Chronic accumulations of complement-expressing microglia/macrophages accompany the progressive expansion of the retinal lesion in an animal model of atrophic AMD

Nilisha Fernando; Tanja Racic; Riccardo Natoli; Krisztina Valter; Jan Provis; Matt Rutar

Author Affiliations & Notes

Nilisha Fernando
The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia

Tanja Racic
The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia

Riccardo Natoli
The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
ANU Medical School, The Australian National University, Canberra, Australian Capital Territory, Australia

Krisztina Valter
The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
ANU Medical School, The Australian National University, Canberra, Australian Capital Territory, Australia

Jan Provis
The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
ANU Medical School, The Australian National University, Canberra, Australian Capital Territory, Australia

Matt Rutar
The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia

Footnotes

Commercial Relationships Nilisha Fernando, None; Tanja Racic, None; Riccardo Natoli, None; Krisztina Valter, None; Jan Provis, None; Matt Rutar, None

Support None

Investigative Ophthalmology & Visual Science September 2016, Vol.57, 2222. doi:

https://iovs.arvojournals.org/article.aspx?articleid=2560709
Purpose: Dysregulation of the complement system is a key factor in the pathogenesis of all forms of age-related macular degeneration (AMD). In geographic atrophy, complement activation has been linked to the progressive expansion of the macular lesion via genome-wide association studies, although how this process occurs is unclear. Using a rat model of phototoxicative stress and inflammation, we explore the role of microglia/macrophages in propagating complement activation within expanding lesions over a 2-month period, as chronicled via Optical Coherence Tomography (OCT).

Methods: Adult SD rats were exposed to 1000 lux bright light for 24 hours (LD). Following light exposure, OCT images were captured at 0, 3, 7, 14 and 56 days following LD (n=4), to map histological changes of the outer nuclear layer (ONL) and retinal integrity. For other animals, eyes and retinas were collected at each of the aforementioned time points, and assayed for expression and localisation of complement genes (qPCR and in situ hybridisation), and deposition of the complement activation product C3d (immunohistochemistry).

Results: Following LD, OCT revealed a significant thinning of the ONL which culminated in a substantial lesion in the superior retina by 7 days. This lesion slowly expanded over the ensuing post-exposure period, and reached maximal thinning at 56 days (P<0.05). In correlation, the expression of all complement genes assessed (C1s, C2, C3, C4a, CFB, CFD, SERPING1, CFH and CFI) was persistently up-regulated throughout the LD time course. Some, including C1s, C3 and C4a, remained up-regulated even after 56 days post-exposure (P<0.05). Using in situ hybridization, C1s and C3 mRNA were found to co-localise with subretinal microglia/macrophages, which were present at the edges of the expanding lesion up to 56 days after LD and were in close proximity to C3d deposits at the lesion edges.

Conclusions: Our findings suggest that complement activation at the edges of atrophic lesions is promoted by the recruitment of subretinal microglia/macrophages, and that this may facilitate its chronic expansion over time. Consequently, the modulation of microglial activation and recruitment may be a useful therapeutic avenue to curtail deleterious complement activation and slow the progression of atrophic AMD.

This is an abstract that was submitted for the 2016 ARVO Annual Meeting, held in Seattle, Wash., May 1-5, 2016.