
Internet Interventions 1 (2014) 165–168

Contents lists available at ScienceDirect

Internet Interventions

j ourna l homepage: www. invent - journa l .com/
Describing the distribution of engagement in an Internet support group
by post frequency: A comparison of the 90-9-1 Principle and Zipf's Law
Bradley Carron-Arthur a,⁎, John A. Cunningham a,b, Kathleen M. Griffiths a

a National Institute for Mental Health Research, Australian National University, 63 Eggleston Road, Acton, Canberra, ACT 0200, Australia
b Centre for Addiction and Mental Health, 33 Russell Street, T526 Toronto, ON, Canada
⁎ Corresponding author. Tel.: +61 02 6125 6825.
E-mail addresses: Bradley.Carron-Arthur@anu.edu.au

John.Cunningham@anu.edu.au (J.A. Cunningham), Kathy.G
(K.M. Griffiths).

http://dx.doi.org/10.1016/j.invent.2014.09.003
2214-7829/© 2014 The Authors. Published by Elsevier B.V
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 18 July 2014
Received in revised form 11 September 2014
Accepted 11 September 2014
Available online 28 September 2014

Keywords:
eHealth
Internet support group
Social network
Zipf's Law
90-9-1 principle
1% rule
Sustainable online peer-to-peer support groups require engaged members. A metric commonly used to identify
these members is the number of posts they have made. The 90-9-1 principle has been proposed as a ‘rule of
thumb’ for classifying members using this metric with a recent study demonstrating the applicability of the
principal to digital health social networks.
Using data from a depression Internet support group, the current study sought to replicate this finding and to
investigate in more detail the model of best fit for classifying participant contributions.
Our findings replicate previous results and also find the fit of a power curve (Zipf distribution) to account for
98.6% of the variance.
The Zipf distribution provides a more nuanced image of the data and may have practical application in assessing
the ‘coherence’ of the sample.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Online peer-to-peer support has many potential health benefits
(Ziebland and Wyke, 2012). To date, systematic reviews have failed to
find consistent evidence for the efficacy of online peer-to-peer support
groups on health outcomes (Eysenbach et al., 2004; Griffiths et al.,
2009). However, there is evidence that consumers value these groups
(Horrigan et al., 2001) and there is increasing interest in identifying
the key components of sustainable thriving online support groups
(Young, 2013). It is generally agreed that one key component is highly
engaged core members who contribute substantially to the community
(Young, 2013). There is no consensus on what metrics should be
employed to classify the contributions of members. Four studies have
sought to identify highly engaged members in online peer-to-peer
support groups using different combinations of metrics. These metrics
include the number of posts made by members (Cobb et al., 2010;
Jones et al., 2011; vanMierlo et al., 2012; vanMierlo, 2014), the number
of threads initiated (Jones et al., 2011; van Mierlo et al., 2012), the
number of different threads in which a member participates (Jones
et al., 2011; van Mierlo et al., 2012), the level of connectedness to other
members in the forum (Cobb et al., 2010) and time spent logged in
(Jones et al., 2011). Onemetric common to themallwas number of posts.
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Recent research has used number of posts as a sole means of classi-
fying members in Digital Health Social Networks (DHSN) with a peer-
to-peer support group component (van Mierlo, 2014). The study
investigated the 90-9-1 principle or the 1% rule. This rule describes a
commonly reported phenomenon whereby the majority of content in
an Internet community is produced by only 1% of the participants
(referred to as ‘superusers’), a minority of the content is produced by
a further 9% of participants (‘contributors’) and 90% of people observe
the content in the Internet community without actively participating
(‘lurkers’) (Nielsen, 2014). The study sectioned the content attributed
to these three groups and found that the sections contained 74.7%,
24.0% and 1.3% of the total posts in the DHSN respectively. It was con-
cluded that the 90-9-1 principle applied to DHSN.

The DHSN study sought to verify the 90-9-1 principle rather than to
determine the distribution which best fitted the data. Thus, the 90-9-1
principle may not provide the greatest accuracy in classifying partici-
pants in a DHSN. The aim of the current study is to further investigate
the model of best fit for classifying participants in a DHSN, including
but not limited to the 90-9-1 principle.

2. Method

This studyused data from the peer-to-peer Internet support group—

BlueBoard (blueboard.anu.edu.au). BlueBoard is predominantly used
for peer-to-peer discussion about Depression (38.8% of content). It
also includes forums on Bipolar Disorder (18.4%), Generalised Anxiety
Disorder (5.0%), general discussion (22.1%) and other topics (15.7%).
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Fig. 2. Log–log scatterplot of the total posts made by each member ranked in descending
order and a power curve which best fits the data.
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BlueBoard is moderated by a team of paid personnel. Members are con-
sumers and carers. BlueBoard's homepage is shown in Fig. 1. The data
used in this study included all posts generated between 1st October
2008 and the 23rd May 2014 (n = 131,004 by 2932 members). Posts
made by moderators (n = 352 by 10 moderators) were not included
in the analysis. Data collection procedures were approved by the
Australian National University Human Research Ethics Committee.

In order to replicate the analysis conducted by van Mierlo (2014),
we separately calculated the total number of posts made by the 1% of
registered members who contributed the most, the next 9% and the
final 90%. To investigate alternative models of fit for the data we
graphed on a log–log scatterplot the total number of posts of eachmem-
ber ranked in order of those who made most to least posts and fitted a
power curve using Microsoft Excel.

3. Results

The percentages of posts made by participants in each of the three
Sections 1, 9, and 90 were 85.8%, 11.2% and 3.0% of the total number
of posts respectively. The corresponding number of members in each
section and the range in the number of posts made by members in
that section are shown in Table 1.

A log–log scatterplot showing the frequency of posts made by each
member ranked in descending order is presented in Fig. 2. The best
fitting curve was found to have the function f(x) = 63935x−1.427 with
correlation coefficient r = 0.993 and a coefficient of determination of
0.986. This indicates that the model accounts for 98.6% of the variance.

4. Discussion

The current analysis broadly replicated the findings of van Mierlo
(2014), that the top 1% of registered members contribute the vast ma-
jority of posts, the next 9% a minority and the last 90% very few. Thus,
the 90-9-1 principle appears to provide a reliable means of broadly
categorising participant contributions in a DHSN. However, the graph
in Fig. 2 and the associated best fitting power curve provide an alternate
andmore precisemeans of describing the distribution. In fact, the distri-
bution in Fig. 2 adheres to Zipf's law— that the frequency of posts made
by amember is inversely proportional to their rank in frequency. This is
a widely observed phenomenon spanning areas such as linguistics,
populations, income and internet traffic (Newman, 2006; Adamic and
Huberman, 2002). This model gives amore nuanced image of the distri-
bution. It shows a gradual reduction in contributions rather than a
quantum leap at the boundary between superusers and contributors
as the 90-9-1 principle implies. Researchers, developers and other
stakeholders seeking to optimise the network effects associated with
members who generate the highest levels of traffic in an Internet sup-
port group (van Mierlo, 2014) may benefit from the understanding
that there is a predictable diminishing return associatedwith each indi-
vidual member as opposed to categorical differences in types of users.

A range of explanations has been proposed to explain the occurrence
of Zipfian distributions including, for example, the principle of least
effort (Ferrer i Cancho and Sole, 2003), proportional growth processes
(Gabaix, 1999) or a simple stochastic process (Miller et al., 1958).
There is no consensus on which is correct and none allow a meaningful
interpretation of the current data. However, a phenomenon associated
Table 1
Posts and members in each section.

Percentile Members (N) Percentage of
posts (N)

Range in the
number of posts (N)

1 (1%) 1–74 (74) 85.8% (112,373) 11,994–142 (11,852)
2–10 (9%) 75–743 (669) 11.2% (14,669) 141–5 (136)
11–100 (90%) 744–7434 (6691) 3.0% (3,962) 5–0 (5)
with data which better fits the Zipfian distribution is that of greater ‘co-
herence’ in the sample (Cristelli et al., 2012). For example, ranking cities
by population size in theUSA fits the Zipfian distribution better than the
European Union (EU). Furthermore, each individual country of the EU
fits the distribution well in comparison to the EU as a whole, and con-
versely each individual state in the USA does not fit the distribution
well in comparison to the USA as a whole. This is thought to reflect
the time each has had to organically evolve as a collective unit
(Cristelli et al., 2012). For Internet support groups, describing the distri-
bution of engagement using the Zipfian distribution may allow re-
searchers and developers to assess the coherence of the group versus
the coherence of its subsets, such as the different forums within the
group. In the current study, the best fit was found for the support
group as a whole as opposed to any individual forum by topic.

Frequency of posts is one way of identifying highly engaged mem-
bers in a network. It is not necessarily the most suitable method.
Borgatti (2006) argues that key members in a network are most appro-
priately identified using the combination of metrics that identifies
members whose engagement contributes the kind of value that reflects
the reason they are being sought. In addition to the metrics which have
been used in past research, future research may investigate other
metrics such as the average word count of posts, time of day, regularity
of posting or combinations of these. Since quantity does not necessarily
reflect quality, content analysis of posts is required to determine if
the highly engaged users are contributing informative and supportive
content (Salem et al., 1997).
5. Conclusion

The 90-9-1 principle and Zipf's Law both provide a means of describ-
ing the distribution in engagement of members by post frequency in the
internet support group but Zipf's lawprovides amore precise description
of the data.
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