant, or near constant, steps in E1/2.
Since the detector must be calibrated to determine the spe-
cific relationship between radius and energy, acquiring the
additional calibration images for removing distortion is not a
significant experimental overhead, although it does require that
the calibration be performed using a calibrant of appropriate
mass.

In this application, the calibration images would be anal-
ysed in the manner described in Section II including, if requi-
red, a final radial linearisation as discussed in Section III A.
The correction function obtained is used to correct the images
measured in the proper experiment. In this case, the measured
event positions could also be assigned their repaired position
as they are recorded and the experimental image built up with
the deformations removed. Such a procedure requires that the
experimental apparatus is stable and reproducible during the
calibration and experimental data collection.
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