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Abstract

The Austronesian language is spread from Madagascar in the west, Island Southeast Asia

(ISEA) in the east (e.g. the Philippines and Indonesian archipelagoes) and throughout the

Pacific, as far east as Easter Island. While it seems clear that the remote ancestors of Aus-

tronesian speakers originated in Southern China, and migrated to Taiwan with the develop-

ment of rice farming by c. 5500 BP and onto the northern Philippines by c. 4000 BP (the

Austronesian Dispersal Hypothesis or ADH), we know very little about the origins and emer-

gence of Austronesian speakers in the Indonesian Archipelago. Using a combination of cra-

nial morphometric and ancient mtDNA analyses on a new dataset from Gua Hairmau, that

spans the pre-Neolithic through to Metal Period (5712—5591cal BP to 1864—1719 cal BP),

we rigorously test the validity of the ADH in ISEA. A morphometric analysis of 23 adult male

crania, using 16 of Martin’s standard measurements, was carried out with results compared

to an East and Southeast Asian dataset of 30 sample populations spanning the Late Pleisto-

cene through to Metal Period, in addition to 39 modern samples from East and Southeast

Asia, near Oceania and Australia. Further, 20 samples were analyzed for ancient mtDNA

and assigned to identified haplogroups. We demonstrate that the archaeological human

remains from Gua Harimau cave, Sumatra, Indonesia provide clear evidence for at least

two (cranio-morphometrically defined) and perhaps even three (in the context of the ancient

mtDNA results) distinct populations from two separate time periods. The results of these

analyses provide substantive support for the ADH model in explaining the origins and popu-

lation history of ISEA peoples.
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Introduction

The Austronesian language is spread from Madagascar in the west, Island Southeast Asia

(ISEA) in the east (e.g. the Philippines and Indonesian archipelagoes) and throughout the

Pacific, as far east as Easter Island. Austronesian language dispersal models have been pro-

posed by Blust and Bellwood [1–3] and Bellwood has gone on to test these using archaeological

evidence as a proxy for human movement between 5000 and 1000 years ago [1, 4–7]. The most

widely recognized model that the remote ancestors of Austronesian speakers originated in

Southern China, and migrated to Taiwan with the development of rice farming by c. 5500 BP

and onto the northern Philippines by c. 4000 BP, is now broadly accepted [6, 7].

The subsequent Austronesian language speaking dispersals, from the Neolithic through to

later Metal periods, throughout Island Southeast Asia, including Malaysia and Indonesia, and

into the Pacific, referred to as the “Out of Taiwan” model or Austronesian Dispersal Hypothe-

sis (ADH), are similarly well attested to archaeologically [8]. Notwithstanding, unlike the case

in Mainland Southeast Asia (MSEA) [9, 10], human skeletal remains have not played a sub-

stantive role in human mobility debates in ISEA. The principle reason is the hitherto poor

preservation of human remains from key localities in the region. For instance, Niah Cave, is

the largest Neolithic mortuary site in ISEA, from which more than a hundred human skeletal

remains have been reported, including the earliest dated in the region: the ‘deep skull’ [11, 12].

Unfortunately, the very poor preservation of these remains, particularly the crania, has ham-

pered morphological analysis.

Recent excavations at the Gua Harimau cave site in southeastern Sumatra, provide an

assemblage spanning the pre-Neolithic to Metal periods and an opportunity to assess the ADH

model. The aim of this paper is to test the ADH using a combination of cranial morphometrics

and ancient mtDNA analyses on the Gua Harimau remains. Comparisons will be made with

appropriate modern and archaeological samples to better understand ancient patterns of

genetic exchange and human mobility patterns in the region.

Gua Harimau in context

The cave site of Gua Harimau is located in Padang Bindu, Oku district, in southeastern Suma-

tra, Indonesia (Fig 1). The cave, which formed several tens of meters above the present alluvial

plain, opens towards the southeast. The width of the main entrance is c. 30m and the average

horizontal depth is c. 15m. Since 2012, a substantive area of the floor of the single chambered

cave has been excavated, recovering 84 individual human skeletons dating from the pre-Neo-

lithic through to the Neolithic, Bronze and Iron Ages (Fig 2) or 5712—5591cal BP to 1864—

1719 cal BP (Table 1). Some level of continuity in artefact types and floral/faunal remains from

the Neolithic through to Bronze and Iron ages suggests continuity in occupation over this

period of time.

The main feature differentiating the Metal Period burials is the presence of bronze and/or

iron artefacts. Neolithic burials can be identified by way of characteristic paddle impressed

and incised ceramics. Somewhat intriguingly, cord marked ceramics were also identified

among some Neolithic burials. The pre-Neolithic layer, dated to between 5712–4434 cal BP, is

characterized by the presence of unifacial pebble tools, similar to the almond-shaped tools

often found in Hoabinhian cultural assemblages in MSEA, as well as a significant number of

flakes. The deeper late Pleistocene layer, dated using charcoal to 13,055 +/- 120 14C years [13]

or 14,061–13,312 cal BP (95.4%) (OxCal v4.3, IntCal 13, Bronk Ramsey [14]), is characterized

by numerous flakes originating from a range of materials, including obsidian. No human

remains have been recovered from this basal layer.
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Fig 1. Location of Gua Harimau (star) in Southeast Sumatra, Indonesia.

https://doi.org/10.1371/journal.pone.0198689.g001
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Materials and methods

Cranial morphometric analysis

The excavation and analysis of Gua Harimau Cave was carried out with the permission of Dr

H. Kuryana Azis (Head of the Local Government), Mr Pak Paisol (Head of the Local Tourism

and Cultural Office) and Padang Bindu village. The male crania from Gua Harimau were ana-

lyzed to be consistent with standard recording protocols and generally male dominated com-

parative data sets available. Of the original 84 individuals, 23 were suitable for morphometric

analysis and these are divided into Early and Late Gua Harimau (see representative crania in

Fig 3). The Early Gua Harimau sample consists of two individuals buried in a flexed position,

assigned to the pre-Neolithic period (individuals No. 74 and 79). Individual No. 74 was

directly dated to between 4785–4434 cal BP. No. 79 could not be directly dated, but it was

stratigraphically located between individuals No. 74 and No. 80 which was directly dated to

5712—5591cal BP. The Late Gua Harimau sample includes 20 individuals buried in a supine,

extended position and one disturbed burial, the position of which could not be determined

(individual No. 53), assigned to the Metal period, dated to between 2424–2333 and 1864–1719

cal BP. While three Neolithic burials could be dated (see Table 1), ranging between 3136–2953

and 2711–2379 cal BP, no Neolithic crania were sufficiently preserved to enable morphometric

analysis.

The cranial data set included a subset of 16 measurements (Martin’s method numbers M1,

M8, 9, M17, M43(1), M43c, M45, M46b, M46c, M48, M51, M52, M54, M55, M57, M57a), that

represent the most commonly available measurements among the comparative samples. The

Fig 2. Views from Gua Harimau. Left: Metal Period (Bronze-Iron Age) extended burials (note, co-authors, from left to right: Nguyen Lan Cuong, Daya

Prastingus; Hirofumi Matsumura, and Sofwan Neruwdi); Right Upper: Metal Period Burial No. 23 and 24; Right Lower: pre-Neolithic Period Burial No. 79.

https://doi.org/10.1371/journal.pone.0198689.g002
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cranio-metric affinities of the comparative samples were assessed using Q-mode correlation

coefficients [15], based on the above 16 cranial measurements. The comparative archaeological

cranial series are listed in Tables 2 and 3 and included a total of 64 individuals from both

archaeological and contemporary contexts in East, and Southeast Asia and the Pacific. The

dataset includes individuals from the late Pleistocene, early to mid-Holocene, Neolithic

Table 1. Results of AMS dating for human remains from the site of Gua Harimau.

ID Lab. Code Sample 14C age

(BP)

± cal BP

(95.4% range)

Period

27 BTN12002 bone 1852 20 1864–1719 Metal

3 BTN12003 bone 1880 20 1879–1737 Metal

56 BTN12004 bone 1910 20 1896–1820 Metal

4 BTN12008 bone 1925 20 1923–1823 Metal

8 BTN12009 bone 1995 20 1992–1896 Metal

58 BTN12005 bone 2015 20 2003–1899 Metal

13 BTN12001 bone 2048 20 2110–1945 Metal

2 BTN12010 bone 2150 25 2304–2046 Metal

54 BTN13023 bone 2190 20 2309–2142 Metal

43 BTN13022 bone 2290 20 2352–2206 Metal

11 WK 37248 tooth dentin 2290 20 2352–2206 Metal

40 BTN12007 bone 2305 25 2356–2206 Metal

18 BTN13035 bone 2350 20 2424–2333 Metal

53 IAAA-143261 tooth dentin 2463 26 2711–2379 Neolithic

44 BTN12006 bone 2575 30 2760–2518 Neolithic

26 IAAA-170200 tooth dentin 2890 20 3136–2953 Neolithic

74 IAAA-143262 tooth dentin 4054 28 4785–4434 Pre-Neolithic

80 Beta 450669 bone 4910 30 5712–5591 Pre-Neolithic

BTN Laboratorium Batan Indonesia; WK Waitako, New Zealand. IAAA Institute of Accelerator Analysis Ltd. Japan; Beta Beta Analytic Inc. USA
14C ages are calibrated with OxCal v4.3, IntCal 13, Bronk Ramsey

https://doi.org/10.1371/journal.pone.0198689.t001

Fig 3. Representative pre-Neolithic (Left, individual No. 79) and Metal period (Right, individual No. 48) crania

from Gua Harimau.

https://doi.org/10.1371/journal.pone.0198689.g003
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Table 2. Prehistoric samples used in the present study.

Sample Country Period District / Remarks / References Data Sourcea / Storageb

(n = sample size)

Late Pleistocene (except Hoabinhian)

Liujiang Late Pleistocene Individual (no. PA89) [17]; M43(1),43c,46b,46c, 57,57a by

H.M. (cast).

Early Holocene Hoabinhian/Mesolithic
Qihedong China Mesolithic (c. 9,500BP) Individual (no.3), Site in Fujian Province. [18, 19] H.M. / IVPP

Zengpiyan China Mesolithic (c. 8,000BP) Guilin, Guangxi Region [20] [20]

Lang Gao Vietnam Hoabinhian Averages of two individuals (nos. 17 and 19) [21–23] H.M. / MHO

Lang Bon Vietnam Hoabinhian (c. 8,000–7,000BP) Individual (no number) [21–23] H.M. / MHO

Mai Da Nuoc Vietnam Hoabinhian (c. 8,000BP) Individual (no. 84MDNM1) [24] H.M. / IAH

Hoabinhian Vietnam Hoabinhian (c. 10,000–7,000BP) Specimens including other fragmental remains from above

3 sites and an incomplete skull of Mai Da Dieu (no.16) [24,

25]

H.M. / IAH, MHO (n = 6)

Bac Son Vietnam Epi-Hoabinhian (c. 8,000–7,000BP) Pho Binh Gia, Cua Git, Lang Cuom, and Dong Thuoc [26] H.M. / MHO (n = 8)

Con Co Ngua Vietnam Mesolithic (Da But Culture, c.

6,000BP)

Sites in Than Hoa Province [27, 28] (1980’s excavated

series including an individual from the site of Da But [27–

29])

[27]; M5,43(1),43c,46b,46c, 57, 57a

by H.M./ IAH (n = 7)

Gua Cha Malaysia Hoabinhian (c.8,000–6,000 BP) Individual (no. H12), Site in Kelantan Province [30] H.M. / CAM

Neolithic
Weidun China Neolithic (Majiabang Culture,

c.7,000–5,000 BP)

Jiangsu Province [31] [31]

Xitou China Neolithic (Majiabang Culture,

c.7,000–5,000 BP)

Site in Fujian Province [32, 33] H.M. / FPM (n = 3)

Tanshishan China Neolithic (Majiabang Culture,

c.7,000–5,000 BP)

Site in Fujian Province [34, 35] H.M. / FPM (n = 7)

Hemudu China Neolithic (c. 6,300 BP, Hemudu

Culture)

Individual (M23), Site in Zhejiang Province, Yangzi Delta

region [36]

H.M. / HEMSM

Man Bac 1 Vietnam Late Neolithic (c. 3,800–3,500 BP) Ninh Binh Province (immigrant group) [16, 37] H. M. / IAH

Man Bac 2 Vietnam Late Neolithic (c. 3,800–3,500 BP) Ninh Binh Province (indigenous group) [16, 37] H. M. / IAH

An Son Vietnam Late Neolithic (c.3,800 BP) Long An Province [38–40] H.M. / LAPM (n = 4)

Ban Chiang Thailand Neolithic-Bronze Age (c. 4,100–

2,300 BP)

Site in Udon Thani Province [41, 42] [40]; M43(1),43c,46b,46c, 57,57a by

H.M. / UH, SAC (n = 15)

Khok Phanom

Di

Thailand Late Neolithic (c. 3,800–3,500 BP) Site in Chonburi Province [43, 44] [45] H.M. / FAD (n = 19)

Tam Hang and

Tam Pong

Laos Neolithic (Tam Hang c. 3,500 BP,

Tam Pong unknown abolute date)

[42, 46, 47] (C14 date recorded in 47 was later corrected to

more modern by T. Higham)

H.M. / MHO (n = 3)

Neolithic Baikal Russia Neolithic [48] [49]

Jomon Japan Neolithic (skeletal serie used: c.

5,000–2,300 BP) [50]

from whole Japan [51, 52]

Bronze—Iron Age
Anyang China Yin (Shan) Period (c. 1,500–1,027

BC)

Henan Province [53] [54]; M43(1),43c,46b,46c, 57,57a by

H.M. / AST (n = 26)

Giong Ca Vo Vietnam Iron Age (c. 300–0 BC) Site in Can Gio District, Ho Chi Minh City [55] [25]; M43(1),43c,46b,46c, 57,57a by

H.M. / HCHM (n = 4)

Hoa Diem Vietnam Iron Age (123var yr AD-243 cal yr

AD (IAAA-101437)

Khanh Hoa Province [56] H.M. / KHPM (n = 6)

Dong Son Vietnam Dong Son Period (c. 1,000 BC-AD

300)

Sites of Dong Son Culture [57] [57]; M43(1),43c,46b,46c, 57,57a by

H.M. / IAH, CSPH (n = 21)

Rach Rung Vietnam 2800 BP Site in Moc Hoa District, Long An Province [58] H.M. / LAPM (n = 2)

Jiangnan China Eastern Zhou—Former Han

Periods (770 BC-AD 8)

Sites in Jiangnan Province along the Lower Basin of

Yangtze River [31]

[31]

(Continued)

Cranio-morphometric and aDNA corroboration of the Austronesian dispersal model in Island Southeast Asia

PLOS ONE | https://doi.org/10.1371/journal.pone.0198689 June 22, 2018 6 / 25

https://doi.org/10.1371/journal.pone.0198689


(defined as early farming populations [16]), and Bronze and Iron Ages through to the proto-

Historic and Historic periods. Space precludes a review of each sample in the dataset, however,

the references in Tables 2 and 3 provide details on the majority of samples used in this

analysis.

To aid the interpretation of any phenotypic affinities between the samples, Neighbor Net

Split tree diagrams were generated using the software package Splits Tree Version 4.0, applied

to the distance (1-r) matrix of Q-mode correlation coefficients (r) [68].

Mitochondrial DNA analysis

Tooth enamel forms a natural barrier to exogenous DNA contamination, and DNA recovered

from teeth appears to lack most inhibitors of the enzymatic amplification of ancient DNA

(aDNA) [69]. In addition, because recent research reveals that the temporal bone is an ideal

region from which to analyze aDNA, samples were taken from both teeth and the temporal

bone in this analysis [70]. In total, 20 samples (two pre-Neolithic, three Neolithic and 15 Metal

Period) from well preserved teeth and temporal bones were selected for DNA analysis. A list of

all samples used in this analysis are presented in Table 4 (see Results) along with their deter-

mined haplogroups.

Authentication methods for DNA extraction. Mitochondrial DNA (mtDNA) analyses

were performed at the National Museum of Nature and Science, Tokyo, Japan, and at Yamana-

shi University, which have laboratories dedicated to aDNA analysis. Standard protocols were

employed to avoid contamination, including the separation of pre- and post-PCR experimen-

tal areas, UV irradiation of equipment and benches, negative extraction, and PCR controls

[71].

To prevent contamination from post-excavation handling, all samples were rinsed with

DNA-decontamination agents (DNAaway; Molecular Bio Products, San Diego, CA, USA) or

13% bleach solution (Nacalai Tesque Inc., Kyoto, Japan), and then washed thoroughly with

distilled water before drying. Next, tooth samples were encased in Exafine silicone rubber

(GC, Tokyo, Japan). The tip of the root of each tooth was removed via a horizontal cut using a

cutting disk, and the dentin within the dental pulp cavity was powdered and removed through

the root tip using a dental drill [72]. Powdered samples were then decalcified using 0.5 M

EDTA (pH 8.0) at room temperature overnight, samples were then decalcified for a further 48

hours in a fresh EDTA solution. Decalcified samples were lysed in 500 μl of Fast Lyse (Genetic

Table 2. (Continued)

Sample Country Period District / Remarks / References Data Sourcea / Storageb

(n = sample size)

Jundushan China Spring and Autumn Period (c. 500

BC)

Site in Yanqing Prefecture near Beijing [59] H.M. / PKU (n = 27)

Yayoi Japan Yayoi Period (c. 800 BC—AD 300) Various sites in Northern Kyushu and Yamaguchi

Districts [60]

[60]

Data sourcea: H.M. = the present first author Hirofumi Matsumura.

Storageb: AST = Academia Sinica of the Republic of China, Taipei; BMNH = Department of Paleontology, Natural History Museum, London; CAM = Division of

Biological Anthropology, University of Cambridge; CSPH = Center for Southeast Asian Prehistory, Hanoi; FAD = the Fine Arts Department, Pimai; FPM = Fujian

Provincial Museum, Fujian; HCHM = Ho Chi Minh Historical Museum, Ho Chi Minh; HEMSM = Hemudu Site Museum, Hemudu; IAH = Department of

Anthropology, the Institute of Archaeology, Hanoi; IVPP = Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing;

KHPM = Khanh Hoa Provincial Museum, Vietnam, Nha Trang; LAPM = Long An Provincial Museum, Tan An; MHO = Laboratoire d’Anthropologie Biologique,

Musée de l’Homme, Paris; PKU = School of Archaeology and Museology, Peking University, Beijing; SAC = Princess Maha Chakri Sirindhorn Anthropology Centre,

Bangkok; UH = Department of Anthropology, University of Hawaii, UNLV: Department of Anthropology, University of Nevada, Las Vegas

https://doi.org/10.1371/journal.pone.0198689.t002
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ID, Fairfield, IA, USA) with 30 μl of 20 mg/ml Proteinase K at 60˚C for four hours. DNA was

extracted from lysate using a FAST ID DNA Extraction Kit (Genetic ID) in accordance with

the protocol described by Adachi et al. [73].

Data analysis and genotyping of mtDNA. mtDNA SNPs were detected using the ampli-

fied product length polymorphism (APLP) method [74, 75]. This method has been applied in

Table 3. Data sources of comparative modern population samples.

Population Cranial metrics Facial chord &

subtensea
Remark

(M = Martin’s number)

Storageb

Aeta Negrito Philippines H.M. (n = 11) H.M. (n = 11) - MHO

Andaman Islands [61] H.M. (n = 5) M9,51,55 by H.M (n = 22) BMNH,

CAM

Australian Aborigines [47] H.M. (n = 21) - BMNH

Bunun Taiwan [62] H.M. (n = 16) M45,48,51,55 by H.M. (n = 23) NTW

Cambodia H.M. (n = 12) H.M. (n = 12) - MHO

Celebes Island Indonesia [63] [48] M17,45,48,51 by H.M. (n = 6) BMNH

Hainan Island China [61] H.M. (n = 24) M48,51,55 by H.M. (n = 24) NTW

South China H.M. (n = 7) H.M. (n = 7) Hong Kong CAM

Japan [47] [48] -

Java Island Indonesia [63] [48] M17,45,48,51 by H.M. (n = 20) BMNH,

CAM

Laos [53] H.M. (n = 10) - MHO

Loyalty Islands H.M. (n = 17) H.M. (n = 18) - MHO

Melanesia [47] [48] Fiji, Tongans; New Hebrides;

New Guinea

-

Myanmar [63] [48] M17,45,48,51 by H.M. (n = 21) BMNH

New Britain Island H.M. (n = 20) H.M. (n = 19) - CAM

New Guinea Tolai [47] H.M. (n = 26) M9,48,51 by H.M. (n = 20) USYD,

CAM

Nicobar Islands H.M. (n = 13) H.M. (n = 9) - CAM

North China 1 [47] [48] Kiling Prov.

North China 2 [47] [48] Manchuria Prov.

Philippines [64] H.M. (n = 8) - NMP

Seman Negrito Malaysia H.M. (n = 1) H.M. (n = 1) - BMNH

South Moluccas Islands Indonesia [63] [48] M17,45,48,51 by H.M. (n = 4) -

Sumatra Island Indonesia [63] [48] M17,45,48,51 by H.M. (n = 8) BMNH,

CAM

Thai [65] [48] -

Veddah Sri Lanka H.M. (n = 2) H.M. (n = 2) - CAM

Vietnam H.M. (n = 27) H.M. (n = 27) - MHO

Okhotsk Japan [66] [66] AD c.400-1,000

Hokkaido Ainu Japan [67] [45]

Mongol [67] [45]

Aleut, Asian Inuit, Buryat, Chukchi, Ekven, Nanay, Negidal, Nivkh, Oroch,

Troitskoe, Ulch, Yakut, Yukagir

[67] [45] Russia

Facial chord and subtensea: (M43(1) = frontal chord (FC); M43c = frontal subtense (FS); M57 = simotic chord (SC); M57a = simotic subtense (SS);

M46b = zygomaxillary chord (ZC); M46c = zygomaxillary subtense (ZS); M = Martin’s cranial measurment number),

Storageb: institutions of materials studied by H.M. (H. Matsumura) BMNH = Department of Paleontology, Natural History Museum, London; MHO = Laboratoire

d’Anthropologie Biologique, Musée de l’Homme, Paris; NTW = Department of Anatomy, National Taiwan University, NMP = Department of Archaeology, National

Museum of the Philippines, Manila; USYD = Department of Anatomy, University of Sydney.

https://doi.org/10.1371/journal.pone.0198689.t003
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aDNA analyses previously and has yielded successful results [71, 76]. In this study, 81 hap-

logroup-diagnostic SNPs and three deletion/insertion polymorphisms, and a 9 base-pair repeat

variation in the non-coding cytochrome oxidase II/tRNALys intergenic region were analyzed

using the multiplex APLP method and the primer sets described by Kakuda et al. [77]. Poly-

morphic sites included in this analysis are known to cover most haplogroup-defining muta-

tions found in East and Southeast Asian mtDNAs. The constitution of the PCR reaction

mixture, thermal conditions, and method for separating and detecting PCR products were

undertaken following Kakuda et al. [73].

Table 4. Sample used for DNA extraction and the result of the DNA analysis from the Gua Harimau site.

Lab No Individual No. Sample Dating Comments Period Haplogroup by APLP

1 No.1 Right temporal bone Metal Period layer Metal E

2 No.2 Maxilla, Right, M2 2304–2046 cal BP Metal N.D.

3 No.3 Mandible, Right, M1 1879–1737 cal BP Metal N.D.

4 No.4 Maxilla, Right, M1 1923–1823 cal BP

double burial with No. 3

Metal N.D.

5 Right temporal bone N.D.

6 No.8 Mandible, Right, M2 1992–1896 cal BP Metal N.D.

7 Maxilla, Right, M3 N.D.

8 No.9 Mandible, Right, M2 Earlier layer than No. 13 (2110–1945 cal BP) Metal N.D.

9 Left temporal bone B4a

10 No.10 Maxilla, Right, M1 Triple burrial with No.11 & 12 Metal N.D.

11 No.11 Maxilla, Right, M3 2352–2206 cal BP

Triple burial with No. 10 &12

Metal N.D.

12 Left temporal bone N.D.

13 No.12 Mandible. Left, M3 Triple burrial with No.10 & 11 Metal N.D.

14 Left temporal bone N9a

15 No.14 Mandible, Left, C Same layer as No. 3 & 4 (1879–1737, 1923–1823 cal BP) Metal M7

15 No.19 Maxilla, Right, M3 Same layer as No. 2 (2304–2046 BP) Metal N.D.

17 No.21 Mandible, Left, M2 Metal Period layer Metal N.D.

18 No.23 Mandible, Right, M2 Triple burial with No. 24 & 25, same layer as burial No.11 (2352–2206 cal BP) Metal N.D.

19 Left temporal bone Y2

20 No.24 Mandible, Right, M2 Triple burial with No. 23 & 25 Metal N.D.

21 Right temporal bone Y2

22 No.25 Right temporal bone Triple burial with No. 23 & 24 Metal N

23 No.26 Left temporal bone 3136–2953 cal BP Neolithic R

24 No.27 Mandible. Right, M3 1864–1719 cal BP Metal N.D.

25 Right temporal bone M

26 No.36 Maxilla, Right, M3 Same layer as No.53 (2711–2379 cal BP) Neolithic N.D.

27 Left temporal bone N.D.

28 No.38 Right temporal bone Same layer as No.53 (2711–2379 cal BP) Neolithic R

29 No.39 Maxilla, Right, M3 N.D.

30 No.42 Right temporal bone Same layer as No.43 (2352–2206 cal BP) Metal E

31 No.49 Right temporal bone Same layer as No.58 (2003–1899 cal BP) Metal N.D.

32 No.57 Right temporal bone Same layer as No.56 (1896–1820 cal BP) Metal R

33 No.60 Mandible, Right, M2 Earlier layer than No. 56 (1896–1820 cal BP) Metal B4c

34 No.74 Maxilla, Left, M3 4572–4514 cal BP Pre Neolithic N.D.

35 No.79 Maxilla, Right, M2 Layer between No. 74 & 80 (4434–5712 cal BP) Pre-Neolithic N.D.

36 Right temporal bone N.D.

N.D. denotes Not Determined

https://doi.org/10.1371/journal.pone.0198689.t004
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In addition to APLP analysis, next-generation sequencing (NGS) technology and the

mtDNA capture method were applied to individuals, whose haplogroups were tentatively

determined or ambiguously identified by APLP analysis, to determine the mtDNA haplogroup

or haplotype more precisely. Libraries were prepared using 8 μl of DNA extracts and using the

established protocols following Shinoda or Meyer and Kircher [78, 79]. For some of the badly

degraded ancient DNA, Multiplex PCR kit (QIAGEN) was used instead of AccuPrime Pfx kit

(Life Technologies) in the first round of PCR amplification. The TreSeq DNA LT Set A or HT

(Illumina) barcode for was used for indexing. Bait preparation and mtDNA enrichment for

libraries were conducted following the protocol of Maricic et al. [80] and sequenced on an Illu-

mina MiSeq platform (MiSeq Reagent Kit 150 or 300 Cycles) with 75 or 150 cycles paired-end

run.

Raw sequence reads were processed following a modified protocol of Shinoda et al. [79].

After adapter trimming and merging of paired reads with AdapterRemoval v2 (—trimns—

trimqualities—minquality 25—minlength 35—collapse), the merged reads were mapped to a

human reference genome (hg19) using the Burrows-Wheeler Aligner (BWA) (version 0.7.8)

aln option (-l 1000) [81, 82]. Cross-contaminants among samples sequenced on the same

sequence run were removed using the process outlined by Kanzawa-Kiriyama et al. [83]. The

reads mapped to NUMT or mitochondrial genome were retrieved and remapped to the

human mitochondrial genome (revised Cambridge Reference Sequence: rCRS) with the same

criteria applied when mapping to hg19. PCR duplicates were removed using Picard MarkDu-

plicates (version 1.119) (http://broadinstitute.github.io/picard/), and only reads with mapping

quality�20 were retained [84]. A mpileup file (-Q 30) was compiled using SAMtools (version

1.0), calculating coverage of width and average depth. The resulting bam file was also applied

to Genome Analysis Toolkit (GATK) HaplotypeCaller [85] (-stand_emit_conf 10) to call SNPs

and indels [81]. The sites with low depth (<3) and high mismatch to consensus sequences

(>30 percent) were masked, allowing the manual determination of the mtDNA haplogroup

based on PhyloTree-Build 17 [86]. Some SNPs that were characteristic of the haplogroup but

masked because of low depth were manually re-identified. We also determined the mtDNA

haplogroup by using HaploGrep2 as double check of the haplotyping [87].

We investigated the degree of terminal C to T misincorporation using PMDtools and read

length distribution, both of which are characteristic of ancient DNA [88]. In order to estimate

contamination frequency, we used Schmutzi software (contDeam.pl—lengthDeam 40—library

double) [89].

Results

Cranial morphometric analysis

Basic statistics for the early and late Gua Harimau male series are presented in the S1 Appen-

dix. Fig 4 presents the results of the Net Split analysis, applied to the distances of the Q-mode

correlation coefficients based on 16 cranial measurements. Essentially, this unrooted network

tree exhibited a straightforward dichotomization of the comparative group into two major

clusters: (1) Northeast and East Asians, and several sets of Southeast Asians, ranging from the

Neolithic to contemporary periods, occupy the upper left of the tree. The contemporary South-

east Asians are scattered adjacent to this cluster. (2) The Australo–Papuans, Veda of Sri Lanka,

Nicobarese, Andaman Islanders, and early Holocene Southeast Asians, including Hoabinhian

samples (who are morphologically quite distinct from Northeast and East Asians) form

another major separate tree cluster on the lower right of the tree. It is quite interesting that

Early Gua Harimau, a subset of the pre-Neolithic samples, is closely connected with the late

Pleistocene and early Holocene populations, including Hoabinhian, early Bac Son, and Con

Cranio-morphometric and aDNA corroboration of the Austronesian dispersal model in Island Southeast Asia
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Co Ngua. These samples form a mega cluster together with the Australo-Papuan and Gua Cha

Malay series (Hoabinhian).

In the context of the ADH, it is notable that the Late Gua Harimau series (a Metal Period

subset) exhibits close affinities with the Taiwan Formosa (Bunun), Sumatra, Moluccas, Philip-

pines, and Celebes Island series. These current Austronesian speakers also closely cluster with

Fig 4. A neighbour net splits tree generated from a Q-mode correlation coefficients matrix, based on the craniometric data, comparing the archaeological

and modern sample populations. The Late (pre-Neolithic) and Early Gua Harimau samples are boxed for ease of identification.

https://doi.org/10.1371/journal.pone.0198689.g004
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Northeast Asians. Moreover, the Xitou series rom Fujian Province, one of the representative

groups of the Neolithic Southern Chinese, are tightly clustered with current Austronesian

speakers, as well as the Late Gua Harimau series.

The Philippine Negritos, despite possessing phenotypically different features to surround-

ing populations, do not show any remarkable dissimilarity to the non-Negrito Philippine sam-

ples in terms of their craniometric morphology/affinities. The Iron Age Hoa Diem sample

from central Vietnam shows a close affinity to the contemporary Late Gua Harimau series,

while other Vietnamese samples, including Neolithic Man Bac, An Son, Metal Age Dong Son

and Giong Ca Vo more closely resemble MSEA rather than ISEA Austronesian groups.

Mitochondrial DNA analysis

Table 4 presents the results of APLP analysis employed in the identification of mtDNA hap-

logroups. Of the 36 individuals considered in this analysis, we could successfully assign 13

mtDNAs of the individuals to the smallest named haplogroups and macro-haplogroups that

can be identified by the APLP system employed in the present study.

In order to determine mtDNA haplogroups more precisely, from the highly fragmented

DNA, we used NGS and the mtDNA capture method to investigate these tentative assigned

sequences and one N.D. (not determined) sample (individual No. 79), which was the oldest of

all the samples. Results of the NGS analysis are presented in Table 5. There were sufficient

mtDNA reads to determine the mtDNA haplogroup or haplotype for 11 individuals. The

lengths of the mtDNA fragments were very short, which is characteristic of aDNA (S2 Fig).

Terminal C to T and G to A misincorporations were observed in all 11 individuals (S1 Fig).

Contamination was less than two percent, so we expect that many fragments were endogenous

human mtDNA. Thus, it is clear that the extracted solutions contained authentic human

DNA.

Complete or nearly complete mitochondrial genome sequences were determined from

these 11 individuals at 7.1~109.1-fold coverage. Each haplogroup and additional SNPs and

indels from the hg node are also presented in Table 5. Although individual No. 14 was classi-

fied into M7b1a, the DNA fragments were relatively long and had little misincorporation (S1,

S2 and S3 Figs). In addition, length of the DNA fragments having M7b1a specific mutations

are relatively longer than other reads, especially C/T or G/A damaged reads at 3 bases sequence

termini, which are considered authentic DNA [90]. Therefore, we considered it to be modern

human DNA contamination. For No.12, while APLP analysis assigned its mtDNA to hap-

logroup N9a, NGS data was insufficient for evaluating the authenticity of this mtDNA. While

APLP analysis can quickly and efficiently determine a haplogroup with low cost, the NGS anal-

ysis can verify the authenticity of a haplogroup or haplotype.

Discussion

Pre-Austronesian indigenous populations

Before assessing the ADH, it is necessary to review the evidence for the earliest human popula-

tions in the region. The date for anatomically modern human colonization of MSEA and ISEA

is attested by way of assemblages excavated in Tam Pa Ling in Laos, Niah in Malaysia, and

Tabon in the Philippines, ranging from 47,000 to 30,000 years BP [91–94]. Of these, the Niah

and the Tabon series were excavated from sites now occupied by Austronesian speakers, and

in the context of the ADH can be seen as representative of pre-dispersal indigenous popula-

tions. However, the poor preservation of such remains limit any attempts to assess their rela-

tionship to each other or later series in the region.

Cranio-morphometric and aDNA corroboration of the Austronesian dispersal model in Island Southeast Asia
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It is not until the late Pleistocene to early/mid-Holocene (often referred to the Hoabinhian

in MSEA), c. 23,000–8000 BP [95–98], that we have a robust sample of ostensibly pre-ADH

crania. Key specimens derive from cave sites in Vietnam and Malaysia (for instance, Lang

Gao, Lang Bon, Pho Binh Gia, Lang Cuom, Cua Gi, Mai Da Nuoc and Mai Da Dieu in Viet-

nam and Gua Cha on the central Malay Peninsula [10, 21–24, 26, 30, 96]). As shown in Fig 4,

all the available Hoabinhian specimens are consistently defined as having close Australo-Pap-

uan affinities in terms of their cranio-metrically expressed morphology. While the focus of this

analysis is on male crania (see Methods), female material (e.g., Hang Cho, Gua Gunung Run-

tuh, and Moh Khiew) have also demonstrated remarkable cranial and dental similarities to

Australian and/or Melanesian samples, suggesting a close biological affinity [99–101]. The net-

work tree diagram (Fig 4) further indicates that some Pleistocene and early Holocene samples

from China (Liujiang and Zenpiyang from Guangxi) share morphological similarities with

MSEA Hoabinhian samples. Furthermore, the cranial traits characterizing these early indige-

nous inhabitants in the region (for instance, in northern Vietnam), were retained through the

subsequent pre-Neolithic Da But Culture (c. 6700–4500 BP), clearly suggesting that such pre-

agricultural foraging communities were likely direct lineal descendants of Hoabinhian

foragers.

The earliest reliably dated anatomically modern humans in the region have been found in

Southeast Asia, suggesting the initial colonization of the region via India, rather than north

and inland through Siberia (see discussion in Buckley and Oxenham [102]). Moreover, these

first colonists shared a common ancestry with the earliest settlers of continental Sahul (Austra-

lian and New Guinea). Indeed, there is a long history of scholarship [9, 10] suggesting mor-

phological similarities, with implied genetic affinities, between Australian Aboriginals,

Papuans, Melanesians and (poorly preserved) pre-Neolithic populations in Southeast Asia

(e.g., Tabon in Philippines and Niah, Gua Cha, Guar Kepha, and Gua Kerbau in Malaysia).

The current analysis of a more extensive cranial dataset finds further support for close affinities

between early Southeast Asians, including Hoabinhian samples and Australian and Papuan-

Melanesian groups, as well as the Andaman and Nicobar Indians. These observed close biolog-

ical ties linking Sahul, early mainland Southeast Asia, and Eastern India, strongly suggest that

the first anatomically modern human colonizers of this region migrated to the southern rim of

Eurasia and then dispersed into late Pleistocene Sundaland (Southeastern Asia), including

what is now ISEA. Pre-Austronesian indigenous populations may, in turn, share a common

ancestry with early Hoabinhian populations in MSEA and present-day Australian Aboriginal,

Papuan, and Melanesian peoples. In fact, as depicted in Fig 4, the pre-Neolithic samples from

Gua Harimau (Early Gua Harimau) show a close affinity with these early settlers of MSEA and

Sahul, or the first anatomically modern humans in the region.

Austronesian dispersal

The cranio-metric analysis (see Fig 4) demonstrates a close association between the Late Gua

Harimau (Metal period) and contemporary Taiwan (Bunun), Sumatra, Moluccas, Philippines,

and Celebes Island samples. The morphological affinities between these series suggests a signif-

icant level of genetic interaction among neighboring inhabitants of ISEA in the past. The clus-

tering of the Hoa Diem sample with the aforementioned series is worth discussing in more

detail.

The large mortuary site at Hoa Diem, located in Khanh Hoa Province in central Vietnam,

is interesting in terms of its assumed ancestry to the Chamic people of the same region. The

excavation of this site has produced a large number of jar burials and associated mortuary

ceramics that are strikingly similar to those from Kalanay Cave in the Philippines [52].

Cranio-morphometric and aDNA corroboration of the Austronesian dispersal model in Island Southeast Asia
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Similarities in material culture between the Philippines and central coastal Vietnam, as well as

cranial morphometric clustering of Indonesian (Late Gua Harimau) and coastal Vietnam

(Hoa Diem) populations collectively suggest substantive connections and interactions among

Island populations bordering the South China Sea during the Iron Age.

Regionally, the prehistoric dispersal of Austroasiatic speakers across MSEA and Austrone-

sian speakers throughout ISEA and the Pacific has been explicitly associated with the spread of

farming during the Neolithic and subsequent early Bronze and Iron ages [1, 3, 5, 103–117].

Linguistic data indicate that Southern China and Taiwan were the origin of many of the exist-

ing language families of Southeast Asia, while archaeological evidence places the origins of

Neolithic farming societies in the Yangzi and Yellow River Basins during the early Holocene,

prior to their subsequent expansion into Southern China, Southeast and eastern Asia [5, 118–

122].

These major Neolithic demographic transitions (NDT) in the region are often referred to in

terms of the two-layer-model, whereby the first layer refers to late Pleistocene occupation of

East and Southeast Asia, with the second layer being characterized by the NDT and the arrival

of the ancestors of contemporary Austroasiatic (MSEA) and Austronesian (ISEA and the

Pacific) speakers. Modern day Australians, Papuans and Melanesians represent the direct

descendants of the first layer populations, while the descendants of the second layer include

the somewhat heterogenous populations characterizing the Neolithic through to modern

times.

The results from the cranial morphometric analysis in this study clearly supports the two-

layer-model for both MSEA and ISEA by demonstrating close morphological associations

between widely dispersed pre-NDT samples (or first layer populations) in the broader region.

For instance, the early Holocene Qihedong series from Fujian Province, China, and Early Gua

Harimau sample from Sumatra, Indonesia, cluster together within the Australo-Papuan group

(see Fig 4). On the other hand, evidence for the spread of second layer (or NDT populations)

can be identified by way of the close affinities between the Late Gua Harimau series, a number

of Austronesian speaking assemblages from ISEA, and the Neolithic Southern Chinese sample

from Xitou.

Turning to the genetic evidence, in disagreement with the Austronesian Dispersal Hypothe-

sis (ADH), or Out-of-Taiwan model, is Cox and colleagues work [123, 124] which argued for a

significant genetic cline across ISEA and the Pacific, ostensibly traced back to incoming popu-

lations from MSEA. Cox et al. [124] concluded that the phenotypic gradient likely reflects a

mixing of two major ancestral source populations; one descended from the initial occupants of

the region who were related to modern Melanesians, and the other related to Asian immi-

grants since the Neolithic period. Other research has also rejected the idea of large-scale demo-

graphic movement during the Neolithic, advocating for local evolutionary processes in the

context of evidence for a common genetic heritage derived from the late Pleistocene coloniza-

tion of Sundaland [125, 126]. As for the Austronesian expansion into mainland Southeast

Asia, mtDNA analysis of Austronesian-speaking Cham individuals in central Vietnam sug-

gests that cultural, rather than genetic, links were more a factor in this case [127]. Other DNA

studies have argued that Southeast Asia was a major geographic source of East Asian popula-

tions, within which the roots of all present-day East Eurasians are historically united via a sin-

gle primary wave of migration into the region [128, 129].

In this study we were able to determine mtDNA haplogroups for 11/36 samples. Three indi-

viduals (Nos. 9, 38 and 60) were identified as a subgroup of haplogroup B, a common hap-

logroup in ISEA that is comprised of two main clades: B4 and B5. Most of these B lineages in

ISEA fall within haplogroup B4, while B5 is relatively rare. The bulk of B4 in ISEA is B4a with

its major branch, B4a1, including the so-called ‘Polynesian motif’. Although Hill et al.’s [125]

Cranio-morphometric and aDNA corroboration of the Austronesian dispersal model in Island Southeast Asia
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mtDNA analysis indicated that the dispersal of haplogroup B4a1 was triggered by postglacial

flooding in the late Pleistocene or early Holocene, B4a1a has a similar distribution to that of

Austronesian speakers. Gua Harimau individual No. 9 was assigned to haplogroup B4a1a, sug-

gesting their ancestry may be Austronesian.

Arguably, lineages of haplogroup B are largely the result of a second wave of dispersal of

proto-Austronesian speakers. The ancestral forms of haplogroups B4b, B4c, and B5b are found

in South Chinese populations, a mainland origin, and subsequent dispersal into ISEA. The B4c

haplogroup has been found in samples of ancient Negrito hair, potentially indicating a diffu-

sion of this haplogroup from the mainland [130].

Two Gua Harimau individuals (No. 38 and 60) were classified into sub-haplogroups of B4

using whole-mtDNA sequence analysis: B4c1b2a2. Haplogroup B4c was found to have an age

between 32,000 BP and 25,000 BP, with sub-haplogroup B4c1 originating between 27,000 BP

and 24,000 BP, B4c1b2 to between 16,000 BP and 14,000 BP, with the origin of B4c1b2a2 dat-

ing to the Neolithic [131]. According to the DNA Database in Japan, haplogroup B4c1b2a is

found in South China (Liaoning and Zhejiang provinces), as well as among aboriginal Taiwan-

ese, the Philippines, and Indonesia. Given this demographic distribution, sub-haplogroup

B4c1b2a appears to be the group associated with the Austronesian expansion during the Neo-

lithic and/or post-Neolithic periods.

Haplogroup E is common in ISEA [125], and is frequently carried by aboriginal Taiwanese,

however, it is otherwise almost absent in China and the Pacific. It has been proposed as a

potential hypothetical genetic marker of Austronesian-speaking people [126]. Notwithstand-

ing, others have attributed the origin of this haplogroup to an early Holocene population

expansion originating within ISEA, which is inconsistent with the Neolithic agriculturally-

driven population dispersal hypothesized in the ADH model [125, 126]. In fact, there are two

major subclades, E1 and E2. Of these, E1 comprises two additional subclades, E1a and E1b, the

former almost entirely restricted to Taiwan and ISEA, while the latter is found predominantly

in the ISEA but absent in Taiwan.

Previously, haplogroup E itself dates to over 25,000 BP and lineages within haplogroup E

have dates ranging from 6,000 BP to 16,000 BP, while a recent study based on ancient DNA

calibration and Bayesian dating suggests that haplogroup E probably arose 8,136–10,933 ya

(95% highest posterior density, HPD) and the majority of E lineages show a coalescence at 5–8

kya with a higher mean probability at about 6 kya [132]. According to this new time frame, Ko

et al. (2014) reconstructed a history of early Austronesians arriving in Taiwan in the north

~6,000 ya, spreading rapidly to the south, and leaving Taiwan ~4,000 ya to spread throughout

ISEA, Madagascar, and Oceania. Based on the demographic distribution and new time depth,

E1a1a is a candidate for the presumed out-of-Taiwan dispersal. Spatial frequency distribution

and diversity suggest that this haplogroup arose within ISEA, while some of its subclades sub-

sequently spread to Taiwan [126]. This haplogroup probably evolved within the descendants

of the Austronesian-speaking groups originating from Taiwan.

Relatively poor mtDNA preservation of Gua Harimau individual No. 4 (Metal period, c.

2,196–1,786 BP) makes identification of its sub-haplogroup difficult. Notwithstanding, indi-

vidual No. 4’s sequences were tentatively classified as E1a1a based on diagnostic coding site

changes. The greater diversity of haplogroup E in ISEA compared to Taiwan is consistent with

the expansion of populations from the south [125, 126]. However, E1a1a has a lower diversity

in Philippine and Sulawesi populations than it does among Taiwanese aboriginals, despite

making up a larger proportion of these populations [126]. While haplogroup E may be a

marker of postglacial expansion, clades within this haplogroup, such as E1a1a, possibly reflect

the impact of later population events [133]. The most plausible explanation for this observation
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is that the diffusion of the haplogroup E1a1a in the Gua Harimau population occurred after

the Neolithic expansion.

Haplogroup Y2a1 was observed in Gua Harimau individuals No. 23 and 24. This hap-

logroup is also common in ISEA and shared by Philippine, Taiwanese aboriginal, and other

ISEA populations [133]. Y2 has a slightly higher frequency in the Philippines compared with

surrounding groups. The existence of this haplogroup suggests a genetic link between ISEA

and Gua Harimau populations.

The two somewhat common and widespread Southeast Asian mtDNA haplogroups are B

and R9, the latter encompassing haplogroup F, with F1a being widespread in Southeast Asia.

The “Early Train” hypothesis [134] claimed large scale late Pleistocene/early Holocene dispers-

als from MSEA into Sunda, and helps explain the distribution of F1a. Gua Harimau individual

No. 25 belongs to haplogroup F1a1a1, which has been observed in high frequencies in MSEA,

suggesting a link between Gua Harimau and the mainland. F1a1a1 of individual No. 25 was

probably introduced by the early train, although it is still consistent with the possibility that

the haplogroup entered into the Gua Harimau population by way of the Neolithic Austrone-

sian expansion, since it is unknown whether No. 25 pre-dates the expansion. Unclassified hap-

logroups R� (Gua Harimau individual No. 26) and M� (Gua Harimau individual No. 27)

appear unrelated to any other global lineages, are the new basal R and M haplogroups, and rep-

resent indigenous haplogroups in ISEA. Table 5 presents the complete genome substitutions

of these cases. Individual No. 26 has the diagnostic polymorphisms of macrohaplogroup N

(rCRS positions at 8701, 9540, 10398, 10873, and 15301), macrohaplogroup R (rCRS positions

at 12705 and 16223), and 18 specific nucleotide substitutions. Individual No. 27 has the diag-

nostic polymorphisms of macrohaplogroup M (rCRS positions at 489, 10400, 14783 and

15043) and 15 specific nucleotides substitutions.

There are several rare ancient haplogroups within macrohaplogroup N and its sub-hap-

logroups R and M in ISEA. The C14 AMS dating of Gua Harimau individual No. 26 (group R)

places it at c. 3000 BP, or prior to major settlement by Metal period migrants, while individual

No. 27 (group M) dates to the metal period at c. 2000 BP. It seems likely that these haplogroups

are relics of the original Pleistocene inhabitants of ISEA. This view is based on evidence from

the persistence of mtDNA ostensibly characterizing the earliest settlers of the region. Indeed, as

discussed above in the context of cranial morphometric analysis, the pre-Neolithic indigenous

Gua Harimau population can potentially trace their maternal ancestry back to the first anatom-

ically modern settlers of ISEA. It is noteworthy that the Gua Harimau gene pool consists of

Austronesian (B4a1, B4c, E1a and Y2), mainland (F1a), and putative indigenous (R� and M�)

forms. The mtDNA analysis is limited in estimating the composition of the three lineages mak-

ing up the Gua Harimau population as well as the manner in which they genetically changed

over time at the site. Nuclear genome analyses are required in order to gain further detail.

Conclusions

The archaeological human remains from Gua Harimau cave, Sumatra, Indonesia provide evi-

dence for at least two (cranially defined) and perhaps three (in the context of the ancient

mtDNA results) distinct populations from two separate time periods, thus supporting the

ADH or two-layer-model. The cranial data indicate that the pre-Neolithic occupants of (Early)

Gua Harimau, who cluster with the Australo-Papuan series, were subsequently replaced by a

population with close cranial affinities to present-day Austronesian speakers, including Tai-

wanese aboriginals, who possess Northeast Asian features to a certain extent. Further, it is

apparent that the Neolithic Southern Chinese, represented by Xitou in Fujian Province, share

close cranial affinities with both Austronesian speaking samples and the (Late) Gua Harimau
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series, supporting the view that their remote homeland was somewhere in Southern China.

The results from the mtDNA is not consistent with the view (based on DNA studies of modern

populations, [123, 125]) of a single origin, stretching back into the Pleistocene, for the Gua

Harimau population. While the two-later-model is well supported for MSEA [9, 10, 16], this

study now provides substantive support for the value of the two-layer-model in also explaining

the population history of ISEA.

Supporting information

S1 Appendix. Cranial and mandibular measurements (mm) for the Gua Harimau series.

(DOCX)

S1 Fig. Pattern of postmortem misincorporation. C to T indicates C in reference genome

and T in Gua Harimau samples, and G to A indicates G in reference genome and A in Gua

Harimau samples. For No. 26, reduction of the misincorporation in 5’ end compared to 3’ end

is explained by the inability of AccuPrime Pfx to bypass uracils, which is frequent in sequence

termini.

(JPG)

S2 Fig. Fragment size distribution of sequence reads mapped to rCRS. Only sequences hav-

ing mapping quality equal or larger than 20 were used. PCR duplicates were removed.

(JPG)

S3 Fig. Fragment size distribution of GH14. GH14 includes all mapped reads, and GH14

damaged includes the reads having C/T or G/A changes at 3 bases of sequence termini. White

circle indicates the reads having mutations relating to haplogroup M7b1a. Those reads are rel-

atively longer than other reads, and we considered that these are contaminants.

(JPG)

Acknowledgments

We are grateful to Prof. Zhang Chi, School of Archaeology and Museology, Peking University;

Dr. Wei Xing-tao, Henan Provincial Institute of Archaeology; Director Huang Wei-jin,

Hemudu Museum in Zhejiang; Professor Sun Guo-ping, Zhejiang Provincial Institute of

Archaeology; Dr. Chris Stringer, Department of Palaeontology, the Natural History Museum,

London; Mr. Korakot Boonlop, the Princess Maha Chakri Sirindhorn Anthropology Centre,

Bangkok; Prof. Michael Pietrusewsky, University of Hawaii; Dr. Nguyen Viet, the Centre for

Southeast Asian Prehistory, Hanoi; Dr. Philippe Mennecier, Department Hommes, Musee de

l’Homme, Paris; Prof. Robert Foley, Department of Biological Anthropology, University of

Cambridge; Dr. Tsai Hsi-Kuei, National Taiwan University, College of Medicine; Dr. Wang

Daw-Hwan, IHP, Academia Sinica, Taipei; and Dr. Wilfred Ronquillio, Archaeology Division,

National Museum of the Philippines, for permission to study comparative cranial specimens.

The authors also express their sincere gratitude to Dr. Priyatono Hadi, Pusat Arkeologi

National, for his aid to our project, including training cooperation for the Anthropological

and Archaeological study of Gua Harimau.

This study was supported in part by JSPS KAKENHI Grant No. No. 23247040 and No.

16H02527 and Australian Research Council Grant number: FT 120100299.

Author Contributions

Conceptualization: Hirofumi Matsumura.

Cranio-morphometric and aDNA corroboration of the Austronesian dispersal model in Island Southeast Asia

PLOS ONE | https://doi.org/10.1371/journal.pone.0198689 June 22, 2018 19 / 25

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0198689.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0198689.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0198689.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0198689.s004
https://doi.org/10.1371/journal.pone.0198689


Formal analysis: Hirofumi Matsumura, Ken-ichi Shinoda, Sofwan Noerwidi.

Funding acquisition: Hirofumi Matsumura, Truman Shimanjuntak, Marc F. Oxenham.

Investigation: Hirofumi Matsumura, Truman Shimanjuntak, Adhi Agus Oktaviana, Sofwan

Noerwidi, Harry Octavianus Sofian, Dyah Prastiningtyas, Lan Cuong Nguyen, Tsuneo

Kakuda, Hideaki Kanzawa-Kiriyama, Noboru Adachi, Hsiao-chun Hung, Xuechun Fan,

Xiujie Wu, Anna Willis, Marc F. Oxenham.

Methodology: Hirofumi Matsumura, Ken-ichi Shinoda, Marc F. Oxenham.

Project administration: Hirofumi Matsumura.

Resources: Hsiao-chun Hung.

Writing – original draft: Hirofumi Matsumura, Marc F. Oxenham.

Writing – review & editing: Anna Willis, Marc F. Oxenham.

References
1. Bellwood P. Prehistory of the Indo-Malaysian Archipelago. 3rd ed. Honolulu, Hawaii: University of

Hawai’i Press; 2007.

2. Blust R. Austronesian culture history: The window of language. TAPS. 1996; 86(5):28–35. https://doi.

org/10.2307/1006619

3. Blust R. Beyond the Austronesian homeland: The Austric hypothesis and its implications for archaeol-

ogy. TAPS. 1996; 86(5):117–58. https://doi.org/10.2307/1006623

4. Bellwood P. The origins and dispersals of agricultural communities in Southeast Asia. In: Glover I,

Bellwood PS, editors. Southeast Asia: From prehistory to history. New York: RoutledgeCurzon; 2004.

p. 21–40.

5. Bellwood P. Examining the farming/language dispersal hypothesis in the East Asian context. In:

Blench R, Sagart L, Sanchez-Mazas A, editors. The peopling of East Asia: Putting together archaeol-

ogy, linguistics and genetics. London: RoutledgeCurzon; 2005. p. 17–30.

6. Bellwood P, Dizon E. The Batanes archaeological project and the “Out of Taiwan” hypothesis for Aus-

tronesian dispersal. Journal of Austronesian Studies. 2005; 1(1):1–33.

7. Bellwood P, Dizon E. Austronesian cultural origins: Out of Taiwan, via the Batanes Islands, and

onwards to Western Polynesia. In: Sanchez-Mazas A, Blench R, Ross M, Peiros I, Lin M, editors. Past

human migrations in East Asia. London: Routledge; 2008. p. 23–39.

8. Bellwood P, Hung H-C. The dispersals of early food producers from Southern China into Southeast

Asia. Hemudu Culture International Forum, China. Beijing: China Modern Economic Publishing

House; 2013. p. 160–75.

9. Matsumura H, Oxenham MF. Demographic transitions and migration in prehistoric East/Southeast

Asia through the lens of nonmetric dental traits. Am J Phys Anthropol. 2014; 155:45–65. https://doi.

org/10.1002/ajpa.22537 PMID: 24954129

10. Matsumura H, Oxenham MF, Nguyen LC. Hoabinhians: A key population with which to debate the

peopling of Southeast Asia. In: Kaifu Y, Izuho M, Goebel T, Sato H, Ono A, editors. Emergence and

Diversity of Modern Human Behavior in Paleolithic Asia. Texas: Texas A&M University Press; 2015.

p. 117–32.

11. Harrison B. A classification of stone age burials from Niah Great Cave, Sarawak. Sarawak Mus J.

1967; 15(30–31):126–200.

12. Harrisson T. Early dates for "seated" burial and burial matting at Niah Caves, Sarawak (Borneo).

Asian Persp. 1975; 18(2):161.

13. Simanjuntak HT. Gua Harimau cave and the long journey of Oku civilization. Yogyakarta: Gadjah

Mada University Press; 2016.

14. Bronk Ramsey C. Bayesian analysis of radiocarbon dates. Radiocarbon. 2009; 51(1):337–60.

15. Sneath PH, Sokal RR. Numerical taxonomy. The principles and practice of numerical classification.

San Francisco: WH Freeman; 1973.

16. Oxenham MF, Matsumura H, Nguyen KD. Man Bac: The excavation of a Neolithic site in northern Viet-

nam. The biology. Canberra: ANU E Press; 2011.

Cranio-morphometric and aDNA corroboration of the Austronesian dispersal model in Island Southeast Asia

PLOS ONE | https://doi.org/10.1371/journal.pone.0198689 June 22, 2018 20 / 25

https://doi.org/10.2307/1006619
https://doi.org/10.2307/1006619
https://doi.org/10.2307/1006623
https://doi.org/10.1002/ajpa.22537
https://doi.org/10.1002/ajpa.22537
http://www.ncbi.nlm.nih.gov/pubmed/24954129
https://doi.org/10.1371/journal.pone.0198689


17. Woo JK. Human fossils found in Liukiang, Kwapai, China. Vertebr Palasiat. 1959; 3:109–18.

18. Fang Y, Fan X, Li S. Body size of Neolithic human remains from the Qihe Cave, Zhangping, Fujian.

Acta Anthropol Sin. 2015; 34(2):202–15.

19. Wu X, Fan X, Li S, Gao X, Zhang Y, Fang Y, et al. The early Neolithic human skull from the Qihe cave,

Zhangping, Fujian. Acta Anthropol Sin. 2015; 33:448–59.

20. Institute of Archaeology Chinese Academy of Social Science (IACAS), Archaeological Team of

Guangxi Zhuang Municipality (ATGZM), Zengpiyan Museum (ZM), Archaeological Team of Guilin City

(ATGC). Zengpiyan—a prehistoric site in Guilin, Beijing. Beijing: Cultural Relics Publishing House;

2003.

21. Colani M. L’age de la pierre dans la province de Hoa-Binh (Tonkin). Mémoires du Service Géologique

de l’Indochine. 1927; 14(1).
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